WO2020134337A1 - 安检设备及其控制方法 - Google Patents

安检设备及其控制方法 Download PDF

Info

Publication number
WO2020134337A1
WO2020134337A1 PCT/CN2019/110407 CN2019110407W WO2020134337A1 WO 2020134337 A1 WO2020134337 A1 WO 2020134337A1 CN 2019110407 W CN2019110407 W CN 2019110407W WO 2020134337 A1 WO2020134337 A1 WO 2020134337A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
antennas
security inspection
transmission
inspection device
Prior art date
Application number
PCT/CN2019/110407
Other languages
English (en)
French (fr)
Inventor
赵自然
游�燕
李元景
马旭明
武剑
Original Assignee
清华大学
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 同方威视技术股份有限公司 filed Critical 清华大学
Publication of WO2020134337A1 publication Critical patent/WO2020134337A1/zh
Priority to US17/304,903 priority Critical patent/US12007523B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/38Processing data, e.g. for analysis, for interpretation, for correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/20Detecting, e.g. by using light barriers using multiple transmitters or receivers

Definitions

  • the present disclosure relates to the technical field of safety inspection, in particular to a security inspection device and a control method thereof.
  • the human body security inspection equipment mainly includes an X-ray backscattered human body imaging device and a millimeter wave human body imaging device.
  • the X-ray backscattered human body imaging device uses X-rays to be incident on the surface of the human body to scatter signals for imaging.
  • Passive terahertz human security system images have low signal-to-noise ratio and poor penetration.
  • the imaging rate of active millimeter wave security gates based on three-dimensional holographic technology is generally 2-3s/person, real-time imaging cannot be achieved, and the security inspection efficiency is low.
  • a security inspection apparatus including a body fixed in a field and an electromagnetic imaging device mounted on the body, the electromagnetic imaging device including:
  • a two-dimensional multi-transmission and multi-reception transceiver array panel includes:
  • each two-dimensional multi-transmission and multi-reception transceiver array includes multiple transmit antennas and multiple receive antennas, each of the multiple transmit antennas and the multiple receive The midpoint of the connection line of the corresponding one of the receiving antennas serves as an equivalent phase center, and the plurality of transmitting antennas and the plurality of receiving antennas are arranged such that the equivalent phase centers are arranged in a two-dimensional array; and
  • a control circuit configured to control the plurality of transmitting antennas to transmit electromagnetic waveform-type detection signals to the object to be inspected in a predetermined order, and control the plurality of receiving antennas to receive echo signals from the object to be tested;
  • the signal processing device is connected to the two-dimensional multi-transmission and multi-reception transceiver array panel, and is configured to reconstruct the image of the detected object according to the received echo signal;
  • the display device is connected to the signal processing device and is configured to display the reconstructed image of the subject.
  • the distance between adjacent transmitting antennas and/or adjacent receiving antennas in each two-dimensional multi-transmission and multi-reception sub-array is an integer multiple of the wavelength corresponding to one of the multiple frequencies of the detection signal, adjacent The distance between the equivalent phase centers is half the wavelength of the detection signal.
  • each two-dimensional multi-transmission and multi-reception transceiver array includes two rows of transmitting antennas arranged in a first direction and two columns of receiving antennas arranged in a second direction perpendicular to the first direction, the two rows of transmitting antennas Form a rectangular pattern with two columns of receiving antennas.
  • the two-dimensional multi-transmission and multi-reception sub-array includes a row of transmitting antennas arranged in a first direction and a column of receiving antennas arranged in a second direction perpendicular to the first direction, and the rows and columns cross to form a cross shape.
  • control circuit is configured to control a plurality of transmitting antennas in each two-dimensional multi-transmission and multi-reception transceiver array to sequentially transmit detection signals, and control a plurality of receiving antennas in the two-dimensional multi-transmission and multi-reception transceiver array to receive Echo signals; or configured to control all transmit antennas in the two-dimensional multi-transmit and receive array panel to sequentially transmit detection signals, and control all receive antennas in the two-dimensional multi-transmit and receive array panel to receive echo signals .
  • the body has an integrated structure, and the electromagnetic imaging device is installed on a side of the body facing the object to be inspected.
  • the body includes a first part and a second part that are separated from each other, and the space between the first part and the second part is configured to allow the subject to pass through, in the first part and/or the second part
  • the electromagnetic imaging device is mounted on a part of the side facing the object to be inspected.
  • the electromagnetic imaging device further includes: a distance measuring device installed on the two-dimensional multi-transmission and multi-reception array panel, and configured to measure the object under inspection and the two-dimensional multi-transmission and multi-reception The distance between the transceiver array panel;
  • the signal processing device is configured to reconstruct an image of the object to be inspected based on the distance between the object to be inspected and the two-dimensional multi-transmit and receive array panel and the received echo signal.
  • the security inspection device further includes an alarm device, which is connected to the signal processing device, and the signal processing device is further configured to determine whether the detected object is possible based on preset criteria based on the reconstructed image of the detected object Contains dangerous goods, if it is, then control the alarm device to alarm.
  • an alarm device which is connected to the signal processing device, and the signal processing device is further configured to determine whether the detected object is possible based on preset criteria based on the reconstructed image of the detected object Contains dangerous goods, if it is, then control the alarm device to alarm.
  • the detection signal is a microwave millimeter wave with a frequency in the range of 10-300 GHz.
  • the length and width of the two-dimensional multi-transmission and multi-reception array panel are in the range of 10 cm to 200 cm.
  • control method of the foregoing security inspection device including:
  • the reconstructing the image of the inspected object includes reconstructing the image of the inspected object based on a holographic reconstruction algorithm or a backward projection algorithm.
  • the electromagnetic imaging device in the security inspection equipment according to the present disclosure has the capability of rapid scanning and rapid image reconstruction, and can perform rapid security inspection on a moving human body or other objects without the object being inspected being stationary.
  • the body of the security inspection device according to the present disclosure is fixed in a variety of complex scenes, can be realized in a single form or includes multiple discrete parts, the hiding effect is better, and the application range is wider, and it can covertly terrorists Use hidden guns, knives, and explosives, drugs and other dangerous goods to carry out inspections in order to improve the safety of public places.
  • FIG. 1 shows a schematic diagram of an electromagnetic imaging device according to an embodiment of the present disclosure.
  • FIG. 2a shows a schematic structural diagram of a 2D MIMO antenna array according to an embodiment of the present disclosure.
  • FIG. 2b shows a schematic diagram of the equivalent phase center of the 2D MIMO antenna array of FIG. 2a.
  • FIG. 3 shows a schematic structural diagram of a 2D MIMO antenna array according to another embodiment of the present disclosure.
  • FIG. 4 shows a schematic structural diagram of a 2D MIMO antenna array according to another embodiment of the present disclosure.
  • FIG. 5 shows a schematic structural diagram of a 2D MIMO antenna array according to another embodiment of the present disclosure.
  • FIG. 6 shows a schematic structural diagram of a 2D MIMO antenna array according to another embodiment of the present disclosure.
  • FIG. 7a shows a schematic structural diagram of a 2D MIMO antenna array according to another embodiment of the present disclosure.
  • FIG. 7b shows a schematic diagram of the equivalent phase center of the 2D MIMO antenna array of FIG. 7a.
  • FIG. 8a shows a schematic structural diagram of a 2D MIMO antenna array according to another embodiment of the present disclosure.
  • FIG. 8b shows a schematic diagram of the equivalent phase center of the 2D MIMO antenna array of FIG. 8a.
  • FIG. 9 shows a schematic diagram of the working principle of a 2D MIMO antenna array according to an embodiment of the present disclosure.
  • FIG. 10 shows a schematic diagram of a security inspection device according to an embodiment of the present disclosure.
  • FIG. 11 shows a schematic diagram of a security inspection device according to another embodiment of the present disclosure.
  • FIG. 12 shows a schematic diagram of a security inspection device according to another embodiment of the present disclosure.
  • FIG. 13 shows a schematic diagram of a security inspection device according to another embodiment of the present disclosure.
  • FIG. 14 shows a schematic diagram of a security inspection device according to another embodiment of the present disclosure.
  • FIG. 15 shows a schematic diagram of a security inspection device according to another embodiment of the present disclosure.
  • FIG. 16 shows a schematic diagram of a security inspection device according to another embodiment of the present disclosure.
  • FIG. 17 shows a schematic flowchart of a control method of a security inspection device according to an embodiment of the present disclosure.
  • FIG. 1 shows an electromagnetic imaging device according to an embodiment of the present disclosure.
  • the electromagnetic imaging device 10 includes a two-dimensional multi-transmission and multiple-receive (2D MIMO, 2-Demensional Multiple-Input Multiple-Output) array panel 1, a signal processing device 2 and a display device 3.
  • 2D MIMO, 2-Demensional Multiple-Input Multiple-Output 2D MIMO, 2-Demensional Multiple-Input Multiple-Output
  • the 2D MIMO array panel 1 may include a 2D MIMO antenna array 11 and a control circuit 12 (not shown in the figure).
  • the 2D MIMO antenna array 11 includes at least one 2D MIMO sub-array, and the 2D MIMO sub-array includes multiple transmit antennas and multiple receive antennas, each of the multiple transmit antennas and a corresponding one of the multiple receive antennas
  • the midpoint of the connection line of one receiving antenna serves as an equivalent phase center, and the plurality of transmitting antennas and the plurality of receiving antennas are arranged such that the equivalent phase centers are arranged in a two-dimensional array.
  • the control circuit 12 may control the plurality of transmitting antennas to transmit detection signals in the form of electromagnetic waves to the object to be inspected in a preset order, and control the plurality of receiving antennas to receive echo signals from the object to be measured.
  • the 2D MIMO array panel 1 can be implemented by a 76-81 GHz chip, which has the advantages of high array integration and low cost.
  • the signal processing device 2 may reconstruct the image of the subject based on the echo signals received by the multiple receiving antennas.
  • the signal processing device 2 may include an analog signal processor 21, a digital-to-analog converter (D/A converter) 22, and a digital signal processor 23.
  • the 2D MIMO array panel 1 transmits a microwave millimeter wave form to the subject Detection signal, the echo signal generated after the detection signal reaches the detected object is received by the 2D MIMO array panel 1, which carries the echo data corresponding to the equivalent phase center of the 2D MIMO array panel 10.
  • the 2D MIMO array panel 1 sends the echo signal to the analog signal processor 21.
  • the analog signal processor 21 converts the received echo signal in the form of a power signal into an analog signal and sends it to the digital-to-analog converter 22.
  • the digital-to-analog converter 22 converts the received analog signal into a digital signal and sends it to the digital signal processor 23.
  • the digital signal processor 23 performs image reconstruction based on the received digital signal.
  • the electromagnetic imaging device 10 may further include a distance measuring device 4.
  • the distance measuring device 4 may be installed on the 2D MIMO array panel 1 to measure the distance between the detected object and the 2D MIMO array panel 1, as shown in FIG. 1.
  • the ranging device 4 may be implemented by various distance detection devices, including but not limited to ranging radar, proximity sensor, and the like.
  • the signal processing device 2 in the electromagnetic imaging device 10 can receive the distance between the detected object detected by the distance measuring device 4 and the 2D MIMO array panel 1 and the 2D MIMO array panel 1 receives The echo signal to reconstruct the image of the detected object.
  • the electromagnetic imaging device 10 may further include a display device 3, which may be connected to the signal processing device 2 for displaying the image of the object to be reconstructed by the signal processing device 2.
  • the display device 3 can be implemented as various devices having a display function, such as a display screen, a projector, and so on.
  • the electromagnetic imaging device 10 may further include an alarm device (not shown) connected to the signal processing device 2.
  • the signal processing device 2 can also determine whether the detected object may contain dangerous goods based on a preset criterion based on the reconstructed image of the detected object, and if so, control the alarm device to make an alarm.
  • the alarm device may be implemented in various forms, including but not limited to devices such as speakers, vibrators, alarms, etc., that issue alarms through audio, vibration, and various other methods. You can also set the alarm level.
  • the signal processing device 2 can control the alarm device to sound with a lower volume of sound or weaker vibration when the probability of containing dangerous goods is low. When the probability of containing dangerous goods is high, control The alarm device alarms with higher volume sound or stronger vibration.
  • the 2D MIMO antenna array may include a plurality of transmission antennas and a plurality of reception antennas arranged in an array, and the transmission antennas and the reception antennas may be mounted on a substrate and arranged in various forms as needed.
  • the 2D MIMO antenna array may include at least one 2D MIMO sub-array, and the distance between adjacent transmit antennas and/or adjacent receive antennas in each 2D MIMO sub-array may be an integer multiple of the detection signal wavelength (eg, 1 times, 2 times , 3 times, 4 times, 5 times, etc.).
  • the distance between adjacent equivalent phase centers can be half the wavelength of the detection signal.
  • the size of the 2D MIMO antenna array can be designed to be the same as the imaging area, or slightly smaller or slightly larger than the imaging area, in order to ensure that the image of the item to be measured can be correctly reconstructed, such as the entire 2D MIMO (that is, a large array of multiple MIMO sub-arrays stacked
  • the side length of the antenna array can be in the range of 10cm to 200cm.
  • FIG. 2a and 2b respectively show a structural schematic diagram and an equivalent phase center schematic diagram of a 2D MIMO antenna array according to an embodiment of the present disclosure.
  • the 2D MIMO antenna array includes a sub-array including two rows of transmitting antennas Tx arranged in the horizontal direction and two columns of receiving antennas Rx arranged in the vertical direction, two rows of transmitting antennas Tx and two columns of receiving
  • the antenna Rx forms a rectangular pattern.
  • the size of the 2D MIMO antenna array may be 20cm ⁇ 20cm, and the number of the transmitting antenna Tx and the receiving antenna Rx are 96 and 96, respectively.
  • the number of the transmitting antenna Tx and the receiving antenna Rx are only for illustration. Not the actual number.
  • the equivalent position of the transmitted and received signals can be represented by the phase center of the antenna, which is the physical center of two independent antennas or apertures.
  • the midpoint of the connection line between the transmitting antenna and the corresponding receiving antenna is taken as the equivalent phase center of the two.
  • one transmitting antenna Tx corresponds to multiple receiving antennas Rx.
  • the receiving antenna Rx and the transmitting antenna Tx are set not to be in the same position, such a system where the transmitting and receiving antennas are spatially separated can Using a virtual system simulation, in the virtual system, a virtual position is added between each group of transmitting antenna Tx and receiving antenna Rx, and this position is called the equivalent phase center.
  • the echo data collected by the transceiver antenna combination can be equivalent to the echo collected by the spontaneous and self-receiving antenna at the position of the equivalent phase center.
  • the distance between the adjacent transmitting antenna and the adjacent receiving antenna is the wavelength ⁇ of the detection signal, and the distance between adjacent equivalent phase centers is ⁇ /2, imaging
  • the sampling interval ie the interval of the equivalent phase center
  • ⁇ /2 which makes the reconstruction of the image without artifacts superimposed.
  • FIG. 3 shows a schematic structural diagram of a 2D MIMO antenna array according to another embodiment of the present disclosure.
  • the 2D MIMO antenna array 21 includes 2 ⁇ 2 sub-arrays, the size of each sub-array is set to 10cm ⁇ 10cm, the overall size of the 2D MIMO antenna array 21 is 20cm ⁇ 20cm, the transmit antenna Tx and the receive antenna Rx The numbers are 141 and 141, respectively.
  • FIG. 4 shows a schematic structural diagram of a 2D MIMO antenna array according to another embodiment of the present disclosure.
  • the 2D MIMO antenna array includes 3 ⁇ 3 sub-arrays, and the size of each sub-array is 8cm ⁇ 8cm.
  • the overall size of the 2D MIMO antenna array 21 is 24cm ⁇ 24cm.
  • the number of transmitting antenna Tx and receiving antenna Rx are respectively For 224, 224.
  • FIG. 5 shows a schematic structural diagram of a 2D MIMO antenna array according to another embodiment of the present disclosure.
  • the 2D MIMO antenna array may include 2 ⁇ 3 sub-arrays, and the size of each sub-array is 10cm ⁇ 10cm, the overall size of the 2D MIMO antenna array is 20cm ⁇ 30cm, and the number of the transmitting antenna Tx and the receiving antenna Rx are respectively For 188, 213.
  • FIG. 6 shows a schematic structural diagram of a 2D MIMO antenna array according to another embodiment of the present disclosure.
  • the 2D MIMO antenna array includes 2 ⁇ 4 sub-arrays, and the size of each sub-array is 10cm ⁇ 10cm, the overall size of the 2D MIMO antenna array is 20cm ⁇ 40cm, and the number of transmitting antennas and receiving antennas is 285 and 235, respectively .
  • the 2D MIMO array panel 1 (control circuit) can also be implemented as a MIMO chip of other frequencies in the range of 10GHz-300GHz.
  • the side length of the 2D MIMO antenna array can be selected from 10cm-50cm, preferably 20cm-40cm.
  • Table 1 shows the number of transmit antennas Tx and receive antennas Rx in different frequency bands for two different sub-array sizes in the case where the total size of the 2D MIMO antenna array is 30 cm ⁇ 30 cm, where * represents the center frequency.
  • the number of transmit antennas is 26 and the number of receive antennas is 26 ; If the sub-array size is 15cm ⁇ 15cm, then for the detection signal in the 10GHz-20GHz band, the number of transmit antennas is 36, the number of receive antennas is 36, and so on.
  • FIG. 7a shows a schematic structural diagram of a 2D MIMO antenna array according to another embodiment of the present disclosure.
  • 7b shows a schematic diagram of the equivalent phase center of the 2D MIMO antenna array of FIG. 8a.
  • the 2D MIMO antenna array includes a sub-array including a row of transmitting antennas Tx arranged in the horizontal direction and a row of receiving antennas Rx arranged in the vertical direction, and the row of transmitting antennas Tx crosses a row of receiving antennas Rx Form a cross-shaped pattern.
  • the equivalent phase center of the 2D MIMO antenna array of FIG. 7a is distributed in the form of an array at the center of the cross-shaped pattern.
  • FIG. 8a shows a schematic structural diagram of a 2D MIMO antenna array according to another embodiment of the present disclosure.
  • FIG. 8b shows a schematic diagram of the equivalent phase center of the 2D MIMO antenna array of FIG. 8a.
  • the 2D MIMO antenna array includes a sub-array including a row of transmit antennas Tx arranged along the first diagonal direction of the array and a row of receiver arrays arranged along the second diagonal direction of the array
  • the antenna Rx, the row of transmitting antennas Tx and the row of receiving antennas Rx intersect, thereby forming a diagonal cross pattern on the panel.
  • the equivalent phase center of FIG. 8b is rotated 45 degrees relative to the equivalent phase center of FIG. 7b (clockwise or counterclockwise), because the 2D MIMO antenna array of FIG. 8a is relative to the 2D of FIG. 7a
  • the MIMO antenna array is rotated 45 degrees.
  • the structure of the 2D MIMO antenna array 11 of the present disclosure is not limited to this, the size of the sub-array, the size of the array, the arrangement of the antennas in the sub-array, and the number of antennas can be as needed Adjustment.
  • FIG. 9 a 2D MIMO antenna array including 4 ⁇ 4 sub-arrays is used as an example for description.
  • Each sub-array 101 has the structure shown in FIG. 2, and the equivalent phase centers formed are arranged in the form of an array 102 ( (Also called the equivalent phase center network), (n x , n y ) represents the coordinate of the equivalent phase center in the array (equivalent phase center network).
  • the center reference point of the imaging area 103 of the 2D MIMO antenna array is determined by Indicates that the detected object contains a reference point located at the center Point scatterer.
  • the above 2D MIMO antenna array can be controlled by electronic scanning.
  • control circuit can control the transmitting antenna in each sub-array of the 2D MIMO antenna array to sequentially transmit detection signals, the receiving antenna to receive the echo signal, and then switch to the next sub-array, repeating this operation until the entire antenna array scan is completed, Obtain all scattering data from the object under different viewing angles.
  • control circuit may control all transmit antennas in the 2D MIMO antenna array to sequentially transmit detection signals, and control all receive antennas in the 2D MIMO antenna array to receive the echo signals.
  • the holographic reconstruction algorithm described below can be used for image reconstruction; for the case where the 2D MIMO antenna array includes multiple sub-arrays, the backward projection algorithm described below can be used Rebuild.
  • microwave millimeter waves with a frequency in the range of 10-300 GHz are used as detection signals, and the waves in this band have no ionization damage to the human body, and can be used for human security.
  • the 2D MIMO antenna array includes a plurality of transmitting antennas and a plurality of receiving antennas arranged in a two-dimensional array, and works by electronic scanning.
  • the electronic scanning has the advantages of fast detection speed, combined with fast Fourier Leaf transform (FFT) three-dimensional holographic algorithm algorithm can achieve real-time imaging.
  • FFT fast Fourier Leaf transform
  • the echo data collected by a pair of transceiver antennas can be equivalent to the spontaneous self-reception at the position of the equivalent phase center.
  • the echo collected by the antenna The equivalent phase centers are arranged in an array, and the interval between adjacent equivalent phase centers is basically half of the wavelength ⁇ of the detection signal, which makes the entire equivalent behavior center array basically a full array, and the applied imaging system uses
  • the sampling interval (that is, the interval of the equivalent phase center) is on the order of ⁇ /2, so that there is no artifact superposition in the resulting image and a clearer image can be formed, which increases the speed of image processing.
  • the electromagnetic imaging device may be installed in a security inspection device fixed on site.
  • the security inspection device may be implemented in many different forms, and an example of the security inspection device according to an embodiment of the present disclosure will be described below with reference to FIGS. 10 to 16.
  • FIG. 10 shows a schematic diagram of a security inspection device according to an embodiment of the present disclosure.
  • the security inspection apparatus 110 includes a body and an electromagnetic imaging device 10 installed in the body.
  • the body of the security inspection device 110 is a counter in the form of a single body. The counter can be fixed and applied in a suitable place, including but not limited to hotels, hospitals, and the like.
  • the body of the security inspection device 110 includes a baffle 112 facing an object to be inspected (for example, a visitor) and a desk 111 perpendicular to the baffle 112.
  • the electromagnetic imaging device 10 (specifically, a 2D MIMO array panel) is installed on the baffle 112, for example, on the surface of the baffle 112 or inside the baffle 112, by sending a detection signal in the form of electromagnetic waves to the visitor and receiving echoes from the visitor Signal to obtain information related to the items carried by the visitor and reconstruct the image based on the echo signal to achieve the purpose of safety detection.
  • the display device (not shown in the figure) of the electromagnetic imaging device 10 may be installed at a position convenient for viewing, for example, may be installed on the desktop 111.
  • FIG. 11 shows a schematic diagram of a security inspection device according to another embodiment of the present disclosure.
  • the security inspection device 120 of FIG. 11 is similar to FIG. 10, and the body is also implemented in the form of a counter. The difference is that at least the body of the security inspection device 120 of FIG. 11 includes a table 121 and a baffle perpendicular to the table 122, and also includes a table 121.
  • the upper partition plate 123 is parallel to the baffle 122.
  • the isolation board 123 may be made of a transparent material to isolate visitors and service personnel.
  • the electromagnetic imaging device 10 (specifically, a 2D MIMO array panel) is installed on the baffle 122.
  • the body of the security inspection device 120 of FIG. 11 may be fixedly installed in a place requiring a higher security level, including but not limited to banks, government service agencies, and so on.
  • FIG. 12 shows a schematic diagram of a security inspection device according to another embodiment of the present disclosure.
  • the security inspection device 130 of FIG. 12 is similar to FIGS. 10 and 11, and the body of the security inspection device 130 is also implemented in a single form. The difference is at least that the body of the security inspection device 130 of FIG. 12 is implemented in the form of a single post, and the side wall of the single post
  • the electromagnetic imaging device 10 is mounted on 131.
  • the body of the security inspection device 130 is in the form of a rectangular column, and has four side walls 131, and each of the four side plates 131 may be provided with one or more electromagnetic imaging devices 10.
  • an electromagnetic imaging device 10 may be provided on each side panel.
  • the electromagnetic imaging device 10 has a 2D MIMO array panel with a size that can cover the entire column as shown in FIG. 12, and in some embodiments may also have multiple 2D MIMO array panels, the multiple 2D MIMO array panels are spliced into a 2D MIMO array panel with a size that can cover the entire column as shown in FIG. 2.
  • a plurality of independent electromagnetic imaging devices 10 may be distributed on the post, for example, respectively set at different heights, for detecting different parts of the human body, for example.
  • the embodiments of the present disclosure are not limited to this, the number of electromagnetic imaging devices 10 and the arrangement manner on the pillars can be selected according to needs, for example, one arranged on one or more of the four side walls 131 can be arranged in other ways Multiple electromagnetic imaging devices 10.
  • the electromagnetic imaging device 10 may be installed on the outer surface, the inner surface of the side wall 131, or embedded in the side wall 131, or may be installed in the space defined by the side wall 131.
  • a larger imaging area can be obtained, for example, the entire human body can be imaged instead of imaging a part of the human body (such as the waist), thereby obtaining more security information and improving security level.
  • the top of the column may be provided with ornaments or equipment such as broadcasting stations and communication base stations.
  • the body of the security inspection device 130 may be fixed in various suitable places, including but not limited to airports, office buildings, etc.
  • FIG. 13 shows a schematic diagram of a security inspection device according to another embodiment of the present disclosure.
  • the security inspection device 140 of FIG. 13 is similar to FIGS. 10 to 12 except that the body of the security inspection device 140 of FIG. 13 is implemented in a discrete form, including a first part 141 and a second part 142 separated from each other, and the first part 141 and the first Both parts 142 are equipped with an electromagnetic imaging device 10.
  • the first part 141 and the second part 142 are implemented in the form of door posts fixed on both sides of the gate, and the electromagnetic imaging device 10 is mounted on the first part 141 and the second part 142.
  • FIG. 13 shows a schematic diagram of a security inspection device according to another embodiment of the present disclosure.
  • the security inspection device 140 of FIG. 13 is similar to FIGS. 10 to 12 except that the body of the security inspection device 140 of FIG. 13 is implemented in a discrete form, including a first part 141 and a second part 142 separated from each other, and the first part 141 and the first Both parts
  • the first portion 141 and the second portion 142 each include a pillar and a decoration on the top of the pillar, and the electromagnetic imaging device 10 is mounted on the decoration on the top of the pillar and faces a subject
  • the side for example, the entrance door side, may be located inside or outside the first part 141 and the second part 142.
  • the embodiments of the present disclosure are not limited to this.
  • multiple electromagnetic imaging devices 10 may be installed on the entire door post, for example, the multiple electromagnetic imaging devices 10 may be distributed over the entire door post, respectively, similar to FIG. 12
  • the manner shown is oriented in four directions, but of course it can also be oriented in multiple directions.
  • the body of the security inspection device 140 may be fixed in a place such as a kindergarten that needs to ensure safety.
  • FIG. 14 shows a schematic diagram of a security inspection device according to another embodiment of the present disclosure.
  • the security inspection device 150 of FIG. 14 is similar to FIG. 13, with the difference that at least the body of the security inspection device 150 of FIG. 14 is implemented in the form of a side wall of an escalator, including a first side wall 151 and a second side wall 152 opposite to each other, the electromagnetic imaging device 10 Installed on the side of the second side wall 152 facing the detected object 153 (for example, a pedestrian), by transmitting a detection signal to the detected object 153 and receiving an echo signal from the detected object 153 for image reconstruction, the detected object can be detected Check whether the object 153 carries dangerous goods 154.
  • the detected object 153 for example, a pedestrian
  • FIG. 15 shows a schematic diagram of a security inspection device according to another embodiment of the present disclosure.
  • the security inspection device 160 of FIG. 15 is similar to FIG. 13 except that the body of the security inspection device 160 of FIG. 15 is implemented in the form of a double post, including a first post 161 and a second post 162.
  • the electromagnetic imaging device 10 is installed in both the first post 161 and the second post 162.
  • the first post 161 and the second post 162 are both cylindrical bodies, and are respectively provided with a plurality of electromagnetic imaging devices 10 facing different directions. For example, they may face four directions in a manner similar to that shown in FIG. 12.
  • the embodiments of the present disclosure are not limited to this.
  • the number, arrangement, and orientation of the electromagnetic imaging devices 10 on the first and second pillars 161 and 162 may be set as required, for example, they may be arranged along the circular cross-section of the cylinder Multiple electromagnetic imaging devices 10 in five, six or more directions.
  • a passage for pedestrians may be formed between the first post 161 and the second post 162, and the electromagnetic imaging device 10 may be installed on the side of the first post 161 and the second post 162 facing the flow of people.
  • the body of the security inspection device 160 may be fixed in any suitable place, for example, as a decoration or support pillar for airports, hotels, etc.
  • FIG. 16 shows a schematic diagram of a security inspection device according to another embodiment of the present disclosure.
  • the security inspection device 170 of FIG. 16 is similar to FIG. 13 except that the body of the security inspection device 170 of FIG. 16 is implemented in the form of a ticket gate, including a first gate 171 and a second gate 172, and the first gate 171 and A passage is formed between the second gate 172.
  • the body of the security inspection device 170 may be fixed in any suitable place, such as a subway ticket gate, a train ticket gate, an office entrance, and so on.
  • the electromagnetic imaging device 10 is installed in both the first gate 171 and the second gate 172. In FIG. 16, the electromagnetic imaging device 10 may be installed at the entrance sides of the first gate 171 and the second gate 172, for example, at a card swipe.
  • the electromagnetic imaging device in the security inspection equipment according to the present disclosure has the capability of rapid scanning and rapid image reconstruction, and can perform rapid security inspection on a moving human body or other objects without the object being inspected being stationary.
  • the body of the security inspection device according to the present disclosure is fixed in a variety of complex scenes, can be realized in a single form or includes multiple discrete parts, the hiding effect is better, and the application range is wider, and it can covertly terrorists Use hidden guns, knives, and explosives, drugs and other dangerous goods to carry out inspections in order to improve the safety of public places.
  • FIG. 17 shows a schematic flowchart of a control method of a security inspection device according to an embodiment of the present disclosure.
  • the 2D MIMO antenna array 11 is controlled to send a detection signal to the object to be tested, and receive an echo signal from the object to be tested.
  • the control circuit 12 may be used to control the 2D MIMO antenna array 11 to transmit a detection signal to the subject and receive an echo signal as described above.
  • the detection signal may be an electromagnetic wave, such as a millimeter wave, specifically a millimeter wave terahertz wave.
  • step S102 the image of the item to be tested is reconstructed according to the received echo signal.
  • a whole system reconstruction algorithm or a backward projection algorithm can be used to reconstruct the image of the item to be measured.
  • Holographic re-algorithm can realize the real-time reconstruction of the object image.
  • the echo data collected by a pair of transceiver antennas can be equivalent to the echo collected by the spontaneous self-receiving antenna at the position of the equivalent phase center.
  • the signal processing device collects the echo data at the center of the equivalent phase. Assuming that the collected reflection data of the detected object is s(n x , n y ), the reflection data is corrected using the following formula to obtain the corrected reflection data matrix:
  • s(n x , n y ) is the uncorrected scattering data matrix
  • n x and n y are the positions of the equivalent phase centers in the network of equivalent phase centers (ie, the indices of the rows and columns).
  • a reference point representing the center of the imaging area 103, j represents an imaginary number, and k represents a spatial constant.
  • R u (n x , n y ) represents the calculated reflection set.
  • the detected object contains a Point scatterer.
  • R o (n x , n y ) represents the calculated reflection set, where the calculated reflection set is obtained in the case of sampling the equivalent phase center network of the multi-reception and multi-transmission aperture (as shown in FIG. 9 ).
  • I(x, y) represents the scattering coefficient of the detected object
  • z 0 represents the distance between the 2D MIMO array panel and the detected object
  • j represents the imaginary number
  • k is the propagation constant
  • k x , k y are the spatial propagation Constant
  • FFT 2D is a two-dimensional Fourier transform
  • IFFT 2D is a two-dimensional inverse Fourier transform.
  • the collected echo data can be expressed as s(n x , n y ).
  • fast reconstruction can be achieved and imaging can be completed.
  • the purpose of the imaging algorithm is to invert the image of the detected object from the echo expression, that is, the scattering coefficient I(x, y) of the detected object.
  • the synthetic aperture holographic algorithm based on Fourier transform does not need to compare the entire imaging area. Point reconstruction, but use the advantages of fast Fourier transform to complete the reconstruction of the correct imaging area at one time. Therefore, the algorithm can realize fast scanning and fast image reconstruction, thus real-time imaging.
  • the reconstructed image is displayed on the display device, and the suspicious object alarm algorithm is combined to alarm the suspicious object.
  • Backward projection originated from computer tomography technology is an accurate imaging algorithm based on time-domain signal processing.
  • the basic idea is that for each imaging point in the imaging area, by calculating the delay between the point and the receiving and transmitting antennas, the contributions of all echoes to it are coherently superimposed to obtain the corresponding pixel value of the point in the image. In this way, the entire imaging area is coherently superimposed point by point to obtain an image of the imaging area.
  • the back projection algorithm is naturally easy to implement parallel computing, so it is suitable for the case where the receiving antennas in multiple sub-arrays receive the reflected electromagnetic waves simultaneously. Although it is necessary to reconstruct every point of the entire imaging interval, if the hardware in the processing system adopts GPU or FPGA technology, the reconstruction time can be greatly reduced, and even real-time reconstruction can be achieved.
  • the reconstruction formula can be expressed as,
  • z a is the imaging distance
  • j is the imaginary unit
  • k is the propagation constant
  • s(x t , y t , x r , y r , k) is a pair of transmitting antenna-receiving antenna combination receiving
  • the echo signal to the item to be tested (x t , y t ) is the coordinates of the transmitting antenna, (x r , y r ) is the coordinates of the receiving antenna,
  • z represents the gap between the 2D MIMO array panel and a certain fault of the item distance.
  • step S102 other steps may also be performed, such as analyzing the reconstructed image of the inspected object to determine whether the inspected object may carry dangerous goods, and if so, control the alarm device to alarm.
  • the reconstructed image of the detected object can be compared with a pre-stored template. If the degree of matching with the characteristic template of a certain dangerous product is greater than a preset threshold, it is determined that the dangerous product may be contained, otherwise it is determined not to contain Dangerous goods.
  • the probability of containing dangerous goods may also be determined according to the degree of matching. For example, a higher matching degree indicates a higher probability of containing dangerous goods, and a lower matching degree indicates a lower probability of containing dangerous goods.
  • Alarm methods include but are not limited to screen display, audio alarm, vibration alarm and so on. You can also set the alarm level. For example, when the probability of containing dangerous goods is low, you can use low-volume sound or weak vibration to alarm. When the probability of containing dangerous goods is high, you can use high-volume sound or Strong vibration to alarm.
  • the image of the reconstructed object and/or the above judgment result can be presented to the user through the display device, for example, the reconstructed image can be displayed on the display screen after the image is reconstructed, and then the analysis result is presented on the display It can also be displayed on the display screen after the image reconstruction and analysis comparison are completed and the reconstructed image and judgment result are displayed again.
  • the presentation method of the determination result (such as which dangerous goods may be contained and the probability of containing the dangerous goods) can be selected according to the needs.
  • other methods such as audio and vibration can also be used
  • the judgment result can be played in the form of voice, or the alarm volume of the alarm can be used to indicate the judgment result.
  • a high-volume alarm represents a high probability of containing dangerous goods
  • a low-volume alarm The probability of containing dangerous goods is low.
  • Embodiments of the present disclosure also provide a computer-readable medium that stores instructions stored in the computer-readable medium, which when executed by the processor, causes the processor to perform the control method of the security inspection device described above.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种安检设备(110,120,130,140,150,160,170)及其控制方法,安检设备(110,120,130,140,150,160,170)包括固定在现场中的本体和安装在本体上的电磁成像装置(10),电磁成像装置(10)包括:二维多发多收收发阵列面板(1),二维多发多收收发阵列面板(1)包括:至少一个二维多发多收收发子阵列(11),每个二维多发多收收发子阵列(11)包括多个发射天线和多个接收天线,多个发射天线和多个接收天线被布置为使得等效相位中心排列成二维阵列;以及控制电路(12);信号处理装置(2),被配置为根据接收到的回波信号来重建被检对象的图像;显示装置(3),被配置为显示所重建的被检对象的图像。

Description

安检设备及其控制方法
本申请要求于2018年12月29日提交的、申请号为201811654216.4的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及安全检测技术领域,具体涉及一种安检设备及其控制方法。
背景技术
目前的安检技术主要包括人工检查、手持金属探测器、金属探测器门、X光机、爆炸物衡量探测、液体检测仪等。
然而人工检测准确度高但是效率低,且被检人员由于身体接触而体验差。手持金属探测器和金属探测门只能对金属起作用,无法对非金属危险品进行探测。爆炸物衡量探测和液体检测仪都存在功能单一、应用局限的缺点。X光机由于X射线具有致电离性,不适于人体安检。人体安检设备主要包含X射线背散射人体成像装置和毫米波人体成像装置。X射线背散射人体成像装置利用X射线入射到人体表面散射回来的信号进行成像。被动式太赫兹人体安检系统图像信噪比低、穿透性差。基于三维全息技术的主动式毫米波安检门成像速率一般为2-3s/人,无法实现实时成像,安检效率低。
可见,传统安检设备不适于在公共场合进行隐秘式的安全检查。
发明内容
根据本公开的一方面,提供了一种安检设备,包括固定在现场中的本体和安装在本体上的电磁成像装置,所述电磁成像装置包括:
二维多发多收收发阵列面板,所述二维多发多收收发阵列面板包括:
至少一个二维多发多收收发子阵列,每个二维多发多收收发子阵列包括多个发射天线和多个接收天线,所述多个发射天线中的每个发射天线和所述多个接收天线中的相应一个接收天线的连线的中点作为一个等效相位中心,所述多个发射天线和所述多个接收天线被布置为使得等效相位中心排列成二维阵列;以及
控制电路,被配置为控制所述多个发射天线按照预设顺序向被检对象发射电磁波形 式的检测信号,以及控制所述多个接收天线接收来自待测物品的回波信号;
信号处理装置,与所述二维多发多收收发阵列面板相连,并且被配置为根据接收到的回波信号来重建被检对象的图像;
显示装置,与信号处理装置相连,并且被配置为显示所重建的被检对象的图像。
优选地,每个二维多发多收收发子阵列中相邻发射天线和/或相邻接收天线之间的距离是所述检测信号的多个频率之一对应的波长的整数倍,相邻的等效相位中心之间的距离为所述检测信号的波长的一半。
优选地,每个二维多发多收收发子阵列包括沿着第一方向排列的两行发射天线和沿着垂直于第一方向的第二方向排列的两列接收天线,所述两行发射天线与两列接收天线形成矩形图案。
优选地,所述二维多发多收收发子阵列包括沿着第一方向排列的一行发射天线和沿着垂直于第一方向的第二方向排列的一列接收天线,所述行和列交叉形成十字形状。
优选地,所述控制电路被配置成控制每个二维多发多收收发子阵列中的多个发射天线依次发射检测信号,并控制该二维多发多收收发子阵列中的多个接收天线接收回波信号;或者被配置成控制所述二维多发多收收发阵列面板中的所有发射天线依次发射检测信号,并控制所述二维多发多收收发阵列面板中的所有接收天线接收回波信号。
优选地,所述本体具有一体式结构,所述电磁成像装置安装在所述本体的面向被检对象的一侧。
优选地,所述本体包括彼此分离的第一部分和第二部分,所述第一部分与第二部分之间的空间被配置为使被检对象经过,在所述第一部分和/或所述第二部分的面向被检对象的一侧安装有所述电磁成像装置。
优选地,所述电磁成像装置还包括:测距装置,所述测距装置安装在所述二维多发多收收发阵列面板上,并且被配置为测量被检对象与所述二维多发多收收发阵列面板之间的距离;
所述信号处理装置被配置为根据所述被检对象与所述二维多发多收收发阵列面板之间的距离以及接收到的回波信号来重建被检对象的图像。
优选地,所述安检设备还包括报警装置,与所述信号处理装置相连,所述信号处理装置还被配置为根据所重建的被检对象的图像基于预设的标准来判断被检对象是否可能含有危险品,如果是,则控制所述报警装置进行报警。
优选地,所述检测信号为频率在10-300GHz范围内的微波毫米波。
优选地,所述二维多发多收收发阵列面板的长度和宽度均在10cm至200cm的范围内。
根据本公开的另一方面,提供了一种上述安检设备的控制方法,包括:
控制所述二维多发多收收发阵列面板向被检对象发送检测信号,并接收来自被检对象的回波信号;以及
根据接收到的回波信号来重建被检对象的图像。
优选地,所述重建被检对象的图像包括基于全息重建算法或后向投影算法来重建被检对象的图像。
根据本公开的安检设备中的电磁成像装置具备快速扫描和快速图像重建的能力,能够对移动的人体或其他物体进行快速安检,不需要被检对象静止。根据本公开的安检设备的本体固定在多种多样的复杂现场中,可以实现为单体的形式或者包括多个分立的部分,隐藏效果更佳,并且应用范围更广,能够隐秘地对恐怖分子利用隐匿方式随身携带的枪支、刀具以及爆炸物、毒品等危险品进行检查,从而提高公共场合的安全性。
附图说明
图1示出了根据本公开的实施例的电磁成像装置的示意图。
图2a示出了根据本公开一实施例的2D MIMO天线阵列的结构示意图。
图2b示出了图2a的2D MIMO天线阵列的等效相位中心的示意图。
图3示出了根据本公开另一实施例的2D MIMO天线阵列的结构示意图。
图4示出了根据本公开另一实施例的2D MIMO天线阵列的结构示意图。
图5示出了根据本公开另一实施例的2D MIMO天线阵列的结构示意图。
图6示出了根据本公开另一实施例的2D MIMO天线阵列的结构示意图。
图7a示出了根据本公开另一实施例的2D MIMO天线阵列的结构示意图。
图7b示出了图7a的2D MIMO天线阵列的等效相位中心的示意图。
图8a示出了根据本公开另一实施例的2D MIMO天线阵列的结构示意图。
图8b示出了图8a的2D MIMO天线阵列的等效相位中心的示意图。
图9示出了根据本公开的实施例的2D MIMO天线阵列的工作原理的示意图。
图10示出了根据本公开一实施例的安检设备的示意图。
图11示出了根据本公开另一实施例的安检设备的示意图。
图12示出了根据本公开另一实施例的安检设备的示意图。
图13示出了根据本公开另一实施例的安检设备的示意图。
图14示出了根据本公开另一实施例的安检设备的示意图。
图15示出了根据本公开另一实施例的安检设备的示意图。
图16示出了根据本公开另一实施例的安检设备的示意图。
图17示出了根据本公开一实施例的安检设备的控制方法的示意流程图。
具体实施方式
尽管本公开的容许各种修改和可替换的形式,但是它的具体的实施例通过例子的方式在附图中示出,并且将详细地在本文中描述。然而,应该理解,随附的附图和详细的描述不是为了将本公开的限制到公开的具体形式,而是相反,是为了覆盖落入由随附的权利要求限定的本公开的精神和范围中的所有的修改、等同形式和替换形式。附图是为了示意,因而不是按比例地绘制的。
在本说明书中使用了“上”、“下”、“左”、“右”等术语,并不是为了限定元件的绝对方位,而是为了描述元件在视图中的相对位置帮助理解;本说明书中“顶侧”和“底侧”是相对于一般情况下,物体正立的上侧和下侧的方位;“第一”、“第二”等也不是为了排序,而是为了区别不同部件。
下面参照附图描述根据本公开的多个实施例。
图1示出了根据本公开的一个实施例的电磁成像装置。如图1所示,电磁成像装置10包括二维多发多收收发(2D MIMO,2-Demensional Multiple-Input Multiple-Output)阵列面板1,信号处理装置2和显示装置3。
2D MIMO阵列面板1可以包括2D MIMO天线阵列11和控制电路12(图中未示出)。2D MIMO天线阵列11包括至少一个2D MIMO子阵列,2D MIMO子阵列包括多个发射天线和多个接收天线,所述多个发射天线中的每个发射天线和所述多个接收天线中的相应一个接收天线的连线的中点作为一个等效相位中心(phase center),所述多个发射天线和所述多个接收天线被布置为使得等效相位中心排列成二维阵列。控制电路12可以控制所述多个发射天线按照预设顺序向被检对象发射电磁波形式的检测信号,以及控制所述多个接收天线接收来自待测物品的回波信号。在一些实施例中,2D MIMO阵列面板1可以由76-81GHz芯片来实现,具有阵列集成程度高、成本低等优点。
信号处理装置2可以基于所述多个接收天线接收的回波信号重建被检对象的图像。在图1中,信号处理装置2可以包括模拟信号处理器21,数模转换器(D/A转换器) 22和数字信号处理器23。2D MIMO阵列面板1向被检对象发送微波毫米波形式的检测信号,检测信号达到被检测对象后产生的回波信号被2D MIMO阵列面板1接收,其承载了与2D MIMO阵列面板10的等效相位中心相对应的回波数据。2D MIMO阵列面板1将回波信号发送至模拟信号处理器21。模拟信号处理器21将接收到的功率信号形式的回波信号转换成模拟信号并发送至数模转换器22。数模转换器22将接收到的模拟信号转换成数字信号并发送至数字信号处理器23。数字信号处理器23基于接收到的数字信号进行图像重建。
在一些实施例中,电磁成像装置10还可以包括测距装置4。测距装置4可以安装在2D MIMO阵列面板1上,用于测量被检对象与2D MIMO阵列面板1之间的距离,如图1所示。测距装置4可以由各种距离检测设备来实现,包括但不限于测距雷达、接近度传感器等等。在包括测距装置4的情况下,电磁成像装置10中的信号处理装置2可以根据测距装置4检测到的被检对象与2D MIMO阵列面板1之间的距离以及2D MIMO阵列面板1接收到的回波信号来重建被检对象的图像。
在一些实施例中,电磁成像装置10还可以包括显示装置3,其可以与信号处理装置2相连,用于显示由信号处理装置2重建的被检对象的图像。显示装置3可以实现为各种具有显示功能的设备,例如显示屏、投影仪等等。
在一些实施例中,电磁成像装置10还可以包括与信号处理装置2相连的报警装置(图中未示出)。在这种情况下,信号处理装置2还可以根据所重建的被检对象的图像基于预设的标准来判断被检对象是否可能含有危险品,如果是,则控制报警装置进行报警。报警装置可以采用各种形式来实现,包括但不限于诸如扬声器、振动器、警报器等通过音频、振动以及各种其他方式发出警报的装置。还可以设置报警级别,例如信号处理装置2可以在含有危险品的概率较低时,控制报警装置以较低音量的声音或者较弱的振动来报警,当含有危险品的概率较高时,控制报警装置以较高音量的声音或者较强的振动来报警。
下面将参考图2至图8来描述根据本公开实施例的2D MIMO阵列面板1中的2D MIMO天线阵列11的结构。根据本公开的实施例,2D MIMO天线阵列可以包括布置成阵列的多个发射天线和多个接收天线,发射天线和接收天线可以安装在基板上,根据需要以多种形式来布置。2D MIMO天线阵列可以包括至少一个2D MIMO子阵列,每个2D MIMO子阵列中相邻发射天线和/或相邻接收天线之间的距离可以是检测信号波长的整数倍(例如1倍、2倍、3倍、4倍、5倍等等)。相邻的等效相位中心之间的距离 可以为检测信号的波长的一半。2D MIMO天线阵列的尺寸可以设计成与成像区域相同,或者略小于或者略大于成像区域,以便确保能够正确重建待测物品的图像,例如整个2D MIMO(即多个MIMO子阵列堆积成的大阵列)天线阵列的边长可以在10cm至200cm范围内。
图2a和2b(统称图2)分别示出了根据本公开一实施例的2D MIMO天线阵列的结构示意图和等效相位中心示意图。
如图2a所示,2D MIMO天线阵列包括一个子阵列,该子阵列包括沿水平方向排列的两行发射天线Tx和沿垂直方向排列的两列接收天线Rx,两行发射天线Tx和两列接收天线Rx形成矩形图案。图2a中,2D MIMO天线阵列的尺寸可以为20cm×20cm,发射天线Tx和接收天线Rx的数目分别为96、96,图中为了简明起见发射天线Tx和接收天线Rx的数目仅仅是作为示意,而非实际数目。
如图2b所示,发射和接收信号的等效位置可以由天线的相位中心来表示,该等效位置为两个独立天线或孔径的物理中心。在本公开的实施例中,以发射天线与对应的接收天线的连线的中点作为二者的等效相位中心。在MIMO架构下,一个发射天线Tx对应着多个接收天线Rx,本公开的实施例中,接收天线Rx和发射天线Tx被设置为不处于同一位置,这种发射和接收天线空间分离的系统可以使用一个虚拟的系统模拟,在虚拟系统中,在每一组发射天线Tx与接收天线Rx之间添加一个虚拟位置,这个位置被称为等效相位中心。收发天线组合所采集的回波数据,可以等效为其等效相位中心所在位置自发自收天线所采集的回波。
图2中的2D MIMO天线阵列中,相邻的发射天线和相邻的接收天线之间的距离均为检测信号的波长λ,相邻的等效相位中心之间的距离为λ/2,成像的取样间隔(即等效相位中心的间隔)在λ/2的量级,这使得重建的图像中不存在伪影叠加。
图3示出了根据本公开另一实施例的2D MIMO天线阵列的结构示意图。如图3所示,2D MIMO天线阵列21包括2×2个子阵列,每个子阵列的尺寸设置成10cm×10cm,2D MIMO天线阵列21的总体尺寸为20cm×20cm,发射天线Tx和接收天线Rx的数目分别为141、141。
图4示出了根据本公开另一实施例的2D MIMO天线阵列的结构示意图。如图4所示,2D MIMO天线阵列包括3×3个子阵列,每个子阵列的尺寸为8cm×8cm,2D MIMO天线阵列21的总体尺寸为24cm×24cm,发射天线Tx和接收天线Rx的数目分别为224、224。
图5示出了根据本公开另一实施例的2D MIMO天线阵列的结构示意图。如图5所示,2D MIMO天线阵列可以包括2×3个子阵列,每个子阵列的尺寸为10cm×10cm,2D MIMO天线阵列的总体尺寸为20cm×30cm,发射天线Tx和接收天线Rx的数目分别为188、213。
图6示出了根据本公开另一实施例的2D MIMO天线阵列的结构示意图。如图6所示,2D MIMO天线阵列包括2×4个子阵列,每个子阵列的尺寸为10cm×10cm,2D MIMO天线阵列的总体尺寸为20cm×40cm,发射天线和接收天线数目分别为285、235。
除了采用上述的76-81GHz芯片,2D MIMO阵列面板1(的控制电路)也可以实现为10GHz-300GHz范围内的其他频率的MIMO芯片。2D MIMO天线阵列的边长可选择为10cm-50cm,优选20cm-40cm。表1示出了在2D MIMO天线阵列的总尺寸为30cm×30cm的情况下对于两种不同的子阵列尺寸在不同频段下的发射天线Tx和接收天线Rx的数目,其中*表示中心频率。例如,如表1所示,对于30cm×30cm的2D MIMO天线阵列,如果子阵列尺寸为30cm×30cm,那么对于10GHz-20GHz频段的检测信号,发射天线数目为26个,接收天线数目为26个;如果子阵列尺寸为15cm×15cm,那么对于10GHz-20GHz频段的检测信号,发射天线数目为36个,接收天线数目为36个,以此类推。
表1
频率/GHz 子阵列尺寸30cm×30cm 子阵列尺寸15cm×15cm
10-20 26+26 36+36
24-30 50+50 72+72
24-40 60+60 87+87
40-60 96+96 141+141
70-80 146+146 216+216
76-81 154+154 228+228
89-99 184+184 273+273
75-110 182+182 270+270
120* 236+236 351+351
140 276+276 411+411
170 336+336 501+501
195-205 396+396 591+591
210 416+416 621+621
220 436+436 651+651
250 496+496 741+741
270-300 566+566 846+846
图7a示出了根据本公开另一实施例的2D MIMO天线阵列的结构示意图。图7b示出了图8a的2D MIMO天线阵列的等效相位中心的示意图。如图7a所示,2D MIMO天线阵列包括一个子阵列,该子阵列包括沿水平方向排列的一行发射天线Tx和沿垂直方向排列的一列接收天线Rx,该一行发射天线Tx和一行接收天线Rx交叉形成十字形图案。如图7b所示,图7a的2D MIMO天线阵列的等效相位中心以阵列的形式分布在十字形图案的中心位置。
图8a示出了根据本公开另一实施例的2D MIMO天线阵列的结构示意图。图8b示出了图8a的2D MIMO天线阵列的等效相位中心的示意图。如图8a所示,2D MIMO天线阵列包括一个子阵列,该子阵列包括沿阵列的第一对角线方向排列的一排发射天线Tx和沿阵列的第二对角线方向排列的一排接收天线Rx,该一排发射天线Tx和一排接收天线Rx交叉,从而在面板上形成对角线形式的十字形图案。如图8b所示,图8b的等效相位中心相对于图7b的等效相位中心旋转了45度(顺时针或者逆时针),这是因为图8a的2D MIMO天线阵列相对于是图7a的2D MIMO天线阵列旋转45度。
本领域技术人员应清楚,以上仅仅是示例,本公开的2D MIMO天线阵列11的结构不限于此,子阵的尺寸、阵列的尺寸、子阵中天线的排列方式以及天线的数目可以根据需要来调整。
下面参考图9来描述根据本公开实施例的2D MIMO天线阵列的工作原理。如图9所示,以包括4×4个子阵列的2D MIMO天线阵列为例进行描述,其中每个子阵列101具有如图2所示的结构,形成的等效相位中心排列成阵列102的形式(也称作等效相位中心网),(n x,n y)表示等效相位中心在阵列(等效相位中心网)中的坐标。该2D MIMO天线阵列的成像区域103的中心参考点由
Figure PCTCN2019110407-appb-000001
表示,被检对象包含定位在中心参考点
Figure PCTCN2019110407-appb-000002
处的点散射体。在进行安全检测时,可以采用电子扫描的方式控制上述2D MIMO天线阵列。
作为示例,控制电路可以控制2D MIMO天线阵列的每一个子阵列中的发射天线依次发射检测信号,接收天线接收回波信号,然后切换下一个子阵列,重复该操作,直到 完成整个天线阵列扫描,获得被检对象不同视角的所有散射数据。作为另一示例,控制电路可以控制2D MIMO天线阵列中的所有发射天线依次发射检测信号,并控制2D MIMO天线阵列中的所有接收天线接收回波信号。对于2D MIMO天线阵列包括仅一个子阵列的情况,可以采用下文将描述的全息重建算法来进行图像重建;对于2D MIMO天线阵列包括多个子阵列的情况下,可以采用下文将要描述的后向投影算法进行重建。
在本公开的实施例中,采用频率在10-300GHz范围内的微波毫米波作为检测信号,该波段的波对人体没有电离损伤,可用于人体安检。在本公开的实施例中,2D MIMO天线阵列包括布置成二维阵列的多个发射天线和多个接收天线,采用电子扫描的方式工作,电子扫描具备检测速度快的优点,结合基于快速傅里叶变换(FFT)的三维全息算法算法,可以实现实时成像。2D MIMO天线阵列中的一个发射天线和一个相应的接收天线能够产生一个等效相位中心,一对收发天线组合所采集的回波数据可以等效为其等效相位中心所在位置处的自发自收天线所采集的回波。等效相位中心排列成阵列,相邻的等效相位中心的间隔基本上是检测信号的波长λ的一半,这使得整个等效行为中心阵列基本上为一满阵,且应用的成像系统采用的取样间隔(即等效相位中心的间隔)在λ/2的量级,从而产生的图像中不存在伪影叠加且能够形成较清晰的图像,提高了图像处理的速度。
根据本公开实施例的电磁成像装置可以安装在固定于现场的安检设备中。在本公开的实施例中,安检设备可以实现为多种不同的形式,下面参考图10至图16来描述根据本公开实施例的安检设备的示例。
图10示出了根据本公开一实施例的安检设备的示意图。安检设备110包括本体和安装在本体中的电磁成像装置10。在图10中,安检设备110的本体为单体形式的柜台,柜台可以固定在应用于合适的场所,包括但不限于酒店、医院等等。安检设备110的本体包括面向被检对象(例如来访者)的挡板112和垂直于挡板112的桌面111。电磁成像装置10(具体地,2D MIMO阵列面板)安装在挡板112上,例如位于挡板112表面或者挡板112内部,通过向来访者发送电磁波形式的检测信号并接收来自来访者的回波信号,来获得与来访者携带的物品有关的信息,基于回波信号进行图像重建,从而达到安全检测的目的。电磁成像装置10的显示装置(图中未示出)可以安装在方便查看的位置,例如可以设置在桌面111上。
图11示出了根据本公开另一实施例的安检设备的示意图。图11的安检设备120与图10类似,本体也实现为柜台的形式,区别至少在于图11的安检设备120的本体除了 包括桌面121和垂直于桌面122的挡板之外,还包括位于桌面121上与挡板122平行的隔离板123。该隔离板123可以由透明材料制成,用于隔离来访者和服务人员。电磁成像装置10(具体地,2D MIMO阵列面板)安装在挡板122上。图11的安检设备120的本体可以固定安装在需要更高安全级别的场所,包括但不限于银行、政府服务机构等等。
图12示出了根据本公开另一实施例的安检设备的示意图。图12的安检设备130与图10和11类似,安检设备130的本体也实现为单体的形式,区别至少在于图12的安检设备130的本体实现为单个立柱的形式,该单个立柱的侧壁131上安装有电磁成像装置10。在图12中,安检设备130的本体为矩形立柱的形式,具有四个侧壁131,四个侧板131上可以均设有一个或多个电磁成像装置10。例如可以在每个侧板上设置一个电磁成像装置10,该电磁成像装置10具有如图12所示的一个尺寸上可以布满整个立柱的2D MIMO阵列面板,在一些实施例中也可以具有多个2D MIMO阵列面板,所述多个2D MIMO阵列面板拼接成如图2所示的一个尺寸上可以布满整个立柱的2D MIMO阵列面板。在一些实施例中,可以使多个独立的电磁成像装置10分布在立柱上,例如分别设置在不同的高度,以用于检测例如人体的不同部位。当然,本公开的实施例不限于此,电磁成像装置10的数量、在立柱上的排列方式可以根据需要来选择,例如可以在四个侧壁131中的一个多个上设置以其他方式排列的多个电磁成像装置10。电磁成像装置10可以安装在侧壁131的外表面、内表面或者嵌入侧壁131内,也可以安装在侧壁131所限定的空间中。当电磁成像装置10布满整个柱子的时候,可以获得更大的成像区域,例如可以对整个人体进行成像,而不是对人体的局部(例如腰部)进行成像,从而获得更多安检信息,提高安检级别。如图12所示,立柱顶部可以设有装饰物或者安装诸如广播站、通信基站之类的设备。安检设备130的本体可以固定在各种合适的场所,包括但不限于机场、办公楼等等。
图13示出了根据本公开另一实施例的安检设备的示意图。图13的安检设备140与图10至图12类似,区别至少在于图13的安检设备140的本体被实现为分立的形式,包括彼此分离的第一部分141和第二部分142,第一部分141和第二部分142均安装有电磁成像装置10。在图13中,第一部分141和第二部分142被实现为固定在大门两侧的门柱的形式,电磁成像装置10被安装在第一部分141和第二部分142上。在图13的示例中,第一部分141和第二部分142各自包括位于下方的柱体和柱体顶部的装饰物,电磁成像装置10被安装在柱体顶部的装饰物上面向被检对象的一侧,例如进门侧,可以位于第一部分141和第二部分142内部或外部。然而本公开的实施例不限于此,在一些 实施例中,可以在整个门柱上安装多个电磁成像装置10,例如使多个电磁成像装置10布满整个门柱,分别以类似于图12所示的方式朝向四个方向设置,当然也可以朝向其他多个方向设置。安检设备140的本体可以固定在诸如幼儿园之类的需要确保安全性的场所。
图14示出了根据本公开另一实施例的安检设备的示意图。图14的安检设备150与图13类似,区别至少在于图14的安检设备150的本体被实现为扶梯侧壁形式,包括彼此相对的第一侧壁151和第二侧壁152,电磁成像装置10安装在第二侧壁152的面向被检测对象153(例如行人)的一侧,通过向被检对象153发射检测信号并接收来自被检对象153的回波信号进行图像重建,可以检测出该被检对象153是否携带了危险品154。
图15示出了根据本公开另一实施例的安检设备的示意图。图15的安检设备160与图13类似,区别至少在于图15的安检设备160的本体被实现为双立柱的形式,包括第一立柱161和第二立柱162。第一立柱161和第二立柱162中均安装有电磁成像装置10。在图15中,第一立柱161和第二立柱162均为圆柱体,分别设有朝向不同方向的多个电磁成像装置10,例如可以按照类似于图12所示的方式朝向四个方向。然而本公开的实施例不限于此,第一立柱161和第二立柱162上电磁成像装置10的数量、排列方式和朝向可以根据需要来设置,例如可以沿着圆柱体的圆形截面设置分别朝向五个、六个或更多个方向的多个电磁成像装置10。作为另一示例,可以使第一立柱161和第二立柱162之间形成供行人通过的通道,电磁成像装置10可以安装在第一立柱161和第二立柱162的面向人流的一侧。安检设备160的本体可以固定在任何合适的场所,例如作为机场、酒店等等的装饰物或者支撑柱体。
图16示出了根据本公开另一实施例的安检设备的示意图。图16的安检设备170与图13类似,区别至少在于图16的安检设备170的本体被实现为检票闸机的形式,包括第一闸机171和第二闸机172,第一闸机171和第二闸机172之间形成通道。安检设备170的本体可以固定在任何合适的场所,比如地铁检票口、火车检票口、写字楼入口等等。第一闸机171和第二闸机172中均安装有电磁成像装置10。在图16中,电磁成像装置10可以安装在第一闸机171和第二闸机172的入口侧,例如刷卡处。
根据本公开的安检设备中的电磁成像装置具备快速扫描和快速图像重建的能力,能够对移动的人体或其他物体进行快速安检,不需要被检对象静止。根据本公开的安检设备的本体固定在多种多样的复杂现场中,可以实现为单体的形式或者包括多个分立的部分,隐藏效果更佳,并且应用范围更广,能够隐秘地对恐怖分子利用隐匿方式随身携带 的枪支、刀具以及爆炸物、毒品等危险品进行检查,从而提高公共场合的安全性。
图17示出了根据本公开实施例的安检设备的控制方法的示意流程图。
在步骤S101,控制2D MIMO天线阵列11向待测物品发送检测信号,并接收来自待测物品的回波信号。例如可以利用控制电路12控制2D MIMO天线阵列11按照如上所述的方式向被检对象发射检测信号并接收回波信号。检测信号可以是电磁波,例如毫米波,具体地毫米波太赫兹波。
在步骤S102,根据接收到的回波信号来重建待测物品的图像。例如可以采用全系重建算法或后向投影算法来重建待测物品的图像。
全息重新算法可以实现对被检物图像的实时重建。一对收发天线组合所采集的回波数据可以等效为其等效相位中心所在位置处的自发自收天线所采集的回波。信号处理装置对等效相位中心处的回波数据进行采集,假设所采集的被检对象的反射数据为s(n x,n y),利用如下公式校正反射数据,得到校正后反射数据矩阵:
Figure PCTCN2019110407-appb-000003
其中s(n x,n y)为未校正的散射数据矩阵,n x和n y是等效相位中心在等效相位中心网中的位置(即,行和列的指数)。
R u(n x,n y)与R o(n x,n y)计算公式如下,
Figure PCTCN2019110407-appb-000004
Figure PCTCN2019110407-appb-000005
其中,如图9所示,
Figure PCTCN2019110407-appb-000006
表示成像区域103的中心的参考点,j表示虚数,k表示空间常数。
R u(n x,n y)表示计算的反射集,在此情况下,如图9所示对如下的被检对象进行采样,被检对象包含一个定位在
Figure PCTCN2019110407-appb-000007
处的点散射体。
R o(n x,n y)表示计算的反射集,其中在对多收多发孔径的等效相位中心网进行采样(如图9所示)的情况下,得到该计算的反射集。
然后利用二维傅里叶变换算法重建,获得被检对象的散射系数:
Figure PCTCN2019110407-appb-000008
其中,I(x,y)表示被检对象的散射系数,z 0表示2D MIMO阵列面板和被检对象之间的距离,j表示虚数,k为传播常数、k x、k y分别是空间传播常数;FFT 2D为二维傅里叶变换,IFFT 2D为二维傅里叶逆变换。
完成二维孔径扫描后,采集到的回波数据可以表示为s(n x,n y)。最后,结合基于快速傅里叶变化的合成孔径全息算法,可以实现快速重建,完成成像。成像算法的目的就是从回波表达式中反演出被检对象的像,即被检对象的散射系数I(x,y),基于傅里叶变换的合成孔径全息算法,无需对整个成像区域逐点重建,而是利用快速傅里叶变换的优势,一次对正确成像区域重建完成。因此,该算法能够实现快速扫描和快速图像重建,因此实现实时成像。重建的图像显示在显示装置上,结合可疑物报警算法,对可疑物进行报警。
后向投影起源于计算机断层扫描技术是一种基于时域信号处理的精确的成像算法。其基本思想是对成像区域内每一成像点,通过计算该点到收、发天线之间的延时,将所有回波对它的贡献相干叠加从而得到该点在图像中对应的像素值,这样对整个成像区域逐点地进行相干叠加处理,即可获得成像区域的图像。后向投影算法天然的易于实现并行计算,因此,适用于多个子阵列中的接收天线同时接收反射的电磁波的情况。虽然需要对整个成像区间每一个点重建,但是如果处理系统中的硬件采用GPU或者FPGA技术的话,重建时间可以大大降低,甚至实现实时重建。
重建公式可以表示为,
Figure PCTCN2019110407-appb-000009
其中,
Figure PCTCN2019110407-appb-000010
是待测物品的散射系数,z a是成像距离,j为虚数单位,k为传播常数,s(x t,y t,x r,y r,k)为一对发射天线-接收天线组合接收到待测物品的回波信号,(x t,y t)为发射天线坐标,(x r,y r)为接收天线的坐标,z表示2D MIMO阵列面板和待测物品某一断层之间的距离。
在步骤S102之后,还可以执行其他步骤,例如分析重建的被检对象的图像,以判 断被检对象是否可能携带危险品,如果是,则控制报警装置进行报警。例如可以将重建的被检对象的图像与预先存储的模板相比较,如果与某种危险品的特征模板匹配程度大于预设的阈值,则判定为可能含有该种危险品,否则判定为不含有危险品。在一些实施例中,还可以根据匹配程度的高低来确定含有危险品的概率的高低,例如匹配程度较高指示含有危险品的概率较高,匹配程度较低指示含有危险品的概率较低。报警的方式包括但不限于画面显示、音频报警、振动报警等等。还可以设置报警级别,例如当含有危险品的概率较低时,可以通过较低音量的声音或者较弱的振动来报警,当含有危险品的概率较高时,可以通过较高音量的声音或者较强的振动来报警。
此外,还可以通过显示装置将重建的被检对象的图像和/或上述判断结果呈现给用户,例如,可以在重建图像之后利用显示屏来显示所重建的图像,然后再将分析结果呈现在显示屏上;也可以在完成图像重建和分析比对之后再一并将重建的图像和判定结果呈现在显示屏上。判定结果(例如可能含有哪种危险品、含有该危险品的概率)的呈现方式可以根据需要来选择,除了上述在显示屏上以画面的形式呈现之外,还可以利用音频、振动等其他方式来呈现,例如可以判断结果以语音的形式播放,也可以利用报警器的报警音量高低或振动强弱来指示判断结果,比如高音量的报警代表含有危险品的可能性较高,低音量的报警代表含有危险品的可能性较低。
本公开的实施例还提供了一种计算机可读介质,所述计算机可读介质中存储有指令,所述指令在由处理器执行时使处理器执行上述安检设备的控制方法。
本领域的技术人员可以理解,上面所描述的实施例都是示例性的,并且本领域的技术人员可以对其进行改进,各种实施例中所描述的结构在不发生结构或者原理方面的冲突的情况下可以进行自由组合。
在详细说明本公开的较佳实施例之后,熟悉本领域的技术人员可清楚的了解,在不脱离随附权利要求的保护范围与精神下可进行各种变化与改变,且本公开亦不受限于说明书中所举示例性实施例的实施方式。

Claims (13)

  1. 一种安检设备,包括固定在现场中的本体和安装在本体上的电磁成像装置,所述电磁成像装置包括:
    二维多发多收收发阵列面板,所述二维多发多收收发阵列面板包括:
    至少一个二维多发多收收发子阵列,每个二维多发多收收发子阵列包括多个发射天线和多个接收天线,所述多个发射天线中的每个发射天线和所述多个接收天线中的相应一个接收天线的连线的中点作为一个等效相位中心,所述多个发射天线和所述多个接收天线被布置为使得等效相位中心排列成二维阵列;以及
    控制电路,被配置为控制所述多个发射天线按照预设顺序向被检对象发射电磁波形式的检测信号,以及控制所述多个接收天线接收来自待测物品的回波信号;
    信号处理装置,与所述二维多发多收收发阵列面板相连,并且被配置为根据接收到的回波信号来重建被检对象的图像;以及
    显示装置,与信号处理装置相连,并且被配置为显示所重建的被检对象的图像。
  2. 根据权利要求1所述的安检设备,其中,每个二维多发多收收发子阵列中相邻发射天线和/或相邻接收天线之间的距离是所述检测信号的多个频率之一对应的波长的整数倍,相邻的等效相位中心之间的距离为所述检测信号的波长的一半。
  3. 根据权利要求1所述的安检设备,其中,每个二维多发多收收发子阵列包括沿着第一方向排列的两行发射天线和沿着垂直于第一方向的第二方向排列的两列接收天线,所述两行发射天线与两列接收天线形成矩形图案。
  4. 根据权利要求1所述的安检设备,其中,所述二维多发多收收发子阵列包括沿着第一方向排列的一行发射天线和沿着垂直于第一方向的第二方向排列的一列接收天线,所述行和列交叉形成十字形状。
  5. 根据权利要求1所述的安检设备,其中,所述控制电路被配置成控制每个二维多发多收收发子阵列中的多个发射天线依次发射检测信号,并控制该二维多发多收收发子阵列中的多个接收天线接收回波信号;或者被配置成控制所述二维多发多收收发阵列面板中的所有发射天线依次发射检测信号,并控制所述二维多发多收收发阵列面板中的所有接收天线接收回波信号。
  6. 根据权利要求1至5中任一项所述的安检设备,其中,所述本体具有一体式结构,所述电磁成像装置安装在所述本体的面向被检对象的一侧。
  7. 根据权利要求1至5中任一项所述的安检设备,其中,所述本体包括彼此分离 的第一部分和第二部分,所述第一部分与第二部分之间的空间被配置为使被检对象经过,在所述第一部分和/或所述第二部分的面向被检对象的一侧安装有所述电磁成像装置。
  8. 根据权利要求1至5中任一项所述的安检设备,其中,所述电磁成像装置还包括:测距装置,所述测距装置安装在所述二维多发多收收发阵列面板上,并且被配置为测量被检对象与所述二维多发多收收发阵列面板之间的距离;
    所述信号处理装置被配置为根据所述被检对象与所述二维多发多收收发阵列面板之间的距离以及接收到的回波信号来重建被检对象的图像。
  9. 根据权利要求1至5中任一项所述的安检设备,还包括报警装置,与所述信号处理装置相连,所述信号处理装置还被配置为根据所重建的被检对象的图像基于预设的标准来判断被检对象是否可能含有危险品,如果是,则控制所述报警装置进行报警。
  10. 根据权利要求1至5中任一项所述的安检设备,其中,所述检测信号为频率在10-300GHz范围内的微波毫米波。
  11. 根据权利要求1至5中任一项所述的安检设备,其中,所述二维多发多收收发阵列面板的长度和宽度均在10cm至200cm的范围内。
  12. 一种根据权利要求1至11中任一项权利要求所述的安检设备的控制方法,包括:
    控制所述二维多发多收收发阵列面板向被检对象发送检测信号,并接收来自被检对象的回波信号;以及
    根据接收到的回波信号来重建被检对象的图像。
  13. 根据权利要求12所述的控制方法,其中,所述重建被检对象的图像包括基于全息重建算法或后向投影算法来重建被检对象的图像。
PCT/CN2019/110407 2018-12-29 2019-10-10 安检设备及其控制方法 WO2020134337A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/304,903 US12007523B2 (en) 2018-12-29 2021-06-28 Security inspection apparatus and method of controlling the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811654216.4 2018-12-29
CN201811654216.4A CN109799538B (zh) 2018-12-29 2018-12-29 安检设备及其控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/304,903 Continuation US12007523B2 (en) 2018-12-29 2021-06-28 Security inspection apparatus and method of controlling the same

Publications (1)

Publication Number Publication Date
WO2020134337A1 true WO2020134337A1 (zh) 2020-07-02

Family

ID=66558385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110407 WO2020134337A1 (zh) 2018-12-29 2019-10-10 安检设备及其控制方法

Country Status (3)

Country Link
US (1) US12007523B2 (zh)
CN (1) CN109799538B (zh)
WO (1) WO2020134337A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109799538B (zh) 2018-12-29 2024-10-18 清华大学 安检设备及其控制方法
CN109828241B (zh) * 2018-12-29 2024-01-26 清华大学 用于主动式微波毫米波安检设备的电磁成像装置
JP2020204513A (ja) * 2019-06-17 2020-12-24 株式会社東芝 システム及び検査方法
CN110794399B (zh) * 2019-10-29 2022-03-29 北京无线电计量测试研究所 一种主动式毫米波三维成像安检装置
CN111025423B (zh) * 2019-12-28 2022-07-29 北京无线电计量测试研究所 主动式毫米波实时三维成像安检系统的校准系统及方法
CN111392562B (zh) * 2020-03-25 2022-03-08 日立电梯(广州)自动扶梯有限公司 扶梯的运行速度确定方法、装置、计算机设备和存储介质
CN112965140B (zh) * 2021-02-07 2023-02-24 杭州睿影科技有限公司 一种通道检测设备、以及主控板
JP2022175303A (ja) * 2021-05-13 2022-11-25 日本電気株式会社 検査システム及び検査方法
CN116125469A (zh) * 2023-02-24 2023-05-16 深圳市奥谱毫芯技术合伙企业(有限合伙) 一种3d微波近场成像方法、装置、系统及其介质
CN118962722B (zh) * 2024-10-17 2025-02-07 中国科学技术大学 一种脉冲太赫兹波稀疏布阵合成孔径成像设备及成像系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202013428U (zh) * 2010-12-24 2011-10-19 北京遥感设备研究所 一种主动式毫米波近场扫描成像安检装置
CN104808201A (zh) * 2015-04-23 2015-07-29 中国电子科技集团公司第四十一研究所 一种二维mimo阵列实现方法
CN106772654A (zh) * 2016-12-02 2017-05-31 清华大学 基于可重构反射阵列的毫米波人体安检系统
CN206209132U (zh) * 2016-08-25 2017-05-31 同方威视技术股份有限公司 面向非合作人体安检的主动式毫米波成像系统
WO2018089068A1 (en) * 2016-08-12 2018-05-17 University Of Washington Millimeter wave imaging systems and methods using direct conversion receivers and/or modulation techniques
CN108051806A (zh) * 2017-12-04 2018-05-18 上海无线电设备研究所 一种基于通用雷达前端芯片的毫米波成像安检雷达系统
CN109444968A (zh) * 2018-12-29 2019-03-08 清华大学 安检设备及其控制方法
CN109799538A (zh) * 2018-12-29 2019-05-24 清华大学 安检设备及其控制方法
CN109828241A (zh) * 2018-12-29 2019-05-31 清华大学 用于主动式微波毫米波安检设备的电磁成像装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008274A (ja) 2008-06-27 2010-01-14 Maspro Denkoh Corp ミリ波撮像装置
DE102011083756A1 (de) * 2011-09-29 2013-04-04 Siemens Ag Radar-Vorrichtung und Verfahren zum Erzeugen einer Gruppencharakteristik eines Radars
CN102565796B (zh) * 2011-12-30 2013-09-18 北京华航无线电测量研究所 一种圆柱阵面三维成像系统的成像方法
CN102540186B (zh) * 2011-12-30 2013-07-03 北京华航无线电测量研究所 一种阵列天线弧形扫描的毫米波成像系统
US8937570B2 (en) * 2012-09-28 2015-01-20 Battelle Memorial Institute Apparatus for synthetic imaging of an object
US9715012B2 (en) * 2013-04-25 2017-07-25 Battelle Memorial Institute Footwear scanning systems and methods
CN103616667B (zh) * 2013-11-20 2015-10-28 中国电子科技集团公司第四十一研究所 一种用于散射成像的二维天线阵列布置方法
EP2933654B1 (en) * 2014-04-14 2017-06-07 Rohde & Schwarz GmbH & Co. KG Method and system for millimeter-wave image reconstruction
US11063368B2 (en) * 2015-04-01 2021-07-13 Vega Grieshaber Kg Antenna assembly for a level gauge
TWI563277B (en) * 2015-06-10 2016-12-21 Wistron Neweb Corp Radar and method for switching to enable array antenna
JP6828039B2 (ja) 2015-12-17 2021-02-10 マサチューセッツ インスティテュート オブ テクノロジー 近接場マイクロ波イメージング用の方法及びシステム
CN105487059B (zh) * 2016-01-05 2017-09-15 南京信息工程大学 一种基于逆时反演的穿墙雷达基准面校正方法
FR3050283B1 (fr) * 2016-04-15 2018-04-20 Alessandro Manneschi Detecteur d'objets ou de matieres non autorisees dissimules dans une chaussure
CN105759269B (zh) * 2016-04-25 2018-06-26 华讯方舟科技有限公司 三维全息成像的安检系统及方法
CN106093937B (zh) * 2016-05-18 2019-03-08 中国电子科技集团公司第四十一研究所 一种微波毫米波人体安检系统及安检方法
CN106094048A (zh) * 2016-07-26 2016-11-09 华讯方舟科技有限公司 基于毫米波成像的便携式安检设备
CN106291732B (zh) * 2016-08-18 2018-03-02 华讯方舟科技有限公司 基于毫米波成像的全方位安检系统
CN106338732B (zh) * 2016-08-23 2019-02-26 华讯方舟科技有限公司 一种毫米波三维全息成像方法及系统
CN106093898B (zh) * 2016-08-23 2018-05-25 中国电子科技集团公司第四十一研究所 一种分区域式的mimo阵列校准方法
CN106546981A (zh) * 2016-10-24 2017-03-29 复旦大学 运动人体安检成像系统和方法
CN108155479B (zh) * 2016-12-06 2021-08-24 中兴通讯股份有限公司 一种微波天线阵列通信系统及通信方法
CN107132538A (zh) * 2017-04-28 2017-09-05 华讯方舟科技有限公司 一种微波三维成像系统及方法
CN107238868B (zh) * 2017-07-31 2019-09-24 深圳市无牙太赫兹科技有限公司 毫米波实时成像安全检测系统及安全检测方法
CN207352187U (zh) * 2017-07-31 2018-05-11 深圳市无牙太赫兹科技有限公司 毫米波实时成像安全检测系统
CN108490497B (zh) * 2018-02-05 2024-03-22 清华大学 安检系统和方法
CN109031284A (zh) 2018-08-31 2018-12-18 博微太赫兹信息科技有限公司 一种采用毫米波或太赫兹雷达的鞋底安检装置及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202013428U (zh) * 2010-12-24 2011-10-19 北京遥感设备研究所 一种主动式毫米波近场扫描成像安检装置
CN104808201A (zh) * 2015-04-23 2015-07-29 中国电子科技集团公司第四十一研究所 一种二维mimo阵列实现方法
WO2018089068A1 (en) * 2016-08-12 2018-05-17 University Of Washington Millimeter wave imaging systems and methods using direct conversion receivers and/or modulation techniques
CN206209132U (zh) * 2016-08-25 2017-05-31 同方威视技术股份有限公司 面向非合作人体安检的主动式毫米波成像系统
CN106772654A (zh) * 2016-12-02 2017-05-31 清华大学 基于可重构反射阵列的毫米波人体安检系统
CN108051806A (zh) * 2017-12-04 2018-05-18 上海无线电设备研究所 一种基于通用雷达前端芯片的毫米波成像安检雷达系统
CN109444968A (zh) * 2018-12-29 2019-03-08 清华大学 安检设备及其控制方法
CN109799538A (zh) * 2018-12-29 2019-05-24 清华大学 安检设备及其控制方法
CN109828241A (zh) * 2018-12-29 2019-05-31 清华大学 用于主动式微波毫米波安检设备的电磁成像装置

Also Published As

Publication number Publication date
CN109799538A (zh) 2019-05-24
CN109799538B (zh) 2024-10-18
US20210325561A1 (en) 2021-10-21
US12007523B2 (en) 2024-06-11

Similar Documents

Publication Publication Date Title
WO2020134337A1 (zh) 安检设备及其控制方法
US12164023B2 (en) Security inspection apparatus and method of controlling the same
CN109828241B (zh) 用于主动式微波毫米波安检设备的电磁成像装置
JP7379622B2 (ja) システム及び検査方法
CN209342935U (zh) 安检设备
US9383426B2 (en) Real-time, two dimensional (2-D) tracking of first responders with identification inside premises
JP2018537679A (ja) 近接場マイクロ波イメージング用の方法及びシステム
RU2771295C2 (ru) Устройство и способ обнаружения объектов или веществ, не разрешенных для проноса в зону контролируемого доступа
CN209821372U (zh) 用于主动式微波毫米波安检设备的电磁成像装置和安检设备
Dilsavor et al. Experiments on wideband through-the-wall radar imaging
CN107980101A (zh) 模块化成像系统
WO2020134296A1 (zh) 安检设备及其控制方法
Turpin et al. 3D imaging from multipath temporal echoes
CN210534345U (zh) 安检设备
CN109444969A (zh) 安检设备及其控制方法
Yan et al. Through-floor vital sign imaging for trapped persons based on optimized 2-D UWB life-detection radar deployment
CN114460659B (zh) 安检设备
CN116224328A (zh) 用于目标多角度扫描的毫米波边缘成像系统及其成像方法
CN116500605A (zh) 用于毫米波收发的阵列面板、安检设备及其控制方法
CN210465710U (zh) 安检设备
CN204556867U (zh) 一种金属与x射线组合安检机
CN109164436A (zh) 高频多波束声纳所探测目标物的尺寸测量方法及装置
CN211123307U (zh) 安检设备
CN210465706U (zh) 安检设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905215

Country of ref document: EP

Kind code of ref document: A1