WO2020134289A1 - 定位方法、定位装置和测序系统 - Google Patents

定位方法、定位装置和测序系统 Download PDF

Info

Publication number
WO2020134289A1
WO2020134289A1 PCT/CN2019/109046 CN2019109046W WO2020134289A1 WO 2020134289 A1 WO2020134289 A1 WO 2020134289A1 CN 2019109046 W CN2019109046 W CN 2019109046W WO 2020134289 A1 WO2020134289 A1 WO 2020134289A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile platform
positioning
moving
reaction device
limit
Prior art date
Application number
PCT/CN2019/109046
Other languages
English (en)
French (fr)
Inventor
孙瑞涛
张松振
姜泽飞
周志良
颜钦
Original Assignee
深圳市真迈生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811634436.0A external-priority patent/CN111363673B/zh
Application filed by 深圳市真迈生物科技有限公司 filed Critical 深圳市真迈生物科技有限公司
Priority to US17/417,035 priority Critical patent/US11421272B2/en
Priority to EP19905202.8A priority patent/EP3904496A4/en
Publication of WO2020134289A1 publication Critical patent/WO2020134289A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00237Handling microquantities of analyte, e.g. microvalves, capillary networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy

Definitions

  • the invention relates to the field of positioning, in particular to a positioning method, positioning device and sequencing system.
  • the sequencing system is also constantly updated.
  • the sequencing system includes an imaging component, and the imaging component is used to continuously photograph nucleic acid molecules in a reactor (such as a chip) during a sequencing reaction , And analyze the captured images to obtain sequencing results.
  • the imaging component In the automated nucleic acid sequencing process, it is necessary to ensure that the imaging component can capture the information of the target field of view, and can continuously collect the information of all target fields of vision in a predetermined range in a round or one sequencing reaction.
  • the automatic and precise adjustment and determination of the relative position of the reactor is an important step. Therefore, it is necessary to provide a positioning method.
  • embodiments of the present invention provide a positioning method, positioning device, and sequencing system.
  • An embodiment of the present invention provides a positioning method for a sequencing system.
  • the sequencing system includes an imaging component and a mobile platform.
  • the imaging component includes an optical axis.
  • the mobile platform carries a reaction device.
  • the imaging component is located in the Above the reaction device, a limit switch is used to control the travel of the mobile platform in the first direction, the travel includes a first limit, and the method includes the steps of:
  • the above positioning method can achieve fast and accurate positioning by moving back and forth in the first direction, including setting the moving speed and/or moving step, so that the position of the optical axis of the imaging assembly and the position of the reaction device meet a preset relationship, which enables subsequent imaging
  • the component can continuously capture information of all target fields of view in a predetermined area.
  • This positioning method is applicable to various sequencing platforms based on optical detection, including but not limited to the HiSeq/MiSeq/NextSeq/NovaSeq platform of Illumina, BGISEQ50/500 of BGI and Sequel platform of PacBio.
  • a sequencing system includes a positioning device, an imaging component, and a mobile platform.
  • the imaging component includes an optical axis.
  • the mobile platform carries a reaction device.
  • the imaging component is located above the reaction device.
  • a limit switch controls the travel of the mobile platform in the first direction, the travel includes a first limit, and the positioning device is used to implement the following steps:
  • a positioning device is used in a sequencing system.
  • the sequencing system includes an imaging component and a mobile platform.
  • the imaging component includes an optical axis.
  • the mobile platform carries a reaction device.
  • the imaging component is located in the Above the reaction device, a limit switch is used to control the travel of the mobile platform in the first direction, the travel includes a first limit, and the positioning device includes:
  • a storage device for storing data, the data including a computer executable program
  • the processor is configured to execute the computer-executable program, and executing the computer-executable program includes the steps of completing the above-mentioned positioning method.
  • a sequencing system includes the above positioning device.
  • FIG. 1 is a schematic flowchart of a positioning method according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a sequencing system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a partial structure of a sequencing system according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a reaction device according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the relationship between the moving speed and the deviation of the mobile platform according to the embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of a sequencing system according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another module of a sequencing system according to an embodiment of the present invention.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless otherwise specifically limited.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be The mechanical connection can also be an electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediary, it can be the connection between two elements or the interaction between two elements.
  • sequencing is the same as nucleic acid sequencing, also known as sequencing, including DNA sequencing and/or RNA sequencing, including long fragment sequencing and/or short fragment sequencing.
  • sequencing reaction is the same as the sequencing reaction.
  • an embodiment of the present invention provides a positioning method for a sequencing system 300.
  • the sequencing system 300 includes an imaging component 110 and a mobile platform 102.
  • the imaging component 110 includes an optical axis OP and the mobile platform 102 carries There is a reaction device 200, and the imaging assembly 110 is located above the reaction device 200.
  • the limit switch is used to control the travel of the mobile platform 102 in the first direction. The so-called travel includes the first limit.
  • the method includes the steps of:
  • the above positioning method can achieve fast and accurate positioning by moving back and forth in the first direction, including setting the moving speed and/or moving step distance, so that the position of the optical axis of the imaging assembly 110 and the reaction device 200 satisfies the preset relationship, so that The subsequent imaging component 110 can continuously capture information to obtain all target fields of view in a predetermined area.
  • the reaction device 200 can be fixedly placed on the mobile platform 102, and the sequencing system 300 can pass the reaction reagent/solution to the reaction device 200.
  • the reaction device 200 is provided with one or more channels, reaction reagents/solutions and the like are located in the channel 200, and nucleic acid molecules are located in the reaction reagents/solutions.
  • the imaging component 110 is placed above the reaction device 200, so that during the sequencing of nucleic acid molecules, an image of nucleic acid molecules with optically detectable labels in a specific position (field of view) of the reaction device 200 can be collected.
  • the so-called optically detectable labels For example, fluorescent molecules.
  • the reaction device 200 is, for example, a chip.
  • the imaging component 110 includes an autofocus module.
  • the autofocus module When the autofocus module is used to focus on a specific position of the reaction device, the imaging component 110 does not move, and the mobile platform 102 drives the reaction device 200 according to the information/commands of the autofocus module Move in a plane perpendicular to the optical axis OP to enable the imaging assembly 110 to perform image acquisition on different positions on the reaction device 200.
  • the sequencing system 300 includes a limit switch, a driving module (such as a stepper motor) and an inquiry board to control the movement of the mobile platform 102 and obtain coordinate values of the mobile platform 102 or the reaction device 200, and the stepper motor drives the mobile platform to move , Inquire the board to output the real-time coordinate value of the reaction device 200/mobile platform 102 according to the number of steps of the stepper motor movement.
  • the limit switch is used to define the movement limit position of the mobile platform 102. Since the positions of the mobile platform 102 and the reaction device 200 are relatively fixed, the limit switch can also limit the movement limit position of the reaction device 200.
  • the sequencing system 300 further includes a mechanical stop, and the stroke provided in the first direction is close to one end of the limit switch to limit the movement of the mobile platform 102.
  • the sequencing system 300 may control the imaging assembly 110 to take a picture of the reaction device 200 to obtain a fluorescent image of the nucleic acid molecule.
  • the imaging assembly 110 may include a microscope and a camera, and the camera collects light from the microscope.
  • the lens of the imaging assembly 110 (such as the objective lens 112 of the microscope) can be moved to the Z-axis 0 position, for example, in the Z-axis direction and the reaction device 200 has a distance and is located at any relative position in the middle of the X-axis direction to prevent the objective lens 112 from colliding with the reaction device 200 below and the structures on both sides.
  • the first direction is the direction along the Y axis.
  • the reaction device 200 is provided with multiple channels 21 as shown in FIG. 4.
  • any position of the first channel can be selected as the starting position for taking pictures.
  • the so-called first channel can be set according to needs, such as setting the first channel and/or the second channel in FIG. 4
  • the channel is called the first channel.
  • the optical axis OP of the imaging assembly 110 can be perpendicular to the first channel, and if necessary, the mobile platform 102 can be moved in the X-axis direction to make the optical axis OP of the imaging assembly 110 perpendicular to the first channel
  • the specific position of the channel is then photographed, and an image of the specific position (field of view) is collected. For example, from top to bottom in FIG. 4, the optical axis OP of the imaging assembly 110 is perpendicular to the left end point 26 of the first channel 24 to start taking pictures.
  • limit switches may be inductive, such as photoelectric or electromagnetic limit switches, contact limit switches, or a combination of multiple limit switches.
  • the limit switch is an electromagnetic limit switch
  • the mobile platform 102 is installed with a magnetic member.
  • the electromagnetic limit switch senses the magnetic part
  • the limit switch has a contact action, and the circuit is switched to disconnect the power supply of the drive module. It can be considered that the mobile platform 102 reaches the first limit in the first direction.
  • the limit switch since the limit switch has a specific accuracy, that is, the limit switch can sense the magnetic member within a certain distance and respond, a position range is detected; and, when the driving module drives the mobile platform 102 to move.
  • the speed is large, although it is beneficial to rapid positioning, at the same time, due to the large inertia, it will bring a large deviation to the positioning.
  • the feedback shows that the two first The deviation between the limit coordinates (Y-axis coordinates) can reach 1000 ⁇ m.
  • Table 1 is tested by the inventor and shows the difference between the coordinate values of the reaction device 200 (or the mobile platform 102) obtained at different speeds to reach the same position (for example, the first limit position).
  • the distance between the current position P2 of the reaction device 200 and the previous position P1 of the reaction device 200 is less than the first step distance, that is, when P2-P1 ⁇ Space1, that is, when the mobile platform 102 does not complete the step distance, the limit
  • the switch is triggered to be turned on to stop the mobile platform 102 from moving.
  • step (b) There is no limit to the moving speed of the mobile platform 102 in step (b).
  • setting the moving direction of step (b) to be opposite to the moving direction of step (a) is to eliminate or reduce the influence of the moving speed and detection accuracy of the limit switch on positioning in step (a).
  • the distance that the mobile platform 102 in step (b) needs to move is at least related to the moving speed of the mobile platform 102 in step (a).
  • the moving distance in step (b) is compared to the moving distance in step (a) Smaller.
  • Step (b) can adopt a moving speed lower than that of step (a).
  • the moving speed of step (a) is 12.8 mm/s
  • the moving speed of step (b) can be set to be less than 12 mm/s, for example 10mm/s, 8mm/s, 6mm/s, 4mm/s or 2mm/s etc.
  • step (a) After performing step (a), including the influence of the detection accuracy of the limit switch and the moving speed of the mobile platform 102, the coordinate value of the mobile platform 102 (or the reaction device 200) fed back and the There is a deviation in the actual position, and the actual position of the mobile platform 102 may exceed or fail to reach the coordinate value position. Therefore, performing step (b) and moving the mobile platform 102 in the opposite direction to the moving direction of (a) in this step (b) must be The distance can eliminate or reduce the positioning deviation caused by the moving speed of the mobile platform 102 in step (a).
  • the distance of 102 can be set to a larger value.
  • the positioning deviation caused by the moving speed of step (a) is about 800 ⁇ m
  • the moving distance of the mobile platform 102 of step (b) can be set to not less than 800 ⁇ m, for example, the moving distance of step (b) is set to 1000 ⁇ m, 1200 ⁇ m , 1500 ⁇ m or 2000 ⁇ m, etc.
  • the moving speed of the mobile platform 102 in step (c) is not greater than a first preset value
  • the first preset value is related to an error allowed for positioning.
  • the first preset value is set so that the deviation between the actual position of the mobile platform 102 and the coordinate value position when the first limit position is reached is within the allowable error range of the positioning.
  • the so-called positioning error is the distance of the target position in the moving direction.
  • the allowable error of positioning is the width of the channel 24, the length of the channel in the first direction (moving direction) is defined as the width of the channel 21, and the width of the channel 24 is 1.8 mm, based on the moving speed and deviation of FIG. 5 Relationship, the first preset value can be set to 11.6 mm/s.
  • the first preset value may be less than or equal to the moving speed of the mobile platform 102 in step (a). In one example, positioning allows an error of ⁇ 0.7 mm due to mechanical movement. The first preset value can be set to 9.8 mm/s.
  • step (c) the mobile platform 102 can be moved at a lower speed so that the deviation caused by this step is not greater than one-eighth, tenth, or tenth of the allowable error of the positioning One-fifth, one-fifteenth, etc., so that the error allowed relative to the positioning can be basically ignored, for example, moving at a moving speed of less than 5mm/s, 3mm/s, etc., so that step (d) can be compared with Large moving speed and reach the target position within the error range allowed by the positioning.
  • the tolerance of the positioning is the width of the channel 24, the width of the channel 24 is 1.8mm, the mechanical tolerance brought by the reaction device 200, the mobile platform 102, and the mechanical connection positioning structure is about ⁇ 0.2mm, the positioning The error allowed due to mechanical movement is ⁇ 0.7mm.
  • the moving speed of the mobile platform 102 in step (c) is not greater than the moving speed of the mobile platform 102 in step (a). In this way, the moving speed of the mobile platform 102 in step (c) can also eliminate or partially eliminate the positioning deviation caused by the moving speed of the mobile platform 102 in step (a).
  • the positioning method includes steps (a)-(c) to eliminate or reduce the detection accuracy of the limit switch and these steps The influence of the moving speed of the medium mobile platform 102 on precise positioning.
  • step (d) the moving speed of the mobile platform 102 is not greater than a second preset value, and the second preset value is related to an error allowed for positioning.
  • the reaction device 200 is provided with one or more channels 21, which are positioned such that the field of view acquired by the imaging component 110 comes from the channels, the positioning error allows for the width of the channel, and the length of the channel in the first direction is defined as the channel 21 width.
  • the second preset value serves as the upper limit of the moving speed of the mobile platform 102 in step (d), and this limitation can make the step ( d)
  • the positioning deviation caused by the moving speed of the mobile platform 102 is within the allowable error range of the positioning.
  • the reaction platform 200 when positioning a batch of reaction devices 200 of the same specification and size, only one of the reaction devices 200 placed on the mobile platform 102 can be used for channel positioning. After the positioning is completed, the coordinates are recorded and saved, and the subsequent use of the same When the reaction device 200 is of a specified size, the reaction platform 200 can be directly moved to the saved coordinate position by the mobile platform 102 to achieve initial positioning, which can save a lot of time for sequence determination.
  • the mechanical tolerance between the reaction devices 200 of the same size is 0.1 mm.
  • the positioning method is to achieve precise positioning of the target position, for example, any field of view in a certain channel on the reaction device 200, the width of the channel is 1.8mm, then the allowable error of the positioning is ⁇ 0.9mm, In order to enable the imaging component 110 to acquire the image of the target position.
  • the tolerance between the reaction devices 200 of the same specification and the related mechanical structure is ⁇ 0.2 mm, so it is understandable that to achieve the positioning of the target position, the deviation allowed during the entire moving process shall not exceed ⁇ 0.7 mm.
  • the positioning is such that the field of view acquired by the imaging component 110 comes from a designated channel on the reaction device 200, and the size of the second preset value is related to the width of the designated channel. In this way, the imaging component 110 can acquire the image of the designated channel of the reaction device 200.
  • the designated channel may be the first channel 24 of the reaction device 200, more specifically, the left end position 26 of the first channel 24 may be used as the starting position for the imaging component 110 to take a picture.
  • the photographing position 28 including the starting position 26 can be used as a field of view (FOV, field of view) of the imaging assembly 110.
  • FOV field of view
  • the preset distance is the distance between the first limit and the position of the mobile platform 102 when the preset relationship is satisfied on the trip. In this way, moving the preset distance from the first limit position in step (d) can make the position of the optical axis OP and the reaction device 200 satisfy the preset relationship.
  • the optical axis OP and the first channel 24 of the reaction device 200 can satisfy the vertical relationship.
  • the preset distance can be measured in advance before moving the mobile platform 102, and the record is saved for recall.
  • the position of the mobile platform 102 can be obtained by querying the board card, and the query board can feed back the coordinate value according to the number of steps of the movement of the motor driving the mobile platform 102 to move.
  • the frequency of querying the board card to calculate the output coordinate value is 20 ms.
  • the positioning method includes: when the position of the optical axis OP and the reaction device 200 satisfies a preset relationship, prompting a success message. In this way, when the positioning of the reaction device 200 is successful, the user can continue to perform subsequent operations in time, which improves the sequence determination efficiency.
  • the success information may be prompted by sound and/or light.
  • the sequencing system 300 includes a speaker and/or a display screen.
  • the speaker may play successfully Information
  • the display can show success information, etc.
  • the sequencing system 300 may also include a vibration element.
  • the vibration element vibrates to prompt a success message.
  • an embodiment of the present invention provides a sequencing system 300.
  • the sequencing system 300 includes a positioning device 302, an imaging component 110, and a mobile platform 102.
  • the imaging component 110 includes an optical axis OP, and the mobile platform 102 carries a reaction device. 200.
  • the imaging assembly 110 is located above the reaction device 200.
  • the limit switch is used to control the travel of the mobile platform 102 in the first direction.
  • the travel includes the first limit, and the positioning device 302 is used to implement the following steps:
  • the above-mentioned sequencing system 300 enables the mobile platform 102 to move back and forth in the first direction through the included positioning device 302, including setting the moving speed and/or moving step distance, which can realize rapid and accurate positioning, so that the optical axis of the imaging assembly 110 and the reaction device The position of 200 satisfies the preset relationship, so that the subsequent imaging component 110 can continuously capture information of all target fields of view in the predetermined area.
  • the moving speed of the mobile platform in step (c) is not greater than a first preset value, and the first preset value is related to an error allowed for positioning.
  • the moving speed of the mobile platform in step (c) is not greater than the moving speed of the mobile platform in step (a).
  • the minimum distance that the mobile platform in step (b) needs to move is related to the moving speed of the mobile platform in step (a).
  • the moving speed of the mobile platform in step (d) is not greater than a second preset value, and the second preset value is related to an error allowed for positioning.
  • the reaction device is provided with one or more channels, and the tolerance of positioning is related to the width of the channel, and the length of the channel in the first direction is defined as the width of the channel.
  • the positioning device is used to prompt a success message when the position of the optical axis and the reaction device meets a preset relationship.
  • an embodiment of the present invention provides a positioning device 302 for a sequencing system 300.
  • the sequencing system 300 includes an imaging component 110 and a mobile platform 102.
  • the imaging component 110 includes an optical axis OP, and the mobile platform 102 carries a reaction device 200.
  • the imaging assembly 110 is located above the reaction device 200, and uses a limit switch to control the travel of the mobile platform 102 in the first direction.
  • the travel includes the first limit
  • the positioning device 302 includes: a storage device 304 for storing data.
  • the data includes The computer executable program; the processor 306 is configured to execute the computer executable program, and the execution of the computer executable program includes the steps of completing the positioning method of any of the above embodiments.
  • sequencing system 300 shown in FIG. 7 includes the positioning device 302 described above.
  • a computer-readable storage medium is used to store a program for execution by a computer, and the execution of the program includes a method for completing any of the foregoing embodiments.
  • the computer-readable storage medium may include read-only memory, random access memory, magnetic disk, or optical disk.
  • a "computer-readable storage medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device .
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Studio Devices (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种定位方法、定位装置和测序系统(300)。测序系统(300)包括成像组件(110)和移动平台(102),成像组件(110)包括光轴(OP),移动平台(102)承载有反应装置(200),利用限位开关控制移动平台(102)在第一方向上的行程,行程包括第一限位,方法包括步骤:(a)以第一步距往靠近第一限位的方向移动移动平台(102),直至反应装置(200)的当前位置与反应装置(200)的上一个位置之间的距离小于第一步距;(b)往(a)的移动方向的反方向移动移动平台(102);(c)往(a)的移动方向移动移动平台(102),直至移动平台(102)到达第一限位;(d)往(a)的移动方向的反方向移动移动平台(102)预设距离,以使光轴(OP)和反应装置(200)的位置满足预设关系。该方法通过在第一方向上来回移动,能够实现移动平台(102)的快速精确定位,使得光轴(OP)和反应装置(200)的位置满足预设关系。

Description

定位方法、定位装置和测序系统 技术领域
本发明涉及定位领域,尤其涉及一种定位方法、定位装置和测序系统。
背景技术
随着核酸测序技术的不断发展,测序系统也不断更新。在基于光学成像系统检测反应器中的待测核酸分子的测序系统/测序平台中,测序系统包括成像组件,利用成像组件对测序反应时的反应器(例如芯片)中的核酸分子进行连续地拍摄,并分析拍摄所得的图像进而得到测序结果。
而在自动化核酸测序过程中,需要确保成像组件能够拍摄获得目标视野的信息,而且能够在一轮或一次测序反应中连续地采集预定范围中的所有目标视野的信息,而初始时,成像组件和反应器的相对位置的自动地、精确地调整和确定是很重要的一步。因此,有必要提供一种定位方法。
发明内容
为此,本发明实施方式提供一种定位方法、定位装置和测序系统。
本发明实施方式提供一种定位方法,用于测序系统,所述测序系统包括成像组件和移动平台,所述成像组件包括光轴,所述移动平台承载有反应装置,所述成像组件位于所述反应装置的上方,利用限位开关控制所述移动平台在第一方向上的行程,所述行程包括第一限位,所述方法包括步骤:
(a)以第一步距往靠近所述第一限位的方向移动所述移动平台,直至所述反应装置的当前位置与所述反应装置的上一个位置之间的距离小于所述第一步距;
(b)往(a)的移动方向的反方向移动所述移动平台;
(c)往(a)的移动方向移动所述移动平台,直至所述移动平台到达所述第一限位;
(d)往(a)的移动方向的反方向移动所述移动平台预设距离,以使所述光轴和所述反应装置的位置满足预设关系。
上述定位方法,通过在第一方向上来回移动,包括设置移动速度和/或移动步距,能够实现快速精确定位,使得成像组件的光轴和反应装置的位置满足预设关系,这样使得后续成像组件能够连续拍摄获得预定区域中的所有目标视野的信息。
该定位方法适用于各种基于光学检测的测序平台,包括但不限于Illumina公司的 HiSeq/MiSeq/NextSeq/NovaSeq平台,华大基因的BGISEQ50/500和PacBio公司的Sequel平台等。
本发明实施方式的一种测序系统,包括定位装置、成像组件和移动平台,所述成像组件包括光轴,所述移动平台承载有反应装置,所述成像组件位于所述反应装置的上方,利用限位开关控制所述移动平台在第一方向上的行程,所述行程包括第一限位,所述定位装置用于实现以下步骤:
(a)以第一步距往靠近所述第一限位的方向移动所述移动平台,直至所述反应装置的当前位置与所述反应装置的上一个位置之间的距离小于所述第一步距;
(b)往远离所述第一限位的方向移动所述移动平台;
(c)往靠近所述第一限位的方向移动所述移动平台,直至所述移动平台到达所述第一限位;
(d)往远离所述第一限位的方向移动所述移动平台预设距离,以使所述光轴和所述反应装置的位置满足预设关系。
本发明实施方式的一种定位装置,用于测序系统,所述测序系统包括成像组件和移动平台,所述成像组件包括光轴,所述移动平台承载有反应装置,所述成像组件位于所述反应装置的上方,利用限位开关控制所述移动平台在第一方向上的行程,所述行程包括第一限位,所述定位装置包括:
存储装置,用于存储数据,所述数据包括计算机可执行程序;
处理器,用于执行所述计算机可执行程序,执行所述计算机可执行程序包括完成上述的定位方法的步骤。
本发明实施方式的一种测序系统,包括上述的定位装置。
本发明实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明实施方式的实践了解到。
附图说明
本发明实施方式的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明实施方式的定位方法的流程示意图;
图2是本发明实施方式的测序系统的结构示意图;
图3是本发明实施方式的测序系统的部分结构示意图;
图4是本发明实施方式的反应装置的结构示意图;
图5是本发明实施方式的移动平台的移动速度和偏差的关系示意图;
图6是本发明实施方式的测序系统的模块示意图;
图7是本发明实施方式的测序系统的另一模块示意图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设定进行描述。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设定之间的关系。
所称的“序列测定”同核酸序列测定,也称为测序,包括DNA测序和/或RNA测序,包括长片段测序和/或短片段测序。所称的“序列测定反应”同测序反应。
请参图1,本发明实施方式提供一种定位方法,用于测序系统300,请结合图2,测序系统300包括成像组件110和移动平台102,成像组件110包括光轴OP,移动平台102承载有反应装置200,成像组件110位于反应装置200的上方,利用限位开关控制移动平台102在第一方向上的行程,所称的行程包括第一限位,该方法包括步骤:
(a)以第一步距往靠近第一限位的方向移动移动平台102,直至反应装置200的当前位置与反应装置200的上一个位置之间的距离小于第一步距;
(b)往(a)移动方向的反方向移动移动平台102;
(c)往(a)的移动方向移动移动平台102,直至移动平台102到达第一限位;
(d)往(a)的移动方向的反方向移动移动平台102预设距离,以使光轴OP和反应装置200的位置满足预设关系。
上述定位方法,通过在第一方向上来回移动,包括设置移动速度和/或移动步距,能够实现快速精确定位,使得成像组件110的光轴和反应装置200的位置满足预设关系,这样使得后续成像组件110能够连续拍摄获得预定区域中的所有目标视野的信息。
具体地,请参图2,在一些示例中,反应装置200可固定放置在移动平台102上,测序系统300能够向反应装置200通入反应试剂/溶液。反应装置200上设有一个或多个通道(channel),反应试剂/溶液等位于通道200中,核酸分子位于反应试剂/溶液中。成像组件110置于反应装置200上方,使得在对核酸分子的测序过程中,能够采集反应装置200特定位置(视野)中的带光学可检测标记的核酸分子的图像,所称的光学可检测标记例如为荧光分子。反应装置200例如是芯片。
在一些实施方式中,成像组件110包括自动对焦模块,在利用自动对焦模块对反应装置的特定位置进行对焦时,成像组件110不动,移动平台102根据自动对焦模块的信息/指令带动反应装置200在垂直于光轴OP的平面内移动,以使成像组件110能够对反应装置200上的不同位置进行图像采集。通常地,测序系统300包括限位开关、驱动模块(例如步进电机)和查询板卡来控制移动平台102的移动以及获得移动平台102或者反应装置200的坐标值,步进电机驱动移动平台运动,查询板卡根据步进电机运动的步数输出反应装置200/移动平台102的实时坐标值。限位开关用于限定移动平台102的运动极限位置,由于移动平台102和反应装置200的位置是相对固定,因此,限位开关同样可限定反应装置200的运动极限位置。在另一实施方式中,测序系统300还包括机械挡块,设置在第一方向上的行程靠近限位开关的一端,用以限制移动平台102的运动。
当光轴OP与反应装置200的位置满足预设关系时,在拍照阶段,测序系统300可控制成像组件110对反应装置200进行拍照,以获得核酸分子的荧光图像。成像组件110可包括显微镜和相机,相机采集来自显微镜的光。
参照图3所示的坐标系,在定位开始前或定位开始时,可将成像组件110的镜头(如显微镜的物镜112)移动到Z轴的0点位置,例如在Z轴方向上和反应装置200有一段距离且位于X轴方向的相对中间的任意位置,以防止物镜112和下方的反应装置200以及和两旁的结构碰撞。第一方向为沿Y轴的方向。
在一些实施方式中,反应装置200上设有多个通道21,如图4所示。通常地,第一通道的任意一位置都可以被选择作为拍照起始位置,所称的第一通道可以根据需要自己设定,如设定图4上的第一个通道和/或第二个通道为所称的第一通道。利用本实施方式的定位方 法,可使成像组件110的光轴OP垂直该第一通道,之后若有需要,可以使移动平台102沿X轴方向移动使成像组件110的光轴OP垂直该第一通道的特定位置再进行拍照,采集得该特定位置(视野)的图像。例如,图4中从上至下,使成像组件110的光轴OP垂直于第一个通道24的左端点26,开始拍照。
本申请对所使用的限位开关的类型不作限制,可以是感应式的,如光电或电磁限位开关,也可以是接触式限位开关,也可以是多种限位开关的组合。在一个例子中,限位开关为电磁限位开关,移动平台102安装有磁性件。当电磁限位开关感应到磁性件时,该限位开关发生触点动作,实现电路切换断开驱动模块的电源,可认为移动平台102到达第一方向上的第一限位。一般地,由于限位开关有特定的精度,即该限位开关在一定的距离范围内能感应到该磁性件而发生响应,检测的是一个位置范围;而且,当驱动模块驱动移动平台102移动的速度较大时,虽然利于快速定位,但同时因惯性较大,会给定位带来较大偏差。
在一个示例中,据多次测试,如表1所示,当分别设置移动平台102以速度V=12.8mm/s和V=2mm/s到达第一限位,反馈显示出的两个第一限位的坐标(Y轴坐标)之间的偏差可达1000μm。表1为发明人测试的,显示以不同的速度到达同一位置(例如第一限位)得到的反应装置200(或移动平台102)的坐标值之间的差异。图5为根据表1数据拟合的曲线,横坐标为速度,纵坐标为平均坐标值与速度=2mm/s时的平均坐标值的差值,可看出速度和差值(或者多次测量的平均坐标值)满足线性关系。
表1
Figure PCTCN2019109046-appb-000001
对步骤(a)中的移动速度不作限制。较佳地,在一些示例中,为快速实现定位,在步骤(a)中,可设置移动平台102以较大的移动速度移动,而第一步距可以在小于移动平台 102允许的行程范围内任意设置/选择,在一些示例中,移动平台102允许的行程范围大约为15cm,移动平台102移动的第一步距小于15cm,第一步距例如可以设置为10cm、8cm、5cm、3cm、2cm、1cm等;在一个示例中,移动平台102的移动速度V1=12.8mm/s,第一步距可为Space1=2800um,为相邻两通道间距。
在反应装置200的当前位置P2与反应装置200的上一位置P1之间的距离小于第一步距,即P2-P1<Space1时,即移动平台102在未走完该步距时,限位开关被触发开启,以使移动平台102停止移动。
对步骤(b)中移动平台102的移动速度不作限制。在一些示例中,设置步骤(b)的移动方向为与步骤(a)的移动方向相反,是为消除或减少步骤(a)中的移动速度和限位开关检测精度对定位带来的影响,步骤(b)中的移动平台102至少需移动的距离与步骤(a)中的移动平台102的移动速度有关,一般地,相较于步骤(a)的移动距离,步骤(b)的移动距离较小。步骤(b)可以采用比步骤(a)的移动速度小的移动速度,例如,步骤(a)的移动速度为12.8mm/s,步骤(b)的移动速度可设置为小于12mm/s,例如为10mm/s、8mm/s、6mm/s、4mm/s或者2mm/s等。
具体地,在进行步骤(a)之后,包括受限位开关的检测精度和移动平台102的移动速度的影响,所反馈回的移动平台102(或者反应装置200)的坐标值和移动平台102的实际位置存在偏差,移动平台102实际位置可能超过或没到达坐标值位置,因此,进行步骤(b)以及在该步骤(b)中往(a)的移动方向的反方向移动移动平台102一定的距离,能消除或减少步骤(a)中移动平台102的移动速度所带来的定位偏差。一般地,步骤(a)中移动平台102的移动速度越快,惯性越大,所带来的定位偏差越大,相应地,步骤(b)中往(a)的移动方向的反方向移动移动平台102的距离可以设置成越大的值。在一个示例中,步骤(a)的移动速度带来的定位偏差大约800μm,可设置步骤(b)的移动平台102的移动距离不小于800μm,例如设置步骤(b)的移动距离为1000μm、1200μm、1500μm或2000μm等。
在一些示例中,步骤(c)中的移动平台102的移动速度不大于第一预设值,第一预设值与定位允许的误差有关。具体地,第一预设值的设置为了使到达第一限位时移动平台102的实际位置和坐标值位置之间的偏差在该定位允许的误差范围内。所称的定位允许的误差为目标位置在移动方向上的间距。在一个示例中,定位允许的误差为通道24的宽度,定义通道在第一方向(移动方向)上的长度为通道21的宽度,通道24的宽度为1.8mm,基于图5的移动速度和偏差的关系,第一预设值可设为11.6mm/s。
具体地,在一个例子中,希望通过控制步骤(c)中移动平台102的移动速度来消除步 骤(a)和/或(b)中的移动平台102的移动速度所带来的位置偏差。第一预设值可小于或等于步骤(a)中的移动平台102的移动速度。在一个示例中,定位允许由于机械运动带进的误差为±0.7mm。第一预设值可设为9.8mm/s。
在一些示例中,较佳的,在步骤(c)中,可使移动平台102以较小的速度移动,以使该步骤带来的偏差不大于该定位允许的误差的八分之一、十分之一、十五分之一等,使得相对于该定位允许的误差可基本忽略不计,例如以小于5mm/s、3mm/s等的移动速度移动,如此,使步骤(d)能够以较大的移动速度且在定位允许的误差范围内到达目标位置。在一个示例中,该定位允许的误差为通道24的宽度,通道24的宽度为1.8mm,反应装置200、移动平台102以及机械连接定位结构等带进的机械公差约为±0.2mm,该定位允许由于机械运动带进的误差为±0.7mm。
在某些实施方式中,步骤(c)中的移动平台102的移动速度不大于步骤(a)中的移动平台102的移动速度。如此,步骤(c)中移动平台102的移动速度也可消除或部分消除步骤(a)中的移动平台102的移动速度所带来的定位偏差。
在机械定位时考虑限位开关的检测精度和移动速度带来的偏差,有利于精确定位,该定位方法通过包含步骤(a)-(c)消除或减少限位开关的检测精度和该些步骤中移动平台102的移动速度对精确定位带来的影响。
步骤(d)中移动平台102的移动速度不大于第二预设值,第二预设值与定位允许的误差有关。在一些示例中,反应装置200设有一个或多个通道21,定位为使成像组件110采集的视野来自通道,定位允许的误差与通道的宽度有关,定义通道在第一方向上的长度为通道21的宽度。
具体地,为了使光轴OP和反应装置200的起始位置满足预设关系,如垂直关系,第二预设值作为步骤(d)中移动平台102的移动速度的上限,该限制能使得步骤(d)中移动平台102的移动速度所带来的定位偏差在该定位允许的误差范围中。
在本实施方式中,对一批相同规格尺寸的反应装置200进行定位时,可只对其中的任一个放置在移动平台102的反应装置200进行通道定位,定位完成后记录保存坐标,后续使用相同规格尺寸的反应装置200时,可直接利用移动平台102将该反应装置200移到到所保存的坐标位置实现初始定位,这样可大量节省序列测定的时间。在一些示例中,相同规格尺寸的反应装置200之间的机械公差为0.1mm。
在一个示例中,该定位方法为实现目标位置的精确定位,目标位置例如为反应装置200上的某个通道中的任意视野,通道的宽度1.8mm,则该定位允许的误差为±0.9mm,以使得成像组件110能够采集到目标位置的图像。相同规格的反应装置200之间以及相关机械结 构的公差为±0.2mm,所以,可以理解的,要实现目标位置的定位,整个移动过程允许带进的偏差不得大于±0.7mm。
在某些实施方式中,定位为使成像组件110采集的视野来自反应装置200上的指定通道,第二预设值的大小与指定通道的宽度有关。如此,可使成像组件110采集到反应装置200的指定通道的图像。
在上述的例子中,指定通道可为反应装置200的第一条通道24,更具体地,可将第一条通道24的左端位置26作为成像组件110拍照的起始位置。包含起始位置26在内的拍照位置28可作为成像组件110的视野(FOV,field of view)。
在一些示例中,预设距离为在行程上、第一限位与满足预设关系时的移动平台102的位置之间的距离。如此,在步骤(d)中从第一限位上移动预设距离,可使光轴OP和反应装置200的位置满足预设关系。
具体地,上述的例子中,可使光轴OP与反应装置200的第一条通道24满足垂直关系。预设距离可在移动移动平台102前预先测量,并记录保存以调用。
需要说明的是,在图示的坐标系中,移动平台102的位置可由查询板卡而得出的,查询板卡可根据驱动移动平台102移动的电机的运动的步数反馈坐标值。在一个例子中,查询板卡计算输出坐标值的频率为20ms。
在某些实施方式中,定位方法包括:在光轴OP和反应装置200的位置满足预设关系时,提示成功信息。如此,可以在反应装置200的定位成功时,及时让用户继续后续操作,提高了序列测定效率。
具体地,成功信息可采用声和/或光的方式来提示,例如,测序系统300包括扬声器和/或显示屏,在光轴OP和反应装置200的位置满足预设关系时,扬声器可播放成功信息,显示屏可显示成功信息等。当然,测序系统300也可包括震动元件,在光轴OP和反应装置200的位置满足预设关系时,震动元件震动以提示成功信息。
请结合图2和图6,本发明实施方式提供一种测序系统300,测序系统300包括定位装置302、成像组件110和移动平台102,成像组件110包括光轴OP,移动平台102承载有反应装置200,成像组件110位于反应装置200的上方,利用限位开关控制移动平台102在第一方向上的行程,行程包括第一限位,定位装置302用于实现以下步骤:
(a)以第一步距往靠近第一限位的方向移动移动平台102,直至反应装置200的当前位置与反应装置200的上一个位置之间的距离小于第一步距;
(b)往远离第一限位的方向移动移动平台102;
(c)往靠近第一限位的方向移动移动平台102,直至移动平台102到达第一限位;
(d)往远离第一限位的方向移动移动平台102预设距离,以使光轴OP和反应装置200的位置满足预设关系。
上述测序系统300,通过包含的定位装置302使移动平台102在第一方向上来回移动,包括设置移动速度和/或移动步距,能够实现快速精确定位,使得成像组件110的光轴和反应装置200的位置满足预设关系,这样使得后续成像组件110能够连续拍摄获得预定区域中的所有目标视野的信息。
需要说明的是,上述任一实施方式和实施例中的对定位方法的技术特征和有益效果的解释和说明也适用于本实施方式的测序系统100,为避免冗余,在此不再详细展开。
在某些实施方式中,步骤(c)中的移动平台的移动速度不大于第一预设值,第一预设值与定位允许的误差有关。
在某些实施方式中,步骤(c)中的移动平台的移动速度不大于步骤(a)中的移动平台的移动速度。
在某些实施方式中,步骤(b)中的移动平台至少需移动的距离与步骤(a)中的移动平台的移动速度有关。
在某些实施方式中,步骤(d)中移动平台的移动速度不大于第二预设值,第二预设值与定位允许的误差有关。
在某些实施方式中,反应装置设有一个或多个通道,定位允许的误差与通道的宽度有关,定义通道在第一方向上的长度为通道的宽度。
在某些实施方式中,定位装置用于在光轴和反应装置的位置满足预设关系时,提示成功信息。
请参图7,本发明实施方式提供一种定位装置302,用于测序系统300,测序系统300包括成像组件110和移动平台102,成像组件110包括光轴OP,移动平台102承载有反应装置200,成像组件110位于反应装置200的上方,利用限位开关控制移动平台102在第一方向上的行程,行程包括第一限位,定位装置302包括:存储装置304,用于存储数据,数据包括计算机可执行程序;处理器306,用于执行计算机可执行程序,执行计算机可执行程序包括完成上述任一实施方式的定位方法的步骤。
另外,图7所示的测序系统300,包括上述的定位装置302。
本发明实施方式的一种计算机可读存储介质,用于存储供计算机执行的程序,执行程序包括完成上述任一实施方式的方法。计算机可读存储介质可以包括:只读存储器、随机存储器、磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施方式”、“某些实施方式”、“示意性实施方式”、 “示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读存储介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读存储介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。
此外,在本发明各个实施方式中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
尽管上面已经示出和描述了本发明的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (16)

  1. 一种定位方法,用于测序系统,其特征在于,所述测序系统包括成像组件和移动平台,所述成像组件包括光轴,所述移动平台承载有反应装置,所述成像组件位于所述反应装置的上方,利用限位开关控制所述移动平台在第一方向上的行程,所述行程包括第一限位,所述方法包括步骤:
    (a)以第一步距往靠近所述第一限位的方向移动所述移动平台,直至所述反应装置的当前位置与所述反应装置的上一个位置之间的距离小于所述第一步距;
    (b)往(a)的移动方向的反方向移动所述移动平台;
    (c)往(a)的移动方向移动所述移动平台,直至所述移动平台到达所述第一限位;
    (d)往(a)的移动方向的反方向移动所述移动平台预设距离,以使所述光轴和所述反应装置的位置满足预设关系。
  2. 如权利要求1所述的定位方法,其特征在于,步骤(c)中的移动平台的移动速度不大于第一预设值,所述第一预设值与所述定位允许的误差有关。
  3. 如权利要求1或2所述的定位方法,其特征在于,步骤(c)中的移动平台的移动速度不大于步骤(a)中的移动平台的移动速度。
  4. 如权利要求1所述的定位方法,其特征在于,步骤(b)中的移动平台至少需移动的距离与步骤(a)中的移动平台的移动速度有关。
  5. 如权利要求1-4任一项所述的定位方法,其特征在于,步骤(d)中移动平台的移动速度不大于第二预设值,所述第二预设值与所述定位允许的误差有关。
  6. 如权利要求1-5任一项所述的定位方法,其特征在于,所述反应装置设有一个或多个通道,所述定位为使所述成像组件采集的视野来自所述通道,所述定位允许的误差与所述通道的宽度有关,定义所述通道在所述第一方向上的长度为所述通道的宽度。
  7. 如权利要求1-6任一项所述的定位方法,其特征在于,所述定位方法包括:在所述光轴和所述反应装置的位置满足预设关系时,提示成功信息。
  8. 一种测序系统,其特征在于,所述测序系统包括定位装置、成像组件和移动平台,所述成像组件包括光轴,所述移动平台承载有反应装置,所述成像组件位于所述反应装置的上方,利用限位开关控制所述移动平台在第一方向上的行程,所述行程包括第一限位,所述定位装置用于实现以下步骤:
    (a)以第一步距往靠近所述第一限位的方向移动所述移动平台,直至所述反应装置的当前位置与所述反应装置的上一个位置之间的距离小于所述第一步距;
    (b)往远离所述第一限位的方向移动所述移动平台;
    (c)往靠近所述第一限位的方向移动所述移动平台,直至所述移动平台到达所述第一限位;
    (d)往远离所述第一限位的方向移动所述移动平台预设距离,以使所述光轴和所述反应装置的位置满足预设关系。
  9. 如权利要求8所述的测序系统,其特征在于,步骤(c)中的移动平台的移动速度不大于第一预设值,所述第一预设值与所述定位允许的误差有关。
  10. 如权利要求8或9所述的测序系统,其特征在于,步骤(c)中的移动平台的移动速度不大于步骤(a)中的移动平台的移动速度。
  11. 如权利要求8所述的测序系统,其特征在于,步骤(b)中的移动平台至少需移动的距离与步骤(a)中的移动平台的移动速度有关。
  12. 如权利要求8-11任一项所述的测序系统,其特征在于,步骤(d)中移动平台的移动速度不大于第二预设值,所述第二预设值与所述定位允许的误差有关。
  13. 如权利要求12所述的测序系统,其特征在于,所述反应装置设有一个或多个通道,所述定位允许的误差与所述通道的宽度有关,定义所述通道在所述第一方向上的长度为所述通道的宽度。
  14. 如权利要求13所述的测序系统,其特征在于,所述定位装置用于在所述光轴和所述反应装置的位置满足预设关系时,提示成功信息。
  15. 一种定位装置,用于测序系统,其特征在于,所述测序系统包括成像组件和移动平台,所述成像组件包括光轴,所述移动平台承载有反应装置,所述成像组件位于所述反应装置的上方,利用限位开关控制所述移动平台在第一方向上的行程,所述行程包括第一限位,所述定位装置包括:
    存储装置,用于存储数据,所述数据包括计算机可执行程序;
    处理器,用于执行所述计算机可执行程序,执行所述计算机可执行程序包括完成权利要求1-7任一项所述的定位方法的步骤。
  16. 一种测序系统,其特征在于,包括权利要求15所述的定位装置。
PCT/CN2019/109046 2018-12-26 2019-09-29 定位方法、定位装置和测序系统 WO2020134289A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/417,035 US11421272B2 (en) 2018-12-26 2019-09-29 Positioning method, positioning apparatus and sequencing system
EP19905202.8A EP3904496A4 (en) 2018-12-26 2019-09-29 POSITIONING METHOD, POSITIONING DEVICE AND SEQUENCING SYSTEM

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811600287.6 2018-12-26
CN201811600287 2018-12-26
CN201811634436.0 2018-12-29
CN201811634436.0A CN111363673B (zh) 2018-12-26 2018-12-29 定位方法、定位装置和测序系统

Publications (1)

Publication Number Publication Date
WO2020134289A1 true WO2020134289A1 (zh) 2020-07-02

Family

ID=71126160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109046 WO2020134289A1 (zh) 2018-12-26 2019-09-29 定位方法、定位装置和测序系统

Country Status (3)

Country Link
US (1) US11421272B2 (zh)
EP (1) EP3904496A4 (zh)
WO (1) WO2020134289A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080241951A1 (en) * 2006-07-20 2008-10-02 Visigen Biotechnologies, Inc. Method and apparatus for moving stage detection of single molecular events
CN101369523A (zh) * 2008-10-17 2009-02-18 格兰达技术(深圳)有限公司 一种ic料条激光打标机及其工作方式
CN102692347A (zh) * 2012-05-08 2012-09-26 浙江工业大学 疲劳裂纹扩展试验摄像头自动调整图像采集装置及方法
CN104364697A (zh) * 2012-06-07 2015-02-18 考利达基因组股份有限公司 具有可移动扫描镜的成像系统
CN104900558A (zh) * 2015-05-21 2015-09-09 佛山市蓝箭电子股份有限公司 一种芯片图像识别装置和方法
CN204999894U (zh) * 2015-09-08 2016-01-27 深圳市华晨阳科技有限公司 全自动基因检测仪
CN105474236A (zh) * 2013-03-15 2016-04-06 智能生物系统有限公司 流动池的对准方法和系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09250912A (ja) * 1996-03-14 1997-09-22 Nikon Corp パターン測定装置
JP2004101871A (ja) * 2002-09-10 2004-04-02 Olympus Corp 顕微鏡画像撮影装置
JP6562625B2 (ja) * 2014-12-10 2019-08-21 キヤノン株式会社 スライドおよび当該スライドを用いる顕微鏡システム
JP2017022942A (ja) * 2015-07-14 2017-01-26 キヤノン株式会社 振動型アクチュエータの制御装置とその制御方法、駆動装置、撮像装置、及び自動ステージ
CN106681376B (zh) * 2016-12-02 2020-03-20 中国科学院光电技术研究所 一种数字同轴全息显微三维工件台控制系统
CA3055249A1 (en) * 2017-03-03 2018-09-07 Apton Biosystems, Inc. High speed scanning system with acceleration tracking
CN207215686U (zh) * 2017-09-20 2018-04-10 深圳市瀚海基因生物科技有限公司 光学检测系统及序列测定系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080241951A1 (en) * 2006-07-20 2008-10-02 Visigen Biotechnologies, Inc. Method and apparatus for moving stage detection of single molecular events
CN101369523A (zh) * 2008-10-17 2009-02-18 格兰达技术(深圳)有限公司 一种ic料条激光打标机及其工作方式
CN102692347A (zh) * 2012-05-08 2012-09-26 浙江工业大学 疲劳裂纹扩展试验摄像头自动调整图像采集装置及方法
CN104364697A (zh) * 2012-06-07 2015-02-18 考利达基因组股份有限公司 具有可移动扫描镜的成像系统
CN105474236A (zh) * 2013-03-15 2016-04-06 智能生物系统有限公司 流动池的对准方法和系统
CN104900558A (zh) * 2015-05-21 2015-09-09 佛山市蓝箭电子股份有限公司 一种芯片图像识别装置和方法
CN204999894U (zh) * 2015-09-08 2016-01-27 深圳市华晨阳科技有限公司 全自动基因检测仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3904496A4 *

Also Published As

Publication number Publication date
EP3904496A4 (en) 2022-03-30
US11421272B2 (en) 2022-08-23
US20220090190A1 (en) 2022-03-24
EP3904496A1 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
TWI668993B (zh) 控制方法、控制裝置及電子裝置
CN101472071B (zh) 摄影装置
US20210203835A1 (en) Device for testing autofocus function and method for using device
US10732168B2 (en) Cell imaging device, cell imaging method, and sample cell
TWI811758B (zh) 用於自動對焦顯微鏡系統之深度學習模組、自動對焦一顯微鏡系統之方法及非暫時性電腦可讀媒體
CN103217854A (zh) 相机系统以及自动对焦方法
US11079221B2 (en) Method and apparatus of optical module assembly
CN105635571A (zh) 拍照控制方法、拍照控制装置及拍照系统
JP2009025349A (ja) 顕微鏡装置、顕微鏡制御方法、および、プログラム
WO2020134289A1 (zh) 定位方法、定位装置和测序系统
WO2017157154A1 (zh) 自动聚焦方法及装置
CN105681668B (zh) 控制方法、控制装置及电子装置
CN112322713B (zh) 成像方法、装置及系统及存储介质
CN111363673B (zh) 定位方法、定位装置和测序系统
US9591199B2 (en) Image pickup system
JP2009223164A (ja) 顕微鏡画像撮影装置
CN108693624A (zh) 成像方法、装置及系统
US20220279130A1 (en) Imaging method, device and system
CN111277744B (zh) 对焦方法及系统、基因测序仪、计算机可读存储介质
CN111647506B (zh) 定位方法、定位装置和测序系统
CN115479939A (zh) 阅片机、阅片方法及阅片机的载物台的控制方法
JP2007329233A (ja) ウェハ処理装置
CN117584446A (zh) 光固化3d打印装置的打印方法、装置及存储介质
CN206610073U (zh) 一种投影仪自动对焦装置
JP2005010665A (ja) 顕微鏡用オートフォーカス装置及び顕微鏡用オートフォーカス方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019905202

Country of ref document: EP

Effective date: 20210726