WO2020134117A1 - 室内分布系统 - Google Patents

室内分布系统 Download PDF

Info

Publication number
WO2020134117A1
WO2020134117A1 PCT/CN2019/101008 CN2019101008W WO2020134117A1 WO 2020134117 A1 WO2020134117 A1 WO 2020134117A1 CN 2019101008 W CN2019101008 W CN 2019101008W WO 2020134117 A1 WO2020134117 A1 WO 2020134117A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor
leaky
output
leakage
same
Prior art date
Application number
PCT/CN2019/101008
Other languages
English (en)
French (fr)
Inventor
林垄龙
王斌
赵瑞静
蓝燕锐
黄德兵
沙敏
许波华
Original Assignee
中天射频电缆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中天射频电缆有限公司 filed Critical 中天射频电缆有限公司
Publication of WO2020134117A1 publication Critical patent/WO2020134117A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • H04W16/20Network planning tools for indoor coverage or short range network deployment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/28Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium using the near field of leaky cables, e.g. of leaky coaxial cables

Definitions

  • the present invention relates to the field of communication technology, and particularly refers to an indoor distribution system.
  • the traditional indoor distribution system consists of a single input and single output system composed of antennas and feeders, which cannot meet the development trend of the surge in user capacity requirements.
  • the application of MIMO technology requires the installation of multiple antennas, and the indoor installation environment is complex and volatile. From the perspective of 100% coverage, it is bound to encounter the problem of mutual interference of signals. On the other hand, electromagnetic pollution is large when 100% coverage is difficult to avoid; in addition, the installation of multiple antennas indoors affects the appearance and the user acceptance is low.
  • a leaky cable can be used, but the existing reports still use the single-input single-output mode, and cannot increase the system capacity, and the space resource utilization rate is limited.
  • the technical solution provided by the invention is: an indoor distribution system, which connects multiple signals to several leakage units arranged on each floor to cover the room, and the leakage unit is installed at several inner walls of each room to radiate towards the room or / And radiate away from the room to form the output of multiple signals in each room, each of the leakage units includes at least one leaky cable with periodic slots, wherein the same output and the same pole are arranged side by side on the same inner wall
  • the minimum staggered distance between adjacent leaky cables is 5 mm, thereby realizing spatial isolation to eliminate signal interference.
  • the leakage unit is provided at one or more of the indoor ceiling, the indoor floor tile, and the vertical side wall, and each signal is unidirectionally output from a plurality of internal walls in the same room through a leakage unit Or bidirectional output.
  • multiple leaky cables with one-way output are provided in the same room to respectively transmit and radiate multiple signals.
  • the plurality of unidirectional output leaky cables in the same room are in the same polarization mode.
  • leaky cables of a plurality of unidirectional outputs that are parallel to an inner wall in the same room through the same polarization manner are output toward the same room, and the minimum staggered distance between two adjacent leaky cables is 5 mm.
  • the leaky cables with a plurality of unidirectional outputs in the same room exhibit two or three polarization modes, and the two adjacent leaky cables with different polarizations and/or bidirectional outputs are arranged side by side in parallel on an inner wall.
  • the minimum staggered distance of the two adjacent leaky cables of the same polarization and output in the same direction that can be approached at zero distance and arranged side by side in parallel on an inner wall is 5 mm.
  • leaky cables with bidirectional output are provided in the same room to respectively transmit and radiate multiple signals.
  • the leaky cables are in a single polarization mode or a multi-polarization mode.
  • a plurality of the leaky cables are of the same polarization mode. If the leaky cables are installed above the indoor ceiling or under the indoor floor tiles, the multi-channel signals are set to have a split-level output distribution; if the leaky cables are installed on the vertical side Within the wall, multiple signal settings are staggered from the output distribution of the indoor space on the same floor.
  • a plurality of the leaky cables correspond to multiple polarization modes. Two adjacent leaky cables with different polarizations arranged side by side in parallel on an inner wall can be approached at zero distance. The minimum staggered distance of the leakage cables of the same polarization is 5 mm.
  • multiple signals are output from a signal source and multiple ports, or from different signal sources.
  • the signal source is electrically connected to the combiner through a jumper, and the signal output from the combiner is distributed to each floor of the high building through the coupler.
  • Each line of each layer is connected to a power splitter, each power splitter is provided with multiple port outputs, each power splitter port is connected to an input end of the leakage unit, and an output end of the leakage unit is connected With load or antenna.
  • multiple sections of the leaky cable are formed between the input end and the corresponding output end of each leakage unit, and two adjacent sections are connected by jumpers and connectors.
  • the leaky cable is a leaky coaxial cable or a leaky waveguide.
  • the periodic slots are a plurality of single slots arranged at equal intervals on the same leaky cable or a combination of multiple slots arranged at equal intervals on several lengths of the same leaky cable.
  • the present invention provides an indoor distribution system that connects multiple signals to several leakage units arranged on each floor to cover the interior.
  • the leakage unit is installed at several interior walls of each interior to face Indoor radiation or/and back-to-door radiation to form the output of each indoor multi-channel signal
  • each of the leakage units includes at least one leaky cable with periodic slots, wherein the same output is provided side by side at the same inner wall and
  • the minimum staggered distance between adjacent leaky cables is 5 mm, thereby realizing spatial isolation to eliminate signal interference.
  • the indoor distribution system of the present invention can be applied indoors for multi-signal input and output, reasonably utilize indoor space resources, and increase the channel capacity of the indoor distribution system exponentially without increasing spectrum resources and antenna transmission power.
  • FIG. 1 is a schematic structural diagram of an indoor distribution system of the present invention in a first embodiment.
  • FIG. 2 is a schematic structural diagram of an indoor distribution system of the present invention in a second embodiment.
  • FIG. 3 is a schematic structural diagram of an indoor distribution system of the present invention in a third embodiment.
  • FIG. 4 is a partial schematic view of the leaky cable shown in FIG. 1.
  • FIG. 5 is a schematic axial cross-sectional view of the leaky cable shown in FIG. 2.
  • Fig. 6 is a schematic diagram of a partial structure of an indoor distribution system of the present invention in a fourth embodiment.
  • unidirectional output means that multiple signals are fed from the input end of the leaky cable, and output from the leaky unit of the leaky cable in the same direction or/and mode.
  • bidirectional output means that multiple signals are fed from the input end of the leaky cable and output from the leaky unit of the leaky cable in different directions or/and modes.
  • staggered layer means that multiple signals radiate toward the same indoor space on different floors to form multiple signal outputs. For example, a leaky cable with bidirectional output using the same polarization mode radiates multiple signals to an indoor space on the i-th floor.
  • the signal j is radiated to the i and i+1 indoor space through the leaky cable on the ceiling of the i floor, and the signal j+1 is radiated to the i and i-1 indoor space through the leaky cable on the ceiling of the i-1 floor, so that the i indoor space is radiated
  • the present invention provides an indoor distribution system 100 for indoor signal coverage of high floors, high population density, or high communication needs, such as high floors, large shopping malls, subway stations, and underground shopping malls.
  • the system uses MIMO technology to achieve multiple input and multiple output signals.
  • each signal is output through the signal source (1, 2), in turn through the combiner (101, 201), coupler (111, 115, 211, 215), power divider (151, 155, 159, 251, 255, 259), and then connected to the leakage unit for output.
  • Multiple signals are input to several leakage units arranged on each floor to be output to the room.
  • the leakage unit is installed at several inner walls of each room toward the room Radiating or/and radiating away from the room to form the output of multiple signals in each room.
  • the signal sources (1, 2) are base stations that provide multi-channel signals.
  • the multi-channel signals may be provided by multiple ports of a signal source 1, as shown in FIGS. 1 and 2,
  • the signal source 1 includes a first port and a second port.
  • the first port provides a first signal
  • the second port provides a second signal.
  • multiple signals can also be output by different signal sources (1, 2).
  • signal source 1 directly provides the first signal
  • signal source 2 directly provides the second signal. It can be understood that, in an actual situation, multiple signals may come from different ports of the same signal source 1 or from different signal sources (1, 2), which need to be determined according to actual conditions, and will not be repeated below.
  • the combiner (101, 201) is used to combine signals of different frequencies, different communication standards, and different operators into one signal output. As shown in FIG. 1, a connector and a jumper 303 are used to connect the combiner (101, 201) and the signal source 1.
  • the coupler (111, 115, 211, 215) is used to distribute a signal to each floor according to reasonable power, and integrate the signal of each layer and the signal of multiple layers to transmit to the Road device (101, 201).
  • the couplers (211, 215) and a combiner 201 are electrically connected by a connector and a jumper 303, and the two couplers (111, 115) and a combiner 101
  • the connector and jumper 303 are used for electrical connection.
  • the coupler 215 is connected with the connector and jumper 303 to connect the power divider 255 and the power divider 259 and the coupler 211.
  • the coupler 211 is further connected to the power divider with the connector and jumper 303 251 and the combiner 201, the coupler 115 connects the power splitter 155 and the power splitter 159 and the coupler 111 with a connector and a jumper 303, and the coupler 111 further connects the power divider 151 and the combiner with a connector and a jumper 303 101.
  • the power divider (151, 155, 159, 251, 255, 259, 351), according to the power design of the leakage unit, reasonably distributes the signal power to each connected line, which is connected to the leakage through the connector and the jumper 303 At the input end of the unit, each signal is transmitted/received wirelessly by electromagnetic radiation through the leakage unit.
  • the leakage unit is used for leakage of the main components of each signal. Its input terminal is connected to a power divider, and its output terminal is connected to a load 305 or an antenna 305.
  • the load 305 or the antenna 305 are both components connected to the terminal of the leakage unit.
  • the load 305 is a matched load, which absorbs all electromagnetic energy without reflection. When the transmission system needs to work in the traveling wave state, the matched load is used.
  • the load 305 has the same characteristic impedance as the leakage unit.
  • the terminal of the leakage unit may be connected to the antenna 305 to enhance the field strength of the terminal to achieve signal reinforcement.
  • the leakage unit Compared with the antenna feed system, the leakage unit has good signal coverage uniformity, low electromagnetic pollution and strong practicability.
  • the present invention uses a variety of leaky cables (301a, 301b, 301c) for reasonable distribution in combination with MIMO technology to achieve an increase in system channel capacity.
  • Each leakage unit in the present invention includes at least one leakage cable (301a, 301b, 301c) with periodic slots (3011, 3012, 3013, 3015).
  • the leakage unit includes two leakage cables 301a or 301b connected in series.
  • the leakage cables 301a and 301b are unidirectional outputs
  • the slot 3012 is elongated, and is distributed along the outer conductor 3010 circumferential direction, all of which are horizontally polarized
  • the four leakage units are all arranged in parallel Above the ceiling of each floor. Two signals are input from each floor indoor, and they come from different power dividers.
  • one signal from the power splitter 159 is input into two leakage units output to the lower room respectively, and the other signal from the power splitter 259 is also respectively Among the two leakage units that are output to the upper room, the two-way signal leakage units are arranged in groups and arranged along the inside of the edge of the indoor wall, so that two channels of signals are evenly distributed in each room.
  • the leakage unit includes two leakage cables 301c connected in series, the leakage cables 301c are both bidirectional outputs, and are all vertically polarized.
  • the slot 3013 and the slot 3015 are periodically formed in the outer conductor 3010 of the leaky cable, and electromagnetic waves leak back to back along the slots (3013, 3015).
  • all leakage units are vertically polarized.
  • the two leaking units are arranged in parallel under each indoor floor.
  • One signal is input from each room, which comes from the power divider 151 or the power divider 255 or the power divider 155, wherein each signal is input to two leakage units output to the upper and lower indoor rooms, and the two leakage units are respectively along the indoor
  • the edge of the wall is laid inside, so that the two signals are distributed in layers, so that two signals are evenly distributed in each room.
  • the same leaky cable 301c may be bidirectional radiation and different polarization modes; in other embodiments, the leaky cable may also be oriented in more than 3 different directions Radiation can also have two or three different polarization modes, depending on the design needs.
  • FIG. 3 a brief introduction is made of three indoor spaces side by side.
  • the vertical side wall is viewed from a horizontal perspective, and four lines are provided in the same room.
  • One line is provided with a leakage unit.
  • the leakage unit includes two leakage cables 301a connected in series.
  • the leakage cables 301a are unidirectional outputs.
  • the slot 3011 is in a figure eight shape and is distributed along the axial direction of the outer conductor 3010. Both are vertical poles.
  • the four leakage units are all installed in parallel in the same side wall in each room. Two signals are input into each room, which are derived from different power dividers.
  • one signal from the power divider 159 is input into two leakage units that are single-output to the room and back to the room, and the other from the power divider 259
  • One signal is also input to the two leakage units that are single output to the indoor and the back to the indoor.
  • the leakage output units of the two signals are arranged side by side in combination with each other, and are evenly laid along the inside of the edge of the indoor wall to avoid signal interference.
  • the distance between the two leakage units arranged side by side and outputting in the same direction is 500 mm, so as to realize spatial isolation, so that multiple signals and multiple outputs of two signals are formed in each room.
  • multiple signals can be set to stagger the output distribution of the indoor space on the same floor, such as signal 1 and signal 2, adjacent
  • the vertical side walls F1 and F2 that are shared by indoors 1-3 on the same floor can radiate signal 1 to indoor 1 and indoor 2 through the leaky cable at F1, and signal 2 to indoor 2 and radiate through the leaky cable at F2 Indoor 3, so indoor 2 radiates signal 1 and signal 2, and other floors are implemented analogously, so that multiple signals can be staggered from different indoor spaces on the same floor to achieve multiple signals output in the same room.
  • each signal from the power divider is divided into three lines.
  • Each line includes a leakage unit.
  • Each leakage unit includes a leakage cable 301b with a unidirectional output. All leakage cables 301b in the room are horizontally polarized.
  • Three signal lines are laid under the indoor ceiling, above the floor and on one side of the wall. The three leakage units at each indoor wall are arranged side by side, and they are all distributed toward the room, and any two of them are arranged side by side and output in the same direction.
  • the distance between the leaking units is 400 mm to perform spatial isolation to eliminate signal interference, so that three signal coverages are formed in each room.
  • the difference is that the leakage cable 301a of one leakage unit of the two leakage units arranged side by side is vertically polarized, and the leakage cable 301b of the other leakage unit is a horizontal pole As shown in Figure 4.
  • the polarization modes of the two are different, and the two leakage units can be approached indefinitely.
  • the number of the leakage units arranged side by side is not limited to two, and may be more than two. If there are three leakage units side by side, when the polarization modes are different, they can be approached at zero distance.
  • leaky cables of different polarization modes can be output in the same direction or different directions, and the signals do not interfere with each other; leaky cables of the same polarization mode output in different directions, can still be close to zero distance, and the signals do not interfere with each other; the same polarization mode leaks
  • the cable is output in the same direction, and the distance must be at least 1/2 wavelength of the electromagnetic wave (half the wavelength of the electromagnetic wave of the larger wavelength of the two) to achieve spatial isolation and eliminate signal interference. The same principle of action is not repeated here.
  • the difference is that the polarization modes of the two leakage units of each signal are different, and each signal can be reasonably and evenly distributed according to the indoor environment and can be laid in the center of the room , Or multiple central parts of the divided area.
  • the difference is that the leakage units of different signals have different polarization modes, and each layer may contain two signals, and the leakage units of different polarizations of the two signals Can be set side by side.
  • the second, sixth, and seventh embodiments may be used in combination according to actual conditions.
  • the slot holes 3013 and the slot holes 3015 of each of the leaky cables 301c may be staggered according to their longitudinal direction; in other embodiments, the slot holes 3013 and the slot holes 3015 of each of the leaky cables 301c
  • the slots may be distributed along the axial direction or the circumferential direction, or along the longitudinal direction in a spiral shape and periodically distributed.
  • the difference is that the leakage cable 301a of one leakage unit of the two leakage units arranged side by side is vertically polarized, and the leakage cable of the other leakage unit 301b is horizontal Polarization, both leak toward the room or back to the room, the two leaking units arranged side by side can be close at zero distance.
  • each indoor wall outputs the same signal toward the room, so that each room forms an evenly distributed three-channel signal coverage.
  • the difference is that the three leakage units of the three lines of each signal input are three different polarizations, and the three leakage units can be approached at a zero distance.
  • the shape and position of indoor walls are laid, so that three indoor signals are evenly distributed in each room.
  • each leakage unit may include more than two serially connected leakage cables 301a or 301b or leakage cables 301c or any combination of leakage cables 301a, leakage cables 301b, and leakage cables 301c, which is related to the size of the indoor space and the transmission distance The distance and the uniform distribution method are related.
  • Non-leakage cables can also be electrically connected between the leaky cables. For example, the corners of the wall roots that do not need signal coverage can only be laid with transmission lines. The above other embodiments can also use this solution. Repeat again.
  • the signal is not limited to two or three channels, but can be more; in other embodiments, any two or more inner walls in each room can be laid with a leakage unit, only need to achieve more Input multiple outputs and signals are evenly distributed, and are not limited to the above-mentioned embodiments; in other embodiments, each room may include one, two, or three polarization forms of leakage units, or multiple unidirectional The output leakage unit, or several bidirectional output leakage units, may also be a combination of a unidirectional output leakage unit and a bidirectional output leakage unit. In other embodiments, multiple layers may use leakage units with uniform composition distribution, or leakage units with different composition distribution, for example, basement and top floor are set differently, and other floors are installed uniformly.
  • the periodic slot holes on the same leaky cable can also be formed by a combination of multiple slot holes arranged at equal intervals. For example, any three adjacent slot hole combinations are arranged at equal intervals of 2 times their combined length. Periodic slot combinations can also be arranged at non-equidistant intervals, only if multiple slot openings in a certain length of the leaky cable are periodically arranged, or multiple slots are provided at multiple lengths of the leaky cable Holes, the lengths of the multiple slotted holes are arranged periodically, in actual application and installation process, depending on the use environment and the planned radiation path.
  • the indoor distribution system of the present invention forms a multi-channel signal output in each room by forming a multi-channel signal output in each room through a leakage unit installed at several inner walls of each room to radiate toward the room and/or radiate away from the room, forming a multi-transmission and multi-reception mode.
  • Reasonable use of indoor space resources without increasing spectrum resources and antenna transmission power, multiply increase the channel capacity of indoor distribution systems, and use hidden installation of leaky cables to avoid users’ resistance to “antenna” and its installation To solve the problem of large network capacity load and uneven coverage of the traditional indoor coverage antenna system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Near-Field Transmission Systems (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明提供的一种室内分布系统,将多路信号分别接入每一楼层布设的若干漏泄单元来覆盖室内,所述漏泄单元安装于每一室内的若干内壁处朝向室内辐射或/和背向室内辐射以形成每一室内多路信号的输出,每一所述漏泄单元包括至少一开设有周期性槽孔的漏缆,其中同一内壁处并排设置有同向输出且具有相同极化方式的多个所述漏缆时,相邻所述漏缆的最小错开间距为5mm,从而实现空间隔离以消除信号干扰。本发明的室内分布系统可应用于室内进行多信号输入输出,合理利用室内空间资源,在不增加频谱资源和天线发射功率的情况下,成倍地提高室内分布系统信道容量。

Description

室内分布系统 技术领域
本发明涉及通信技术领域,特别是指一种室内分布系统。
背景技术
本部分旨在为权利要求书中陈述的本发明的实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
随着高度信息化社会的发展,在线用户数每年成倍增长,网络热点区域越来越多,但用户密集的高层办公室内、一般住宅屋内以及大型商场等室内环境对无线信号覆盖的系统容量要求越来越高。
传统的室内分布系统由天线+馈线等组成单输入单输出系统,无法适应用户容量需求激增的发展趋势,而MIMO技术的应用要求安装多个天线,且室内安装环境复杂多变极易存在覆盖盲区,从100%覆盖角度考虑必然会遭遇信号的相互干扰问题,另一方面100%覆盖时电磁污染大,且难以避免;另外,多天线在室内安装影响美观,用户接受程度低。为解决信号均匀覆盖可以采用漏泄电缆,但现有报道中仍为单输入单输出模式,也无法提升系统容量,空间资源利用率有限。
发明内容
鉴于以上内容,有必要提供一种改进的室内分布系统,具有多输入多输出模式,系统容量高,充分利用空间资源,达到室内信号全覆盖应用。
本发明提供的技术方案为:一种室内分布系统,将多路信号分别接入每一楼层布设的若干漏泄单元来覆盖室内,所述漏泄单元安装于每一室内的若干内壁处朝向室内辐射或/和背向室内辐射以形成每一 室内多路信号的输出,每一所述漏泄单元包括至少一开设有周期性槽孔的漏缆,其中同一内壁处并排设置有同向输出且具有相同极化方式的多个所述漏缆时,相邻所述漏缆的最小错开间距为5mm,从而实现空间隔离以消除信号干扰。
进一步地,所述漏泄单元设置于室内天花板上方、室内地砖板下方、竖直侧墙内中的一处或多处,每一路信号从同一室内的若干内壁处通过一所述漏泄单元单向输出或双向输出。
进一步地,同一室内设置有多个单向输出的所述漏缆分别对多路信号进行传输及辐射。
进一步地,同一室内的多个单向输出的所述漏缆为相同极化方式。
进一步地,同一室内平行于一内壁处通过以相同极化方式并排的多个单向输出的所述漏缆朝向同一室内输出,相邻两个所述漏缆的最小错开间距为5mm。
进一步地,同一室内平行于一内壁处通过以相同极化方式并排的多个单向输出的所述漏缆朝向不同室内输出,相邻两个所述漏缆能够零距离接近。
进一步地,同一室内的多个单向输出的所述漏缆呈两种或三种极化方式,并排平行设置于一内壁的相邻两个不同极化或/和双向输出的所述漏缆能够零距离接近,并排平行设置于一内壁的相邻两个相同极化且同向输出的所述漏缆的最小错开间距为5mm。
进一步地,同一室内设置有多个双向输出的所述漏缆分别对多路信号进行传输及辐射,所述漏缆为单一极化方式或多极化方式。
进一步地,多个所述漏缆为相同极化方式,若所述漏缆安装于室内天花板上方或室内地砖板下方,多路信号设置错层输出分布;若所述漏缆安装于竖直侧墙内,多路信号设置错开同一层的室内空间输出分布。
进一步地,多个所述漏缆对应多种极化方式,并排平行设置于一内壁的相邻两个不同极化的所述漏缆能够零距离接近,并排平行设置 于一内壁的相邻两个相同极化的所述漏缆的最小错开间距为5mm。
进一步地,多路信号由一信号源多个端口输出,或由不同信号源输出,信号源通过跳线电连接于合路器,合路器输出的信号经由耦合器配送至高楼每一层,每一层每一条线路接入一功分器,每一功分器设有多个端口输出,每一功分器端口与一所述漏泄单元的输入端相连,所述漏泄单元的输出端连接有负载或天线。进一步地,每一所述漏泄单元的输入端与相应的输出端之间设有多段所述漏缆构成,相邻两段之间由跳线加连接器进行连接。
进一步地,所述漏缆为漏泄同轴电缆或漏泄波导。
进一步地,所述周期性槽孔为同一根漏缆上等间距排布的多个单一槽孔或同一根漏缆的若干长度段上等间距排布的多个槽孔组合。
与现有技术相比,本发明提供的一种室内分布系统,将多路信号分别接入每一楼层布设的若干漏泄单元来覆盖室内,所述漏泄单元安装于每一室内的若干内壁处朝向室内辐射或/和背向室内辐射以形成每一室内多路信号的输出,每一所述漏泄单元包括至少一开设有周期性槽孔的漏缆,其中同一内壁处并排设置有同向输出且具有相同极化方式的多个所述漏缆时,相邻所述漏缆的最小错开间距为5mm,从而实现空间隔离以消除信号干扰。本发明的室内分布系统可应用于室内进行多信号输入输出,合理利用室内空间资源,在不增加频谱资源和天线发射功率的情况下,成倍地提高室内分布系统信道容量。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明室内分布系统在第一实施方式中的结构示意图。
图2为本发明室内分布系统在第二实施方式中的结构示意图。
图3为本发明室内分布系统在第三实施方式中的结构示意图。
图4为图1示出的漏缆的部分结构示意图。
图5为图2示出的漏缆的轴剖面示意图。
图6为本发明室内分布系统在第四实施方式中的部分结构示意 图。
附图标记说明:
室内分布系统 100
信号源 1
信号源 2
合路器 101
合路器 201
耦合器 111
耦合器 115
耦合器 211
耦合器 215
功分器 151
功分器 155
功分器 159
功分器 251
功分器 255
功分器 259
功分器 351
漏缆 301a
漏缆 301b
漏缆 301c
槽孔 3011
槽孔 3012
槽孔 3013
槽孔 3015
导体 3010
连接器+跳线 303
终端负载、天线 305
如下具体实施方式将结合上述附图进一步说明本发明实施例。
具体实施方式
为了能够更清楚地理解本发明实施例的上述目的、特征和优点, 下面结合附图和具体实施方式对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施方式中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明实施例,所描述的实施方式仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明实施例保护的范围。
本文中“单向输出”是指多路信号自漏缆的输入端馈入,从漏缆的漏泄单元按同样的方向或/和模式输出。
本文中“双向输出”是指多路信号自漏缆的输入端馈入,从漏缆的漏泄单元按不同的方向或/和模式输出。本文中“错层”是指多路信号在不同楼层朝向同一室内空间辐射形成多路信号输出,如采用相同极化方式的双向输出的漏缆将多路信号辐射至第i层的某室内空间,信号j通过i楼层天花板上的漏缆向i和i+1室内空间辐射,信号j+1通过i-1楼层天花板上的漏缆向i和i-1室内空间辐射,如此i室内空间辐射有信号j和信号j+1,分别来自i楼层和i-1楼层,信号j和信号j+1输入分布于不同层。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明实施例的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明实施例。
请参阅图1,本发明提供一种室内分布系统100,用于高楼层、高人口密度或高通信需求的室内信号的覆盖,诸如高楼层、大型商场、地铁站厅和地下商场等,且该系统应用MIMO技术实现信号的多输入多输出。如图1所示,每一路信号经信号源(1、2)输出,依次经过合路器(101、201)、耦合器(111、115、211、215)、功分器(151、155、159、251、255、259),然后接入漏泄单元进行输出,多路信号分别输入每一楼层布设的若干漏泄单元来输出至室内,所述漏泄单元安装于每一室内的若干内壁处朝向室内辐射或/和背向室内辐射以形 成每一室内多路信号的输出。
下面将对本发明的室内分布系统100的各组成部分及相互关系进行详细的阐述。
所述信号源(1、2),提供多路信号的基站,在一具体实施方式中,多路信号可以是由一信号源1的多个端口分别提供,如图1和图2所示,信号源1包括第一端口和第二端口,第一端口提供第一路信号,第二端口提供第二路信号。在另一具体实施方式中,多路信号也可以由不同信号源(1、2)输出,如图3所示,信号源1直接提供第一路信号,信号源2直接提供第二路信号。可以理解,在实际情况下,多路信号可以既来自同一信号源1的不同端口,也可以来自不同的信号源(1、2),需根据实际情况而定,以下不再赘述。
所述合路器(101、201),用于将不同频率、不同通信制式以及不同运营商的信号合成一路信号输出。如图1所示,所述合路器(101、201)与所述信号源1之间采用连接器加跳线303连接。
所述耦合器(111、115、211、215),用于将一路信号按照合理的功率分配给每一楼层,并将每一层的信号以及多层的信号进行整合,从而传输给所述合路器(101、201)。如图1所示的第一实施方式中,耦合器(211、215)与一合路器201以连接器加跳线303电连接,2个耦合器(111、115)与一合路器101以连接器加跳线303电连接,耦合器215以连接器加跳线303连接功分器255和功分器259和耦合器211,耦合器211进一步以连接器加跳线303连接功分器251和合路器201,耦合器115以连接器加跳线303连接功分器155和功分器159和耦合器111,耦合器111进一步以连接器加跳线303连接功分器151和合路器101。
所述功分器(151、155、159、251、255、259、351),按照漏泄单元的功率设计合理分配信号功率至各相连的线路,其通过连接器加跳线303接入所述漏泄单元的输入端,通过所述漏泄单元将每一路信号以电磁辐射方式进行无线信号发射/接收。
所述漏泄单元,用于漏泄各路信号的主要元件,其输入端与一功 分器相连,其输出端连接有负载305或天线305。其中负载305或天线305均为所述漏泄单元终端所接元件。在一具体实施方式中,所述负载305为匹配负载,其将所有的电磁能量全部吸收而无反射,当需要传输系统工作于行波状态时,都要用到匹配负载,本实施方式中负载305具有与漏泄单元相同的特征阻抗。在另一具体实施方式中,所述漏泄单元终端可以连接天线305,增强终端场强,实现信号补强。
相较于天馈系统,所述漏泄单元信号覆盖均匀性好,电磁污染小,实用性强。本发明从室内空间资源出发,结合MIMO技术,采用多种漏缆(301a、301b、301c)进行合理分布来实现提升系统信道容量。本发明中每一所述漏泄单元包括至少一开设有周期性槽孔(3011、3012、3013、3015)的漏缆(301a、301b、301c)。
如图1所示的第一实施方式中,以三层楼层,每一楼层一室内空间进行简要介绍,本实施方式中,同一室内设置有4条线路,每一线路设有一漏泄单元,所述漏泄单元包括2个串联的漏缆301a或漏缆301b。本实施方式中,所述漏缆301a和301b均为单向输出,槽孔3012为长条形,沿外导体3010周向分布,均为水平极化,4个所述漏泄单元均平行设于每一层室内天花板上方。每一层室内输入两路信号,分别来源于不同功分器。以功分器159和功分器259所在的室内为例,其中来自功分器159的一路信号分别输入2个向下层室内输出的漏泄单元中,相应来自功分器259的另一路信号也分别输入2个向上层室内输出的漏泄单元中,两路信号的漏泄单元一一组合并排设置,分别沿室内壁的边缘内侧敷设,如此每一室内形成均匀分布的两路信号。
如图2所示的第二实施方式中,以三层楼层,每一楼层一室内空间进行简要介绍,本实施方式中,同一室内设置有2条线路,每一线路设有一漏泄单元,所述漏泄单元包括2个串联的漏缆301c,所述漏缆301c均为双向输出,且均为垂直极化。如图5所示,所述漏缆的外导体3010上周期性开设相对的槽孔3013和槽孔3015,电磁波沿槽孔(3013、3015)背对背漏泄。本实施方式中,所有漏泄单元均 为垂直极化方式。本实施方式中,2个所述漏泄单元均平行设于每一室内地板下方。每一室内输入一路信号,来源于功分器151或功分器255或功分器155,其中每一路信号分别输入2个向上层室内和下层室内输出的漏泄单元,2个漏泄单元分别沿室内壁的边缘内侧敷设,如此两路信号错层分布,使得每一室内形成均匀分布的两路信号覆盖。可以理解,当槽孔3013和槽孔3015开设形状、分布方式不同时,同一漏缆301c可以是双向辐射,不同极化模式;在其他实施方式中,漏缆还可以是朝向3个以上不同方向辐射,也可以具有两种或三种不同极化模式,具体根据设计需要而定。
如图3所示的第三实施方式中,以一楼层并排的三室内空间进行简要介绍,本实施方式中,将竖直侧墙体以水平视角来观察,同一室内设置有4条线路,每一线路设有一漏泄单元,所述漏泄单元包括2个串联的漏缆301a,所述漏缆301a均为单向输出,槽孔3011为八字形,沿外导体3010轴向分布,均为垂直极化,4个所述漏泄单元均平行设于每一室内同一侧墙体中。每一室内输入两路信号,分别来源于不同功分器。以功分器159和功分器259所在的室内为例,其中来自功分器159的一路信号分别输入向室内和背向室内单输出的2个漏泄单元中,相应来自功分器259的另一路信号也分别输入向室内和背向室内单输出的2个漏泄单元中,两路信号的漏泄单元中同向输出的相互组合并排设置,沿室内壁的边缘内侧均匀敷设,为避免信号干扰,并排设置且同向输出的两个所述漏泄单元的间距为500mm,从而实现空间隔离,如此每一室内形成两路信号的多输入和多输出。在其他实施方式中,采用双向输出的相同极化方式的漏缆安装于竖直侧墙体中时,多路信号可以设置错开同一层的室内空间输出分布,例如信号1和信号2,相邻同层的室内1-3的两两共有的竖直侧墙体F1和F2,可以将信号1通过F1处漏缆辐射至室内1和室内2,信号2通过F2处漏缆辐射至室内2和室内3,如此室内2辐射有信号1和信号2,其他楼层依次类推实施,如此多路信号可以错开同层不同的室内空间输入,达到同一室内的多路信号输出。
如图6所示的第四实施方式中,以一室内空间为例,本实施方式中,每一室内设有三路信号,分别来自功分器151和功分器251和功分器351。每一路信号自功分器分成三条线路,每一线路包括一漏泄单元,每一漏泄单元包括一单向输出的漏缆301b,该室内的所有漏缆301b为水平极化。该室内天花板下方、地板上方及一侧墙体中均敷设有三路信号的线路,每一室内壁处的3个漏泄单元并排设置,且均朝向该室内分布,并排设置且同向输出的任意两个所述漏泄单元的间距为400mm,以进行空间隔离消除信号干扰,如此每一室内形成三路信号覆盖。
以第一实施方式为基础的第五实施方式中,不同之处在于,并排设置的2个漏泄单元中一漏泄单元的漏缆301a为垂直极化,另一漏泄单元的漏缆301b为水平极化,如图4所示。两者极化方式不同,2个漏泄单元可无限逼近。在其他实施方式中,并排设置的所述漏泄单元的数量不限定为2个,可以是两个以上,若并排有3个漏泄单元,当极化方式各不相同时,可以零距离靠近。实际工况中,不同极化方式漏缆可以同向或不同向输出,信号互不干扰;相同极化方式漏缆不同向输出,仍可零距离靠近,信号互不干扰;相同极化方式漏缆同向输出,需间距至少传输电磁波的1/2波长(两者中较大波长的电磁波的半波长),方可实现空间隔离,消除信号干扰,以下同样作用原理,不再赘述。
在以第二实施方式为基础的第六实施方式中,不同之处在于,每路信号的2个漏泄单元的极化方式不同,可以根据室内环境合理均匀分布各路信号,可以敷设在室内中央,或划分区域的多个中央部位。
在以第二实施方式为基础的第七实施方式中,不同之处在于,不同信号的漏泄单元的极化方式不同,每一层可含有两路信号,两路信号的不同极化的漏泄单元可以一一并排设置。可以理解,第二、第六、第七实施方式可以根据实际情况组合使用。在其他实施方式中,每一所述漏缆301c的槽孔3013和槽孔3015可以按其纵长方向错开;在其他实施方式中,每一所述漏缆301c的槽孔3013和槽孔3015可以 分布沿轴向或周向,或沿纵长方向呈螺旋形周期性分布的槽孔。
在以第三实施方式为基础的第八实施方式中,不同之处在于,并排设置的2个漏泄单元中一漏泄单元的漏缆301a为垂直极化,另一漏泄单元301b的漏缆为水平极化,均朝向室内或背向室内漏泄,并排设置的2个漏泄单元可以零距离靠近。
在以第四实施方式为基础的第九实施方式中,不同之处在于,每一室内壁同朝向室内输出同一路信号,如此每一室内形成均匀分布的三路信号覆盖。
在以第九实施方式为基础的第十实施方式中,不同之处在于,每路信号输入的三条线路的三个漏泄单元为三种相互不同极化,三个漏泄单元可以零距离接近,根据室内壁形状、位置进行敷设,如此每一室内形成均匀分布的三路信号覆盖。
可以理解,每一漏泄单元可包括2个以上串联的漏缆301a或漏缆301b或漏缆301c或漏缆301a、漏缆301b、漏缆301c的任意组合,这与室内空间的大小,传输距离的远近、均匀分布方式有关,漏缆之间也可以电连接非漏泄电缆,如墙根拐角处无需信号覆盖的角落,仅敷设传输线路即可,上述其他实施方式中同样可采用该方案,以下不再赘述。
在其他实施方式中,信号不限定为两路或三路,可以是更多;在其他实施方式中,每一室内中任意两个内壁或三个以上内壁均可敷设漏泄单元,仅需实现多输入多输出和信号均匀分布即可,不限定为上述实施方式;在其他实施方式中,每一室内可以包括一种、两种或三种极化形式的漏泄单元,也可以是多个单向输出的漏泄单元,或若干双向输出的漏泄单元,还可以是单向输出的漏泄单元与双向输出的漏泄单元的组合。在其他实施方式中,多层可以采用统一组成分布的漏泄单元,或采用不同组成分布的漏泄单元,例如,地下室和顶层设置不同,其他楼层统一安装等。本发明中同一根漏缆上的周期性槽孔还可以是多个槽孔组合按照等间距排设形成,如任意3个挨近的槽孔组合以其组合长度的2倍等间距排设,该周期性槽孔组合也可以非等间 距排设,仅是漏缆的某一长度段上开设的多个槽孔为周期性排布,或是漏缆的多个长度段处开设有多个槽孔,该多个槽孔在其所处的长度段为周期性排布,在实际应用和安装过程中,视使用环境和规划辐射路径而定。
本发明的室内分布系统将多路信号通过安装于每一室内的若干内壁处朝向室内辐射或/和背向室内辐射的漏泄单元形成每一室内的多路信号输出,构成多发多收模式。合理利用室内空间资源,在不增加频谱资源和天线发射功率的情况下,成倍地提高室内分布系统信道容量,而且采用漏缆隐藏式安装,可以避免用户对于“天线”及其安装的抵制心理,解决传统室内覆盖天线系统网络容量负荷大,覆盖不均匀的问题。
以上实施方式仅用以说明本发明实施例的技术方案而非限制,尽管参照以上较佳实施方式对本发明实施例进行了详细说明,本领域的普通技术人员应当理解,可以对本发明实施例的技术方案进行修改或等同替换都不应脱离本发明实施例的技术方案的精神和范围。

Claims (14)

  1. 一种室内分布系统,其特征在于:将多路信号分别接入每一楼层布设的若干漏泄单元来覆盖室内,所述漏泄单元安装于每一室内的若干内壁处朝向室内辐射或/和背向室内辐射以形成每一室内多路信号的输出,每一所述漏泄单元包括至少一开设有周期性槽孔的漏缆,其中同一内壁处并排设置有同向输出且具有相同极化方式的多个所述漏缆时,相邻所述漏缆的最小错开间距为5mm,从而实现空间隔离以消除信号干扰。
  2. 根据权利要求1所述的室内分布系统,其特征在于:所述漏泄单元设置于室内天花板上方、室内地砖板下方、竖直侧墙内中的一处或多处,每一路信号从同一室内的若干内壁处通过一所述漏泄单元单向输出或双向输出。
  3. 根据权利要求2所述的室内分布系统,其特征在于:同一室内设置有多个单向输出的所述漏缆分别对多路信号进行传输及辐射。
  4. 根据权利要求3所述的室内分布系统,其特征在于:同一室内的多个单向输出的所述漏缆为相同极化方式。
  5. 根据权利要求4所述的室内分布系统,其特征在于:同一室内平行于一内壁处通过以相同极化方式并排的多个单向输出的所述漏缆朝向同一室内输出,相邻两个所述漏缆的最小错开间距为5mm。
  6. 根据权利要求4所述的室内分布系统,其特征在于:同一室内平行于一内壁处通过以相同极化方式并排的多个单向输出的所述漏缆朝向不同室内输出,相邻两个所述漏缆能够零距离接近。
  7. 根据权利要求3所述的室内分布系统,其特征在于:同一室内的多个单向输出的所述漏缆呈多种极化方式,并排平行设置于一内壁的相邻两个不同极化或/和双向输出的所述漏缆能够零距离接近,并排平行设置于一内壁的相邻两个相同极化且同向输出的所述漏缆的最小错开间距为5mm。
  8. 根据权利要求2所述的室内分布系统,其特征在于:同一室 内设置有多个双向输出的所述漏缆分别对多路信号进行传输及辐射,所述漏缆为单一极化方式或多极化方式。
  9. 根据权利要求8所述的室内分布系统,其特征在于:多个所述漏缆为相同极化方式,若所述漏缆安装于室内天花板上方或室内地砖板下方,多路信号设置错层输出分布;若所述漏缆安装于竖直侧墙内,多路信号设置错开同一层的室内空间输出分布。
  10. 根据权利要求8所述的室内分布系统,其特征在于:多个所述漏缆对应多种极化方式,并排平行设置于一内壁的相邻两个不同极化的所述漏缆能够零距离接近,并排平行设置于一内壁的相邻两个相同极化的所述漏缆的最小错开间距为5mm。
  11. 根据权利要求1所述的室内分布系统,其特征在于:多路信号由一信号源多个端口输出,或由不同信号源输出,信号源通过跳线电连接于合路器,合路器输出的信号经由耦合器配送至高楼每一层,每一层每一条线路接入一功分器,每一功分器设有多个端口输出,每一功分器端口与一所述漏泄单元的输入端相连,所述漏泄单元的输出端连接有负载或天线。
  12. 根据权利要求11所述的室内分布系统,其特征在于:每一所述漏泄单元的输入端与相应的输出端之间设有多段所述漏缆构成,相邻两段之间由跳线加连接器进行连接。
  13. 根据权利要求1所述的室内分布系统,其特征在于:所述漏缆为漏泄同轴电缆或漏泄波导。
  14. 根据权利要求1所述的室内分布系统,其特征在于:所述周期性槽孔为同一根漏缆上等间距排布的多个单一槽孔或同一根漏缆的若干长度段上等间距排布的多个槽孔组合。
PCT/CN2019/101008 2018-12-29 2019-08-16 室内分布系统 WO2020134117A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811647785.6A CN111385810A (zh) 2018-12-29 2018-12-29 室内分布系统
CN201811647785.6 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020134117A1 true WO2020134117A1 (zh) 2020-07-02

Family

ID=71129557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101008 WO2020134117A1 (zh) 2018-12-29 2019-08-16 室内分布系统

Country Status (2)

Country Link
CN (1) CN111385810A (zh)
WO (1) WO2020134117A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112822694A (zh) * 2021-02-03 2021-05-18 江苏亨鑫科技有限公司 一种室内无线信号覆盖漏缆布置方法及对应的布置结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040185910A1 (en) * 2002-06-25 2004-09-23 Toshiba Tec Kabushiki Kaisha Wireless communication system
CN103268973A (zh) * 2013-06-13 2013-08-28 中天日立射频电缆有限公司 室内漏泄电缆天线及其覆盖系统
CN204425662U (zh) * 2015-03-25 2015-06-24 厦门大学 一种全制式移动通信网络引入系统
CN105917519A (zh) * 2014-01-20 2016-08-31 瑞典爱立信有限公司 提供用于mimo通信的覆盖的天线系统和方法
CN209105467U (zh) * 2018-12-29 2019-07-12 中天射频电缆有限公司 室内分布系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040185910A1 (en) * 2002-06-25 2004-09-23 Toshiba Tec Kabushiki Kaisha Wireless communication system
CN103268973A (zh) * 2013-06-13 2013-08-28 中天日立射频电缆有限公司 室内漏泄电缆天线及其覆盖系统
CN105917519A (zh) * 2014-01-20 2016-08-31 瑞典爱立信有限公司 提供用于mimo通信的覆盖的天线系统和方法
CN204425662U (zh) * 2015-03-25 2015-06-24 厦门大学 一种全制式移动通信网络引入系统
CN209105467U (zh) * 2018-12-29 2019-07-12 中天射频电缆有限公司 室内分布系统

Also Published As

Publication number Publication date
CN111385810A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
US9294162B2 (en) Outdoor-indoor MIMO communication system using multiple repeaters and leaky cables
RU2550148C2 (ru) Гибридная кабельная система и сеть для беспроводных приложений внутри здания
CN102547771B (zh) 一种多通道室内分布系统及其信号传输方法
RU2634746C1 (ru) Антенная система, обеспечивающая покрытие для связи с множеством входов и множеством выходов, mimo, способ и система
CN209105467U (zh) 室内分布系统
CN106329151A (zh) 一种天线阵列和网络设备
CN103268973A (zh) 室内漏泄电缆天线及其覆盖系统
CN108738033A (zh) 一种室内覆盖系统
CN208210309U (zh) 一种室内无线覆盖系统
WO2020134117A1 (zh) 室内分布系统
CN104935360B (zh) 采用mimo信号双向馈入泄漏电缆的线状覆盖传输系统
CN115458889A (zh) 一种提升mimo功能的漏缆
CN100358181C (zh) 用于室内无线通信的内置天线系统
CN209330410U (zh) 传输模块以及信号覆盖系统
CN103916153B (zh) 一种有源一体化天线微站
CN207441972U (zh) 一种天线阵列、双极化天线及基站系统
CN106714194A (zh) 一种室内覆盖系统
CN114696102B (zh) 并联型漏泄同轴电缆组件及其制造方法
JP4913186B2 (ja) 無線通信システム及びその設置方法
CN111447625A (zh) 传输模块以及信号覆盖系统
CN209330409U (zh) 传输模块以及信号覆盖系统
CN211670853U (zh) 一种干支线室内分布系统
US8693498B2 (en) WiFi apparatus for wireless internet and wireless internet system using the same
CN111447626A (zh) 传输模块以及信号覆盖系统
JP6111316B1 (ja) ケーブル型アンテナ及び無線通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903605

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19903605

Country of ref document: EP

Kind code of ref document: A1