WO2020134424A1 - 压缩机转子、压缩机和冷媒循环系统 - Google Patents

压缩机转子、压缩机和冷媒循环系统 Download PDF

Info

Publication number
WO2020134424A1
WO2020134424A1 PCT/CN2019/112789 CN2019112789W WO2020134424A1 WO 2020134424 A1 WO2020134424 A1 WO 2020134424A1 CN 2019112789 W CN2019112789 W CN 2019112789W WO 2020134424 A1 WO2020134424 A1 WO 2020134424A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
rotor
axial
compressor rotor
locking
Prior art date
Application number
PCT/CN2019/112789
Other languages
English (en)
French (fr)
Inventor
刘华
张治平
陈玉辉
钟瑞兴
李宏波
叶文腾
亓静利
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to EP19903635.1A priority Critical patent/EP3905484A4/en
Priority to KR1020217013475A priority patent/KR102617404B1/ko
Priority to US17/288,210 priority patent/US11946476B2/en
Publication of WO2020134424A1 publication Critical patent/WO2020134424A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/053Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/266Rotors specially for elastic fluids mounting compressor rotors on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/60Shafts
    • F05D2240/61Hollow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/31Retaining bolts or nuts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present disclosure relates to the technical field of compressors and refrigeration, in particular to a compressor rotor, compressor and refrigerant circulation system.
  • Compressors especially high-speed compressors, such as centrifugal compressors, whose compressor rotor rotates at high speed during operation, require reliable bearings to support the rotor.
  • the bearings used by the compressor rotor of the compressor are rolling bearings or oil film bearings. Due to the high bearing capacity of rolling bearings and oil film bearings, the motor rotor used by the compressor is generally of an integrated structure.
  • the compressor rotor of this integrated structure is relatively heavy, which is not conducive to the increase of the rotor's critical speed.
  • the machining process of the motor rotor with an integrated structure is relatively complicated, and the requirements on the equipment are relatively high, which will increase the cost.
  • the compressor For fluid systems, such as compressors in refrigerant circulation systems, when rolling bearings or oil film bearings are used, the compressor requires an additional oil lubrication system and a complex oil supply oil circuit system. It is necessary to add an oil separation system to the refrigerant circulation system. As a result, the refrigerant circulation system is relatively complex and huge.
  • the purpose of the present disclosure is to provide a compressor rotor, a compressor and a refrigerant circulation system.
  • a first aspect of the present disclosure provides a compressor rotor, including:
  • the motor rotor includes a plurality of rotor segments fixedly connected in the axial direction, and the plurality of rotor segments have axial through holes;
  • a rotating part of the compression unit located at the end of the rotor of the motor and connected to the locking rod;
  • a locking member that locks the rotation part of the compression unit to the lock lever, the lock lever, the rotation part of the compression unit, and the locking member form an axially inward direction to the rotor of the motor Compression structure of pressure.
  • two ends of the locking rod are provided with the compression unit rotating part and the locking member, respectively.
  • the end of the locking rod is provided with an external thread
  • the locking component includes a locking nut that cooperates with the external thread.
  • the axial through hole includes:
  • the large diameter section is larger in diameter than the small diameter section.
  • the locking lever includes:
  • the protruding portion is provided on the rod body and protrudes radially outward from the rod body, and the protruding portion is in clearance fit with the large-diameter section.
  • the protrusion is a convex ring.
  • the axial middle part of the motor rotor includes permanent magnets, the small diameter section is located in the axial middle part of the axial through hole, and the two large diameter sections are located at both ends of the axial through hole, respectively;
  • the locking rod includes two of the protruding portions, and the two protruding portions respectively cooperate with the two large-diameter sections.
  • One of the two protrusions is a fixed protrusion fixed to the rod body, and the other is a movable protrusion that is movable relative to the rod body; or,
  • the two protrusions are movable protrusions movable relative to the rod body.
  • the movable protrusion and the inner wall of the axial through hole are keyed to limit the circumferential position of the movable protrusion.
  • a shaft shoulder is provided on the rod body, and the movable protrusion is located between an end surface of one end of the rotor of the motor and the shaft shoulder.
  • the rotating portion of the compression unit at one end of the motor rotor where the movable protrusion includes an axial boss extending into the axial through hole the movable protrusion extends along the axial direction It is limited between the shaft shoulder and the end surface of the axial boss.
  • the fitting clearance between the fixing protrusion and the corresponding large-diameter section is smaller than the fitting clearance between the rod body and the small-diameter section.
  • the movable protrusion is in interference fit with the corresponding large-diameter section; and/or,
  • the movable protrusion is in clearance fit with the rod body.
  • the plurality of rotor segments includes:
  • the second end shaft segment is fixedly arranged at the other end of the permanent magnet.
  • the rotation part of the compression unit includes a centrifugal impeller.
  • a second aspect of the present disclosure provides a compressor including the compressor rotor described in the first aspect of the present disclosure.
  • the compressor includes a gas bearing, and the compressor rotor is supported on the gas bearing.
  • a third aspect of the present disclosure provides a refrigerant circulation system including the compressor described in the second aspect of the present disclosure.
  • the motor rotor includes a plurality of rotor segments fixedly connected in the axial direction, a locking rod is penetrated inside the motor rotor, the locking rod, the compression unit rotating part and the locking member form a pair of motor rotors
  • the pressing structure applying pressure toward the axial inner side can make the connection between the rotor sections of the motor rotor with multiple rotor sections more reliable and firm while processing the motor rotor in sections.
  • the compressor and refrigerant circulation system provided by the present disclosure have the advantages that the compressor rotor provided by the present disclosure has.
  • FIG. 1 is a schematic structural diagram of a compressor rotor according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional structural view of a motor rotor of the compressor rotor of the embodiment shown in FIG. 1.
  • FIG. 3 is a schematic structural view of the movable protrusion of the locking rod of the compressor rotor of the embodiment shown in FIG. 1.
  • an embodiment of the present disclosure provides a compressor rotor.
  • the compressor rotor includes a motor rotor 10, a lock lever 20, a compression unit rotating part, and a lock member.
  • the motor rotor 10 includes a plurality of rotor segments fixedly connected in the axial direction, and the plurality of rotor segments have axial through holes 15.
  • the locking rod 20 passes through the axial through hole 15.
  • the rotation part of the compression unit is located at the end of the motor rotor 10 and is connected to the lock lever 20.
  • the locking member locks the rotation part of the compression unit to the locking lever 20.
  • the lock lever, the compression unit rotating portion, and the lock member form a pressing structure that applies pressure toward the axially inner side of the motor rotor 10.
  • the motor rotor 10 includes a plurality of rotor segments fixedly connected in the axial direction, a locking rod 20 is penetrated inside the motor rotor 10, the locking rod, the compression unit rotating part, and the locking member form a pair of motors
  • the pressing structure of the rotor 10 applying pressure toward the axial inner side can process the motor rotor 10 in stages while making the connection between the rotor segments of the motor rotor 10 with multiple rotor segments more reliable and firm.
  • the compressor may be a centrifugal compressor, and the rotating part of the compression unit is a centrifugal impeller of the centrifugal compressor.
  • the compression unit rotating parts may be provided on only one side of the motor rotor, or the compression unit rotating parts may be provided on both sides of the motor rotor, respectively.
  • the rotating part of the compression unit on each side may be single-stage or multi-stage.
  • the number of impellers on the rotor side of the motor may be one, or may be two or more.
  • the two ends of the locking rod 20 are respectively connected to the rotating parts of the compression unit.
  • the end of the locking rod 20 is provided with an external thread
  • the locking component includes a locking nut that cooperates with the external thread of the locking rod 20.
  • the compressor rotor includes a motor rotor 10, a primary centrifugal impeller 30 and a secondary centrifugal impeller 50.
  • the left and right ends of the locking rod 20 are respectively provided with external threads.
  • the first-stage centrifugal impeller 30 is locked to the left end of the lock lever 20 by a first lock nut 40 as a lock member.
  • the second centrifugal impeller 50 is locked to the right end of the lock lever 20 by a second lock nut 60 as a lock member.
  • the axial through-hole 15 includes a small-diameter section 151 and a large-diameter section having a larger diameter than the small-diameter section 151.
  • the axial through-hole 15 includes a small-diameter section 151 and a large-diameter section having a larger diameter than the small-diameter section 151, and the motor rotor can be made into a hollow structure as much as possible according to the nature of each rotor section of the motor rotor 10, thereby helping to reduce the motor rotor 10 and compression
  • the overall weight of the machine rotor is conducive to increasing the critical speed of the compressor rotor.
  • the locking lever 20 includes a lever body 21 and a protrusion.
  • the rod body 21 cooperates with the small diameter section 151 of the axial through hole 15.
  • the protruding portion is provided on the rod body 21 and protrudes radially outward from the rod body 21, and the protruding portion cooperates with the large-diameter section of the axial through hole 15.
  • the provision of the protruding portion can increase the overall rigidity of the locking rod 20 on the basis of not increasing the overall weight of the compressor rotor, thereby facilitating the dynamic balance of the compressor rotor.
  • the protrusion is a convex ring.
  • the convex ring can provide support for the rod body 21 at various positions in the circumferential direction, which is beneficial to the dynamic balance of the compressor rotor.
  • the axial middle portion of the motor rotor 10 includes the permanent magnets 11, the small diameter section 151 is located in the axial middle portion of the axial through hole 15, and the two large diameter sections are located at both ends of the axial through hole 15, respectively.
  • the two large-diameter sections are a first large-diameter section 152 located at the left end of the motor rotor and a second large-diameter section 153 located at the right end of the motor rotor 10, respectively.
  • the axial middle part is generally the location where the permanent magnets are provided, and a small-diameter segment is provided in this part to reduce the influence of the axial through holes on the permanent magnets.
  • Both ends of the motor rotor 10 in the axial direction are non-magnetic materials, and a large-diameter section is provided at this part, which is beneficial to reduce the overall weight of the motor rotor and the compressor rotor, and thus helps to increase the critical speed of the compressor rotor.
  • the lock lever 20 includes two protrusions, and the two protrusions respectively cooperate with the two large-diameter sections. This arrangement is beneficial to improve the overall rigidity of the lock lever 20, and thus to the dynamic balance of the compressor rotor.
  • one of the two protrusions is a fixed protrusion 22 fixed on the rod 21, and the other is a movable protrusion 23 that is movable relative to the rod 21.
  • the fixed protrusion 22 and the movable protrusion 23 are respectively provided to facilitate the assembly of the lock lever 20 and the motor rotor 10.
  • the fixed protrusion 22 cooperates with the first large-diameter section 152
  • the movable protrusion 23 cooperates with the second large-diameter section 153.
  • both protrusions may be movable protrusions that are movable relative to the rod body.
  • the movable protrusion 23 and the inner wall of the axial through hole 15 are keyed to restrict the circumferential position of the movable protrusion 23 relative to the axial through hole 15.
  • a key groove 1531 is provided on the hole wall of the second large-diameter section 153, and a key 232 is provided on the outer periphery of the movable protrusion 23.
  • the key 232 cooperates with the key groove 1531 to move The circumferential position of the protrusion 23 is limited.
  • Figures 1 to 3 only show the form of a square key.
  • the key can also be fixed on the rotor of the motor and a groove is provided on the movable protrusion; the key can also be independent , Key grooves are respectively provided on the motor rotor 10 and the movable protrusion.
  • the form of the key is not limited to the square key, but can also be a round key, a semi-circular key or a spline.
  • the shaft 21 is provided with a shaft shoulder, and the movable protrusion 23 is located between the end surface of one end of the motor rotor 10 and the shaft shoulder.
  • the movable protrusion 23 may abut on the shaft shoulder. This arrangement helps to limit the axial position of the movable protrusion 23 and helps to ensure that the rigidity of the locking rod 20 is stable.
  • the rotating portion of the compression unit at the end of the motor rotor 10 where the movable protrusion 23 is located includes an axial boss extending into the axial through hole 15, and the movable protrusion 23 is axially limited to the aforementioned axis Between the shoulder and the end face of the axial boss.
  • the left end of the second centrifugal impeller 50 has an axial boss.
  • the outer periphery of the axial boss cooperates with the inner wall of the right end of the second large-diameter section 153.
  • the left end face of the axial boss is on the rod body 21.
  • the axial shoulder of can limit the axial position of the movable protrusion 23 to a certain range.
  • the axial position of the movable protrusion 23 is basically determined, which is conducive to ensuring locking
  • the stiffness of the rod 20 is stable, which helps to ensure the dynamic balance of the compressor rotor.
  • the fitting clearance between the fixing protrusion 22 and the corresponding large-diameter section is smaller than the fitting clearance between the rod body 21 and the small-diameter section 151. This arrangement facilitates the rapid assembly of the compressor rotor.
  • the movable protrusion 23 is in interference fit with the corresponding large-diameter section; the movable protrusion 23 is in clearance fit with the rod body 21. This arrangement facilitates the rapid assembly of the compressor rotor.
  • the plurality of rotor segments of the motor rotor 10 includes a permanent magnet 11, a first end shaft segment 12 and a second end shaft segment 13.
  • the first end shaft section 12 is fixedly disposed at one end of the permanent magnet 11.
  • the second end shaft section 13 is fixedly arranged at the other end of the permanent magnet 11.
  • the permanent magnet 11 may be a hollow cylinder having an axial through hole.
  • the material of the permanent magnet 11 is, for example, magnetic steel.
  • the motor rotor 10 further includes a mounting sleeve 14 integrally provided on the end of the first end shaft section 12 near the permanent magnet 11.
  • the permanent magnet 11 and the second end shaft section 13 are fixedly installed in the mounting sleeve 14 by a hot sleeve method.
  • an independent mounting sleeve may be provided, and the first end shaft section, the permanent magnet, and the second end shaft section are all sleeved in the mounting sleeve by means of a heat sleeve.
  • the motor rotor 10 of the compressor rotor of the embodiment of the present disclosure includes three permanent rotor magnets 11, a first end shaft segment 12 and a second end shaft segment 13, and a mounting sleeve 14.
  • the left end of the mounting sleeve 14 is integrally provided with the right end of the first end shaft section 12.
  • the first end shaft section 12, the second end shaft section 13 and the permanent magnet 11 are all processed into a hollow structure with an axial through hole.
  • the second end shaft segment 13 has a similar structure to the first end shaft segment 12 but is symmetrically arranged, and the outer peripheral surface of the left end of the second end shaft segment 13 is in the form of a step, which facilitates the equal outer diameter of the motor rotor 10 after the three-stage rotor segments are connected.
  • Each rotor segment is processed separately to ensure reasonable accuracy, and then assembled to form the motor rotor 10.
  • the permanent magnet 11 and the second end shaft segment 13 are first cemented together. Then, the first end shaft section 12 and the mounting sleeve 14 are heated to a higher temperature, for example, 700-900° C., and then the permanent magnet 11 and the second end shaft section 13 are quickly sleeved into the mounting sleeve 14.
  • This method can shorten the time of the hot sleeve interference connection and improve the assembly success rate. Since the motor rotor 10 is subjected to centrifugal force during high-speed rotation, there is a phenomenon of material expansion. In order to prevent the parts from loosening after the interference is reduced, the interference should be large.
  • the gas generated during the heat jacket process can be discharged from the axial through-holes 15 without adding additional exhaust holes, which is convenient for processing and helps to improve the production efficiency of the motor rotor 10.
  • the diameter of the axial through hole inside the permanent magnet 11 is approximately the same as the diameter of the corresponding rod section of the rod body 21 of the locking rod 20. Considering the nature of the permanent magnet material, the diameter of the axial through hole inside the permanent magnet 11 is preferably 1/4 to 1/3 times the outer diameter of the permanent magnet. As shown in FIG. 1, the axial through hole inside the permanent magnet 11 constitutes a part of the hole section of the small diameter section 151 of the axial through hole 15 of the motor rotor 10.
  • the axial through hole inside the permanent magnet 11 and the corresponding rod section of the rod body 21 adopt a clearance fit, and the fit clearance may be, for example, 0.03 to 0.05 mm.
  • the roughness of the surface where the axial through hole of the permanent magnet 11 contacts the rod body 21 may be 0.8 to 1.6 ⁇ m, and this roughness range is beneficial to prevent surface peaks from affecting assembly.
  • the fixing protrusion 22 is in clearance fit with the first large-diameter section 152.
  • the fitting clearance between the fixing protrusion 22 and the first large-diameter section 152 may be smaller than the fitting clearance between the permanent magnet 11 and the corresponding rod section 21 of the locking rod 20.
  • the fitting gap between the fixing protrusion 22 and the first large-diameter section 152 may be, for example, 0.01 to 0.03 mm.
  • the right end of the locking lever 20 uses a movable protrusion 23 for radial positioning.
  • the central hole 231 of the movable protrusion 23 is in clearance fit with the corresponding rod section 21 of the locking rod 20.
  • the movable protrusion 23 and the inner wall of the second large-diameter section 153 disposed in the second end shaft section 13 use an interference fit with a small interference amount to radially position the right end of the locking rod 20.
  • the circumferential positioning of the movable protrusion 23 is achieved by the cooperation of the key 232 fixedly provided on the movable protrusion 23 and the key groove 1531 on the inner wall of the second large-diameter section 153.
  • the second large-diameter section 153 and the movable protrusion 23 have an interference fit.
  • the diameter of the second large-diameter section 153 is a negative deviation, and the outer diameter of the movable protrusion 23 is a positive deviation.
  • the total interference can be 0.01 to 0.02 mm .
  • the movable protrusion 23 and the motor rotor 10 are cold-assembled, and the movable protrusion 23 is installed to the left in the direction of the key slot 1531, and then Insert the rod body 21 of the locking rod 20 into the axial through hole 15 of the motor rotor 10 at the left end of the motor rotor 10, and then install the first-stage centrifugal impeller 30 and the second-stage centrifugal impeller 50 at the left and right ends of the rod body 21 respectively, and then use the reverse In a tightening manner, the first centrifugal impeller 30 and the second centrifugal impeller 50 are pressed against the left and right ends of the motor rotor 10 through the first lock nut 40 and the second lock nut 60, respectively.
  • the lock lever 20, the first-stage centrifugal impeller 30, the second-stage centrifugal impeller 50, the first lock nut 40, and the second lock nut 60 form a compression structure, which applies axial pressure to the motor rotor 10 inward , So that the connection between the rotor segments of the motor rotor 10 is more stable and stable.
  • the shaft sections at both ends are respectively installed at the axial ends of the permanent magnet 11, and the two axial end surfaces of the motor rotor are respectively equipped with one-stage centrifugal impellers, which can effectively avoid the two-stage centrifugal impellers of the two-stage centrifugal compressors being installed in the motor
  • the problem that the rotor of the motor is too long caused by the same end of the rotor.
  • the two centrifugal impellers are respectively positioned at the hollows of the ends of the first end shaft section 12 and the second end shaft section 13, that is, at the axial ends of the axial through hole 15, by The positioning stop at the back of the centrifugal impeller performs radial and axial positioning of the centrifugal impeller relative to the motor rotor 10.
  • a shaft shoulder is provided on the right section of the rod body of the lock lever 20, and the movable protrusion 23 is located between the shaft shoulder and the axial boss end surface of the positioning stop of the two-stage centrifugal impeller 50.
  • the axial boss of the positioning stop of the two-stage centrifugal impeller 50 and the movable protrusion 23 may have a clearance fit, for example, a clearance of 0.01-0.02 mm. This arrangement can effectively prevent the movable protrusion 23 from moving in the axial direction inside the second large-diameter section 153, and also helps prevent the secondary centrifugal impeller 50 from being over-positioned in the axial direction during the assembly process.
  • the axial positioning of the locking rod 20 can also be achieved through the shaft shoulder.
  • the compressor rotor of the above embodiment of the present disclosure can effectively improve the rotor segment connection strength of a motor rotor with multiple rotor segments, and can also increase the critical speed of the rotor by reducing the length of the cantilever end and further improve the compressor
  • the working stability and reliability of the compressor and the motor where the rotor is located can not only achieve high-speed operation, but also make the compressor structure simpler, the system more concise, and the compressor more compact.
  • An embodiment of the present disclosure also provides a compressor including the compressor rotor of the foregoing embodiment of the present disclosure.
  • the compressor of the embodiment of the present disclosure has the same advantages as the compressor rotor of the embodiment of the present disclosure.
  • the compressor may include a gas bearing on which the compressor rotor is supported.
  • Gas bearings may include radial bearings and thrust bearings.
  • the gas bearing can be a dynamic pressure gas bearing or a static pressure gas bearing.
  • the compressor rotor has high working stability and reliability, and is suitable for being supported by gas bearings.
  • the use of gas bearings can use the compressed working medium as a suspension gas, thereby eliminating the need for lubricating oil systems and oil separation systems when using rolling bearings or oil film bearings, which can reduce the complexity of the fluid system where the compressor is located, such as the refrigerant circulation system and take up space.
  • An embodiment of the present disclosure also provides a refrigerant circulation system, including the compressor of the foregoing embodiment of the present disclosure.
  • the refrigerant circulation system of the embodiment of the present disclosure has the same advantages as the aforementioned compressor rotor and compressor of the embodiment of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Compressor (AREA)

Abstract

本公开提供了一种压缩机转子、压缩机和冷媒循环系统。压缩机转子包括:电机转子,包括沿轴向固定连接的多个转子段,多个转子段具有轴向通孔;锁紧杆,贯穿轴向通孔;压缩单元转动部,位于电机转子的端部并连接于锁紧杆上;和锁紧部件,将压缩单元转动部锁定于锁紧杆上,锁紧杆、压缩单元转动部和锁紧部件形成对电机转子施加朝向轴向内侧的压力的压紧结构。本公开的压缩机转子可以在分段加工电机转子的同时,使具有多个转子段的电机转子的各转子段之间连接更加可靠牢固。

Description

压缩机转子、压缩机和冷媒循环系统
相关申请
本申请是以申请号为201811595102.7,申请日为2018年12月25日,发明名称为“压缩机转子、压缩机和冷媒循环系统”的中国专利申请为基础,并主张其优先权,该中国专利申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及压缩机和制冷技术领域,特别涉及一种压缩机转子、压缩机和冷媒循环系统。
背景技术
压缩机,尤其是高速度型压缩机,如离心压缩机,其压缩机转子在工作中高速旋转,需要可靠的轴承对转子进行支撑。通常情况下,压缩机的压缩机转子使用的轴承为滚动轴承或油膜轴承。由于滚动轴承和油膜轴承承载力较高,压缩机使用的电机转子一般是一体式结构,该一体式结构的压缩机转子重量相对较重,不利于转子临界转速的提升。在制作较大的压缩机转子时,一体式结构的电机转子加工过程相对复杂,且对设备要求相对较高,会增加成本。对于流体系统,如冷媒循环系统中的压缩机,采用滚动轴承或油膜轴承时,压缩机需要额外的油润滑系统以及复杂的供油油路系统,需要在冷媒循环系统中增加油分离系统,这会导致冷媒循环系统较为复杂、庞大。
发明内容
本公开的目的在于提供一种压缩机转子、压缩机和冷媒循环系统。
本公开第一方面提供一种压缩机转子,包括:
电机转子,包括沿轴向固定连接的多个转子段,所述多个转子段具有轴向通孔;
锁紧杆,贯穿所述轴向通孔;
压缩单元转动部,位于所述电机转子的端部并连接于所述锁紧杆上;和
锁紧部件,将所述压缩单元转动部锁定于所述锁紧杆上,所述锁紧杆、所述压缩单元转动部和所述锁紧部件形成对所述电机转子施加朝向轴向内侧的压力的压紧结构。
在一些实施例中,所述锁紧杆的两端分别设置所述压缩单元转动部和所述锁紧部件。
在一些实施例中,
所述锁紧杆的端部设有外螺纹;
所述锁紧部件包括与所述外螺纹配合的锁紧螺母。
在一些实施例中,所述轴向通孔包括:
小径段;和
大径段,直径大于所述小径段。
在一些实施例中,所述锁紧杆包括:
杆体,与所述小径段间隙配合;和
凸出部,设置于所述杆体上,从所述杆体向径向外侧凸出,所述凸出部与所述大径段间隙配合。
在一些实施例中,所述凸出部为凸环。
在一些实施例中,
所述电机转子的轴向中部包括永磁体,所述小径段位于所述轴向通孔的轴向中部,两个所述大径段分别位于所述轴向通孔的两端;
所述锁紧杆包括两个所述凸出部,所述两个凸出部分别与所述两个大径段配合。
在一些实施例中,
所述两个凸出部中的一个为固定于所述杆体上的固定凸出部,另一个为相对于所述杆体可活动的活动凸出部;或,
所述两个凸出部均为相对于所述杆体可活动的活动凸出部。
在一些实施例中,所述活动凸出部与所述轴向通孔的内壁通过键配合以限制所述活动凸出部的周向位置。
在一些实施例中,所述杆体上设置轴肩,所述活动凸出部位于所在的电机转子的一端的端面与所述轴肩之间。
在一些实施例中,所述活动凸出部所在的电机转子的一端的所述压缩单元转动部包括伸入所述轴向通孔内部的轴向凸台,所述活动凸出部沿轴向限位于所述轴肩和所述轴向凸台的端面之间。
在一些实施例中,所述固定凸出部与对应的所述大径段的配合间隙小于所述杆体与所述小径段的配合间隙。
在一些实施例中,
所述活动凸出部与对应的所述大径段过盈配合;和/或,
所述活动凸出部与所述杆体间隙配合。
在一些实施例中,所述多个转子段包括:
永磁体;
第一端部轴段,固定设置于所述永磁体的一端;和
第二端部轴段,固定设置于所述永磁体的另一端。
在一些实施例中,所述压缩单元转动部包括离心叶轮。
本公开第二方面提供一种压缩机,包括本公开第一方面所述的压缩机转子。
在一些实施例中,所述压缩机包括气体轴承,所述压缩机转子支撑于所述气体轴承上。
本公开第三方面提供一种冷媒循环系统,包括本公开第二方面所述的压缩机。
基于本公开提供的压缩机转子,其电机转子包括沿轴向固定连接的多个转子段,在电机转子内部穿设锁紧杆,锁紧杆、压缩单元转动部和锁紧部件形成对电机转子施加朝向轴向内侧的压力的压紧结构,可以在分段加工电机转子的同时,使具有多个转子段的电机转子的各转子段之间连接更加可靠牢固。
本公开提供的压缩机和冷媒循环系统具有本公开提供的压缩机转子具有的优点。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开一实施例的压缩机转子的结构示意图。
图2为图1所示实施例的压缩机转子的电机转子的剖视结构示意图。
图3为图1所示实施例的压缩机转子的锁紧杆的活动凸出部的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完 整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本公开的描述中,需要理解的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本公开保护范围的限制。
在本公开的描述中,需要理解的是,各方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等,仅是为了便于描述本公开和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本公开保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
如图1至图3所示,本公开实施例提供一种压缩机转子。该压缩机转子包括电机转子10、锁紧杆20、压缩单元转动部和锁紧部件。
如图1所示,电机转子10包括沿轴向固定连接的多个转子段,多个转子段具有轴向通孔15。锁紧杆20贯穿轴向通孔15。压缩单元转动部位于电机转子10的端部并连接于锁紧杆20上。锁紧部件将压缩单元转动部锁定于锁紧杆20上。锁紧杆、压缩单元转动部和锁紧部件形成对电机转子10施加朝向轴向内侧的压力的压紧结构。
本公开的压缩机转子中,电机转子10包括沿轴向固定连接的多个转子段,在电机转子10内部穿设锁紧杆20,锁紧杆、压缩单元转动部和锁紧部件形成对电机转子10施加朝向轴向内侧的压力的压紧结构,可以在分段加工电机转子10的同时,使具有多个转子段的电机转子10的各转子段之间连接更加可靠牢固。
如图1所示,在一些实施例中,压缩机可以是离心压缩机,压缩单元转动部为离心压缩机的离心叶轮。可以仅在电机转子的一侧设置压缩单元转动部,也可以在电机转子的两侧分别设置压缩单元转动部。每一侧的压缩单元转动部可以是单级的,也可以是多级的。例如,压缩单元转动部为叶轮时,电机转子一侧的叶轮的数量可以是一个,也可以是两个以上。
在一些实施例中,锁紧杆20的两端分别连接压缩单元转动部。
在一些实施例中,锁紧杆20的端部设有外螺纹,锁紧部件包括与锁紧杆20的外螺纹配合的锁紧螺母。
如图1所示,在一些实施例中,压缩机转子包括电机转子10、一级离心叶轮30和二级离心叶轮50。锁紧杆20的左右两端分别设有外螺纹。一级离心叶轮30通过作为锁紧部件的第一锁紧螺母40锁紧于锁紧杆20的左端。二级离心叶轮50通过作为锁紧部件的第二锁紧螺母60锁紧于锁紧杆20的右端。
如图1和图2所示,在一些实施例中,轴向通孔15包括小径段151和直径大于小径段151的大径段。
轴向通孔15包括小径段151和直径大于小径段151的大径段,可以根据电机转子10的各转子段的性质尽可能地将电机转子制作为空心结构,从而利于减轻电机转子10及压缩机转子的整体重量,利于提高压缩机转子的临界转速。
在一些实施例中,锁紧杆20包括杆体21和凸出部。杆体21与轴向通孔15的小径段151配合。凸出部设置于杆体21上,从杆体21向径向外侧凸出,凸出部与轴向通孔15的大径段配合。
设置凸出部,可以在不过于增加压缩机转子的整体重量的基础上,提高锁紧杆20的整体刚度,从而利于压缩机转子的动平衡。
在一些实施例中,凸出部为凸环。凸环可以为杆体21提供周向各位置的支撑,利于压缩机转子的动平衡。
在一些实施例中,电机转子10的轴向中部包括永磁体11,小径段151位于轴向通孔15的轴向中部,两个大径段分别位于轴向通孔15的两端。如图1和图2所示,两个大径段分别为位于电机转子左端的第一大径段152和位于电机转子10右端的第二大径段153。
对于具有多个转子段的电机转子10来说,轴向中部一般为永磁体的设置位置,在该部分设置小径段,可以减少设置轴向通孔对永磁体的影响。电机转子10的轴向 两端则为非磁性体,在该部位设置大径段,利于减轻电机转子及压缩机转子的整体重量,从而利于提高压缩机转子的临界转速。
如图1所示,锁紧杆20包括两个凸出部,两个凸出部分别与两个大径段配合。该设置利于提高锁紧杆20的整体刚度,从而利于压缩机转子的动平衡。
如图1所示,两个凸出部中的一个为固定于杆体21上的固定凸出部22,另一个为相对于杆体21可活动的活动凸出部23。分别设置固定凸出部22和活动凸出部23,利于锁紧杆20与电机转子10的组装。
如图1所示的实施例中,固定凸出部22与第一大径段152配合,活动凸出部23与第二大径段153配合。
在一些未图示的实施例中,也可以是两个凸出部均为相对于杆体可活动的活动凸出部。
在一些实施例中,活动凸出部23与轴向通孔15的内壁通过键配合以限制活动凸出部23相对于轴向通孔15的周向位置。
如图1至图3所示,在第二大径段153的孔壁上设有键槽1531,在活动凸出部23的外周设有键232。当活动凸出部23的中心孔231套装于已穿设于电机转子10的轴向通孔15内的杆体21和第二大径段153的内壁之间时,键232与键槽1531配合,活动凸出部23的周向位置被限定。
图1至图3中仅示出了方键的形式,在未图示的实施例中,键也可以是固定于电机转子上的而在活动凸出部上设置槽;键也可以是独立的,在电机转子10和活动凸出部上分别设置键槽。键的形式也不限于方键,还可以是圆键、半圆键或花键等。
如图1所示,在一些实施例中,杆体21上设置轴肩,活动凸出部23位于所在的电机转子10的一端的端面与轴肩之间。例如,活动凸出部23可抵靠于轴肩上。该设置利于限定活动凸出部23的轴向位置,利于保证锁紧杆20的刚度稳定。
在一些实施例中,活动凸出部23所在的电机转子10的一端的压缩单元转动部包括伸入轴向通孔15内部的轴向凸台,活动凸出部23沿轴向限位于前述轴肩和轴向凸台的端面之间。
如图1所示,第二离心叶轮50的左端具有轴向凸台,该轴向凸台的外周与第二大径段153的右端内壁配合,该轴向凸台的左端面与杆体21上的轴肩可将活动凸出部23的轴向位置限定于一定的范围内。当该轴向凸台的左端面与轴肩的距离设定得等于或略大于活动凸出部23的轴向两端的距离时,活动凸出部23的轴向位置基本确 定,利于保证锁紧杆20的刚度稳定,从而利于保证压缩机转子的动平衡。
在一些实施例中,固定凸出部22与对应的大径段的配合间隙小于杆体21与小径段151的配合间隙。该设置利于压缩机转子快速组装。
在一些实施例中,活动凸出部23与对应的大径段过盈配合;活动凸出部23与杆体21间隙配合。该设置利于压缩机转子快速组装。
如图1所示,在一些实施例中,电机转子10的多个转子段包括永磁体11、第一端部轴段12和第二端部轴段13。第一端部轴段12固定设置于永磁体11的一端。第二端部轴段13固定设置于永磁体11的另一端。
永磁体11可以为具有轴向通孔的空心柱体。永磁体11作为电机转子10与压缩机的电机定子共同构成驱动压缩机转子转动的电机。永磁体11的材料例如为磁钢。
如图1所示,在一些实施例中,电机转子10还包括在第一端部轴段12的靠近永磁体11的一端一体设置的安装套筒14。永磁体11和第二端部轴段13通过热套方式固定安装于安装套筒14内。
在未图示的一些实施例中,可以设置独立的安装套筒,第一端部轴段、永磁体和第二端部轴段均通过热套的方式套装在安装套筒内。
以下结合图1至图3对本公开一些实施例进行更详细说明。
如图1至图3所示,本公开实施例的压缩机转子的电机转子10包括永磁体11、第一端部轴段12和第二端部轴段13三个转子段和一个安装套筒14。安装套筒14的左端与第一端部轴段12的右端一体设置。第一端部轴段12、第二端部轴段13和永磁体11均加工成具有轴向通孔的空心结构。第二端部轴段13与第一端部轴段12结构类似但对称设置,且第二端部轴段13左端外周面为台阶形式,利于三段转子段连接后电机转子10外周直径相等。
每段转子段分开加工并保证合理精度,之后进行组装形成电机转子10。在电机转子10装配过程中,首先将永磁体11与第二端部轴段13胶结固定在一起。然后将第一端部轴段12及安装套筒14加热到较高温度,例如700~900℃,再快速将永磁体11与第二端部轴段13套入安装套筒14内。该方式可以缩短热套式过盈连接的时间,提高组装成功率。由于电机转子10在高速旋转过程受到离心力的作用,存在材料膨胀现象,为防止过盈量减少后零件松动,过盈量宜较大。
由于三段转子段均为空心结构,在热套过程中产生的气体能够从轴向通孔15排除,无需增加额外的排气孔,方便加工,利于提高电机转子10的生产效率。
永磁体11内部的轴向通孔的直径与锁紧杆20的杆体21的相应杆段的直径大致相同。考虑到永磁材料的性质,永磁体11内部的轴向通孔的直径宜为1/4~1/3倍的永磁体外径。如图1所示,永磁体11内部的轴向通孔构成电机转子10的轴向通孔15的小径段151的一部分孔段。
永磁体11内部的轴向通孔与杆体21的相应杆段采用间隙配合,配合间隙例如可以为0.03~0.05mm。永磁体11的轴向通孔与杆体21接触的表面的粗糙度可以为0.8~1.6μm,该粗糙度范围利于防止表面峰值影响装配。
由于安装套筒壁厚相对较薄,过盈连接后会存在一定程度的强度问题,在电机转子20径向中部使用锁紧杆20可以增加连接可靠性。
考虑到锁紧杆20的长度相对较长,会影响其刚度和强度,因此在其左端加工支撑定位台阶形式的固定凸出部22增加刚度,以降低锁紧杆20的挠度。固定凸出部22与第一大径段152间隙配合。固定凸出部22与第一大径段152的配合间隙可以小于永磁体11与锁紧杆20的相应杆段21的配合间隙。固定凸出部22与第一大径段152的配合间隙例如可以为0.01~0.03mm。
锁紧杆20的右端采用活动凸出部23进行径向定位。该活动凸出部23的中心孔231与锁紧杆20的相应杆段21间隙配合。其中活动凸出部23与设置于第二端部轴段13内的第二大径段153的内壁采用小过盈量的过盈配合以对锁紧杆20右端进行径向定位。
如图2和图3所示,通过固定设置于活动凸出部23上的键232和第二大径段153内壁上的键槽1531的配合实现活动凸出部23的周向定位。
第二大径段153与活动凸出部23为过盈配合,第二大径段153的直径为负偏差,活动凸出部23的外径为正偏差,总过盈量可以0.01~0.02mm。
在电机转子10与锁紧杆20、离心叶轮组装过程中,活动凸出部23与电机转子10采用冷装配的方式,先顺着键槽1531的方向向左装入活动凸出部23,然后在电机转子10左端将锁紧杆20的杆体21插入电机转子10的轴向通孔15,接着在杆体21的左右两端分别装入一级离心叶轮30和二级离心叶轮50,再使用反向拧紧的方式通过第一锁紧螺母40和第二锁紧螺母60将一级离心叶轮30和二级离心叶轮50分别压靠于电机转子10的左右两端。组装完毕后,锁紧杆20、一级离心叶轮30、二级离心叶轮50、第一锁紧螺母40和第二锁紧螺母60形成压紧结构,对电机转子10施加向轴向内侧的压力,从而使电机转子10的各转子段之间的连接更加牢固稳定。
两端部轴段分别安装在永磁体11的轴向两端,在电机转子的两个轴向端面各自装配一级离心叶轮,还可以有效避免双级离心压缩机的两级离心叶轮安装在电机转子同一端导致的电机转子过长的问题。
如图1所示,两个离心叶轮分别在第一端部轴段12端部和第二端部轴段13端部的中空处,即轴向通孔15的轴向两端处定位,依靠离心叶轮背面的定位止口进行离心叶轮相对于电机转子10的径向和轴向定位。
锁紧杆20的杆体右段设置轴肩,活动凸出部23位于该轴肩与二级离心叶轮50的定位止口的轴向凸台端面之间。
在一些实施例中,二级离心叶轮50的定位止口的轴向凸台与活动凸出部23可以间隙配合,配合间隙例如0.01~0.02mm。该设置可以有效防止活动凸出部23在第二大径段153内部沿轴向移动,又利于防止装配过程中二级离心叶轮50在轴向上过定位。
当二级离心叶轮50的定位止口的轴向凸台与活动凸出部23的间隙距离为小间隙配合时,还可以通过轴肩实现锁紧杆20的轴向定位。
根据以上描述可知,本公开以上实施例的压缩机转子可以有效地提高具有多个转子段的电机转子的转子段连接强度,还能通过减少悬臂端的长度,提高转子的临界转速,进一步提高压缩机转子所在的压缩机及其电机的工作稳定性和可靠性,既能实现高转速工作,又能使压缩机结构更加简单,系统更加简洁,压缩机更加小型化。
本公开实施例还提供一种压缩机,包括本公开前述实施例的压缩机转子。本公开实施例的压缩机与本公开实施例的压缩机转子具有相同的优点。
在一些实施例中,压缩机可以包括气体轴承,压缩机转子支撑于所述气体轴承上。气体轴承可以包括径向轴承和推力轴承。气体轴承可以是动压气体轴承,也可以是静压气体轴承。本公开实施例的压缩机中,其压缩机转子有较高的工作稳定性和可靠性,适于采用气体轴承支承。采用气体轴承可以以被压缩工质作为悬浮气体,从而省去采用滚动轴承或油膜轴承时所需的润滑油系统及油分离系统,可以减少压缩机所在的流体系统,如冷媒循环系统的复杂程度和占用空间。
本公开实施例还提供一种冷媒循环系统,包括本公开前述实施例的压缩机。本公开实施例的冷媒循环系统与本公开实施例的前述压缩机转子及压缩机具有相同的优点。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解: 依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换,其均应涵盖在本公开请求保护的技术方案范围当中。

Claims (18)

  1. 一种压缩机转子,包括:
    电机转子(10),包括沿轴向固定连接的多个转子段,所述多个转子段具有轴向通孔(15);
    锁紧杆(20),贯穿所述轴向通孔(15);
    压缩单元转动部,位于所述电机转子(10)的端部并连接于所述锁紧杆(20)上;和
    锁紧部件,将所述压缩单元转动部锁定于所述锁紧杆(20)上,所述锁紧杆(20)、所述压缩单元转动部和所述锁紧部件形成对所述电机转子(10)施加朝向轴向内侧的压力的压紧结构。
  2. 根据权利要求1所述的压缩机转子,其中,所述锁紧杆(20)的两端分别设置所述压缩单元转动部和所述锁紧部件。
  3. 根据权利要求1所述的压缩机转子,其中,
    所述锁紧杆(20)的端部设有外螺纹;
    所述锁紧部件包括与所述外螺纹配合的锁紧螺母。
  4. 根据权利要求1所述的压缩机转子,其中,所述轴向通孔(15)包括:
    小径段(151);和
    大径段,直径大于所述小径段(151)。
  5. 根据权利要求4所述的压缩机转子,其中,所述锁紧杆(20)包括:
    杆体(21),与所述小径段(151)间隙配合;和
    凸出部,设置于所述杆体(21)上,从所述杆体(21)向径向外侧凸出,所述凸出部与所述大径段间隙配合。
  6. 根据权利要求5所述的压缩机转子,其中,所述凸出部为凸环。
  7. 根据权利要求5所述的压缩机转子,其中,
    所述电机转子(10)的轴向中部包括永磁体(11),所述小径段(151)位于所述轴向通孔(15)的轴向中部,两个所述大径段分别位于所述轴向通孔(15)的两端;
    所述锁紧杆(20)包括两个所述凸出部,所述两个凸出部分别与所述两个大径段配合。
  8. 根据权利要求7所述的压缩机转子,其中,
    所述两个凸出部中的一个为固定于所述杆体(21)上的固定凸出部(22),另一个为相对于所述杆体(21)可活动的活动凸出部(23);或,
    所述两个凸出部均为相对于所述杆体可活动的活动凸出部。
  9. 根据权利要求8所述的压缩机转子,其中,所述活动凸出部(23)与所述轴向通孔(15)的内壁通过键配合以限制所述活动凸出部(23)的周向位置。
  10. 根据权利要求8所述的压缩机转子,其中,所述杆体(21)上设置轴肩,所述活动凸出部(23)位于所在的电机转子(10)的一端的端面与所述轴肩之间。
  11. 根据权利要求10所述的压缩机转子,其中,所述活动凸出部(23)所在的电机转子(10)的一端的所述压缩单元转动部包括伸入所述轴向通孔(15)内部的轴向凸台,所述活动凸出部(23)沿轴向限位于所述轴肩和所述轴向凸台的端面之间。
  12. 根据权利要求8所述的压缩机转子,其中,所述固定凸出部(22)与对应的所述大径段的配合间隙小于所述杆体(21)与所述小径段(151)的配合间隙。
  13. 根据权利要求8所述的压缩机转子,其中,
    所述活动凸出部(23)与对应的所述大径段过盈配合;和/或,
    所述活动凸出部(23)与所述杆体(21)间隙配合。
  14. 根据权利要求1至13中任一项所述的压缩机转子,其中,所述多个转子段包括:
    永磁体(11);
    第一端部轴段(12),固定设置于所述永磁体(11)的一端;和
    第二端部轴段(13),固定设置于所述永磁体(11)的另一端。
  15. 根据权利要求1至13中任一项所述的压缩机转子,其中,所述压缩单元转动部包括离心叶轮。
  16. 一种压缩机,包括权利要求1至15中任一项所述的压缩机转子。
  17. 根据权利要求16所述的压缩机,其中,所述压缩机包括气体轴承,所述压缩机转子支撑于所述气体轴承上。
  18. 一种冷媒循环系统,包括权利要求16或17所述的压缩机。
PCT/CN2019/112789 2018-12-25 2019-10-23 压缩机转子、压缩机和冷媒循环系统 WO2020134424A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19903635.1A EP3905484A4 (en) 2018-12-25 2019-10-23 COMPRESSOR ROTOR, COMPRESSOR AND REFRIGERANT CIRCUIT
KR1020217013475A KR102617404B1 (ko) 2018-12-25 2019-10-23 압축기 로터, 압축기 및 냉매 순환 시스템
US17/288,210 US11946476B2 (en) 2018-12-25 2019-10-23 Compressor rotor, compressor and refrigerant circulation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811595102.7 2018-12-25
CN201811595102.7A CN111371213A (zh) 2018-12-25 2018-12-25 压缩机转子、压缩机和冷媒循环系统

Publications (1)

Publication Number Publication Date
WO2020134424A1 true WO2020134424A1 (zh) 2020-07-02

Family

ID=71126848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112789 WO2020134424A1 (zh) 2018-12-25 2019-10-23 压缩机转子、压缩机和冷媒循环系统

Country Status (5)

Country Link
US (1) US11946476B2 (zh)
EP (1) EP3905484A4 (zh)
KR (1) KR102617404B1 (zh)
CN (1) CN111371213A (zh)
WO (1) WO2020134424A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2375547B1 (en) * 2010-04-12 2014-08-20 Movimotor S.r.l. Direct current electric motor
CN206471938U (zh) * 2016-06-27 2017-09-05 伊泽瑞尔(大连)科技有限公司 一种分段斜极转子及其电机
CN208028677U (zh) * 2018-03-29 2018-10-30 广东美芝制冷设备有限公司 转子铁芯、电机、压缩机及制冷设备
CN209344880U (zh) * 2018-12-25 2019-09-03 珠海格力电器股份有限公司 压缩机转子、 压缩机和冷媒循环系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7063519B2 (en) * 2002-07-02 2006-06-20 R & D Dynamics Corporation Motor driven centrifugal compressor/blower
US6997686B2 (en) * 2002-12-19 2006-02-14 R & D Dynamics Corporation Motor driven two-stage centrifugal air-conditioning compressor
JP2011202588A (ja) 2010-03-25 2011-10-13 Honda Motor Co Ltd 遠心型圧縮機
FR3034460B1 (fr) * 2015-04-01 2019-07-19 Liebherr-Aerospace Toulouse Sas Ensemble rotor et turbomachine tournant a tres grandes vitesses comportant un tel ensemble rotor
CN105889096B (zh) * 2016-05-06 2019-10-18 同济大学 燃料电池发动机的两级串联增压直驱离心式空压机
DE102016211246A1 (de) * 2016-06-23 2017-12-28 Robert Bosch Gmbh Elektrische Maschine und Verfahren zur Herstellung der elektrischen Maschine
CN108591084B (zh) * 2018-04-12 2019-07-26 石家庄金士顿轴承科技有限公司 一种燃料电池用高速直连离心鼓风机
DE112019002451T5 (de) * 2018-05-15 2021-03-04 Lg Electronics Inc. Turboverdichter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2375547B1 (en) * 2010-04-12 2014-08-20 Movimotor S.r.l. Direct current electric motor
CN206471938U (zh) * 2016-06-27 2017-09-05 伊泽瑞尔(大连)科技有限公司 一种分段斜极转子及其电机
CN208028677U (zh) * 2018-03-29 2018-10-30 广东美芝制冷设备有限公司 转子铁芯、电机、压缩机及制冷设备
CN209344880U (zh) * 2018-12-25 2019-09-03 珠海格力电器股份有限公司 压缩机转子、 压缩机和冷媒循环系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3905484A4 *

Also Published As

Publication number Publication date
US20210404475A1 (en) 2021-12-30
CN111371213A (zh) 2020-07-03
EP3905484A4 (en) 2022-01-26
KR102617404B1 (ko) 2023-12-27
EP3905484A1 (en) 2021-11-03
KR20210107622A (ko) 2021-09-01
US11946476B2 (en) 2024-04-02

Similar Documents

Publication Publication Date Title
CN110332018B (zh) 一种高紧凑闭式循环径流涡轮发电系统转子
CN110344890B (zh) 一种高可靠性涡轮发电系统转子结构与制造工艺
CN104747595A (zh) 高可靠性长寿命气体动压轴承
WO2020082960A1 (zh) 一种燃气轮机发电机组
CN104895916A (zh) 一种槽式动压气体径向轴承
WO2020134430A1 (zh) 轴承支撑组件及其加工方法、离心压缩机
CN101571161B (zh) 磁性滑动轴承
JP2015086817A (ja) スクリュー圧縮機
CN104895924A (zh) 一种混合式动压气体径向轴承
CN109707637B (zh) 一种双气悬浮支撑的小微型离心压缩机
CN113266643B (zh) 一种径轴一体化磁气混合轴承及其制作方法与应用
WO2020134424A1 (zh) 压缩机转子、压缩机和冷媒循环系统
CN109322917A (zh) 一种磁悬浮轴承径向和轴向保护结构
CN110318812B (zh) 一种径流式涡轮发电系统气体润滑陶瓷转子及其制造方法
CN109899303B (zh) 一种无径向轴承的小微型离心压缩机
WO2023138575A1 (zh) 用于储能设备的径轴向一体式磁轴承和储能设备
CN215672762U (zh) 一种推力轴承后置式空气悬浮鼓风机
CN108779800B (zh) 用于涡轮机械的磁性轴承
CN209344880U (zh) 压缩机转子、 压缩机和冷媒循环系统
CN214063569U (zh) 气体轴承组件、压缩机及空调
CN210013863U (zh) 一种自锁紧式离心压缩机叶轮结构
CN111365293A (zh) 压缩机转子、压缩机及空调设备
CN113404704A (zh) 一种推力轴承后置式空气悬浮鼓风机
CN209278336U (zh) 一种磁悬浮轴承径向和轴向保护结构
WO2020134451A1 (zh) 推力轴承组件、压缩机和冷媒循环系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019903635

Country of ref document: EP

Effective date: 20210726