WO2020134150A1 - 超声波指纹识别模组及显示面板 - Google Patents

超声波指纹识别模组及显示面板 Download PDF

Info

Publication number
WO2020134150A1
WO2020134150A1 PCT/CN2019/103477 CN2019103477W WO2020134150A1 WO 2020134150 A1 WO2020134150 A1 WO 2020134150A1 CN 2019103477 W CN2019103477 W CN 2019103477W WO 2020134150 A1 WO2020134150 A1 WO 2020134150A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
display panel
electrode
ultrasonic fingerprint
Prior art date
Application number
PCT/CN2019/103477
Other languages
English (en)
French (fr)
Inventor
周永祥
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US16/612,287 priority Critical patent/US11247234B2/en
Publication of WO2020134150A1 publication Critical patent/WO2020134150A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0688Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction with foil-type piezoelectric elements, e.g. PVDF
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/043Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
    • G06F3/0433Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves in which the acoustic waves are either generated by a movable member and propagated within a surface layer or propagated within a surface layer and captured by a movable member

Definitions

  • the present application relates to the field of ultrasonic fingerprint identification, in particular to an ultrasonic fingerprint identification module and a display panel.
  • the ultrasonic fingerprint recognition technology is not interfered by water and oil pollution, has a stronger environmental adaptability, and can be used in a more complex environment.
  • ultrasonic fingerprint recognition has gradually received extensive attention, and is increasingly used in various fields, such as improving the security of electronic products such as mobile phones, computers, tablets and access control systems.
  • the ultrasonic signal transmitting unit applies a voltage to the piezoelectric material, and the piezoelectric material converts the electrical signal into an ultrasonic signal.
  • the cover plate of the ultrasonic fingerprint identification module When a finger presses the cover plate of the ultrasonic fingerprint identification module, the ridge of the fingerprint and the cover plate Direct contact, and there is air with large acoustic resistance between the valley of the fingerprint and the cover plate, so when the ultrasonic signal is reflected by the surface of the finger, the ultrasonic intensity reflected back by the position of the valley and the ridge is different, and these ultrasonic waves act on the piezoelectric On the material, the piezoelectric materials at different positions generate different voltage signals. These voltage signals are output to the external circuit through the ultrasonic signal receiving unit and are detected, so that the fingerprint image can be recognized.
  • the disadvantage of the existing ultrasonic fingerprint recognition technology is that the ultrasonic piezoelectric material emits many cycles of ultrasonic waves generated by high-frequency vibration, and different ultrasonic waves may be superimposed together, so that the number of reflected ultrasonic waves increases and the signal is difficult to recognize.
  • the interval between different ultrasonic waves is small, it will increase the difficulty of distinguishing different longitudinal pulse waves of ultrasonic waves, that is, the superposition between different signals makes the final signal identification more difficult.
  • the longitudinal resolution of the ultrasonic fingerprint sensor is not enough, it is difficult to distinguish between ultrasonic echoes, which causes great difficulties in fingerprint analysis and identification in the later stage.
  • the technical problem to be solved by the present application is to provide an ultrasonic fingerprint recognition module and a display panel, which can greatly improve the longitudinal resolution of ultrasonic fingerprint recognition and the overall recognition effect and accuracy.
  • the present application provides an ultrasonic fingerprint identification module, which includes a substrate, and a piezoelectric stack is provided on the substrate in a direction perpendicular to the ultrasonic fingerprint identification module.
  • the piezoelectric stack includes a vibration absorbing layer provided on the substrate, a first electrode provided on the vibration absorbing layer, a piezoelectric thin film layer provided on the first electrode, and a A second electrode on the piezoelectric film layer, the vibration absorbing layer is an insulating layer, the vibration absorbing layer has an opening, and at the opening, the substrate, the vibration absorbing layer and all
  • the first electrode surrounds a resonance cavity, a circuit is provided in the substrate, the first electrode and the second electrode are connected to the circuit, and the material of the vibration absorption layer is selected from butyl rubber , Acrylate rubber, nitrile rubber and silicone rubber, polyurethane, polyvinyl chloride and epoxy resin at least one.
  • an insulating layer is provided between the piezoelectric stack and the substrate, and the vibration absorbing layer is provided on the insulating layer.
  • the present application also provides an ultrasonic fingerprint identification module, which includes a substrate, and a piezoelectric stack is provided on the substrate in a direction perpendicular to the ultrasonic fingerprint identification module.
  • the piezoelectric stack includes a vibration absorbing layer provided on the substrate, a first electrode provided on the vibration absorbing layer, a piezoelectric thin film layer provided on the first electrode, and a A second electrode on the piezoelectric film layer.
  • the vibration absorption layer has an opening, and at the opening, the substrate, the vibration absorption layer, and the first electrode enclose a resonance cavity.
  • a circuit is provided in the substrate, and the first electrode and the second electrode are connected to the circuit.
  • the material of the vibration absorbing layer is at least one selected from butyl rubber, acrylate rubber, nitrile rubber and silicone rubber, polyurethane, polyvinyl chloride and epoxy resin.
  • the vibration absorbing layer is an insulating layer.
  • an insulating layer is provided between the piezoelectric stack and the substrate, and the vibration absorbing layer is provided on the insulating layer.
  • the present application also provides a display panel including an array substrate, and the above-mentioned ultrasonic fingerprint identification module is provided on the surface of the array substrate facing the light exit side of the display panel.
  • the array substrate is the substrate of the ultrasonic fingerprint identification module.
  • the display panel includes a color film substrate disposed opposite to the array substrate, and a liquid crystal layer is disposed between the array substrate and the color film substrate.
  • the display panel further includes a lower polarizer, and the lower polarizer is disposed between the array substrate and the liquid crystal layer.
  • the display panel further includes an upper polarizer disposed on a side of the color filter substrate facing away from the liquid crystal layer, and a cover plate disposed on the upper polarizer.
  • the display panel further includes a touch layer disposed between the upper polarizer and the color filter substrate.
  • the display panel further includes a touch layer disposed on a surface of the color filter substrate facing the liquid crystal layer.
  • the advantage of the present application is that the vibration absorption layer can absorb the mechanical energy of the piezoelectric thin film layer, so that the subsequent ultrasonic cycle times are significantly reduced, thereby greatly improving the longitudinal resolution of ultrasonic fingerprint recognition and the overall recognition effect and accuracy.
  • FIG. 1 is a schematic cross-sectional structure diagram of a first embodiment of an ultrasonic fingerprint identification module of the present application
  • FIG. 2 is a schematic cross-sectional structure diagram of a second embodiment of the ultrasonic fingerprint identification module of the present application
  • FIG. 3 is a schematic cross-sectional structure diagram of a first embodiment of a display panel of the present application.
  • FIG. 4 is a schematic diagram of a cross-sectional structure of a second embodiment of a display panel of the present application.
  • FIG. 1 is a schematic side view of the first embodiment of the ultrasonic fingerprint identification module of the present application.
  • the ultrasonic fingerprint identification module 1 of the present application includes a substrate 10. In the direction perpendicular to the ultrasonic fingerprint identification module 1, a piezoelectric stack 11 is provided on the substrate 10. Specifically, in this embodiment, the piezoelectric stack 11 is provided on the substrate 10 in the Y direction shown in FIG. 1.
  • the substrate 10 has a circuit (not shown in the drawings).
  • the substrate 10 includes but is not limited to a TFT circuit substrate, and the TFT circuit substrate includes a TFT switch for Controlling the opening and closing of the piezoelectric stack 11, which electrically connects the ultrasonic fingerprint identification module with external circuits.
  • the piezoelectric stack 11 includes a vibration absorbing layer 110 provided on the substrate 10, a first electrode 111 provided on the vibration absorbing layer 110, and a first electrode 111 provided on the first electrode 111
  • the vibration absorbing layer 110 is used to absorb part of the mechanical energy generated by the vibration of the piezoelectric thin film layer 112.
  • the vibration absorbing layer 110 is an insulating layer, and the material of the vibration absorbing layer 110 is selected from butyl rubber, acrylate rubber, nitrile rubber and silicone rubber, polyurethane, polyvinyl chloride and ring One or more of oxygen resin.
  • FIG. 2 is a schematic diagram of a cross-sectional structure of the second embodiment of the ultrasonic fingerprint identification module of the present application, between the piezoelectric stack 11 and the substrate 10 An insulating layer 12 is provided, and the vibration absorbing layer 110 is provided on the insulating layer 12.
  • the advantage of this embodiment compared to the second embodiment is that the vibration absorbing layer 110 is used as both a vibration absorbing layer and an insulating layer, the structure is simple, the thickness of the ultrasonic fingerprint recognition module will not increase, and the process is simple and reduced Cost.
  • the material of the vibration absorbing layer 110 has good damping effect and insulation, and the use temperature range is wide, which can meet the use requirements in the range of -50 to 200 °C, and the price is cheap, and the molding process is simple. The manufacturing cost is low.
  • the vibration absorbing layer 110 has an opening 110A, and the opening 110A penetrates the vibration absorbing layer 110.
  • the substrate 10, the vibration absorbing layer 11 and the first electrode 111 enclose a closed resonance cavity, which can increase the amplitude of ultrasonic waves.
  • the material of the first electrode 111 can be selected from one metal or several alloys of Ag, Al, Mo, Au, Cr, Ni, Cu, Pt; the material of the second electrode 113 can be selected from One or more alloys of Ag, Al, Mo, Au, Cr, Ni, Cu, Pt.
  • the piezoelectric thin film layer 112 may be selected from aluminum nitride (AlN), lead zirconate titanate (PZT), polyvinylidene fluoride (PVDF) or polyvinylidene fluoride-trifluoroethylene copolymer (P (VDF-TrFE) ).
  • the ultrasonic fingerprint recognition module of the present application When the ultrasonic fingerprint recognition module of the present application is working and an external circuit applies a voltage to the first electrode 111 and the second electrode 113, there is a voltage difference between the first electrode 111 and the second electrode 113, This voltage signal acts on the corresponding piezoelectric thin film layer 112, causing the piezoelectric thin film layer 112 to vibrate at high frequency, and then emits ultrasonic waves upward, and these ultrasonic signals propagate to the finger of the sensing surface (not shown in the drawings) When reflection occurs, the piezoelectric thin film layer 112 receives the reflected ultrasonic signal, and converts the received ultrasonic signal into an electrical signal. The electrical signal is converted into a fingerprint recognition image. According to the electrical signal, a finger’s Fingerprint recognition image.
  • the fingerprint of a finger includes a fingerprint ridge and a fingerprint valley. Since the fingerprint ridge directly contacts the sensing surface, and the fingerprint valley and the sensing surface are filled with air, the fingerprint ridge and the fingerprint valley correspond to the sound at the sensing surface The impedance value is different, when the transmitted signal is transmitted to the sensing surface and reaches the fingerprint ridge and fingerprint valley of the finger, at the fingerprint ridge, the transmitted signal is partially absorbed by the fingerprint ridge, and part of the reflected signal is reflected to In the piezoelectric thin film layer 112, at the fingerprint valley, almost all of the transmitted signals form reflected signals reflected to the piezoelectric thin film layer 112, and there is an energy difference between the two reflected signals, which can form a fingerprint identification image.
  • the vibration absorbing layer 110 can absorb the mechanical energy, thereby significantly reducing the number of subsequent ultrasonic cycles, thereby greatly improving the longitudinal resolution of the ultrasonic fingerprint recognition and the overall recognition effect and accuracy Sex. Meanwhile, since the vibration absorbing layer 110 does not directly contact the piezoelectric thin film layer 112, the vibration absorbing layer 110 does not significantly absorb vibration energy.
  • the thickness of the vibration absorbing layer 110 can be designed and adjusted as needed, and the effect of the vibration absorbing layer 110 and the sound pressure of the ultrasonic wave can be precisely adjusted to obtain the desired output ultrasonic sound pressure and reduce the number of cycles of the ultrasonic wave.
  • the vibration absorption layer 110 absorbs its mechanical energy when the piezoelectric thin film layer 112 starts to vibrate, but as the vibration process progresses, the energy absorption effect becomes more and more obvious, so the vibration absorption layer 110 is
  • the first pulse wave generated by the piezoelectric film layer 112 has little effect and will not have a significant impact on the signal-to-noise ratio, but the vibration absorption layer 110 can obviously absorb the energy of the later ultrasonic waves, thereby improving the longitudinal resolution of ultrasonic fingerprint recognition . Therefore, in the subsequent analysis and recognition of ultrasonic fingerprint valleys and fingerprint ridges, the difficulty is significantly reduced, and the corresponding algorithm can be simplified, so that the recognition speed is also improved.
  • FIG. 3 is a schematic diagram of a cross-sectional structure of the first embodiment of the display panel.
  • the display panel includes an array substrate 2.
  • An ultrasonic fingerprint identification module as described above is provided on the surface of the array substrate 2 facing the light exit side of the display panel.
  • the display panel 2 further includes a color filter substrate 7 disposed opposite to the array substrate 2, and a liquid crystal is provided between the array substrate 2 and the color filter substrate 7 Layer 8, the ultrasonic fingerprint identification module 1 is disposed on the side of the array substrate 2 facing the liquid crystal layer 8.
  • the ultrasonic fingerprint identification module 1 may be provided in the display area of the display panel, or may be provided in the non-display area of the display panel.
  • the array substrate 2 can be used as a substrate of the ultrasonic fingerprint identification module 1.
  • the display panel further includes a lower polarizer 3, an upper polarizer 4, a cover 5 and a touch layer 6.
  • the lower polarizer 3 is disposed between the array substrate 2 and the liquid crystal layer 8, that is, the lower polarizer 3 is disposed on the upper surface of the array substrate.
  • the upper polarizer 4 is disposed on the side of the color filter substrate 7 facing away from the liquid crystal layer 8.
  • the cover plate 5 is provided on the upper polarizer 4, that is, the cover plate 5 is provided on the surface of the upper polarizer 4 facing away from the color filter substrate 7.
  • the touch layer 6 is disposed between the upper polarizer 4 and the color filter substrate 7, that is, the display panel of this embodiment is the on-sell structure described in the prior art.
  • the upper surface of the cover plate 5 can be used as the sensing surface of the ultrasonic fingerprint identification module 1.
  • the cover plate 5 is a light-transmitting material, which plays a protective role. It can be glass, sapphire or transparent high Molecular materials, etc.
  • the touch layer 6 is an external touch layer, and the dielectric material used is consistent with the refractive index of the cover 5.
  • the array substrate 2, the color filter substrate 7, the liquid crystal layer 8, the lower polarizer 3, the upper polarizer 4, the cover 5 and the touch layer 6 are all conventional structures in the art, and will not be described in detail.
  • FIG. 4 is a schematic diagram of a cross-sectional structure of a second embodiment of a display panel of the present application.
  • the difference between the second embodiment and the first embodiment is that the touch layer 6 is disposed on a surface of the color filter substrate 7 facing the liquid crystal layer 8, that is, the display panel of this embodiment is It is the in-sell structure described in the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Manufacturing & Machinery (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种超声波指纹识别模组及显示面板,优点在于:振动吸收层(110)能够吸收压电薄膜层(112)的机械能,从而使得后续超声波循环次数明显减少,从而极大地提高超声波指纹识别的纵向分辨率以及整体的识别效果和准确性。

Description

超声波指纹识别模组及显示面板 技术领域
本申请涉及超声波指纹识别领域,尤其涉及一种超声波指纹识别模组及显示面板。
背景技术
目前,超声波指纹识别技术由于不受水和油污干扰,具有更强的环境适应能力,可以用于更加复杂的环境。从而超声波指纹识别逐渐得到广泛的重视,越来越多地被用于各个领域,如提升手机、电脑、平板和门禁系统等电子产品的安全性。相比于传统的数字密码,由于指纹解锁的快速性,给人们的生活带来很多的便利,但是当前超声波指纹传感器的性能并不尽如人意。
在现有技术中,超声波信号发射单元将电压施加在压电材料上,压电材料将电信号转化为超声波信号,当手指按压超声波指纹识别模组的盖板上时,指纹的脊与盖板直接接触,而指纹的谷与盖板之间存在声阻较大的空气,因此当超声波信号经过手指表面发生反射时,谷和脊的位置反射回的超声波强度不同,这些超声波又作用在压电材料上,使得不同位置的压电材料产生了不同的电压信号,这些电压信号经过超声波信号接收单元输出至外部电路并被检测,从而可以识别指纹图像。
技术问题
现有的超声波指纹识别技术的缺点在于,超声波压电材料发射高频振动产生的超声波的循环次数很多,不同超声波可能叠加在一起,使得反射的超声波数量增加,信号难以辨认。当不同超声波之间的间隔较小时,会增加分辨超声波纵向不同脉冲波的难度,也就是不同信号之间的叠加使得最终的信号识别难度加大。若超声波指纹传感器的纵向分辨率不够,则超声波回声之间难以区分,给后期的指纹分析和识别造成了巨大的困难。
因此,提高超声波指纹传感器的纵向分辨率成为设计高性能超声波指纹传感器的一个重要方向。
技术解决方案
本申请所要解决的技术问题是,提供一种超声波指纹识别模组及显示面板,其能够极大地提高超声波指纹识别的纵向分辨率以及整体的识别效果和准确性。
为了解决上述问题,本申请提供了一种超声波指纹识别模组,其包括一衬底,在垂直所述超声波指纹识别模组的方向上,在所述衬底上设置有一压电叠层,所述压电叠层包括设置在所述衬底上的一振动吸收层、设置在所述振动吸收层上的一第一电极、设置在所述第一电极上的一压电薄膜层及设置在所述压电薄膜层上的一第二电极,所述振动吸收层为一绝缘层,所述振动吸收层具有一开口,在所述开口处,所述衬底、所述振动吸收层及所述第一电极围成一谐振空腔,所述衬底中设置有一电路,所述第一电极及所述第二电极与所述电路连接,所述振动吸收层的材料选自于丁基橡胶、丙烯酸酯橡胶、丁腈橡胶和硅橡胶、聚氨酯、聚氯乙烯和环氧树脂中的至少一种。
在一实施例中,在所述压电叠层与所述衬底之间设置有一绝缘层,所述振动吸收层设置在所述绝缘层上。
为了解决上述问题,本申请还提供了一种超声波指纹识别模组,包括一衬底,在垂直所述超声波指纹识别模组的方向上,在所述衬底上设置有一压电叠层,所述压电叠层包括设置在所述衬底上的一振动吸收层、设置在所述振动吸收层上的一第一电极、设置在所述第一电极上的一压电薄膜层及设置在所述压电薄膜层上的一第二电极。
在一实施例中,所述振动吸收层具有一开口,在所述开口处,所述衬底、所述振动吸收层及所述第一电极围成一谐振空腔。
在一实施例中,所述衬底中设置有一电路,所述第一电极及所述第二电极与所述电路连接。
在一实施例中,所述振动吸收层的材料选自于丁基橡胶、丙烯酸酯橡胶、丁腈橡胶和硅橡胶、聚氨酯、聚氯乙烯和环氧树脂中的至少一种。
在一实施例中,所述振动吸收层为一绝缘层。
在一实施例中,在所述压电叠层与所述衬底之间设置有一绝缘层,所述振动吸收层设置在所述绝缘层上。
为了解决上述问题,本申请还提供了一种显示面板,包括一阵列基板,在所述阵列基板朝向所述显示面板的出光侧的表面设置有一上述的超声波指纹识别模组。
在一实施例中,所述阵列基板为所述超声波指纹识别模组的所述衬底。
在一实施例中,所述显示面板包括与所述阵列基板相对设置的一彩膜基板,在所述阵列基板与所述彩膜基板之间设置有一液晶层。
在一实施例中,所述显示面板还包括一下偏光片,所述下偏光片设置在所述阵列基板与所述液晶层之间。
在一实施例中,所述显示面板还包括设置在所述彩膜基板背离所述液晶层的一侧的一上偏光片及设置在所述上偏光片上的一盖板。
在一实施例中,所述显示面板还包括一触控层,所述触控层设置在所述上偏光片与所述彩膜基板之间。
在一实施例中,所述显示面板还包括一触控层,所述触控层设置在所述彩膜基板朝向所述液晶层的一表面。
有益效果
本申请的优点在于,振动吸收层能够吸收压电薄膜层的机械能,从而使得后续超声波循环次数明显减少,从而极大地提高超声波指纹识别的纵向分辨率以及整体的识别效果和准确性。
附图说明
图1是本申请超声波指纹识别模组的第一实施例的断面结构示意图;
图2是本申请超声波指纹识别模组的第二实施例的断面结构示意图;
图3是本申请显示面板的第一实施例的断面结构示意图;
图4是本申请显示面板的第二实施例的断面结构示意图。
本发明的实施方式
下面结合附图对本申请提供的一种超声波指纹识别模组及显示面板的具体实施方式做详细说明。
本申请超声波指纹识别模组用以获取感测面上手指的指纹识别图像。图1是本申请超声波指纹识别模组的第一实施例的侧面示意图。请参阅图1,本申请超声波指纹识别模组1包括一衬底10。在垂直所述超声波指纹识别模组1的方向上,在所述衬底10上设置有一压电叠层11。具体地说,在本实施例中,在图1中所示的Y方向上,在所述衬底10上设置有所述压电叠层11。
其中,所述衬底10具有一电路(附图中未绘示),在本实施例中,所述衬底10包括但不限于一TFT电路基板,所述TFT电路基板包括TFT开关,用于控制所述压电叠层11的开启及关闭,其将所述超声波指纹识别模组与外界电路电连接。
所述压电叠层11包括设置在所述衬底10上的一振动吸收层110、设置在所述振动吸收层110上的一第一电极111、设置在所述第一电极111上的一压电薄膜层112及设置在所述压电薄膜层112上的一第二电极113。具体地说,在Y方向上,所述振动吸收层110、所述第一电极111、所述压电薄膜层112及所述第二电极113依次设置。
所述振动吸收层110用于吸收所述压电薄膜层112振动而产生的部分机械能。在本实施例中,所述振动吸收层110为一绝缘层,所述振动吸收层110的材料选自于丁基橡胶、丙烯酸酯橡胶、丁腈橡胶和硅橡胶、聚氨酯、聚氯乙烯和环氧树脂中的一种或几种。而在本申请第二实施例中,请参阅图2,其为本申请超声波指纹识别模组的第二实施例的断面结构示意图,在所述压电叠层11与所述衬底10之间设置有一绝缘层12,所述振动吸收层110设置在所述绝缘层12上。本实施例相较于第二实施例的优点在于,所述振动吸收层110既作为振动吸收层也作为绝缘层使用,结构简单,超声波指纹识别模组的厚度不会增加,并且工艺简单,降低了成本。在本实施例中,所述振动吸收层110的材料的阻尼效果好且绝缘,使用的温度范围很宽,可以满足-50~200℃范围内的使用要求,且价格便宜,成型加工工艺简单,使用制造成本低廉。
进一步,在本实施例中,如图1所示,所述振动吸收层110具有一开口110A,所述开口110A贯穿所述振动吸收层110。在所述开口110A处,所述衬底10、所述振动吸收层11及所述第一电极111围成一密闭的谐振空腔,该谐振空腔能够增大超声波的振幅。
其中,所述第一电极111的材料可以选自Ag,Al,Mo,Au,Cr,Ni,Cu,Pt中的一种金属或者几种的合金;所述第二电极113的材料可以选自Ag,Al,Mo,Au,Cr,Ni,Cu,Pt中的一种或几种的合金。所述压电薄膜层112可以选自氮化铝(AlN),锆钛酸铅(PZT),聚偏氟乙烯(PVDF)或者聚偏氟乙烯-三氟乙烯共聚物(P(VDF-TrFE))中的至少一种。
当本申请超声波指纹识别模组工作时,外部电路对所述第一电极111及所述第二电极113施加电压,则所述第一电极111与所述第二电极113之间存在电压差,此电压信号作用在相对应的压电薄膜层112上,使所述压电薄膜层112高频振动,进而向上发射超声波,这些超声波信号传播至感测面(附图中未绘示)的手指时会发生反射,所述压电薄膜层112在接收反射回来的超声波信号,并将接收的超声波信号转化为电信号,所述电信号转化为指纹识别图像,根据所述电信号可形成手指的指纹识别图像。具体地说,手指的指纹包括指纹脊和指纹谷,由于指纹脊直接与感测面接触,而指纹谷与感测面之间填充了空气,因此指纹脊和指纹谷对应感测面处的声阻抗值不同,当所述发射信号分别传送到所述感测面上并到达手指的指纹脊和指纹谷时,在指纹脊处,所述发射信号部分被指纹脊吸收,部分形成反射信号反射至所述压电薄膜层112,在指纹谷处,所述发射信号几乎全部形成反射信号反射至所述压电薄膜层112,两种反射信号之间存在能量差异,进而能够形成指纹识别图像。
在所述压电薄膜层112振动过程中,所述振动吸收层110能够吸收该机械能,从而使得后续超声波循环次数明显减少,从而极大地提高超声波指纹识别的纵向分辨率以及整体的识别效果和准确性。同时,由于所述振动吸收层110不直接与所述压电薄膜层112接触,所以所述振动吸收层110并不会明显吸收振动的能量。
进一步,可根据需要,对振动吸收层110的厚度进行设计和调节,可以精确调节振动吸收层110的效果以及超声波发射的声压,得到想要的输出的超声波声压以及降低超声波的循环次数。其中,振动吸收层110在压电薄膜层112振动开始的时候对其机械能量的吸收并不明显,而是随着振动的过程进行,吸收能量的效果越来越明显,因此振动吸收层110对压电薄膜层112发生第一个脉冲波的影响并不大,不会对信噪比有明显的影响,但是振动吸收层110可以明显吸收后期超声波的能量,从而提高超声波指纹识别的纵向分辨率。因此,在后续对于超声波指纹谷和指纹脊的分析和识别难度明显降低,相应的算法可以简化,从而识别速度也得到了提高。
本申请还提供一种显示面板。图3是所述显示面板的第一实施例的断面结构示意图。请参阅图3,所述显示面板包括一阵列基板2。在所述阵列基板2朝向所述显示面板的出光侧的表面设置有一如上述的超声波指纹识别模组。具体地说,在本实施例中,所述显示面板2还包括与所述阵列基板2相对设置的一彩膜基板7,在所述阵列基板2与所述彩膜基板7之间设置有液晶层8,所述超声波指纹识别模组1设置在所述阵列基板2朝向所述液晶层8的一侧。其中,所述超声波指纹识别模组1可以设置在所述显示面板的显示区,也可以设置在所述显示面板的非显示区。所述阵列基板2可作为所述超声波指纹识别模组1的衬底。
进一步,在本实施例中,所述显示面板还包括一下偏光片3、一上偏光片4、一盖板5及一触控层6。所述下偏光片3设置在所述阵列基板2与所述液晶层8之间,即所述下偏光片3设置在所述阵列基板的上表面。所述上偏光片4设置在所述彩膜基板7背离所述液晶层8的一侧。所述盖板5设置在所述上偏光片4上,即所述盖板5设置在所述上偏光片4背离所述彩膜基板7的表面上。所述触控层6设置在所述上偏光片4与所述彩膜基板7之间,即本实施例的显示面板即为现有技术中所述的on-sell结构。其中,所述盖板5的上表面可作为所述超声波指纹识别模组1的感测面,所述盖板5为透光材料,起到保护的作用,其可以为玻璃、蓝宝石或透明高分子材料等。所述触控层6为外挂式触控层,其所用介质材料与盖板5折射率保持一致。所述阵列基板2、彩膜基板7、液晶层8、下偏光片3、上偏光片4、盖板5及触控层6均为本领域常规结构,不再赘述。
图4是本申请显示面板的第二实施例的断面结构示意图。请参阅图4,第二实施例与第一实施例的区别在于,所述触控层6设置在所述彩膜基板7朝向所述液晶层8的一表面,即本实施例的显示面板即为现有技术中所述的in-sell结构。
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。
工业实用性
本申请的主题可以在工业中制造和使用,具备工业实用性。

Claims (15)

  1. 一种超声波指纹识别模组,其包括一衬底,在垂直所述超声波指纹识别模组的方向上,在所述衬底上设置有一压电叠层,所述压电叠层包括设置在所述衬底上的一振动吸收层、设置在所述振动吸收层上的一第一电极、设置在所述第一电极上的一压电薄膜层及设置在所述压电薄膜层上的一第二电极,所述振动吸收层为一绝缘层,所述振动吸收层具有一开口,在所述开口处,所述衬底、所述振动吸收层及所述第一电极围成一谐振空腔,所述衬底中设置有一电路,所述第一电极及所述第二电极与所述电路连接,所述振动吸收层的材料选自于丁基橡胶、丙烯酸酯橡胶、丁腈橡胶和硅橡胶、聚氨酯、聚氯乙烯和环氧树脂中的至少一种。
  2. 根据权利要求1所述的超声波指纹识别模组,其中在所述压电叠层与所述衬底之间设置有一绝缘层,所述振动吸收层设置在所述绝缘层上。
  3. 一种超声波指纹识别模组,其包括一衬底,在垂直所述超声波指纹识别模组的方向上,在所述衬底上设置有一压电叠层,所述压电叠层包括设置在所述衬底上的一振动吸收层、设置在所述振动吸收层上的一第一电极、设置在所述第一电极上的一压电薄膜层及设置在所述压电薄膜层上的一第二电极。
  4. 根据权利要求3所述的超声波指纹识别模组,其中所述振动吸收层具有一开口,在所述开口处,所述衬底、所述振动吸收层及所述第一电极围成一谐振空腔。
  5. 根据权利要求3所述的超声波指纹识别模组,其中所述衬底中设置有一电路,所述第一电极及所述第二电极与所述电路连接。
  6. 根据权利要求3所述的超声波指纹识别模组,其中所述振动吸收层的材料选自于丁基橡胶、丙烯酸酯橡胶、丁腈橡胶和硅橡胶、聚氨酯、聚氯乙烯和环氧树脂中的至少一种。
  7. 根据权利要求3所述的超声波指纹识别模组,其中所述振动吸收层为一绝缘层。
  8. 根据权利要求3所述的超声波指纹识别模组,其中在所述压电叠层与所述衬底之间设置有一绝缘层,所述振动吸收层设置在所述绝缘层上。
  9. 一种显示面板,其包括一阵列基板,在所述阵列基板朝向所述显示面板出光侧的表面设置有一如权利要求3所述的超声波指纹识别模组。
  10. 根据权利要求9所述的显示面板,其中所述阵列基板为所述超声波指纹识别模组的所述衬底。
  11. 根据权利要求9所述的显示面板,其中所述显示面板包括与所述阵列基板相对设置的一彩膜基板,在所述阵列基板与所述彩膜基板之间设置有一液晶层。
  12. 根据权利要求11所述的显示面板,其中所述显示面板还包括一下偏光片,所述下偏光片设置在所述阵列基板与所述液晶层之间。
  13. 根据权利要求11所述的显示面板,其中所述显示面板还包括设置在所述彩膜基板背离所述液晶层的一侧的一上偏光片及设置在所述上偏光片上的一盖板。
  14. 根据权利要求11所述的显示面板,其中所述显示面板还包括一触控层,所述触控层设置在所述上偏光片与所述彩膜基板之间。
  15. 根据权利要求11所述的显示面板,其中所述显示面板还包括一触控层,所述触控层设置在所述彩膜基板朝向所述液晶层的一表面。
PCT/CN2019/103477 2018-12-28 2019-08-30 超声波指纹识别模组及显示面板 WO2020134150A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/612,287 US11247234B2 (en) 2018-12-28 2019-08-30 Ultrasonic fingerprint recognition module and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811617094.1 2018-12-28
CN201811617094.1A CN109492623B (zh) 2018-12-28 2018-12-28 超声波指纹识别模组及显示面板

Publications (1)

Publication Number Publication Date
WO2020134150A1 true WO2020134150A1 (zh) 2020-07-02

Family

ID=65712750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103477 WO2020134150A1 (zh) 2018-12-28 2019-08-30 超声波指纹识别模组及显示面板

Country Status (3)

Country Link
US (1) US11247234B2 (zh)
CN (1) CN109492623B (zh)
WO (1) WO2020134150A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109492623B (zh) * 2018-12-28 2021-03-16 武汉华星光电技术有限公司 超声波指纹识别模组及显示面板
CN110046556B (zh) * 2019-03-27 2021-06-01 武汉华星光电技术有限公司 一种显示面板及其终端器件
CN110133664A (zh) * 2019-04-28 2019-08-16 武汉华星光电技术有限公司 测距模组及显示面板
CN110188672B (zh) * 2019-05-29 2022-02-01 京东方科技集团股份有限公司 一种触控显示模组、电子设备
CN110212002B (zh) * 2019-06-13 2022-05-13 京东方科技集团股份有限公司 显示背板、显示面板和显示装置
CN110232363B (zh) * 2019-06-18 2021-12-07 京东方科技集团股份有限公司 超声波指纹识别传感器及其制备方法、显示装置
CN110348334A (zh) * 2019-06-25 2019-10-18 武汉华星光电技术有限公司 指纹识别模组及显示装置
CN110865490A (zh) * 2019-11-29 2020-03-06 上海天马微电子有限公司 一种阵列基板、显示面板及显示装置
WO2022021375A1 (zh) * 2020-07-31 2022-02-03 深圳市汇顶科技股份有限公司 超声波指纹识别装置和电子设备
CN114758367A (zh) * 2022-04-29 2022-07-15 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN114185455B (zh) * 2021-12-07 2023-11-07 武汉华星光电半导体显示技术有限公司 显示装置
CN115971021A (zh) * 2022-12-19 2023-04-18 京东方科技集团股份有限公司 超声换能基板、换能基板的制作方法以及检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205691915U (zh) * 2016-06-08 2016-11-16 京东方科技集团股份有限公司 一种显示面板及显示装置
CN106660074A (zh) * 2014-07-08 2017-05-10 高通股份有限公司 压电超声换能器及工艺
CN107229909A (zh) * 2017-05-18 2017-10-03 上海思立微电子科技有限公司 电子设备、超声波指纹识别装置及其制造方法
WO2018049909A1 (zh) * 2016-09-18 2018-03-22 京东方科技集团股份有限公司 指纹识别器件、触摸显示面板和指纹识别器件驱动方法
CN108734051A (zh) * 2017-04-13 2018-11-02 南昌欧菲生物识别技术有限公司 超声波传感器及电子装置
CN109492623A (zh) * 2018-12-28 2019-03-19 武汉华星光电技术有限公司 超声波指纹识别模组及显示面板

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202443214U (zh) 2012-02-29 2012-09-19 京东方科技集团股份有限公司 一种触控显示装置
JP6316433B2 (ja) 2013-12-12 2018-04-25 クアルコム,インコーポレイテッド マイクロメカニカル超音波トランスデューサおよびディスプレイ
CN106711320A (zh) 2017-01-09 2017-05-24 清华大学 一种超声波指纹采集器件及其制备方法
US10846501B2 (en) * 2017-04-28 2020-11-24 The Board Of Trustees Of The Leland Stanford Junior University Acoustic biometric touch scanner
CN107145858B (zh) 2017-05-02 2019-08-30 上海思立微电子科技有限公司 电子设备、超声波指纹识别装置及其制造方法
CN207690100U (zh) 2017-09-12 2018-08-03 南昌欧菲生物识别技术有限公司 超声波指纹识别模组及电子设备
CN207182328U (zh) * 2017-09-12 2018-04-03 南昌欧菲生物识别技术有限公司 超声波指纹识别模组及电子设备
CN207182330U (zh) * 2017-09-12 2018-04-03 南昌欧菲生物识别技术有限公司 电子设备
CN207182331U (zh) * 2017-09-12 2018-04-03 南昌欧菲生物识别技术有限公司 超声波指纹识别模组及电子设备
CN108446685A (zh) 2018-05-24 2018-08-24 京东方科技集团股份有限公司 超声波指纹识别模组及其制备方法和显示装置
US10929636B2 (en) * 2019-01-18 2021-02-23 Qualcomm Incorporated Ultrasonic fingerprint sensor with electrically nonconductive acoustic layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106660074A (zh) * 2014-07-08 2017-05-10 高通股份有限公司 压电超声换能器及工艺
CN205691915U (zh) * 2016-06-08 2016-11-16 京东方科技集团股份有限公司 一种显示面板及显示装置
WO2018049909A1 (zh) * 2016-09-18 2018-03-22 京东方科技集团股份有限公司 指纹识别器件、触摸显示面板和指纹识别器件驱动方法
CN108734051A (zh) * 2017-04-13 2018-11-02 南昌欧菲生物识别技术有限公司 超声波传感器及电子装置
CN107229909A (zh) * 2017-05-18 2017-10-03 上海思立微电子科技有限公司 电子设备、超声波指纹识别装置及其制造方法
CN109492623A (zh) * 2018-12-28 2019-03-19 武汉华星光电技术有限公司 超声波指纹识别模组及显示面板

Also Published As

Publication number Publication date
CN109492623A (zh) 2019-03-19
CN109492623B (zh) 2021-03-16
US20210354170A1 (en) 2021-11-18
US11247234B2 (en) 2022-02-15

Similar Documents

Publication Publication Date Title
WO2020134150A1 (zh) 超声波指纹识别模组及显示面板
WO2020156249A1 (zh) 指纹识别模组及其驱动方法和电子装置
CN205281517U (zh) 指纹传感器
EP3432124A1 (en) Detection assembly, touch-control display device, touch positioning method and pressure detection method
CN109815918A (zh) 指纹识别模组及其制作方法和驱动方法、显示装置
WO2020248677A1 (zh) 一种显示面板、其控制方法及显示装置
TW201636897A (zh) 電子裝置
TWI684917B (zh) 面板結構
TWI639939B (zh) 音波式觸控裝置及應用該音波式觸控裝置之電子裝置
TWI621982B (zh) 指紋識別裝置、其製造方法、顯示裝置
TWI675333B (zh) 指紋識別裝置及電子裝置
CN107403129A (zh) 超声波指纹识别模组、超声波指纹识别器件及电子设备
WO2020211279A1 (zh) 超声波指纹识别模组及包括其的显示面板
WO2021056713A1 (zh) 显示面板及显示装置
US11281879B2 (en) Fingerprint identification sensing module and display panel using the same
WO2021093384A1 (zh) 指纹识别装置及其指纹识别方法
US11430249B2 (en) Passive acoustic fingerprint sensor
TW202131157A (zh) 超聲波感測裝置
TWI764361B (zh) 觸控辨識裝置、顯示裝置及其製造方法
TWI637596B (zh) 觸摸感應開關及電子裝置
US11417139B2 (en) Display device
WO2020232934A1 (zh) 显示面板构造及电子装置
CN218525127U (zh) 一种超声波指纹识别模组和装置
WO2021159392A1 (zh) 指纹识别模组及其驱动方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902639

Country of ref document: EP

Kind code of ref document: A1