WO2020134417A1 - 非线性反馈电路及采用其的低噪声放大器 - Google Patents

非线性反馈电路及采用其的低噪声放大器 Download PDF

Info

Publication number
WO2020134417A1
WO2020134417A1 PCT/CN2019/112620 CN2019112620W WO2020134417A1 WO 2020134417 A1 WO2020134417 A1 WO 2020134417A1 CN 2019112620 W CN2019112620 W CN 2019112620W WO 2020134417 A1 WO2020134417 A1 WO 2020134417A1
Authority
WO
WIPO (PCT)
Prior art keywords
diode
resistor
noise amplifier
diodes
cathode
Prior art date
Application number
PCT/CN2019/112620
Other languages
English (en)
French (fr)
Inventor
宋佳颖
蒋一帆
Original Assignee
南京米乐为微电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京米乐为微电子科技有限公司 filed Critical 南京米乐为微电子科技有限公司
Priority to US17/296,457 priority Critical patent/US20210399696A1/en
Publication of WO2020134417A1 publication Critical patent/WO2020134417A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3276Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using the nonlinearity inherent to components, e.g. a diode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/301Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in MOSFET amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/126A diode being coupled in a feedback path of an amplifier stage, e.g. active or passive diode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/447Indexing scheme relating to amplifiers the amplifier being protected to temperature influence

Definitions

  • the invention relates to a low-noise amplifier, in particular to a nonlinear feedback circuit and a low-noise amplifier using the same.
  • An object of the present invention is to provide a non-linear feedback circuit and a low-noise amplifier using the same, which can solve the problem that the temperature compensation circuit in the prior art is not suitable for a low-noise amplifier.
  • the non-linear feedback circuit of the present invention includes at least one diode; when there is only one diode, the cathode of the diode is used to connect the gate of the enhanced pHemt tube Q1 in the low noise amplifier, and the anode of the diode is used to connect to the low noise amplifier
  • the drain of the enhanced pHemt tube Q1 when there are two or more diodes, all diodes are connected in series, where the anode of the first diode is used to connect the drain of the enhanced pHemt tube Q1 in the low noise amplifier
  • the cathode of the first diode is connected to the anode of the second diode, and the cathode of the last diode is used to connect the gate of the enhanced pHemt tube Q1 in the low noise amplifier.
  • the first resistor R1 is included; when there is only one diode, one end of the first resistor R1 is connected to the cathode of the diode; when there are two or more diodes, one end of the first resistor R1 is connected to the cathode of the last diode; The other end of the first resistor R1 is used for grounding.
  • the negative temperature characteristic of the diode and the positive temperature characteristic of the first resistor R1 can be complemented, and it is difficult to compensate for an appropriate temperature when using only the diode. And can also improve P1dB.
  • the second resistor R2 when there is only one diode, the second resistor R2 is connected in series with the diode, and one end of the series circuit composed of the second resistor R2 and the diode is used to connect the drain of the enhanced pHemt tube Q1 in the low noise amplifier , The other end of the series circuit composed of the second resistor R2 and the diode is used to connect the gate of the enhanced pHemt tube Q1 in the low noise amplifier; when there are two or more diodes, the second resistor R2 and all diodes are connected in series , One end of the series circuit composed of the second resistor R2 and all diodes is used to connect the drain of the enhanced pHemt tube Q1 in the low noise amplifier, and the other end of the series circuit composed of the second resistor R2 and all diodes is used to connect the low noise amplifier The grid of medium enhanced pHemt tube Q1. In this way, the negative temperature characteristic of the diode and the positive temperature characteristic of the second resistor
  • the third resistor R3 includes a third resistor R3 and a first inductor L1; when there is only one diode, one end of the third resistor R3 is connected to the cathode of the diode, and one end of the first inductor L1 is connected to the anode of the diode; when the diode has two or two Above, one end of the third resistor R3 is connected to the cathode of the last diode, and one end of the first inductor L1 is connected to the anode of the first diode; the other end of the third resistor R3 is used to connect the enhanced pHemt tube Q1 in the low noise amplifier The gate and the other end of the first inductor L1 are used to connect the drain of the enhanced pHemt tube Q1 in the low noise amplifier.
  • the high resistance state can be formed by the third resistor R3 to prevent the DC signal from coupling to the radio frequency terminal.
  • the inductance of L1 can be used to prevent the DC signal from coupling
  • first capacitor C1 and a second capacitor C2 when there is only one diode, one end of the first capacitor C1 is connected to the anode of the diode, and one end of the second capacitor C2 is connected to the cathode of the diode; when the diode has two or two In the above, one end of the first capacitor C1 is connected to the anode of the first diode, and one end of the second capacitor C2 is connected to the cathode of the last diode; the other end of the first capacitor C1 and the other end of the second capacitor C2 are both used for grounding. In this way, the current coupled from the DC terminal to the RF terminal can be filtered through the first capacitor C1 and the second capacitor C2.
  • the low-noise amplifier using the nonlinear feedback circuit of the present invention includes an enhanced pHemt tube Q1, and the gate of the enhanced pHemt tube Q1 is connected to at least one diode: when there is only one diode, the cathode of the diode is connected to the enhanced pHemt tube Q1
  • the gate of the diode, the anode of the diode and the drain of the enhanced pHemt tube Q1 are connected to one end of the voltage source DC1; when there are two or more diodes, the anode of the first diode and the drain of the enhanced pHemt tube Q1 Both are connected to one end of the voltage source DC1, the cathode of the first diode is connected to the anode of the second diode, and the cathode of the last diode is connected to the gate of the enhanced pHemt tube Q1; the source of the enhanced pHemt tube Q1 and the voltage source DC1 The other end is grounded.
  • the first resistor R1 is included; when there is only one diode, one end of the first resistor R1 is connected to the cathode of the diode; when there are two or more diodes, one end of the first resistor R1 is connected to the cathode of the last diode; The other end of the first resistor R1 is grounded.
  • the negative temperature characteristic of the diode and the positive temperature characteristic of the first resistor R1 can be complemented, and it is difficult to compensate for an appropriate temperature when using only the diode. And can also improve P1dB.
  • the second resistor R2 when there is only one diode, the second resistor R2 is connected in series with the diode, and one end of the series circuit composed of the second resistor R2 and the diode is connected to the drain of the enhanced pHemt tube Q1 in the low noise amplifier.
  • the other end of the series circuit composed of two resistors R2 and the diode is connected to the gate of the enhanced pHemt tube Q1 in the low noise amplifier; when there are two or more diodes, the second resistor R2 is connected in series with all the diodes, the second resistor One end of the series circuit composed of R2 and all diodes is connected to the drain of the enhanced pHemt tube Q1 in the low noise amplifier, and the second resistor R2 and the other end of the series circuit composed of all diodes is connected to the gate of the enhanced pHemt tube Q1 in the low noise amplifier pole.
  • the negative temperature characteristic of the diode and the positive temperature characteristic of the second resistor R2 can be complemented, and it is difficult to compensate for an appropriate temperature when using only the diode. And can also improve P1dB.
  • the third resistor R3 includes a third resistor R3 and a first inductor L1; when there is only one diode, one end of the third resistor R3 is connected to the cathode of the diode, and one end of the first inductor L1 is connected to the anode of the diode; when the diode has two or two In the above, one end of the third resistor R3 is connected to the cathode of the last diode, one end of the first inductor L1 is connected to the anode of the first diode; the other end of the third resistor R3 is connected to the gate of the enhanced pHemt tube Q1, and the first inductor The other end of L1 is connected to the drain of the enhanced pHemt tube Q1.
  • the high resistance state can be formed by the third resistor R3 to prevent the DC signal from coupling to the radio frequency terminal.
  • the inductance of L1 can be used to prevent the coupling of the DC signal to the radio frequency through the first inductor
  • first capacitor C1 and a second capacitor C2 when there is only one diode, one end of the first capacitor C1 is connected to the anode of the diode, and one end of the second capacitor C2 is connected to the cathode of the diode; when the diode has two or two In the above, one end of the first capacitor C1 is connected to the anode of the first diode, and one end of the second capacitor C2 is connected to the cathode of the last diode; the other end of the first capacitor C1 and the other end of the second capacitor C2 are both grounded. In this way, the current coupled from the DC terminal to the RF terminal can be filtered through the first capacitor C1 and the second capacitor C2.
  • the invention discloses a non-linear feedback circuit and a low-noise amplifier using the same.
  • the negative temperature characteristic of the diode is used to perform temperature compensation on the enhanced pHemt tube Q1 in the low-noise amplifier, thereby achieving stable gain.
  • the nonlinear characteristics of the diode can also provide high-order harmonics for the low-noise amplifier, and the mutual cancellation and addition of the high-order harmonics can improve the OIP3 of the low-noise amplifier.
  • FIG. 1 is a circuit diagram of a power amplifier using a temperature compensation circuit in the prior art
  • FIG. 2 is a circuit diagram of a low-noise amplifier in a specific embodiment of the present invention.
  • 3 is a graph showing the relationship between gain and frequency in various situations in specific embodiments of the present invention.
  • FIG. 1 is a circuit diagram of a power amplifier using a temperature compensation circuit in the prior art.
  • This temperature compensation circuit can make the change state of the enhanced pHemt tube Q21 consistent with the enhanced pHemt tube Q11.
  • the current of the enhanced pHemt tube Q21 decreases, and the partial voltage falling on the fourth resistor R4 decreases.
  • the Vds and Vgs of the enhanced pHemt tube Q21 will increase, and the current of the enhanced pHemt tube Q21 will be increased in the reverse direction, so that the enhanced pHemt tube Q21 current remains unchanged at high and low temperatures.
  • the current of the enhanced pHemt tube Q11 remains unchanged as the Vgs of the enhanced pHemt tube Q11 increases.
  • the temperature compensation circuit in the prior art cannot be used in a low-noise amplifier. If it is used in a low-noise amplifier, the high and low temperature deviation will be greater and the effect will be worse.
  • this specific embodiment discloses a non-linear feedback circuit, as shown in FIG. 2, which includes at least one diode; when there is only one diode, the cathode of the diode is used to connect the gate of the enhanced pHemt tube Q1 in the low noise amplifier , The anode of the diode is used to connect the drain of the enhanced pHemt tube Q1 in the low-noise amplifier; when the diode has two or more, as shown in Figure 2, D1, D2, ..., Dn, there are n diodes, n>1, all diodes are connected in series, where the anode of the first diode D1 is used to connect the drain of the enhanced pHemt tube Q1 in the low noise amplifier, and the cathode of the first diode D1 is connected to the second diode D2 The anode and the cathode of the last diode Dn are used to connect the gate of the enhanced pHemt tube Q1 in the low noise amplifier.
  • the nonlinear feedback circuit may further include a first resistor R1, as shown in FIG. 2; when there is only one diode, one end of the first resistor R1 is connected to the cathode of the diode; when there are two or more diodes, the first resistor One end of R1 is connected to the cathode of the last diode; the other end of the first resistor R1 is used for grounding.
  • a first resistor R1 as shown in FIG. 2; when there is only one diode, one end of the first resistor R1 is connected to the cathode of the diode; when there are two or more diodes, the first resistor One end of R1 is connected to the cathode of the last diode; the other end of the first resistor R1 is used for grounding.
  • the nonlinear feedback circuit may further include a second resistor R2, as shown in FIG. 2; when there is only one diode, the second resistor R2 is connected in series with the diode, and one end of the series circuit composed of the second resistor R2 and the diode is used to connect low noise
  • the drain of the enhanced pHemt tube Q1 in the amplifier, the other end of the series circuit composed of the second resistor R2 and the diode is used to connect the gate of the enhanced pHemt tube Q1 in the low noise amplifier; when the diode has two or more than two ,
  • the second resistor R2 is connected in series with all diodes, one end of the series circuit composed of the second resistor R2 and all diodes is used to connect the drain of the enhanced pHemt tube Q1 in the low noise amplifier, and the second resistor R2 is connected in series with all diodes
  • the other end of the circuit is used to connect the gate of the enhanced pHemt tube Q1 in the low noise amplifier.
  • the nonlinear feedback circuit may further include a third resistor R3, as shown in FIG. 2; when there is only one diode, one end of the third resistor R3 is connected to the cathode of the diode; when there are two or more diodes, the third resistor One end of R3 is connected to the cathode of the last diode; the other end of the third resistor R3 is used to connect the gate of the enhanced pHemt tube Q1 in the low noise amplifier.
  • a third resistor R3 as shown in FIG. 2; when there is only one diode, one end of the third resistor R3 is connected to the cathode of the diode; when there are two or more diodes, the third resistor One end of R3 is connected to the cathode of the last diode; the other end of the third resistor R3 is used to connect the gate of the enhanced pHemt tube Q1 in the low noise amplifier.
  • the non-linear feedback circuit may further include a first inductor L1, as shown in FIG. 2; when there is only one diode, one end of the first inductor L1 is connected to the anode of the diode; when there are two or more diodes, the first inductor One end of L1 is connected to the anode of the first diode; the other end of the first inductor L1 is used to connect the drain of the enhanced pHemt tube Q1 in the low noise amplifier.
  • a first inductor L1 as shown in FIG. 2; when there is only one diode, one end of the first inductor L1 is connected to the anode of the diode; when there are two or more diodes, the first inductor One end of L1 is connected to the anode of the first diode; the other end of the first inductor L1 is used to connect the drain of the enhanced pHemt tube Q1 in the low noise amplifier.
  • the non-linear feedback circuit may further include a first capacitor C1, as shown in FIG. 2; when there is only one diode, one end of the first capacitor C1 is connected to the anode of the diode; when there are two or more diodes, the first capacitor One end of C1 is connected to the anode of the first diode; the other end of the first capacitor C1 is used for grounding.
  • a first capacitor C1 as shown in FIG. 2; when there is only one diode, one end of the first capacitor C1 is connected to the anode of the diode; when there are two or more diodes, the first capacitor One end of C1 is connected to the anode of the first diode; the other end of the first capacitor C1 is used for grounding.
  • the nonlinear feedback circuit may further include a second capacitor C2; when there is only one diode, one end of the second capacitor C2 is connected to the cathode of the diode; when there are two or more diodes, one end of the second capacitor C2 is connected to the last one The cathode of the diode; the other end of the second capacitor C2 is used for grounding.
  • This embodiment also discloses a low-noise amplifier using the above-mentioned nonlinear feedback circuit.
  • FIG. 2 includes an enhanced pHemt tube Q1.
  • the gate of the enhanced pHemt tube Q1 is connected to at least one diode: when there is only one diode, The cathode of the diode is connected to the gate of the enhanced pHemt tube Q1, the anode of the diode and the drain of the enhanced pHemt tube Q1 are connected to one end of the voltage source DC1; when there are two or more diodes, the anode of the first diode
  • the drain of the enhanced pHemt tube Q1 is connected to one end of the voltage source DC1, the cathode of the first diode is connected to the anode of the second diode, and the cathode of the last diode is connected to the gate of the enhanced pHemt tube Q1; the enhanced pHemt tube
  • the low noise amplifier may further include a first resistor R1, as shown in FIG. 2; when there is only one diode, one end of the first resistor R1 is connected to the cathode of the diode; when there are two or more diodes, the first resistor R1 One end of is connected to the cathode of the last diode; the other end of the first resistor R1 is grounded.
  • a first resistor R1 as shown in FIG. 2; when there is only one diode, one end of the first resistor R1 is connected to the cathode of the diode; when there are two or more diodes, the first resistor R1 One end of is connected to the cathode of the last diode; the other end of the first resistor R1 is grounded.
  • the low noise amplifier may further include a second resistor R2, as shown in FIG. 2; when there is only one diode, the second resistor R2 is connected in series with the diode, and one end of the series circuit composed of the second resistor R2 and the diode is connected to the low noise amplifier for enhancement
  • the drain of the pHemt tube Q1, the second end of the series circuit composed of the second resistor R2 and the diode is connected to the gate of the enhanced pHemt tube Q1 in the low noise amplifier; when there are two or more diodes, the second resistor R2 Connected in series with all diodes, one end of the series circuit composed of the second resistor R2 and all diodes is connected to the drain of the enhanced pHemt tube Q1 in the low noise amplifier, and the second resistor R2 is connected to the other end of the series circuit composed of all diodes The gate of the enhanced pHemt tube Q1 in the amplifier.
  • the low noise amplifier may further include a third resistor R3, as shown in FIG. 2; when there is only one diode, one end of the third resistor R3 is connected to the cathode of the diode; when there are two or more diodes, the third resistor R3 One end of is connected to the cathode of the last diode; the other end of the third resistor R3 is connected to the gate of the enhanced pHemt tube Q1.
  • the low noise amplifier may further include a first inductor L1, as shown in FIG. 2; when there is only one diode, one end of the first inductor L1 is connected to the anode of the diode; when there are two or more diodes, the first inductor L1 Is connected to the anode of the first diode; the other end of the first inductor L1 is connected to the drain of the enhanced pHemt tube Q1.
  • a first inductor L1 as shown in FIG. 2; when there is only one diode, one end of the first inductor L1 is connected to the anode of the diode; when there are two or more diodes, the first inductor L1 Is connected to the anode of the first diode; the other end of the first inductor L1 is connected to the drain of the enhanced pHemt tube Q1.
  • the low noise amplifier may further include a first capacitor C1, as shown in FIG. 2; when there is only one diode, one end of the first capacitor C1 is connected to the anode of the diode; when there are two or more diodes, the first capacitor C1 Is connected to the anode of the first diode; the other end of the first capacitor C1 is grounded.
  • a first capacitor C1 as shown in FIG. 2; when there is only one diode, one end of the first capacitor C1 is connected to the anode of the diode; when there are two or more diodes, the first capacitor C1 Is connected to the anode of the first diode; the other end of the first capacitor C1 is grounded.
  • the low noise amplifier may further include a second capacitor C2, as shown in FIG. 2; when there is only one diode, one end of the second capacitor C2 is connected to the cathode of the diode; when there are two or more diodes, the second capacitor C2 Is connected to the cathode of the last diode; the other end of the second capacitor C2 is grounded.
  • a second capacitor C2 as shown in FIG. 2; when there is only one diode, one end of the second capacitor C2 is connected to the cathode of the diode; when there are two or more diodes, the second capacitor C2 Is connected to the cathode of the last diode; the other end of the second capacitor C2 is grounded.
  • the low noise amplifier may also include an input matching circuit connected to the gate of the enhanced pHemt tube Q1, or may include an output matching circuit connected to the drain of the enhanced pHemt tube Q1, as shown in FIG.
  • the number of diodes can be adjusted according to the actual circuit needs, so that the circuit generates a suitable voltage drop, to ensure that the Vg of the enhanced pHemt tube Q1 is the same as expected at normal temperature.
  • a diode can provide a voltage drop of about 0.9V.
  • the temperature change of the second resistor R2 is opposite to that of the diode. As the temperature increases, the resistance value will increase, that is, the voltage drop provided will increase, which is a positive temperature characteristic.
  • the amplitude of the voltage drop of the second resistor R2 changes with temperature is small, which can play a role of fine-tuning and supplementing the temperature change of the diode.
  • the resistance of the first resistor R1 can directly affect the DC current on the feedback circuit and the Vg of the enhanced pHemt tube Q1, and needs to be coordinated, simulated and debugged with the second resistor R2. During the simulation, it is necessary to refer to the changes of OIP3 at the same time, and the voltage and current waveforms can be extracted on the feedback circuit to ensure that OIP3 can also achieve a good compensation effect in the link adjustment.
  • FIG. 3 is a graph showing the relationship between gain and frequency in various situations in specific embodiments of the present invention.
  • “without_-55" means the gain of -55°C low-noise amplifier when the first resistor R1, second resistor R2 and all diodes are not used
  • “without_25” means that the first resistor R1, second resistor R2 and all diodes are not used
  • “without_85” means the gain of the low-noise amplifier at 85°C without the first resistor R1, the second resistor R2 and all diodes
  • “New_-55” means the use of the first resistor R1, the second Resistance R2 and all diodes -55 °C low noise amplifier gain
  • “New _25” means using the first resistor R1, the second resistor R2 and all diodes 25 °C low noise amplifier gain
  • “New _85” means using the first Resistance R1, second resistor R2 and all diodes gain at 85°C
  • “Traditional_25” represents the gain of the low-noise amplifier when the temperature compensation circuit in Fig. 1 is applied to the low-noise amplifier at 25C
  • “Traditional_85” represents the low-noise amplifier when the temperature compensation circuit in Fig. 1 is applied to the low-noise amplifier at 85C.
  • “Diode_-55" means that the first resistor R1 and the second resistor R2 are not used, and the gain of the low-noise amplifier is low when the diode-only low-noise amplifier is at -55°C.
  • “Diode_25” means that the first resistor R1 and the second resistor are not used R2, the gain of the low-noise amplifier using a diode-only low-noise amplifier at 25°C
  • “Diode _85” means that the low-noise amplifier using only a diode does not use the first resistor R1 and the second resistor R2 at 85°C Of gain. It can be seen that when the first resistor R1, the second resistor R2 and all diodes are not used, the gain difference between high and low temperature is about 1.2 dB.
  • the gain difference between high and low temperature is about 0.2dB, which largely maintains the consistency of the gain of the low-noise amplifier at high and low temperatures.
  • the gain difference between high and low temperature is about 1dB.
  • the gain difference between high and low temperature is 2.5dB.
  • OIP3_Without represents OIP3 of the low-noise amplifier without the first resistor R1, the second resistor R2, and all diodes
  • OIP3_New represents the OIP3 of the low-noise amplifier when the first resistor R1, the second resistor R2, and all diodes are used
  • OIP3_Diode represents the OIP3 of the low-noise amplifier when the first resistor R1 and the second resistor R2 are not used.
  • P1dB_Without represents the P1dB of the low-noise amplifier without the first resistor R1, the second resistor R2 and all diodes
  • P1dB_New represents the P1dB of the low-noise amplifier with the first resistor R1, the second resistor R2 and all diodes
  • P1dB_Diode represents the P1dB of the low noise amplifier when the first resistor R1 and the second resistor R2 are not used, and only the diode is used.
  • the output OIP3 of the low noise amplifier is about 26 ⁇ 28.7dBm, and OIP3 is 10dB higher than P1dB.
  • the output OIP3 of the low noise amplifier is about 31 to 33 dBm, which is an increase of 3-7 dB compared to the case where the first resistor R1, the second resistor R2 and all diodes are not used.
  • OIP3 is 14dB higher than P1dB, a very significant improvement.
  • the output OIP3 of the low-noise amplifier is about 26 dBm, which is similar to the OIP3 when the first resistor R1 and the second resistor R2 are not used.
  • P1dB has increased by 14dB, and has also been greatly improved. It can also be seen that after the addition of R1 and R2, P1dB of P1dB_New is 8dB higher than P1dB_Diode at high frequencies. Because if only diodes are used instead of R1 and R2, it will result in a large number of diodes and excessive parasitic capacitance values, resulting in capacitive feedback, which reduces the chip's P1dB.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

非线性反馈电路,包括至少一个二极管(D1-Dn)。采用该非线性反馈电路的低噪声放大器。本发明通过二极管(D1-Dn)的负温度特性来对低噪声放大器的增益变化进行温度补偿,从而实现增益稳定。此外,通过二极管(D1-Dn)的非线性特征也能够为低噪声放大器提供高次谐波,高次谐波的相互对消与加成能够提高低噪声放大器的OIP3。

Description

非线性反馈电路及采用其的低噪声放大器 技术领域
本发明涉及低噪声放大器,特别是涉及非线性反馈电路及采用其的低噪声放大器。
背景技术
现在随着市场需求的不断增加,放大器芯片经常被使用在很多不同的环境温度下。但是在不同的环境温度下,pHemt管的特性会产生一定的变化,这会导致放大器的增益有较大的波动,其中一般小信号增益波动为1-3dB。普通的分压式供电方法在温度变化下会使得放大器的增益变化较大。功率放大器工作在饱和状态且较高偏置点下,随着温度的升高,电流是降低的。现有技术中,对于增强型pHemt管,一般用电流镜来实现温度补偿,但是此种温度补偿电路往往只适用于功率放大器,不适用于低噪声放大器。
技术问题
本发明的目的是提供一种非线性反馈电路及采用其的低噪声放大器,能够解决现有技术中温度补偿电路不适用于低噪声放大器的问题。
技术解决方案
技术方案:为达到此目的,本发明采用以下技术方案:
本发明所述的非线性反馈电路,包括至少一个二极管;当二极管只有一个时,二极管的阴极用于连接低噪声放大器中增强型pHemt管Q1的栅极,二极管的阳极用于连接低噪声放大器中增强型pHemt管Q1的漏极;当二极管有两个或者两个以上时,所有二极管都是串联的,其中,第一个二极管的阳极用于连接低噪声放大器中增强型pHemt管Q1的漏极,第一个二极管的阴极连接第二个二极管的阳极,最后一个二极管的阴极用于连接低噪声放大器中增强型pHemt管Q1的栅极。
进一步,还包括第一电阻R1;当二极管只有一个时,第一电阻R1的一端连接二极管的阴极;当二极管有两个或者两个以上时,第一电阻R1的一端连接最后一个二极管的阴极;第一电阻R1的另一端用于接地。这样能够将二极管的负温度特性和第一电阻R1的正温度特性互补起来,防止仅采用二极管时难以补偿到合适温度。并且还能够提高P1dB。
进一步,还包括第二电阻R2;当二极管只有一个时,第二电阻R2与二极管串联,第二电阻R2与二极管组成的串联电路的一端用于连接低噪声放大器中增强型pHemt管Q1的漏极,第二电阻R2与二极管组成的串联电路的另一端用于连接低噪声放大器中增强型pHemt管Q1的栅极;当二极管有两个或者两个以上时,第二电阻R2与所有二极管均串联,第二电阻R2与所有二极管组成的串联电路的一端用于连接低噪声放大器中增强型pHemt管Q1的漏极,第二电阻R2与所有二极管组成的串联电路的另一端用于连接低噪声放大器中增强型pHemt管Q1的栅极。这样能够将二极管的负温度特性和第二电阻R2的正温度特性互补起来,防止仅采用二极管时难以补偿到合适温度。并且还能够提高P1dB。
进一步,还包括第三电阻R3和第一电感L1;当二极管只有一个时,第三电阻R3的一端连接二极管的阴极,第一电感L1的一端连接二极管的阳极;当二极管有两个或者两个以上时,第三电阻R3的一端连接最后一个二极管的阴极,第一电感L1的一端连接第一个二极管的阳极;第三电阻R3的另一端用于连接低噪声放大器中增强型pHemt管Q1的栅极,第一电感L1的另一端用于连接低噪声放大器中增强型pHemt管Q1的漏极。通过第三电阻R3能够形成高阻状态,防止直流信号耦合到射频端。通过第一电感L1可以利用L1的感性阻止直流信号耦合到射频。
进一步,还包括第一电容C1和第二电容C2;当二极管只有一个时,第一电容C1的一端连接二极管的阳极,第二电容C2的一端连接二极管的阴极;当二极管有两个或者两个以上时,第一电容C1的一端连接第一个二极管的阳极,第二电容C2的一端连接最后一个二极管的阴极;第一电容C1的另一端和第二电容C2的另一端均用于接地。这样能够通过第一电容C1和第二电容C2滤除直流端耦合到射频端的电流。
采用本发明所述的非线性反馈电路的低噪声放大器,包括增强型pHemt管Q1,增强型pHemt管Q1的栅极连接至少一个二极管:当二极管只有一个时,二极管的阴极连接增强型pHemt管Q1的栅极,二极管的阳极和增强型pHemt管Q1的漏极均连接电压源DC1的一端;当二极管有两个或者两个以上时,第一个二极管的阳极和增强型pHemt管Q1的漏极均连接电压源DC1的一端,第一个二极管的阴极连接第二个二极管的阳极,最后一个二极管的阴极连接增强型pHemt管Q1的栅极;增强型pHemt管Q1的源极和电压源DC1的另一端均接地。
进一步,还包括第一电阻R1;当二极管只有一个时,第一电阻R1的一端连接二极管的阴极;当二极管有两个或者两个以上时,第一电阻R1的一端连接最后一个二极管的阴极;第一电阻R1的另一端接地。这样能够将二极管的负温度特性和第一电阻R1的正温度特性互补起来,防止仅采用二极管时难以补偿到合适温度。并且还能够提高P1dB。
进一步,还包括第二电阻R2;当二极管只有一个时,第二电阻R2与二极管串联,第二电阻R2与二极管组成的串联电路的一端连接低噪声放大器中增强型pHemt管Q1的漏极,第二电阻R2与二极管组成的串联电路的另一端连接低噪声放大器中增强型pHemt管Q1的栅极;当二极管有两个或者两个以上时,第二电阻R2与所有二极管均串联,第二电阻R2与所有二极管组成的串联电路的一端连接低噪声放大器中增强型pHemt管Q1的漏极,第二电阻R2与所有二极管组成的串联电路的另一端连接低噪声放大器中增强型pHemt管Q1的栅极。这样能够将二极管的负温度特性和第二电阻R2的正温度特性互补起来,防止仅采用二极管时难以补偿到合适温度。并且还能够提高P1dB。
进一步,还包括第三电阻R3和第一电感L1;当二极管只有一个时,第三电阻R3的一端连接二极管的阴极,第一电感L1的一端连接二极管的阳极;当二极管有两个或者两个以上时,第三电阻R3的一端连接最后一个二极管的阴极,第一电感L1的一端连接第一个二极管的阳极;第三电阻R3的另一端连接增强型pHemt管Q1的栅极,第一电感L1的另一端连接增强型pHemt管Q1的漏极。通过第三电阻R3能够形成高阻状态,防止直流信号耦合到射频端。通过第一电感L1可以利用L1的感性阻止直流信号耦合到射频的。
进一步,还包括第一电容C1和第二电容C2;当二极管只有一个时,第一电容C1的一端连接二极管的阳极,第二电容C2的一端连接二极管的阴极;当二极管有两个或者两个以上时,第一电容C1的一端连接第一个二极管的阳极,第二电容C2的一端连接最后一个二极管的阴极;第一电容C1的另一端和第二电容C2的另一端均接地。这样能够通过第一电容C1和第二电容C2滤除直流端耦合到射频端的电流。
有益效果
本发明公开了一种非线性反馈电路及采用其的低噪声放大器,通过二极管的负温度特性来对低噪声放大器中增强型pHemt管Q1进行温度补偿,从而实现增益稳定。此外,通过二极管的非线性特征也能够为低噪声放大器提供高次谐波,高次谐波的相互对消与加成能够提高低噪声放大器的OIP3。
附图说明
图1为现有技术中采用了温度补偿电路的功率放大器的电路图;
图2为本发明具体实施方式中低噪声放大器的电路图;
图3为本发明具体实施方式中各种情形下的增益与频率的关系曲线;
图4为本发明具体实施方式中各种情形下的OIP3和P1dB与频率的关系曲线。
本发明的实施方式
下面结合具体实施方式和附图对本发明的技术方案作进一步的介绍。
图1为现有技术中采用了温度补偿电路的功率放大器的电路图,此温度补偿电路可以让增强型pHemt管Q21的变化状态与增强型pHemt管Q11一致。在温度升高时,增强型pHemt管Q21的电流减小,落在第四电阻R4上的分压减小。此时增强型pHemt管Q21的Vds和Vgs会升高,会反向增大增强型pHemt管Q21的电流,使得增强型pHemt管Q21电流在高低温保持不变。同时增强型pHemt管Q11的电流也随着增强型pHemt管Q11的Vgs的升高而保持不变。但是现有技术中的这个温度补偿电路并不能用在低噪声放大器中,如果用在低噪声放大器中,则高低温偏差会更大,效果会更差。
因此,本具体实施方式公开了一种非线性反馈电路,如图2所示,包括至少一个二极管;当二极管只有一个时,二极管的阴极用于连接低噪声放大器中增强型pHemt管Q1的栅极,二极管的阳极用于连接低噪声放大器中增强型pHemt管Q1的漏极;当二极管有两个或者两个以上时,如图2中的D1、D2、……、Dn,共有n个二极管,n>1,所有二极管都是串联的,其中,第一个二极管D1的阳极用于连接低噪声放大器中增强型pHemt管Q1的漏极,第一个二极管D1的阴极连接第二个二极管D2的阳极,最后一个二极管Dn的阴极用于连接低噪声放大器中增强型pHemt管Q1的栅极。
本非线性反馈电路还可以包括第一电阻R1,如图2所示;当二极管只有一个时,第一电阻R1的一端连接二极管的阴极;当二极管有两个或者两个以上时,第一电阻R1的一端连接最后一个二极管的阴极;第一电阻R1的另一端用于接地。
本非线性反馈电路还可以包括第二电阻R2,如图2所示;当二极管只有一个时,第二电阻R2与二极管串联,第二电阻R2与二极管组成的串联电路的一端用于连接低噪声放大器中增强型pHemt管Q1的漏极,第二电阻R2与二极管组成的串联电路的另一端用于连接低噪声放大器中增强型pHemt管Q1的栅极;当二极管有两个或者两个以上时,第二电阻R2与所有二极管均串联,第二电阻R2与所有二极管组成的串联电路的一端用于连接低噪声放大器中增强型pHemt管Q1的漏极,第二电阻R2与所有二极管组成的串联电路的另一端用于连接低噪声放大器中增强型pHemt管Q1的栅极。
本非线性反馈电路还可以包括第三电阻R3,如图2所示;当二极管只有一个时,第三电阻R3的一端连接二极管的阴极;当二极管有两个或者两个以上时,第三电阻R3的一端连接最后一个二极管的阴极;第三电阻R3的另一端用于连接低噪声放大器中增强型pHemt管Q1的栅极。
本非线性反馈电路还可以包括第一电感L1,如图2所示;当二极管只有一个时,第一电感L1的一端连接二极管的阳极;当二极管有两个或者两个以上时,第一电感L1的一端连接第一个二极管的阳极;第一电感L1的另一端用于连接低噪声放大器中增强型pHemt管Q1的漏极。
本非线性反馈电路还可以包括第一电容C1,如图2所示;当二极管只有一个时,第一电容C1的一端连接二极管的阳极;当二极管有两个或者两个以上时,第一电容C1的一端连接第一个二极管的阳极;第一电容C1的另一端用于接地。
本非线性反馈电路还可以包括第二电容C2;当二极管只有一个时,第二电容C2的一端连接二极管的阴极;当二极管有两个或者两个以上时,第二电容C2的一端连接最后一个二极管的阴极;第二电容C2的另一端用于接地。
本具体实施方式还公开了采用上述非线性反馈电路的低噪声放大器,如图2所示,包括增强型pHemt管Q1,增强型pHemt管Q1的栅极连接至少一个二极管:当二极管只有一个时,二极管的阴极连接增强型pHemt管Q1的栅极,二极管的阳极和增强型pHemt管Q1的漏极均连接电压源DC1的一端;当二极管有两个或者两个以上时,第一个二极管的阳极和增强型pHemt管Q1的漏极均连接电压源DC1的一端,第一个二极管的阴极连接第二个二极管的阳极,最后一个二极管的阴极连接增强型pHemt管Q1的栅极;增强型pHemt管Q1的源极和电压源DC1的另一端均接地。
本低噪声放大器还可以包括第一电阻R1,如图2所示;当二极管只有一个时,第一电阻R1的一端连接二极管的阴极;当二极管有两个或者两个以上时,第一电阻R1的一端连接最后一个二极管的阴极;第一电阻R1的另一端接地。
本低噪声放大器还可以包括第二电阻R2,如图2所示;当二极管只有一个时,第二电阻R2与二极管串联,第二电阻R2与二极管组成的串联电路的一端连接低噪声放大器中增强型pHemt管Q1的漏极,第二电阻R2与二极管组成的串联电路的另一端连接低噪声放大器中增强型pHemt管Q1的栅极;当二极管有两个或者两个以上时,第二电阻R2与所有二极管均串联,第二电阻R2与所有二极管组成的串联电路的一端连接低噪声放大器中增强型pHemt管Q1的漏极,第二电阻R2与所有二极管组成的串联电路的另一端连接低噪声放大器中增强型pHemt管Q1的栅极。
本低噪声放大器还可以包括第三电阻R3,如图2所示;当二极管只有一个时,第三电阻R3的一端连接二极管的阴极;当二极管有两个或者两个以上时,第三电阻R3的一端连接最后一个二极管的阴极;第三电阻R3的另一端连接增强型pHemt管Q1的栅极。
本低噪声放大器还可以包括第一电感L1,如图2所示;当二极管只有一个时,第一电感L1的一端连接二极管的阳极;当二极管有两个或者两个以上时,第一电感L1的一端连接第一个二极管的阳极;第一电感L1的另一端连接增强型pHemt管Q1的漏极。
本低噪声放大器还可以包括第一电容C1,如图2所示;当二极管只有一个时,第一电容C1的一端连接二极管的阳极;当二极管有两个或者两个以上时,第一电容C1的一端连接第一个二极管的阳极;第一电容C1的另一端接地。
本低噪声放大器还可以包括第二电容C2,如图2所示;当二极管只有一个时,第二电容C2的一端连接二极管的阴极;当二极管有两个或者两个以上时,第二电容C2的一端连接最后一个二极管的阴极;第二电容C2的另一端接地。
当然,本低噪声放大器还可以包括与增强型pHemt管Q1栅极连接的输入匹配电路,也可以包括与增强型pHemt管Q1漏极连接的输出匹配电路,如图2所示。
其中,二极管的个数可以根据实际电路需要进行调整,使电路产生合适的压降,保证在常温时候增强型pHemt管Q1的Vg与所期望的相同。例如,一个二极管能提供约0.9V的压降,随着温度升高,压降会降低,变化约在0.1V~0.2V之间,其负温度特性比较明显。第二电阻R2的温度变化是与二极管相反的,随着温度升高阻值会增大,也即提供的压降会增大,是正温度特性。并且,第二电阻R2的压降随温度变化的幅度较小,可以给二极管的温度变化起到微调和补充的作用。在设计的时候,可以首先根据需要的压降大致选择二极管的数量,例如4V则选择4个二极管。再加入第二电阻R2进行微调和补充,若发现二极管带来的温度补偿过大,可删减二极管的数量,增加第二电阻R2的阻值。第一电阻R1的阻值可以直接影响到反馈电路上的直流电流与增强型pHemt管Q1的Vg,需要与第二电阻R2进行协调仿真调试。仿真时需要同时参考OIP3的变化,可在该反馈电路上提取出电压电流波形,保证OIP3在链路调节中同样也可以达到很好的补偿效果。
图3为本发明具体实施方式中各种情形下的增益与频率的关系曲线。其中,“without_-55”表示不采用第一电阻R1、第二电阻R2和所有二极管时-55℃低噪声放大器的增益,“without_25”表示不采用第一电阻R1、第二电阻R2和所有二极管时25℃低噪声放大器的增益,“without_85”表示不采用第一电阻R1、第二电阻R2和所有二极管时85℃低噪声放大器的增益,“New_-55”表示采用第一电阻R1、第二电阻R2和所有二极管时-55℃低噪声放大器的增益,“New _25”表示采用第一电阻R1、第二电阻R2和所有二极管时25℃低噪声放大器的增益,“New _85”表示采用第一电阻R1、第二电阻R2和所有二极管时85℃低噪声放大器的增益,“Traditional_-55”表示将图1中温度补偿电路用到低噪声放大器中的-55℃时低噪声放大器的增益,“Traditional_25”表示将图1中温度补偿电路用到低噪声放大器中的25℃时低噪声放大器的增益,“Traditional_85”表示将图1中温度补偿电路用到低噪声放大器中的85℃时低噪声放大器的增益。“Diode_-55”表示不采用第一电阻R1和第二电阻R2,仅采用二极管的低噪声放大器在-55℃时低噪声放大器的增益,“Diode_25”表示不采用第一电阻R1和第二电阻R2,仅采用二极管的低噪声放大器在25℃时低噪声放大器的增益,“Diode _85”表示不采用第一电阻R1和第二电阻R2,仅采用二极管的低噪声放大器在85℃时低噪声放大器的增益。可见,在不采用第一电阻R1、第二电阻R2和所有二极管时,高低温的增益差为1.2dB左右。在加入了第一电阻R1、第二电阻R2和所有二极管时,高低温的增益差为0.2dB左右,很大程度地保持了低噪声放大器在高低温时增益的一致性。在加入了二极管时,高低温的增益差为1dB左右。将图1中温度补偿电路用到低噪声放大器中,高低温的增益差为2.5dB。由此可见,加入了第一电阻R1、第二电阻R2和所有二极管后,低噪声放大器在高低温的增益差缩小了很多。不采用第一电阻R1和第二电阻R2,仅采用二极管时,低噪声放大器在高低温的增益差也缩小了不少。
图4为本发明具体实施方式中各种情形下的OIP3和P1dB与频率的关系曲线,其中“OIP3_Without”表示不采用第一电阻R1、第二电阻R2和所有二极管时低噪声放大器的OIP3,“OIP3_New”表示采用第一电阻R1、第二电阻R2和所有二极管时低噪声放大器的OIP3,“OIP3_Diode”表示不采用第一电阻R1和第二电阻R2,仅采用二极管时低噪声放大器的OIP3,“P1dB_Without”表示不采用第一电阻R1、第二电阻R2和所有二极管时低噪声放大器的P1dB,“P1dB_ New”表示采用第一电阻R1、第二电阻R2和所有二极管时低噪声放大器的P1dB,“P1dB_Diode”表示不采用第一电阻R1和第二电阻R2,仅采用二极管时低噪声放大器的P1dB。可见,不采用第一电阻R1、第二电阻R2和所有二极管时,低噪声放大器的输出OIP3为26~28.7dBm左右,OIP3比P1dB高10dB。采用了第一电阻R1、第二电阻R2和所有二极管之后,低噪声放大器的输出OIP3为31~33dBm左右,相比不采用第一电阻R1、第二电阻R2和所有二极管时增加了3-7dB,OIP3比P1dB高14dB,有了非常显著的提升。不采用第一电阻R1和第二电阻R2,仅采用二极管时,低噪声放大器的输出OIP3为26dBm左右,相比不采用第一电阻R1、第二电阻R2和所有二极管时的OIP3差不多,OIP3比P1dB增加了14dB,也有了较大的提升。同时也可以看出,R1和R2的加入后,P1dB_New的P1dB比P1dB_Diode在高频上要提高了8dB。因为如果仅用二极管,不用R1和R2,会导致二极管数量很多,寄生电容值过大,产生容性反馈,使得芯片的P1dB降低。

Claims (10)

  1. 非线性反馈电路,其特征在于:包括至少一个二极管;当二极管只有一个时,二极管的阴极用于连接低噪声放大器中增强型pHemt管Q1的栅极,二极管的阳极用于连接低噪声放大器中增强型pHemt管Q1的漏极;当二极管有两个或者两个以上时,所有二极管都是串联的,其中,第一个二极管的阳极用于连接低噪声放大器中增强型pHemt管Q1的漏极,第一个二极管的阴极连接第二个二极管的阳极,最后一个二极管的阴极用于连接低噪声放大器中增强型pHemt管Q1的栅极。
  2. 根据权利要求1所述的非线性反馈电路,其特征在于:还包括第一电阻R1;当二极管只有一个时,第一电阻R1的一端连接二极管的阴极;当二极管有两个或者两个以上时,第一电阻R1的一端连接最后一个二极管的阴极;第一电阻R1的另一端用于接地。
  3. 根据权利要求1所述的非线性反馈电路,其特征在于:还包括第二电阻R2;当二极管只有一个时,第二电阻R2与二极管串联,第二电阻R2与二极管组成的串联电路的一端用于连接低噪声放大器中增强型pHemt管Q1的漏极,第二电阻R2与二极管组成的串联电路的另一端用于连接低噪声放大器中增强型pHemt管Q1的栅极;当二极管有两个或者两个以上时,第二电阻R2与所有二极管均串联,第二电阻R2与所有二极管组成的串联电路的一端用于连接低噪声放大器中增强型pHemt管Q1的漏极,第二电阻R2与所有二极管组成的串联电路的另一端用于连接低噪声放大器中增强型pHemt管Q1的栅极。
  4. 根据权利要求1所述的非线性反馈电路,其特征在于:还包括第三电阻R3和第一电感L1;当二极管只有一个时,第三电阻R3的一端连接二极管的阴极,第一电感L1的一端连接二极管的阳极;当二极管有两个或者两个以上时,第三电阻R3的一端连接最后一个二极管的阴极,第一电感L1的一端连接第一个二极管的阳极;第三电阻R3的另一端用于连接低噪声放大器中增强型pHemt管Q1的栅极,第一电感L1的另一端用于连接低噪声放大器中增强型pHemt管Q1的漏极。
  5. 根据权利要求1所述的非线性反馈电路,其特征在于:还包括第一电容C1和第二电容C2;当二极管只有一个时,第一电容C1的一端连接二极管的阳极,第二电容C2的一端连接二极管的阴极;当二极管有两个或者两个以上时,第一电容C1的一端连接第一个二极管的阳极,第二电容C2的一端连接最后一个二极管的阴极;第一电容C1的另一端和第二电容C2的另一端均用于接地。
  6. 采用根据权利要求1所述的非线性反馈电路的低噪声放大器,其特征在于:包括增强型pHemt管Q1,增强型pHemt管Q1的栅极连接至少一个二极管:当二极管只有一个时,二极管的阴极连接增强型pHemt管Q1的栅极,二极管的阳极和增强型pHemt管Q1的漏极均连接电压源DC1的一端;当二极管有两个或者两个以上时,第一个二极管的阳极和增强型pHemt管Q1的漏极均连接电压源DC1的一端,第一个二极管的阴极连接第二个二极管的阳极,最后一个二极管的阴极连接增强型pHemt管Q1的栅极;增强型pHemt管Q1的源极和电压源DC1的另一端均接地。
  7. 根据权利要求6所述的采用非线性反馈电路的低噪声放大器,其特征在于:还包括第一电阻R1;当二极管只有一个时,第一电阻R1的一端连接二极管的阴极;当二极管有两个或者两个以上时,第一电阻R1的一端连接最后一个二极管的阴极;第一电阻R1的另一端接地。
  8. 根据权利要求6所述的采用非线性反馈电路的低噪声放大器,其特征在于:还包括第二电阻R2;当二极管只有一个时,第二电阻R2与二极管串联,第二电阻R2与二极管组成的串联电路的一端连接低噪声放大器中增强型pHemt管Q1的漏极,第二电阻R2与二极管组成的串联电路的另一端连接低噪声放大器中增强型pHemt管Q1的栅极;当二极管有两个或者两个以上时,第二电阻R2与所有二极管均串联,第二电阻R2与所有二极管组成的串联电路的一端连接低噪声放大器中增强型pHemt管Q1的漏极,第二电阻R2与所有二极管组成的串联电路的另一端连接低噪声放大器中增强型pHemt管Q1的栅极。
  9. 根据权利要求6所述的采用非线性反馈电路的低噪声放大器,其特征在于:还包括第三电阻R3和第一电感L1;当二极管只有一个时,第三电阻R3的一端连接二极管的阴极,第一电感L1的一端连接二极管的阳极;当二极管有两个或者两个以上时,第三电阻R3的一端连接最后一个二极管的阴极,第一电感L1的一端连接第一个二极管的阳极;第三电阻R3的另一端连接增强型pHemt管Q1的栅极,第一电感L1的另一端连接增强型pHemt管Q1的漏极。
  10. 根据权利要求6所述的采用非线性反馈电路的低噪声放大器,其特征在于:还包括第一电容C1和第二电容C2;当二极管只有一个时,第一电容C1的一端连接二极管的阳极,第二电容C2的一端连接二极管的阴极;当二极管有两个或者两个以上时,第一电容C1的一端连接第一个二极管的阳极,第二电容C2的一端连接最后一个二极管的阴极;第一电容C1的另一端和第二电容C2的另一端均接地。
PCT/CN2019/112620 2018-12-26 2019-10-22 非线性反馈电路及采用其的低噪声放大器 WO2020134417A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/296,457 US20210399696A1 (en) 2018-12-26 2019-10-22 Non-linear feedback circuit and low-noise amplifier using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811601417.8A CN109450395B (zh) 2018-12-26 2018-12-26 非线性反馈电路及采用其的低噪声放大器
CN201811601417.8 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020134417A1 true WO2020134417A1 (zh) 2020-07-02

Family

ID=65537668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112620 WO2020134417A1 (zh) 2018-12-26 2019-10-22 非线性反馈电路及采用其的低噪声放大器

Country Status (3)

Country Link
US (1) US20210399696A1 (zh)
CN (1) CN109450395B (zh)
WO (1) WO2020134417A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109450395B (zh) * 2018-12-26 2024-02-02 南京米乐为微电子科技有限公司 非线性反馈电路及采用其的低噪声放大器
CN113467320A (zh) * 2021-07-21 2021-10-01 西安龙飞电气技术有限公司 基于增益补偿的微弱信号检测算法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110993A (ja) * 1999-10-08 2001-04-20 Oki Electric Ind Co Ltd 静電保護回路
CN101454972A (zh) * 2006-05-24 2009-06-10 Nxp股份有限公司 增益控制低噪声放大器装置
CN101610068A (zh) * 2009-07-09 2009-12-23 北京七星华创电子股份有限公司 降低放大器噪声系数的电路
CN109450395A (zh) * 2018-12-26 2019-03-08 南京米乐为微电子科技有限公司 非线性反馈电路及采用其的低噪声放大器
CN209375591U (zh) * 2018-12-26 2019-09-10 南京米乐为微电子科技有限公司 非线性反馈电路及采用其的低噪声放大器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6459340B1 (en) * 2001-05-31 2002-10-01 Triquint Semiconductor, Inc. Power amplifier mismatch protection with clamping diodes in RF feedback circuit
US7042285B2 (en) * 2004-04-26 2006-05-09 Ray Myron Parkhurst RF power amplifier with load insensitive indirect forward power detector
US7123096B2 (en) * 2004-05-26 2006-10-17 Raytheon Company Quadrature offset power amplifier
KR100963816B1 (ko) * 2007-12-28 2010-06-16 (주)아이앤씨테크놀로지 공통 소스 구조를 이용한 협대역 다중 밴드 저잡음 증폭기
CN103457550B (zh) * 2012-05-30 2017-12-26 上海无线通信研究中心 射频功率放大器及其移动终端
US8970308B2 (en) * 2013-02-08 2015-03-03 Infineon Technologies Ag Input match network with RF bypass path
US11025205B2 (en) * 2017-02-22 2021-06-01 Mitsubishi Electric Corporation High frequency amplifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110993A (ja) * 1999-10-08 2001-04-20 Oki Electric Ind Co Ltd 静電保護回路
CN101454972A (zh) * 2006-05-24 2009-06-10 Nxp股份有限公司 增益控制低噪声放大器装置
CN101610068A (zh) * 2009-07-09 2009-12-23 北京七星华创电子股份有限公司 降低放大器噪声系数的电路
CN109450395A (zh) * 2018-12-26 2019-03-08 南京米乐为微电子科技有限公司 非线性反馈电路及采用其的低噪声放大器
CN209375591U (zh) * 2018-12-26 2019-09-10 南京米乐为微电子科技有限公司 非线性反馈电路及采用其的低噪声放大器

Also Published As

Publication number Publication date
US20210399696A1 (en) 2021-12-23
CN109450395A (zh) 2019-03-08
CN109450395B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
KR101607192B1 (ko) 전력 증폭기
US8228120B2 (en) Negative capacitance synthesis for use with differential circuits
US20220413538A1 (en) Bias circuit and amplifier
WO2020134417A1 (zh) 非线性反馈电路及采用其的低噪声放大器
CN106505952B (zh) 一种脉冲固态功率放大器及设计方法
WO2023040238A1 (zh) 一种差分功率放大器
US7557654B2 (en) Linearizer
CN104124931A (zh) 一种宽带放大器
WO2021120728A1 (zh) 射频功率放大器的增益压缩补偿电路
KR101590605B1 (ko) 무선 송수신기용 선형 전력증폭기
Liu et al. A broadband CMOS high efficiency power amplifier with large signal linearization
CN204361999U (zh) 一种达林顿结构的宽带放大器电路
CN209375591U (zh) 非线性反馈电路及采用其的低噪声放大器
CN112468104A (zh) 一种运算放大器
CN107104647B (zh) 一种基于神经网络的功率放大器
CN104539247A (zh) 一种达林顿结构的宽带放大器电路
KR101793237B1 (ko) Imd3 상쇄를 위한 병렬결합 트랜지스터를 이용한 선형화된 hbt 기반 전력증폭기
CN204013416U (zh) 一种宽带放大器
CN112564640B (zh) 一种负反馈型放大器
US7986185B2 (en) Rail-to-rail Miller compensation method without feed forward path
CN110829984B (zh) 一种高线性度的功率放大器
CN115395905A (zh) 功率放大器偏置电路、功率放大电路及通信设备
JPS58202607A (ja) 増幅器
CN204697009U (zh) 一种cmos线性功率放大器中的自适应偏置电路
JPH0314818Y2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904457

Country of ref document: EP

Kind code of ref document: A1