WO2020134511A1 - 压缩机 - Google Patents

压缩机 Download PDF

Info

Publication number
WO2020134511A1
WO2020134511A1 PCT/CN2019/113956 CN2019113956W WO2020134511A1 WO 2020134511 A1 WO2020134511 A1 WO 2020134511A1 CN 2019113956 W CN2019113956 W CN 2019113956W WO 2020134511 A1 WO2020134511 A1 WO 2020134511A1
Authority
WO
WIPO (PCT)
Prior art keywords
comb
rotor
impeller
partition plate
gap
Prior art date
Application number
PCT/CN2019/113956
Other languages
English (en)
French (fr)
Inventor
刘华
张治平
陈玉辉
钟瑞兴
李宏波
叶文腾
亓静利
刘胜
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2020134511A1 publication Critical patent/WO2020134511A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/083Sealings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings

Definitions

  • the present disclosure relates to the field of compressors, and particularly to a compressor.
  • the pressure and speed of the gas are mainly increased by the impeller working on the gas. After the gas is increased to a higher speed and pressure, it is easy to leak from the impeller along the axial and radial directions of the rotor, resulting in a reduction in the efficiency of the compressor. By setting a good seal, the leakage of high-pressure gas from the impeller flow channel to the outside is minimized or prevented.
  • the present disclosure proposes a compressor that can reduce the airflow leakage of the impeller along the axis of the compressor rotor.
  • the detailed technical effects that can be produced by multiple technical solutions among the multiple technical solutions provided by the present disclosure are described in detail below.
  • a compressor including: a housing; a rotor rotatably installed in the compressor housing; an impeller fixedly disposed on the rotor and capable of rotating with the rotor; And a baffle, installed in the housing, located on the side of the impeller away from the incoming flow side in the axial direction of the rotor; wherein the impeller further includes a comb-tooth seal structure for sealing the impeller and The gap between the partitions.
  • the partition plate and the impeller are gap-fitted in the axial direction of the rotor to form a first mating gap
  • the comb-tooth seal structure includes: a first comb-tooth structure including the A plurality of comb teeth adjacent to the surface on one side of the separator and spaced along the radial direction of the rotor; wherein, the gap between the first comb tooth structure and the separator in the axial direction of the rotor Cooperate to form a second mating gap, and the second mating gap is smaller than the first mating gap.
  • the baffle further includes: a first sink groove on a surface of the baffle adjacent to the impeller for at least partially accommodating the first comb structure; wherein, the The first comb tooth structure extends into the first sink groove along the axial direction of the rotor, and forms the second mating gap with the bottom of the second sink groove.
  • the comb-tooth seal structure includes: a second comb-tooth structure, including a plurality of comb-tooth disposed on a side of the impeller adjacent to the partition plate and spaced along the axial direction of the rotor; Wherein, the second comb-tooth structure and the separator are gap-fitted in the radial direction of the rotor to form a third matching gap.
  • the baffle further includes: a second sink, a surface of the baffle adjacent to the impeller side, for at least partially accommodating the second comb structure; wherein, the The second comb tooth structure extends into the second sink groove along the axial direction of the rotor, and forms a third fitting gap with a groove wall of the first sink groove parallel to the axis of the rotor.
  • the width of the second sink slot is greater than the thickness of the second comb structure 1 to 2 mm, and in the axial direction of the rotor, the second The depth of the sink groove is greater than the height of the second comb structure by 1-2 mm.
  • the comb-tooth seal structure includes: a second comb-tooth structure, including a plurality of comb-tooth disposed on a side of the impeller adjacent to the partition plate and spaced along the axial direction of the rotor; Wherein, the second comb-tooth structure and the separator are gap-fitted in the radial direction of the rotor to form a third mating gap, and the second comb-tooth structure is located on the first comb-tooth structure away from the rotor Side.
  • the number of the plurality of comb teeth in the first comb tooth structure is at least 7.
  • the number of the plurality of comb teeth in the second comb tooth structure is at least 7.
  • the tip portion of at least a part of the comb teeth of the plurality of comb teeth is biased toward the high-pressure side of the gap between the impeller and the separator with respect to the root portion.
  • the top cross-sectional shape of at least some of the comb teeth of the plurality of comb teeth is a right-angle trapezoid, and the right-angle trapezoid is perpendicular to the waists of the upper and lower bottoms and is between the impeller and the partition plate The high-pressure side of the gap.
  • the diaphragm and the rotor are gap-fitted in the radial direction of the rotor; the diaphragm further includes: a comb-tooth structure of the diaphragm, including a side of the diaphragm adjacent to the rotor , And a plurality of comb teeth arranged at intervals along the axial direction of the rotor to seal the gap between the separator and the rotor.
  • the number of the plurality of comb teeth in the partition comb structure is 8-10, and the tooth widths of the two comb teeth located at both ends of the plurality of comb teeth are greater than or equal to 2 mm.
  • the concentricity of the mating surface of the partition comb structure and the rotor is less than or equal to 0.02 mm.
  • the compressor further includes an anti-seizure member, which is lower in hardness than the partition plate and the impeller, and is disposed in a region where the partition plate and the impeller are in clearance fit.
  • the anti-seizure member is located in an area of the partition that is in clearance fit with the comb-tooth seal structure.
  • the compressor further includes a diffuser, which is located on the side of the impeller away from the incoming flow side, and is made integrally with the partition plate.
  • the embodiments of the present disclosure can reduce the airflow leakage of the impeller along the axis of the compressor rotor, thereby improving the working efficiency of the compressor.
  • FIG. 1 is a schematic diagram of a cooperative structure of an impeller, a rotor, and a partition plate in some embodiments of the compressor of the present disclosure
  • FIG. 2 is an enlarged schematic view of the cooperation structure of the impeller and the separator in some embodiments of the compressor of the present disclosure.
  • any technical feature or any technical solution in this embodiment is one or more of a variety of optional technical features or optional technical solutions.
  • this document cannot be exhausted.
  • a new technical solution is obtained by replacing any technical means provided by the present disclosure or combining any two or more technical means or technical features provided by the present disclosure with each other.
  • Compressors in the related art known to the inventor often provide a fixed comb-tooth seal part to perform a gap fit with the rotor, and perform sealing under a gap-fit state by means of the throttling action of the seal comb teeth on the comb-tooth seal part.
  • the sealing effect of the comb tooth sealing parts is better.
  • the gap between the comb teeth and the rotor will also affect the sealing effect, that is, in order to achieve a more ideal sealing state and improve the efficiency of the compressor, it is necessary to control the gap between the comb teeth and the rotor It is sufficiently small, and at the same time, the gap between the comb teeth and the rotor needs to be such that there is no interference or rubbing between the two. Compressors in related technologies known to the inventors often cannot balance both. In order to avoid mechanical failure, the gap between the comb teeth and the rotor has to be set to be wider, so that the leakage loss is larger.
  • the present disclosure proposes a compressor that can reduce the airflow leakage of the impeller along the axis of the compressor rotor.
  • the compressor provided by the present disclosure includes: a casing 8, a rotor 1, an impeller 2 and a partition 3.
  • the case 8 is a box structure having an accommodation space.
  • the rotor 1 is rotatably installed in the casing 8 of the compressor.
  • the impeller 2 is fixedly installed on the rotor 1 and can rotate with the rotor 1.
  • the partition plate 3 is installed in the housing, and is located on the side of the impeller 2 away from the incoming flow side in the axial direction of the rotor 1 (that is, the right side of the impeller 2 in FIG. 1 is also the back side of the impeller 2).
  • the compressor further includes a diffuser located on the side of the impeller 2 away from the incoming flow side, and the partition plate 3 is made integrally with the diffuser.
  • FIG. 1 only the structure between the casing 8, the impeller 2, the rotor 1 and the partition 3 is illustrated. Both the casing 8 and the partition plate 3 are fixed pieces that do not rotate together with the rotor 1, and oppositely, the impeller 2 and the rotor 1 constitute a rotating piece. Therefore, between the impeller 2 and the partition plate 3, and between the rotor 1 and the partition plate 3 are the cooperation relationship between the rotating member and the fixing member.
  • the airflow on the incoming side of the impeller 2 is increased by the rotation of the impeller 2 to increase the pressure, so that the air pressure of the airflow in the airflow channel of the impeller 2 is much greater than the air pressure outside the impeller 2, the impeller 2
  • the air flow in the air flow channel always leaks from the gap between the impeller 2 and the partition 3, and then further leaks from the gap between the rotor 1 and the partition 3, as shown in FIG. 1 ,
  • the other side of the partition plate 3 is a higher-level impeller 2 in which the airflow pressure will be further greater than the airflow in the low-stage impeller 2 .
  • the leakage tendency of the air flow along the axial direction of the rotor 1 is from right to left.
  • the leakage path of the air flow is the gap between the impeller 2 and the partition 3 and between the rotor 1 and the partition 3.
  • the impeller 2 of the embodiment of the present disclosure further includes a comb-tooth seal structure, which is used to seal the gap between the impeller 2 and the partition plate 3.
  • a comb-tooth seal structure which is used to seal the gap between the impeller 2 and the partition plate 3.
  • the comb-tooth seal structure is a seal form in which a plurality of comb teeth are arranged side by side, and a gap fit is formed between the comb-teeth tip and the surface of the partition 3.
  • the principle of the comb tooth seal is that each comb tooth and the partition 3 can form a small hole throttle structure.
  • the small hole throttling structure Through the pressure reducing and throttling function of the small hole throttling structure, multiple comb teeth are arranged side by side at the matching gap, so that the air flow is continuously reduced and throttled from the high pressure side until the low pressure side, the pressure of the air flow drops to no longer high Due to the ambient pressure, a good sealing effect can be formed at the fit gap.
  • a plurality of small holes formed in the comb-tooth seal structure and the surface of the partition plate 3 are the gaps between the tip of each comb-tooth tooth and the surface of the partition plate 3. According to the distance of the small hole throttling, as the gap between each comb tooth tip and the separator 3 decreases, that is, as the small hole size of the small hole throttling decreases, the small hole throttling structure Will have greater pressure reducing and throttling capabilities.
  • the airflow enters the space between the comb teeth after passing through the gap between each comb tooth and the surface of the partition 3.
  • the airflow will generate a large pressure drop due to the sudden expansion effect and generate a strong backflow.
  • the backflow generated by the airflow in the space between the comb teeth will further reduce the flowable area between the comb teeth and the surface of the partition 3, and further strengthen the throttling effect of the small hole throttling.
  • the partition plate 3 and the impeller 2 are clearance fit in the axial direction of the rotor 1 to form a first fit clearance.
  • the comb-tooth seal structure includes a first comb-tooth structure 4, and the first comb-tooth structure 4 includes a surface disposed on the side of the impeller 2 adjacent to the partition plate 3 and arranged at intervals along the radial direction of the rotor 1 Multiple comb teeth.
  • the first comb-tooth structure 4 and the partition plate 3 are gap-fitted in the axial direction of the rotor 1 to form a second mating gap, and the second mating gap is smaller than the first mating gap.
  • the partition plate 3 is located on the side of the impeller 2 away from the incoming flow along the axial direction of the rotor 1, and has a matching relationship with the rotor 1 along the axial direction of the rotor 1.
  • the leakage from the gap between the impeller 2 and the partition plate 3 is reduced as much as possible, and to ensure that the impeller 2 as a rotating member and the partition plate 3 as a fixed member No mechanical interference occurs, and the partition plate 3 and the impeller 2 form a gap fit in the axial direction of the rotor 1 to form a first fit gap.
  • the first comb-tooth structure 4 is provided for sealing.
  • the second fitting gap is smaller than the first fitting gap.
  • the first comb-shaped structure 4 includes a plurality of comb-shaped teeth adjacent to the surface on the side of the partition 3 and arranged at intervals in the radial direction of the rotor 1.
  • the first comb-tooth structure 4 provided on the impeller 2 is more convenient for processing and can obtain higher processing accuracy, which helps to accurately control the gap size between the first comb-tooth structure 4 and the partition plate 3 .
  • the partition 3 further includes a first sink 9 located on a surface of the partition 3 adjacent to the impeller 2 side, the first sink 9 being used to at least partially accommodate the first sink Comb structure 4.
  • the first sink 9 is a continuous annular sink.
  • the first comb-shaped structure 4 extends into the first sink slot 9 along the axial direction of the rotor 1 and forms the second mating gap with the slot bottom of the first sink slot 9.
  • the first comb-shaped structure 4 is disposed on the partition 3, and it is only necessary to ensure that the gap between the first comb-shaped structure 4 and the impeller 2 is also smaller than that of the impeller 2 and the The fitting gap of the partition plate 3 in the axial direction may be sufficient.
  • the first comb-shaped structure 4 provided on the partition plate 3 can obtain better stability, that is, the first comb-shaped structure 4 provided on the impeller 2 can prevent the first comb-shaped structure 4 from deflecting or rotating as the rotor 1 rotates. Eccentric and change the corresponding fit gap.
  • the comb-tooth seal structure includes a second comb-tooth structure 5.
  • the second comb-tooth structure 5 includes a plurality of comb-tooth disposed on the side of the impeller 2 adjacent to the partition 3 and arranged at intervals along the axial direction of the rotor 1.
  • the second comb-tooth structure 5 and the separator 3 are gap-fitted in the radial direction of the rotor 1 to form a fourth matching gap.
  • the partition 3 further includes: a second sink 6 on a surface of the partition adjacent to the impeller side.
  • the second sink 6 is a continuous annular sink.
  • the second sink 6 at least partially accommodates the second comb structure 5.
  • the second comb structure 5 extends into the second sink 6 along the axial direction of the rotor 1 and forms the third fit with the slot wall of the second sink 6 parallel to the axis of the rotor 1 gap.
  • the second sink groove 6 can increase the length of the third mating gap between the impeller 2 and the partition plate 3, thereby allowing a more tooth comb structure to be provided.
  • This matching structure can utilize the stability of the partition 3 as a fixing member, realize a deeper second sink, and continue to maintain sufficient mechanical strength.
  • the second comb-tooth structure 5 is provided on the partition 3, and the second sink 6 is provided on the impeller 2 accordingly. This arrangement can further reduce the weight of the impeller 2 and reduce the driving force required to rotate the impeller 2.
  • the width of the second sink slot 6 is greater than the first along the radial direction of the rotor 1.
  • the thickness of the second comb-tooth structure 5 is 1 to 2 mm, and the depth of the second sink groove 6 is greater than the height of the second comb-tooth structure 5 by 1 to 2 mm in the axial direction of the rotor 1.
  • the width of the second sink groove 6 is greater than the thickness of the second comb-shaped structure 5 by 1 to 2 mm does not mean that the third matching gap between the second comb-shaped structure 5 and the partition plate 3 is 1 to 2 mm .
  • the third mating clearance is also affected by the position of the second comb-tooth structure 5 in the countersink 6 in the radial direction of the main shaft.
  • the compressor has both the first comb-tooth structure 4 and the second comb Tooth structure 5 to further increase the length of the matching gap between the impeller 2 and the partition 3, and increase the number of comb teeth used to seal the gap between the impeller 2 and the partition 3, thereby enhancing the edge The sealing effect of the axial impeller 2 of the rotor 1.
  • the second comb-tooth structure 5 is disposed on the side of the first comb-tooth structure 4 away from the rotor 1, so that it contacts the high-pressure air in the impeller 2 before the first comb-tooth structure 4 is sealed by the labyrinth
  • the first comb seals the high-pressure air in the impeller 2 through the tortuous path provided by the second comb-tooth structure 5 and the sink 6.
  • the arrangement of the second comb-tooth structure 5 on the side of the impeller 2 away from the rotor 1 is also advantageous for machining the second comb-tooth structure 5 and the first comb-tooth structure 4.
  • the number of multiple comb-tooth in the first comb-tooth structure 4 is at least 7. In some embodiments, the number of the plurality of comb teeth in the second comb structure 5 is at least 7.
  • each comb tooth In order to make the small hole throttling structure formed by each comb tooth pass through the gap through the airflow, it can generate a larger pressure drop through the benefit of sudden expansion.
  • the multiple comb teeth are helical tooth structures .
  • the tip portion of at least part of the comb teeth of the plurality of comb teeth is biased toward the high-pressure side of the gap between the impeller 2 and the partition plate 3 with respect to the tooth root portion.
  • the top cross-sectional shape of at least some of the comb teeth of the plurality of comb teeth is a right-angle trapezoid, and each right-angle trapezoid is perpendicular to the waist of the upper and lower bottoms close to the impeller 2 and the The high-pressure side of the gap between the partitions 3.
  • Comb teeth with a right-angled trapezoidal cross-sectional shape have a waist perpendicular to the bottom surface, which is used as a positioning tooth surface, which makes it easier to perform mechanical processing and ensure that the processing accuracy of the comb teeth meets the requirements.
  • the partition plate 3 and the rotor 1 form a clearance fit in the radial direction of the rotor 1.
  • the partition 3 further includes: a partition comb structure 7.
  • the diaphragm comb-tooth structure 7 includes a plurality of comb teeth disposed on the side of the diaphragm 3 adjacent to the rotor 1 and arranged at intervals along the axial direction of the rotor 1, for sealing the diaphragm 3 from the The gap between the spindles.
  • the partition 3 further extends from the housing 8 to the rotor 1 to form a gap fit, and through the partition comb teeth structure 7 provided on the mating surface of the partition 3 and the rotor 1, the A third level of sealing is performed on the basis of the seal formed by the first comb-tooth structure 4 and the second comb-tooth structure 5.
  • a comb seal structure is provided on the partition plate 3 to prevent the deflection of the rotor 1 from affecting the fit clearance.
  • the number of multiple comb teeth in the separator comb-tooth structure 7 is 8-10.
  • the tooth widths of the two comb teeth located at both ends of the plurality of comb teeth are greater than or equal to 2 mm.
  • both ends of the partition comb structure 7 can be processed at an oblique angle to weaken the strength of the airflow entering the partition comb structure 7.
  • the partition comb structure 7 Since the partition comb structure 7 is fixed on the partition 3 in an axial arrangement, the mating surface that cooperates with the rotor 1 needs to be level. In some embodiments, the partition comb structure 7 is The concentricity of the matching surface of the rotor 1 and the rotor 1 is less than or equal to 0.02 mm.
  • the compressor includes: an anti-seizure member 10 having a hardness lower than that of the partition plate 3 and the impeller 2 and disposed between the partition plate 3 and the impeller 2 in a gap Area of cooperation.
  • the anti-seizure piece is embedded on the partition 3 or the impeller 2 to prevent the impeller 2 and the partition 3 from directly engaging with each other during the rotation of the impeller 2 to perform work
  • Mechanical damage is caused to the impeller 2 and the partition 3.
  • the anti-seizure member is embedded in the impeller 2 and/or the soft material (such as rubber, nylon, etc.)
  • the aluminum substrate on the partition 3 protects the area where the partition 3 and the impeller 2 are in clearance fit.
  • the second comb structure 5 on the impeller 2 can be contacted and positioned before the main shaft, thereby effectively preventing the second comb structure 5 from being stressed in the axial direction.
  • the anti-seizure piece 10 is located on the partition 3 in a gap-matching area with the comb-tooth seal structure, specifically located on the partition 3 with the first comb-tooth structure 4 and the second comb-tooth respectively Structure 5 presents a gap fit area.
  • the anti-seizure member 10 covers the corresponding area of the partition plate 3 in a coating manner, so as to effectively protect the comb teeth of the aluminum material of the comb seal structure from easily being separated from the aluminum material partition plate Occlusion occurs.
  • the anti-seizure member 10 is coated on the surface of the comb teeth of the comb seal structure.
  • the fixed connection can be understood as: a detachably fixed connection (for example, a bolt or screw connection), or It is understood as: a non-removable fixed connection (such as riveting and welding).
  • a detachably fixed connection for example, a bolt or screw connection
  • a non-removable fixed connection such as riveting and welding
  • the fixed connection with each other can also be replaced by an integrated structure (for example, manufactured by integral molding using a casting process) (except that it is obviously impossible to adopt an integrated molding process).
  • any component provided by the present disclosure may be assembled from a plurality of separate components, or may be a separate component manufactured by an integral molding process.

Abstract

一种压缩机,包括:壳体(8);转子(1),可旋转地安装于压缩机壳体(8)内;叶轮(2),固定设置在转子(1)上,随着转子(1)转动;和隔板(3),安装于壳体(8)内,沿转子(1)的轴向位于叶轮(2)远离来流侧的一侧;叶轮(2)进一步包括:梳齿密封结构(4,5),用于密封叶轮(2)与隔板(3)之间的间隙。通过在叶轮(2)与隔板(3)之间的间隙设置梳齿密封结构(4,5),减少了叶轮(2)沿压缩机转子(1)轴向的气流泄漏,提高了压缩机的工作效率。

Description

压缩机
相关申请的交叉引用
本公开是以CN申请号为201811595297.5,申请日为2018年12月25日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及压缩机领域,尤其涉及一种压缩机。
背景技术
压缩机在工作过程中,主要通过叶轮对气体做功来增加气体的压力与速度。而气体在升高至较大的速度与压力后,容易沿着所述转子轴向与径向从所述叶轮泄漏,导致压缩机的效率降低。而通过设置良好的密封尽量减少或防止高压气体从叶轮流道内向外的泄漏。
发明内容
本公开提出一种压缩机,能够减少叶轮沿压缩机转子轴向的气流泄漏。本公开提供的诸多技术方案中的多个技术方案所能产生的诸多技术效果详见下文阐述。
在本公开的一个方面,提供一种压缩机,包括:壳体;转子,可旋转地安装于所述压缩机壳体内;叶轮,固定设置在所述转子上,能够随着所述转子转动;和隔板,安装于所述壳体内,沿所述转子的轴向位于所述叶轮远离来流侧的一侧;其中,所述叶轮进一步包括:梳齿密封结构,用于密封所述叶轮与所述隔板之间的间隙。
在一些实施例中,所述隔板与所述叶轮在所述转子的轴向上间隙配合,形成第一配合间隙,所述梳齿密封结构包括:第一梳齿结构,包括设置于所述叶轮邻近所述隔板一侧的表面,并沿所述转子的径向间隔排列的多个梳齿;其中,所述第一梳齿结构与所述隔板在所述转子的轴向上间隙配合,形成第二配合间隙,且所述第二配合间隙小于所述第一配合间隙。
在一些实施例中,所述隔板进一步包括:第一沉槽,位于所述隔板邻近所述叶轮一侧的表面,用于至少部分地容纳所述第一梳齿结构;其中,所述第一梳齿结构沿所述转子的轴向伸入所述第一沉槽,且与所述第二沉槽的槽底形成所述第二配合间隙。
在一些实施例中,所述梳齿密封结构包括:第二梳齿结构,包括设置于所述叶轮邻近所述隔板一侧,并沿所述转子的轴向间隔排列的多个梳齿;其中,所述第二梳齿结构与所述隔板在所述转子的径向上间隙配合,形成第三配合间隙。
在一些实施例中,所述隔板进一步包括:第二沉槽,位于所述隔板邻近所述叶轮一侧的表面,用于至少部分地容纳所述第二梳齿结构;其中,所述第二梳齿结构沿所述转子的轴向伸入所述第二沉槽,且与所述第一沉槽平行于所述转子的轴线的槽壁形成所述第三配合间隙。
在一些实施例中,沿所述转子的径向,所述第二沉槽的宽度大于所述第二梳齿结构的厚度1~2mm,并且在沿所述转子的轴向,所述第二沉槽的深度大于所述第二梳齿结构的高度1~2mm。
在一些实施例中,所述梳齿密封结构包括:第二梳齿结构,包括设置于所述叶轮邻近所述隔板一侧,并沿所述转子的轴向间隔排列的多个梳齿;其中,所述第二梳齿结构与所述隔板在所述转子的径向上间隙配合,形成第三配合间隙,所述第二梳齿结构位于所述第一梳齿结构远离所述转子的一侧。
在一些实施例中,所述第一梳齿结构中多个梳齿的数量为至少7个。
在一些实施例中,所述第二梳齿结构中多个梳齿的数量为至少7个。
在一些实施例中,所述多个梳齿中的至少部分梳齿的齿尖部位相对于齿根部位偏向于所述叶轮与所述隔板之间间隙的高压侧。
在一些实施例中,所述多个梳齿中的至少部分梳齿的齿形顶部截面形状为直角梯形,所述直角梯形垂直于上下底的腰靠近于所述叶轮与所述隔板之间间隙的高压侧。
在一些实施例中,所述隔板与所述转子在所述转子的径向上间隙配合;所述隔板进一步包括:隔板梳齿结构,包括设置于所述隔板邻近所述转子一侧,并沿所述转子的轴向间隔排列的多个梳齿,用于密封所述隔板与所述转子之间的间隙。
在一些实施例中,所述隔板梳齿结构中多个梳齿的数量为8~10个,并且所述多个梳齿中位于两端的两个梳齿的齿宽均大于等于2mm。
在一些实施例中,所述隔板梳齿结构上与所述转子配合的配合面与所述转子的同心度小于等于0.02mm。
在一些实施例中,所述压缩机还包括:防咬合件,硬度低于所述隔板以及所述叶轮,并设置于所述隔板与所述叶轮呈间隙配合的区域。
在一些实施例中,所述防咬合件位于所述隔板上与所述梳齿密封结构呈间隙配合 的区域。
在一些实施例中,所述压缩机还包括:扩压器,位于所述叶轮远离来流侧的一侧,且与所述隔板一体制成。
基于上述技术方案,本公开实施例通过在所述叶轮与所述隔板之间的间隙设置梳齿密封结构,能够减少叶轮沿压缩机转子轴向的气流泄漏,进而提高压缩机的工作效率。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开压缩机的一些实施例中叶轮、转子与隔板的配合结构示意图;
图2为本公开压缩机的一些实施例中叶轮与隔板的配合结构放大示意图。
附图标记:1、转子;2、叶轮;3、隔板;4、第一梳齿结构;5、第二梳齿结构;6、第二沉槽;7、隔板梳齿结构;8、壳体;9、第一沉槽;10、防咬合件。
具体实施方式
下面可以参照附图以及文字内容理解本公开的内容以及本公开与现有技术之间的区别点。下文通过附图以及列举本公开的一些可选实施例的方式,对本公开的技术方案做进一步的详细描述。
需要说明的是:本实施例中的任何技术特征、任何技术方案均是多种可选的技术特征或可选的技术方案中的一种或几种,为了描述简洁的需要本文件中无法穷举本公开的所有可替代的技术特征以及可替代的技术方案,也不便于每个技术特征的实施方式均强调其为可选的多种实施方式之一,所以本领域技术人员应该知晓:可以将本公开提供的任一技术手段进行替换或将本公开提供的任意两个或更多个技术手段或技术特征互相进行组合而得到新的技术方案。
本实施例内的任何技术特征以及任何技术方案均不限制本公开的保护范围,本公开的保护范围应该包括本领域技术人员不付出创造性劳动所能想到的任何替代技术方案以及本领域技术人员将本公开提供的任意两个或更多个技术手段或技术特征互相进行组合而得到的新的技术方案。
发明人知晓的相关技术中的压缩机常常设置固定的梳齿密封零件与转子进行间隙配合,并借助所述梳齿密封零件上的密封梳齿的节流作用进行间隙配合状态下的密封。一般而言,随着梳齿数量的增加,所述梳齿密封零件的密封效果更好。
经研究发现,受到压缩机内结构的限制,发明人知晓的相关技术中的压缩机对所述叶轮沿轴向进行密封的梳齿无法做到较大的数量,导致密封效果不够理想。此外,为防止梳齿密封零件与转子出现干涉、剐蹭等问题,梳齿与转子以间隙配合方式进行密封。而所述梳齿与所述转子的间隙也会对密封效果产生影响,即为了达到更理想的密封状态,提高压缩机的效率,就需要将所述梳齿与所述转子间的间隙控制的足够小,同时还需要使所述梳齿与所述转子间的间隙能够使两者不出现干涉、剐蹭。发明人知晓的相关技术中的压缩机常常无法兼顾两者,为了避免机械故障,只得选择将所述梳齿与所述转子间的间隙设置为较宽,这样泄漏损失较大。
有鉴于此,本公开提出一种压缩机,能够减少叶轮沿压缩机转子轴向的气流泄漏。
下面结合附图1和附图2对本公开提供的技术方案进行更为详细的阐述。
如图1所示,本公开提供的压缩机,包括:壳体8、转子1、叶轮2和隔板3。壳体8是具有容纳空间的箱壳结构。转子1可旋转地安装于所述压缩机的壳体8内。叶轮2固定设置在所述转子1上,能够随着所述转子1转动。隔板3安装于所述壳体内,沿所述转子1的轴向位于所述叶轮2远离来流侧的一侧(即图1中叶轮2的右侧,也是叶轮2的背侧)。在一些实施例中,压缩机还包括位于所述叶轮2远离来流侧的一侧的扩压器,隔板3与扩压器一体制成。
图1中仅示意出壳体8、叶轮2、转子1与隔板3之间的结构。所述壳体8与所述隔板3均为不与所述转子1共同旋转的固定件,而相对的,所述叶轮2与所述转子1则构成了旋转件。因此,所述叶轮2与所述隔板3之间、所述转子1与所述隔板3之间均为旋转件与固定件的配合关系。
对于叶轮2而言,位于叶轮2来流侧的气流受到叶轮2的旋转作用而增加压力,使得在所述叶轮2气流通道中的气流的空气压力远大于所述叶轮2外部的空气压力,叶轮2气流通道中的气流始终存在着从叶轮2与所述隔板3之间间隙泄漏,再进一步从所述转子1与所述隔板3之间间隙泄漏的趋势,即如图1所示的,沿所述转子1的轴向,从左向右的泄漏趋势。
当然,对于多级叶轮2并排设置的压缩机而言,在一些实施例中,所述隔板3的另一侧为更高级的叶轮2,其中的气流压力将进一步大于低级叶轮2内的气流。此时, 气流沿所述转子1轴向的泄漏趋势为自右向左的。但是无论对于从左向右还是自右向左的泄漏趋势,气流的泄漏通道均为所述叶轮2与所述隔板3之间、所述转子1与所述隔板3之间的间隙。
针对于上述两处间隙,本公开实施例的叶轮2进一步包括:梳齿密封结构,用于密封所述叶轮2与所述隔板3之间的间隙。通过设置梳齿密封结构对所述叶轮2与所述隔板3之间的间隙进行密封,有效地提高所述叶轮2的密封性能,减少泄漏损失,提高压缩机的整体工作效率。
梳齿密封结构是一种通过多个并排设置的梳齿,并通过所述梳齿齿尖与隔板3的表面形成间隙配合的密封形式。梳齿密封的原理在于:每一个梳齿与隔板3都能形成一个小孔节流结构。通过小孔节流结构所具有的降压节流作用,在配合间隙处并排设置多个梳齿,使得气流从高压侧不断地降压节流,直到低压侧,气流的压力降低到不再高于环境压力,便能在配合间隙处形成良好的密封效果。
梳齿密封结构与所述隔板3表面所形成的多个小孔节流结构的小孔为每一个梳齿齿尖与所述隔板3表面之间的空隙。依据小孔节流的远离,随着每一个所述梳齿齿尖与所述隔板3之间空隙的减小,即随着小孔节流的小孔尺寸减小,小孔节流结构将具有更大的降压节流能力。
此外,气流在经过每个梳齿与所述隔板3表面之间的间隙后,都会进入梳齿之间的空间。在进入梳齿之间空间的时候,气流会由于突扩效应而产生较大的压力降,并且产生强烈的回流。气流在所述梳齿之间的空间所产生的回流会进一步减少梳齿与所述隔板3表面之间的可流通面积,进一步强化小孔节流的节流效果。
在一些实施例中,所述隔板3与所述叶轮2在所述转子1的轴向上间隙配合,形成第一配合间隙。所述梳齿密封结构包括第一梳齿结构4,第一梳齿结构4包括设置于所述叶轮2邻近所述隔板3一侧的表面,并沿所述转子1的径向间隔排列的多个梳齿。所述第一梳齿结构4与所述隔板3在所述转子1的轴向上间隙配合,形成第二配合间隙,且所述第二配合间隙小于所述第一配合间隙。
所述隔板3沿所述转子1的轴向位于所述叶轮2远离来流侧的一侧,其与所述转子1之间具有沿所述转子1轴向的配合关系。为了使所述压缩机整体结构紧凑,尽可能的减少从所述叶轮2与所述隔板3之间间隙所产生的泄漏,并保证作为旋转件的叶轮2与作为固定件的隔板3之间不出现机械干扰,所述隔板3与所述叶轮2在所述转子1的轴向上形成间隙配合,形成第一配合间隙。
对于该第一配合间隙,通过设置第一梳齿结构4进行密封。为了保证密封效果,第二配合间隙小于所述第一配合间隙。如图1所示,所述第一梳齿结构4包括邻近所述隔板3一侧的表面,并沿所述转子1的径向间隔排列的多个梳齿。设置于所述叶轮2的第一梳齿结构4更便于加工,并能获得更高的加工精度,有助于精确控制所述第一梳齿结构4与所述隔板3之间的间隙尺寸。
在图1中,所述隔板3进一步包括位于所述隔板3邻近所述叶轮2一侧的表面的第一沉槽9,该第一沉槽9用于至少部分地容纳所述第一梳齿结构4。在一些实施例中,第一沉槽9为连续的环形沉槽。所述第一梳齿结构4沿所述转子1的轴向伸入所述第一沉槽9,且与所述第一沉槽9的槽底形成所述第二配合间隙。
在另一些实施例中,所述第一梳齿结构4设置在所述隔板3上,只需保证所述第一梳齿结构4与所述叶轮2的间隙同样小于所述叶轮2与所述隔板3在轴向上的配合间隙即可。设置于所述隔板3的第一梳齿结构4能够获得更好的稳定性,即避免由于设置于叶轮2而使所述第一梳齿结构4可能随着转子1旋转过程的挠曲或偏心而改变相应的配合间隙。
在一些实施例中,所述梳齿密封结构包括第二梳齿结构5。第二梳齿结构5包括设置于所述叶轮2邻近所述隔板3一侧,并沿所述转子1的轴向间隔排列的多个梳齿。所述第二梳齿结构5与所述隔板3在所述转子1的径向上间隙配合,形成第四配合间隙。
在图1中,所述隔板3进一步包括:位于所述隔板邻近所述叶轮一侧的表面的第二沉槽6。在一些实施例中,第二沉槽6为连续的环形沉槽。第二沉槽6至少部分地容纳所述第二梳齿结构5。第二梳齿结构5沿所述转子1的轴向伸入所述第二沉槽6,且与所述第二沉槽6平行于所述转子1的轴线的槽壁形成所述第三配合间隙。第二沉槽6能够增大所述叶轮2与所述隔板3的第三配合间隙的长度,进而允许设置更多齿数的梳齿密封结构。这种配合结构能够利用隔板3作为固定件的稳定性,实现更深的第二沉槽,并继续保持足够的机械强度。
在另一些实施例中,所述第二梳齿结构5设置在所述隔板3上,相应地将所述第二沉槽6设置在所述叶轮2上。这种设置方式能够进一步减小叶轮2的重量,减少使所述叶轮2旋转所需的驱动力。
为了保证所述第二梳齿结构5能够准确地插装于所述沉槽6,在一些实施例中,沿所述转子1的径向,所述第二沉槽6的宽度大于所述第二梳齿结构5的厚度1~2mm, 并且在沿所述转子1的轴向,所述第二沉槽6的深度大于所述第二梳齿结构5的高度1~2mm。
第二沉槽6的宽度大于所述第二梳齿结构5的厚度1~2mm并不意味着所述第二梳齿结构5与所述隔板3之间的第三配合间隙为1~2mm。该第三配合间隙还受到所述第二梳齿结构5位于所述沉槽6内的沿所述主轴径向的位置影响。
相对于仅具有第一梳齿结构4或第二梳齿结构5的压缩机实施例而言,在另一些实施例中,压缩机同时具有所述第一梳齿结构4以及所述第二梳齿结构5,以进一步增加所述叶轮2与所述隔板3之间的配合间隙长度,并提高用以密封所述叶轮2与所述隔板3之间间隙的梳齿数量,从而提升沿所述转子1轴向叶轮2的密封效果。
所述第二梳齿结构5设置于所述第一梳齿结构4远离所述转子1的一侧,从而先于所述第一梳齿结构4接触叶轮2中的高压空气,利用迷宫密封的原理,通过所述第二梳齿结构5与所述沉槽6所提供的曲折路径对叶轮2中的高压空气形成第一道密封。并且,所述第二梳齿结构5设置在所述叶轮2远离于所述转子1的一侧还有利于对所述第二梳齿结构5以及所述第一梳齿结构4进行机械加工。
为了保证所述梳齿密封结构的密封效果,在一些实施例中,所述第一梳齿结构4中多个梳齿的数量为至少7个。在一些实施例中,所述第二梳齿结构5中多个梳齿的数量为至少7个。
为了使每个梳齿所形成的小孔节流结构能够通过气流经过间隙后,能够通过突扩效益,产生更大的压力降,在一些实施例中,所述多个梳齿为斜齿结构。多个梳齿中的至少部分梳齿的齿尖部位相对于齿根部位偏向于所述叶轮2与所述隔板3之间间隙的高压侧。
在一些实施例中,所述多个梳齿中的至少部分梳齿的齿形顶部截面形状为直角梯形,并且每个所述直角梯形垂直于上下底的腰靠近于所述叶轮2与所述隔板3之间间隙的高压侧。
截面形状为直角梯形的梳齿,由于具有一条垂直于底面的腰,将其作为定位齿面,则更容易进行机械加工,并且保证所述梳齿的加工精度符合要求。
在一些实施例中,所述隔板3与所述转子1在所述转子1的径向上形成间隙配合。所述隔板3进一步包括:隔板梳齿结构7。隔板梳齿结构7包括设置于所述隔板3邻近所述转子1一侧,并沿所述转子1的轴向间隔排列的多个梳齿,用于密封所述隔板3与所述主轴之间的间隙。
所述隔板3进一步从壳体8延伸至于所述转子1形成间隙配合,并通过在所述隔板3与所述转子1的配合面上所设置的隔板梳齿结构7,从而在所述第一梳齿结构4与所述第二梳齿结构5所形成的密封基础上进行第三层次的密封。考虑到所述隔板3为固定件,而转子1为旋转件,在一些实施例中,梳齿密封结构设置于所述隔板3,以防止转子1的挠曲对配合间隙的影响。
为了保证所述隔板梳齿结构7的密封效果,同时考虑到轴向空间的影响,在一些实施例中,所述隔板梳齿结构7中多个梳齿的数量为8~10个,并且多个梳齿中位于两端的两个梳齿的齿宽均大于等于2mm。另外,在一些实施例中,所述隔板梳齿结构7的两端能够被加工成斜角,用以削弱进入所述隔板梳齿结构7的气流强度。
由于所述隔板梳齿结构7采用轴向排列的方式固定在隔板3上,因此与转子1配合的配合面需要保证水平,在一些实施例中,所述隔板梳齿结构7上与所述转子1配合的配合面与所述转子1的同心度小于等于0.02mm。
参考图2,在一些实施例中,所述压缩机包括:防咬合件10,硬度低于所述隔板3以及所述叶轮2,并设置于所述隔板3与所述叶轮2呈间隙配合的区域。
在一些实施例中,所述防咬合件嵌于所述隔板3或所述叶轮2上,以防在所述叶轮2旋转做功的过程中,叶轮2与所述隔板3互相咬合而直接对叶轮2和隔板3造成机械损伤。对于以铝制材料加工的所述叶轮2或所述隔板3而言,所述防咬合件采用质地较软的材料(例如橡胶、尼龙等)嵌装于所述叶轮2和/或所述隔板3上的铝材料基体上,以对所述隔板3与所述叶轮2呈间隙配合的区域进行保护。此外,叶轮2在安装过程中,能够使叶轮2上的第二梳齿结构5先于主轴进行接触定位,从而有效防止所述第二梳齿结构5在轴向方向受力。
在图10中,所述防咬合件10位于所述隔板3上与所述梳齿密封结构呈间隙配合的区域,具体位于隔板3上分别与第一梳齿结构4和第二梳齿结构5呈间隙配合的区域。在一些实施例中,防咬合件10以涂层的方式覆盖在隔板3的对应区域,从而有效地保护梳齿密封结构的铝制材料的梳齿不容易与铝制材料的隔板之间发生咬合。在另一些实施例中,防咬合件10以涂层的方式覆盖在梳齿密封结构的梳齿表面。
上述本公开所公开的任一技术方案除另有声明外,如果其公开了数值范围,那么公开的数值范围均为可选的数值范围,任何本领域的技术人员应该理解:可选的数值范围仅仅是诸多可实施的数值中技术效果比较明显或具有代表性的数值。由于数值较多,无法穷举,所以本公开才公开部分数值以举例说明本公开的技术方案,并且,上 述列举的数值不应构成对本公开创造保护范围的限制。
如果本文中使用了“第一”、“第二”等词语来限定零部件的话,本领域技术人员应该知晓:“第一”、“第二”的使用仅仅是为了便于描述上对零部件进行区别如没有另行声明外,上述词语并没有特殊的含义。
同时,上述本公开如果公开或涉及了互相固定连接的零部件或结构件,那么,除另有声明外,固定连接可以理解为:能够拆卸地固定连接(例如使用螺栓或螺钉连接),也可以理解为:不可拆卸的固定连接(例如铆接、焊接),当然,互相固定连接也可以为一体式结构(例如使用铸造工艺一体成形制造出来)所取代(明显无法采用一体成形工艺除外)。
另外,上述本公开公开的任一技术方案中所应用的用于表示位置关系或形状的术语除另有声明外其含义包括与其近似、类似或接近的状态或形状。本公开提供的任一部件既可以是由多个单独的组成部分组装而成,也可以为一体成形工艺制造出来的单独部件。
在本公开的描述中如果使用了术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等,那么上述术语指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的设备、机构、部件或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开保护范围的限制。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本公开技术方案的精神,其均应涵盖在本公开请求保护的技术方案范围当中。

Claims (17)

  1. 一种压缩机,包括:
    壳体(8);
    转子(1),可旋转地安装于所述压缩机的壳体(8)内;
    叶轮(2),固定设置在所述转子(1)上,能够随着所述转子(1)转动;和
    隔板(3),安装于所述壳体(8)内,沿所述转子(1)的轴向位于所述叶轮(2)远离来流侧的一侧;
    其中,所述叶轮(2)进一步包括:
    梳齿密封结构(4;5),用于密封所述叶轮(2)与所述隔板(3)之间的间隙。
  2. 根据权利要求1所述的压缩机,其中所述隔板(3)与所述叶轮(2)在所述转子(1)的轴向上间隙配合,形成第一配合间隙,所述梳齿密封结构包括:
    第一梳齿结构(4),转子(1)包括设置于所述叶轮(2)邻近所述隔板(3)一侧的表面,并沿所述转子(1)的径向间隔排列的多个梳齿;
    其中,所述第一梳齿结构(4)与所述隔板(3)在所述转子(1)的轴向上间隙配合,形成第二配合间隙,且所述第二配合间隙小于所述第一配合间隙。
  3. 根据权利要求2所述的压缩机,其中所述隔板(3)进一步包括:
    第一沉槽(9),位于所述隔板(3)邻近所述叶轮(2)一侧的表面,用于至少部分地容纳所述第一梳齿结构(4);
    其中,所述第一梳齿结构(4)沿所述转子(1)的轴向伸入所述第一沉槽(9),且与所述第一沉槽(9)的槽底形成所述第二配合间隙。
  4. 根据权利要求1所述的压缩机,其中所述梳齿密封结构包括:
    第二梳齿结构(5),包括设置于所述叶轮(2)邻近所述隔板(3)一侧,并沿所述转子(1)的轴向间隔排列的多个梳齿;
    其中,所述第二梳齿结构(5)与所述隔板(3)在所述转子(1)的径向上间隙配合,形成第三配合间隙。
  5. 根据权利要求4所述的压缩机,其中所述隔板(3)进一步包括:
    第二沉槽(6),位于所述隔板(3)邻近所述叶轮(2)一侧的表面,用于至少部分地容纳所述第二梳齿结构(5);
    其中,所述第二梳齿结构(5)沿所述转子(1)的轴向伸入所述第二沉槽(6), 且与所述第二沉槽(6)平行于所述转子(1)的轴线的槽壁形成所述第三配合间隙。
  6. 根据权利要求5所述的压缩机,其中沿所述转子(1)的径向,所述第二沉槽(6)的宽度大于所述第二梳齿结构(5)的厚度1~2mm,并且在沿所述转子(1)的轴向,所述第二沉槽(6)的深度大于所述第二梳齿结构(5)的高度1~2mm。
  7. 根据权利要求2所述的压缩机,其中所述梳齿密封结构包括:
    第二梳齿结构(5),包括设置于所述叶轮(2)邻近所述隔板(3)一侧,并沿所述转子(1)的轴向间隔排列的多个梳齿;
    其中,所述第二梳齿结构(5)与所述隔板(3)在所述转子(1)的径向上间隙配合,形成第三配合间隙,所述第二梳齿结构(5)位于所述第一梳齿结构(4)远离所述转子(1)的一侧。
  8. 根据权利要求7所述的压缩机,其中所述第一梳齿结构(4)中多个梳齿的数量为至少7个。
  9. 根据权利要求7所述的压缩机,其中所述第二梳齿结构(5)中多个梳齿的数量为至少7个。
  10. 根据权利要求6所述的压缩机,其中所述多个梳齿中的至少部分梳齿的齿尖部位相对于齿根部位偏向于所述叶轮(2)与所述隔板(3)之间间隙的高压侧。
  11. 根据权利要求6所述的压缩机,其中所述多个梳齿中的至少部分梳齿的齿形顶部截面形状为直角梯形,所述直角梯形垂直于上下底的腰靠近于所述叶轮(2)与所述隔板(3)之间间隙的高压侧。
  12. 根据权利要求1所述的压缩机,其中所述隔板(3)与所述转子(1)在所述转子(1)的径向上间隙配合;所述隔板(3)进一步包括:
    隔板梳齿结构(7),包括设置于所述隔板(3)邻近所述转子(1)一侧,并沿所述转子(1)的轴向间隔排列的多个梳齿,用于密封所述隔板(3)与所述转子(1)之间的间隙。
  13. 根据权利要求12所述的压缩机,其中所述隔板梳齿结构(7)中多个梳齿的数量为8~10个,并且所述多个梳齿中位于隔板(3)两端的两个梳齿的齿宽均大于等于2mm。
  14. 根据权利要求13所述的压缩机,其中所述隔板梳齿结构(7)上与所述转子(1)配合的配合面与所述转子(1)的同心度小于等于0.02mm。
  15. 根据权利要求1所述的压缩机,还包括:
    防咬合件(10),硬度低于所述隔板(3)以及所述叶轮(2),并设置于所述隔板(3)与所述叶轮(2)呈间隙配合的区域。
  16. 根据权利要求15所述的压缩机,其中,所述防咬合件(10)位于所述隔板(3)上与所述梳齿密封结构(4;5)呈间隙配合的区域。
  17. 根据权利要求1所述的压缩机,还包括:
    扩压器,位于所述叶轮(2)远离来流侧的一侧,且与所述隔板(3)一体制成。
PCT/CN2019/113956 2018-12-25 2019-10-29 压缩机 WO2020134511A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811595297.5 2018-12-25
CN201811595297.5A CN111365288A (zh) 2018-12-25 2018-12-25 一种具有梳齿密封结构叶轮的压缩机

Publications (1)

Publication Number Publication Date
WO2020134511A1 true WO2020134511A1 (zh) 2020-07-02

Family

ID=71127428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113956 WO2020134511A1 (zh) 2018-12-25 2019-10-29 压缩机

Country Status (2)

Country Link
CN (1) CN111365288A (zh)
WO (1) WO2020134511A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112648227B (zh) * 2020-12-24 2023-05-26 亿昇(天津)科技有限公司 一种叶轮与电机转子的密封结构及风机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195999A (ja) * 1991-08-03 1993-08-06 Man B & W Diesel Gmbh 半径流圧縮機ロータの動的安定化装置
CN202047870U (zh) * 2011-05-18 2011-11-23 北京龙威发电技术有限公司 一种改进的300mw汽轮机转子密封结构
CN103470774A (zh) * 2013-08-30 2013-12-25 西安交通大学苏州研究院 一种阶梯形梳齿密封
CN104896100A (zh) * 2015-05-25 2015-09-09 沈阳航空航天大学 一种降低预旋抑制气流失稳力的反旋流梳齿密封结构
JP2016089717A (ja) * 2014-11-05 2016-05-23 三菱重工業株式会社 遠心圧縮機およびそれを備えた過給機
CN106337838A (zh) * 2016-10-21 2017-01-18 珠海格力电器股份有限公司 离心压缩机及具有其的空调器
CN206530534U (zh) * 2017-02-24 2017-09-29 上海优耐特斯压缩机有限公司 离心式叶轮轮背梳齿密封结构
CN209370145U (zh) * 2018-12-25 2019-09-10 珠海格力电器股份有限公司 一种具有梳齿密封结构叶轮的压缩机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195999A (ja) * 1991-08-03 1993-08-06 Man B & W Diesel Gmbh 半径流圧縮機ロータの動的安定化装置
CN202047870U (zh) * 2011-05-18 2011-11-23 北京龙威发电技术有限公司 一种改进的300mw汽轮机转子密封结构
CN103470774A (zh) * 2013-08-30 2013-12-25 西安交通大学苏州研究院 一种阶梯形梳齿密封
JP2016089717A (ja) * 2014-11-05 2016-05-23 三菱重工業株式会社 遠心圧縮機およびそれを備えた過給機
CN104896100A (zh) * 2015-05-25 2015-09-09 沈阳航空航天大学 一种降低预旋抑制气流失稳力的反旋流梳齿密封结构
CN106337838A (zh) * 2016-10-21 2017-01-18 珠海格力电器股份有限公司 离心压缩机及具有其的空调器
CN206530534U (zh) * 2017-02-24 2017-09-29 上海优耐特斯压缩机有限公司 离心式叶轮轮背梳齿密封结构
CN209370145U (zh) * 2018-12-25 2019-09-10 珠海格力电器股份有限公司 一种具有梳齿密封结构叶轮的压缩机

Also Published As

Publication number Publication date
CN111365288A (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
US7207774B2 (en) Centrifugal fan and casing thereof
RU2616428C2 (ru) Лабиринтное уплотнение со спиральной и смешанной спирально-цилиндрической конфигурацией с высокой демпфирующей способностью
US9816524B2 (en) Centrifugal compressor
US10281046B2 (en) Fluid machine having a labyrinth seal
US10094391B2 (en) Compressor housing for supercharger
US9835161B2 (en) Rotary machine
WO2015174335A1 (ja) 過給機
JP2007270631A (ja) 遠心ファン
WO2020134511A1 (zh) 压缩机
EP3567260B1 (en) Centrifugal rotary machine
JP5405884B2 (ja) ターボ機械のバレル型ケーシングとヘッドカバーの取付構造
JP2009174448A (ja) 流体ポンプ
JP6191114B2 (ja) 遠心圧縮機
CN209370145U (zh) 一种具有梳齿密封结构叶轮的压缩机
US10844863B2 (en) Centrifugal rotary machine
US10859092B2 (en) Impeller and rotating machine
US9752472B2 (en) Oil pump, engine cover and engine comprising the same
US20140064959A1 (en) Axial flow fan
US11378096B2 (en) Centrifugal compressor
US10876544B2 (en) Rotary machine and diaphragm
KR101468356B1 (ko) 자동변속기용 오일 기어 펌프
JP6583558B2 (ja) 遠心送風機
WO2018198808A1 (ja) 遠心圧縮機
JP7435382B2 (ja) ターボ圧縮機
JP2022029203A (ja) 遠心圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902705

Country of ref document: EP

Kind code of ref document: A1