WO2020134655A1 - 一种超极限合金及其制备方法 - Google Patents

一种超极限合金及其制备方法 Download PDF

Info

Publication number
WO2020134655A1
WO2020134655A1 PCT/CN2019/117283 CN2019117283W WO2020134655A1 WO 2020134655 A1 WO2020134655 A1 WO 2020134655A1 CN 2019117283 W CN2019117283 W CN 2019117283W WO 2020134655 A1 WO2020134655 A1 WO 2020134655A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
alloy
thickness
ceramic
limiting
Prior art date
Application number
PCT/CN2019/117283
Other languages
English (en)
French (fr)
Inventor
冯晶
吴福硕
宋鹏
郑奇
杨凯龙
李超
种晓宇
葛振华
Original Assignee
昆明理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811645669.0A external-priority patent/CN109554708B/zh
Priority claimed from CN201811640785.3A external-priority patent/CN109719414B/zh
Priority claimed from CN201811640741.0A external-priority patent/CN109554707B/zh
Priority claimed from CN201811640744.4A external-priority patent/CN109609952B/zh
Priority claimed from CN201811645718.0A external-priority patent/CN109487196B/zh
Priority claimed from CN201811640624.4A external-priority patent/CN109468639B/zh
Priority claimed from CN201811645702.XA external-priority patent/CN109487195B/zh
Priority claimed from CN201811645724.6A external-priority patent/CN109609953B/zh
Priority to JP2021538453A priority Critical patent/JP7242867B2/ja
Priority to EP19903063.6A priority patent/EP3904555A4/en
Priority to US17/419,250 priority patent/US11530485B2/en
Application filed by 昆明理工大学 filed Critical 昆明理工大学
Publication of WO2020134655A1 publication Critical patent/WO2020134655A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/131Wire arc spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron

Definitions

  • the invention belongs to the field of alloy metal materials, and particularly relates to an ultra-limit metal (magnesium, aluminum, nickel, titanium, iron, copper, zirconium or tin) alloy and a preparation method thereof.
  • the increase of the speed of the aircraft means that the engine operating speed is increased, and the operating temperature of the engine is also increased, which makes the blades and gears of the engine
  • the temperature of the casing, oil pump and oil pipe also increased.
  • an alloy with a higher melting point such as iron alloy
  • iron alloy is usually used as the main structural material for the aircraft, but the weight of the iron alloy is large, and the iron alloy is used to manufacture the aircraft engine.
  • the raw materials will lead to a significant increase in the weight of the aircraft engine, but on the contrary, it will cause the flight speed of the aircraft to slow down, which cannot meet the actual needs. If the speed of the aircraft is increased without changing the materials, the service life of the aircraft can only be shortened.
  • magnesium alloy has low density (about 1.8g/cm 3 ), high strength, large elastic modulus, good heat dissipation, good shock absorption, large impact load capacity ratio, resistance to organic matter and alkali Good corrosion performance and other excellent characteristics, mainly used in aviation, aerospace, transportation, chemical industry, rockets and other industrial sectors.
  • Magnesium alloy is the lightest metal structural material used in the aircraft, spacecraft and rocket missile manufacturing industries, and is mainly used to manufacture low-load parts. Magnesium alloy is very stable in gasoline, kerosene and lubricating oil, so the engine gear box, oil pump and oil pipe are usually made of magnesium alloy.
  • the melting point of the magnesium alloy of the magnesium alloy is about 650 °C, the use temperature is about 70% of its melting point, and the magnesium alloy is easily oxidized at high temperature, so when the aircraft speeds up, the magnesium alloy cannot meet the temperature rise of each part of the engine It is used under high conditions, so it cannot be used under the ultra-limit temperature (the ultra-limit temperature exceeds the melting temperature of the magnesium alloy).
  • Aluminum alloys are the most widely used non-ferrous metal structural materials in the industry. They have excellent characteristics such as low density, high strength, excellent plasticity, electrical conductivity and corrosion resistance. They are used in aviation, aerospace, automobile, machinery manufacturing, shipbuilding and It is widely used in the chemical industry, especially playing an irreplaceable role in the aerospace field.
  • the use of high-strength aluminum alloys on commercial aircraft due to its excellent comprehensive performance has reached more than 80% of its structural quality, so it has been generally valued by the global aviation industry. All kinds of aircraft use aluminum alloy as the main structural material, and the skin, beam, rib, stringer, bulkhead and landing gear on the aircraft can be made of aluminum alloy.
  • the current melting point of aluminum alloy is about 650°C, and the use temperature is about 70% of its melting point, which can not meet the use at the ultra-limit temperature (the ultra-limit temperature exceeds the melting point temperature of the aluminum alloy), nor can it meet the speed-up of the aircraft. Use requirements, so in the development of aircraft, the use of aluminum alloys is limited.
  • Nickel alloy refers to an alloy composed of nickel as a matrix and other elements added. Nickel has good mechanical, physical and chemical properties, and nickel alloys formed by adding suitable elements to nickel have strong oxidation resistance, corrosion resistance, high temperature strength, and can improve certain physical properties. Therefore, nickel alloys are widely used in energy Development, chemical, electronics, marine, aviation and aerospace fields. Nickel alloys have played an irreplaceable role in the aerospace field due to their strong comprehensive properties such as strength, hardness, shock resistance, corrosion resistance, oxidation resistance, high temperature strength and certain physical properties. When nickel alloys are used in the aerospace field, they are usually used to prepare the blades of aircraft engines. Engines are very important for aircrafts, which are equivalent to the heart of aircrafts, and the blades are equivalent to the heart of engines.
  • the heat resistance of nickel alloys is required. very high.
  • the increase of aircraft speed means that the operating speed of the engine is gradually increased, which causes the surface temperature of the engine blade to gradually increase.
  • the melting point of the alloy is about 1450°C, and the use temperature is about 70% of its melting point, which cannot meet the requirements of the aircraft after speeding up (that is, the nickel alloy cannot be used under the extreme temperature (beyond the melting temperature of the nickel alloy)), or It is said that in order to achieve the requirements of aircraft speed increase, the service life of the aircraft must be sacrificed. Therefore, in the development of aircraft, even the development of the entire nickel alloy is restricted, and the use of nickel alloy is restricted, reaching a bottleneck.
  • Titanium alloys have the characteristics of high strength, small specific gravity, good corrosion resistance, high heat resistance, high hardness, and good biocompatibility.
  • titanium-based alloys were widely used in aviation, aerospace, submarine, medical
  • the first practical titanium alloy was the Ti-6Al-4V alloy developed in the United States in 1954, and then became the ace alloy in the titanium alloy industry. The amount of this alloy has accounted for 75% to 85% of all titanium alloys.
  • Many other titanium alloys can be regarded as a modification of Ti-6Al-4V alloy. Titanium alloys can still maintain their mechanical properties at low and ultra-low temperatures. Titanium alloys with good low temperature performance and extremely low interstitial elements, such as TA7, can maintain a certain plasticity at -253°C.
  • Titanium alloy is a new important structural material used in the aerospace industry, such as the United States SR-71 high-altitude high-speed reconnaissance aircraft (flight Mach number 3, flight altitude 26212 meters), titanium accounts for 93% of the aircraft structure weight, known as " All titanium aircraft.
  • titanium alloys have many excellent properties, due to the current limited use temperature of only 400 ⁇ 500 °C, with the increasing demand for aerodynamic engines with high thrust-to-weight ratio, the performance of various high temperature component materials has also been proposed. Strict requirements. In addition, when the metal works at a temperature exceeding half of its melting point, it will soften. That is, when the titanium alloy is operated in an environment of about 840 °C, it will soften and reduce its performance. The titanium alloy cannot be used under the extreme temperature (beyond the melting temperature of the titanium alloy).
  • ferroalloy is the most important and the most important metal material in engineering technology.
  • the metal material with the largest amount of use is widely used in machinery, shipbuilding, due to its high strength, variety and low cost.
  • Communication, agriculture, automobile, transportation, railway, military industry, coal, mining, petroleum, chemical industry and other fields are known as the backbone of modern industry.
  • strong comprehensive properties such as strength and hardness of ferroalloys, it has played an irreplaceable role in the aerospace field.
  • ferroalloys have many excellent properties, the melting point of ferroalloys is around 1500°C, and the characteristics of being easily oxidized at high temperatures greatly limit the use of ferroalloys under high temperature conditions.
  • the metal is operated at a temperature exceeding half of its melting point, softening occurs, that is, when the iron alloy is operated in an environment of 750°C, softening occurs and performance deteriorates. Therefore, the current ferroalloys cannot meet the requirements of aircraft after speed-up (that is, the iron alloys cannot be used under the extreme temperature (beyond the melting temperature of the iron alloy)), or in order to achieve the speed-up requirements of the aircraft, the service life of the aircraft must be sacrificed. Therefore, in the development of aircraft, even the development of the entire ferroalloy is restricted, and the use of ferroalloy is restricted, reaching a bottleneck.
  • copper alloy refers to an alloy composed of copper as a matrix and other elements added. Copper has good mechanical, physical and chemical properties, and copper alloys formed by adding suitable elements to copper have strong oxidation resistance, corrosion resistance, high temperature strength, and can improve certain physical properties. Therefore, copper alloys are widely used in energy Development, chemical, electronics, marine, aviation and aerospace fields. Copper alloys have played an irreplaceable role in the aerospace field due to their strong comprehensive properties such as strength, hardness, shock resistance, corrosion resistance, oxidation resistance, high temperature strength and certain physical properties.
  • the lining of the combustion chamber and thrust chamber of a rocket engine can be cooled by the excellent thermal conductivity of copper to ensure that the temperature of the engine is within the allowable range.
  • the combustion chamber lining of the Ariana rocket No. 5 is made of copper-silver alloy. 360 cooling channels are machined in this lining, and liquid hydrogen is introduced to cool the rocket during launch.
  • copper alloy has many excellent properties, its melting point is around 1080°C, and its high oxidation property at high temperature greatly limits the use of copper alloy under high temperature conditions.
  • softening occurs, that is, when the copper alloy is operated in an environment of 540°C, softening occurs and performance deteriorates.
  • the current copper alloy cannot meet the requirements of the aircraft after speed-up (that is, the copper alloy cannot be used under the extreme temperature (beyond the melting temperature of the copper alloy)), or in order to achieve the speed-up requirements of the aircraft, the use of the aircraft must be sacrificed life. Therefore, in the development of aircraft, even the development of the entire copper alloy is restricted, and the use of copper alloy is restricted, reaching a bottleneck.
  • Zirconium alloy refers to an alloy composed of zirconium as a matrix and other elements added. Zirconium alloys have very low thermal neutron absorption cross-sections, high hardness, ductility, and corrosion resistance. They are commonly used in the field of nuclear technology, such as the production of fuel rods in nuclear reactors. Due to the limitation of the use environment, the zirconium alloy must have good high-temperature oxidation resistance and corrosion resistance, not easy to fall off during use, easy for long-term maintenance and maintenance, and possessed in extreme environments (such as exceeding the extreme temperature (over melting point)) High stability and other properties. The melting point of zirconium alloy is about 1850 °C, and its use temperature is only about 70% of its melting point. Therefore, the current use of zirconium alloy in nuclear technology still has certain limitations, making the service life of fuel rods made of zirconium alloy It is short and cannot run stably for a long time.
  • Conventional alloy solder composed of tin and antimony, silver, indium, gallium and other metals has the characteristics of low melting point, non-toxic and corrosion resistance.
  • the tin alloy solder has high ductility and corrosion resistance
  • the tin alloy solder under normal conditions has limited its range of use due to its low hardness and processing strength.
  • the extreme environment high temperature, high pressure, and high erosion
  • the speed of aircraft is getting higher and higher, which makes the aircraft in a high temperature, high pressure, and high erosion.
  • the solder joint formed by the conventional tin alloy solder is prone to deform and cause failure at the extreme temperature (ie, exceeding its melting point temperature).
  • tin alloy weld materials must have good high-temperature oxidation resistance and corrosion resistance, as well as higher strength and hardness. It is not easy to fall off and fail during use, which is convenient for long-term maintenance and maintenance, and has high stability in extreme environments.
  • the current tin alloy solder has been difficult to operate stably for a long time under the environment of high temperature, high pressure and high erosion, and a more stable and practical manufacturing process is needed to make the use of tin alloy weld material more extensive.
  • the present invention intends to provide an ultra-limiting (magnesium, aluminum, nickel, titanium, iron, copper, zirconium or tin) alloy and a preparation method thereof.
  • the first aspect of the present invention provides an ultra-limiting alloy and a preparation method thereof to solve the problem that the alloy cannot be used at an ultra-limiting temperature.
  • the first aspect of the present invention provides the following basic technical solution, in which a composite bonding layer and a composite ceramic layer are deposited in sequence on the surface of the alloy matrix; the composite bonding layer includes a bonding layer deposited on the surface of the alloy matrix and a bonding layer Noble metal layer on the surface of the layer; the composite ceramic layer includes ceramic A layer and ceramic B layer; the alloy substrate is selected from one of magnesium alloy substrate, aluminum alloy substrate, nickel alloy substrate, titanium alloy substrate, iron alloy substrate and copper alloy substrate .
  • This technical solution can greatly increase the use temperature of the alloy by depositing a composite bonding layer and a composite ceramic layer on the alloy substrate to adapt to the use of the alloy at the extreme temperature.
  • Depositing a composite bonding layer can improve the bonding effect between each coating and the alloy matrix and prevent the coating from falling off during use.
  • Depositing a composite ceramic layer can reduce the heat conduction, thereby increasing the use temperature of the alloy matrix.
  • the first aspect of the present invention has the following technical effects:
  • the super-limit alloy provided by the present invention has excellent high-temperature mechanical and chemical stability, and can be used under the condition of exceeding the melting point of its alloy matrix, which enhances the range of use.
  • the super-limit alloy provided by the present invention has excellent corrosion resistance, so the service time under acidic or alkaline conditions is greatly increased, so the waste caused by material corrosion can be reduced and the cost can be saved.
  • the present invention breaks the confinement of the traditional idea that when the ambient temperature is higher than the use temperature of the material, the material can only be replaced. By depositing a coating on the surface of the material, the use temperature of the material is increased, so that the super-limit alloy can be applied to the accelerated speed. Aircraft preparation, and will not shorten the life of the aircraft.
  • a reflective layer, a refraction layer, an insulating layer and a foamed carbon layer are sequentially deposited outside the composite ceramic layer.
  • the thickness of the composite bonding layer is 100-200 ⁇ m
  • the thickness of the composite ceramic layer is 150-500 ⁇ m
  • the thickness of the reflective layer The thickness is 10-30 ⁇ m
  • the thickness of the antirefractive layer is 10-30 ⁇ m
  • the thickness of the insulating layer is 10-200 ⁇ m
  • the thickness of the foamed carbon layer is 20-200 ⁇ m
  • the thickness of the composite adhesive layer is 80-100 ⁇ m
  • the thickness of the composite ceramic layer is 150-500 ⁇ m
  • the thickness of the reflective layer is 10-30 ⁇ m
  • the thickness of the antirefractive layer is 10-30 ⁇ m
  • the thickness of the insulating layer The thickness is 10-200 ⁇ m
  • the thickness of the foamed carbon layer is 20-200 ⁇ m
  • the deposited reflective layer has the effect of reflecting the heat source, thereby reducing the heat source on the alloy surface, thereby increasing the use temperature.
  • Depositing an anti-refractive layer can block the refraction of infrared rays in the coating, thereby lowering the temperature of the alloy matrix, thus increasing the use temperature of the prepared alloy.
  • the insulating layer can isolate the generation of ionization on the surface of the alloy substrate and resist the corrosion of the substrate material by electric charges.
  • the carbon of the foamed carbon layer vaporizes and cools, and a vaporized film is formed on the surface of the alloy substrate, which further prevents heat transfer, thereby increasing the use temperature of the alloy.
  • This technical solution greatly improves the service temperature of the alloy through the cooperation of various coatings. And by setting the thickness of each coating layer, the use temperature of the prepared super-limit alloy can be increased, and its weight increase is small, and it has light-weight characteristics, which is convenient for making aircraft.
  • the composition of the bonding layer is one or a mixture of MCrAlY, NiAl, NiCr-Al, Mo, MCrAlY is NiCrCoAlY, NiCoCrAlY, CoNiCrAlY or CoCrAlY; the composition of the precious metal layer is Au, Pt, Ru, One or more alloys of Rh, Pd and Ir.
  • the ratio of the elements in the three materials of NiCrCoAlY, NiCoCrAlY, CoNiCrAlY is different, so the materials produced are different.
  • the bonding layer has a good bonding effect, which makes the subsequent coating and the alloy substrate have a good bonding effect, reducing the probability of shedding of the coating; and the precious metal itself has anti-oxidation properties, which can effectively prevent oxygen from bonding at high temperatures It diffuses in the layer and the alloy matrix, thereby improving the oxidation resistance of the coating and increasing the life of the coating.
  • the composition of the ceramic A layer is YSZ or rare earth zirconate (RE 2 Zr 2 O 7 ); the composition of the ceramic B layer is ZrO 2 -RETaO 4 .
  • the ceramic A layer is close to the precious metal layer or the ceramic B layer is close to the precious metal layer.
  • YSZ or rare earth zirconate is a substance commonly used as a thermal barrier coating, which is easy to obtain.
  • ZrO 2 -RETaO 4 has the characteristics of low thermal conductivity and high expansion. The low thermal conductivity can reduce the heat conduction, so that the alloy matrix keeps low temperature under high temperature environment, thereby increasing the use temperature of the prepared alloy; and the high expansion coefficient is for Matches the thermal expansion coefficient of the bonding layer. Since the thermal expansion coefficient of the precious metal bonding layer is also large, the thermal mismatch stress between the ceramic layer and the bonding layer during thermal cycling (that is, during continuous heating and cooling) ( The stress caused by different thermal expansion coefficients is smaller, which in turn increases the service life of the coating.
  • the ZrO 2 -RETaO 4 has a spherical shape and a particle size of 10-70 ⁇ m.
  • Beneficial effect It can make the spraying effect good when depositing the ceramic B layer, and make the bonding effect of the ceramic B layer good.
  • composition of the reflective layer is one or a mixture of REVO 4 , RETaO 4 , and Y 2 O 3 .
  • REVO 4 , RETaO 4 , and Y 2 O 3 have high reflection coefficients, so they can reflect heat sources, reduce heat radiation, and lower the temperature of the alloy matrix, thereby increasing the use temperature of the prepared alloy.
  • composition of the antirefractive layer is one or a mixture of graphene or boron carbide, and the crystal structures of graphene and boron carbide are in a disorderly arrangement state.
  • graphene and boron carbide have a high refractive index
  • disorderly arranged graphene and boron carbide can enhance the refraction of light in all directions and avoid incident light Refraction occurs in the same direction to achieve the effect of refractive dispersion, so that the intensity of incident light entering the coating decreases.
  • the component of the insulating layer is one or a mixture of epoxy resin, phenol resin, and ABS resin.
  • a method for preparing an ultra-limiting alloy includes the following steps:
  • Step 1 First deposit a bonding layer on the surface of the alloy substrate, and then deposit a precious metal layer on the surface of the bonding layer, so that the bonding layer and the precious metal layer form a composite bonding layer;
  • Step 2 Deposit the ceramic A layer and the ceramic B layer on the surface of the precious metal layer, so that the ceramic A layer and the ceramic B layer form a composite ceramic layer;
  • Step 3 Deposit a reflective layer on the surface of the composite ceramic layer
  • Step 4 Paint the anti-refractive layer on the surface of the reflective layer
  • Step 5 Brush the insulating layer on the surface of the refraction layer
  • Step 6 Brush the surface of the insulating layer with a layer of foamed carbon to form a super-limiting alloy.
  • the use temperature of the prepared super-limit alloy can be increased to 100-500 °C higher than the melting point of the original alloy, and has excellent corrosion resistance. At the same time, it can avoid the situation that the weight of the prepared super-limit alloy is increased due to the large thickness of the coating, so that the super-limit alloy can maintain the lightweight characteristics and can be used at the super-limit temperature, thereby satisfying the current There are requirements for the use of aircraft to speed up.
  • the oil stain on the surface of the alloy substrate is removed; the surface of the alloy substrate is shot peened so that the surface roughness of the alloy substrate is 60-100 ⁇ m.
  • the adhesion effect between the alloy substrate and the coating can be increased.
  • a large internal stress will be generated during the solidification of the coating.
  • the roughness of the surface of the alloy substrate after shot peening by the shot blasting machine can effectively eliminate the problem of stress concentration, thus preventing the coating from cracking.
  • the existence of surface roughness can support the quality of a part of the paint, which is helpful to eliminate the sagging phenomenon.
  • the second aspect of the present invention provides an ultra-limiting zirconium alloy and a preparation method thereof to solve the problem that the existing zirconium alloy cannot run stably for a long time in the nuclear reaction technology.
  • An ultra-limiting zirconium alloy includes a zirconium alloy substrate, and a bonding layer, a precious metal layer, a ceramic A layer, and a ceramic B layer are sequentially deposited on the surface of the zirconium alloy substrate.
  • the inventors have made a lot of research on zirconium alloys and tried to improve the zirconium alloys to meet the long-term stable operation of the zirconium alloys in the use of nuclear technology.
  • the use temperature of the zirconium alloy can be increased by 100-500 °C, while the use temperature of the material is increased in a high-temperature environment A few degrees Celsius is very difficult, so a great breakthrough has been made in the use of zirconium alloy, so as to meet the long-term stable operation of zirconium alloy in the use of nuclear technology.
  • This technical solution can greatly increase the service temperature of the zirconium alloy by depositing a bonding layer, a precious metal layer, a ceramic A layer, and a ceramic B layer on the zirconium alloy substrate to adapt to the use of the zirconium alloy at the extreme temperature.
  • Depositing a bonding layer can improve the bonding effect between each coating and the zirconium alloy substrate to avoid the coating falling off during use; depositing a precious metal layer can prevent oxygen from diffusing into the coating, thereby avoiding oxidation of the zirconium alloy substrate.
  • the deposition of ceramic A layer and ceramic B layer can reduce the heat conduction, thereby increasing the use temperature of the zirconium alloy matrix.
  • the present invention has the following technical effects:
  • the super-limited zirconium alloy provided by the present invention can overcome the situation that the original zirconium alloy is exposed to oxides on the surface after prolonged service under high-temperature and high-pressure water vapor environment; when used for a long time under high temperature, no oxidation will occur , So that the use time of the entire component increases.
  • the use temperature can be raised to 100-500°C higher than the melting point of the original zirconium alloy substrate, so as to realize the stable use of the zirconium alloy in a super-limiting environment for a long time.
  • the ultra-limiting zirconium alloy provided by the present invention has excellent corrosion resistance, so the service time under acidic or alkaline conditions is greatly increased, so the waste caused by material corrosion can be reduced and the cost can be saved.
  • the ultra-limiting zirconium alloy provided by the present invention breaks through the development bottleneck of the traditional zirconium alloy, and can further increase its use temperature on the basis of its higher melting point, and the elevated temperature is a leap forward.
  • the super-limiting zirconium alloy provided by the present invention can be used stably for a long time under the super-limiting temperature.
  • the thickness of the adhesive layer is 50-150 ⁇ m
  • the thickness of the noble metal layer is 10-20 ⁇ m
  • the thickness of the ceramic A layer is 50-80 ⁇ m
  • the thickness of the ceramic B layer is 50-80 ⁇ m
  • the surface of the ceramic B layer is also A sealing coating of 5-10 ⁇ m thick, a reflective layer of 10-15 ⁇ m thick, a refraction layer of 10-15 ⁇ m thick and an electrical insulating layer of 15-20 ⁇ m thick are deposited in sequence.
  • the sealing coating can isolate the external oxidation or corrosion atmosphere, so that the external atmosphere cannot directly react with the internal coating, thereby increasing the service life of the coating; the reflective layer has the effect of reflecting the heat source, thereby reducing the surface of the zirconium alloy Heat source, thereby increasing the use temperature.
  • Depositing the anti-refractive layer can block the refraction of infrared rays in the coating, thereby reducing the temperature of the zirconium alloy matrix, thus making the use temperature of the prepared zirconium alloy higher.
  • the electrically insulating layer can isolate conductive ions and avoid the erosion of the conductive ions on the zirconium alloy matrix, thereby improving the corrosion resistance of the prepared extreme zirconium alloy. This technical solution greatly improves the use temperature of the zirconium alloy through the combination of the coatings and their thicknesses, which is convenient for the production of aircraft.
  • composition of the adhesive layer is MCrAlY, and MCrAlY is CoCrAlY, NiCoCrAlY, or CoNiCrAlY;
  • the precious metal layer is one or more alloys of Pt, Ru, Rh, Pd, Ir, and Os.
  • the ratio of elements in NiCoCrAlY and CoNiCrAlY is different, so the materials produced are different.
  • the bonding layer has a good bonding effect, which makes the subsequent coating and the zirconium alloy body have a good bonding effect, reducing the probability of the coating falling off; and the precious metal itself has anti-oxidation properties, which can effectively prevent oxygen from sticking at high temperatures
  • the junction layer and the zirconium alloy matrix diffuse, thereby improving the oxidation resistance of the coating and increasing the life of the coating.
  • the composition of the ceramic A layer is Y 2 O 3 -ZrO 2 , Y 2 O 3 -CeO 2 , Y 2 O 3 -TiO 2 , Y 2 O 3 -CeO 2 , Y 2 O 3 -Yb 2 O 3.
  • Y 2 O 3 -Er 2 O 3 , Y 2 O 3 -Dy 2 O 3 , Y 2 O 3 -HfO 2 the ceramic B layer is RETaO 4 , RETaO 4 It is spherical and the particle size is 10-70 ⁇ m.
  • YSZ or rare earth zirconate is a substance commonly used as a thermal barrier coating, which is easy to obtain.
  • RETaO 4 has the characteristics of low thermal conductivity and high expansion.
  • the low thermal conductivity can reduce the heat conduction, so that in a high temperature environment, the zirconium alloy matrix keeps low temperature, thereby increasing the use temperature of the prepared zirconium alloy; and the high expansion coefficient is to
  • the thermal expansion coefficient of the bonding layer is matched, because the thermal expansion coefficient of the precious metal bonding layer is also large, so that during the thermal cycle (that is, the process of continuous heating and cooling), the thermal mismatch stress of the ceramic layer and the bonding layer (thermal expansion The stress generated by different coefficients is smaller, which in turn increases the service life of the coating.
  • the composition of the sealing layer is one or a mixture of Ti 3 SiC, REPO 4 and BN.
  • composition of the reflective layer is one or a mixture of REVO 4 , RETaO 4 , and Y 2 O 3 ;
  • the composition of the antirefraction layer is graphene, and the spatial distribution of the graphene is in a disorderly arrangement state .
  • REVO 4 , RETaO 4 , and Y 2 O 3 have high reflection coefficients, so they can reflect heat sources, reduce heat radiation, and lower the temperature of the zirconium alloy matrix, thereby increasing the use temperature of the prepared zirconium alloy; although graphene has a higher Refractive index, when the incident light is irradiated on the anti-refractive layer, the disorderly arranged graphene can enhance the refraction of light in all directions, avoid the incidence of refraction of the incident light in the same direction, and achieve the effect of refractive dispersion. The intensity of incident light in the layer decreases.
  • the components of the electrical insulation layer are polytetrafluoroethylene, polyimide, polyphenylene ether, polyphenylene sulfide, polyether ether ketone, bismaleimide, furan resin, cyanate resin, poly One or a mixture of several arylethynyl groups.
  • the above-mentioned materials can isolate conductive ions and prevent the conductive ions from entering the zirconium alloy matrix to erode the zirconium alloy matrix.
  • a method for preparing an ultra-limiting zirconium alloy includes the following steps:
  • Step 1 Deposit a 50-150 ⁇ m thick adhesive layer on the surface of the zirconium alloy substrate;
  • Step 2 Deposit a layer of precious metal with a thickness of 10-20 ⁇ m on the surface of the bonding layer;
  • Step 3 Deposit a 50-80 ⁇ m thick ceramic A layer on the surface of the precious metal;
  • Step 4 Deposit a 50-80 ⁇ m thick ceramic B layer on the surface of the ceramic A layer;
  • Step 5 Deposit a 5-10 ⁇ m thick seal coating on the surface of the ceramic B layer
  • Step 6 Deposit a 10-15 ⁇ m thick reflective layer on the surface of the seal coating
  • Step 7 Deposit a 10-15 ⁇ m thick refraction layer on the surface of the reflective layer
  • Step 8 Deposit a 15-20 ⁇ m thick electrical insulating layer on the surface of the refraction layer, so as to produce an ultra-limiting zirconium alloy.
  • the beneficial effect of the technical solution by controlling the thickness of each coating deposited on the zirconium alloy substrate, the use temperature of the prepared extreme zirconium alloy can be increased to 100-500°C higher than the melting point of the original zirconium alloy, and Has excellent corrosion resistance. At the same time, it is possible to avoid the situation where the weight of the prepared ultra-limiting zirconium alloy is increased due to the large thickness of the coating, so that the ultra-limiting zirconium alloy can satisfy the use of the aircraft.
  • the total thickness of the adhesive layer, the precious metal layer, the ceramic A layer, the ceramic B layer, the sealing coating layer, the reflective layer, the refraction layer, and the electrically insulating layer is 185 ⁇ m-320 ⁇ m.
  • the coating under this thickness can make the prepared super-limit zirconium alloy have good heat resistance and corrosion resistance, and will not increase the weight of the super-limit zirconium alloy by a large amount, so that the prepared super-limit zirconium alloy can Meet the use of aircraft.
  • the oil stain on the surface of the zirconium alloy substrate is removed; then the surface of the zirconium alloy substrate is sandblasted to make the surface roughness of the zirconium alloy substrate 60 ⁇ 100 ⁇ m.
  • the bonding effect between the zirconium alloy substrate and the coating can be increased; during the curing process of the coating, a large internal stress will be generated.
  • the roughness of the surface of the alloy substrate can effectively eliminate the problem of stress concentration, so it can prevent the coating from cracking. And the existence of surface roughness can support the quality of a part of the paint, which is helpful to eliminate the sagging phenomenon.
  • the third aspect of the present invention provides an ultra-limiting tin alloy and a preparation method thereof to solve the problem that the existing tin alloy welding seam material is prone to deform under the ultra-limit temperature environment and causes failure.
  • the present invention provides the following basic solution: an over-limiting tin alloy, the tin alloy is a weld material, including a tin alloy substrate, a bonding layer, a ceramic layer and a sealing layer are sequentially deposited on the surface of the tin alloy substrate coating.
  • the use temperature of the tin alloy can be increased to 100-500 °C higher than the original melting point, which will greatly improve the original tin
  • the use temperature of the alloy weld material makes the tin alloy weld material stable for a long time at high temperature without cracking or falling off to meet the needs of manufacturing aircraft; while in high temperature environment, tin It is very difficult to increase the use temperature of the alloy weld material by 2-3°C. Therefore, the applicant's research is a great progress in the use of tin alloys.
  • This technical solution can greatly increase the service temperature of the tin alloy weld material by depositing a bonding layer, a ceramic layer and a sealing coating on the tin alloy substrate in order, so as to adapt to the use of the tin alloy weld material at the extreme temperature.
  • Depositing a bonding layer can improve the bonding effect between each coating and the tin alloy substrate, and avoid the coating falling off during use.
  • Depositing a ceramic layer can reduce the heat conduction, thereby increasing the service temperature of the tin alloy weld material.
  • the purpose of the deposition seal coating is to isolate the tin alloy substrate from the external oxidizing or corrosive atmosphere, so that the external atmosphere cannot directly react with the internal coating and substrate, and improve the service life of the coating and substrate.
  • the inventor has verified through multiple experiments that the technical solution of the present invention greatly improves the use temperature of the tin alloy weld material through the cooperation of various coatings.
  • the present invention has the following technical effects:
  • welding seams prepared with traditional tin alloy solder will be exposed to a large amount of infrared radiation when used for a long time under high temperature environment, which greatly shortens the use time of the welding seam and makes the welding seam prone to fracture and other problems.
  • the multiple coatings introduced in the technical solution can reduce the amount of infrared radiation received by the weld to a certain extent, and thus can significantly increase the service life of the weld, so that the entire weld is extremely stable during use.
  • the tin alloy weld material provided by the present invention breaks through the development bottleneck of the traditional tin alloy material.
  • the use temperature of the tin alloy weld material is increased to make the ultra-limited tin alloy weld material.
  • the utility model can be applied to be stable in the ultra-high temperature environment for a long period of time, meet the use requirements of aircraft and other aircraft in a high temperature, high pressure and high erosion environment, and realize the speed increase of aircraft and other aircraft.
  • the thickness of the adhesive layer is 50-180 ⁇ m
  • the thickness of the ceramic layer is 50um-80um
  • the thickness of the seal coating is 5um-15um
  • the reflection of the thickness of the seal coating is 5um-15um Layer
  • the deposited reflective layer has the effect of reflecting heat radiation, thereby reducing the temperature of the tin alloy welding material, so as to increase the service temperature of the tin alloy welding seam.
  • Depositing an anti-refractive layer can block the refraction of infrared rays in the coating, thereby reducing the amount of infrared rays entering the tin alloy matrix to reduce the temperature of the tin alloy weld material, thus increasing the use temperature of the prepared tin alloy weld material.
  • the effect of depositing an insulating layer is that in an ultra-high-speed environment, the surface of the material is prone to ionization, and the insulating layer can isolate the conductive ions or electrons generated by ionization from entering the tin alloy matrix, thereby resisting the corrosion of the tin alloy matrix by charges .
  • the inventor has verified through multiple experiments that the technical solution of the coating of various thicknesses has greatly improved the use temperature of the tin alloy weld material.
  • the composition of the adhesive layer is composed of one or more alloys of Pt, Pd, Rh, Ru, Ir, and Os.
  • the bonding layer has a good bonding effect, which makes the bonding effect of the ceramic layer and the tin alloy matrix good, and reduces the probability of shedding of the ceramic layer; and the precious metal itself has anti-oxidation properties, which can effectively prevent it under high temperature environment , Oxygen diffuses into the bonding layer and the tin alloy matrix, thereby improving the oxidation resistance of the tin alloy weld material and improving the service life of the weld material.
  • composition of the ceramic layer is RETaO 4 .
  • RETaO 4 has the effect of high expansion coefficient and low thermal conductivity, where low thermal conductivity can reduce the conduction of external heat into the tin alloy weld material, so that the tin alloy weld material can maintain a low temperature under high temperature environment ;
  • high expansion coefficient because the coating is used as a whole, not a single function, and the high expansion coefficient is to match the thermal expansion coefficient of the bonding layer, due to the thermal expansion of the precious metal bonding layer The coefficient is also larger, so
  • the thermal mismatch stress stress caused by different coefficients of thermal expansion
  • the thermal mismatch stress stress caused by different coefficients of thermal expansion
  • the thermal mismatch stress stress caused by different coefficients of thermal expansion
  • composition of the seal coating is one or more mixtures of Ti 3 SiC, REPO 4 and BN.
  • Beneficial effect The inventor has proved through experiments that one or more mixtures of Ti 3 SiC, REPO 4 and BN are used as
  • the barrier effect of the components of the seal coating is better.
  • the reflective layer is one or a mixture of REVO 4 , RETaO 4 , and Y 2 O 3 .
  • REVO 4 , RETaO 4 , and Y 2 O 3 have high reflection coefficients, so they have a good reflection effect on thermal radiation, greatly reducing the temperature of the tin alloy welding material in high temperature environments, thereby increasing the prepared tin alloy welding The operating temperature of the sewing material.
  • the anti-refractive layer is one or a mixture of graphene and boron carbide, and the spatial distribution of graphene and boron carbide is in a disorderly arrangement state.
  • the insulating layer is polytetrafluoroethylene, polyimide (PI), polyphenylene ether (PPO/PPE), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), bismaleimide
  • PI polyimide
  • PPO/PPE polyphenylene ether
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketone
  • BMI amine
  • furan resin cyanate resin
  • PAA polyarylacetylene
  • a method for preparing an ultra-limited tin alloy includes the following steps:
  • Step 1 deposit a bonding layer on the surface of the tin alloy substrate, the thickness of the bonding layer is 50-180 ⁇ m;
  • Step 2 prepare a ceramic layer on the surface of the adhesive layer obtained in step 1, the thickness of the ceramic layer is 50um ⁇ 80um;
  • Step 3 prepare a seal coating on the surface of the ceramic layer obtained in step 2, the thickness of the seal coating is 5um-15um;
  • Step 4 prepare a reflective layer on the surface of the sealing coating obtained in step 3, the thickness of the reflective layer is 5um-15um;
  • Step 5 prepare a refraction layer on the surface of the reflection layer obtained in step 4, the thickness of the refraction layer is 5um-15um;
  • Step 6 Prepare an insulating layer on the surface of the refraction layer obtained in step 5, the thickness of the insulating layer is 10 ⁇ m to 25 ⁇ m.
  • the use temperature of the prepared ultra-limited tin alloy weld material can be increased to 100-500 °C higher than the melting point of the original tin alloy, and has excellent Corrosion resistance. At the same time, it can avoid the situation that the weight of the prepared super-limit tin alloy weld material increases greatly due to the large thickness of the coating, so that the super-limit tin alloy weld material can satisfy the use of aircraft.
  • the surface of the tin alloy substrate is sandblasted, and then the surface of the tin alloy substrate after sandblasting is subjected to dust removal treatment;
  • the tin alloy weld material after coating is subjected to aging treatment, and it is allowed to stand at a temperature of 50 to 80°C for 5 to 10 hours.
  • the roughness of the surface of the tin alloy substrate can be improved, thereby improving the adhesion strength of the tin alloy substrate and the bonding layer.
  • a large amount of dust is generated on the surface of the alloy substrate, so it is necessary to remove the dust on the surface of the tin alloy substrate after sandblasting to avoid the dust from affecting the adhesion between the coating and the tin alloy substrate; the aging treatment is to eliminate the coating and tin Residual stress in and between alloy substrates avoids the problem of coating cracking or even falling off under the influence of residual stress.
  • FIG. 1A is a schematic structural view of a super-limit magnesium alloy (Example 1), a super-limit aluminum alloy (Example 2), and a super-limit nickel alloy (Example 3) of the present invention
  • FIG. 1B is a schematic structural view of an ultra-limiting titanium alloy (Example 4), an ultra-limiting iron alloy (Example 5), and an ultra-limiting copper alloy (Example 6) of the present invention
  • 2A is a graph of the creep test at 50 MPa and 900° C. of Test Example 1 and Comparative Example 13 in the ultra-limiting magnesium alloy of Example 1 of the present invention
  • 2B is a graph of the creep test at 50 MPa and 900° C. of Test Example 1 and Comparative Example 13 in the super-limit aluminum alloy of Example 2 of the present invention
  • 2C is a graph of the creep experiment at 50 MPa and 1800°C of Test Example 1 and Comparative Example 13 in the ultra-limiting nickel alloy of Example 3 of the present invention
  • 2D is a graph of the creep test at 50 MPa and 1900°C of Test Example 1 and Comparative Example 13 in the ultra-limit titanium alloy of Example 4 of the present invention
  • 2E is a graph of the creep experiment at 50 MPa and 1900°C of Test Example 1 and Comparative Example 13 in the ultra-limiting iron alloy of Example 5 of the present invention
  • 2F is a graph of the creep test at 50 MPa and 1300°C of Test Example 1 and Comparative Example 13 in the ultra-limiting copper alloy of Example 6 of the present invention
  • FIG. 3A is a schematic diagram of the salt spray corrosion test results of the super-limit magnesium alloy test example 1 and the comparative example 13 of Example 1 of the present invention
  • 3B is a schematic diagram of the salt spray corrosion test results of the ultra-limit aluminum alloy test example 1 and the comparative example 13 of Example 2 of the present invention
  • 3C is a schematic diagram of the salt spray corrosion test results of the super-limit nickel alloy test example 1 and the comparative example 13 of Example 3 of the present invention.
  • 3D is a schematic diagram of the salt spray corrosion test results of the ultra-limit titanium alloy test example 1 and the comparative example 13 of Example 4 of the present invention.
  • 3E is a schematic diagram of the salt spray corrosion test results of the ultra-limiting iron alloy test example 1 and the comparative example 13 of Example 5 of the present invention.
  • FIG. 3F is a schematic diagram of the salt spray corrosion test results of the super-limit copper alloy test example 1 and the comparative example 13 of Example 6 of the present invention.
  • Example 7 is a schematic structural diagram of an ultra-limiting zirconium alloy (Example 7) of the present invention.
  • Example 5 is a graph of the high-temperature creep test of Example 7 of the ultra-limiting zirconium alloy and Example 10 of the present invention and Comparative Example 10 at 50 MPa and 2000°C;
  • FIG. 6 is a salt spray corrosion experiment graph of Example 7 of the ultra-limited zirconium alloy and Comparative Example 10 of Example 7 of the present invention
  • Example 7 is a schematic structural diagram of a super-limit tin alloy weld material in Example 8 of the present invention.
  • Example 8 is a schematic structural diagram of a tin alloy weld material pattern in an experiment of Example 8 of the present invention.
  • Example 9 is a high-temperature tensile strength curve of Test Example 1 and Comparative Example 11 of the ultra-limiting tin alloy weld material of Example 8 of the present invention at 350° C.;
  • FIG. 10 is a salt spray corrosion experiment graph of Test Example 1 and Comparative Example 11 of the super-limit tin alloy weld material in Example 8 of the present invention.
  • the super-limit alloy is a super-limit magnesium alloy, that is, the alloy matrix is a magnesium alloy.
  • the reference signs in FIG. 1A of the specification include: magnesium alloy substrate 1, composite bonding layer 2, bonding layer 21, precious metal layer 22, composite ceramic layer 3, ceramic A layer 31, ceramic B layer 32, reflective layer 4, Anti-refractive layer 5, insulating layer 6, foamed carbon layer 7.
  • the present invention provides an ultra-limiting magnesium alloy, as shown in FIG. 1A, which includes a magnesium alloy substrate 1, a composite adhesive layer 2 of 100-200 ⁇ m thick, and a composite ceramic layer 3 of 150-500 ⁇ m are deposited on the surface of the magnesium alloy substrate 1 in sequence. 10-30 ⁇ m thick reflective layer 4, 10-30 ⁇ m thick refraction layer 5, 10-200 ⁇ m thick insulating layer 6 and 20-200 ⁇ m thick foamed carbon layer 7.
  • the composition of the anti-refractive layer 5 is one or a mixture of graphene and boron carbide, and the crystal structures of graphene and boron carbide are disorderly arranged; the composition of the insulating layer 6 is epoxy resin and phenolic resin , ABS resin one or a mixture of several.
  • the invention uses ZrO 2 -RETaO 4 as the ceramic B layer, has the effects of low thermal conductivity and high expansion rate, and can realize the reduction of heat conduction; and ZrO 2 -RETaO 4 prepared by the following method can meet the requirements of APS spraying technology.
  • ZrO 2 -RETaO 4 is prepared by the following method, including the following steps:
  • Step (1) Pre-dry zirconia (ZrO 2 ) powder, rare-earth oxide powder (RE 2 O 3 ), and tantalum pentoxide (Ta 2 O 5 ) powder at a pre-drying temperature of 600°C The time is 8h; and according to the molar ratio of 2x: (1-x): (1-x) weigh zirconia (ZrO 2 ) powder, rare earth oxide powder RE 2 O 3 , tantalum oxide (Ta 2 O 5 ) The powder is added to the ethanol solvent to obtain a mixed solution, so that the molar ratio of RE:Ta:Zr in the mixed solution is (1-x):(1-x):2x; then the ball mill is used to ball mill the mixed solution for 10 hours. The speed is 300r/min.
  • the slurry obtained after ball milling was dried using a rotary evaporator (model: N-1200B) at a drying temperature of 60° C. and a drying time of 2 hours.
  • the dried powder was sieved through a 300-mesh sieve to obtain powder A.
  • Step (2) the powder A obtained in step (1) is prepared by a high-temperature solid-phase reaction method to obtain powder B composed of ZrO 2 doped RETaO 4 with a reaction temperature of 1700° C. and a reaction time of 10 hours; and a 300-mesh sieve is used Sieve powder B.
  • Step (3) Mix powder B sieved in step (2) with deionized water solvent and organic adhesive to obtain slurry C, in which the mass percentage of powder B in slurry C is 25%, organic bonding
  • the mass percentage of the agent is 2%, the rest is the solvent, and the organic adhesive is polyvinyl alcohol or gum arabic; then the slurry C is dried by centrifugal atomization, the temperature during drying is 600°C, and the centrifugal speed is 8500r/ min, to get dried pellets D;
  • Step (4) sinter the pellet D obtained in step (3) at a temperature of 1200°C for 8 hours, and then sieve the sintered pellet D with a 300 mesh sieve to obtain a particle size of 10 to 70 nm and a morphological appearance Spherical ZrO 2 -RETaO 4 ceramic powder.
  • the inventor has obtained through a large number of experiments that within the parameter range of the present invention, the use temperature of the prepared super-limit magnesium alloy has the largest increase, and the weight increase of the magnesium alloy is small, the super-limit magnesium alloy with the best parameter range, and In the present invention, 30 of them are listed and described.
  • Test Example 1-30 of a super-limit magnesium alloy and its preparation method of the present invention are shown in Table 1-1, Table 1-2, and Table 1-3: (Thickness unit: ⁇ m)
  • Table 1-1 The composition and thickness of each coating in Test Example 1-10 of a super-limit magnesium alloy and its preparation method
  • Table 1-2 The composition and thickness of each coating in test example 11-20 of an ultra-limit magnesium alloy and its preparation method
  • Table 1-3 Composition and thickness of each coating in test examples 21-30 of an ultra-limit magnesium alloy and its preparation method
  • a preparation method of super-limit magnesium alloy includes the following steps:
  • Step 1 In this test example, AM50A magnesium alloy is selected as the magnesium alloy substrate.
  • the oil stains and impurities on the surface of the magnesium alloy substrate are removed by the immersion method.
  • the magnesium alloy substrate is immersed in the emulsified cleaning solution or alkaline solution, in which the emulsified cleaning solution
  • the main components are ethanol and surfactant.
  • the main components of the alkaline solution are sodium hydroxide, trisodium phosphate, sodium carbonate and sodium silicate.
  • the alkaline solution is used to soak the magnesium alloy substrate. Adjust the PH value of the alkaline solution to between 10 and 11, and then immerse the magnesium alloy substrate in the alkaline solution, soak it for 0.5-1.5h and take it out.
  • the immersion time is 1h, then rinse with clean water and dry . Then use a shot blasting machine to perform shot blasting on the surface of the magnesium alloy substrate.
  • the shot blasting machine used is the JCK-SS500-6A automatic transmission shot blasting machine.
  • the shot blasting material used in shot blasting is iron sand, glass shot and ceramic shot.
  • iron sand is used in this test example, and the particle size of iron sand can be 0.3-0.8mm, the particle size of iron sand in this test example is 0.5mm; the surface roughness of the magnesium alloy substrate after shot peening is 60-100 ⁇ m, this In the test example, the surface roughness of the magnesium alloy substrate is 80 ⁇ m, which facilitates the adhesion of the coating to the magnesium alloy substrate.
  • Step 2 Deposit a composite bonding layer on the surface of the AM50A magnesium alloy after shot peening.
  • HVOF or supersonic arc spraying to spray a layer of NiCrCoAlY on the surface of the magnesium alloy substrate as the bonding layer.
  • the HVOF method is used.
  • the powder particle size during spraying is 25-65 ⁇ m
  • the oxygen flow rate is 2000SCFH
  • the kerosene flow rate is 18.17LPH
  • the carrier gas is 12.2SCFH
  • the powder feed volume is 5RPM
  • the barrel length is 5in
  • the spraying distance is 254mm.
  • the gas pressure during deposition of Au is less than 0.01 Pa, the pressure used in this test example is 0.008 Pa, and the ratio of the temperature of the magnesium alloy substrate to the melting point of the magnesium alloy substrate is less than 0.3.
  • the thickness of the deposited adhesive layer is 50 ⁇ m, and the thickness of the precious metal layer is 50 ⁇ m.
  • Step 3 Use APS, HVOF, PS-PVD or EB-PVD method to spray a layer of YSZ on the surface of the bonding layer as the ceramic A layer.
  • This test example uses the APS method, and then uses the APS method to spray a layer of YTaO on the ceramic A 4 As a ceramic B layer, a composite ceramic layer is formed; wherein the thickness of the ceramic A layer is 70 ⁇ m, and the thickness of the ceramic B layer is 80 ⁇ m.
  • Step 4 Use HVOF, PS-PVD or EB-PVD method to spray a layer of Y 2 O 3 transparent ceramic material on the surface of ceramic B layer as the reflective layer.
  • HVOF method is used, and the thickness of the sprayed reflective layer is 10 ⁇ m.
  • Step 5 Mix graphene and micron-level carbon powder material uniformly with each other, and then introduce the mixed powder into the solution for ultrasonic vibration mixing.
  • the solution is an ethanol solution with 1% dispersant added.
  • the solution uses filter paper to separate micron-level carbon powder.
  • the thickness of the refractive layer is 10 ⁇ m.
  • Step 6 Paint a layer of epoxy resin on the surface of the refraction layer as the insulating layer, the thickness of the insulating layer is 10 ⁇ m.
  • Step 7 Brush a layer of foamed carbon on the insulating layer.
  • the thickness of the foamed carbon layer is 20 ⁇ m to obtain an ultra-limiting magnesium alloy.
  • Test Example 2-29 and Test Example 1 The difference between Test Example 2-29 and Test Example 1 is only the parameters shown in Table 1-1; the difference between Test Example 30 and Test Example 1 is that the spraying order of the ceramic A layer and the ceramic B layer in step three is different.
  • Comparative Examples 1-12 and Test Example 1 The difference between Comparative Examples 1-12 and Test Example 1 is only that the parameters shown in Tables 1-3 are different. Comparative Example 13 is an AM50A magnesium alloy.
  • the magnesium alloys provided in Test Examples 1-30 and Comparative Examples 1-13 were processed into cylindrical test pieces with a length of 187 mm and a diameter of 16 mm, and high-temperature creep was performed using an electronic high-temperature creep endurance tester model RMT-D5 experiment.
  • Test Example 1-30 and Comparative Example 1-13 into the electronic high-temperature creep endurance testing machine, and start the testing machine to make the testing machine warm up.
  • the test piece is in a stress-free state ( In the unstressed state, the specimen can expand freely, and the high temperature creep is that the deformation increases with time under the combined action of temperature and stress, so the heating rate has no effect on creep).
  • the temperature of the testing machine reaches 900°C, adjust the testing machine to a stress of 50 MPa and perform a high-temperature creep test.
  • Test Example 1 and Comparative Example 13 Take Test Example 1 and Comparative Example 13 as examples.
  • the test results are shown in 2A (indicated by (A) in FIG. 2A) Comparative Example 13, (B) represents Test Example 1), the specific experimental results of Test Examples 1-30 and Comparative Examples 1-13 are shown in Table 1-5.
  • the magnesium alloys provided in Test Examples 1-30 and Comparative Examples 1-13 were processed into 50 mm ⁇ 25 mm ⁇ 2 mm test pieces, which were then degreased and derusted, washed, and dried.
  • Test Example 1-30 and Comparative Example 1-13 Hang the test pieces provided in Test Example 1-30 and Comparative Example 1-13 in the experimental equipment, and adjust the experimental equipment to a temperature of 50 ⁇ 1°C, a pH of 3.0-3.1, and a reuse concentration of 5 ⁇ 0.5% NaCl The solution is continuously sprayed onto the test piece.
  • Test Example 1 and Comparative Example 13 as examples, after continuously spraying 5 ⁇ 0.5% NaCl solution to the test piece for 8h, 24h, 48h and 72h, the weight loss rate of the test piece is shown in Figure 3A ( Figure 3A (A) Comparative Example 13 is shown, and (B) is Test Example 1). Specific experimental results of Test Examples 1-30 and Comparative Examples 1-13 are shown in Table 1-5.
  • the service temperature of the magnesium alloy can be raised to 100-500°C above the original melting point, And the corrosion resistance is also greatly improved.
  • each effect of the prepared ultra-limit magnesium alloy can be optimized.
  • the maximum operating temperature of the magnesium alloy beyond the parameter range provided in the test examples of this embodiment is much lower than that of the super-limit magnesium alloy provided by the present invention, and its corrosion resistance is also poor.
  • the super-limit alloy is a super-limit aluminum alloy, that is, the alloy substrate is an aluminum alloy substrate.
  • FIG. 1A of the specification include: aluminum alloy substrate 1, composite adhesive layer 2, adhesive layer 21, precious metal layer 22, composite ceramic layer 3, ceramic A layer 31, ceramic B layer 32, reflective layer 4, Anti-refractive layer 5, insulating layer 6, foamed carbon layer 7.
  • the present invention provides an ultra-limiting aluminum alloy, as shown in FIG. 1A, including an aluminum alloy substrate 1, and a composite bonding layer 2 of 100-200 ⁇ m thick and a composite ceramic layer 3 of 150-500 ⁇ m are deposited on the surface of the aluminum alloy substrate 1, 10-30 ⁇ m thick reflective layer 4, 10-30 ⁇ m thick refraction layer 5, 10-200 ⁇ m thick insulating layer 6 and 20-200 ⁇ m thick foamed carbon layer 7.
  • the composition of the antirefractive layer 5 is one or a mixture of graphene and boron carbide, and the spatial distribution of the graphene and boron carbide are disorderly arranged;
  • the composition of the insulating layer 6 is epoxy resin and phenolic resin , ABS resin one or a mixture of several.
  • the invention uses ZrO 2 -RETaO 4 as the ceramic B layer, which has the effects of low thermal conductivity and high expansion rate, and can realize the reduction of heat conduction; the preparation method of ZrO 2 -RETaO 4 is the same as that in Example 1, which can meet the requirements of APS spraying technology Claim.
  • the inventors have obtained through a large number of experiments that within the parameter range of the present invention, the use temperature of the prepared ultra-limiting aluminum alloy has the largest increase, and the weight increase of the aluminum alloy is small, and the present invention lists 30 of them Instructions.
  • Test Example 1-30 of an ultra-limit aluminum alloy of the present invention and its preparation method are shown in Table 2-1, Table 2-2, and Table 2-3: (Thickness unit: ⁇ m)
  • Table 2-1 The composition and thickness of each coating in Test Example 1-10 of an ultra-limit aluminum alloy and its preparation method
  • Table 2-2 Composition and thickness of each coating in test example 11-20 of an ultra-limit aluminum alloy and its preparation method
  • Example 1 of Example 2 As an example, another technical solution of the present invention, a method for preparing an ultra-limit aluminum alloy, will now be described.
  • a method for preparing super-limit aluminum alloy including the following steps:
  • Step 1 It is almost the same as Step 1 of preparing the super-limit magnesium alloy in Example 1, except that the 7072 aluminum alloy is selected as the alloy substrate in this test example.
  • Step 2 The same as Example 1.
  • Step 3 Use the APS method to spray a layer of YSZ on the surface of the bonding layer as the ceramic A layer, and then use the APS method to spray a layer of ZrO 2 -YTaO 4 on the ceramic A as the ceramic B layer to form a composite ceramic layer; of which ceramic A The thickness of the layer is 70 ⁇ m, and the thickness of the ceramic B layer is 80 ⁇ m.
  • Step 4 The same as Example 1.
  • Step 5 The same as Example 1.
  • Step 6 Paint a layer of epoxy resin on the surface of the refraction layer as the insulating layer, the thickness of the insulating layer is 15 ⁇ m.
  • Step 7 Brush a layer of foamed carbon on the insulating layer.
  • the thickness of the foamed carbon layer is 20 ⁇ m to obtain an ultra-limiting aluminum alloy.
  • Test Example 2-29 and Test Example 1 The difference between Test Example 2-29 and Test Example 1 is only that the parameters shown in Table 2-1 are different; the difference between Test Example 30 and Test Example 1 is that the spraying order of the ceramic A layer and the ceramic B layer in step three is different.
  • Comparative Example 1-12 is 7072 aluminum alloy.
  • Test Examples 1-30 and Comparative Examples 1-13 were processed into cylindrical test pieces with a length of 187 mm and a diameter of 16 mm.
  • the high-temperature creep test procedure was the same as that of Example 1, and Test Example 1 and Comparative Example 13 were For example, the experimental results are shown in FIG. 2B ((A) in FIG. 2B represents Comparative Example 13, (B) represents Test Example 1), and the specific experimental results of Test Examples 1-30 and Comparative Examples 1-13 are shown in Table 2-5. As shown.
  • Test Examples 1-30 and Comparative Examples 1-13 were processed into 50 mm ⁇ 25 mm ⁇ 2 mm test pieces. The subsequent steps and experimental conditions were the same as in Example 1.
  • the weight loss rate of the test piece is shown in FIG. 3B ((A) in FIG. 3B represents Comparative Example 13 and (B) represents Test Example 1).
  • the specific experimental results of Test Examples 1-30 and Comparative Examples 1-13 are shown in Table 2- 5 shows.
  • the use temperature of the aluminum alloy can be raised to 100-500°C higher than the original melting point , And corrosion resistance is also greatly improved.
  • each effect of the prepared ultra-limit aluminum alloy can be optimized.
  • the maximum operating temperature of the aluminum alloy beyond the parameter range provided by the test examples of this embodiment is much lower than that of the super-limit aluminum alloy provided by the present invention, and its corrosion resistance is also poor.
  • the super-limit alloy is a super-limit nickel alloy, that is, the alloy matrix is a nickel alloy.
  • the reference numerals in FIG. 1A of the specification include: nickel alloy substrate 1, composite bonding layer 2, bonding layer 21, precious metal layer 22, composite ceramic layer 3, ceramic A layer 31, ceramic B layer 32, reflective layer 4, Anti-refractive layer 5, insulating layer 6, foamed carbon layer 7.
  • the present invention provides a super-limiting nickel alloy, as shown in FIG. 1A, including a nickel alloy substrate 1, a composite bonding layer 2 of 80-100 ⁇ m thick, a composite ceramic layer 3 of 150-500 ⁇ m are deposited on the surface of the nickel alloy substrate 1, 10-30 ⁇ m thick reflective layer 4, 10-30 ⁇ m thick refraction layer 5, 10-200 ⁇ m thick insulating layer 6, 20-200 ⁇ m thick foamed carbon layer 7.
  • the composition of the antirefractive layer 5 is one or a mixture of graphene and boron carbide, and the spatial distribution of the graphene and boron carbide are disorderly arranged;
  • the composition of the insulating layer 6 is epoxy resin and phenolic resin , ABS resin one or a mixture of several.
  • the invention uses ZrO 2 -RETaO 4 as the ceramic B layer, which has the effects of low thermal conductivity and high expansion rate, and can realize the reduction of heat conduction; the preparation method of ZrO 2 -RETaO 4 is the same as that of Example 1, which can meet the APS spraying technology Requirements.
  • the inventors have obtained through a large number of experiments that within the parameters of the present invention, the use temperature of the prepared super-limiting nickel alloy has the largest increase, and the weight increase of the nickel alloy is small, and the present invention lists 30 of them Instructions.
  • Test Example 1-30 of an ultra-limiting nickel alloy and its preparation method of the present invention are shown in Table 3-1, Table 3-2 and Table 3-3: (Thickness unit: ⁇ m)
  • Table 3-1 The composition and thickness of each coating in Test Example 1-10 of an ultra-limiting nickel alloy and its preparation method
  • Table 3-2 Composition and thickness of each coating in test example 21-20 of an ultra-limiting nickel alloy and its preparation method
  • Table 3-3 Composition and thickness of each coating in test examples 21-30 of an ultra-limiting nickel alloy and its preparation method
  • a method for preparing an ultra-limiting nickel alloy includes the following steps:
  • Step one It is almost the same as the step one of preparing the super-limit magnesium alloy in Example 1, except that the GH4099 nickel alloy is used as the alloy substrate in this test example.
  • Step 2 It is basically the same as Example 1, except that the thickness of the deposited adhesive layer is 45 ⁇ m, and the thickness of the precious metal layer is 45 ⁇ m.
  • Step 3 Use the HVOF method to spray a layer of YSZ on the surface of the bonding layer as the ceramic A layer, and then use the HVOF method to spray a layer of YTaO 4 on the ceramic A as the ceramic B layer to form a composite ceramic layer; the thickness of the ceramic A layer It is 70 ⁇ m, and the thickness of the ceramic B layer is 80 ⁇ m.
  • Step 4 The same as Example 1.
  • Step 5 The same as Example 1.
  • Step 6 Paint a layer of epoxy resin on the surface of the refraction layer as the insulating layer, the thickness of the insulating layer is 15 ⁇ m.
  • Step 7 Brush a layer of foamed carbon on the insulating layer.
  • the thickness of the foamed carbon layer is 20 ⁇ m to obtain an ultra-limiting nickel alloy.
  • Test Example 2-29 and Test Example 1 The difference between Test Example 2-29 and Test Example 1 is only that the parameters shown in Table 3-1 are different; the difference between Test Example 30 and Test Example 1 is that the spraying order of the ceramic A layer and the ceramic B layer in step three is different.
  • Comparative Example 1-12 is GH4099 nickel alloy.
  • the nickel alloys provided by Test Examples 1-30 and Comparative Examples 1-13 were processed into cylindrical test pieces with a length of 187 mm and a diameter of 16 mm.
  • the high-temperature creep test procedure was basically the same as that of Example 1, except that when the temperature of the testing machine reached At 1800°C, adjust the tester to a stress of 50 MPa and perform a high-temperature creep test. Take Test Example 1 and Comparative Example 13 as examples.
  • the experimental results are shown in Figure 2C ((A) in Figure 2C indicates Comparative Example 13, ( B) indicates Test Example 1).
  • the specific test results of Test Examples 1-30 and Comparative Examples 1-13 are shown in Table 3-5.
  • the nickel alloys provided in Test Examples 1-30 and Comparative Examples 1-13 were processed into 50 mm ⁇ 25 mm ⁇ 2 mm test pieces. The subsequent steps and experimental conditions were the same as in Example 1.
  • the weight loss rate of the test piece is shown in Fig. 3C ((A) in Fig. 3C represents Comparative Example 13 and (B) represents Test Example 1).
  • the specific experimental results of Test Examples 1-30 and Comparative Examples 1-13 are shown in Table 3- 5 shows.
  • the super-limiting nickel alloy prepared by the method for preparing a super-limiting nickel alloy provided by the present invention has a wide operating temperature range and strong corrosion resistance, and the effects of Test Example 1 are the best.
  • the maximum operating temperature of the nickel alloy beyond the parameter range provided by the test examples of this embodiment is much lower than that of the super-limit nickel alloy provided by the present invention, and its corrosion resistance is also poor.
  • the super-limit alloy is a super-limit titanium alloy, that is, the alloy substrate is a titanium alloy substrate.
  • the reference numerals in FIG. 1B of the specification include: titanium alloy substrate 1, adhesive layer 2, noble metal layer 3, ceramic A layer 4, ceramic B layer 5, reflective layer 6, reverse refractive layer 7, insulating layer 8, carbon foam Layer 9.
  • the present invention provides an ultra-limiting titanium alloy, as shown in FIG. 1B, including a titanium alloy substrate 1, a composite bonding layer, a composite ceramic layer with a thickness of 100-150 ⁇ m and a thickness of 10-30 ⁇ m are deposited on the surface of the titanium alloy substrate 1 in sequence
  • the composite adhesive layer is the adhesive layer 2 deposited on the surface of the titanium alloy substrate 1 and the precious metal layer 3 deposited on the surface of the adhesive layer 2, the thickness of the adhesive layer 2 is 20-30 ⁇ m, and the thickness of the precious metal layer is 40-60 ⁇ m
  • the composition of the bonding layer 2 is one or a mixture of MCrAlY, NiAl, NiCr-Al, Mo alloy, MCrAlY is NiCrCoAlY, NiCoCrAlY, CoNiCrAlY or CoCrAlY; the composition of the precious metal layer 3 is Au, Pt, Ru, One or more alloys of Rh, Pd and Ir;
  • the composition of the anti-refractive layer 7 is one or a mixture of graphene and boron carbide, and the spatial distribution of the graphene and boron carbide are disorderly arranged;
  • the composition of the insulating layer 8 is epoxy resin and phenolic resin , ABS resin one or a mixture of several.
  • the invention uses ZrO 2 -RETaO 4 as the ceramic B layer, which has the effects of low thermal conductivity and high expansion rate, and can realize the reduction of heat conduction;
  • the preparation method of ZrO 2 -RETaO 4 is the same as that of Example 1, which can meet the APS spraying technology Requirements for powder particle size and morphology.
  • the inventors have obtained through a large number of experiments that within the parameters of the present invention, the use temperature of the prepared ultra-limit titanium alloy has the largest increase, and the weight increase of the titanium alloy is small, and the optimal composition and thickness of each coating is the ultra-limit titanium In the present invention, 30 of them are listed and described.
  • Test Example 1-30 of an ultra-limit titanium alloy and its preparation method of the present invention are shown in Table 4-1, Table 4-2, and Table 4-3: (Thickness unit: ⁇ m)
  • Table 4-1 The composition and thickness of each coating in Test Example 1-10 of an ultra-limit titanium alloy and its preparation method
  • Table 4-2 Composition and thickness of each coating in Test Example 11-20 of an ultra-limit titanium alloy and its preparation method
  • Table 4-3 Composition and thickness of each coating in test example 21-30 of an ultra-limit titanium alloy and its preparation method
  • a method for preparing an ultra-limiting titanium alloy includes the following steps:
  • Step 1 Use the immersion method to remove the oil stains and impurities on the surface of the titanium alloy substrate.
  • the material of the titanium alloy substrate is TC4 titanium alloy, and the titanium alloy substrate is immersed in the solvent for 0.5 to 1.5 hours.
  • the main components of the solvent are ethanol and After cleaning the surfactant, oil and impurities, take out the titanium alloy substrate, rinse it with deionized water, and dry it. Then use a shot blasting machine to perform shot blasting on the surface of the titanium alloy substrate.
  • the shot blasting machine used is the JCK-SS500-6A automatic transmission shot blasting machine.
  • the shot blasting material used in shot blasting is iron sand, glass shot and ceramic shot.
  • iron sand is used in this test example, and the particle size of iron sand is 0.3-0.8mm, the particle size of iron sand in this test example is 0.5mm; the surface roughness of the titanium alloy substrate after shot peening is 60-100 ⁇ m, this In the test example, the surface roughness of the titanium alloy substrate is 80 ⁇ m, which facilitates the adhesion of the coating to the titanium alloy substrate.
  • Step 2 Deposit a composite bonding layer on the surface of the titanium alloy substrate after shot peening.
  • HVOF method supersonic flame spraying method
  • supersonic arc spraying method to spray a layer of NiCrCoAlY on the surface of the titanium alloy substrate as the bonding layer.
  • This test example uses the HVOF method.
  • the process parameters of the HVOF method are: powder particle size 25-65 ⁇ m, oxygen flow rate 2000SCFH, kerosene flow rate 18.17LPH, carrier gas 12.2SCFH, powder feed rate 5RPM, barrel length 5in 2.
  • the spraying distance is 254mm.
  • EB-PVD method electron beam physical vapor deposition method
  • the gas pressure during the deposition of Au is less than 0.01 Pa.
  • the process parameters of the EB-PVD method are: pressure 0.008 Pa, deposition rate 6 nm/min, and the ratio of the temperature of the titanium alloy substrate to the melting point of the titanium alloy substrate is less than 0.3.
  • the thickness of the deposited adhesive layer is 20 ⁇ m, and the thickness of the precious metal layer is 50 ⁇ m.
  • Step 3 Use the HVOF method to spray a layer of YSZ on the surface of the composite bonding layer as the ceramic A layer, and then use the HVOF method to spray a layer of ZrO2-YTaO 4 on the YSZ ceramic A layer as the ceramic B layer to form a composite ceramic layer;
  • the thickness of the ceramic A layer is 70 ⁇ m, and the thickness of the ceramic B layer is 80 ⁇ m.
  • Step 4 Use the HVOF method to spray a layer of Y 2 O 3 transparent ceramic material on the surface of the composite ceramic layer as the reflective layer.
  • the thickness of the sprayed reflective layer is 10 ⁇ m.
  • Step 5 Use a brushing method to paint a layer of graphene on the surface of the Y 2 O 3 reflective layer as a refraction layer.
  • the thickness of the refraction layer is 20 ⁇ m.
  • Step 6 Apply a layer of epoxy resin as an insulating layer on the surface of the graphene refraction layer by brushing method, the thickness of the insulating layer is 150 ⁇ m.
  • Step 7 Use a brushing method to paint a layer of foamed carbon on the epoxy resin insulation layer.
  • the thickness of the foamed carbon layer is 20 ⁇ m to obtain an ultra-limiting titanium alloy.
  • Test Example 2-29 The preparation process of Test Example 2-29 is the same as that of Test Example 1, except that the composition and thickness of each coating layer as shown in Table 4-1 are different; the difference between Test Example 30 and Test Example 1 is the ceramic A layer in step three The spraying sequence is different from the ceramic B layer.
  • Comparative Examples 1-12 are the same as the preparation method of Test Example 1, except that the composition and thickness of each coating layer as shown in Table 4-3 are different.
  • Comparative Example 13 is a TC4 titanium alloy substrate with no deposited coating.
  • the titanium alloy prepared by Test Example 1-30 and Comparative Example 1-13 was processed into a tensile test piece, and the high-temperature creep test was carried out using the electronic high-temperature creep endurance strength tester model RMT-D5.
  • the maximum test load was 50KN, test load control accuracy is within ⁇ 5%, deformation measurement range is 0 ⁇ 10mm, rate adjustment range is 0 ⁇ 50mm/min-1, deformation resolution is 0.001mm, high temperature furnace temperature control range is 200 ⁇ 2000°C, The average tropical length is 150mm.
  • Test Example 1-30 and Comparative Example 1-13 into the electronic high-temperature creep endurance testing machine, and make the test piece in a stress-free state (in the stress-free state, the test piece can expand freely, and High temperature creep is the deformation that increases with time under the combined action of temperature and stress, so the rate of temperature increase has no effect on creep).
  • Adjust the testing machine to a stress of 50MPa and a temperature of 1300°C, and record the following data, as shown in Table 4-5.
  • a represents the stable creep time (min) of each test piece;
  • b represents each test The time (min) for the creep fracture of the piece.
  • FIG. 2D it is a graph of the high temperature creep test of Test Example 1 and Comparative Example 13, (A) in FIG. 2D represents TC4 of the undeposited coating in Comparative Example 13. For the titanium alloy base material, (B) in FIG. 2D shows the material prepared in Test Example 1.
  • the titanium alloys provided in Test Examples 1-30 and Comparative Examples 1-13 were processed into 50 mm ⁇ 25 mm ⁇ 2 mm test pieces, and the subsequent steps were the same as Test Example 1.
  • the weight loss rate of the test piece is shown in FIG. 3D ((A) in FIG. 3D represents the undeposited TC4 titanium alloy base material in Comparative Example 13, (B) represents Test Example 1), Test Examples 1-30 and Comparative Example
  • the specific experimental results of 1-13 are shown in Table 4-5.
  • the corrosion loss weight of TC4 titanium alloy is much higher than that of titanium-based surface composites. Due to the presence of the coating, the titanium-based surface composites basically do not corrode and their quality hardly changes.
  • b represents the time (min) for creep fracture of each test piece
  • c represents the weight loss rate (v/mg.cm 2 ) of the test piece after continuously spraying the NaCl solution on the test piece for 8 hours;
  • d represents the weight loss rate (v/mg.cm 2 ) of the test piece after spraying NaCl solution to the test piece continuously for 24 hours;
  • e represents the weight loss rate (v/mg.cm 2 ) of the test piece after 48 hours of continuous spraying of NaCl solution on the test piece;
  • f represents the weight loss rate (v/mg.cm 2 ) of the test piece after continuously spraying the NaCl solution to the test piece for 72 h.
  • the titanium alloy obtained in the comparative example beyond the parameter range of the present invention has a large decrease in stability at high temperatures, fractures in a short period of time, and has poor corrosion resistance.
  • the use temperature of the titanium alloy can be raised to 100-500 higher than the original melting point °C, and corrosion resistance is greatly improved.
  • the super-limit titanium alloy prepared by the super-limit titanium alloy preparation method provided by the present invention has a wide operating temperature range and strong corrosion resistance, and each effect of Test Example 1 is the best.
  • the super-limit alloy is a super-limit iron alloy, that is, the alloy matrix is an iron alloy matrix.
  • the reference numerals in the accompanying drawings 1B of the specification include: iron alloy substrate 1, adhesive layer 2, noble metal layer 3, ceramic A layer 4, ceramic B layer 5, reflective layer 6, reverse refractive layer 7, insulating layer 8, carbon foam layer 9.
  • the present invention provides an ultra-limiting iron alloy, as shown in FIG. 1B, which includes an iron alloy substrate 1, a composite bonding layer with a thickness of 100-200 ⁇ m, a composite ceramic layer with a thickness of 150-500 ⁇ m, and a thickness are deposited on the surface of the iron alloy substrate 1 in sequence A reflective layer 6 having a thickness of 10-30 ⁇ m, a refraction layer 7 having a thickness of 10-30 ⁇ m, an insulating layer 8 having a thickness of 10-200 ⁇ m, and a foamed carbon layer 9 having a thickness of 20-200 ⁇ m.
  • the composition of the anti-refractive layer 7 is one or a mixture of graphene and boron carbide, and the spatial distribution of the graphene and boron carbide are disorderly arranged;
  • the composition of the insulating layer 8 is epoxy resin and phenolic resin , ABS resin one or a mixture of several.
  • the invention uses ZrO 2 -RETaO 4 as the ceramic B layer, has the effects of low thermal conductivity and high expansion rate, and can realize the reduction of heat conduction; the preparation method of ZrO 2 -RETaO 4 is the same as that of Example 1, and can meet the APS spraying technology Requirements for powder particle size and morphology.
  • the inventor has obtained through a large number of experiments that within the parameters of the present invention, the use temperature of the prepared super-limiting iron alloy has the largest increase, and the weight increase of the iron alloy is small, and the coating composition and thickness of the super-limiting iron alloy are the best. In the present invention, 30 of them are listed and described.
  • Test Example 1-30 of an ultra-limiting iron alloy and its preparation method of the present invention are shown in Table 5-1, Table 5-2, and Table 5-3:
  • Table 5-1 The composition and thickness of each coating in Test Example 1-10 of an ultra-limiting iron alloy and its preparation
  • Table 5-3 Composition and thickness of each coating in test examples 21-30 of an ultra-limiting iron alloy and its preparation method
  • a method for preparing super-limiting iron alloy includes the following steps:
  • Step 1 It is almost the same as Step 1 of preparing the ultra-limit titanium alloy in Example 4, except that the Q235 iron alloy is used as the alloy substrate in this test example.
  • Step 2 The experimental steps and parameters are the same as in Example 4, except that the thickness of the deposited adhesive layer is 45 ⁇ m, and the thickness of the precious metal layer is 45 ⁇ m.
  • Step 3 The experimental steps and parameters are the same as in Example 4, except that the thickness of the ceramic A layer is 70 ⁇ m and the thickness of the ceramic B layer is 50 ⁇ m.
  • Step 4 Use the HVOF method to spray a layer of Y 2 O 3 transparent ceramic material on the surface of the composite ceramic layer as the reflective layer.
  • the thickness of the sprayed reflective layer is 20 ⁇ m.
  • Step 5 Use a brushing method to paint a layer of graphene on the surface of the Y 2 O 3 reflective layer as a refraction layer.
  • the thickness of the refraction layer is 10 ⁇ m.
  • Step 6 Paint a layer of epoxy resin on the surface of the refraction layer as the insulating layer, the thickness of the insulating layer is 15 ⁇ m.
  • Step 7 Brush a layer of foamed carbon on the insulating layer.
  • the thickness of the foamed carbon layer is 20 ⁇ m to obtain an ultra-limiting iron alloy.
  • Test Example 2-29 and Test Example 1 The difference between Test Example 2-29 and Test Example 1 is only the parameters shown in Table 5-1; The difference between Test Example 30 and Test Example 1 is that the spraying order of the ceramic A layer and the ceramic B layer in step three is different.
  • Comparative Examples 1-12 are the same as the preparation method of Test Example 1, except that the composition and thickness of each coating layer shown in Table 5-3 are different.
  • Comparative Example 13 is a Q235 iron alloy substrate with no deposited coating.
  • Table 5-5 a represents the stable creep time (min) of each test piece; b represents the creep fracture time (min) of each test piece.
  • FIG. 2E it is a graph of the high temperature creep test of Test Example 1 and Comparative Example 13, (A) in FIG. 2E represents Q235 of the undeposited coating in Comparative Example 13.
  • the iron alloy base material, (B) in FIG. 2E shows the material prepared in Test Example 1.
  • the ferroalloys provided in Test Examples 1-30 and Comparative Examples 1-13 were processed into 50 mm ⁇ 25 mm ⁇ 2 mm test pieces, and the subsequent steps were the same as in Example 1.
  • FIG. 3E it is the relationship between the weight loss and corrosion time of salt spray corrosion in Test Example 1 and Comparative Example 13, (A) in FIG. 3E represents the undeposited Q235 iron alloy base material in Comparative Example 13, in FIG. 3E (B) shows the material prepared in Test Example 1.
  • the specific experimental results of Test Examples 1-30 and Comparative Examples 1-13 are shown in Table 5-5.
  • the iron-based surface composite material basically has no corrosion due to the presence of the coating, and its quality has hardly changed.
  • b represents the time (min) for creep fracture of each test piece
  • c represents the weight loss rate (v/mg.cm 2 ) of the test piece after continuously spraying the NaCl solution on the test piece for 8 hours;
  • d represents the weight loss rate (v/mg.cm 2 ) of the test piece after spraying NaCl solution to the test piece continuously for 24 hours;
  • e represents the weight loss rate (v/mg.cm 2 ) of the test piece after 48 hours of continuous spraying of NaCl solution on the test piece;
  • f represents the weight loss rate (v/mg.cm 2 ) of the test piece after continuously spraying the NaCl solution to the test piece for 72 h.
  • Example 1 A a b c d e f Test Example 1 170 280 0 0.01 0.07 0.11 Test Example 2 165 279 0 0.02 0.08 0.14 Test Example 3 160 273 0 0.04 0.09 0.13 Test Example 4 159 277 0 0.03 0.07 0.16 Test Example 5 161 278 0 0.03 0.08 0.13 Test Example 6 167 278 0 0.03 0.09 0.13 Test Example 7 163 275 0.005 0.02 0.09 0.12 Test Example 8 163 275 0 0.05 0.06 0.13 Test Example 9 164 275 0.006 0.04 0.09 0.15 Test Example 10 164 272 0 0.04 0.08 0.11 Test Example 11 166 260 0 0.05 0.08 0.11 Test Example 12 169 270 0.004 0.03 0.08 0.12 Test Example 13 168 275 0 0.03 0.07 0.13 Test Example 14 168 275 0 0.05 0.09 0.14 Test Example 15 168 275 0 0.05 0.09 0.13 Test Example 16 168 275 0 0.03 0.
  • the service temperature of the iron alloy can be raised to 100-500°C higher than the original melting point, And the corrosion resistance is also greatly improved.
  • the super-limiting iron alloy prepared by the super-limiting iron alloy preparation method provided by the present invention has a wide use temperature range and strong corrosion resistance, and each effect of Test Example 1 is the best.
  • the super-limit alloy is a super-limit copper alloy, that is, the alloy matrix is a copper alloy.
  • the reference numerals in FIG. 1B of the specification include: copper alloy substrate 1, adhesive layer 2, noble metal layer 3, ceramic A layer 4, ceramic B layer 5, reflective layer 6, reverse refractive layer 7, insulating layer 8, carbon foam Layer 9.
  • the present invention provides an ultra-limiting copper alloy, as shown in FIG. 1B, including a copper alloy substrate 1, a composite bonding layer with a thickness of 100-200 ⁇ m and a composite ceramic with a thickness of 150-500 ⁇ m are deposited on the surface of the copper alloy substrate 1 in sequence Layer, a reflective layer 6 with a thickness of 10-30 ⁇ m, a refraction layer 7 with a thickness of 10-30 ⁇ m, an insulating layer 8 with a thickness of 10-200 ⁇ m, and a foamed carbon layer 9 with a thickness of 20-200 ⁇ m.
  • the composition of the anti-refractive layer 7 is one or a mixture of graphene and boron carbide, and the spatial distribution of the graphene and boron carbide are disorderly arranged;
  • the composition of the insulating layer 8 is epoxy resin and phenolic resin , ABS resin one or a mixture of several.
  • the invention uses ZrO 2 -RETaO 4 as the ceramic B layer, which has the effects of low thermal conductivity and high expansion rate, and can realize the reduction of heat conduction; the preparation method of ZrO 2 -RETaO 4 is the same as that of Example 1, which can meet the APS spraying technology Requirements for powder particle size and morphology.
  • the inventor has obtained through a large number of experiments that within the parameter range of the present invention, the use temperature of the prepared super-limit copper alloy has the largest increase, and the weight increase of the copper alloy is small, and the coating composition and thickness are the best super-limit copper In the present invention, 30 of them are listed and described.
  • Test Example 1-30 of an ultra-limiting copper alloy and its preparation method of the present invention are shown in Table 6-1, Table 6-2, and Table 6-3: (Thickness unit: ⁇ m)
  • Table 6-1 Composition and thickness of each coating in Test Example 1-10 of an ultra-limiting copper alloy and its preparation method
  • Table 6-3 Composition and thickness of each coating in test examples 21-30 of an ultra-limiting copper alloy and its preparation method
  • a method for preparing an ultra-limiting copper alloy includes the following steps:
  • Step 1 It is almost the same as Step 1 of preparing the ultra-limit titanium alloy in Example 4, except that the C86100 copper alloy is used as the alloy substrate in this test example.
  • Step 2 It is almost the same as Step 2 of preparing the ultra-limit titanium alloy in Example 4, except that the thickness of the deposited adhesive layer is 45 ⁇ m, and the thickness of the precious metal layer is 45 ⁇ m.
  • Step 3 It is the same as Step 3 of preparing the ultra-limit titanium alloy in Example 4, except that the thickness of the ceramic A layer is 70 ⁇ m and the thickness of the ceramic B layer is 50 ⁇ m.
  • Step 4 Use the HVOF method to spray a layer of Y 2 O 3 transparent ceramic material on the surface of the composite ceramic layer as the reflective layer.
  • the thickness of the sprayed reflective layer is 20 ⁇ m.
  • Step 5 Use the brushing method to paint a layer of graphene on the surface of the Y2O3 reflective layer as a refraction layer.
  • the thickness of the refraction layer is 10 ⁇ m.
  • Step 6 Apply a layer of epoxy resin as an insulating layer on the surface of the graphene refraction layer by brushing method, and the thickness of the insulating layer is 15 ⁇ m.
  • Step 6 Use a brushing method to coat a layer of foamed carbon on the epoxy resin insulation layer.
  • the thickness of the foamed carbon layer is 20 ⁇ m to obtain an ultra-limiting copper alloy.
  • Test Example 2-29 The preparation process of Test Example 2-29 is the same as that of Test Example 1, except that the composition and thickness of each coating layer shown in Table 6-1 are different; the difference between Test Example 30 and Test Example 1 is the ceramic A layer in step three The spraying sequence is different from the ceramic B layer.
  • Comparative Examples 1-12 are the same as the preparation method of Test Example 1, except that the composition and thickness of each coating layer shown in Table 6-3 are different.
  • Comparative Example 13 is a C86100 copper alloy substrate with no deposited coating.
  • the copper alloy prepared using Test Examples 1-30 and Comparative Examples 1-13 was processed into a tensile test piece and placed in an electronic high-temperature creep endurance testing machine.
  • the test conditions were the same as in Example 4. Adjust the testing machine to a stress of 50MPa and a temperature of 1300°C, and record the following data, as shown in Table 6-5.
  • a represents the stable creep time (min) of each test piece;
  • b represents each test The time (min) for the creep fracture of the piece.
  • FIG. 2F it is a graph of the high temperature creep test of Test Example 1 and Comparative Example 13, (A) in FIG. 2F represents C86100 in Comparative Example 13 without a deposited coating The copper alloy base material, (B) in FIG. 2F shows the material prepared in Test Example 1.
  • the copper alloys provided in Test Examples 1-30 and Comparative Examples 1-13 were processed into 50 mm ⁇ 25 mm ⁇ 2 mm test pieces, and the subsequent steps were the same as in Example 1.
  • the weight loss rate of the test piece is shown in FIG. 3F ((A) in FIG. 3F represents the C86100 copper alloy base material with no deposited coating in Comparative Example 13, (B) represents Test Example 1), Test Examples 1-30 and Comparative Example
  • the specific experimental results of 1-13 are shown in Table 6-5.
  • Cl - needs to pass through the corrosion products to contact the copper alloy substrate, which reduces the amount of Cl - adsorbed on the surface of the substrate and reduces the corrosion rate.
  • the corrosion loss weight of C86100 copper alloy is much higher than that of copper-based surface composite materials.
  • the copper-based surface composite materials have basically not corroded due to the presence of the coating, and their quality has hardly changed.
  • Table 6-5 a represents the stable creep time (min) of each test piece
  • b represents the time (min) for creep fracture of each test piece
  • c represents the weight loss rate (v/mg.cm 2 ) of the test piece after continuously spraying the NaCl solution on the test piece for 8 hours;
  • d represents the weight loss rate (v/mg.cm 2 ) of the test piece after spraying NaCl solution to the test piece continuously for 24 hours;
  • e represents the weight loss rate (v/mg.cm 2 ) of the test piece after 48 hours of continuous spraying of NaCl solution on the test piece;
  • f represents the weight loss rate (v/mg.cm 2 ) of the test piece after continuously spraying the NaCl solution to the test piece for 72 h.
  • the service temperature of the copper alloy can be raised to 100-500 higher than the original melting point °C, and corrosion resistance is greatly improved.
  • the super-limit copper alloy prepared by the super-limit copper alloy preparation method provided by the present invention has a wide use temperature range and strong corrosion resistance, and the effects of Example 1 are the best.
  • the super-limit alloy is a super-limit zirconium alloy, that is, the alloy matrix is a zirconium alloy matrix.
  • the reference numerals in FIG. 4 of the specification include: zirconium alloy substrate 1, bonding layer 2, noble metal layer 3, ceramic A layer 4, ceramic B layer 5, sealing coating layer 6, reflective layer 7, anti-refractive layer 8, Electrical insulating layer 9.
  • the present invention provides an ultra-limiting zirconium alloy, as shown in FIG. 4, which includes a zirconium alloy substrate 1, a bonding layer 2 of 50 to 150 ⁇ m thick, a precious metal layer 3 of 10 to 20 ⁇ m thick are deposited on the surface of the zirconium alloy substrate 1 in sequence, 50 to 80 ⁇ m thick ceramic A layer 4, 50 to 80 ⁇ m thick ceramic B layer 5, 5 to 10 ⁇ m thick sealing layer 6, 10 to 15 ⁇ m thick reflective layer 7, 10 to 15 ⁇ m thick refraction layer 8 and 15-20 ⁇ m thick electrical insulating layer 9; wherein the zirconium alloy substrate 1 is a zirconium alloy added with one or more elements of zinc, aluminum, copper, tin, niobium, iron, chromium, nickel.
  • the composition of the bonding layer 2 is MCrAlY, and the composition of MCrAlY is CoCrAlY, NiCoCrAlY, or CoNiCrAlY;
  • the composition of the precious metal layer 3 is one or more alloys of Pt, Ru, Rh, Pd, Ir, and Os;
  • the composition of the ceramic A layer 4 Y 2 O 3 -ZrO 2 , Y 2 O 3 -CeO 2 , Y 2 O 3 -TiO 2 , Y 2 O 3 -CeO 2 , Y 2 O 3 -Yb 2 O 3 , Y 2 O 3 -Er 2 O 3 , Y 2 O 3 -Dy 2 O 3 , Y 2 O 3 -HfO 2 or a mixture of several;
  • the invention uses RETaO 4 as the ceramic B layer, has the effects of low thermal conductivity and high expansion rate, and can realize the reduction of heat conduction; and RETaO 4 prepared by the following method can meet the requirements of APS spraying technology.
  • RETaO 4 is prepared by the following method, including the following steps:
  • Step (1) Pre-dry the rare earth oxide (RE 2 O 3 ) powder and tantalum pentoxide (Ta 2 O 5 ) powder, the pre-drying temperature is 600 °C, the pre-drying time is 8h; then follow 1
  • the molar ratio of 1:1 weighs the pre-dried rare earth oxide (RE 2 O 3 ) powder and tantalum pentoxide (Ta 2 O 5 ) powder; add the pre-dried powder to the ethanol solvent to obtain a mixed solution, Make the molar ratio of RE:Ta in the mixed solution 1:1; then use the ball mill to ball mill the mixed solution for 10h, and the rotation speed of the ball mill is 300r/min.
  • the slurry obtained after ball milling was dried using a rotary evaporator (model: N-1200B) at a drying temperature of 60° C. and a drying time of 2 hours.
  • the dried powder was sieved through a 300-mesh sieve to obtain powder A.
  • Step (2) The powder A obtained in step (1) is prepared by the high-temperature solid-phase reaction method to obtain powder B with the composition RETaO 4 , the reaction temperature is 1700°C, and the reaction time is 10h; and the powder B is carried out using a 300-mesh sieve Sift.
  • Step (3) Mix powder B sieved in step (2) with deionized water solvent and organic adhesive to obtain slurry C, in which the mass percentage of powder B in slurry C is 25%, organic bonding
  • the mass percentage of the agent is 2%, the rest is the solvent, and the organic adhesive is polyvinyl alcohol or gum arabic; then the slurry C is dried by centrifugal atomization, the temperature during drying is 600°C, and the centrifugal speed is 8500r/ min, to get dried pellets D;
  • Step (4) sinter the pellet D obtained in step (3) at a temperature of 1200°C for 8 hours, and then sieve the sintered pellet D with a 300 mesh sieve to obtain a particle size of 10 to 70 nm and a morphological appearance Spherical RETaO 4 ceramic powder.
  • the inventors obtained through a large number of experiments that within the range of parameters provided by the present invention, the produced ultra-limiting zirconium alloy has a high use temperature and good corrosion resistance, and 20 groups of which are listed in the present invention for explanation.
  • Test Example 1-20 of an ultra-limiting zirconium alloy and its preparation method of the present invention are shown in Table 7-1 and Table 7-2: (Thickness unit: ⁇ m)
  • Table 7-1 Composition and thickness of each coating in Test Example 1-10 of an ultra-limiting zirconium alloy and its preparation method
  • Table 7-2 Composition and thickness of each coating in test example 21-20 of an ultra-limiting zirconium alloy and its preparation method
  • a method for preparing an ultra-limiting zirconium alloy includes the following steps:
  • Step 1 In this test example, Zr-1Nb zirconium alloy is selected as the zirconium alloy substrate.
  • the oil stains and impurities on the surface of the zirconium alloy substrate are removed by the immersion method.
  • the main components of the clean liquid are ethanol and surfactant, and the main components of the alkaline solution are sodium hydroxide, trisodium phosphate, sodium carbonate and sodium silicate.
  • an alkaline solution is used. Adjust the PH value of the alkaline solution to between 10 and 11, and then immerse the zirconium alloy substrate in the alkaline solution, soak it for 0.5-1.5h, and take it out. In this test example, the immersion time is 1h, then rinse with water and dry. .
  • the sandblasting machine used is the JCK-SS500-6A automatic transmission sandblasting machine.
  • the sandblasting material used in the sandblasting is 23 mesh quartz sand; after sandblasting
  • the surface roughness of the zirconium alloy substrate is 60-100 ⁇ m. In this test example, the surface roughness of the zirconium alloy substrate is 80 ⁇ m, which facilitates the adhesion of the coating to the zirconium alloy substrate.
  • Step 2 Deposit a bonding layer on the surface of the Zr-1Nb zirconium alloy after sand blasting.
  • the process parameters of the HVOF method when spraying are The pressure and flow rate of oxygen are 0.4MPa and 250L/min respectively; the pressure and flow rate of C 2 H 4 are 0.4MPa and 55L/min respectively; the nozzle length of the spray gun is 100mm and the spraying distance is 100mm.
  • Step 3 Use the HVOF method to deposit a 10um thick Pt on CoCrAlY as a precious metal layer, and the process parameters of the HVOF method during spraying are the same as those in step one.
  • Step 4 Use ion spraying technology to spray a 50um thick layer of Y 2 O 3 -Yb 2 O 3 on the surface of the precious metal layer as the ceramic A layer.
  • the process parameters of the ion spraying technology when spraying are: the flow rate of argon gas is 40L/min ; The flow rate of hydrogen is 5L/min, the power is 30kW, the powder feeding amount is 20g/min, and the spraying distance is 100mm.
  • Step 5 Use plasma spraying technology to spray a layer of YTaO 4 with a thickness of 50 ⁇ m on ceramic A as ceramic layer B.
  • the spraying process parameters are the same as those in step 4.
  • Step 6 Use electron beam physical vapor deposition technology to spray a layer of 5 ⁇ m thick Ti 3 SiC on the surface of ceramic B layer as a seal coating.
  • the parameters of electron beam physical vapor deposition technology during spraying are argon pressure 0.2 Mpa and power It is 2kW and the substrate temperature is 250°C.
  • Step 7 Using electron beam physical vapor deposition technology, spray a 10um thick REVO 4 reflective layer on the top of the sealing layer, and the spraying process parameters are the same as in step 6.
  • Step 8 Graphene and micron-level carbon powder materials are evenly mixed with each other, and then the mixed powder is introduced into the solution for ultrasonic vibration mixing.
  • the solution is an ethanol solution with 1% dispersant added.
  • the solution uses filter paper to separate micron-level carbon powder.
  • the solution mixed with graphene is painted on the surface of the reflective layer as a refraction layer, and then the zirconium alloy coated with the graphene refraction layer is placed in a drying oven and dried at 60°C for 2 hours.
  • the thickness of the refractive layer is 13 ⁇ m.
  • Step 9 Then stick polyphenylene ether to the wool or sponge.
  • a sponge is used, and the sponge with the polyphenylene ether adhered to the antirefringent layer, and the sponge is subjected to high-speed vibration and friction by a vibration polishing machine , Permeate polyphenylene ether to the surface of the refraction layer to form an electrically insulating layer, and the thickness of the electrically insulating layer is 15 ⁇ m.
  • Step 10 The aging treatment of the zirconium alloy sprayed with the adhesive layer, the precious metal layer, the ceramic A layer, the ceramic B layer, the sealing layer, the reflection layer, the refraction layer, and the electrical insulation layer at 50 to 80 °C for 5 to 10 hours,
  • the temperature used in this test example is 60°C and the time is 8 hours, so as to release the internal stress of each coating to improve the bonding performance of the coating, and finally obtain an ultra-limiting zirconium alloy.
  • the difference between Test Example 2-20 and Test Example 1 is only in the parameters shown in Table 7-1.
  • Comparative Example 1-9 is only that the parameters shown in Table 7-3 are different.
  • Comparative Example 10 is a Zr-1Nb zirconium alloy.
  • the zirconium alloys provided in Test Examples 1-20 and Comparative Examples 1-10 were processed into cylindrical test pieces with a length of 187 mm and a diameter of 16 mm, and high-temperature creep was performed using an electronic high-temperature creep endurance strength tester model RMT-D5 experiment.
  • Test Example 1-20 and Comparative Example 1-10 into the electronic high-temperature creep endurance testing machine, and start the testing machine to make the testing machine warm up.
  • the test piece is in a stress-free state ( In the unstressed state, the specimen can expand freely, and the high temperature creep is that the deformation increases with time under the combined action of temperature and stress, so the heating rate has no effect on creep).
  • the temperature of the testing machine reaches 2000°C, adjust the testing machine to a stress of 50 MPa and perform a high-temperature creep test, taking Test Example 1 and Comparative Example 10 as examples.
  • the experimental results are shown in Figure 5 ( Figure 5(A) Comparative Example 10 is shown, and (B) indicates Test Example 1).
  • the specific experimental results of Test Examples 1-20 and Comparative Examples 1-10 are shown in Table 7-4.
  • the ultra-limited zirconium alloy provided by the present invention maintains better mechanical properties without breaking. Has excellent high temperature resistance.
  • the zirconium alloys provided in Test Examples 1-20 and Comparative Examples 1-10 were processed into 50 mm ⁇ 25 mm ⁇ 2 mm test pieces, which were then degreased and derusted, washed, and dried.
  • Use YWX/Q-250B salt spray corrosion box as experimental equipment, and simulate the atmospheric corrosion environment of GB/T2967.3-2008.
  • Hang the test pieces provided in Test Example 1-20 and Comparative Example 1-10 in the experimental equipment, and adjust the experimental equipment to a temperature of 50 ⁇ 1°C, a pH of 3.0-3.1, and a reuse concentration of 5 ⁇ 0.5% NaCl The solution is continuously sprayed onto the test piece.
  • Test Example 1 and Comparative Example 10 as examples, after continuously spraying 5 ⁇ 0.5% NaCl solution to the test piece for 8h, 24h, 48h and 72h, the weight loss rate of the test piece is shown in Figure 6 ( Figure 6(A) Comparative Example 10 is shown, and (B) indicates Test Example 1).
  • Figure 6(A) Comparative Example 10 is shown, and (B) indicates Test Example 1).
  • Table 7-4 The specific experimental results of Test Examples 1-20 and Comparative Examples 1-10 are shown in Table 7-4.
  • the ultra-limiting zirconium alloy prepared by the method for preparing an ultra-limiting zirconium alloy provided by the present invention has a wide operating temperature range and strong corrosion resistance, and the effects of Test Example 1 are the best.
  • the maximum service temperature of the zirconium alloy beyond the parameter range provided in the test examples of this embodiment is much lower than that of the super-limit zirconium alloy provided by the present invention, and its corrosion resistance is also poor.
  • the super-limit alloy is a super-limit tin alloy, that is, the alloy substrate is a tin alloy substrate.
  • the present invention provides an ultra-limiting tin alloy, as shown in FIG. 7, which includes a tin alloy substrate 1, a bonding layer 2 with a thickness of 50-180 ⁇ m and a ceramic layer with a thickness of 50um-80um are deposited on the surface of the tin alloy substrate 1 in sequence 3. Sealing coating with a thickness of 5um to 15um, a reflective layer 5 with a thickness of 5um to 15um, a refraction layer 6 with a thickness of 5um to 15um, and an insulating layer 7 with a thickness of 10m to 25m.
  • the composition of the bonding layer 2 is one or more alloys of platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), iridium (Ir), and osmium (Os).
  • the anti-refractive layer 6 is one or a mixture of graphene or boron carbide, and the spatial distribution of graphene and boron carbide are disorderly
  • RETaO 4 powder is prepared by the following method, including the following steps:
  • Step (1) Pre-dry the rare earth oxide (RE 2 O 3 ) powder and tantalum pentoxide (Ta 2 O 5 ) powder, the pre-drying temperature is 600 °C, the pre-drying time is 8h; according to RETaO 4 Weigh the dried rare earth oxide (RE 2 O 3 ) powder and tantalum pentoxide (Ta 2 O 5 ) powder in the molar ratio; add the pre-dried powder to the ethanol solvent to obtain a mixed solution, so that the mixed solution The molar ratio of RE:Ta is 1:1; then the mixed solution is ball-milled for 10h, and the rotation speed of the ball mill is 300r/min.
  • the slurry obtained after ball milling was dried using a rotary evaporator (model: N-1200B) at a drying temperature of 60° C. and a drying time of 2 hours.
  • the dried powder was sieved through a 300-mesh sieve to obtain powder A.
  • Step (2) The powder A obtained in step (1) is prepared by the high-temperature solid-phase reaction method to obtain powder B with the composition RETaO 4 , the reaction temperature is 1700°C, and the reaction time is 10h; and the powder B is carried out using a 300-mesh sieve Sift.
  • Step (3) Mix powder B sieved in step (2) with deionized water solvent and organic adhesive to obtain slurry C, in which the mass percentage of powder B in slurry C is 25%, organic bonding
  • the mass percentage of the agent is 2%, the rest is the solvent, and the organic adhesive is polyvinyl alcohol or gum arabic; then the slurry C is dried by a high temperature spray cracking method, the temperature during drying is 1000°C, and the drying time is 60min , To get dried pellets D;
  • Step (4) sinter the pellet D obtained in step (3) at a temperature of 1200°C for 8 hours, and then sieve the sintered pellet D with a 300-mesh sieve to obtain a particle size of 10-50 ⁇ m and a morphological appearance Spherical RETaO 4 ceramic powder.
  • the invention uses RETaO 4 as the ceramic B layer, which has the effects of low thermal conductivity and high expansion rate, and can realize the reduction of heat conduction; and RETaO 4 prepared by the above method can meet the powder particle size and morphology of APS spraying technology. Claim.
  • the inventors have obtained through a large number of experiments that within the parameters of the present invention, the use temperature of the prepared super-limiting tin alloy welding material has the largest increase, and the weight increase of the tin alloy welding material is small, and the composition and thickness of each coating
  • the best super-limit tin alloy weld material is described in the present invention, which lists 20 groups.
  • Test Example 1-20 of an ultra-limited tin alloy and its preparation method of the present invention are shown in Table 8-1 and Table 8-2: (Thickness unit: ⁇ m)
  • Table 8-1 Composition and thickness of each coating in Test Example 1-10 of an ultra-limiting tin alloy and its preparation method
  • Table 8-2 Composition and thickness of each coating in Test Example 11-20 of an ultra-limited tin alloy and its preparation method
  • a preparation method of super-limit tin alloy includes the following steps:
  • Step 1 Prepare the tin alloy substrate, select two Q235 steel plates as the welding base material, use the tin alloy welding wire type S221 to weld the two base materials, the wire diameter is 2.5mm; the welding equipment is MZ-1000 automatic buried Arc welding machine and inverter submerged arc welding power source in the era of MZ-1000.
  • the welding process parameters are voltage 30V, current 530 ⁇ 570A, welding speed 55m/h; tin alloy substrate is made by this welding equipment.
  • Step 2 Use a sandblasting machine to sandblast the surface of the tin alloy substrate obtained in step 1.
  • the sandblasting machine used is the JCK-SS500-6A automatic transmission sandblasting machine.
  • the sandblasting material used during sandblasting is quartz sand
  • the specification of quartz sand is 15-20 mesh. In this test example, the specification of quartz sand is 20 mesh.
  • Step 3 Using supersonic flame spraying method, spray the platinum and rhodium bonding layer on the surface of the tin alloy substrate after the surface treatment in step two, the thickness of the bonding layer is 75 ⁇ m; the process parameters of supersonic flame spraying are: oxygen pressure and The flow rate is 0.4MPa and 250L/min respectively; the pressure and flow rate of C 2 H 4 are 0.4MPa and 55L/min respectively, the spray gun nozzle length is 100mm, and the spraying distance is 100mm.
  • Step 4 Use atmospheric plasma spraying technology to prepare a ceramic layer composed of YTaO 4 on the surface of the platinum-rhodium bonding layer obtained in step 3, of which the thickness of the YTaO 4 ceramic layer is 50um, and the process parameters of atmospheric plasma spraying technology are: argon
  • the flow rate of gas is 40L/min; the flow rate of hydrogen is 5L/min, the power is 30kW, the powder feeding amount is 20g/min, and the spraying distance is 100mm.
  • Step 5 Using electron beam physical vapor deposition technology to prepare a layer of NdPO 4 seal coating on the surface of the YTaO 4 ceramic layer obtained in step 4, the thickness of the NdPO 4 seal coating is 10um; of which, electron beam physical vapor deposition technology
  • the process parameters are: argon pressure 0.22MPa, power 2KW, substrate temperature 400°C.
  • Step 6 Use electron beam physical vapor deposition technology to prepare a reflective layer with the composition of YVO 4 on the surface of the NdPO 4 sealing coating obtained in step five.
  • the thickness of the YVO 4 reflective layer is 10um;
  • the process parameters are: argon pressure 0.22MPa, power 2KW, and substrate temperature 400°C.
  • Step 7 Use the brushing method to prepare the graphene refraction layer on the surface of the YVO 4 reflective layer obtained in step 6.
  • the thickness of the graphene refraction layer is 15um; because graphene has a high specific surface area, it is extremely insoluble in solution Therefore, graphene needs to be subjected to ultrasonic dispersion and solid-liquid separation before coating, that is, graphene and micron-level carbon powder materials are uniformly mixed with each other, and then the mixed powder is introduced into the solution for ultrasonic vibration mixing.
  • the solution In order to add ethanol solution with 1% dispersant, the micron-scale carbon powder is separated by filter paper after the solution is mixed, and finally the solution mixed with graphene is coated on the surface of the reflective layer, and then coated with graphene
  • the tin alloy weld material of the antirefractive layer is placed in a drying oven and dried at 60°C for 2 hours.
  • the spatial distribution of graphene is rearranged in all directions, so that the spatial distribution of graphene is disorderly arranged, so that although graphene has a higher refractive index, when incident light is irradiated to graphite
  • the disorderly arranged graphene can enhance the refraction of light in all directions, avoid incident light from being refracted in the same direction, and achieve the effect of refractive dispersion, so that the intensity of incident light entering the coating decreases.
  • Step 8 An insulating layer with a composition of bismaleimide is prepared on the surface of the graphene antirefringent layer obtained in step 7 by sealing glaze, and the thickness of the insulating layer is 22 ⁇ m.
  • Glaze treatment is a technical means to prepare electrical insulation layer.
  • the glaze treatment is to use soft wool or sponge to vibrate and rub at high speed through a vibration polishing machine, and use the unique permeability and adhesion of the graphene coating to The molecules of Leimide penetrated strongly into the graphene coating surface.
  • Step 9 The tin alloy weld material prepared in steps 1 to 8 is allowed to stand for 5 to 10 hours at a temperature of 50 to 80°C for aging treatment.
  • the aging temperature used in this test example is 60°C and the time for aging treatment 8h.
  • Test Example 2-20 differs from Test Example 1 only in the parameters shown in Table 8-1.
  • Comparative Example 1-10 differs from Test Example 1 only in the parameters shown in Table 8-3.
  • Comparative Example 11 is the tin alloy weld material prepared in Step 1, ie, the surface of the tin alloy substrate is not Deposit any coating.
  • a tensile pattern was prepared, and two pieces of welded base material 8 were welded together using a welding device to form a tin alloy substrate 9.
  • a welding device to form a tin alloy substrate 9.
  • Test Examples 1-20 and Comparative Example 1- were used.
  • the parameters provided in 10 were used to prepare a coating, of which Comparative Example 11 was a tin alloy substrate with no deposited coating.
  • the maximum test load of the RMT-D5 electronic high-temperature creep testing machine is 50KN, and the test load control accuracy Within ⁇ 5%, the deformation measurement range is 0 to 10 mm, the rate adjustment range is 0 to 50 mm/min -1 , the deformation resolution is 0.001 mm, the temperature control range of the high-temperature furnace is 900 to 1200°C, and the average tropical zone length is 150 mm.
  • Example 1-20 the tin alloy weld material prepared in Comparative Example 1-11 is placed in the above test machine, and the test piece is in a stress-free state (under the stress-free state, the test piece can freely expand, and the high temperature creep Under the combined effect of temperature and stress, the deformation increases with time, so the heating rate has no effect on creep). Adjust the testing machine to a temperature of 350 °C, the number of tests for each test piece is 5 times, and record the tensile strength obtained each time, as shown in Table 8-4, a in Table 8-4 represents the test piece Average tensile strength (MPa).
  • MPa Average tensile strength
  • FIG. 9 it is the tensile strength curve of the tin alloy weld material of Test Example 1 and Comparative Example 11, in FIG. 9 (A ) Represents the tin alloy substrate with no deposited coating in Comparative Example 11, and (B) in FIG. 9 represents the tin alloy weld material with a composite coating deposited on the surface using the parameters in Test Example 1.
  • the melting temperature of the S221 tin alloy is 220°C by searching relevant literature, so the test temperature is set to 350°C, and the test results are as follows:
  • the tin alloy weld material samples prepared in Test Example 1-20 and Comparative Example 1-11 were processed into 50 mm ⁇ 25 mm ⁇ 2 mm test pieces, which were then degreased and derusted, washed, and dried.
  • Test Example 1-20 and Comparative Example 1-11 Hang the test pieces provided in Test Example 1-20 and Comparative Example 1-11 in the experimental equipment, and adjust the experimental equipment to a temperature of 50 ⁇ 1°C, a pH of 3.0 ⁇ 3.1, and a reuse concentration of 5 ⁇ 0.5% NaCl
  • the solution was continuously sprayed on the test piece, and after recording a certain time (8, 24, 48, 72h) in Table 8-4, the weight loss rate of the test piece.
  • FIG. 10 it is the relationship between the weight loss and the corrosion time of salt spray corrosion in Test Example 1 and Comparative Example 11.
  • A in FIG. 10 represents the tin alloy substrate with no deposited coating in Comparative Example 11.
  • B The parameter in Test Example 1 represents the tin alloy weld material with a composite coating deposited on it.
  • a represents the average tensile strength (MPa) of the test piece
  • b represents the weight loss rate (v/mg.cm 2 ) of the test piece after continuously spraying the NaCl solution on the test piece for 8 hours;
  • c represents the weight loss rate (v/mg.cm 2 ) of the test piece after 24 hours of continuous spraying of NaCl solution on the test piece;
  • d represents the weight loss rate (v/mg.cm 2 ) of the test piece after 48 hours of continuous spraying of NaCl solution on the test piece;
  • e represents the weight loss rate (v/mg.cm 2 ) of the test piece after 72 hours of continuous spraying of the NaCl solution on the test piece.
  • Example 1 A a b c d e Test Example 1 155 0.01 0.03 0.06 0.1 Test Example 2 152 0.01 0.03 0.06 0.1 Test Example 3 150 0.01 0.03 0.06 0.1 Test Example 4 142 0.02 0.032 0.064 0.12 Test Example 5 148 0.01 0.03 0.06 0.1 Test Example 6 150 0.01 0.03 0.06 0.1 Test Example 7 153 0.01 0.03 0.06 0.1 Test Example 8 154 0.01 0.03 0.06 0.1 Test Example 9 150 0.01 0.03 0.06 0.1 Test Example 10 155 0.01 0.03 0.06 0.1 Test Example 11 155 0.01 0.03 0.06 0.1 Test Example 12 149 0.01 0.03 0.06 0.1 Test Example 13 149 0.01 0.03 0.06 0.1 Test Example 14 145 0.01 0.03 0.06 0.1 Test Example 15 145 0.01 0.03 0.06 0.1 Test Example 16 153 0.01 0.03 0.06 0.1 Test Example 17 154 0.01 0.03 0.06 0.1 Test Example 18 153 0.01 0.03 0.06 0.1 Test Example 19 152 0.01 0.
  • the service temperature of the tin alloy weld material can be raised above the original melting point 100-500 °C, and corrosion resistance has also been greatly improved.
  • the super-limit tin alloy weld material prepared by the super-limit tin alloy preparation method provided by the present invention has a wide use temperature range and strong corrosion resistance, and the effects of Example 1 are the best.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

一种超极限合金及其制备方法,包括合金基体,合金基体表面依次沉积有粘结层和陶瓷层;所述合金基体选自镁合金基体、铝合金基体、钛合金基体、铁合金基体、镍合金基体、铜合金基体、锆合金和锡合金中的一种。对于超极限镁合金、超极限铝合金、超极限镍合金、超极限钛合金、超极限铁合金以及超极限铜合金,粘结层为复合粘结层,陶瓷层为复合陶瓷层,复合陶瓷层外还依次沉积有反射层、反折射层、绝缘层和泡沫碳层。对于超极限锆合金,粘结层为复合粘结层,陶瓷层为复合陶瓷层,复合陶瓷层外还依次沉积有封严涂层、反射层、反折射层和电绝缘层。对于超极限锡合金,锡合金基体表面依次沉积有粘结层、陶瓷层、封严涂层、反射层、反折射层和绝缘层。通过在合金基体表面沉积多层涂层,能够将其使用温度提升至高于原合金基体熔点100-500℃,以实现超极限合金在超极限环境的使用。

Description

一种超极限合金及其制备方法 技术领域
本发明属于一种合金金属材料领域,具体涉及一种超极限金属(镁、铝、镍、钛、铁、铜、锆或锡)合金及其制备方法。
背景技术
随着技术的发展与社会的实际需求,对飞行器的速度要求也越来越高,飞行器的提速就意味着发动机运转速度提升,而发动机的运行温度也随之提升,从而使得发动机的叶片、齿轮机匣、油泵和油管等温度也提升。而在提升飞行器飞行速度的研究过程中,为了适应其发动机温度的提升,通常会利用铁合金等熔点较高的合金作为制作飞行器的主要结构材料,但是铁合金的重量较大,利用铁合金作为制造飞行器发动机的原材料,会导致飞行器发动机的重量大幅度的增加,反而会导致飞行器的飞行速度减慢,不能满足实际的需求。而若是在不改变材料的情况,对飞行器进行提速,就只能缩短飞行器的使用寿命。
镁合金作为当今一种重要的金属材料,具有密度小(1.8g/cm 3左右)、强度高、弹性模量大、散热好、消震性好、承受冲击载荷能力比大、耐有机物和碱的腐蚀性能好等优良特性,主要用于航空、航天、运输、化工、火箭等工业部门。镁合金是飞行器、航天器和火箭导弹制造工业中使用的最轻金属结构材料,主要用于制造低承力的零件。镁合金在汽油、煤油和润滑油中很稳定,因此通常发动机齿轮机匣、油泵和油管是由镁合金制备的。镁合金的镁合金熔点在650℃左右,使用温度更是在其熔点的70%左右,且在高温下镁合金极易氧化,因此当飞行器提速时,镁合金不能满足在发动机的各部件温度升高的条件下使用,因此不能满足在超极限温度下使用(超极限温度即超过镁合金的熔点温度)。
铝合金,是工业中应用最广泛的一类有色金属结构材料,具有低密度、高强度、优良的可塑性、导电性和耐腐蚀性等优良特性,在航空、航天、汽车、机械制造、船舶及化学工业中广泛使用,尤其是在航空航天领域发挥不可替代的作用。而高强铝合金以其优异的综合性能在商用飞行器上的使用量已经达到其结构质量的80%以上,因此得到全球航空工业界的普遍重视。各种飞行器都以铝合金作为主要结构材料,飞行器上的蒙皮、梁、肋、桁条、隔框和起落架都可以用铝合金制造。目前的铝合金熔点在650℃左右,而且使用温度更是在其熔点的70%左右,不能满足在超极限温度下使用(超极限温度即超过铝合金的熔点温度),更不能满足飞行器提速后的使用要求,因此在飞行器发展的过程中,铝合金的使用受到了限制。
镍合金,是指以镍为基体,加入其他元素组成的合金。镍具有良好的力学、物理和化学性能,而在镍内添加适宜元素形成的镍合金的抗氧化性、耐蚀性、高温强度强,并且能够改善某些物理性能,因此镍合金广泛使用在能源开发、化工、电子、航海、航空和航天领域。镍合金由于其强度、硬度、抗震性、耐蚀性、抗氧化性、高温强度和某些物理性能等综合性能较强,在航空航天领域发挥了不可替代的作用。镍合金在航空航天领域应用时,通常用于制备航空器发动机的叶片,发动机是航空器非常重要的存在,相当于航空器的心脏,而叶片又相当于发动机的心脏,因此对于镍合金的耐热性能要求非常高。随着技术的发展与社会的实际需求,对航空器的速度要求也越来越高,航空器的提速就意味着发动机的运转速度逐渐提高,便导致发动机叶片的表面温度逐渐提高,而现目前的镍合金熔点在1450℃左右,而且使用温度更是在其熔点的70%左右,不能满足航空器提速后的使用要求(即镍合金不能在超极限温度(超过镍合金的熔点温度)下使用),或者说为了实现航空器提速的要求,就必须牺牲飞机的使用寿命。因此在航空器发展,甚至是整个镍合金的发展都受到了限制,镍合金的使用受到了限制,达到了一个瓶颈。
钛合金具有强度高、比重小、耐蚀性好、耐热性高、硬度高以及与生物的相容性好等特点,20世纪时钛基合金就被广泛应用于航空、航天、潜艇、医疗等领域,第一个实用的钛合金是1954年美国研制成功的Ti-6Al-4V合金,而后成为钛合金工业中的王牌合金,该合金使 用量已占全部钛合金的75%~85%。其他许多钛合金都可以看作是Ti-6Al-4V合金的改型。钛合金在低温和超低温下,仍能保持其力学性能。低温性能好,间隙元素极低的钛合金,如TA7,在-253℃下还能保持一定的塑性。钛合金是航空航天工业中使用的一种新的重要结构材料,如美国SR-71高空高速侦察机(飞行马赫数为3,飞行高度26212米),钛占飞机结构重量的93%,号称“全钛”飞机。
尽管钛合金有众多优异的性能,但由于目前其极限使用温度只有400~500℃,随着高推重比的航空发动机的需求越来越高,对各种高温部件材料的性能也就提出了更严格的要求,另外金属在超过其熔点一半的温度下工作时,就会发生软化的现象,即钛合金在840℃左右的环境下工作时,就会发生软化,性能降低的现象,即现目前的钛合金不能在超极限温度(超过钛合金的熔点温度)下使用。
通常人们认为当一种材料不能在高温环境下使用时,会去寻求另一种熔点更高的材料,例如人们通常会认为熔点更高的镍合金、铁合金等能够替代钛合金在更高的温度下工作,但这类合金的原子量大,导致同样厚度的材料,镍合金或铁合金会更重,使得这类合金虽然能够满足高温的要求,却不能达到轻质的效果,而航空器等飞行器要提速,关键就在于航空器的重量,这就使得航空器等飞行器的提速出现了瓶颈。因此若是在不改变材料的情况,对飞行器进行提速,就只能缩短飞行器的使用寿命。
铁合金作为当今一种重要的金属材料,它是工程技术中最重要、也是最主要的,用量最大的金属材料,由于其强度高、种类多、成本低等优良特性被广泛应用在机械,造船、通讯、农业、汽车、交通、铁路、军工、煤炭、矿山、石油、化工等各个领域,被誉为现代工业的脊梁。尤其是由于铁合金强度、硬度等综合性能较强,在航空航天领域发挥了不可替代的作用。
尽管铁合金拥有众多优异的性能,但铁合金的熔点在1500℃左右,且在高温下极易氧化的特性大大限制了铁合金在高温条件下的使用。另外金属在超过其熔点一半的温度下工作,就会发生软化的现象,即铁合金在750℃的环境下工作时,就会发生软化,性能降低的现象。因此现目前的铁合金不能满足航空器提速后的使用要求(即铁合金不能在超极限温度(超过铁合金的熔点温度)下使用),或者说为了实现航空器提速的要求,就必须牺牲飞机的使用寿命。因此在航空器发展,甚至是整个铁合金的发展都受到了限制,铁合金的使用受到了限制,达到了一个瓶颈。
铜合金作为当今一种重要的金属材料,指以铜为基体,加入其他元素组成的合金。铜具有良好的力学、物理和化学性能,而在铜内添加适宜元素形成的铜合金的抗氧化性、耐蚀性、高温强度强,并且能够改善某些物理性能,因此铜合金广泛使用在能源开发、化工、电子、航海、航空和航天领域。铜合金由于其强度、硬度、抗震性、耐蚀性、抗氧化性、高温强度和某些物理性能等综合性能较强,在航空航天领域发挥了不可替代的作用。例如:火箭发动机的燃烧室和推力室的内衬,可以利用铜的优良导热性来进行冷却,以保证发动机的温度在允许的范围内。亚里安那5号火箭的燃烧室内衬,采用铜银合金,在这个内衬内加工出360个冷却通道,火箭发射时通入液态氢进行冷却。
尽管铜合金拥有众多优异的性能,但是由于其熔点在1080℃左右,且在高温下极易氧化的特性大大限制了铜合金在高温条件下的使用。另外金属在超过其熔点一半的温度下工作,就会发生软化的现象,即铜合金在540℃的环境下工作时,就会发生软化,性能降低的现象。而现目前的铜合金不能满足航空器提速后的使用要求(即铜合金不能在超极限温度(超过铜合金的熔点温度)下使用),或者说为了实现航空器提速的要求,就必须牺牲飞机的使用寿命。因此在航空器发展,甚至是整个铜合金的发展都受到了限制,铜合金的使用受到了限制,达到了一个瓶颈。
锆合金,是指以锆为基体,加入其他元素组成的合金。锆合金具有非常低的热中子吸收截面、高硬度、延展性和耐腐蚀性等特性,通常使用在核技术领域,例如用于制作核反应堆内的燃料棒等。由于使用环境的限制,锆合金必须具备良好的高温抗氧化性能和耐腐蚀性、 在使用过程中不易脱落失效、便于长期的维护和保养、极端环境(例如超极限温度(超过熔点))下拥有高的稳定性能等性质。而锆合金的熔点为1850℃左右,其使用温度只有其熔点的70%左右,因此现目前的锆合金在核技术中的使用还是存在一定的限制,使得利用锆合金制作的燃料棒的使用寿命较短,且不能长期的稳定运行。
常规的锡与锑、银、铟、镓等金属组成的合金焊料具有熔点低、无毒、抗蚀的特点。锡合金焊料虽然具有较高的延展性和耐腐蚀性,但是常规状态下(常温常压低冲蚀)的锡合金焊料因为其较低的硬度和加工强度,限制了其使用范围。在超极限环境下(高温高压高冲蚀),例如航空航天领域,航空器等飞行器随着技术的发展与社会的实际需求,航空器的速度越来越高,使得航空器处于一个高温高压和高冲蚀的环境下,锡合金焊料由于其较低的熔点和较低的强度,使得常规的锡合金焊料形成的焊缝在超极限温度(即超过其熔点温度)下很容易发生变形而导致失效。
因此要扩大锡合金的使用范围,就需要锡合金焊缝材料必须有良好的高温抗氧化性能和耐腐蚀性,同时具备更高的强度和硬度。在使用过程中不易脱落失效,便于长期的维护和保养,在极端环境下拥有高的稳定性能。但是现在的锡合金焊料已经很难在高温高压高冲蚀的环境下长期稳定的运行,需要一种更加稳定和实用的制造工艺来使锡合金焊缝材料的使用更加广泛。
发明内容
本发明意在提供一种超极限(镁、铝、镍、钛、铁、铜、锆或锡)合金及其制备方法。
本发明第一方面提供了一种超极限合金及其制备方法,以解决合金无法满足在超极限温度下使用的问题。
为实现上述目的,本发明第一方面提供如下基础技术方案,合金基体表面依次沉积有复合粘结层和复合陶瓷层;复合粘结层包括沉积在合金基体表面的粘结层和沉积在粘结层表面的贵金属层;复合陶瓷层包括陶瓷A层和陶瓷B层;所述合金基体选自镁合金基体、铝合金基体、镍合金基体、钛合金基体、铁合金基体和铜合金基体中的一种。
本发明的有益效果:
发明人通过大量的研究,研发了一种超极限合金,满足合金在超极限温度(超其熔点温度)下使用。在研发过程中,通常人们会认为当环境温度高于合金的使用温度之后,便会认为该合金不能在该温度下进行使用,进而需要其他高熔点的合金进行使用,而发明人反其道而行,尝试对合金进行改进,以满足航空器制造的需求。在发明人不断尝试的过程中非常惊喜的发现,通过在合金表面沉积一定配比的涂层,能够将合金使用温度提高至高于原熔点100-500℃,将大大的提高合金的使用温度,从而满足制造航空器的需求;而在高温环境下,将合金的使用温度提升2-3℃都是非常困难的,因此申请人的这一研究是在合金的使用上非常大的进步。
本技术方案通过在合金基体上沉积复合粘结层和复合陶瓷层,能够大大的提高合金的使用温度,以适应合金在超极限温度的使用。沉积复合粘结层,能够提高各涂层与合金基体之间的粘结效果,避免涂层在使用过程中脱落。沉积复合陶瓷层,能够降低热量的传导,从而提高合金基体的使用温度。
综上所述,本发明第一方面具有以下技术效果:
1、本发明提供的超极限合金具有极佳的高温力学和化学稳定性,能够在超过其合金基体熔点的条件下使用,增强了使用范围。
2、本发明通过在合金基体表面沉积多层涂层,能够将其使用温度提升至高于原合金基体熔点100-500℃,以实现合金在超极限环境下的使用。
3、本发明提供的超极限合金具有极佳的耐腐蚀性,因而在酸性或碱性条件下的使用时间大大增加,因此能减少材料腐蚀而造成的浪费,节约成本。
4、本发明打破了当环境温度高于材料的使用温度便只能更换材料的传统思想的禁锢,通过在材料表面沉积涂层,提高材料的使用温度,使得超极限合金能够适用于提速后的飞行 器制备上,并且不会缩短飞行器的使用寿命。
进一步,所述复合陶瓷层外还依次沉积有反射层、反折射层、绝缘层和泡沫碳层。对于超极限镁合金、超极限铝合金、超极限铁合金以及超极限铜合金,所述复合粘结层的厚度为100-200μm,所述复合陶瓷层的厚度为150-500μm,所述反射层的厚度为10-30μm,所述反折射层的厚度为10-30μm,所述绝缘层的厚度为10-200μm,所述泡沫碳层的厚度为20-200μm;对于超极限金属镍合金,所述复合粘结层的厚度为80-100μm,所述复合陶瓷层的厚度为150-500μm,所述反射层的厚度为10-30μm所述反折射层的厚度为10-30μm,所述绝缘层的厚度为10-200μm,所述泡沫碳层的厚度为20-200μm;对于超极限钛合金,所述粘结层的厚度为20-30μm,所述贵金属层的厚度为40-60μm,所述复合陶瓷层的厚度为150-500μm,所述反射层的厚度为10-30μm,所述反折射层的厚度为20-30μm,所述绝缘层的厚度为100-200μm,所述泡沫碳层的厚度为20-200μm。
有益效果:沉积反射层具有反射热源的效果,从而降低合金表面的热源,从而提高使用温度。沉积反折射层,能阻挡红外线在涂层内的折射,从而降低合金基体的温度,因此使得制备的合金的使用温度提高。绝缘层能够隔绝合金基体表面电离的产生,抵抗电荷对基体材料的侵蚀。在使用时泡沫碳层的碳汽化降温,并在合金基体表面形成汽化膜,进一步阻止热传输,从而提高合金的使用温度。本技术方案通过各涂层的配合,使得合金的使用温度得到了大大的提升。并且通过对各涂层的厚度的设置,能够使得制备的超极限合金的使用温度提高,且其重量增加较少,具有轻质的特性,便于制作航空器使用。
进一步,所述粘结层的成分为MCrAlY、NiAl、NiCr-Al、Mo中的一种或几种的混合物,MCrAlY为NiCrCoAlY、NiCoCrAlY、CoNiCrAlY或CoCrAlY;贵金属层的成分为Au、Pt、Ru、Rh、Pd、Ir中的一种或几种的合金。
有益效果:NiCrCoAlY、NiCoCrAlY、CoNiCrAlY三种材料中各元素之间的配比不同,因此制得的材料不同。粘结层具有良好的粘结效果,使得后续的涂层与合金基体的粘结效果佳,降低涂层的脱落概率;而贵金属本身具有抗氧化的特性,能有效的阻止高温下氧向粘结层和合金基体内扩散,从而提高涂层的抗氧化性能,提高涂层的寿命。
进一步,所述陶瓷A层的成分为YSZ或稀土锆酸盐(RE 2Zr 2O 7);陶瓷B层的成分为ZrO 2-RETaO 4。陶瓷A层靠近贵金属层或陶瓷B层靠近贵金属层。
有益效果:YSZ或稀土锆酸盐,是一种作为热障涂层普遍使用的物质,易于获得。ZrO 2-RETaO 4具有低导热率、高膨胀的特性,低导热率能够减少热量的传导,使得在高温环境下,合金基体保持低温,从而提高制备的合金的使用温度;而高膨胀系数是为了与粘结层的热膨胀系数相匹配,由于贵金属粘结层的热膨胀系数也较大,这样在热循环过程中(即不断加热冷却的过程中),陶瓷层与粘结层的热失配应力(热膨胀系数不同产生的应力)较小,进而提高涂层的使用寿命。(通俗来讲,当两个热膨胀系数相差较大的涂层沉积在一起时,升温或者降温时,两个涂层的膨胀程度严重不同,就会导致两个涂层之间的应力增大,从而导致两个涂层之间产生裂纹,甚至脱落的问题。)
进一步,所述ZrO 2-RETaO 4呈球形,且粒径为10-70μm。
有益效果:能够使得沉积陶瓷B层时,喷涂效果佳,且使得陶瓷B层的粘结效果佳。
进一步,所述反射层的成分为REVO 4、RETaO 4、Y 2O 3中的一种或几种的混合物。
有益效果:REVO 4、RETaO 4、Y 2O 3的反射系数高,因此能够反射热源,降低热辐射,降低合金基体温度,从而提高制备的合金的使用温度。
进一步,所述反折射层的成分为石墨烯或碳化硼中的一种或两种的混合物,且石墨烯和碳化硼的晶体结构均呈无序排列状态。
有益效果:石墨烯和碳化硼虽然具有较高的折射率,当入射光在照射到反折射层上时,无序排列的石墨烯和碳化硼可以增强光在各个方向的折射,避免入射光在同一方向上发生折射,达到折射分散的效果,这样进入到涂层内的入射光强度下降。
进一步,所述绝缘层的成分为环氧树脂、酚醛树脂、ABS树脂中的一种或几种的混合 物。
有益效果:飞行器使用时,外壳与空气发生摩擦而电离时,环氧树脂、酚醛树脂、ABS树脂能隔离导电电子,抵抗电荷对合金基体的侵蚀。
本发明第一方面还提供另一基础技术方案,一种超极限合金的制备方法,包括以下步骤:
步骤一:首先在合金基体表面沉积粘结层,再在粘结层表面沉积贵金属层,使得粘结层和贵金属层形成复合粘结层;
步骤二:在贵金属层表面沉积陶瓷A层和陶瓷B层,使得陶瓷A层和陶瓷B层形成复合陶瓷层;
步骤三:在复合陶瓷层表面沉积反射层;
步骤四:在反射层表面涂刷反折射层;
步骤五:在反折射层表面涂刷绝缘层;
步骤六:绝缘层表面涂刷泡沫碳层,从而形成超极限合金。
本技术方案的有益效果为:
通过对沉积在合金基体上的各涂层的厚度进行控制,既能实现制备的超极限合金的使用温度提高至高于原合金熔点的100-500℃,并且具有极佳的耐腐蚀性。同时还能够避免涂层厚度较大导致的制备的超极限合金的重量增加较大的情况出现,从而使得超极限合金能保持轻质的特性,又能够在超极限的温度下使用,从而满足现有飞行器提速的使用要求。
进一步,所述步骤一中,在沉积粘结层之前,去除合金基体表面的油污;并对合金基体的表面进行喷丸处理,使得合金基体的表面粗糙度为60-100μm。
有益效果:通过去除合金基体表面的油污能够增加合金基体与涂层之间的粘结效果。并且涂层固化的过程中会产生较大的内应力,利用喷丸机喷丸处理后的合金基体表面的粗糙度能有效的消除应力集中的问题,因此能防止涂层开裂。并且表面粗糙度的存在可以支撑一部分涂料的质量,有利于消除流挂现象。
本发明第二方面提供一种超极限锆合金及其制备方法,以解决现有的锆合金无法在核反应技术中长期稳定的运行的问题。
为实现上述目的,本发明第二方面提供如下基础技术方案,一种超极限锆合金,包括锆合金基体,锆合金基体表面依次沉积有粘结层、贵金属层、陶瓷A层和陶瓷B层。
本技术方案的有益效果:
发明人通过对锆合金进行大量的研究,尝试对锆合金进行改进,以满足锆合金能够在核技术的使用中长期稳定的运行。在发明人不断尝试的过程中非常惊喜的发现,通过在锆合金表面沉积一定配比的涂层,能够将锆合金的使用温度提高100-500℃,而在高温环境下将材料的使用温度提高几摄氏度都是非常困难的,因此在锆合金的使用上得到了非常大的突破,从而满足锆合金能够在核技术的使用中长期稳定的运行。
本技术方案通过在锆合金基体上沉积粘结层、贵金属层、陶瓷A层、陶瓷B层,能够大大的提高锆合金的使用温度,以适应锆合金在超极限温度的使用。沉积粘结层,能够提高各涂层与锆合金基体之间的粘结效果,避免涂层在使用过程中脱落;沉积贵金属层,能避免氧向涂层内扩散,从而避免锆合金基体氧化。沉积陶瓷A层和陶瓷B层,能够降低热量的传导,从而提高锆合金基体的使用温度。
综上所述,本发明具有以下技术效果:
1、本发明提供的超极限锆合金能够克服原有的锆合金在高温高压水蒸气环境下长时间服役导致表面出现氧化物而脱落的情况出现;在高温下长时间服役时,不会出现氧化,从而使得整个部件的使用时间增长。
2、本发明通过在锆合金基体表面沉积多层涂层,能够将其使用温度提升至高于原锆合金基体熔点100-500℃,以实现锆合金在超极限环境下长时间稳定的使用。
3、本发明提供的超极限锆合金具有极佳的耐腐蚀性,因而在酸性或碱性条件下的使 用时间大大增加,因此能减少材料腐蚀而造成的浪费,节约成本。
4、本发明提供的超极限锆合金突破了传统锆合金的发展瓶颈,能够在其具有较高熔点的基础上,将其使用温度进一步提升,且提升的温度是一个飞跃性的进步。本发明提供的超极限锆合金能够在超极限温度下长期稳定的使用。
进一步,所述粘结层的厚度为50~150μm、贵金属层的厚度为10~20μm、陶瓷A层的厚度为50~80μm、陶瓷B层的厚度为50~80μm,所述陶瓷B层表面还依次沉积有5~10μm厚的封严涂层、10~15μm厚的反射层、10~15μm厚的反折射层和15~20μm厚的电绝缘层。
有益效果:封严涂层,能够隔绝外界的氧化或腐蚀气氛,使得外界气氛不能直接与内部的涂层反应,从而提升涂层的使用寿命;反射层具有反射热源的效果,从而降低锆合金表面的热源,从而提高使用温度。沉积反折射层,能阻挡红外线在涂层内的折射,从而降低锆合金基体的温度,因此使得制备的锆合金的使用温度提高。电绝缘层能够隔绝导电离子,避免导电离子对锆合金基体的侵蚀,从而提高制备的超极限锆合金的耐腐蚀性。本技术方案通过各涂层及其厚度的配合,使得锆合金的使用温度得到了大大的提升,便于制作航空器使用。
进一步,所述粘结层的成分为MCrAlY,MCrAlY为CoCrAlY、NiCoCrAlY或CoNiCrAlY;所述贵金属层为Pt、Ru、Rh、Pd、Ir、Os中的一种或几种的合金。
有益效果:NiCoCrAlY和CoNiCrAlY中各元素之间的配比不同,因此制得的材料不同。粘结层具有良好的粘结效果,使得后续的涂层与锆合金机体的粘结效果佳,降低涂层的脱落概率;而贵金属本身具有抗氧化的特性,能有效的阻止高温下氧向粘结层和锆合金基体内扩散,从而提高涂层的抗氧化性能,提高涂层的寿命。
进一步,所述陶瓷A层的成分为Y 2O 3-ZrO 2、Y 2O 3-CeO 2、Y 2O 3-TiO 2、Y 2O 3-CeO 2、Y 2O 3-Yb 2O 3、Y 2O 3-Er 2O 3、Y 2O 3-Dy 2O 3、Y 2O 3-HfO 2中的一种或几种的混合物;所述陶瓷B层为RETaO 4,RETaO 4呈球形,且粒径为10-70μm。
有益效果:YSZ或稀土锆酸盐,是一种作为热障涂层普遍使用的物质,易于获得。RETaO 4具有低导热率、高膨胀的特性,低导热率能够减少热量的传导,使得在高温环境下,锆合金基体保持低温,从而提高制备的锆合金的使用温度;而高膨胀系数是为了与粘结层的热膨胀系数相匹配,由于贵金属粘结层的热膨胀系数也较大,这样在热循环过程中(即不断加热冷却的过程中),陶瓷层与粘结层的热失配应力(热膨胀系数不同产生的应力)较小,进而提高涂层的使用寿命。(通俗来讲,当两个热膨胀系数相差较大的涂层沉积在一起时,升温或者降温时,两个涂层的膨胀程度严重不同,就会导致两个涂层之间的应力增大,从而导致两个涂层之间产生裂纹,甚至脱落的问题。)
进一步,所述封严涂层的成分为Ti 3SiC,REPO 4、BN中的一种或几种的混合物。有益效果:上述材料能够隔绝外界的氧化或腐蚀气氛,使得外界气氛不能直接与内部的涂层反应,从而提升涂层的使用寿命。
进一步,所述反射层的成分为REVO 4、RETaO 4、Y 2O 3中的一种或几种的混合物;反折射层的成分为石墨烯,且石墨烯的空间分布均呈无序排列状态。
有益效果:REVO 4、RETaO 4、Y 2O 3的反射系数高,因此能够反射热源,降低热辐射,降低锆合金基体温度,从而提高制备的锆合金的使用温度;石墨烯虽然具有较高的折射率,当入射光在照射到反折射层上时,无序排列的石墨烯可以增强光在各个方向的折射,避免入射光在同一方向上发生折射,达到折射分散的效果,这样进入到涂层内的入射光强度下降。
进一步,所述电绝缘层的成分为聚四氟乙烯、聚酰亚胺、聚苯醚、聚苯硫醚、聚醚醚酮、双马来酰亚胺、呋喃树脂、氰酸酯树脂、聚芳基乙炔基中的一种或几种的混合物。
有益效果:上述材料能够隔离导电离子,避免导电离子进入锆合金基体侵蚀锆合金基体的情况出现。
本发明第二方面还提供另一技术方案,一种超极限锆合金的制备方法,包括以下步骤:
步骤一:在锆合金基体表面沉积一层50~150μm厚的粘结层;
步骤二:在粘结层表面沉积一层10~20μm厚的贵金属层;
步骤三:在贵金属表面沉积一层50~80μm厚的陶瓷A层;
步骤四:在陶瓷A层表面沉积一层50~80μm厚的陶瓷B层;
步骤五:在陶瓷B层表面沉积一层5~10μm厚的封严涂层;
步骤六:在封严涂层表面沉积一层10~15μm厚的反射层;
步骤七:在反射层表面沉积一层10~15μm厚的反折射层;
步骤八:在反折射层表面沉积一层15~20μm厚的电绝缘层,从而制得超极限锆合金。
本技术方案的有益效果:通过对沉积在锆合金基体上的各涂层的厚度进行控制,既能实现制备的超极限锆合金的使用温度提高至高于原锆合金熔点的100-500℃,并且具有极佳的耐腐蚀性。同时还能够避免涂层厚度较大导致的制备的超极限锆合金的重量增加较大的情况出现,从而使得超极限锆合金能满足飞机的使用。
进一步,所述粘结层、贵金属层、陶瓷A层、陶瓷B层、封严涂层、反射层、反折射层和电绝缘层的总厚度为185μm~320μm。
有益效果:在该厚度下的涂层,能够使得制备的超极限锆合金的耐热性和耐腐蚀性佳,且不会大量的增加超极限锆合金的重量,使得制备的超极限锆合金能够满足飞机的使用。
进一步,所述步骤一中,步骤一中,在沉积粘结层之前,去除锆合金基体表面的油污;再对锆合金基体的表面进行喷砂处理,使得锆合金基体的表面粗糙度为60~100μm。
有益效果:通过去除锆合金基体表面的油污能够增加锆合金基体与涂层之间的粘结效果;涂层固化的过程中会产生较大的内应力,利用喷砂机喷砂处理后的锆合金基体表面的粗糙度能有效的消除应力集中的问题,因此能防止涂层开裂。并且表面粗糙度的存在可以支撑一部分涂料的质量,有利于消除流挂现象。
本发明第三方面提供了一种超极限锡合金及其制备方法,以解决现有的锡合金焊缝材料在超极限温度环境下易发生变形而导致失效的问题。
为实现上述目的,本发明提供如下基础方案:一种超极限锡合金,该锡合金为一种焊缝材料,包括锡合金基体,锡合金基体表面依次沉积有粘结层、陶瓷层和封严涂层。
本技术方案的有益效果:
发明人通过大量的研究,研发了一种超极限锡合金焊缝材料,满足锡合金在超极限温度(超过其熔点温度)下使用。在研发过程中,通常人们会认为当环境温度高于合金的使用温度之后,便会认为该合金不能在该温度下进行使用,进而需要其他高熔点的合金进行使用,而发明人反其道而行,尝试对锡合金焊缝材料进行改进,以满足航空器制造的需求。在发明人不断尝试的过程中非常惊喜的发现,通过在锡合金基体表面沉积一定配比的涂层,能够将锡合金的使用温度提高至高于原熔点100-500℃,将大大的提高原锡合金焊缝材料的使用温度,从而使得这种锡合金焊缝材料在高温下长时间保持稳定,而不会出现开裂甚至脱落的问题,以满足制造航空器的需求;而在高温环境下,将锡合金焊缝材料的使用温度提升2-3℃都是非常困难的,因此申请人的这一研究是在锡合金的使用上非常大的进步。
本技术方案通过在锡合金基体上依次沉积粘结层、陶瓷层和封严涂层,能够大大的提高锡合金焊缝材料的使用温度,以适应锡合金焊缝材料在超极限温度的使用。
沉积粘结层,能够提高各涂层与锡合金基体之间的粘结效果,避免涂层在使用过程中脱落。沉积陶瓷层,能够降低热量的传导,从而提高锡合金焊缝材料的使用温度。沉积封严涂层目的是隔绝锡合金基体与外界的氧化或腐蚀气氛,使得外界气氛不能直接与内部的涂层与基体反应,提升涂层与基体的使用寿命。发明人通过多个实验验证,本技术方案通过各涂层的配合,使得锡合金焊缝材料的使用温度得到了大大的提高。
综上所述,本发明具有以下技术效果:
1、采用常规的锡合金焊料得到的焊缝,在高温高压环境下长期服役时,由于传统锡合金焊缝强度和硬度较低,因此导致使用传统锡合金焊料焊接的部件在使用过程中应力变形严 重,而本技术方案中多个涂层的引入能极大的提高锡合金焊接材料的强度,使得锡合金焊接材料的使用强度进一步提高。
2、采用常规的锡合金焊料得到的焊缝,虽然在常温下拥有较好的抗蚀性能,但是在高温环境中,其抗氧化性能较弱,而高温氧化主要原因为,氧向焊缝内扩散,而本技术方案中多个涂层的引入阻碍了外界氧的内扩散。
3、采用传统的锡合金焊料制备的焊缝在高温环境下长期使用时,会受到大量的红外线辐照,这大大的缩短了焊缝的使用时间,使得焊缝容易发生断裂等问题,而本技术方案中引入的多个涂层,能够在一定程度上减少焊缝受到的红外线辐照量,因此能够显著的提高焊缝的使用寿命,从而使整个焊缝在使用过程中极其稳定。
4、本发明提供的锡合金焊缝材料突破了传统锡合金材料的发展瓶颈,通过在锡合金基体材料表面沉积涂层,提高锡合金焊缝材料的使用温度,使得超极限锡合金焊缝材料能够应用在超高温环境下长期保持稳定,满足航空器等飞行器处于高温高压高冲蚀的环境下的使用需求,实现航空器等飞行器的提速。
进一步,所述粘结层的厚度为50~180μm,陶瓷层的厚度为50um~80um,封严涂层的厚度5um~15um,所述封严涂层上还沉积有厚度为5um~15um的反射层、厚度为5um~15um的反折射层和厚度为10μm~25μm的绝缘层。
有益效果:沉积反射层具有反射热辐射的效果,从而降低锡合金焊接材料的温度,以提高锡合金焊缝的使用温度。沉积反折射层,能阻挡红外线在涂层内的折射,从而减少红外线进入锡合金基体中的量,以降低锡合金焊缝材料的温度,因此使得制备的锡合金焊缝材料的使用温度提高。沉积绝缘层的效果在于,由于在超高速的环境中,材料的表面容易发生电离,而绝缘层能够隔绝电离产生的导电离子或电子进入到锡合金基体中,从而抵抗电荷对锡合金基体的侵蚀。发明人通过多个实验验证,本技术方案通过各厚度涂层的配合,使得锡合金焊缝材料的使用温度得到了大大的提高。
进一步,所述粘结层的成分为Pt、Pd、Rh、Ru、Ir、Os中的一种或多种的合金构成。有益效果:粘结层具有良好的粘结效果,使得陶瓷层与锡合金基体的粘结效果佳,降低陶瓷层的脱落概率;而贵金属本身具有抗氧化的特性,能有效的阻止,高温环境下,氧向粘结层和锡合金基体内扩散,从而提高锡合金焊缝材料的抗氧化性能,提高焊缝材料的使用寿命。
进一步,所述陶瓷层的成分为RETaO 4
有益效果:RETaO 4具有高膨胀系数和低热导率的效果,其中低热导率能够减少外界热量传导到锡合金焊缝材料内,从而使得高温环境下,锡合金焊缝材料能够保持较低的温度;而对于高膨胀系数,由于涂层之间是作为一个整体使用的,并不是单一的在起作用,而高膨胀系数是为了与粘结层的热膨胀系数相匹配,由于贵金属粘结层的热膨胀系数也较大,这样
在热循环过程中(即不断加热冷却的过程中),陶瓷层与粘结层的热失配应力(热膨胀系数不同产生的应力)较小,进而提高涂层的使用寿命。(通俗来讲,当两个热膨胀系数相差较大的涂层沉积在一起时,升温或者降温时,两个涂层的膨胀程度严重不同,就会导致两个涂层之间的应力增大,从而导致两个涂层之间产生裂纹,甚至脱落的问题。)
进一步,所述封严涂层的成分为Ti 3SiC、REPO 4和BN的一种或多种的混合物。有益效果:发明人通过实验的证明,Ti 3SiC、REPO 4和BN的一种或多种的混合物作为
封严涂层的成分的阻隔效果较好。
进一步,所述反射层为REVO 4、RETaO 4、Y 2O 3中的一种或几种的混合物。有益效果:REVO 4、RETaO 4、Y 2O 3的反射系数高,因此对热辐射的反射效果佳,极大的降低高温环境下,锡合金焊缝材料的温度,从而提高制备的锡合金焊缝材料的使用温度。进一步,所述反折射层为石墨烯或碳化硼中的一种或两种的混合物,且石墨烯和碳化硼的空间分布均呈无序排列状态。
有益效果:由于石墨烯或碳化硼的空间分布呈无序排列的状态,虽然石墨烯或碳化硼具有较高的折射率,当红外光在照射到石墨烯反折射层上时,无序排列的石墨烯可以增强 光在各个方向的折射,避免入射光在同一方向上发生折射,达到折射分散的效果,这样进入到涂层内的红外光的强度下降,从而降低涂层与锡合金焊缝材料的温度。
进一步,所述绝缘层为聚四氟乙烯、聚酰亚胺(PI)、聚苯醚(PPO/PPE)、聚苯硫醚(PPS)、聚醚醚酮(PEEK)、双马来酰亚胺(BMI)、呋喃树脂、氰酸酯树脂(CE)、聚芳基乙炔基(PAA)中的一种或多种构成的有机涂层。
有益效果:以航空器为例,其在高速飞行过程中,航空器的外表面与空气发生摩擦,使得空气产生电离形成导电的离子或者电子,而发明人通过实验验证采用聚四氟乙烯、聚酰亚胺(PI)、聚苯醚(PPO/PPE)等有机涂层能够有效的抵抗电荷进入涂层和锡合金基体中,从而降低导电电子或者离子对锡合金焊缝材料的侵蚀。
本发明第三方面还提供另一技术方案,一种超极限锡合金的制备方法,包括以下步骤:
步骤一:在锡合金基体表面沉积粘结层,所述粘结层的厚度为50~180μm;
步骤二:在步骤一得到的粘结层表面制备陶瓷层,所述陶瓷层的厚度为50um~80um;
步骤三:在步骤二得到的陶瓷层表面制备封严涂层,所述封严涂层的厚度5um~15um;
步骤四:在步骤三得到的封严涂层表面制备反射层,所述反射层的厚度为5um~15um;
步骤五:在步骤四得到的反射层表面制备反折射层,反折射层的厚度为5um~15um;
步骤六:对步骤五得到的反折射层表面制备绝缘层,绝缘层厚度为10μm~25μm。本技术方案的有益效果:
通过对沉积在锡合金基体上的各涂层的厚度进行控制,既能实现制备的超极限锡合金焊缝材料的使用温度提高至高于原锡合金熔点的100-500℃,并且具有极佳的耐腐蚀性。同时还能够避免涂层厚度较大导致的制备的超极限锡合金焊缝材料的重量增加较大的情况出现,从而使得超极限锡合金焊缝材料能满足航空器的使用。
进一步,所述步骤1中,在沉积粘结层之前,对锡合金基体表面进行喷砂处理,后对喷砂后的锡合金基体表面进行除尘处理;对采用所述步骤1~6沉积多个涂层后的锡合金焊缝材料进行时效处理,在50~80℃温度下静置5~10h。
有益效果:通过对锡合金基体表面进行喷砂处理,可提高锡合金基体表面的粗糙度,从而提高锡合金基体与粘结层的粘合强度,另外由于在喷砂过程中,还会在锡合金基体的表面产生大量的粉尘,因此需要在喷砂后,对锡合金基体表面进行除尘处理,以避免粉尘影响涂层与锡合金基体的粘结效果;时效处理是为了消除各涂层与锡合金基体内部及之间的残余应力,避免出现涂层在残余应力影响下开裂甚至脱落的问题。
附图说明
图1A为本发明超极限镁合金(实施例1)、超极限铝合金(实施例2)以及超极限镍合金(实施例3)的结构示意图;
图1B为本发明实施例超极限钛合金(实施例4)、超极限铁合金(实施例5)以及超极限铜合金(实施例6)的结构示意图;
图2A为本发明实施例1超极限镁合金中试验例1和对比例13在50MPa、900℃下的蠕变实验的曲线图;
图2B为本发明实施例2超极限铝合金中试验例1和对比例13在50MPa、900℃下的蠕变实验的曲线图;
图2C为本发明实施例3超极限镍合金中试验例1和对比例13在50MPa、1800℃下的蠕变实验的曲线图;
图2D为本发明实施例4超极限钛合金中试验例1和对比例13在50MPa、1900℃下的蠕变实验的曲线图;
图2E为本发明实施例5超极限铁合金中试验例1和对比例13在50MPa、1900℃下的蠕变实验的曲线图;
图2F为本发明实施例6超极限铜合金中试验例1和对比例13在50MPa、1300℃下的蠕变实验的曲线图;
图3A为本发明实施例1超极限镁合金试验例1和对比例13的盐雾腐蚀实验结果示意图;
图3B为本发明实施例2超极限铝合金试验例1和对比例13的盐雾腐蚀实验结果示意图;
图3C为本发明实施例3超极限镍合金试验例1和对比例13的盐雾腐蚀实验结果示意图;
图3D为本发明实施例4超极限钛合金试验例1和对比例13的盐雾腐蚀实验结果示意图;
图3E为本发明实施例5超极限铁合金试验例1和对比例13的盐雾腐蚀实验结果示意图;
图3F为本发明实施例6超极限铜合金试验例1和对比例13的盐雾腐蚀实验结果示意图;
图4为本发明一种超极限锆合金(实施例7)的结构示意图;
图5为本发明实施例7超极限锆合金试验例1与对比例10在50MPa、2000℃下的高温蠕变实验曲线图;
图6为本发明实施例7超极限锆合金试验例1与对比例10的盐雾腐蚀实验曲线图;
图7为本发明实施例8中超极限锡合金焊缝材料的结构示意图;
图8为本发明实施例8的实验中锡合金焊缝材料式样的结构示意图;
图9为本发明实施例8超极限锡合金焊缝材料的试验例1与对比例11在350℃温度下的高温拉伸强度曲线图;
图10为本发明实施例8超极限锡合金焊缝材料的试验例1与对比例11的盐雾腐蚀实验曲线图。
具体实施方式
实施例1(超极限镁合金)
在本实施例中,该超极限合金为一种超极限镁合金,即合金基体为镁合金。
说明书附图1A中的附图标记包括:镁合金基体1、复合粘结层2、粘结层21、贵金属层22、复合陶瓷层3、陶瓷A层31、陶瓷B层32、反射层4、反折射层5、绝缘层6、泡沫碳层7。
本发明提供了一种超极限镁合金,如图1A所示,包括镁合金基体1,镁合金基体1表面依次沉积有100-200μm厚的复合粘结层2、150-500μm复合陶瓷层3、10-30μm厚的反射层4、10-30μm厚的反折射层5、10-200μm厚的绝缘层6和20-200μm厚的泡沫碳层7。其中复合粘结层2为沉积在镁合金基体1表面的粘结层21和沉积在粘结层21表面的贵金属层22,粘结层21的成分为MCrAlY、NiAl、NiCr-Al、Mo中的一种或几种的合金,MCrAlY为NiCrCoAlY、NiCoCrAlY、CoNiCrAlY或CoCrAlY,贵金属层22的成分为Au、Pt、Ru、Rh、Pd、Ir中的一种或几种的合金;复合陶瓷层3包括沉积在陶瓷A层31和陶瓷B层32,陶瓷A层31靠近贵金属层22或陶瓷B层32靠近贵金属层22,陶瓷A层31的成分为YSZ或稀土锆酸盐(RE 2Zr 2O 7,RE=Y、Nd、Eu、Gd、Dy、Sm),陶瓷B层32的成分为ZrO 2-RETaO 4,ZrO 2-RETaO 4呈球形,且粒径为10-70μm,其化学通式为RE 1-x(Ta/Nb) 1-x(Zr/Ce/Ti) 2xO 4,RE=Y、Nd、Eu、Gd、Dy、Er、Yb、Lu、Sm;反射层4的成分为REVO 4、RETaO 4、Y 2O 3中的一种或几种的混合物,RE=Y、Nd、Eu、Gd、Dy、Er、Yb、Lu、Sm。反折射层5的成分为石墨烯和碳化硼中的一种或两种的混合物,且石墨烯和碳化硼的晶体结构均呈无序排列状态;绝缘层6的成分为环氧树脂、酚醛树脂、ABS树脂中的一种或几种的混合物。
本发明利用ZrO 2-RETaO 4作为陶瓷B层,具有低热导率、高膨胀率的效果,能实现降低热量的传导;并且通过以下方法制备的ZrO 2-RETaO 4能够满足APS喷涂技术的要求。
ZrO 2-RETaO 4采用以下方法进行制备,包括以下步骤:
步骤(1):将氧化锆(ZrO 2)粉末、稀土氧化物粉末(RE 2O 3)、五氧化二钽(Ta 2O 5)粉末进行预干燥,预干燥的温度为600℃,预干燥的时间为8h;并按照摩尔比为2x:(1-x):(1-x)称取氧化锆(ZrO 2)粉末、稀土氧化物粉末RE 2O 3、氧化二钽(Ta 2O 5)粉末加入到乙醇溶剂中,得到混合溶液,使得混合溶液中RE:Ta:Zr的摩尔比为(1-x):(1-x):2x;再采用球磨机对混合溶液进行球磨10h,球磨机的转速为300r/min。
将球磨后得到的浆料采用旋转蒸发仪(型号:N-1200B)进行干燥,干燥温度为60℃,干燥的时间为2h,将干燥后的粉末采用300目的筛子过筛,得到粉末A。
步骤(2):将步骤(1)中得到的粉末A采用高温固相反应法制得成分为ZrO 2掺杂RETaO 4的粉末B,反应温度为1700℃,反应时间为10h;并采用300目的筛子对粉末B进行过筛。
步骤(3):将步骤(2)中过筛后的粉末B与去离子水溶剂、有机粘接剂混合得到浆料C,其中浆料C中粉末B的质量百分比为25%,有机粘接剂的质量百分比为2%,其余为溶剂,有机粘接剂采用聚乙烯醇或者阿拉伯树胶;再利用离心雾化法对浆料C进行干燥,干燥时的温度为600℃,离心速度为8500r/min,得到干燥的料粒D;
步骤(4):将步骤(3)得到的料粒D在1200℃的温度下烧结8h,再采用300目的筛子对烧结后的料粒D过筛,得到粒径为10~70nm并且形貌呈球形的ZrO 2-RETaO 4陶瓷粉体。
发明人通过大量的实验得出了在本发明的参数范围内,制备的超极限镁合金的使用温度提升最大,且镁合金的重量增加量小,各参数范围最佳的超极限镁合金,而本发明中列举了其中的30组进行了说明。
本发明一种超极限镁合金及其制备方法的试验例1-30的各参数如表1-1、表1-2、表1-3所示:(厚度单位:μm)
表1-1 一种超极限镁合金及其制备方法的试验例1-10中各涂层的成分与厚度
Figure PCTCN2019117283-appb-000001
Figure PCTCN2019117283-appb-000002
表1-2 一种超极限镁合金及其制备方法的试验例11-20中各涂层的成分与厚度
Figure PCTCN2019117283-appb-000003
Figure PCTCN2019117283-appb-000004
Figure PCTCN2019117283-appb-000005
表1-3 一种超极限镁合金及其制备方法的试验例21-30中各涂层的成分与厚度
Figure PCTCN2019117283-appb-000006
Figure PCTCN2019117283-appb-000007
现以实施例1的试验例1为例,对本发明的另一技术方案,一种超极限镁合金的制备方法进行说明。一种超极限镁合金的制备方法,包括以下步骤:
步骤一:本试验例中选用AM50A镁合金作为镁合金基体,利用浸泡法除去镁合金基体表面的油污和杂质,首先将镁合金基体浸泡在乳化洗净液或碱溶液内,其中乳化洗净液的主要成分为乙醇和表面活性剂,碱溶液主要成分是氢氧化钠、磷酸三钠、碳酸钠硅酸钠,本试验例使用碱溶液浸泡镁合金基体。将碱溶液的PH值调节至10~11之间,再将镁合金基体浸泡在碱溶液内,浸泡0.5-1.5h后取出,本试验例中浸泡时间为1h,再利用清水冲洗干净并烘干。再利用喷丸机对镁合金基体表面进行喷丸处理,使用的喷丸机为JCK-SS500-6A自动传输式喷丸机,喷丸时采用的喷丸材料为铁砂、玻璃丸和陶瓷丸中的任意一种,本试验例使用铁砂,且铁砂的粒径可以为0.3-0.8mm,本试验例中铁砂的粒径为0.5mm;喷丸后镁合金基体的表面粗糙度为60-100μm,本试验例中镁合金基体的表面粗糙度为80μm,便于涂层与镁合金基体的粘结。
步骤二:在喷丸后的AM50A镁合金的表面沉积复合粘结层,首先利用HVOF或者超音速电弧喷涂法在镁合金基体的表面喷涂一层NiCrCoAlY作为粘结层,本试验例使用HVOF法,喷涂时的粉末粒径为25-65μm、氧气流量为2000SCFH、煤油流量为18.17LPH、载气为12.2SCFH、送粉量为5RPM、枪管长度为5in、喷涂距离254mm。
再利用EB-PVD法在NiCrCoAlY上沉积一层Au作为贵金属层,从而形成复合粘结层。沉积Au时的气体压强小于0.01Pa,本试验例中使用的压强为0.008Pa,且镁合金基体的温度与镁合金基体的熔点比值小于0.3。沉积的粘结层的厚度为50μm,贵金属层的厚度为50μm。
步骤三:利用APS、HVOF、PS-PVD或EB-PVD法在粘结层的表面喷涂一层YSZ作为陶瓷A层,本试验例使用APS法,再利用APS法在陶瓷A上喷涂一层YTaO 4作为陶瓷B层,形成复合陶瓷层;其中陶瓷A层的厚度为70μm,陶瓷B层的厚度为80μm。
步骤四:利用HVOF、PS-PVD或EB-PVD法在陶瓷B层表面喷涂一层Y 2O 3透明陶瓷材料作为反射层,本试验例使用HVOF法,喷涂的反射层的厚度为10μm。
步骤五:将石墨烯与微米级的碳粉材料相互均匀混合,然后将混合粉末导入溶液中进行超声波振动混合,本试验例中溶液为加入有1%分散剂的乙醇溶液,将混合均匀以后的溶液利用滤纸将微米级的碳粉分离出来。再将混合有石墨烯的溶液涂刷于反射层的表面作为反折射层,再将涂有石墨烯反折射层的镁合金放入干燥箱内,在60℃温度下干燥2h,涂刷的反折射层的厚度为10μm。
步骤六:在反折射层表面涂刷一层环氧树脂作为绝缘层,绝缘层厚度为10μm。
步骤七:在绝缘层上涂刷一层泡沫碳层,泡沫碳层的厚度为20μm,得到超极限镁合金。
试验例2-29与试验例1的区别仅在于如表1-1所示的参数不同;试验例30与试验例1的区别在于步骤三中陶瓷A层和陶瓷B层的喷涂顺序不同。
实验:
设置13组对比例与试验例1-30进行对比实验,对比例1-12的各参数如表1-4所示:(厚度单位:μm)
表1-4 对比例1-12各涂层的成分与厚度
Figure PCTCN2019117283-appb-000008
Figure PCTCN2019117283-appb-000009
对比例1-12与试验例1的区别仅在于如表1-3所示的各参数不同,对比例13为AM50A镁合金。
利用试验例1-30、对比例1-13提供的镁合金进行以下实验:
高温蠕变实验:
将利用试验例1-30和对比例1-13提供的镁合金加工为长187mm、直径16mm的柱状的试件,利用型号为RMT-D5的电子式高温蠕变持久强度试验机进行高温蠕变实验。
将试验例1-30、对比例1-13的试件放入电子式高温蠕变持久强度试验机内,并启动试验机,使得试验机升温,在升温过程中,试件处于无应力状态(在无应力状态下,试件可自由膨胀,而高温蠕变是在温度和应力共同作用下变形随时间增加,因此升温速率对蠕变没有影响)。当试验机的温度达到900℃时,将试验机调节至应力为50MPa,进行高温蠕变实验,以试验例1和对比例13为例,实验结果如2A所示(图2A中(A)表示对比例13,(B)表示试验例1),试验例1-30和对比例1-13的具体实验结果如表1-5所示。
从图2A可以得出,(A)、(B)试件蠕变均存在3个阶段,但是在超过AM50A镁合金熔点之后的温度下,(A)试件在极短的时间内就发生了蠕变断裂,因此可以得出,在高于AM50A镁合金熔点的温度下,AM50A镁合金几乎不能载荷。而(B)试件相比于(A)试件抗蠕变性能得到了明显的提高,(B)试件的稳态蠕变时间较长,可以观察到蠕变曲线经过较长的稳态蠕变阶段之后就进入了加速蠕变阶段并发生蠕变断裂。因此可以得出,在超过AM50A镁合金熔点温度下,本发明提供的超极限镁合金相较于原有的AM50A镁合金,超极限镁合金保持了较好力学性能而不断裂,具有优良的耐高温性能。
盐雾腐蚀实验:
将试验例1-30、对比例1-13提供的镁合金加工成50mm×25mm×2mm的试件,再进行除油、除锈处理,并清洗、干燥。使用YWX/Q-250B盐雾腐蚀箱作为实验设备,并模拟GB/T2967.3-2008的大气腐蚀环境。
将试验例1-30、对比例1-13提供的试件悬挂在实验设备内,并将实验设备调节至温度为50±1℃、PH为3.0-3.1,再利用浓度为5±0.5%NaCl溶液连续向试件喷洒。以试验例1和对比例13为例,连续向试件喷洒浓度为5±0.5%NaCl溶液8h、24h、48h、72h后,试件的失重率如图3A所示(图3A中(A)表示对比例13,(B)表示试验例1),试验例1-30和对比例1-13的具体实验结果如表1-5所示。
结合图3A可以得出,(A)、(B)试件具有明显不同的腐蚀规律,对于(A)试件,随着腐蚀时间的延长,腐蚀失重数值呈增大的趋势。其中,腐蚀初期(8-24h),试样表面存在氧化膜,阻碍镁合金基体与溶液接触,腐蚀速率较小。腐蚀中期(24-48h),溶液中的Cl -已经穿透氧化膜,大量Cl -吸附到基体上,使点蚀坑增加,原有的点蚀坑加深,明显加快了腐蚀速率。连续喷雾48h之后,腐蚀产物分布均匀,厚度增加,几乎覆盖试样整个表面,Cl -需要穿过腐蚀产物才能与镁合金基体接触,降低了基体表面吸附Cl -的数量,使腐蚀速率降低。总体看,(A)试件腐蚀失重量远高于(B)试件,(B)试件由于涂层的存在基本上没有发生腐蚀,其质量几乎没有发生变化,因此本申请提供的超极限镁合金具有较好的耐腐蚀性。
实验结果如表1-5所示:(A、50MPa、900℃下各试件的稳定蠕变时间(min);B、50MPa、900℃下各试件发生蠕变断裂的时间(min);B、连续向试件喷洒NaCl溶液8h后试件的失重率(v/mg.cm 2);B、连续向试件喷洒NaCl溶液24h后试件的失重率(v/mg.cm 2);E、连续向试件喷洒NaCl溶液48h后试件的失重率(v/mg.cm 2);F、连续向试件喷洒NaCl 溶液72h后试件的失重率(v/mg.cm 2))
表1-5 高温蠕变实验与盐雾试验的实验结果
Figure PCTCN2019117283-appb-000010
Figure PCTCN2019117283-appb-000011
由此可见,通过在镁合金上沉积复合粘结层、复合陶瓷层、反射层、反折射层、绝缘层和泡沫碳层,能够将镁合金的使用温度提升至高于原熔点100-500℃,并且耐腐蚀性也大大的提高。并且通过将各涂层的厚度控制在本发明提供的范围内,能够使得制备的超极限镁合金的各效果最佳。而超出本实施例试验例提供的参数范围的镁合金的最高使用温度相比本发明提供的超极限镁合金低很多,而且其耐腐蚀性能也较差。
实施例2(超极限铝合金)
在本实施例中,该超极限合金为一种超极限铝合金,即合金基体为铝合金基体。
下面通过具体实施方式进一步详细说明:
说明书附图1A中的附图标记包括:铝合金基体1、复合粘结层2、粘结层21、贵金属层22、复合陶瓷层3、陶瓷A层31、陶瓷B层32、反射层4、反折射层5、绝缘层6、泡沫碳层7。
本发明提供了一种超极限铝合金,如图1A所示,包括铝合金基体1,铝合金基体1表面依次沉积有100-200μm厚的复合粘结层2、150-500μm复合陶瓷层3、10-30μm厚的反射层4、10-30μm厚的反折射层5、10-200μm厚的绝缘层6和20-200μm厚的泡沫碳层7。其中复合粘结层2为沉积在铝合金基体1表面的粘结层21和沉积在粘结层21表面的贵金属层22,粘结层21的成分为MCrAlY、NiAl、NiCr-Al、Mo中的一种或几种的混合物,MCrAlY为NiCrCoAlY、NiCoCrAlY、CoNiCrAlY或CoCrAlY,贵金属层22的成分为Au、Pt、Ru、Rh、Pd、Ir中的一种或几种的合金;复合陶瓷层3包括沉积在陶瓷A层31和陶瓷B层32,陶瓷A层31靠近贵金属层22或陶瓷B层32靠近贵金属层22,陶瓷A层31的成分为YSZ或稀土锆酸盐(RE 2Zr 2O 7,RE=Y、Nd、Eu、Gd、Dy、Sm),陶瓷B层32的成分为ZrO 2-RETaO 4,ZrO 2-RETaO 4呈球形,且粒径为10-70μm,其化学通式为RE 1-x(Ta/Nb) 1-x(Zr/Ce/Ti) 2xO 4,RE=Y、Nd、Eu、Gd、Dy、Er、Yb、Lu、Sm;反射层4的成分为REVO 4、RETaO 4、Y 2O 3中的一种或几种的混合物,RE=Y、Nd、Eu、Gd、Dy、Er、Yb、Lu、Sm。反折射层5的成分为石墨烯和碳化硼中的一种或两种的混合物,且石墨烯和碳化硼的空间分布均呈无序排列状态;绝缘层6的成分为环氧树脂、酚醛树脂、ABS树脂中的一种或几种的混合物。
本发明利用ZrO 2-RETaO 4作为陶瓷B层,具有低热导率、高膨胀率的效果,能实现降低热量的传导;ZrO 2-RETaO 4制备方法与实施例1相同,能够满足APS喷涂技术的要求。
发明人通过大量的实验得出了在本发明的参数范围内,制备的超极限铝合金的使用温度提升最大,且铝合金的重量增加量小,而本发明中列举了其中的30组进行了说明。
本发明一种超极限铝合金及其制备方法的试验例1-30的各参数如表2-1、表2-2、表2-3所示:(厚度单位:μm)
表2-1 一种超极限铝合金及其制备方法的试验例1-10中各涂层的成分与厚度
Figure PCTCN2019117283-appb-000012
Figure PCTCN2019117283-appb-000013
Figure PCTCN2019117283-appb-000014
表2-2 一种超极限铝合金及其制备方法的试验例11-20中各涂层的成分与厚度
Figure PCTCN2019117283-appb-000015
Figure PCTCN2019117283-appb-000016
表2-3 一种超极限铝合金及其制备方法的试验例21-30中各涂层的成分与厚度
Figure PCTCN2019117283-appb-000017
Figure PCTCN2019117283-appb-000018
现以实施例2的试验例1为例,对本发明的另一技术方案,一种超极限铝合金的制备方法进行说明。一种超极限铝合金的制备方法,包括以下步骤:
步骤一:与实施例1中制备超极限镁合金的步骤一大致相同,区别仅在于本试验例中 选用7072铝合金作为合金基体。
步骤二:与实施例1相同。
步骤三:利用APS法在粘结层的表面喷涂一层YSZ作为陶瓷A层,再利用APS法在陶瓷A上喷涂一层ZrO 2-YTaO 4作为陶瓷B层,形成复合陶瓷层;其中陶瓷A层的厚度为70μm,陶瓷B层的厚度为80μm。
步骤四:与实施例1相同。
步骤五:与实施例1相同。
步骤六:在反折射层表面涂刷一层环氧树脂作为绝缘层,绝缘层厚度为15μm。
步骤七:在绝缘层上涂刷一层泡沫碳层,泡沫碳层的厚度为20μm,得到超极限铝合金。
试验例2-29与试验例1的区别仅在于如表2-1所示的参数不同;试验例30与试验例1的区别在于步骤三中陶瓷A层和陶瓷B层的喷涂顺序不同。
实验:
设置13组对比例与试验例1-30进行对比实验,对比例1-12的各参数如表2-4所示:(厚度单位:μm)
表2-4 对比例1-12各涂层的成分与厚度
Figure PCTCN2019117283-appb-000019
Figure PCTCN2019117283-appb-000020
对比例1-12与试验例1的区别仅在于如表2-3所示的各参数不同,对比例13为7072铝合金。
利用试验例1-30、对比例1-13提供的铝合金进行以下实验:
高温蠕变实验:
将利用试验例1-30和对比例1-13提供的铝合金加工为长187mm、直径16mm的柱状的试件,高温蠕变实验步骤与实施例1一致,以试验例1和对比例13为例,实验结果如图2B所示(图2B中(A)表示对比例13,(B)表示试验例1),试验例1-30和对比例1-13的具体实验结果如表2-5所示。
从图2B可以得出,(A)、(B)试件蠕变均存在3个阶段,但是在超过7072铝合金熔点之后的温度下,(A)试件在极短的时间内就发生了蠕变断裂,因此可以得出,在高于7072铝合金熔点的温度下,7072铝合金几乎不能载荷。而(B)试件相比于(A)试件抗蠕变性能得到了明显的提高,(B)试件的稳态蠕变时间较长,可以观察到蠕变曲线经过较长的稳态蠕变阶段之后就进入了加速蠕变阶段并发生蠕变断裂。因此可以得出,在超过7072铝合金熔点温度下,本发明提供的超极限铝合金相较于原有的7072铝合金,超极限铝合金保持了较好力学性能而不断裂,具有优良的耐高温性能。
盐雾腐蚀实验:
将试验例1-30、对比例1-13提供的铝合金加工成50mm×25mm×2mm的试件,后续步骤、实验条件与实施例1一致。试件的失重率如图3B所示(图3B中(A)表示对比例13,(B)表示试验例1),试验例1-30和对比例1-13的具体实验结果如表2-5所示。
结合图3B可以得出,(A)、(B)试件具有明显不同的腐蚀规律,对于(A)试件(7072铝合金),随着腐蚀时间的延长,腐蚀失重数值呈增大的趋势。其中,腐蚀初期(8-24h),试样表面存在氧化膜,阻碍铝合金基体与溶液接触,腐蚀速率较小。腐蚀中期(24-48h),溶液中的Cl -已经穿透氧化膜,大量Cl -吸附到基体上,使点蚀坑增加,原有的点蚀坑加深,明显加快了腐蚀速率。连续喷雾48h之后,腐蚀产物分布均匀,厚度增加,几乎覆盖试样整个表面,Cl -需要穿过腐蚀产物才能与铝合金基体接触,降低了基体表面吸附Cl -的数量,使腐蚀速率降低。总体看,(A)试件腐蚀失重量远高于(B)试件,(B)试件由于涂层的存在基本上没有发生腐蚀,其质量几乎没有发生变化,因此本申请提供的超极限铝合金具有较好的耐腐蚀性。
实验结果如表2-5所示:(A、50MPa、900℃下各试件的稳定蠕变时间(min);B、50MPa、900℃下各试件发生蠕变断裂的时间(min);C、连续向试件喷洒NaCl溶液8h后试件的失重率(v/mg.cm 2);D、连续向试件喷洒NaCl溶液24h后试件的失重率(v/mg.cm 2);G、连续向试件喷洒NaCl溶液48h后试件的失重率(v/mg.cm 2);E、连续向试件喷洒NaCl溶液72h后试件的失重率(v/mg.cm 2))
表2-5 高温蠕变实验与盐雾试验的实验结果
Figure PCTCN2019117283-appb-000021
Figure PCTCN2019117283-appb-000022
由此可见,通过在铝合金上沉积复合粘结层、复合陶瓷层、反射层、反折射层、绝缘层和泡沫碳层,能够将铝合金的使用温度提升至高于原熔点的100-500℃,并且耐腐蚀性也大大的提高。并且通过将各涂层的厚度控制在本发明提供的范围内,能够使得制备的超极限铝合金的各效果最佳。而超出本实施例试验例提供的参数范围的铝合金的最高使用温度相比本发明提供的超极限铝合金低很多,而且其耐腐蚀性能也较差。
实施例3(超极限镍合金)
在本实施例中,该超极限合金为一种超极限镍合金,即合金基体为镍合金。
说明书附图1A中的附图标记包括:镍合金基体1、复合粘结层2、粘结层21、贵金属层22、复合陶瓷层3、陶瓷A层31、陶瓷B层32、反射层4、反折射层5、绝缘层6、泡沫碳层7。
本发明提供了一种超极限镍合金,如图1A所示,包括镍合金基体1,镍合金基体1表面依次沉积有80-100μm厚的复合粘结层2、150-500μm复合陶瓷层3、10-30μm厚的反射层4、10-30μm厚的反折射层5、10-200μm厚的绝缘层6、20-200μm厚的泡沫碳层7。其中复合粘结层2为沉积在镍合金基体1表面的粘结层21和沉积在粘结层21表面的贵金属层22,粘结层21的成分为MCrAlY、NiAl、NiCr-Al、Mo中的一种或几种的混合物,MCrAlY为NiCrCoAlY、CoCrAlY、NiCoCrAlY或CoNiCrAlY,贵金属层22的成分为Au、Pt、Ru、Rh、Pd、Ir中的一种或几种的合金;复合陶瓷层3包括沉积在陶瓷A层31和陶瓷B层32,陶瓷A层31靠近贵金属层22或陶瓷B层32靠近贵金属层22,陶瓷A层31的成分为YSZ或稀土锆酸盐(RE 2Zr 2O 7,RE=Y、Nd、Eu、Gd、Dy、Sm),陶瓷B层32的成分为ZrO 2-RETaO 4,ZrO 2-RETaO 4呈球形,且粒径为10-70μm,其化学通式为RE 1-x(Ta/Nb) 1-x(Zr/Ce/Ti) 2xO 4,RE=Y、Nd、Eu、Gd、Dy、Er、Yb、Lu、Sm;反射层4的成分为REVO 4、RETaO 4、Y 2O 3中的一种或几种的混合物,RE=Y、Nd、Eu、Gd、Dy、Er、Yb、Lu、Sm。反折射层5的成分为石墨烯和碳化硼中的一种或两种的混合物,且石墨烯和碳化硼的空间分布均呈无序排列状态;绝缘层6的成分为环氧树脂、酚醛树脂、ABS树脂中的一种或几种的混合物。
本发明利用ZrO 2-RETaO 4作为陶瓷B层,具有低热导率、高膨胀率的效果,能实现降低热量的传导;ZrO 2-RETaO 4的制备方法与实施例1相同,能够满足APS喷涂技术的要求。
发明人通过大量的实验得出了在本发明的参数范围内,制备的超极限镍合金的使用温度提升最大,且镍合金的重量增加量小,而本发明中列举了其中的30组进行了说明。
本发明一种超极限镍合金及其制备方法的试验例1-30的各参数如表3-1、表3-2、表3-3所示:(厚度单位:μm)
表3-1 一种超极限镍合金及其制备方法的试验例1-10中各涂层的成分与厚度
Figure PCTCN2019117283-appb-000023
Figure PCTCN2019117283-appb-000024
表3-2 一种超极限镍合金及其制备方法的试验例21-20中各涂层的成分与厚度
Figure PCTCN2019117283-appb-000025
Figure PCTCN2019117283-appb-000026
Figure PCTCN2019117283-appb-000027
表3-3 一种超极限镍合金及其制备方法的试验例21-30中各涂层的成分与厚度
Figure PCTCN2019117283-appb-000028
Figure PCTCN2019117283-appb-000029
现以实施例3的试验例1为例,对本发明的另一技术方案,一种超极限镍合金的制备方法进行说明。一种超极限镍合金的制备方法,包括以下步骤:
步骤一:与实施例1中制备超极限镁合金的步骤一大致相同,区别仅在于本试验例中选用GH4099镍合金作为合金基体。
步骤二:与实施例1基本相同,区别在于沉积的粘结层的厚度为45μm,贵金属层的厚度为45μm。
步骤三:利用HVOF法在粘结层的表面喷涂一层YSZ作为陶瓷A层,再利用HVOF法在陶瓷A上喷涂一层YTaO 4作为陶瓷B层,形成复合陶瓷层;其中陶瓷A层的厚度为70μm,陶瓷B层的厚度为80μm。
步骤四:与实施例1相同。
步骤五:与实施例1相同。
步骤六:在反折射层表面涂刷一层环氧树脂作为绝缘层,绝缘层厚度为15μm。
步骤七:在绝缘层上涂刷一层泡沫碳层,泡沫碳层的厚度为20μm,得到超极限镍合金。
试验例2-29与试验例1的区别仅在于如表3-1所示的参数不同;试验例30与试验例1的区别在于步骤三中陶瓷A层和陶瓷B层的喷涂顺序不同。
实验:
设置13组对比例与试验例1-30进行对比实验,对比例1-12的各参数如表3-4所示:(厚度单位:μm)
表3-4 对比例1-12各涂层的成分与厚度
Figure PCTCN2019117283-appb-000030
Figure PCTCN2019117283-appb-000031
对比例1-12与试验例1的区别仅在于如表3-3所示的各参数不同,对比例13为GH4099镍合金。
利用试验例1-30、对比例1-13提供的镍合金进行以下实验:
高温蠕变实验:
将利用试验例1-30和对比例1-13提供的镍合金加工为长187mm、直径16mm的柱状的试件,高温蠕变实验步骤与实施例1基本一致,区别在于当试验机的温度达到1800℃时,将试验机调节至应力为50MPa,进行高温蠕变实验,以试验例1和对比例13为例,实验结果如图2C所示(图2C中(A)表示对比例13,(B)表示试验例1),试验例1-30和对比例1-13的具体实验结果如表3-5所示。
从图2C可以得出,(A)、(B)试件蠕变均存在3个阶段,但是在超过GH4099镍合金熔点之后的温度下,(A)试件在极短的时间内就发生了蠕变断裂,因此可以得出,在高于GH4099镍合金熔点的温度下,GH4099镍合金几乎不能载荷。而(B)试件相比于(A)试件抗蠕变性能得到了明显的提高,(B)试件的稳态蠕变时间较长,可以观察到蠕变曲线经过较长的稳态蠕变阶段之后就进入了加速蠕变阶段并发生蠕变断裂。因此可以得出,在超过GH4099镍合金熔点温度下,本发明提供的超极限镍合金相较于原有的GH4099镍合金,超极限镍合金保持了较好力学性能而不断裂,具有优良的耐高温性能。
盐雾腐蚀实验:
将试验例1-30、对比例1-13提供的镍合金加工成50mm×25mm×2mm的试件,后续步骤、实验条件与实施例1一致。试件的失重率如图3C所示(图3C中(A)表示对比例13,(B)表示试验例1),试验例1-30和对比例1-13的具体实验结果如表3-5所示。
结合图3C可以得出,(A)、(B)试件具有明显不同的腐蚀规律,对于(A)试件,随着腐蚀时间的延长,腐蚀失重数值呈增大的趋势。其中,腐蚀初期(8-24h),试样表面存在氧化膜,阻碍镍合金基体与溶液接触,腐蚀速率较小。腐蚀中期(24-48h),溶液中的Cl -已经穿透氧化膜,大量Cl -吸附到基体上,使点蚀坑增加,原有的点蚀坑加深,明显加快了腐蚀速率。连续喷雾48h之后,腐蚀产物分布均匀,厚度增加,几乎覆盖试样整个表面,Cl -需要穿过腐蚀产物才能与镍合金基体接触,降低了基体表面吸附Cl -的数量,使腐蚀速率降低。总体看,(A)试件腐蚀失重量远高于(B)试件,(B)试件由于涂层的存在基本上没有发生腐蚀,其质量几乎没有发生变化。因此可以得出,本申请提供的超极限镍合金具有较好的耐腐蚀性。
实验结果如表3-5所示:(A、50MPa、1800℃下各试件的稳定蠕变时间(min);B、50MPa、1800℃下各试件发生蠕变断裂的时间(min);C、连续向试件喷洒NaCl溶液8h后试件的失重率(v/mg.cm 2);D、连续向试件喷洒NaCl溶液24h后试件的失重率(v/mg.cm 2);E、连续向试件喷洒NaCl溶液48h后试件的失重率(v/mg.cm 2);F、连续向试件喷洒NaCl溶液72h后试件的失重率(v/mg.cm 2)
表3-5 高温蠕变实验与盐雾试验的实验结果
Figure PCTCN2019117283-appb-000032
Figure PCTCN2019117283-appb-000033
综上所述,本发明提供的超极限镍合金制备方法制备的超极限镍合金的使用温度范围大、耐腐蚀性强,其中试验例1的各效果最佳。而超出本实施例试验例提供的参数范围的镍合金的最高使用温度相比本发明提供的超极限镍合金低很多,而且其耐腐蚀性能也较差。
实施例4(超极限钛合金)
在本实施例中,该超极限合金为一种超极限钛合金,即合金基体为钛合金基体。
说明书附图1B中的附图标记包括:钛合金基体1、粘结层2、贵金属层3、陶瓷A层4、陶瓷B层5、反射层6、反折射层7、绝缘层8、泡沫碳层9。
本发明提供了一种超极限钛合金,如图1B所示,包括钛合金基体1,钛合金基体1表面依次沉积有复合粘结层、厚度为100-150μm复合陶瓷层、厚度为10-30μm的反射层6、厚度为20-30μm的反折射层7、厚度为100-200μm绝缘层8和厚度为20-200μm的泡沫碳层9。其 中复合粘结层为沉积在钛合金基体1表面的粘结层2和沉积在粘结层2表面的贵金属层3,粘结层2的厚度为20-30μm,贵金属层的厚度为40-60μm,粘结层2的成分为MCrAlY、NiAl、NiCr-Al、Mo合金中的一种或几种的混合物,MCrAlY为NiCrCoAlY、NiCoCrAlY、CoNiCrAlY或CoCrAlY;贵金属层3的成分为Au、Pt、Ru、Rh、Pd、Ir中的一种或多种的合金;复合陶瓷层包括沉积在陶瓷A层4和陶瓷B层5,陶瓷A层4的成分为YSZ或稀土锆酸盐(RE 2Zr 2O 7,RE=Y、Gd、Nd、Sm、Eu或Dy),陶瓷B层5的成分为ZrO 2-RETaO 4(RE=Y、Gd、Nd、Sm、Eu、Dy、Er、Yb、Lu);反射层6为REVO 4、RETaO 4、Y 2O 3中的一种或几种的混合物,其中RE=Y、Nd、Sm、Eu、Gd、Dy、Er、Yb、Lu。反折射层7的成分为石墨烯和碳化硼中的一种或两种的混合物,且石墨烯和碳化硼的空间分布均呈无序排列状态;绝缘层8的成分为环氧树脂、酚醛树脂、ABS树脂中的一种或几种的混合物。
本发明利用ZrO 2-RETaO 4作为陶瓷B层,具有低热导率、高膨胀率的效果,能实现降低热量的传导;ZrO 2-RETaO 4的制备方法与实施例1相同,能够满足APS喷涂技术对粉体粒径和形貌的要求。发明人通过大量的实验得出了在本发明的参数范围内,制备的超极限钛合金的使用温度提升最大,且钛合金的重量增加量小,各涂层成分与厚度最佳的超极限钛合金,而本发明中列举了其中的30组进行了说明。
本发明一种超极限钛合金及其制备方法的试验例1-30的各参数如表4-1、表4-2、表4-3所示:(厚度单位:μm)
表4-1 一种超极限钛合金及其制备方法的试验例1-10中各涂层的成分与厚度
Figure PCTCN2019117283-appb-000034
Figure PCTCN2019117283-appb-000035
表4-2 一种超极限钛合金及其制备方法的试验例11-20中各涂层的成分与厚度
Figure PCTCN2019117283-appb-000036
Figure PCTCN2019117283-appb-000037
Figure PCTCN2019117283-appb-000038
表4-3 一种超极限钛合金及其制备方法的试验例21-30中各涂层的成分与厚度
Figure PCTCN2019117283-appb-000039
Figure PCTCN2019117283-appb-000040
Figure PCTCN2019117283-appb-000041
现以实施例4的试验例1为例,对本发明的另一技术方案,一种超极限钛合金的制备方法进行说明。一种超极限钛合金的制备方法,包括以下步骤:
步骤一:利用浸泡法除去钛合金基体表面的油污和杂质,本试验例中钛合金基体的材质选用TC4钛合金,采用溶剂将钛合金基体浸泡0.5~1.5h,其中溶剂的主要成分为乙醇和表面活性剂,油污和杂质清理干净后取出钛合金基体,再利用去离子水冲洗干净后烘干。再利用喷丸机对钛合金基体表面进行喷丸处理,使用的喷丸机为JCK-SS500-6A自动传输式喷丸机,喷丸时采用的喷丸材料为铁砂、玻璃丸和陶瓷丸中的任意一种,本试验例中使用铁砂,且铁砂的粒径为0.3-0.8mm,本试验例中铁砂的粒径为0.5mm;喷丸后钛合金基体的表面粗糙度为60-100μm,本试验例中钛合金基体的表面粗糙度为80μm,便于涂层与钛合金基体的粘结。
步骤二:在喷丸后的钛合金基体表面沉积复合粘结层,首先利用HVOF法(超音速火焰喷涂法)或超音速电弧喷涂法在钛合金基体的表面喷涂一层NiCrCoAlY作为粘结层,本试验例使用HVOF法,HVOF法的工艺参数为:粉末粒径为25-65μm、氧气流量为2000SCFH、煤油流量为18.17LPH、载气为12.2SCFH、送粉量为5RPM、枪管长度为5in、喷涂距离为254mm。
再利用EB-PVD法(电子束物理气相沉积法)在NiCrCoAlY粘结层上沉积一层Au作为贵金属层,从而形成复合粘结层。沉积Au时的气体压强小于0.01Pa,EB-PVD法的工艺参数为:压强0.008Pa,沉积速率为6nm/min,且钛合金基体的温度与钛合金基体的熔点比值小于0.3。沉积的粘结层的厚度为20μm,贵金属层的厚度为50μm。
步骤三:利用HVOF法在复合粘结层的表面喷涂一层YSZ作为陶瓷A层,再利用HVOF法在YSZ陶瓷A层上喷涂一层ZrO2-YTaO 4作为陶瓷B层,形成复合陶瓷层;其中陶瓷A层的厚度为70μm,陶瓷B层的厚度为80μm。
步骤四:利用HVOF法在复合陶瓷层表面喷涂一层Y 2O 3透明陶瓷材料作为反射层,喷涂的反射层的厚度为10μm。
步骤五:利用涂刷法在Y 2O 3反射层表面涂刷一层石墨烯作为反折射层,反折射层的厚度为20μm。
步骤六:利用涂刷法在石墨烯反折射层表面涂刷一层环氧树脂作为绝缘层,绝缘层厚度为150μm。
步骤七:利用涂刷法在环氧树脂绝缘层上涂刷一层泡沫碳层,泡沫碳层的厚度为20μm,得到超极限钛合金。
试验例2-29与试验例1的制备工艺相同,区别仅在于如表4-1所示的各个涂层的成分与厚度不同;试验例30与试验例1的区别在于步骤三中陶瓷A层和陶瓷B层的喷涂顺序不同。
设置13组对比例与试验例1-30进行对比实验,对比例1-12的各参数如表4-4所示:(厚度单位:μm)
表4-4 对比例1-12各涂层的成分与厚度
Figure PCTCN2019117283-appb-000042
对比例1-12与试验例1的制备方法相同,区别仅在于如表4-3所示的各涂层的成分与厚度不同,对比例13为未沉积涂层的TC4钛合金基体。
利用试验例1-30、对比例1-13提供的钛合金进行以下实验:
高温蠕变实验:
将利用试验例1-30和对比例1-13制备的钛合金加工为拉伸试件,利用型号为RMT-D5的电子式高温蠕变持久强度试验机进行高温蠕变实验,最大试验载荷为50KN,试验载荷控制精度为±5%以内,变形测量范围为0~10mm,速率调整范围为0~50mm/min-1,变形分辨率为0.001mm,高温炉控温范围为200~2000℃,均热带长为150mm。
将试验例1-30、对比例1-13的试件放入电子式高温蠕变持久强度试验机内,并且使试件处于无应力状态(在无应力状态下,试件可自由膨胀,而高温蠕变是在温度和应力共同作用下变形随时间增加,因此升温速率对蠕变没有影响)。将试验机调节至应力为50MPa、温度为1300℃,并记录以下数据,如表4-5所示,表4-5中a表示各试件的稳定蠕变时间(min);b表示各试件发生蠕变断裂的时间(min)。
以试验例1与对比例13为例,如图2D所示,为试验例1与对比例13的高温蠕变试验曲线图,图2D中(A)表示对比例13中未沉积涂层的TC4钛合金基底材料,图2D中(B)表示试验例1制备得到的材料。
从图2D中可以看出,在50MPa应力下,1900℃温度下(A)和(B)试验件蠕变存在3个阶段:第一阶段较短,且蠕变速率较大,很快过渡到蠕变的第二阶段,第二阶段蠕变速率达到最小值,而且此阶段较长,基本处于稳态蠕变过程;第三阶段时,蠕变速率迅速上升,蠕变变形迅速发展,直到材料破坏发生蠕变断裂。同时可发现在50MPa应力下,1900℃温度条件下,(A)试件在极短的时间内就发生了断裂,说明在高于熔点温度条件下,钛合金几乎不能承载载荷,而(B)试件却可以在1900℃的条件下保持较好的力学性能而长时间不断裂,具有优良的耐高温性能。
盐雾腐蚀实验:
将试验例1-30、对比例1-13提供的钛合金加工成50mm×25mm×2mm的试件,后续步骤与试验例1一致。试件的失重率如图3D所示(图3D中(A)表示对比例13中未沉积涂层的TC4钛合金基底材料,(B)表示试验例1),试验例1-30和对比例1-13的具体实验结果如表4-5所示。
从图3D中可以看出,两种钛合金具有明显不同的腐蚀规律,对于(A)试件(TC4钛合金试验件),随着腐蚀时间的延长,腐蚀失重数值呈增大的趋势。其中,腐蚀初期(8-24h),试样表面存在氧化膜,阻碍钛合金基体与溶液接触,腐蚀速率较小。腐蚀中期(24-48h),溶液中的Cl -(氯离子)已经穿透氧化膜,大量Cl -吸附到基体上,使点蚀坑增加,原有的点蚀坑加深,明显加快了腐蚀速率。连续喷雾48h之后,腐蚀产物分布均匀,厚度增加,几乎覆盖试样整个表面,Cl -需要穿过腐蚀产物才能与钛合金基体接触,降低了基体表面吸附Cl -的数量,使腐蚀速率降低。总体看,TC4钛合金腐蚀失重量远高于钛基表面复合材料,钛基表面复合材料由于涂层的存在基本上没有发生腐蚀,其质量几乎没有发生变化。
实验结果如表4-5所示:a表示各试件的稳定蠕变时间(min);
b表示各试件发生蠕变断裂的时间(min);
c表示连续向试件喷洒NaCl溶液8h后试件的失重率(v/mg.cm 2);
d表示连续向试件喷洒NaCl溶液24h后试件的失重率(v/mg.cm 2);
e表示连续向试件喷洒NaCl溶液48h后试件的失重率(v/mg.cm 2);
f表示连续向试件喷洒NaCl溶液72h后试件的失重率(v/mg.cm 2)。
表4-5 高温蠕变实验与盐雾试验的实验结果
Figure PCTCN2019117283-appb-000043
Figure PCTCN2019117283-appb-000044
通过表4-5可知,超出本发明的参数范围的对比例得到的钛合金,高温下稳定性大幅下降,在较短的时间内发生断裂,且耐腐蚀性能较差。
综上所述,通过在钛合金上沉积复合粘结层、复合陶瓷层、反射层、反折射层、绝缘层和泡沫碳层,能够将钛合金的使用温度提升至高于原熔点的100-500℃,并且耐腐蚀性也大大的提高。本发明提供的超极限钛合金制备方法制备的超极限钛合金的使用温度范围大、耐腐蚀性强,其中试验例1的各效果最佳。
实施例5(超极限铁合金)
在本实施例中,该超极限合金为一种超极限铁合金,即合金基体为铁合金基体。
说明书附图1B中的附图标记包括:铁合金基体1、粘结层2、贵金属层3、陶瓷A层4、陶瓷B层5、反射层6、反折射层7、绝缘层8、泡沫碳层9。
本发明提供了一种超极限铁合金,如图1B所示,包括铁合金基体1,铁合金基体1 表面依次沉积有厚度为100-200μm的复合粘结层、厚度为150-500μm的复合陶瓷层、厚度为10-30μm的反射层6、厚度为10-30μm的反折射层7、厚度为10-200μm的绝缘层8和厚度为20-200μm的泡沫碳层9。其中复合粘结层为沉积在铁合金基体1表面的粘结层2和沉积在粘结层2表面的贵金属层3,粘结层2的成分为MCrAlY、NiAl、NiCr-Al、Mo合金中的一种或几种的混合物,MCrAlY为NiCrCoAlY、NiCoCrAlY、CoNiCrAlY或CoCrAlY;贵金属层3的成分为Au、Pt、Ru、Rh、Pd、Ir中的一种或多种合金;复合陶瓷层包括沉积在陶瓷A层4和陶瓷B层5,陶瓷A层4的成分为YSZ或稀土锆酸盐(RE 2Zr 2O 7,RE=Y、Gd、Nd、Sm、Eu或Dy),陶瓷B层5的成分为ZrO 2-RETaO 4(RE=Y、Gd、Nd、Sm、Eu、Dy、Er、Yb、Lu);反射层6为REVO 4、RETaO 4、Y 2O 3中的一种或几种的混合物,其中RE=Y、Nd、Sm、Eu、Gd、Dy、Er、Yb、Lu。反折射层7的成分为石墨烯和碳化硼中的一种或两种的混合物,且石墨烯和碳化硼的空间分布均呈无序排列状态;绝缘层8的成分为环氧树脂、酚醛树脂、ABS树脂中的一种或几种的混合物。
本发明利用ZrO 2-RETaO 4作为陶瓷B层,具有低热导率、高膨胀率的效果,能实现降低热量的传导;ZrO 2-RETaO 4的制备方法与实施例1一致,能够满足APS喷涂技术对粉体粒径和形貌的要求。
发明人通过大量的实验得出了在本发明的参数范围内,制备的超极限铁合金的使用温度提升最大,且铁合金的重量增加量小,各涂层成分与厚度最佳的超极限铁合金,而本发明中列举了其中的30组进行了说明。
本发明一种超极限铁合金及其制备方法的试验例1-30的各参数如表5-1、表5-2、表5-3所示:
(厚度单位:μm)
表5-1 一种超极限铁合金及其制备方法的试验例1-10中各涂层的成分与厚度
Figure PCTCN2019117283-appb-000045
Figure PCTCN2019117283-appb-000046
表5-2 一种超极限铁合金及其制备方法的试验例11-20中各涂层的成分与厚度
Figure PCTCN2019117283-appb-000047
Figure PCTCN2019117283-appb-000048
Figure PCTCN2019117283-appb-000049
表5-3 一种超极限铁合金及其制备方法的试验例21-30中各涂层的成分与厚度
Figure PCTCN2019117283-appb-000050
Figure PCTCN2019117283-appb-000051
现以实施例5的样品例1为例,对本发明的另一技术方案,一种超极限铁合金的制备方法进行说明。一种超极限铁合金的制备方法,包括以下步骤:
步骤一:与实施例4中制备超极限钛合金的步骤一大致相同,区别仅在于本试验例中选用Q235铁合金作为合金基体。
步骤二:实验步骤与参数与实施例4一致,区别在于沉积的粘结层的厚度为45μm,贵金属层的厚度为45μm。
步骤三:实验步骤与参数与实施例4一致,区别在于陶瓷A层的厚度为70μm,陶瓷B层的厚度为50μm。
步骤四:利用HVOF法在复合陶瓷层表面喷涂一层Y 2O 3透明陶瓷材料作为反射层,喷涂的反射层的厚度为20μm。
步骤五:利用涂刷法在Y 2O 3反射层表面涂刷一层石墨烯作为反折射层,反折射层的厚度为10μm。
步骤六:在反折射层表面涂刷一层环氧树脂作为绝缘层,绝缘层厚度为15μm。
步骤七:在绝缘层上涂刷一层泡沫碳层,泡沫碳层的厚度为20μm,得到超极限铁合金。
试验例2-29与试验例1的区别仅在于如表5-1所示的参数不同;试验例30与试验例1的区别在于步骤三中陶瓷A层和陶瓷B层的喷涂顺序不同。
实验:
设置13组对比例与试验例1-30进行对比实验,对比例1-12的各参数如表5-4所示:(厚度单位:μm)
表5-4 对比例1-12各涂层的成分与厚度
Figure PCTCN2019117283-appb-000052
Figure PCTCN2019117283-appb-000053
对比例1-12与试验例1的制备方法相同,区别仅在于如表5-3所示的各涂层的成分与厚度不同,对比例13为未沉积涂层的Q235铁合金基体。
利用试验例1-30、对比例1-13提供的铁合金进行以下实验:
1、高温蠕变实验:
将利用试验例1-30和对比例1-13制备的铁合金加工为拉伸试件,实验步骤和参数与实施例4中一致,记录数据,如表5-5所示,表5-5中a表示各试件的稳定蠕变时间(min);b表示各试件发生蠕变断裂的时间(min)。
以试验例1与对比例13为例,如图2E所示,为试验例1与对比例13的高温蠕变试验曲线图,图2E中(A)表示对比例13中未沉积涂层的Q235铁合金基底材料,图2E中(B)表示试验例1制备得到的材料。
从图2E中可以看出,在50MPa应力下,1900℃温度下(A)和(B)试验件蠕变存在3个阶段:第一阶段较短,且蠕变速率较大,很快过渡到蠕变的第二阶段,第二阶段蠕变速率达到最小值,而且此阶段较长,基本处于稳态蠕变过程;第三阶段时,蠕变速率迅速上升,蠕变变形迅速发展,直到材料破坏发生蠕变断裂。可以发现在50MPa应力下,1900℃温度条件下,(A)试件在极短的时间内就发生了断裂,说明在高于熔点温度条件下,铁合金几乎不能承载载荷,而(B)试件却可以在1900℃的条件下保持较好的力学性能而长时间不断裂,具有优良的耐高温性能。
2.盐雾腐蚀实验:
将试验例1-30、对比例1-13提供的铁合金加工成50mm×25mm×2mm的试件,后续步骤与实施例1一致。如图3E所示,为试验例1与对比例13盐雾腐蚀失重量与腐蚀时间的关系曲线,图3E中(A)表示对比例13中未沉积涂层的Q235铁合金基底材料,图3E中(B)表示试验例1制备得到的材料。试验例1-30和对比例1-13的具体实验结果如表5-5所示。
从图3E中可以看出,两种铁合金具有明显不同的腐蚀规律,对于(A)试件(Q235铁合金试验件),随着腐蚀时间的延长,腐蚀失重数值呈增大的趋势。其中,腐蚀初期(8-24h),试样表面存在氧化膜,阻碍铁合金基体与溶液接触,腐蚀速率较小。腐蚀中期(24-48h),溶液中的Cl -(氯离子)已经穿透氧化膜,大量Cl -吸附到基体上,使点蚀坑增加,原有的点蚀坑加深,明显加快了腐蚀速率。连续喷雾48h之后,腐蚀产物分布均匀,厚度增加,几乎覆盖试样整个表面,Cl -需要穿过腐蚀产物才能与铁合金基体接触,降低了基体表面吸附Cl -的数量,使腐蚀速率降低。总体看,Q235铁合金腐蚀失重量远高于铁基表面复合材料,铁基表面复合材料由于涂层的存在基本上没有发生腐蚀,其质量几乎没有发生变化。
实验结果如表5-5所示:a表示各试件的稳定蠕变时间(min);
b表示各试件发生蠕变断裂的时间(min);
c表示连续向试件喷洒NaCl溶液8h后试件的失重率(v/mg.cm 2);
d表示连续向试件喷洒NaCl溶液24h后试件的失重率(v/mg.cm 2);
e表示连续向试件喷洒NaCl溶液48h后试件的失重率(v/mg.cm 2);
f表示连续向试件喷洒NaCl溶液72h后试件的失重率(v/mg.cm 2)。
表5-5 高温蠕变实验与盐雾试验的实验结果
  a b c d e f
试验例1 170 280 0 0.01 0.07 0.11
试验例2 165 279 0 0.02 0.08 0.14
试验例3 160 273 0 0.04 0.09 0.13
试验例4 159 277 0 0.03 0.07 0.16
试验例5 161 278 0 0.03 0.08 0.13
试验例6 167 278 0 0.03 0.09 0.13
试验例7 163 275 0.005 0.02 0.09 0.12
试验例8 163 275 0 0.05 0.06 0.13
试验例9 164 275 0.006 0.04 0.09 0.15
试验例10 164 272 0 0.04 0.08 0.11
试验例11 166 260 0 0.05 0.08 0.11
试验例12 169 270 0.004 0.03 0.08 0.12
试验例13 168 275 0 0.03 0.07 0.13
试验例14 168 275 0 0.05 0.09 0.14
试验例15 168 275 0 0.05 0.09 0.13
试验例16 168 275 0 0.03 0.07 0.12
试验例17 164 272 0.005 0.02 0.09 0.11
试验例18 164 273 0.006 0.02 0.08 0.11
试验例19 164 271 0.006 0.03 0.08 0.11
试验例20 164 278 0 0.04 0.09 0.12
试验例21 164 278 0 0.05 0.09 0.12
试验例22 162 278 0.006 0.04 0.09 0.12
试验例23 162 270 0 0.04 0.07 0.13
试验例24 161 270 0 0.02 0.09 0.11
试验例25 165 270 0 0.03 0.09 0.15
试验例26 165 275 0 0.02 0.08 0.12
试验例27 165 275 0.004 0.05 0.08 0.15
试验例28 165 275 0.004 0.02 0.06 0.12
试验例29 165 274 0.005 0.02 0.08 0.14
试验例30 167 279 0 0.02 0.08 0.11
对比例1 72 125 0.07 0.13 0.27 0.63
对比例2 77 120 0.07 0.15 0.31 0.65
对比例3 70 124 0.06 0.13 0.29 0.63
对比例4 75 125 0.05 0.1 0.27 0.59
对比例5 68 120 0.05 0.11 0.27 0.58
对比例6 75 129 0.05 0.11 0.27 0.58
对比例7 75 125 0.05 0.13 0.29 0.61
对比例8 75 112 0.05 0.13 0.29 0.61
对比例9 75 113 0.03 0.1 0.26 0.6
对比例10 69 118 0.03 0.1 0.26 0.6
对比例11 68 119 0.02 0.08 0.2 0.55
对比例12 65 110 0.02 0.09 0.21 0.57
对比例13 10 30 2.1 5.1 8.5 16
通过表5-5可知,超出本发明的参数范围的对比例得到的铁合金,高温下稳定性大幅下降,在较短的时间内发生断裂,且耐腐蚀性能较差。
综上所述,通过在铁合金上沉积复合粘结层、复合陶瓷层、反射层、反折射层、绝缘层和泡沫碳层,能够将铁合金的使用温度提升至高于原熔点的100-500℃,并且耐腐蚀性也大大的提高。本发明提供的超极限铁合金制备方法制备的超极限铁合金的使用温度范围大、耐腐蚀性强,其中试验例1的各效果最佳。
实施例6(超极限铜合金)
在本实施例中,该超极限合金为一种超极限铜合金,即合金基体为铜合金。
说明书附图1B中的附图标记包括:铜合金基体1、粘结层2、贵金属层3、陶瓷A层4、陶瓷B层5、反射层6、反折射层7、绝缘层8、泡沫碳层9。
本发明提供了一种超极限铜合金,如图1B所示,包括铜合金基体1,铜合金基体1表面依次沉积有厚度为100-200μm的复合粘结层、厚度为150-500μm的复合陶瓷层、厚度为10-30μm的反射层6、厚度为10-30μm的反折射层7、厚度为10-200μm的绝缘层8和厚度为20-200μm的泡沫碳层9。其中复合粘结层为沉积在铜合金基体1表面的粘结层2和沉积在粘结层2表面的贵金属层3,粘结层2的成分为MCrAlY、NiAl、NiCr-Al、Mo合金中的一种或几种的混合物,MCrAlY为NiCrCoAlY、NiCoCrAlY、CoNiCrAlY或CoCrAlY;贵金属层3的成分为Au、Pt、Ru、Rh、Pd、Ir中的一种或多种的合金;复合陶瓷层包括沉积在陶瓷A层4和陶瓷B层5,陶瓷A层4的成分为YSZ或稀土锆酸盐(RE 2Zr 2O 7,RE=Y、Gd、Nd、Sm、Eu或Dy),陶瓷B层5的成分为ZrO 2-RETaO 4(RE=Y、Gd、Nd、Sm、Eu、Dy、Er、Yb或Lu);反射层6为REVO 4、RETaO 4、Y 2O 3中的一种或几种的混合物,其中RE=Y、Nd、Sm、Eu、Gd、Dy、Er、Yb或Lu。反折射层7的成分为石墨烯和碳化硼中的一种或两种的混合物,且石墨烯和碳化硼的空间分布均呈无序排列状态;绝缘层8的成分为环氧树脂、酚醛树脂、ABS树脂中的一种或几种的混合物。
本发明利用ZrO 2-RETaO 4作为陶瓷B层,具有低热导率、高膨胀率的效果,能实现降低热量的传导;ZrO 2-RETaO 4的制备方法与实施例1相同,能够满足APS喷涂技术对粉体粒径和形貌的要求。
发明人通过大量的实验得出了在本发明的参数范围内,制备的超极限铜合金的使用温度提升最大,且铜合金的重量增加量小,各涂层成分与厚度最佳的超极限铜合金,而本发明中列举了其中的30组进行了说明。
本发明一种超极限铜合金及其制备方法的试验例1-30的各参数如表6-1、表6-2、表6-3所示:(厚度单位:μm)
表6-1 一种超极限铜合金及其制备方法的试验例1-10中各涂层的成分与厚度
Figure PCTCN2019117283-appb-000054
Figure PCTCN2019117283-appb-000055
Figure PCTCN2019117283-appb-000056
表6-2 一种超极限铜合金及其制备方法的试验例11-20中各涂层的成分与厚度
Figure PCTCN2019117283-appb-000057
Figure PCTCN2019117283-appb-000058
表6-3 一种超极限铜合金及其制备方法的试验例21-30中各涂层的成分与厚度
Figure PCTCN2019117283-appb-000059
Figure PCTCN2019117283-appb-000060
Figure PCTCN2019117283-appb-000061
现以实施例6的样品例1为例,对本发明的另一技术方案,一种超极限铜合金的制备方法进行说明。一种超极限铜合金的制备方法,包括以下步骤:
步骤一:与实施例4中制备超极限钛合金的步骤一大致相同,区别仅在于本试验例中选用C86100铜合金作为合金基体。
步骤二:与实施例4中制备超极限钛合金的步骤二大致相同,区别在于沉积的粘结层的厚度为45μm,贵金属层的厚度为45μm。
步骤三:与实施例4中制备超极限钛合金的步骤三大致相同,区别在于陶瓷A层的厚度为70μm,陶瓷B层的厚度为50μm。
步骤四:利用HVOF法在复合陶瓷层表面喷涂一层Y 2O 3透明陶瓷材料作为反射层,喷涂的反射层的厚度为20μm。
步骤五:利用涂刷法在Y2O3反射层表面涂刷一层石墨烯作为反折射层,反折射层的厚度为10μm。
步骤六:利用涂刷法在石墨烯反折射层表面涂刷一层环氧树脂作为绝缘层,绝缘层厚度为15μm。
步骤六:利用涂刷法在环氧树脂绝缘层上涂刷一层泡沫碳层,泡沫碳层的厚度为20μm,得到超极限铜合金。
试验例2-29与试验例1的制备工艺相同,区别仅在于如表6-1所示的各个涂层的成分与厚度不同;试验例30与试验例1的区别在于步骤三中陶瓷A层和陶瓷B层的喷涂顺序不同。
另外设置13组对比例与试验例1-30进行对比实验,对比例1-12的各参数如表6-4所示:(厚度单位:μm)
表6-4 对比例1-12各涂层的成分与厚度
Figure PCTCN2019117283-appb-000062
Figure PCTCN2019117283-appb-000063
对比例1-12与试验例1的制备方法相同,区别仅在于如表6-3所示的各涂层的成分与厚度不同,对比例13为未沉积涂层的C86100铜合金基体。
利用试验例1-30、对比例1-13提供的铜合金进行以下实验:
1、高温蠕变实验:
将利用试验例1-30和对比例1-13制备的铜合金加工为拉伸试件,放入电子式高温蠕变持久强度试验机内,实验条件与实施例4相同。将试验机调节至应力为50MPa、温度为1300℃,并记录以下数据,如表6-5所示,表6-5中a表示各试件的稳定蠕变时间(min);b表示各试件发生蠕变断裂的时间(min)。
以试验例1与对比例13为例,如图2F所示,为试验例1与对比例13的高温蠕变试验曲线图,图2F中(A)表示对比例13中未沉积涂层的C86100铜合金基体材料,图2F中(B)表示试验例1制备得到的材料。
从图2F中可以看出,在50MPa应力下,1300℃温度下(A)和(B)试件蠕变存在3个阶段:第一阶段较短,且蠕变速率较大,很快过渡到蠕变的第二阶段,第二阶段蠕变速率 达到最小值,而且此阶段较长,基本处于稳态蠕变过程;第三阶段时,蠕变速率迅速上升,蠕变变形迅速发展,直到材料破坏发生蠕变断裂。可以发现在50MPa应力下,1300℃温度条件下,(A)试件在极短的时间内就发生了断裂,说明在高于熔点温度条件下,铜合金几乎不能承载载荷,而(B)试件却可以在1300℃的条件下保持较好的力学性能长时间不断裂,具有优良的耐高温性能。
盐雾腐蚀实验:
将试验例1-30、对比例1-13提供的铜合金加工成50mm×25mm×2mm的试件,后续步骤与实施例1一致。试件的失重率如图3F所示(图3F中(A)表示对比例13中未沉积涂层的C86100铜合金基底材料,(B)表示试验例1),试验例1-30和对比例1-13的具体实验结果如表6-5所示。
从图3F中可以看出,两种铜合金具有明显不同的腐蚀规律,对于(A)试件(C86100铜合金试件),随着腐蚀时间的延长,腐蚀失重数值呈增大的趋势。其中,腐蚀初期(8-24h),试样表面存在氧化膜,阻碍铜合金基体与溶液接触,腐蚀速率较小。腐蚀中期(24-48h),溶液中的Cl -(氯离子)已经穿透氧化膜,大量Cl -吸附到基体上,使点蚀坑增加,原有的点蚀坑加深,明显加快了腐蚀速率。连续喷雾48h之后,腐蚀产物分布均匀,厚度增加,几乎覆盖试样整个表面,Cl -需要穿过腐蚀产物才能与铜合金基体接触,降低了基体表面吸附Cl -的数量,使腐蚀速率降低。总体看,C86100铜合金腐蚀失重量远高于铜基表面复合材料,铜基表面复合材料由于涂层的存在基本上没有发生腐蚀,其质量几乎没有发生变化。
表6-5中a表示各试件的稳定蠕变时间(min);
b表示各试件发生蠕变断裂的时间(min);
c表示连续向试件喷洒NaCl溶液8h后试件的失重率(v/mg.cm 2);
d表示连续向试件喷洒NaCl溶液24h后试件的失重率(v/mg.cm 2);
e表示连续向试件喷洒NaCl溶液48h后试件的失重率(v/mg.cm 2);
f表示连续向试件喷洒NaCl溶液72h后试件的失重率(v/mg.cm 2)。
表6-5 高温蠕变实验与盐雾试验的实验结果
Figure PCTCN2019117283-appb-000064
Figure PCTCN2019117283-appb-000065
通过表6-5可知,超出本发明的参数范围的对比例得到的铜合金,高温下稳定性大幅下降,在较短的时间内发生断裂,且耐腐蚀性能较差。
综上所述,通过在铜合金上沉积复合粘结层、复合陶瓷层、反射层、反折射层、绝缘层和泡沫碳层,能够将铜合金的使用温度提升至高于原熔点的100-500℃,并且耐腐蚀性也大大的提高。本发明提供的超极限铜合金制备方法制备的超极限铜合金的使用温度范围大、耐腐蚀性强,其中实施例1的各效果最佳。
实施例7(超仅限锆合金)
在本实施例中,该超极限合金为一种超极限锆合金,即合金基体为锆合金基体。
说明书附图4中的附图标记包括:锆合金基体1、粘结层2、贵金属层3、陶瓷A层4、陶瓷B层5、封严涂层6、反射层7、反折射层8、电绝缘层9。
本发明提供了一种超极限锆合金,如图4所示,包括锆合金基体1,锆合金基体1表面依次沉积有50~150μm厚的粘结层2、10~20μm厚的贵金属层3、50~80μm厚的陶瓷A层4、50~80μm厚的陶瓷B层5、5~10μm厚的封严涂层6、10~15μm厚的反射层7、10~15μm厚的反折射层8和15~20μm厚的电绝缘层9;其中锆合金基体1为添加锌、铝、铜、锡、铌、铁、铬、镍中一种或几种元素的锆合金。粘结层2的成分为MCrAlY,MCrAlY为CoCrAlY、NiCoCrAlY或CoNiCrAlY;贵金属层3的成分为Pt、Ru、Rh、Pd、Ir、Os中的一种或几种的合金;陶瓷A层4的成分为Y 2O 3-ZrO 2、Y 2O 3-CeO 2、Y 2O 3-TiO 2、Y 2O 3-CeO 2、Y 2O 3-Yb 2O 3、Y 2O 3-Er 2O 3、Y 2O 3-Dy 2O 3、Y 2O 3-HfO 2中的一种或几种的混合物;陶瓷B层5的成分为RETaO 4(RE=Y、Nd、Eu、Gd、Dy、Er、Yb),RETaO 4呈球形,且粒径为10-70μm;封严涂层6的成分为Ti 3SiC,REPO 4(RE=Nd,Eu,Gd,Dy,Er,Y,Yb)和BN的一种或几种的混合物;反射层7的成分为REVO 4、RETaO 4、Y 2O 3中的一种或几种的混合物,其中RE=Y、Nd、Eu、Gd、Dy、Er、Yb;反折射层8的成分为石墨烯,且石墨烯的空间分布均呈无序排 列状态;电绝缘层9的成分为聚四氟乙烯、聚酰亚胺、聚苯醚、聚苯硫醚、聚醚醚酮、双马来酰亚胺、呋喃树脂、氰酸酯树脂、聚芳基乙炔基中的一种或几种的混合物。
本发明利用RETaO 4作为陶瓷B层,具有低热导率、高膨胀率的效果,能实现降低热量的传导;并且通过以下方法制备的RETaO 4能够满足APS喷涂技术的要求。
RETaO 4采用以下方法进行制备,包括以下步骤:
步骤(1):将稀土氧化物(RE 2O 3)粉末、五氧化二钽(Ta 2O 5)粉末进行预干燥,预干燥的温度为600℃,预干燥的时间为8h;再按照1:1的摩尔比称取预干燥后的稀土氧化物(RE 2O 3)粉末和五氧化二钽(Ta 2O 5)粉末;将预干燥后的粉末加入到乙醇溶剂中,得到混合溶液,使得混合溶液中RE:Ta的摩尔比为1:1;再采用球磨机对混合溶液进行球磨10h,球磨机的转速为300r/min。
将球磨后得到的浆料采用旋转蒸发仪(型号:N-1200B)进行干燥,干燥温度为60℃,干燥的时间为2h,将干燥后的粉末采用300目的筛子过筛,得到粉末A。
步骤(2):将步骤(1)中得到的粉末A采用高温固相反应法制得成分为RETaO 4的粉末B,反应温度为1700℃,反应时间为10h;并采用300目的筛子对粉末B进行过筛。
步骤(3):将步骤(2)中过筛后的粉末B与去离子水溶剂、有机粘接剂混合得到浆料C,其中浆料C中粉末B的质量百分比为25%,有机粘接剂的质量百分比为2%,其余为溶剂,有机粘接剂采用聚乙烯醇或者阿拉伯树胶;再利用离心雾化法对浆料C进行干燥,干燥时的温度为600℃,离心速度为8500r/min,得到干燥的料粒D;
步骤(4):将步骤(3)得到的料粒D在1200℃的温度下烧结8h,再采用300目的筛子对烧结后的料粒D过筛,得到粒径为10~70nm并且形貌呈球形的RETaO 4陶瓷粉体。
发明人通过大量的实验得出,在本发明提供的参数范围内,制得的超极限锆合金的使用温度高、耐腐蚀性好,而本发明中列举了其中的20组进行了说明。
本发明一种超极限锆合金及其制备方法的试验例1-20的各参数如表7-1、表7-2所示:(厚度单位:μm)
表7-1 一种超极限锆合金及其制备方法的试验例1-10中各涂层的成分与厚度
Figure PCTCN2019117283-appb-000066
Figure PCTCN2019117283-appb-000067
Figure PCTCN2019117283-appb-000068
表7-2 一种超极限锆合金及其制备方法的试验例21-20中各涂层的成分与厚度
Figure PCTCN2019117283-appb-000069
Figure PCTCN2019117283-appb-000070
现以实施例7的试验例1为例,对本发明的另一技术方案,一种超极限锆合金的制备方法进行说明。一种超极限锆合金的制备方法,包括以下步骤:
步骤一:本试验例中选用Zr-1Nb锆合金作为锆合金基体,利用浸泡法除去锆合金基体表面的油污和杂质,首先将锆合金基体浸泡在碱溶液或乳化洗净液内,其中乳化洗净液的主要成分为乙醇和表面活性剂,碱溶液主要成分是氢氧化钠、磷酸三钠、碳酸钠硅酸钠,本试验例使用碱溶液。将碱溶液的PH值调节至10~11之间,再将锆合金基体浸泡在碱溶液内,浸泡0.5-1.5h后取出,本试验例中浸泡时间为1h,再利用清水冲洗干净并烘干。再利用喷砂机对锆合金基体表面进行喷砂处理,使用的喷砂机为JCK-SS500-6A自动传输式喷砂机,喷砂时采用的喷砂材料为23目的石英砂;喷砂后锆合金基体的表面粗糙度为60-100μm,本试验例中锆合金基体的表面粗糙度为80μm,便于涂层与锆合金基体的粘结。
步骤二:在喷砂后的Zr-1Nb锆合金的表面沉积粘结层,首先利用HVOF法在锆合金基体的表面喷涂一层75μm厚的CoCrAlY作为粘结层,喷涂时HVOF法的工艺参数为,氧气的压力0.4MPa和流量分别为和250L/min;C 2H 4的压力和流量分别为0.4MPa和55L/min;喷枪喷嘴长100mm,喷涂距离为100mm。
步骤三:再利用HVOF法在CoCrAlY上沉积一层10um厚的Pt作为贵金属层,且喷涂时HVOF法的工艺参数与步骤一中的参数相同。
步骤四:利用离子喷涂技术在贵金属层的表面喷涂一层50um厚的Y 2O 3-Yb 2O 3作为陶瓷A层,喷涂时离子喷涂技术的工艺参数为,氩气的流量为40L/min;氢气的流量为5L/min,功率为30kW,送粉量为20g/min,喷涂距离为100mm。
步骤五:再利用等离子喷涂技术在陶瓷A上喷涂一层50μm厚的YTaO 4作为陶瓷B层,其喷涂工艺参数与步骤四中相同。
步骤六:利用电子束物理气相沉积技术在陶瓷B层表面喷涂一层5μm厚的Ti 3SiC作为封严涂层,喷涂时的电子束物理气相沉积技术的参数为氩气压力为0.2Mpa,功率为2kW,基体温度为250℃。
步骤七:利用电子束物理气相沉积技术,在封严涂层之上喷涂一层10um厚的REVO 4反射层,且喷涂工艺参数与步骤六相同。
步骤八:将石墨烯与微米级的碳粉材料相互均匀混合,然后将混合粉末导入溶液中进行超声波振动混合,本试验例中溶液为加入有1%分散剂的乙醇溶液,将混合均匀以后的溶液利用滤纸将微米级的碳粉分离出来。再将混合有石墨烯的溶液涂刷于反射层的表面作为反折射层,再将涂有石墨烯反折射层的锆合金放入干燥箱内,在60℃温度下干燥2h,涂刷的反折射层的厚度为13μm。
步骤九:再在羊毛或海绵上粘附聚苯醚,本试验例使用海绵,并将粘附有聚苯醚的海绵与反折射层紧贴,通过震抛机对海绵进行的高速震动和摩擦,将聚苯醚渗透到反折射层表面,形成电绝缘层,且电绝缘层的厚度为15μm。
步骤十:对喷涂有粘结层、贵金属层、陶瓷A层、陶瓷B层、封严涂层、反射层、反折射层、电绝缘层锆合金在50~80℃进行时效处理5~10h,本试验例中使用的温度为60℃、时间为8h,从而释放各涂层的内部应力,以提升涂层的粘结性能,最后得到超极限锆合金。试验例2-20与试验例1的区别仅在于如表7-1所示的参数不同。
实验:
设置9组对比例与试验例1-20进行对比实验,对比例1-9的各参数如表7-3所示:(厚度单位:μm)
表7-3 对比例1-9各涂层的成分与厚度
Figure PCTCN2019117283-appb-000071
Figure PCTCN2019117283-appb-000072
对比例1-9与试验例1的区别仅在于如表7-3所示的各参数不同,对比例10为Zr-1Nb锆合金。
利用试验例1-20、对比例1-10提供的锆合金进行以下实验:
高温蠕变实验:
将利用试验例1-20和对比例1-10提供的锆合金加工为长187mm、直径16mm的柱状的试件,利用型号为RMT-D5的电子式高温蠕变持久强度试验机进行高温蠕变实验。
将试验例1-20、对比例1-10的试件放入电子式高温蠕变持久强度试验机内,并且启动试验机,使得试验机升温,在升温过程中,试件处于无应力状态(在无应力状态下,试件可自由膨胀,而高温蠕变是在温度和应力共同作用下变形随时间增加,因此升温速率对蠕变没有影响)。当试验机的温度达到2000℃时,将试验机调节至应力为50MPa,进行高温蠕变实验,以试验例1和对比例10为例,实验结果如图5所示(图5中(A)表示对比例10,(B)表示试验例1),试验例1-20和对比例1-10的具体实验结果如表7-4所示。
从图5可以得出,(A)、(B)试件蠕变均存在3个阶段,但是在超过ZR-1NB锆合金熔点之后的温度下,(A)试件在极短的时间内就发生了蠕变断裂,因此可以得出,在高于ZR-1NB锆合金熔点的温度下,ZR-1NB锆合金几乎不能载荷。而(B)试件相比于(A)试件抗蠕变性能得到了明显的提高,(B)试件的稳态蠕变时间较长,可以观察到蠕变曲线经过较长的稳态蠕变阶段之后就进入了加速蠕变阶段并发生蠕变断裂。因此可以得出,在超过ZR-1NB锆合金熔点温度下,本发明提供的超极限锆合金相较于原有的ZR-1NB锆合金,超极限锆合金保持了较好力学性能而不断裂,具有优良的耐高温性能。
盐雾腐蚀实验:
将试验例1-20、对比例1-10提供的锆合金加工成50mm×25mm×2mm的试件,再进行除油、除锈处理,并清洗、干燥。使用YWX/Q-250B盐雾腐蚀箱作为实验设备,并模拟GB/T2967.3-2008的大气腐蚀环境。将试验例1-20、对比例1-10提供的试件悬挂在实验设备内,并将实验设备调节至温度为50±1℃、PH为3.0-3.1,再利用浓度为5±0.5%NaCl溶液连续向试件喷洒。以试验例1和对比例10为例,连续向试件喷洒浓度为5±0.5%NaCl溶液8h、24h、48h、72h后,试件的失重率如图6所示(图6中(A)表示对比例10,(B)表示试验例1),试验例1-20和对比例1-10的具体实验结果如表7-4所示。
结合图6可以得出,A、B试件具有明显不同的腐蚀规律,对于A试件,随着腐蚀时间的延长,腐蚀失重数值呈增大的趋势。其中,腐蚀初期(8-24h),试样表面存在氧化膜,阻碍锆合金基体与溶液接触,腐蚀速率较小。腐蚀中期(24-48h),溶液中的Cl -已经穿透氧化膜,大量Cl -吸附到基体上,使点蚀坑增加,原有的点蚀坑加深,明显加快了腐蚀速率。连续喷雾48h之后,腐蚀产物分布均匀,厚度增加,几乎覆盖试样整个表面,Cl -需要穿过腐蚀产物才能与锆合金基体接触,降低了基体表面吸附Cl -的数量,使腐蚀速率降低。总体看,A试件腐蚀失重量远高于B试件,B试件由于涂层的存在基本上没有发生腐蚀,其质量几乎没有发生变化。因此可以得出,本申请提供的超极限锆合金具有较好的耐腐蚀性。
实验结果如表7-4所示:(A、50MPa、2000℃下各试件的稳定蠕变时间(min);B、50MPa、2000℃下各试件发生蠕变断裂的时间(min);C、连续向试件喷洒NaCl溶液8h后试件的失重率(v/mg.cm 2);D、连续向试件喷洒NaCl溶液24h后试件的失重率(v/mg.cm 2);E、连续向试件喷洒NaCl溶液48h后试件的失重率(v/mg.cm 2);F、连续向试件喷洒NaCl溶液72h后试件的失重率(v/mg.cm 2))
表7-4 高温蠕变实验与盐雾试验的实验结果
Figure PCTCN2019117283-appb-000073
Figure PCTCN2019117283-appb-000074
综上所述,本发明提供的超极限锆合金制备方法制备的超极限锆合金的使用温度范围大、耐腐蚀性强,其中试验例1的各效果最佳。而超出本实施例试验例提供的参数范围的锆合金的最高使用温度相比本发明提供的超极限锆合金低很多,而且其耐腐蚀性能也较差。
实施例8(超极限锡合金)
在本实施例中,该超极限合金为一种超极限锡合金,即合金基体为锡合金基体。
说明书附图7中的附图标记包括:锡合金基体1、粘结层2、陶瓷层3、封严涂层4、反射层5、反折射层6、绝缘层7、焊接母材8、焊缝9。
本发明提供了一种超极限锡合金,如图7所示,包括锡合金基体1,锡合金基体1表面依次沉积有厚度为50-180μm的粘结层2、厚度为50um~80um的陶瓷层3、厚度为5um~15um的封严涂层4、厚度为5um~15um的反射层5、厚度为5um~15um的反折射层6和厚度为10μm~25μm的绝缘层7。
其中粘结层2的成分为铂(Pt)、钯(Pd)、铑(Rh)、钌(Ru)、铱(Ir)、锇(Os)中的一种或多种合金,陶瓷层3的成分为RETaO 4(RE=Nd,Eu,Gd,Dy,Er,Y,Yb);封严涂层4的成分为Ti 3SiC,REPO 4(RE=Nd,Eu,Gd,Dy,Er,Y,Yb)和氮化硼(BN)的一种或多种的混合物;反射层5的成分为REVO 4、RETaO 4、Y 2O 3中的一种或几种的混合物,其中RE=Nd,Eu,Gd,Dy,Er,Y,Yb;反折射层6为石墨烯或碳化硼中的一种或两种的混合物,且石墨烯和碳化硼的空间分布均呈无序排列状态;绝缘层7为聚四氟乙烯、聚酰亚胺(PI)、聚苯醚(PPO/PPE)、聚苯硫醚(PPS)、聚醚醚酮(PEEK)、双马来酰亚胺(BMI)、呋喃树脂、氰酸酯树脂(CE)、聚芳基乙炔基(PAA)中的一种或多种构成的有机涂层。
其中RETaO 4粉体采用以下方法进行制备,包括以下步骤:
步骤(1):将稀土氧化物(RE 2O 3)粉末、五氧化二钽(Ta 2O 5)粉末进行预干燥,预干燥的温度为600℃,预干燥的时间为8h;按照RETaO 4的摩尔比称取干燥后的稀土氧化物(RE 2O 3)粉末、五氧化二钽(Ta 2O 5)粉末;将预干燥后的粉末加入到乙醇溶剂中,得到混 合溶液,使得混合溶液中RE:Ta的摩尔比为1:1;再采用球磨机对混合溶液进行球磨10h,球磨机的转速为300r/min。
将球磨后得到的浆料采用旋转蒸发仪(型号:N-1200B)进行干燥,干燥温度为60℃,干燥的时间为2h,将干燥后的粉末采用300目的筛子过筛,得到粉末A。
步骤(2):将步骤(1)中得到的粉末A采用高温固相反应法制得成分为RETaO 4的粉末B,反应温度为1700℃,反应时间为10h;并采用300目的筛子对粉末B进行过筛。
步骤(3):将步骤(2)中过筛后的粉末B与去离子水溶剂、有机粘接剂混合得到浆料C,其中浆料C中粉末B的质量百分比为25%,有机粘接剂的质量百分比为2%,其余为溶剂,有机粘接剂采用聚乙烯醇或者阿拉伯树胶,;再利用高温喷雾裂解法对浆料C进行干燥,干燥时的温度为1000℃,干燥时间为60min,得到干燥的料粒D;
步骤(4):将步骤(3)得到的料粒D在1200℃的温度下烧结8h,再采用300目的筛子对烧结后的料粒D过筛,得到粒径为10~50μm并且形貌呈球形的RETaO 4陶瓷粉体。
本发明利用RETaO 4作为陶瓷B层,具有低热导率、高膨胀率的效果,能实现降低热量的传导;并且通过上述方法制备的RETaO 4能够满足APS喷涂技术对粉体粒径和形貌的要求。
发明人通过大量的实验得出了在本发明的参数范围内,制备的超极限锡合金焊缝材料的使用温度提升最大,且锡合金焊缝材料的重量增加量小,各涂层成分与厚度最佳的超极限锡合金焊缝材料,而本发明中列举了其中的20组进行了说明。
本发明一种超极限锡合金及其制备方法的试验例1-20的各参数如表8-1、表8-2所示:(厚度单位:μm)
表8-1 一种超极限锡合金及其制备方法的试验例1-10中各涂层的成分与厚度
Figure PCTCN2019117283-appb-000075
Figure PCTCN2019117283-appb-000076
表8-2 一种超极限锡合金及其制备方法的试验例11-20中各涂层的成分与厚度
Figure PCTCN2019117283-appb-000077
Figure PCTCN2019117283-appb-000078
Figure PCTCN2019117283-appb-000079
现以实施例8的试验例1为例,对本发明的另一技术方案,一种超极限锡合金的制备方法进行说明。一种超极限锡合金的制备方法,包括以下步骤:
步骤一:制备锡合金基体,选用两块型号为Q235钢板为焊接母材,选用型号为S221的锡合金焊丝将两块母材进行焊接,焊丝直径为2.5mm;焊接设备为MZ-1000自动埋弧焊机和MZ-1000时代逆变埋弧焊接电源,焊接工艺参数为电压30V,电流530~570A,焊速55m/h;采用该焊接设备制得锡合金基体。
步骤二:利用喷砂机对步骤一得到的锡合金基体表面进行喷砂处理,使用的喷砂机为JCK-SS500-6A自动传输式喷砂机,喷砂时采用的喷砂材料为石英砂,石英砂的规格为15~20目,本试验例中石英砂选用20目的规格;在喷砂处理之后采用空气压缩机对锡合金基体表面进行除尘处理。
步骤三:采用超音速火焰喷涂法,在步骤二表面处理后的锡合金基体表面喷涂铂铑粘结层,粘结层的厚度为75μm;其中超音速火焰喷涂的工艺参数为:氧气的压力和流量分别为0.4MPa和250L/min;C 2H 4的压力和流量分别为0.4MPa和55L/min,喷枪喷嘴长100mm,喷涂距离为100mm。
步骤四:采用大气等离子喷涂技术在步骤三得到的铂铑粘结层表面制备一层成分为YTaO 4的陶瓷层,其中YTaO 4陶瓷层的厚度为50um,大气等离子喷涂技术的工艺参数为:氩气的流量为40L/min;氢气的流量为5L/min,功率为30kW,送粉量为20g/min,喷涂距离为100mm。
步骤五:采用电子束物理气相沉积技术在步骤四得到的YTaO 4陶瓷层表面制备一层成分为NdPO 4的封严涂层,NdPO 4封严涂层的厚度10um;其中电子束物理气相沉积技术的工艺参数为:氩气压力为0.22MPa,功率为2KW,基体温度为400℃。
步骤六:采用电子束物理气相沉积技术在步骤五得到的NdPO 4封严涂层表面制备一层成分为YVO 4的反射层,YVO 4反射层的厚度为10um;其中电子束物理气相沉积技术的工艺参数为:氩气压力为0.22MPa,功率为2KW,基体温度为400℃。
步骤七:采用涂刷法对步骤六得到的YVO 4反射层表面制备石墨烯反折射层,石墨烯反折射层的厚度为15um;由于石墨烯具有较高的比表面积,极其难溶在溶液中,因此石墨烯在涂敷之前需要进行超声分散和固液分离,即首先对石墨烯与微米级的碳粉材料相互均匀混合,然后将混合粉末导入溶液中进行超声波振动混合,本试验例中溶液为加入有1%分散剂的乙醇溶液,将混合均匀以后的溶液利用滤纸将微米级的碳粉分离出来,最后将混合有石墨烯的溶液涂敷于反射层的表面,后将涂有石墨烯反折射层的锡合金焊缝材料放入干燥箱内,在60℃温度下干燥2h。
另外石墨烯进行超声分散后,石墨烯的空间分布在各个方向进行重新排列,使得石墨烯的空间分布呈无序排列状态,这样石墨烯虽然具有较高的折射率,当入射光在照射到石墨烯反折射层上时,无序排列的石墨烯可以增强光在各个方向的折射,避免入射光在同一方向上发生折射,达到折射分散的效果,这样进入到涂层内的入射光强度下降。
步骤八:利用封釉处理对步骤七得到的石墨烯反折射层表面制备成分为双马来酰亚胺的绝缘层,绝缘层厚度为22μm。
封釉处理是一种制备电绝缘层的技术手段,封釉处理具体是用柔软的羊毛或海绵通过震 抛机的高速震动和摩擦,利用石墨烯涂层特有的渗透性和黏附性把双马来酰亚胺的分子强力渗透到石墨烯涂层表面。
步骤九:对采用步骤一~八制备得到的锡合金焊缝材料在50~80℃温度下静置5~10h,进行时效处理,本试验例中采用的时效温度为60℃,时效处理的时间为8h。
试验例2-20的制备方法与试验例1的区别仅在于如表8-1所示的参数不同。
设置11组对比例与试验例1-20进行对比实验,如表8-3所示:(厚度单位:μm)
表8-3 对比例1-10各涂层的成分与厚度
Figure PCTCN2019117283-appb-000080
Figure PCTCN2019117283-appb-000081
对比例1-10的制备方法与试验例1的区别仅在于如表8-3所示的各参数不同,对比例11为采用步骤1制备的锡合金焊缝材料,即锡合金基体的表面未沉积任何涂层。
利用试验例1~20、对比例1-11提供的锡合金焊缝进行以下实验:
1锡合金焊缝高温结合强度实验:
1.1锡合金焊缝材料制备
如图8所示,制备拉伸式样,将两块焊接母材8采用焊接设备焊接在一起,形成锡合金基体9,在锡合金基体9的表面上采用试验例1-20和对比例1-10提供的参数制备涂层,其中对比例11为未沉积涂层的锡合金基体。
将上述拉伸式样,利用型号为RMT-D5的电子式高温蠕变持久强度试验机进行高温蠕变实验,RMT-D5的电子式高温蠕变试验机的最大试验载荷为50KN,试验载荷控制精度为±5%以内,变形测量范围为0~10mm,速率调整范围为0~50mm/min -1,变形分辨率为0.001mm,高温炉控温范围为900~1200℃,均热带长为150mm。
2.2锡合金焊缝高温拉伸强度检测
例1-20、对比例1-11制备的锡合金焊缝材料式样放入上述试验机内,并且使试件处于无应力状态(在无应力状态下,试件可自由膨胀,而高温蠕变是在温度和应力共同作用下变形随时间增加,因此升温速率对蠕变没有影响)。将试验机调节至温度为350℃,每个试件的试验次数为5次,将每次得到的拉伸强度进行记录,如表8-4所示,表8-4中a表示试件的平均拉伸强度(MPa)。
以试验例1与对比例11制备的锡合金焊缝材料式样为例,如图9所示,为试验例1与对比例11的锡合金焊缝材料拉伸强度曲线图,图9中(A)表示对比例11中未沉积涂层的锡合金基体,图9中(B)表示表面采用试验例1中的参数沉积有复合涂层的锡合金焊缝材料。为了测试锡合金焊缝材料在温度极限条件下的力学性能,通过查找相关文献资料可知S221锡合金的熔点温度为220℃,因此将测试温度设置为350℃,其测试结果如下:
从图9中可以看出,在350℃条件下,A试件的拉伸强度非常低,未沉积涂层的锡合金基体几乎不能承受载荷,载荷未到40MPa时,锡合金基体即发生断裂,而B试件却可以在350℃的条件下保持较好的力学性能,具有优良的耐高温性能。
2盐雾腐蚀实验:
将试验例1-20、对比例1-11制备的锡合金焊缝材料式样加工成50mm×25mm×2mm的试件,再进行除油、除锈处理,并清洗、干燥。使用YWX/Q-250B盐雾腐蚀箱作为实验设备,并模拟GB/T2967.3-2008的大气腐蚀环境。
将试验例1-20、对比例1-11提供的试件悬挂在实验设备内,并将实验设备调节至温度为50±1℃、PH为3.0~3.1,再利用浓度为5±0.5%NaCl溶液连续向试件喷洒,并在表8-4中记录一定时间(8、24、48、72h)后,试件的失重率。
如图10所示,为试验例1与对比例11盐雾腐蚀失重量与腐蚀时间的关系曲线,图10中(A)表示对比例11中未沉积涂层的锡合金基体,图10中(B)表示试验例1中的参数沉积有复合涂层的锡合金焊缝材料。
从图3可以看出,两种锡合金焊缝材料具有明显不同的腐蚀规律,对于(A)试件随着腐蚀时间的延长,腐蚀失重数值呈增大的趋势。其中,腐蚀初期(8-24h),式样表面存在氧化膜,阻碍锡合金焊缝材料与溶液接触,腐蚀速率较小。腐蚀中期(24-48h),溶液中的Cl -(氯离子)已经穿透氧化膜,大量Cl -吸附到基体上,使点蚀坑增加,原有的点蚀坑加深,明显加快了腐蚀速率。连续喷雾48h之后,腐蚀产物分布均匀,厚度增加,几乎 覆盖式样整个表面,Cl -需要穿过腐蚀产物才能与锡合金焊缝材料接触,降低了基体表面吸附Cl -的数量,使腐蚀速率降低。总体看,未沉积涂层的锡合金基体的腐蚀失重量远高于表面沉积有涂层的锡合金焊缝材料,由于涂层的存在基本上没有发生腐蚀,其质量几乎没有发生变化。
表8-4中a表示试件的平均拉伸强度(MPa);
b表示连续向试件喷洒NaCl溶液8h后试件的失重率(v/mg.cm 2);
c表示连续向试件喷洒NaCl溶液24h后试件的失重率(v/mg.cm 2);
d表示连续向试件喷洒NaCl溶液48h后试件的失重率(v/mg.cm 2);
e表示连续向试件喷洒NaCl溶液72h后试件的失重率(v/mg.cm 2)。
表8-4 高温拉伸强度与盐雾试验的实验结果
  a b c d e
试验例1 155 0.01 0.03 0.06 0.1
试验例2 152 0.01 0.03 0.06 0.1
试验例3 150 0.01 0.03 0.06 0.1
试验例4 142 0.02 0.032 0.064 0.12
试验例5 148 0.01 0.03 0.06 0.1
试验例6 150 0.01 0.03 0.06 0.1
试验例7 153 0.01 0.03 0.06 0.1
试验例8 154 0.01 0.03 0.06 0.1
试验例9 150 0.01 0.03 0.06 0.1
试验例10 155 0.01 0.03 0.06 0.1
试验例11 155 0.01 0.03 0.06 0.1
试验例12 149 0.01 0.03 0.06 0.1
试验例13 149 0.01 0.03 0.06 0.1
试验例14 145 0.01 0.03 0.06 0.1
试验例15 145 0.01 0.03 0.06 0.1
试验例16 153 0.01 0.03 0.06 0.1
试验例17 154 0.01 0.03 0.06 0.1
试验例18 153 0.01 0.03 0.06 0.1
试验例19 152 0.01 0.03 0.06 0.1
试验例20 149 0.01 0.03 0.06 0.1
对比例1 77 0.2 0.9 1.9 3.6
对比例2 70 0.3 1 2 4.1
对比例3 78 0.2 0.9 1.89 3.59
对比例4 62 0.44 1.15 2.3 4.7
对比例5 52 0.47 1.19 2.32 4.75
对比例6 65 0.4 1.02 2.1 4.5
对比例7 63 0.44 1.15 2.3 4.7
对比例8 50 0.5 1.2 2.4 4.8
对比例9 70 0.3 1 2 4.1
对比例10 65 0.4 1.02 2.1 4.5
对比例11 26 1.1 2.4 4.6 8.4
通过表8-4可知,超出本发明的参数范围的对比例得到的锡合金焊缝材料,平均拉伸强度大幅下降,且耐腐蚀性能较差。
综上所述,通过在锡合金焊基体上沉积粘结层、陶瓷层、封严涂层、反射层、反折射 层和绝缘层,能够将锡合金焊缝材料的使用温度提升至高于原熔点的100-500℃,并且耐腐蚀性也大大的提高。本发明提供的超极限锡合金制备方法制备的超极限锡合金焊缝材料的使用温度范围大、耐腐蚀性强,其中实施例1的各效果最佳。
以上所述的仅是本发明的实施例,方案中公知的具体结构及特性等常识在此未作过多描述。应当指出,对于本领域的技术人员来说,在不脱离本发明结构的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。本申请要求的保护范围应当以其权利要求的内容为准,说明书中的具体实施方式等记载可以用于解释权利要求的内容。

Claims (36)

  1. 一种超极限合金,包括合金基体,其特征在于:合金基体表面依次沉积有复合粘结层和复合陶瓷层;复合粘结层包括沉积在合金基体表面的粘结层和沉积在粘结层表面的贵金属层;复合陶瓷层包括陶瓷A层和陶瓷B层;所述合金基体选自镁合金基体、铝合金基体、镍合金基体、钛合金基体、铁合金基体和铜合金基体中的一种。
  2. 根据权利要求1所述的一种超极限合金,其特征在于:所述复合陶瓷层外还依次沉积有反射层、反折射层、绝缘层和泡沫碳层。
  3. 根据权利要求2所述的一种超极限合金,其特征在于:所述合金基体为镁合金基体,所述复合粘结层的厚度为100-200μm,所述复合陶瓷层的厚度为150-500μm,所述反射层的厚度为10-30μm,所述反折射层的厚度为10-30μm,所述绝缘层的厚度为10-200μm,所述泡沫碳层的厚度为20-200μm。
  4. 根据权利要求2所述的一种超极限合金,其特征在于:所述合金基体为铝合金基体,所述复合粘结层的厚度为100-200μm,所述复合陶瓷层的厚度为150-500μm,所述反射层的厚度为10-30μm,所述反折射层的厚度为10-30μm,所述绝缘层的厚度为10-200μm,所述泡沫碳层的厚度为20-200μm。
  5. 根据权利要求2所述的一种超极限合金,其特征在于:所述合金基体为镍合金基体,所述复合粘结层的厚度为80-100μm,所述复合陶瓷层的厚度为150-500μm,所述反射层的厚度为10-30μm,所述反折射层的厚度为10-30μm,所述绝缘层的厚度为10-200μm,所述泡沫碳层的厚度为20-200μm。
  6. 根据权利要求2所述的一种超极限合金,其特征在于:所述合金基体为钛合金基体,所述粘结层的厚度为20-30μm,所述贵金属层的厚度为40-60μm,所述复合陶瓷层的厚度为100-150μm,所述反射层的厚度为10-30μm,所述反折射层的厚度为20-30μm,所述绝缘层的厚度为100-200μm,所述泡沫碳层的厚度为20-200μm。
  7. 根据权利要求2所述的一种超极限合金,其特征在于:所述合金基体为铁合金基体,所述复合粘结层的厚度为100-200μm,所述复合陶瓷层的厚度为150-500μm,所述反射层的厚度为10-30μm,所述反折射层的厚度为10-30μm,所述绝缘层的厚度为10-200μm,所述泡沫碳层的厚度为20-200μm。
  8. 根据权利要求2所述的一种超极限合金,其特征在于:所述合金基体为铜合金基体,所述复合粘结层的厚度为100-200μm,所述复合陶瓷层的厚度为150-500μm,所述反射层的厚度为10-30μm,所述反折射层的厚度为10-30μm,所述绝缘层的厚度为10-200μm,所述泡沫碳层的厚度为20-200μm。
  9. 根据权利要求2所述的一种超级极限合金,其特征在于:所述粘结层成分为MCrAlY、NiAl、NiCr-Al、Mo合金中的一种或几种的混合物,MCrAlY为NiCrCoAlY、NiCoCrAlY、CoNiCrAlY或CoCrAlY;贵金属层的成分为Au、Pt、Ru、Rh、Pd、Ir中的一种或多种的合金。
  10. 根据权利要求2所述的一种超极限合金,其特征在于:所述陶瓷A层的成分为YSZ或稀土锆酸盐(RE 2ZR 2O 7),陶瓷B层的成分为ZrO 2-RETaO 4
  11. 根据权利要求2所述的一种超极限合金,其特征在于:所述反射层的成分为REVO 4、RETaO 4、Y 2O 3中的一种或几种的混合物。
  12. 根据权利要求2所述的一种超极限合金,其特征在于:所述反折射层的成分为石墨烯或者碳化硼中的一种或两种的混合物,且石墨烯和碳化硼的空间分布均呈无序排列状态。
  13. 根据权利要求2所述的一种超极限合金,其特征在于:所述绝缘层的成分为环氧树脂、酚醛树脂、ABS树脂中的一种或几种的混合物。
  14. 根据权利要求2所述的一种超极限合金,其特征在于:
    所述粘结层成分为MCrAlY、NiAl、NiCr-Al、Mo合金中的一种或几种的混合物,MCrAlY为NiCrCoAlY、NiCoCrAlY、CoNiCrAlY或CoCrAlY;贵金属层的成分为Au、Pt、Ru、Rh、Pd、Ir中的一种或多种的合金;
    所述陶瓷A层的成分为YSZ或稀土锆酸盐(RE 2ZR 2O 7),陶瓷B层的成分为ZrO 2-RETaO 4;所述反射层的成分为REVO 4、RETaO 4、Y 2O 3中的一种或几种的混合物;
    所述反折射层的成分为石墨烯或者碳化硼中的一种或两种的混合物,且石墨烯和碳化硼的空间分布均呈无序排列状态;
    所述绝缘层的成分为环氧树脂、酚醛树脂、ABS树脂中的一种或几种的混合物。
  15. 根据权利要求2-14任一所述的一种超极限合金的制备方法,其特征在于,包括以下步骤:
    步骤1:在合金基体表面沉积粘结层;在粘结层表面沉积贵金属层,使得粘结层和贵金属层形成复合粘结层;
    步骤2:在步骤1得到的复合粘结层表面沉积陶瓷A层和陶瓷B层,使得陶瓷A层和陶瓷B层形成复合陶瓷层;
    步骤3:在步骤2得到的复合陶瓷层表面沉积反射层;
    步骤4:在步骤3得到的反射层表面沉积反折射层;
    步骤5:在步骤4得到的反折射层表面沉积绝缘层;
    步骤6:在步骤5得到的绝缘层表面沉积泡沫碳层,从而形成超极限合金。
  16. 根据权利要求15所述的一种超极限合金的制备方法,其特征在于:所述步骤2中,形成陶瓷B层的ZrO 2-RETaO 4为粉体,所述ZrO 2-RETaO 4粉体的粒径为10-70μm,且形貌呈球形。
  17. 根据权利要求15所述的一种超极限合金的制备方法,其特征在于:所述步骤1中,在沉积粘结层之前,对合金基体表面进行预处理,所述预处理包括去油污和除杂质;所述合金基体表面预处理后,对合金金属基体的表面进行喷丸处理,使得合金基体的表面粗糙度为60-100μm。
  18. 一种超极限锆合金,包括锆合金基体,其特征在于:锆合金基体表面依次沉积有粘结层、贵金属层、陶瓷A层和陶瓷B层。
  19. 根据权利要求18所述的一种超极限锆合金,其特征在于:所述粘结层的厚度为50-150μm、贵金属层的厚度为10-20μm、陶瓷A层的厚度为50-80μm、陶瓷B层的厚度为50-80μm,所述陶瓷B层表面还依次沉积有5-10μm厚的封严涂层、10-15μm厚的反射层、10-15μm厚的反折射层和15-20μm厚的电绝缘层。
  20. 根据权利要求19所述的一种超极限锆合金,其特征在于:所述粘结层的成分为MCrAlY,MCrAlY为CoCrAlY、NiCoCrAlY或CoNiCrAlY;所述贵金属层的成分为Pt、Ru、Rh、Pd、Ir、Os中的一种或几种的合金。
  21. 根据权利要求19所述的一种超极限锆合金,其特征在于:所述陶瓷A层的成分为Y 2O 3-ZrO 2、Y 2O 3-CeO 2、Y 2O 3-TiO 2、Y 2O 3-CeO 2、Y 2O 3-Yb 2O 3、Y 2O 3-Er 2O 3、Y 2O 3-Dy 2O 3、Y 2O 3-HfO 2中的一种或几种的混合物;所述陶瓷B层为RETaO 4,RETaO 4呈球形,且粒径为10-70μm。
  22. 根据权利要求19所述的一种超极限锆合金,其特征在于:所述封严涂层的成分为Ti 3SiC、REPO 4、BN中的一种或几种的混合物。
  23. 根据权利要求19所述的一种超极限锆合金,其特征在于:所述反射层的成分为REVO 4、RETaO 4、Y 2O 3中的一种或几种的混合物;反折射层的成分为石墨烯,且石墨烯的空间分布均呈无序排列状态。
  24. 根据权利要求19所述的一种超极限锆合金,其特征在于:所述反折射层的成分为聚四氟乙烯、聚酰亚胺、聚苯醚、聚苯硫醚、聚醚醚酮、双马来酰亚胺、呋喃树脂、氰酸酯树脂、聚芳基乙炔基中的一种或几种的混合物。
  25. 根据权利要求19-24任意一项所述的一种超极限锆合金的制备方法,其特征在于,包括以下步骤:
    步骤1:在锆合金基体表面沉积一层50-150μm厚的粘结层;
    步骤2:在粘结层表面沉积一层10-20μm厚的贵金属层;
    步骤3:在贵金属表面沉积一层50-80μm厚的陶瓷A层;
    步骤4:在陶瓷A层表面沉积一层50-80μm厚的陶瓷B层;
    步骤5:在陶瓷B层表面沉积一层5-10μm厚的封严涂层;
    步骤6:在封严涂层表面沉积一层10-15μm厚的反射层;
    步骤7:在反射层表面沉积一层10-15μm厚的反折射层;
    步骤8:在反折射层表面沉积一层15-20μm厚的电绝缘层,从而制得超极限锆合金。
  26. 根据权利要求25所述的一种超极限锆合金的制备方法,其特征在于:所述步骤1中,在沉积粘结层之前,去除锆合金基体表面的油污;再对锆合金基体的表面进行喷砂处理,使得锆合金基体的表面粗糙度为60-100μm。
  27. 一种超极限锡合金,该锡合金为一种焊缝材料,包括锡合金基体,其特征在于:锡合金基体表面依次沉积有粘结层、陶瓷层和封严涂层。
  28. 根据权利要求27所述的一种超极限锡合金,其特征在于:所述粘结层的厚度为50-180μm,所述陶瓷层的厚度为50-80μm,所述封严涂层的厚度为5-15μm,所述封严涂层上依次沉积有厚度为5-15μm的反射层,厚度为5-15μm的反折射层和厚度为10-25μm的绝缘层。
  29. 根据权利要求28所述的一种超极限锡合金,其特征在于:所述粘结层的成分为Pt、Pd、Rh、Ru、Ir、Os中的一种或多种的合金构成。
  30. 根据权利要求28所述的一种超极限锡合金,其特征在于:所述陶瓷层的成分为RETaO 4
  31. 根据权利要求28所述的一种超极限锡合金,其特征在于:所述封严涂层的成分为Ti 3SiC、REPO 4和BN的一种或多种的混合物。
  32. 根据权利要求28所述的一种超极限锡合金,其特征在于:所述反射层的成分为REVO 4、RETaO 4、Y 2O 3中的一种或几种的混合物。
  33. 根据权利要求28所述的一种超极限锡合金,其特征在于:所述反折射层为石墨烯或碳化硼中的一种或两种的混合物,所且石墨烯和碳化硼的空间分布均呈无序排列状态。
  34. 根据权利要求28所述的一种超极限锡合金,其特征在于:所述绝缘层为聚四氟乙烯、聚酰亚胺(PI)、聚苯醚(PPO/PPE)、聚苯硫醚(PPS)、聚醚醚酮(PEEK)、双马来酰亚胺(BMI)、呋喃树脂、氰酸酯树脂(CE)、聚芳基乙炔基(PAA)中的一种或多种构成的有机涂层。
  35. 根据权利要求28-34任一所述的一种超极限锡合金的制备方法,其特征在于,包括以 下步骤:
    步骤1:在锡合金基体表面沉积粘结层,所述粘结层的厚度为50-180μm;
    步骤2:在步骤1得到的粘结层表面制备陶瓷层,所述陶瓷层的厚度为50-80um;
    步骤3:在步骤2得到的陶瓷层表面制备封严涂层,所述封严涂层的厚度5-15um;
    步骤4:在步骤3得到的封严涂层表面制备反射层,所述反射层的厚度为5-15um;
    步骤5:在步骤4得到的反射层表面制备反折射层,反折射层的厚度为5-15um;
    步骤6:对步骤5得到的反折射层表面制备绝缘层,绝缘层厚度为10-25μm。
  36. 根据权利要求35所述的一种超极限锡合金的制备方法,其特征在于:所述步骤1中,在沉积粘结层之前,对锡合金基体表面进行喷砂处理,后对喷砂后的锡合金基体表面进行除尘处理;对采用所述步骤1-6沉积多个涂层后的锡合金焊缝材料进行时效处理,在50-80℃温度下静置5-10h。
PCT/CN2019/117283 2018-12-29 2019-11-12 一种超极限合金及其制备方法 WO2020134655A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021538453A JP7242867B2 (ja) 2018-12-29 2019-11-12 超合金及びその製造方法
EP19903063.6A EP3904555A4 (en) 2018-12-29 2019-11-12 ULTRA-LIMIT ALLOY AND METHOD OF PREPARING THEREOF
US17/419,250 US11530485B2 (en) 2018-12-29 2019-11-12 Ultralimit alloy and preparation method therefor

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN201811640785.3A CN109719414B (zh) 2018-12-29 2018-12-29 一种超极限锡合金及其制备方法
CN201811640741.0A CN109554707B (zh) 2018-12-29 2018-12-29 一种超极限铝合金及其制备方法
CN201811640744.4A CN109609952B (zh) 2018-12-29 2018-12-29 一种超极限镁合金及其制备方法
CN201811645724.6 2018-12-29
CN201811640624.4 2018-12-29
CN201811645718.0A CN109487196B (zh) 2018-12-29 2018-12-29 一种超极限镍合金及其制备方法
CN201811645669.0 2018-12-29
CN201811645669.0A CN109554708B (zh) 2018-12-29 2018-12-29 一种超极限钛合金及其制备方法
CN201811640741.0 2018-12-29
CN201811640624.4A CN109468639B (zh) 2018-12-29 2018-12-29 一种超极限锆合金及其制备方法
CN201811640744.4 2018-12-29
CN201811645718.0 2018-12-29
CN201811645702.X 2018-12-29
CN201811645702.XA CN109487195B (zh) 2018-12-29 2018-12-29 一种超极限铁合金及其制备方法
CN201811645724.6A CN109609953B (zh) 2018-12-29 2018-12-29 一种超极限铜合金及其制备方法
CN201811640785.3 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020134655A1 true WO2020134655A1 (zh) 2020-07-02

Family

ID=71128298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117283 WO2020134655A1 (zh) 2018-12-29 2019-11-12 一种超极限合金及其制备方法

Country Status (4)

Country Link
US (1) US11530485B2 (zh)
EP (1) EP3904555A4 (zh)
JP (1) JP7242867B2 (zh)
WO (1) WO2020134655A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112589115A (zh) * 2020-11-24 2021-04-02 北京星航机电装备有限公司 一种gh4099镍基合金构件的激光选区熔化成形工艺
CN114411080A (zh) * 2021-12-29 2022-04-29 钢铁研究总院 一种热防护复合涂层及其制造方法
CN116751473A (zh) * 2023-06-20 2023-09-15 重庆大学 一种耐高温远红外涂料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114318206B (zh) * 2021-12-13 2023-12-05 中船重工龙江广瀚燃气轮机有限公司 一种燃气轮机联焰管用耐磨涂层及其制备方法
GB202214491D0 (en) * 2022-10-03 2022-11-16 Rolls Royce Plc Ceramic top coat material for a gas turbine engine

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7001859B2 (en) * 2001-01-22 2006-02-21 Ohio Aerospace Institute Low conductivity and sintering-resistant thermal barrier coatings
CN1986889A (zh) * 2005-12-21 2007-06-27 联合工艺公司 用于隔热涂层的经铂改性的NiCoCrAlY结合涂层
CN101653998A (zh) * 2009-09-18 2010-02-24 武汉理工大学 一种高温可磨耗封严涂层
RU2423551C2 (ru) * 2009-09-23 2011-07-10 Общество с ограниченной ответственностью "Производственное предприятие Турбинаспецсервис" Способ формирования теплозащитного покрытия
CN106435446A (zh) * 2016-11-04 2017-02-22 哈尔滨理工大学 等离子热喷涂法制备的cysz热障涂层及制备方法
CN106497522A (zh) * 2016-10-21 2017-03-15 中南大学 一种泡沫金刚石增强石蜡相变储能材料及制备方法
CN106747670A (zh) * 2016-05-30 2017-05-31 北京航空航天大学 一种用于多元碳与陶瓷基复合材料的环境障涂层及其制备方法
CN108441807A (zh) * 2018-04-19 2018-08-24 福州大学 一种具有梯度结构的ysz-稀土锆酸盐热障涂层及制备方法
CN109468639A (zh) * 2018-12-29 2019-03-15 昆明理工大学 一种超极限锆合金及其制备方法
CN109487195A (zh) * 2018-12-29 2019-03-19 昆明理工大学 一种超极限铁合金及其制备方法
CN109487196A (zh) * 2018-12-29 2019-03-19 昆明理工大学 一种超极限镍合金及其制备方法
CN109554708A (zh) * 2018-12-29 2019-04-02 昆明理工大学 一种超极限钛合金及其制备方法
CN109554707A (zh) * 2018-12-29 2019-04-02 昆明理工大学 一种超极限铝合金及其制备方法
CN109609953A (zh) * 2018-12-29 2019-04-12 昆明理工大学 一种超极限铜合金及其制备方法
CN109609952A (zh) * 2018-12-29 2019-04-12 昆明理工大学 一种超极限镁合金及其制备方法
CN109719414A (zh) * 2018-12-29 2019-05-07 昆明理工大学 一种超极限锡合金及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9612811D0 (en) * 1996-06-19 1996-08-21 Rolls Royce Plc A thermal barrier coating for a superalloy article and a method of application thereof
JP3040747B2 (ja) * 1998-03-19 2000-05-15 川崎重工業株式会社 セラミックス遮熱コーティング
US6387527B1 (en) * 1999-10-04 2002-05-14 General Electric Company Method of applying a bond coating and a thermal barrier coating on a metal substrate, and related articles
US6607789B1 (en) * 2001-04-26 2003-08-19 General Electric Company Plasma sprayed thermal bond coat system
US6652987B2 (en) * 2001-07-06 2003-11-25 United Technologies Corporation Reflective coatings to reduce radiation heat transfer
DE102008037871A1 (de) * 2008-08-15 2010-02-25 Amg Coating Technologies Gmbh Gleitelement mit Mehrfachschicht
US10060018B2 (en) * 2013-05-28 2018-08-28 Westinghouse Electric Company Llc Kinetically applied gradated Zr-Al-C ceramic or Ti-Al-C ceramic or amorphous or semi-amorphous stainless steel with nuclear grade zirconium alloy metal structure
US10221487B2 (en) * 2014-05-30 2019-03-05 Jx Nippon Mining & Metals Corporation Metal foil for electromagnetic shielding, electromagnetic shielding material and shielded cable
US11043308B2 (en) * 2016-10-03 2021-06-22 Westinghouse Electric Company Llc Duplex accident tolerant coating for nuclear fuel rods

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7001859B2 (en) * 2001-01-22 2006-02-21 Ohio Aerospace Institute Low conductivity and sintering-resistant thermal barrier coatings
CN1986889A (zh) * 2005-12-21 2007-06-27 联合工艺公司 用于隔热涂层的经铂改性的NiCoCrAlY结合涂层
CN101653998A (zh) * 2009-09-18 2010-02-24 武汉理工大学 一种高温可磨耗封严涂层
RU2423551C2 (ru) * 2009-09-23 2011-07-10 Общество с ограниченной ответственностью "Производственное предприятие Турбинаспецсервис" Способ формирования теплозащитного покрытия
CN106747670A (zh) * 2016-05-30 2017-05-31 北京航空航天大学 一种用于多元碳与陶瓷基复合材料的环境障涂层及其制备方法
CN106497522A (zh) * 2016-10-21 2017-03-15 中南大学 一种泡沫金刚石增强石蜡相变储能材料及制备方法
CN106435446A (zh) * 2016-11-04 2017-02-22 哈尔滨理工大学 等离子热喷涂法制备的cysz热障涂层及制备方法
CN108441807A (zh) * 2018-04-19 2018-08-24 福州大学 一种具有梯度结构的ysz-稀土锆酸盐热障涂层及制备方法
CN109468639A (zh) * 2018-12-29 2019-03-15 昆明理工大学 一种超极限锆合金及其制备方法
CN109487195A (zh) * 2018-12-29 2019-03-19 昆明理工大学 一种超极限铁合金及其制备方法
CN109487196A (zh) * 2018-12-29 2019-03-19 昆明理工大学 一种超极限镍合金及其制备方法
CN109554708A (zh) * 2018-12-29 2019-04-02 昆明理工大学 一种超极限钛合金及其制备方法
CN109554707A (zh) * 2018-12-29 2019-04-02 昆明理工大学 一种超极限铝合金及其制备方法
CN109609953A (zh) * 2018-12-29 2019-04-12 昆明理工大学 一种超极限铜合金及其制备方法
CN109609952A (zh) * 2018-12-29 2019-04-12 昆明理工大学 一种超极限镁合金及其制备方法
CN109719414A (zh) * 2018-12-29 2019-05-07 昆明理工大学 一种超极限锡合金及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3904555A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112589115A (zh) * 2020-11-24 2021-04-02 北京星航机电装备有限公司 一种gh4099镍基合金构件的激光选区熔化成形工艺
CN112589115B (zh) * 2020-11-24 2022-04-19 北京星航机电装备有限公司 一种gh4099镍基合金构件的激光选区熔化成形工艺
CN114411080A (zh) * 2021-12-29 2022-04-29 钢铁研究总院 一种热防护复合涂层及其制造方法
CN114411080B (zh) * 2021-12-29 2022-11-11 钢铁研究总院 一种热防护复合涂层及其制造方法
CN116751473A (zh) * 2023-06-20 2023-09-15 重庆大学 一种耐高温远红外涂料及其制备方法

Also Published As

Publication number Publication date
JP7242867B2 (ja) 2023-03-20
EP3904555A4 (en) 2022-10-19
US20220154347A1 (en) 2022-05-19
JP2022519444A (ja) 2022-03-24
US11530485B2 (en) 2022-12-20
EP3904555A9 (en) 2022-03-16
EP3904555A1 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
WO2020134655A1 (zh) 一种超极限合金及其制备方法
CN109609952B (zh) 一种超极限镁合金及其制备方法
CN109468639B (zh) 一种超极限锆合金及其制备方法
CN109554707B (zh) 一种超极限铝合金及其制备方法
CN109487196B (zh) 一种超极限镍合金及其制备方法
CN111004990B (zh) 用于热障涂层抗熔融cmas腐蚀的max相涂层及热喷涂制备方法
CN108118190B (zh) 一种抗环境沉积物腐蚀热障涂层及其制备方法
CN103374693A (zh) 高温炉辊表面的纳米热障涂层及制备方法
CN107699840A (zh) 多孔氧化锆热障涂层的制备方法
CN108265259B (zh) 一种用于TiAl合金的防护涂层及其制备方法
CN113105115B (zh) 一种具有自修复功能的耐高温搪瓷基复合涂层及其制备方法
CN109609953B (zh) 一种超极限铜合金及其制备方法
CN112176275B (zh) 一种热障涂层及其制备方法和应用
CN114525048B (zh) 稀土增强氧化锆高温抗氧化涂料、涂层及其制备方法
CN109487195B (zh) 一种超极限铁合金及其制备方法
CN107236331A (zh) 耐高温腐蚀涂料及其制备方法以及耐高温腐蚀涂层及其制备方法
CN112030097A (zh) 一种燃气轮机用高温梯度封严涂层及其制备方法
CN109554708B (zh) 一种超极限钛合金及其制备方法
Kumar et al. Solid particle erosive wear behavior of sol–gel-derived AA2024 thermal barrier coatings
CN109719414B (zh) 一种超极限锡合金及其制备方法
CN114086102A (zh) 一种Ba(Mg1/3Ta2/3)O3-YSZ双陶瓷层热障涂层及其制备方法
CN113106374A (zh) 一种耐高温高热流冲刷的复合涂层及其制备方法
CN116837315A (zh) 一种高硬度抗高温蒸汽氧化复合结构涂层的制备方法
Lu et al. Overview of advanced ceramic and metallic coating for energy and environmental applications
Liu et al. Study of the microstructure and mechanical properties of PbSn alloys deposited on carbon fiber reinforced epoxy composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021538453

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019903063

Country of ref document: EP

Effective date: 20210729