WO2020134514A1 - 冷媒循环系统、空调设备和冷媒循环系统的控制方法 - Google Patents

冷媒循环系统、空调设备和冷媒循环系统的控制方法 Download PDF

Info

Publication number
WO2020134514A1
WO2020134514A1 PCT/CN2019/113976 CN2019113976W WO2020134514A1 WO 2020134514 A1 WO2020134514 A1 WO 2020134514A1 CN 2019113976 W CN2019113976 W CN 2019113976W WO 2020134514 A1 WO2020134514 A1 WO 2020134514A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
refrigerant
pressure
circulation system
compressor
Prior art date
Application number
PCT/CN2019/113976
Other languages
English (en)
French (fr)
Inventor
刘华
张治平
刘胜
李宏波
陈玉辉
钟瑞兴
亓静利
叶文腾
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2020134514A1 publication Critical patent/WO2020134514A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/057Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures

Definitions

  • the present disclosure relates to the field of refrigeration equipment, and in particular, to a refrigerant circulation system, air conditioning equipment, and a refrigerant circulation system control method.
  • the centrifugal compressor is a compressor that uses centrifugal force to compress gas.
  • the use of oil-lubricated bearings requires an additional oil supply system, and the lubricating oil will also leak into the refrigerant, causing refrigerant pollution.
  • friction between the lubricating oil and the rotor will also cause energy loss; centrifugal compressors with electromagnetic bearings
  • the complete control system of the bearing is more complicated, and the system has poor impact resistance.
  • additional power-off protection methods such as protection of the bearing need to be added.
  • Hydrostatic gas bearing is a technology that uses the pressure generated by the gas between the bearing and the rotor to support the rotor. It is an oil-free bearing. The frictional resistance between the gas and the rotor is small, and the complex control system is not required.
  • the structure is simple, so in recent years Lai also began to be applied to centrifugal compressors.
  • the porous medium static pressure gas bearing needs to use external gas supply to provide the gas for the bearing work, so whether the design of the gas supply system is reasonable directly affects the working performance of the centrifugal compressor.
  • a liquid pump to draw liquid refrigerant from the condenser, and then pass through the throttling device, gas-liquid separator, etc., and then pass to the static pressure gas bearing.
  • the entire system structure is relatively complex; the second scheme
  • the liquid refrigerant is heated and evaporated, and the evaporated gas refrigerant is transferred to the static pressure gas bearing.
  • This scheme will cause the gas supply to be discontinuous and affect the stability of the static pressure gas bearing.
  • the air is taken from the high-pressure stage or the low-pressure stage. In this way, the pressure is not easy to adjust, and the supply pressure may be greater or less than the static pressure gas bearing supply pressure, resulting in static pressure The gas bearing is not stable enough.
  • the present disclosure aims to provide a refrigerant circulation system, an air conditioner, and a refrigerant circulation system control method to improve the problem that the pressure of the gas provided for the air suspension bearing in the related art is not adjustable.
  • the present disclosure provides a refrigerant circulation system.
  • the refrigerant circulation system includes:
  • Refrigerant circuit including the first compressor and condenser with air suspension bearing;
  • Storage components used to provide gaseous refrigerant to the air bearing
  • the first flow path is used to lead the refrigerant at the first position in the refrigerant circuit to the storage component;
  • the regulating valve is used to adjust the flow ratio of the first flow path and the second flow path.
  • the first compressor includes:
  • the first compression part communicates with the inlet end of the first flow path
  • the second compression part is used to compress the refrigerant compressed by the first compression part and communicates with the inlet end of the second flow path.
  • the first flow path communicates with the volute of the first compression portion; and/or
  • the second flow path communicates with the volute of the second compression part.
  • the inlet end of the first flow path communicates with the suction port of the first compressor, and the inlet end of the second flow path communicates with the exhaust port of the first compressor.
  • the refrigerant circulation system further includes:
  • the third flow path includes an inlet end communicating with the condenser and an outlet end communicating with the storage component;
  • the second compressor is provided in the third flow path for compressing the refrigerant flowing from the condenser to the storage part.
  • the refrigerant circulation system further includes a controller, which is connected to the second compressor in communication, and is used to deliver the refrigerant into the storage component during the start-up phase or the stop phase of the first compressor.
  • the refrigerant circulation system further includes:
  • a pressure detecting part for detecting the pressure of the refrigerant in the storage part
  • the controller is communicatively connected to both the regulating valve and the pressure detecting part, and is used to reduce the flow ratio of the first flow path and the second flow path by adjusting the opening of the regulating valve when the pressure in the storage part is less than the first predetermined pressure, or When the pressure in the storage member is greater than the second predetermined pressure, the flow rate ratio of the first flow path and the second flow path is increased by adjusting the opening degree of the valve.
  • the regulating valve includes a first regulating valve provided in the first flow path and a second regulating valve provided in the second flow path.
  • the suspension bearing includes a static pressure air suspension bearing.
  • an air-conditioning apparatus including the refrigerant circulation system described above.
  • control method of the above refrigerant circulation system includes:
  • the flow rate ratio of the first flow path and the second flow path is reduced, and when the pressure is greater than the second predetermined pressure, the flow rate ratio of the first flow path and the second flow path is increased.
  • the first predetermined pressure is equal to or less than the second predetermined pressure.
  • the refrigerant is delivered from the condenser to the storage component through the second compressor during the on stage or the off stage of the first compressor.
  • the refrigerant circulation system includes a first flow path and a second flow path for delivering different pressures to the storage component, and the flow ratio of the two flow paths is adjustable, thereby realizing the delivery of gas to the air suspension bearing Adjustable pressure.
  • FIG. 1 shows a schematic diagram of a refrigerant circulation system of an embodiment of the present disclosure
  • FIG. 2 shows a schematic structural diagram of a compressor of a refrigerant circulation system of an embodiment of the present disclosure.
  • FIG. 1 implements a schematic diagram of the refrigerant circulation system of this embodiment.
  • the refrigerant circulation system includes a refrigerant circuit, and the refrigerant circuit includes a first compressor 1, a condenser 6, a throttle member, and an evaporator.
  • the condenser 6 communicates with the exhaust port of the first compressor 1 through a pipe 5.
  • the refrigerant compressed by the first compressor 1 enters the condenser 6, and the refrigerant condensed in the condenser 6 enters the evaporator through the throttling and decompression of the throttling member, and the refrigerant evaporated in the evaporator returns To the suction port of the first compressor 1.
  • the first compressor 1 includes a first compression section 1a and a second compression section 1b.
  • the exhaust port of the first compression section 1a communicates with the intake port of the second compression section 1b.
  • the second compression section 1b is used to compress The refrigerant compressed by the compression unit 1a.
  • FIG. 2 shows a schematic structural view of the first compressor of this embodiment.
  • the first compressor 1 further includes a rotating shaft 17 for driving the first compression portion 1 a and the second compression portion 1. .
  • the first compression section 1a includes a first centrifugal impeller 19 for accelerating the refrigerant to be compressed and a first diffuser 20 for compressing the refrigerant accelerated by the first centrifugal impeller 19 therein.
  • the first centrifugal impeller 19 is connected to the first end of the rotating shaft 17.
  • the second compression portion 1b includes a second centrifugal impeller 21 for accelerating the refrigerant compressed by the first compression portion 1a, and a second diffuser 22 for compressing the refrigerant accelerated by the second centrifugal impeller 21 therein.
  • the second centrifugal impeller 21 is connected to the second end of the rotating shaft 17.
  • the first compressor 1 further includes a motor including a magnet portion 18 and a coil nested in the rotating shaft 17.
  • the magnet portion 18 drives the rotating shaft 17 to rotate under the action of the energizing coil.
  • the first compressor 1 further includes an air suspension bearing 23 for carrying the rotating shaft 17.
  • the air suspension bearing 23 is a static pressure air suspension bearing.
  • the refrigerant circulation system further includes a storage part 9 for supplying gaseous refrigerant to the air suspension bearing 23, a first flow path 16 for leading the refrigerant in the first position in the refrigerant circuit to the storage part 9, and a specific refrigerant circuit The refrigerant at the first position where the pressure is high is directed to the second flow path 2 of the storage member 9 at the second position.
  • the refrigerant circulation system further includes an adjustment valve for adjusting the flow ratio of the first flow path 16 and the second flow path 2, the refrigerant circulation of this embodiment
  • the system adjusts the pressure in the storage member 9 by adjusting the flow rate ratio of the refrigerant delivered by the first flow path 16 and the second flow path 2 to the storage member 9, and then adjusts the pressure of the refrigerant that the storage member 9 can deliver to the air bearing 23. It is advantageous to ensure that the pressure of the refrigerant delivered to the air suspension bearing 23 is stable.
  • the first flow path 16 communicates with the volute of the first compression portion 1a; the second flow path 2 communicates with the volute of the second compression portion 1b.
  • the first flow path 16 communicates with the first compression portion 1 a of the first compressor 1
  • the second flow path 2 communicates with the second compression portion 1 b of the first compressor 1.
  • the pressure of the refrigerant in the second compression section 1b is greater than the pressure of the refrigerant in the first compression section 1a.
  • the first flow path 16 communicates with the exhaust port of the first compression portion 1a.
  • the second flow path 2 communicates with the exhaust port of the second compression portion 1b.
  • the inlet end of the first flow path 16 communicates with the suction port of the first compressor 1.
  • the refrigerant introduced into the suction port of the first compressor 1 is the refrigerant after evaporation and cooling in the evaporator, and the temperature of the refrigerant is low, which is advantageous for cooling the air suspension bearing 23.
  • the inlet end of the second flow path 2 communicates with the exhaust port of the first compressor 1, and the second flow path 2 is used to lead the refrigerant with a higher pressure to the storage member 9.
  • the inlet end of the first flow path 16 communicates with the outlet of the evaporator to guide the evaporated and cooled refrigerant to the storage member 9 to reduce the temperature of the refrigerant in the storage member 9 and the refrigerant in the storage member 9 is gas
  • the suspension bearing 23 provides the gas for suspension while also realizing the temperature reduction of the air suspension bearing 23.
  • the refrigerant circulation system further includes a temperature detection unit 10 for detecting the temperature of the refrigerant in the storage unit 9.
  • the aforementioned regulating valve includes a first regulating valve 14 provided in the first flow path 16 and a second regulating valve 4 provided in the second flow path 2.
  • the flow rates of the first flow path 16 and the second flow path 2 are reduced by reducing the opening of the first regulating valve 14 and/or increasing the opening of the second regulating valve 4 Ratio, thereby increasing the pressure of the refrigerant in the storage member 9.
  • the pressure in the storage member 9 is greater than the second predetermined pressure
  • the flow ratio of the first flow path 16 and the second flow path 2 is increased by increasing the opening of the first regulating valve 14 and/or decreasing the opening of the second regulating valve 4, thereby The pressure of the refrigerant in the storage member 9 is reduced.
  • the refrigerant circulation system further includes a first check valve 15 provided in the first flow path 16, the inlet of the first check valve 15 communicates with the refrigerant circuit, and the outlet of the first check valve 15 is connected to the storage component 9 Connectivity.
  • the refrigerant circulation system further includes a second check valve 3 provided in the second flow path 2, the inlet of the second check valve 3 communicates with the refrigerant circuit, and the outlet of the second check valve 3 communicates with the storage member 9.
  • the first compressor 1 further includes an inlet 13 communicating with the inner cavity of the first compressor 1, a communication flow path for communicating the storage member 9 and the inlet 13, and a third regulator valve 12 is provided in the communication flow path.
  • the refrigerant circulation system further includes a pressure detection unit 11 for detecting the pressure of the refrigerant in the storage unit 9 and a controller.
  • the controller is in communication with the regulating valve and the pressure detection unit 11.
  • the controller is used for the pressure in the storage unit 9 to be less than At a predetermined pressure, the flow rate ratio of the first flow path 16 and the second flow path 2 is reduced by adjusting the opening of the regulating valve, or used to adjust the opening of the valve when the pressure in the storage member 9 is greater than the second predetermined pressure
  • the flow ratio of the first flow path 16 and the second flow path 2 is increased.
  • the refrigerant circulation system further includes a third flow path.
  • the third flow path includes an inlet end communicating with the condenser 6 and an outlet end communicating with the storage member 9.
  • the third compressor 7 is provided with a second compressor 7 for compressing the refrigerant flowing from the condenser 6 to the storage member 9.
  • the controller is communicatively connected to the second compressor 7 and is used to deliver the refrigerant to the storage member 9 during the start-up phase or stop phase of the first compressor 1.
  • a third check valve 8 is provided in the third flow path, the inlet of the third check valve 8 communicates with the condenser, and the outlet of the third check valve 8 communicates with the storage member 9.
  • control method for a refrigerant circulation system.
  • the control method includes:
  • the flow rate ratio of the first flow path 16 and the second flow path 2 is reduced, and when the pressure is greater than the second predetermined pressure, the flow rate ratio of the first flow path 16 and the second flow path 2 is increased.
  • the first predetermined pressure is equal to or less than the second predetermined pressure.
  • the control method further includes supplying refrigerant from the condenser 6 to the storage member 9 through the second compressor 7 during the start-up phase or the stop phase of the first compressor 1.
  • the process of supplying gas outside the first compressor 1 includes two stages, wherein the start-stop stage of the first compressor 1 adopts the same gas supply mode as the conventional mode.
  • the first regulating valve 14, the second regulating valve 4, and the third regulating valve 12 are closed, and the second compressor 7 is used to extract air from the upper portion of the condenser 6 for compression.
  • the storage unit Into the storage unit.
  • the states of the first regulating valve 14, the second regulating valve 4, and the third regulating valve 12 are adjusted according to the magnitude of the pressure displayed by the pressure detecting part on the storage part 9.
  • the third regulating valve 12 is opened, and the external air enters the first compressor 1 from the inlet 13 of the first compressor 1, and passes the first compression
  • the flow channel inside the machine 1 reaches the static pressure gas bearing to provide gas for the bearing.
  • the second compressor 7 is turned off at this time, and the first regulating valve 14 and the second regulating valve 4 are opened. At this time, air is drawn from the high-pressure stage and the low-pressure stage of the first compressor 1.
  • the extracted gas passes into the storage part 9. According to the magnitude of the pressure detected by the pressure detection part 11, it is determined whether the pressure in the storage part 9 at this time satisfies the working pressure of the static pressure gas bearing.
  • the second regulating valve can be adjusted to take more gas from the high pressure stage; if the pressure detected by the pressure detection part 11 is higher than that of the static pressure gas bearing When the working pressure is high, the first regulating valve can be adjusted accordingly to take more gas from the low-pressure stage.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本公开涉及一种冷媒循环系统、空调设备和冷媒循环系统的控制方法,冷媒循环系统包括:冷媒回路,包括具有气悬浮轴承的第一压缩机(1)和冷凝器(6);存储部件(9),用于向所述气悬浮轴承提供气态冷媒;第一流路(16),用于将所述冷媒回路中的第一位置的冷媒引向所述存储部件(9);第二流路(2),用于将比所述冷媒回路中与第一位置的压力高的第二位置的冷媒引向所述存储部件(9);以及调节阀,用于调节所述第一流路(16)和所述第二流路(2)的流量比。

Description

冷媒循环系统、空调设备和冷媒循环系统的控制方法
本公开是以CN申请号为CN201811593304.8,申请日为2018年12月25的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及制冷设备领域,具体而言,涉及一种冷媒循环系统、空调设备和冷媒循环系统的控制方法。
背景技术
离心式压缩机是一种采用离心力来压缩气体的压缩机,目前主要有油润滑轴承、电磁轴承。采用油润滑轴承,需要增加供油系统,而且润滑油还会泄露进入冷媒中,造成冷媒污染,此外润滑油与转子之间发生摩擦,还会带来能量损失;采用电磁轴承的离心式压缩机,轴承的一整套控制系统较为复杂,而且系统抗冲击能力较差,此外还需要增加保护轴承等额外断电保护手段。
静压气体轴承是一种利用轴承与转子之间气体产生的压力来支撑转子的技术,是一种无油轴承,气体与转子摩擦阻力小,且不需要复杂的控制系统,结构简单,因此近年来也开始被运用到离心式压缩机中去。多孔介质静压气体轴承需要采用外部供气来提供轴承工作的气体,因此其供气系统设计的是否合理直接影响了离心式压缩机的工作性能。目前的方案中,一种是利用液体泵机从冷凝器中抽出液态冷媒,再经节流装置、气液分离器等之后再通到静压气体轴承,整个系统结构相对复杂;第二种方案是将液态冷媒加热蒸发,并将蒸发后的气态冷媒输送到静压气体轴承,这种方案会导致供气不连续,影响静压气体轴承工作的稳定性。两种方案中,压缩机稳定运行后,从高压级或者低压级处取气,这种取气方式,压力不容易调节,供气压力可能大于或者小于静压气体轴承供气压力,导致静压气体轴承不够稳定。
公开内容
本公开旨在提供一种冷媒循环系统、空调设备和冷媒循环系统的控制方法,以改善相关技术中存在的为气悬浮轴承提供的气体的压力不可调的问题。
根据本公开实施例的一个方面,本公开提供了一种冷媒循环系统,冷媒循环系统 包括:
冷媒回路,包括具有气悬浮轴承的第一压缩机和冷凝器;
存储部件,用于向气悬浮轴承提供气态冷媒;
第一流路,用于将冷媒回路中的第一位置的冷媒引向存储部件;
第二流路,用于将冷媒回路中比第一位置的压力高的第二位置的冷媒引向存储部件;以及
调节阀,用于调节第一流路和第二流路的流量比。
在一些实施例中,第一压缩机包括:
第一压缩部,与第一流路的进口端连通;
第二压缩部,用于压缩经第一压缩部压缩后的冷媒,并与第二流路的进口端连通。
在一些实施例中,
第一流路与第一压缩部的蜗壳连通;和/或
第二流路与第二压缩部的蜗壳连通。
在一些实施例中,第一流路的进口端与第一压缩机的吸气口连通,第二流路的进口端第一压缩机的排气口连通。
在一些实施例中,冷媒循环系统还包括:
第三流路,包括与冷凝器连通的进口端和与存储部件连通的出口端;
第二压缩机,设置第三流路中,用于压缩由冷凝器流向存储部件的冷媒。
在一些实施例中,冷媒循环系统还包括控制器,控制器与第二压缩机通信连接,用于在第一压缩机的开启阶段或停止阶段向存储部件内输送冷媒。
在一些实施例中,冷媒循环系统还包括:
压力检测部件,用于检测存储部件内的冷媒的压力;以及
控制器,与调节阀和压力检测部件均通信连接,用于在存储部件内压力小于第一预定压力时,通过调整调节阀的开度降低第一流路和第二流路的流量比,或用于在存储部件内的压力大于第二预定压力时,通过调整阀的开度提高第一流路和第二流路的流量比。
在一些实施例中,调节阀包括设在第一流路中的第一调节阀和设在第二流路中的第二调节阀。
在一些实施例中,悬浮式轴承包括静压式气悬浮轴承。
根据本公开的另一方面,还提供了一种空调设备,空调设备包括上述的冷媒循环 系统。
根据本公开的另一方面,还提供了一种上述的冷媒循环系统的控制方法,控制方法包括:
获取存储部件内的冷凝的压力信息;以及
在压力小于第一预定压力时,降低第一流路和第二流路的流量比,在压力大于第二预定压力时,提高第一流路和第二流路的流量比。
在一些实施例中,第一预定压力等于或小于第二预定压力。
在一些实施例中,在第一压缩机开启阶段或停止阶段,通过第二压缩机由冷凝器向存储部件输送冷媒。
应用本公开的技术方案,冷媒循环系统包括用于向存储部件输送不同压力的第一流路和第二流路,两个流路的流量比可调,从而实现了向气悬浮轴承输送的气体的压力可调。
附图说明
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1示出了本公开的实施例的冷媒循环系统的示意图;以及
图2示出了本公开的实施例的冷媒循环系统的压缩机的结构示意图。
图中:
1、第一压缩机;2、第二流路;3、第二单向阀;4、第二调节阀;5、管路;6、冷凝器;7、第二压缩机;8、第三单向阀;9、存储部件;10、温度检测部件;11、压力检测部件;12、第三调节阀;13、进口;14、第一调节阀;15、第一单向阀;16、第一流路;17、转轴;18、磁体部;19、第一离心叶轮;20、第一扩压器;21、第二离心叶轮;22、第二扩压器;23、气悬浮轴承。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下面结合实施方式和附图,对本公开做进一步详细说明。在此,本公开的示意性实施方式及其说明用于解释本公开,但并不作为对本公开的限定。
图1实施了本实施例冷媒循环系统的示意图。如图1所示,冷媒循环系统包括冷 媒回路,冷媒回路包括第一压缩机1、冷凝器6、节流部件和蒸发器。冷凝器6与第一压缩机1的排气口通过管路5连通。
经第一压缩机1压缩后的冷媒进入到冷凝器6中,在冷凝器6中冷凝后的冷媒经节流部件节流降压有进入到蒸发器中,在蒸发器内蒸发后的冷媒回到第一压缩机1的吸气口。
第一压缩机1包括第一压缩部1a和第二压缩部1b,第一压缩部1a的排气口与第二压缩部1b的进气口连通,第二压缩部1b用于压缩经第一压缩部1a压缩后的冷媒。
图2示出了本实施例的第一压缩机的结构示意图,结合图1和图2所示,第一压缩机1还包括用于驱动第一压缩部1a和第二压缩部1的转轴17。
在本实施例中,第一压缩部1a和第二压缩部1b分别安装在转轴17的两端。第一压缩部1a包括用于加速待压缩的冷媒的第一离心叶轮19和用于被第一离心叶轮19加速后的冷媒在其内压缩的第一扩压器20。第一离心叶轮19连接在转轴17的第一端。
第二压缩部1b包括用于加速经第一压缩部1a压缩后的冷媒的第二离心叶轮21和用于被第二离心叶轮21加速后的冷媒在其内压缩的第二扩压器22。第二离心叶轮21连接在转轴17的第二端。
第一压缩机1还包括电机,电机包括嵌套在转轴17内的磁体部18和线圈。磁体部18在通电线圈的作用下带动转轴17转动。
第一压缩机1还包括用于承载转轴17的气悬浮轴承23。在一些实施例中,气悬浮轴承23为静压式气悬浮轴承。
冷媒循环系统还包括用于为气悬浮轴承23提供气态冷媒的存储部件9、用于将冷媒回路中的第一位置的冷媒引向存储部件9的第一流路16和用于将比冷媒回路中的第一位置的压力高的第二位置的冷媒引向存储部件9的第二流路2。
为了使存储部件9能够向气悬浮轴承23提供压力稳定的气液冷媒,冷媒循环系统还包括用于调节第一流路16和第二流路2的流量比的调节阀,本实施例的冷媒循环系统通过调节第一流路16和第二流路2向存储部件9输送的冷媒的流量比来调整存储部件9内的压力,进而调整存储部件9可向气悬浮轴承23输送的冷媒的压力,有利于保证向气悬浮轴承23输送的冷媒的压力稳定。
在一些实施例中,第一流路16与所述第一压缩部1a的蜗壳连通;第二流路2与第二压缩部1b的蜗壳连通。在本实施例中,第一流路16与第一压缩机1的第一压缩部1a连通,第二流路2与第一压缩机1的第二压缩部1b连通。第二压缩部1b内的 冷媒的压力大于第一压缩部1a内的冷媒的压力。
在一些实施例中,第一流路16与第一压缩部1a的排气口连通。第二流路2与第二压缩部1b的排气口连通。
在一些实施例中,第一流路16的进口端与第一压缩机1的吸气口连通。第一压缩机1的吸气口引入的冷媒为在蒸发器内蒸发降温后的冷媒,该冷媒的温度较低,有利于为气悬浮轴承23降温。第二流路2的进口端与第一压缩机1的排气口连通,第二流路2用于将压力较高的冷媒引向存储部件9。
在一些实施例中,第一流路16的进口端与蒸发器的出口连通,以将蒸发降温后的冷媒引向存储部件9,以降低存储部件9内冷媒的温度,存储部件9的冷媒为气悬浮轴承23提供悬浮用的气体的同时也实现了为气悬浮轴承23降温。
在本实施例中,冷媒循环系统还包括用于检测存储部件9内的冷媒的温度的温度检测部件10。
上述的调节阀包括设在第一流路16中的第一调节阀14和设在第二流路2中的第二调节阀4。在存储部件9内的压力小于第一预定压力时,通过降低第一调节阀14的开度和/或提高第二调节阀4的开度来降低第一流路16和第二流路2的流量比,从而提高存储部件9内的冷媒的压力。在存储部件9内的压力大于第二预定压力时,通过提高第一调节阀14和/或降低第二调节阀4的开度来提高第一流路16和第二流路2的流量比,从而降低存储部件9内的冷媒的压力。
如图1所示,冷媒循环系统还包括设在第一流路16中的第一单向阀15,第一单向阀15的进口与冷媒回路连通,第一单向阀15的出口与存储部件9连通。
冷媒循环系统还包括设在第二流路2中的第二单向阀3,第二单向阀3的进口与冷媒回路连通,第二单向阀3的出口与存储部件9连通。
第一压缩机1还包括与第一压缩机1的内腔连通的进口13、用于连通存储部件9和进口13的连通流路,该连通流路中设置有第三调节阀12。
冷媒循环系统还包括用于检测存储部件9内的冷媒的压力的压力检测部件11和控制器,控制器与调节阀和压力检测部件11均通信连接,控制器用于在存储部件9内压力小于第一预定压力时,通过调整调节阀的开度降低第一流路16和第二流路2的流量比,或用于在存储部件9内的压力大于第二预定压力时,通过调整阀的开度提高第一流路16和第二流路2的流量比。
如图1所示,冷媒循环系统还包括第三流路,第三流路包括与冷凝器6连通的进 口端和与存储部件9连通的出口端。第三流路中设置有第二压缩机7,第二压缩机7用于压缩由冷凝器6流向存储部件9的冷媒。
控制器与第二压缩机7通信连接,用于在第一压缩机1的开启阶段或停止阶段向存储部件9内输送冷媒。
第三流路中设有第三单向阀8,第三单向阀8的进口与冷凝器连通,第三单向阀8的出口与存储部件9连通。
根据本公开的另一方面,还提供了一种冷媒循环系统的控制方法,控制方法包括:
获取存储部件9内的冷凝的压力信息;以及
在压力小于第一预定压力时,降低第一流路16和第二流路2的流量比,在压力大于第二预定压力时,提高第一流路16和第二流路2的流量比。第一预定压力等于或小于第二预定压力。
控制方法还包括在第一压缩机1开启阶段或停止阶段,通过第二压缩机7由冷凝器6向存储部件9输送冷媒。
为第一压缩机1外部供气过程包括两个阶段,其中第一压缩机1的启停阶段采用与常规方式相同的供气方式。在第一压缩机1的启停阶段时,关闭第一调节阀14、第二调节阀4和第三调节阀12,并且利用第二压缩机7从冷凝器6上部抽气进行压缩之后通入到存储部件中。
根据存储部件9上的压力检测部件显示的压力大小调整第一调节阀14、第二调节阀4和第三调节阀12的状态。当存储部件9内的压力达到静压气体轴承的工作压力时,打开第三调节阀12,,外部气体从第一压缩机1的进口13进入到第一压缩机1中,并且通过第一压缩机1内部的流道到达静压气体轴承处,以为轴承提供气体。
在压缩机正常工作后,此时关闭第二压缩机7,并且打开第一调节阀14和第二调节阀4,此时开始从第一压缩机1的高压级和低压级处取气,所取的气体通入到存储部件9中去。根据压力检测部件11检测的压力大小,判断此时存储部件9内的压力是否满足静压气体轴承的工作压力。如果压力检测部件11检测到的压力比静压气体轴承的工作压力小时,可以调节第二调节阀,从高压级处多取一些气;如果压力检测部件11检测到的压力比静压气体轴承的工作压力大时,相应的可以调节第一调节阀,从低压级处多取些气。采用这种供气方式,可以很方便的调节供气压力大小,从而可以满足多种工作压力的静压气体轴承,并且压力调节方便可靠,提高了静压气体轴承的工作稳定性。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开实施例可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (13)

  1. 一种冷媒循环系统,包括:
    冷媒回路,包括具有气悬浮轴承的第一压缩机(1)和冷凝器(6);
    存储部件(9),用于向所述气悬浮轴承提供气态冷媒;
    第一流路(16),用于将所述冷媒回路中的第一位置的冷媒引向所述存储部件(9);
    第二流路(2),用于将所述冷媒回路中比第一位置的压力高的第二位置的冷媒引向所述存储部件(9);以及
    调节阀,用于调节所述第一流路(16)和所述第二流路(2)的流量比。
  2. 根据权利要求1所述的冷媒循环系统,其中所述第一压缩机(1)包括:
    第一压缩部(1a),与所述第一流路(16)的进口端连通;
    第二压缩部(1b),用于压缩经所述第一压缩部(1a)压缩后的冷媒,并与所述第二流路(2)的进口端连通。
  3. 根据权利要求2所述的冷媒循环系统,其中,
    所述第一流路(16)与所述第一压缩部(1a)的蜗壳连通;或
    所述第二流路(2)与所述第二压缩部(1b)的蜗壳连通。
  4. 根据权利要求1所述的冷媒循环系统,其中所述第一流路(16)的进口端与第一压缩机(1)的吸气口连通,所述第二流路(2)的进口端所述第一压缩机(1)的排气口连通。
  5. 根据权利要求1至4中任一项所述的冷媒循环系统,还包括:
    第三流路,包括与所述冷凝器(6)连通的进口端和与所述存储部件(9)连通的出口端;以及
    第二压缩机(7),设置所述第三流路中,用于压缩由所述冷凝器(6)流向所述存储部件(9)的冷媒。
  6. 根据权利要求5所述的冷媒循环系统,还包括控制器,所述控制器与所述第二 压缩机(7)通信连接,用于在所述第一压缩机(1)的开启阶段或停止阶段开启所述第二压缩机(7),以将所述冷凝器(6)中的冷媒向所述存储部件(9)输送。
  7. 根据权利要求1至4中任一项所述的冷媒循环系统,还包括:
    压力检测部件(11),用于检测所述存储部件(9)内的冷媒的压力;以及
    控制器,与所述调节阀和所述压力检测部件(11)均通信连接,用于在所述存储部件(9)内压力小于第一预定压力时,通过调整所述调节阀的开度降低所述第一流路(16)和所述第二流路(2)的流量比,或用于在所述存储部件(9)内的压力大于第二预定压力时,通过调整所述阀的开度提高所述第一流路(16)和所述第二流路(2)的流量比。
  8. 根据权利要求1至4中任一项所述的冷媒循环系统,所述调节阀包括设在所述第一流路(16)中的第一调节阀(14)和设在所述第二流路(2)中的第二调节阀(4)。
  9. 根据权利要求1至4中任一项所述的冷媒循环系统,所述悬浮式轴承包括静压式气悬浮轴承。
  10. 一种空调设备,包括权利要求1至9中任一项所述的冷媒循环系统。
  11. 一种权利要求1至9中任一项所述的冷媒循环系统的控制方法,包括:
    获取所述存储部件(9)内的冷凝的压力信息;以及
    在所述压力小于第一预定压力时,降低所述第一流路(16)和所述第二流路(2)的流量比,在所述压力大于第二预定压力时,提高所述第一流路(16)和所述第二流路(2)的流量比。
  12. 根据权利要求11所述的控制方法,其中所述第一预定压力等于或小于所述第二预定压力。
  13. 根据权利要求11或12所述的控制方法,其中在所述第一压缩机(1)开启阶段或停止阶段,通过第二压缩机(7)由所述冷凝器(6)向所述存储部件(9)输送 冷媒。
PCT/CN2019/113976 2018-12-25 2019-10-29 冷媒循环系统、空调设备和冷媒循环系统的控制方法 WO2020134514A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811593304.8 2018-12-25
CN201811593304.8A CN111365909B (zh) 2018-12-25 2018-12-25 冷媒循环系统、空调设备和冷媒循环系统的控制方法

Publications (1)

Publication Number Publication Date
WO2020134514A1 true WO2020134514A1 (zh) 2020-07-02

Family

ID=71127432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113976 WO2020134514A1 (zh) 2018-12-25 2019-10-29 冷媒循环系统、空调设备和冷媒循环系统的控制方法

Country Status (2)

Country Link
CN (1) CN111365909B (zh)
WO (1) WO2020134514A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111928504B (zh) * 2020-08-24 2021-08-20 珠海格力电器股份有限公司 冷媒循环系统及控制方法
CN114111111A (zh) * 2020-08-26 2022-03-01 青岛海尔智能技术研发有限公司 气体轴承供气系统及其控制方法和控制装置、制冷系统
CN111878445A (zh) * 2020-09-02 2020-11-03 珠海格力电器股份有限公司 压缩机用气体轴承的供气系统、操作方法及制冷系统
CN113847345B (zh) * 2021-09-08 2024-02-23 青岛海尔空调电子有限公司 用于悬浮轴承的供气系统及制冷系统
CN114198926B (zh) * 2021-11-22 2023-09-26 青岛海尔空调电子有限公司 压缩机的供气系统和用于该供气系统的控制方法
CN114198924B (zh) * 2021-11-22 2023-07-18 青岛海尔空调电子有限公司 用于气悬浮压缩机的供气系统和冷媒循环系统
CN114198925B (zh) * 2021-11-22 2024-02-23 青岛海尔空调电子有限公司 压缩机的气液供给系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1181490A (zh) * 1996-10-25 1998-05-13 三菱重工业株式会社 冷冻机中使用的压缩机
JP2004044954A (ja) * 2002-07-12 2004-02-12 Mitsubishi Heavy Ind Ltd ガス軸受付き圧縮機を備えたターボ冷凍機及びその運転方法
CN101305186A (zh) * 2005-11-09 2008-11-12 Bsh博世和西门子家用器具有限公司 压缩机
CN104145167A (zh) * 2011-12-21 2014-11-12 维纳斯系统公司 离心式制冷剂蒸气压缩机
WO2018022343A1 (en) * 2016-07-25 2018-02-01 Daikin Applied Americas Inc. Centrifugal compressor and magnetic bearing backup system for centrifugal compressor
CN108469128A (zh) * 2017-02-23 2018-08-31 松下知识产权经营株式会社 流体机械和制冷循环装置
CN209341637U (zh) * 2018-12-25 2019-09-03 珠海格力电器股份有限公司 冷媒循环系统
CN209371582U (zh) * 2018-12-25 2019-09-10 珠海格力电器股份有限公司 冷媒循环系和空调设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5832737A (en) * 1996-12-11 1998-11-10 American Standard Inc. Gas actuated slide valve in a screw compressor
NZ515578A (en) * 2001-11-20 2004-03-26 Fisher & Paykel Appliances Ltd Reduction of power to free piston linear motor to reduce piston overshoot
CN202562151U (zh) * 2012-05-08 2012-11-28 珠海格力电器股份有限公司 空调系统
KR102201629B1 (ko) * 2014-06-26 2021-01-12 엘지전자 주식회사 리니어 압축기 및 이를 포함하는 냉장고
CN106015032B (zh) * 2016-06-28 2018-05-22 杭州万辰机电科技有限公司 离心压缩机
CN108775289B (zh) * 2018-05-23 2020-03-17 北京石油化工学院 一种带储气功能的自冷却型空气悬浮压气机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1181490A (zh) * 1996-10-25 1998-05-13 三菱重工业株式会社 冷冻机中使用的压缩机
JP2004044954A (ja) * 2002-07-12 2004-02-12 Mitsubishi Heavy Ind Ltd ガス軸受付き圧縮機を備えたターボ冷凍機及びその運転方法
CN101305186A (zh) * 2005-11-09 2008-11-12 Bsh博世和西门子家用器具有限公司 压缩机
CN104145167A (zh) * 2011-12-21 2014-11-12 维纳斯系统公司 离心式制冷剂蒸气压缩机
WO2018022343A1 (en) * 2016-07-25 2018-02-01 Daikin Applied Americas Inc. Centrifugal compressor and magnetic bearing backup system for centrifugal compressor
CN108469128A (zh) * 2017-02-23 2018-08-31 松下知识产权经营株式会社 流体机械和制冷循环装置
CN209341637U (zh) * 2018-12-25 2019-09-03 珠海格力电器股份有限公司 冷媒循环系统
CN209371582U (zh) * 2018-12-25 2019-09-10 珠海格力电器股份有限公司 冷媒循环系和空调设备

Also Published As

Publication number Publication date
CN111365909B (zh) 2024-04-05
CN111365909A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
WO2020134514A1 (zh) 冷媒循环系统、空调设备和冷媒循环系统的控制方法
WO2022048175A1 (zh) 压缩机用气体轴承的供气系统、操作方法及制冷系统
US10274233B2 (en) Refrigerant cooling and lubrication system with refrigerant source access from an evaporator
KR100421390B1 (ko) 터보 압축기 냉각장치
CN111928504B (zh) 冷媒循环系统及控制方法
WO2020077788A1 (zh) 压缩机用气体轴承的供气系统、操作方法及制冷系统
US8763425B2 (en) Turbo compressor with multiple stages of compression devices
CN209371582U (zh) 冷媒循环系和空调设备
CN111928507B (zh) 冷媒循环系统、控制方法及空调机组
CN112268376A (zh) 一种氟泵型热管与喷射制冷循环复合系统及其控制方法
CN212318358U (zh) 压缩机用气体轴承的供气系统及制冷系统
CN104075475B (zh) 涡轮制冷机
CN111365874A (zh) 冷媒循环系统
WO2023088043A1 (zh) 压缩机供液系统
CN104075476B (zh) 涡轮制冷机
CN212253206U (zh) 冷媒循环系统及空调
CN114198924B (zh) 用于气悬浮压缩机的供气系统和冷媒循环系统
CN114198950B (zh) 压缩机的供液系统
JP5141272B2 (ja) ターボ冷凍機
CN108626900A (zh) 一种带有膨胀增压的双级压缩制冷系统
CN111879023A (zh) 冷媒循环系统及其控制方法、空调
CN210290188U (zh) 制冷循环系统及其离心压缩机
US11852150B2 (en) Gas bearing management for a compressor
CN114198919B (zh) 气悬浮机组系统
CN219199534U (zh) 无油复叠制冷系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904919

Country of ref document: EP

Kind code of ref document: A1