WO2020134076A1 - 一种卸料暂存装置 - Google Patents

一种卸料暂存装置 Download PDF

Info

Publication number
WO2020134076A1
WO2020134076A1 PCT/CN2019/098593 CN2019098593W WO2020134076A1 WO 2020134076 A1 WO2020134076 A1 WO 2020134076A1 CN 2019098593 W CN2019098593 W CN 2019098593W WO 2020134076 A1 WO2020134076 A1 WO 2020134076A1
Authority
WO
WIPO (PCT)
Prior art keywords
silo
unloading
storage device
barrel
temporary storage
Prior art date
Application number
PCT/CN2019/098593
Other languages
English (en)
French (fr)
Inventor
张海泉
聂君锋
张作义
李红克
王鑫
刘继国
董玉杰
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to EP19902303.7A priority Critical patent/EP3886118B1/en
Priority to US17/258,322 priority patent/US11887740B2/en
Priority to KR1020207015555A priority patent/KR102342415B1/ko
Priority to RU2020141030A priority patent/RU2748758C1/ru
Priority to JP2020545321A priority patent/JP6957766B2/ja
Publication of WO2020134076A1 publication Critical patent/WO2020134076A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/20Arrangements for introducing objects into the pressure vessel; Arrangements for handling objects within the pressure vessel; Arrangements for removing objects from the pressure vessel
    • G21C19/202Arrangements for handling ball-form, i.e. pebble fuel
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/32Apparatus for removing radioactive objects or materials from the reactor discharge area, e.g. to a storage place; Apparatus for handling radioactive objects or materials within a storage place or removing them therefrom
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/34Apparatus or processes for dismantling nuclear fuel, e.g. before reprocessing ; Apparatus or processes for dismantling strings of spent fuel elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/015Transportable or portable shielded containers for storing radioactive sources, e.g. source carriers for irradiation units; Radioisotope containers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/06Details of, or accessories to, the containers
    • G21F5/10Heat-removal systems, e.g. using circulating fluid or cooling fins
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • This application relates to the technical field of reactor engineering, in particular to a temporary storage device for unloading.
  • the large-capacity spent fuel spherical element temporary storage device requires special consideration of two working conditions. The first is that the former only performs the core unloading function and does not consider the charging function.
  • the spherical element can continue to flow From the core and the discharge pipe into the hopper continuously and stably, and the latter intermittently and unstablely performs the functions of receiving, temporarily storing, discharging, and collecting debris and dust of the spent fuel spherical elements, so it must be considered at the same time.
  • Material reliability and unloading reliability problems of which loading reliability mainly refers to avoiding damage to the spherical components and equipment structure caused by charging collision during the loading process.
  • the second is that the former has a capacity of about 1500 spherical components, while the latter has a capacity of at least 4000. Therefore, while considering the special process of atmosphere switching and unloading temporary storage, we must pay more attention to the large number of unloading temporary storage devices. Safety issues such as waste heat removal of spent fuel spherical elements and radioactive protection of high dose gamma rays.
  • the purpose of the present application is to provide a temporary discharge storage device that can ensure the geometric integrity of the spherical element when receiving the spent fuel spherical element discharged from the core, can temporarily store the spherical element and reliably perform waste heat removal and ⁇ -ray protection Security features.
  • the present application provides a temporary discharge storage device, which at least includes a silo, an external component of the silo, an internal component of the silo, a shielding module and a loading module;
  • the silo includes a barrel and a box arranged in order from top to bottom;
  • the external component of the silo includes a cooling water jacket provided outside the barrel;
  • the internal components of the silo include a straight silo provided in the silo and an oblique silo and an unloading silo provided in the box body, the straight silo, oblique silo and unloading silo are connected in sequence;
  • the shielding module includes an outer shield provided outside the barrel and a neutron shield provided outside the outer shield;
  • the charging module includes a charging body provided on the top of the barrel, the charging module includes a charging body provided on the top of the barrel, the charging body is provided with a goal channel, and the charging A ball outlet pipe is connected to the lower end of the body, one end of the ball outlet pipe communicates with the scoring channel, the other end of the ball outlet pipe is in contact with the barrel wall of the barrel, and the ball outlet pipe The other end communicates with the straight silo, and the scoring channel and the ball outlet duct form a directional flow channel for the directional flow of the spherical element.
  • the barrel and the box are connected by a tapered section
  • the tapered section includes a hollow tapered cavity with an upper size and a lower size, and the upper end of the tapered cavity and the straight silo In communication, the lower end of the tapered cavity communicates with the inclined silo.
  • the shielding module further includes an inner shield disposed inside the box body, and the inner shield is disposed above the discharge bin.
  • the loading body includes a support plate, a goal piece connected to the upper end of the support plate, and an overcurrent piece connected to the lower end of the support plate.
  • the goal piece is provided with a goal hole.
  • the support plate is provided with a guide hole
  • the flow member is provided with a flow hole
  • the goal hole, the guide hole and the flow hole are sequentially connected to form the goal channel.
  • a goal takeover is also provided on the goal piece, and the goal takeover is in communication with the goal hole.
  • the ball outlet pipe includes an inclined pipe and a vertical pipe connected to each other, wherein the inclined pipe is connected to the scoring channel, and the vertical pipe is in contact with the inner cylinder wall of the barrel.
  • a feed support is installed at the upper end of the barrel, and the feed support is connected to the charging body;
  • a shield pressure plate is installed at the upper end of the outer shield and the neutron shield, The shielding pressure plate is connected with the charging body.
  • the discharge mechanism also includes a discharge mechanism connected to the box body, and the discharge mechanism includes a power mechanism, a transmission mechanism, and an actuator sequentially connected from top to bottom.
  • the shielding module further includes a motor shield provided outside the power mechanism.
  • a bottom guard plate assembly is provided in the discharge bin, and a dust leakage member is provided in the bottom guard plate assembly, the dust leakage member is connected to the dust outlet, and the dust outlet is connected to the dust nozzle.
  • the temporary storage device for unloading provided by this application is forcedly cooled by setting a cooling water jacket on the outside of the barrel to effectively discharge the residual heat of the spherical element in the silo, thereby ensuring that the temperature of the barrel, chamber and spherical element is below the design limit value.
  • the external shield and the neutron shield are sequentially arranged outside the barrel to ensure that the surrounding equipment and maintenance personnel are protected from excessive gamma rays and neutron radiation.
  • the temporary discharge storage device provided by the present application can ensure the geometric integrity of the spherical element when receiving the spherical element discharged from the core, can temporarily store the spherical element and reliably perform the safety functions of waste heat removal and ⁇ -ray protection.
  • the temporary storage device for discharging provided by this application can perform the functions of receiving, temporarily storing, atmosphere switching and discharging of spherical elements, and at the same time has the safety functions of ensuring the geometrical integrity of the spherical elements, radioactive protection and waste heat removal, with compact structure and reliability The advantages of high and convenient maintenance.
  • FIG. 1 is a front cross-sectional view of an unloading temporary storage device of an embodiment of the present application
  • FIG. 2 is a plan view of an unloading temporary storage device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a loading module in a temporary discharge device of an embodiment of the present application
  • FIG. 4 is a schematic structural view of a dust leakage member in a temporary discharge device of an embodiment of the present application
  • FIG. 5 is a schematic diagram of the bottom guard plate assembly in the unloading temporary storage device of the embodiment of the present application.
  • FIG. 6 is a schematic diagram of the turntable assembly in the unloading temporary storage device of the embodiment of the present application.
  • 100 loading module; 101: support plate; 102: over-flow piece; 103: scoring piece; 104: scoring hole; 105: diversion hole; 106: over-flow hole; 107: change-direction current-limiting trajectory; 108: ball exit pipeline; 109: ball exit channel; 110: guide trajectory; 111: rebound trajectory; 112: roll-off trajectory;
  • 200 shield module; 201: motor shield; 202: outer shield; 203: neutron shield; 204: shield platen; 205: inner shield; 206: steel barrel; 207: lead shield;
  • 300 external components of the silo; 301: ball take-over; 302: dust take-over; 303: lifting ring; 304: first blind plate; 305: exhaust pipe port; 306: intake pipe port; 307: cooling water inlet; 308: Cooling water outlet; 309: goal takeover; 310: temperature measuring point; 311: pressure measuring point; 312: first disturbance mechanism; 313: second disturbance mechanism; 314: cooling water jacket;
  • 400 silo; 401: end flange; 402: bearing housing; 403: box body; 404: second blind plate; 405: tapered section; 406: tapered surface; 407: barrel; 408: inner barrel Wall; 409: feed support;
  • 500 internal components of silo; 501: straight silo; 502: lined cylinder; 503: inclined silo; 504: inclined silo; 505: secondary baffle; 506: ball bed; 507: unloading silo; 508: Bottom guard plate assembly; 509: dust outlet; 510: spherical element outlet; 511: bottom arc plate; 512: dust leakage; 513: diversion groove; 514: first debris port; 515: material guide bridge; 516: Second debris port;
  • 600 unloading mechanism; 601: power mechanism; 602: transmission mechanism; 603: actuator; 604: thrust bearing; 605: shaft system; 606: withdrawal bearing sleeve; 607: spindle bearing; 608: turntable assembly; 609 : Take the hole; 610: Scraper.
  • an embodiment of the present application provides a temporary unloading storage device, including a loading module 100, a shielding module 200, a silo external member 300, a silo 400, a silo internal member 500, and a discharge ⁇ 600 ⁇ Material 600.
  • the silo 400 is a pressure-containing device containing helium gas, which is composed of an end flange 401, a bearing housing 402, a box 403, a second blind plate 404, and a barrel 407, and is also used to support the The loading module 100, the shielding module 200, the external component 300 of the silo, the internal component 500 of the silo, and the discharge mechanism 600.
  • the barrel 407 is located above the box body 403, and a transitional tapered section 405 is connected between the box body 403 and the barrel 407, and the tapered section 405 includes a hollow tapered cavity with an upper size and a smaller size. body.
  • the top of the barrel 407 is also provided with a feeding support 409.
  • the temporary storage device for unloading described in the embodiments of the present application is an important mid-end process equipment between the core fuel cycle and the storage of spent fuel spherical components in the factory. Due to the different atmospheres in the storage system of the front-end core and the back-end spherical components Usually, the spherical components are continuously transported to the spherical component storage system, that is, the spherical components in the temporary storage device are unloaded before the charging operation. Limited by the installation space, the unloading temporary storage device needs to adopt a compact and simple structure. For this reason, a feed support 409 is provided on the top of the barrel 407, and the feed support 409 may be welded with the barrel 407 as one body. The feed cylinder 407 is connected to the loading module 100 through the feed support 409.
  • the silo internal member 500 includes a straight silo 501 provided in the silo 407, an inclined silo 503 provided in the box 403, and a discharge silo 507 provided in the box 403,
  • the inclined silo 503 is provided with an inclined silo 504, and the straight silo 501, the inclined silo 504 and the unloading silo 507 are connected in sequence.
  • the upper end of the tapered cavity communicates with the straight silo 501, and the lower end of the tapered cavity communicates with the inclined silo 504.
  • a bottom guard plate assembly 508 is provided in the discharge bin 507, and the bottom guard plate assembly 508 is connected to the left end of the inclined barrel 503.
  • a secondary baffle 505 is suspended and connected to the top inner wall of the inclined barrel 503, and the secondary baffle 505 is disposed on the inclined barrel 503 at a position close to the discharge bin 507.
  • a liner barrel 502 is provided above the inclined silo 504.
  • the liner barrel 502 is connected to the bottom inner wall of the tapered section 405.
  • the lower portion of the liner barrel 502 has a curved shovel structure, which is
  • the curved surface of the silo 504 basically corresponds to form a ball flow intercepting dam.
  • the straight silo 501, the inclined silo 504 and the unloading silo 507 together constitute a large-capacity silo in which the spherical element 1 is temporarily stored on site.
  • the total volume of the silo is 4000 spherical elements.
  • the lining cylinder 502 and the secondary baffle 505 are used in the silo to form two shutoff dams to reduce the pressure of the ball bed 506 in the silo on the discharge mechanism 600.
  • the turntable assembly 608 it is convenient for the spherical element 1 in the silo to smoothly enter the reclaiming hole 609.
  • the spherical element 1 discharged from the core first undergoes a helium gas pneumatic conveyance, it enters the discharge temporary storage device described in the embodiment of the present application at a certain initial speed.
  • the inner height of the straight silo 501 and the inclined silo 504 is close to 2 meters, and the spherical element 1 will have a certain final velocity when it reaches the bottom of the silo or the ball bed 506. Since the spherical element 1 has usually undergone one charge, 15 cycles and one discharge lift, after undergoing multiple free drops with different drops, pneumatic conveying and intra-stack flow, relative to the initial design restrictions, the spherical element 1 The intensity will be reduced to varying degrees.
  • the falling speed of the ball may be too high, which may cause damage.
  • the spherical element 1 collides with the oblique cylinder 503 and rebounds, if the speed is too high, it will collide with the lower curved surface of the lining cylinder 502, and bites are also likely to occur.
  • the loading module 100 is provided at the place where the spherical element enters the discharge temporary storage device, for slowing down the falling speed of the upstream spherical element 1 and changing its trajectory to avoid collision damage.
  • the charging module 100 includes a charging body disposed above the barrel 407, a scoring channel is provided in the charging body, a ball outlet pipe 108 is connected to the lower end of the loading body, and the ball outlet pipe 108 Is connected to the goal channel, the other end of the ball outlet duct 108 is in contact with the inner cylinder wall 408 of the barrel 407, and the other end of the ball outlet duct 108 is in contact with the straight silo 501 Connected.
  • the loading body includes a support plate 101, a goal piece 103 connected to the upper end of the support plate 101, and a flow piece 102 connected to the lower end of the support plate 101, the goal piece 103 is provided with
  • the ball hole 104 is a diverting channel.
  • the support plate 101 is provided with a diversion hole 105, and the diversion hole 105 is a vertical channel.
  • the flow member 102 is provided with a flow hole 106, and the flow hole 106 is a redirecting channel.
  • the scoring holes 104, the diversion holes 105, and the overflow holes 106 are connected in sequence to form the scoring channel.
  • the goal piece 103 is further provided with a goal takeover 309, and the goal takeover 309 communicates with the goal hole 104.
  • the ball outlet pipe 108 includes an inclined pipe and a vertical pipe, wherein the inclined pipe communicates with the overflow hole 106, and the vertical pipe is in contact with the inner cylinder wall 408 of the barrel 407.
  • the inclined duct communicates with the vertical duct to form a redirecting ball exit channel 109.
  • the goal channel and the ball exit channel 109 form a diverting flow channel for diverting the flow of the spherical element 1.
  • the feed support 409 is provided with a mounting hole, the overflow member 102 is tightly installed in the mounting hole, and the support plate 101 is firmly connected to the upper end of the feed support 409.
  • the feeding support 409 is provided with a ball hole, the scoring channel, the ball hole and the ball outlet channel 109 are sequentially connected in equal diameter, and the spherical element 1 passes through the scoring channel, When passing through the ball hole and the ball exit channel 109, the spherical center of the spherical element 1 will form a directional trajectory 107 that changes the direction of the current limit three times.
  • the spherical element 1 When the spherical element 1 flows along the change-direction current-limiting trajectory 107, due to the three changes of the current-limiting trajectory 107, the spherical element 1 collides at three change-directions, and each moment some of the momentum is converted into impulse, thus Each time you can buffer and slow down.
  • the outlet of the ball outlet channel 109 is arranged tangentially to the inner cylinder wall 408 of the barrel 407. After leaving the ball outlet channel 109, the spherical element 1 causes its own weight and inertial fall under the guidance of the ball outlet channel 109.
  • the falling trajectory of the sphere center forms the guide trajectory 110.
  • the trajectory of the ball center motion may be the rebound trajectory 111 or the roll-off trajectory 112.
  • the rebound trajectory 111 may intersect the cylinder wall on the other side, so that the spherical element 1 collides with the inner cylinder wall 408 again to decelerate and then fall, or the rebound distance is not enough to reach the inner cylinder wall 408 and fall to the opposite tapered section 405 , After which it bounced slightly or rolled down the inclined silo 504.
  • the speed at which the spherical element 1 finally falls to the inclined silo 504 is low, or it rolls directly along the wall of the inclined barrel 503 to the discharge bin 507, or the inclined barrel
  • the wall surface of 503 bounces slightly toward the discharge bin 507 after the wall surface of the inclined silo 504 rebounds slightly.
  • the silo external member 300 includes at least a cooling water jacket 314 disposed outside the silo 407.
  • the shielding module 200 includes an outer shield 202 provided outside the barrel 407, a neutron shield 203 provided outside the outer shield 202, and an inner shield 205 provided inside the box.
  • the inner shield 205 is provided on the upper part of the discharge bin 507.
  • a shield pressing plate 204 is installed on the upper ends of the outer shield 202 and the neutron shield 203, and the shield pressing plate 204 is connected to the charging body.
  • the outer shield 202 includes a steel barrel 206 and a lead shield 207 disposed in the steel barrel 206.
  • the lead shield 207 is formed by pouring pure lead liquid.
  • the design capacity of the silo is 4000 spherical elements 1. If it is necessary to further reduce the number of relevant atmosphere switching valve actions to ensure the life of the valve, the design capacity of the silo can be increased. Under the design capacity of 4000 spherical elements 1, after calculation and analysis, due to the residual heat of the spherical element 1, the inner wall and internal helium temperature of the barrel 407 will reach 250 °C, and the temperature at the neutron shield 203 It will also exceed 100°C, resulting in a layer softening phenomenon in the neutron shield 203 and loss of support strength. If the design capacity is increased, the temperature of the barrel 407 and the neutron shield 203 will be higher, thereby affecting the mechanical strength of the barrel 407 and the neutron shield 203.
  • a semicircular tube cooling water jacket 314 is provided on the outer wall of the barrel 407.
  • the cooling water jacket 314 is connected to the cooling water inlet 307 through a water inlet pipe, and the cooling water jacket 314 is connected to the cooling water outlet 308 through a water outlet pipe.
  • the unloading mechanism 600 includes a power mechanism 601, a transmission mechanism 602, and an actuator 603 connected in order from top to bottom.
  • the power mechanism 601 includes a motor and a reducer connected to the motor.
  • the transmission mechanism 602 uses a magnetic actuator, and uses its non-contact soft connection transmission characteristics to convert the dynamic seal into a static seal to achieve a zero-leakage seal against radioactive helium.
  • the actuator 603 includes a vertical shaft system 605 and a turntable assembly 608 with multiple retrieving holes 609.
  • the shaft system 605 includes a withdrawal bearing sleeve 606, and the withdrawal bearing sleeve 606 is detachably connected to the spindle bearing 607.
  • the turntable assembly 608 rotates synchronously with it.
  • the plurality of reclaiming holes 609 provided on the turntable assembly 608 can obtain the spherical element 1 from the silo ball bed 506 And unload them one by one.
  • the bearing of the shafting 605 operates at light load and low speed, so the bearing has a long service life and reliable operation.
  • the shielding module 200 further includes a motor shield 201 provided outside the power mechanism 601.
  • the motor shield 201 is a steel sleeve, which can protect the power mechanism 601 from excessive cumulative ⁇ -ray dose irradiation, thereby prolonging the service life of the power mechanism 601.
  • the discharge temporary storage device described in the embodiment of the present application is discharged into the device through the HTR-PM double stack discharge line, so two goal takeovers 309 are provided, and two goal takeovers 309 and two goals respectively
  • the channels correspond to each other, and the two goal channels correspond to the two ball outlet pipes 108, respectively.
  • the HTR-PM dual reactor can work in two modes to ensure the reliability of the system.
  • One is that the two unloading temporary storage devices are respectively connected to the two reactors, and perform independent spherical element reception, Temporary storage and unloading functions.
  • the second is that one of the temporary unloading storage devices simultaneously performs the functions of receiving, temporarily storing and unloading the dual-stack spherical elements.
  • All spherical elements 1 are finally pneumatically transported to the spherical element storage system for temporary storage in the field through the pipeline downstream of the unloading temporary storage device.
  • the discharge temporary storage device described in the application performs the discharge operation of the spherical element, and there is no need to additionally provide a complete function, complex structure, and independent crushing ball separator.
  • the bottom guard plate assembly 508 includes a bottom arc plate 511, and a deflector 513 matching the shape of the scraper 610 of the turntable assembly 608 is provided on the upper surface of the bottom arc plate 511.
  • a spherical element outlet 510 and a dust outlet 509 are provided on the diversion groove 513, and the spherical element outlet 510 and the dust outlet 509 are disposed on opposite sides of the diversion groove 513.
  • a dust leakage member 512 is also provided in the diversion groove 513, and the dust leakage member 512 is installed above the dust outlet 509.
  • the dust outlet 509 is connected to the dust take-over 302, and the spherical element outlet 510 is connected to the ball take-out 301.
  • the dust leakage member 512 includes a dust leakage member body provided with a first debris port 514 and a second debris port 516, and the first debris port 514 and the second debris port 516 There is a guide bridge 515. The first debris port 514 and the second debris port 516 communicate with the dust outlet 509 respectively.
  • the spherical element 1 When the turntable assembly 608 rotates, the spherical element 1, dust and debris enter the reclaim hole 609 under the action of gravity flow, and when the rotation continues, the scraper 610 pushes the spherical element 1 forward, and the dust and debris pass through the The first debris port 514 and the second debris port 516 of the dust leaking piece 512 enter the dust outlet 509 and then enter the dust take-over 302, and finally leak into the downstream dust tube through the dust take-over 302 for collection and temporary storage.
  • the silo external member 300 further includes a first disturbance mechanism 312 and a second drive mechanism 313, the first disturbance mechanism 312 and the second drive mechanism 313 are respectively installed on the inner liner barrel 502 and the secondary gear After board 505.
  • the first disturbing mechanism 312 and the second driving mechanism 313 respectively include push rods, and once the connecting arch is formed at the two intercepting dams of the inner lining cylinder 502 and the secondary baffle 505, the turntable assembly 608 fails After the spherical element 1 is obtained, the corresponding electromagnetic drive mechanism can be instructed by the DCS of the nuclear power plant, and the arch can be broken through the push rod to ensure smooth discharge.
  • the unloading process flow of the spherical element includes three stages: stage a. Unloading the spherical element 1 from the core. Stage b: The spherical element 1 is received, temporarily stored and unloaded via the unloading temporary storage device. Stage c, until finally transferred to the spherical component storage system for temporary storage in the factory.
  • stage a and stage c is high pressure, radioactive helium gas connected to the core and the atmosphere communicating with the outside world, so the atmosphere must be switched in stage b to ensure the purity of the core helium gas and avoid the emission of radioactive helium gas Into the atmosphere.
  • the silo external member 300 further includes an intake pipe port 306, an exhaust pipe port 305, a pressure measuring point 311 and a temperature measuring point 310.
  • the exhaust pipe port 305 is used to discharge helium gas to the helium gas purification and storage system, and to perform vacuum exhaust after normal pressure.
  • the intake port 306 is used to supplement helium from the helium purification and storage system.
  • the pressure measuring point 311 and the temperature measuring point 310 are used to detect the pressure and temperature in the silo.
  • the goal path is not limited to two paths, but may be one path or multiple paths of two or more paths.
  • the discharge is not limited to spent fuel spherical elements, but can be other spherical materials. Due to the difference in spherical material quality, scoring path and initial velocity, the height and inner diameter of the barrel, the length and angle of the tapered section, it can be passed Change the lengths of diversion holes and overflow holes, the length, angle and direction of the ball channel, and change the guide trajectory to make it collide with the cylinder wall, tapered section, and inclined material cylinder with different strengths and times to slow down and buffer.
  • the charging module 100 restricts, guides, and buffers the spherical element, mainly for the case where the inclined silo 504 has no spherical element.
  • the inclined silo 504 has spherical element
  • the ball bed 506 has a good cushioning effect, so that the falling ball has little effect on the spherical elements and equipment.
  • the discharge temporary storage device described in the embodiment of the present application is provided with two scoring paths, and based on the existing design scheme, the working condition of two simultaneous scoring goals will not occur, so a stack close to the discharge hole will be formed after full load
  • the effective capacity of the barrel is limited. For the case where multiple channels score at the same time, the barrel capacity needs to be relatively increased.
  • the temporary discharge device for discharging described in the embodiment of the present application is provided with a cooling water jacket outside the barrel to perform forced cooling, so as to effectively discharge the residual heat of the spherical elements in the silo, thereby ensuring the barrel, silo and The temperature of the spherical element is below the design limit.
  • the temporary storage device for unloading provided by this application is provided with an outer shield and a neutron shield in order outside the barrel to ensure that the surrounding equipment and maintenance personnel are protected from excessive gamma rays and neutron radiation.
  • the temporary storage device for unloading connects the goal channel to the ball outlet pipe to form a redirecting flow channel for the spherical element to change direction flow, which can effectively reduce the speed of the falling ball during the direction change guide and guide function, and no spherical shape will occur.
  • the broken ball of the component eliminates the hidden safety hazard.
  • the temporary storage device for unloading provided by this application can perform functions such as receiving, temporary storage, atmosphere switching and unloading of spherical elements, and can ensure the geometric integrity of spherical elements when receiving spherical elements discharged from the core, and can temporarily store spherical
  • the components reliably perform the safety functions of waste heat removal and ⁇ -ray protection, and have the advantages of compact structure, high reliability, and convenient maintenance.
  • connection and “connected” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or a whole Ground connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediary.
  • connection should be understood in specific situations.

Abstract

一种卸料暂存装置,包括料仓(400)、料仓外部构件(300)、料仓内部构件(500)、屏蔽模组(200)和装料模组(100),料仓(400)包括料筒(407)和箱体(403),料仓外部构件(300)包括冷却水套(314),料仓内部构件(500)包括依次连通的直筒仓(501)、斜筒仓(504)和卸料仓(507),屏蔽模组(200)包括外屏蔽(202)和中子屏蔽(203),装料模组(100)包括装料本体,装料本体中设有进球通道。卸料暂存装置,能够执行球形元件接收、暂存、气氛切换和卸料功能,同时具备保证球形元件几何完整性、放射性防护和余热排出的安全功能,具有结构紧凑、可靠性高、维修方便的优点。

Description

一种卸料暂存装置
相关申请的交叉引用
本申请要求于2018年12月29日提交的申请号为201811636610.5,发明名称为“一种卸料暂存装置”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请涉及反应堆工程技术领域,尤其涉及一种卸料暂存装置。
背景技术
基于现有国际工业阀门制造技术与水平,为了解决核电站寿命期内乏燃料球形元件卸料过程中气氛切换相关阀门的可靠性,需要将卸料暂存装置中乏燃料球形元件的暂存容量加大到4000以上,并可以采用与堆芯卸料装置类似的立式轴系和多孔转盘等结构,解决卸料暂存装置中卸料机构的可靠性与可维修性问题。
但是,与堆芯卸料装置不同,大容量乏燃料球形元件暂存装置需要特殊考虑两种工况,其一是前者仅执行堆芯卸料功能,不考虑装料功能,球形元件可以源源不断地从堆芯和卸料管连续稳定地流入料箱,而后者则是间歇性不稳定地执行乏燃料球形元件的接收、暂存、卸出及碎屑与粉尘收集功能,因而必须同时考虑装料可靠性与卸料可靠性问题,其中装料可靠性主要是指避免装料过程中球形元件及设备结构因装料碰撞而造成损伤。其二是前者的料箱容量约为1500个球形元件,而后者的容量至少为4000个,因而在考虑执行气氛切换和卸料暂存特殊工艺的同时,必须更加关注卸料暂存装置中大量乏燃料球形元件的余热排出和高剂量γ射线的放射性防护等安全问题。
发明内容
(一)要解决的技术问题
本申请的目的是提供一种卸料暂存装置,能够在接收堆芯卸出的乏燃料球形元件时确保球形元件的几何完整性,能够暂存球形元件并可靠地执 行余热排出和γ射线防护的安全功能。
(二)技术方案
为了解决上述技术问题,本申请提供了一种卸料暂存装置,至少包括料仓、料仓外部构件、料仓内部构件、屏蔽模组和装料模组;
所述料仓包括从上到下依次设置的料筒和箱体;
所述料仓外部构件包括设置在所述料筒外部的冷却水套;
所述料仓内部构件包括设置在所述料筒中的直筒仓以及设置在所述箱体中的斜筒仓和卸料仓,所述直筒仓、斜筒仓和卸料仓依次连通;
所述屏蔽模组包括设置在所述料筒外部的外屏蔽以及设置在所述外屏蔽外部的中子屏蔽;
所述装料模组包括设置在料筒顶部的装料本体,所述装料模组包括设置在料筒顶部的装料本体,所述装料本体中设有进球通道,所述装料本体下端连接有出球管道,所述出球管道的一端与所述进球通道相连通,所述出球管道的另一端与所述料筒的筒壁相接触,且所述出球管道的另一端与所述直筒仓相连通,所述进球通道与所述出球管道形成供球形元件变向流动的变向流动通道。
具体地,所述料筒与所述箱体之间通过锥形段相连,所述锥形段包括上大下小的中空锥形腔体,所述锥形腔体的上端与所述直筒仓相连通,所述锥形腔体的下端与所述斜筒仓相连通。
进一步地,所述屏蔽模组还包括设置在所述箱体内部的内屏蔽,所述内屏蔽设置在所述卸料仓上部。
进一步地,所述装料本体包括支撑板、与所述支撑板上端连接的进球件、以及与所述支撑板下端连接的过流件,所述进球件中设有进球孔,所述支撑板中设有导流孔,所述过流件中设有过流孔,所述进球孔、导流孔和过流孔依次连通形成所述进球通道。
具体地,所述进球件上还设有进球接管,所述进球接管与所述进球孔相连通。
具体地,所述出球管道包括相互连接的倾斜管道和竖直管道,其中所述倾斜管道与所述进球通道相连,所述竖直管道与所述料筒的内筒壁相接触。
进一步地,所述料筒的上端安装有进料支座,所述进料支座与所述装料本体相连;在所述外屏蔽和所述中子屏蔽的上端安装有屏蔽压板,所述屏蔽压板与所述装料本体相连。
进一步地,还包括与所述箱体相连的卸料机构,所述卸料机构包括从上到下依次连接的动力机构、传动机构以及执行机构。
具体地,所述屏蔽模组还包括设置在所述动力机构外部的电机屏蔽。
进一步地,所述卸料仓中设有底护板组件,所述底护板组件中设有漏尘件,所述漏尘件与粉尘出口相连,所述粉尘出口与粉尘接管相连。
(三)有益效果
本申请的上述技术方案具有如下优点:
本申请提供的卸料暂存装置,通过在料筒外部设置冷却水套进行强制冷却,从而有效排出料仓内球形元件的余热,进而保证料筒、仓室和球形元件的温度低于设计限值。通过在料筒外部依次设置外屏蔽和中子屏蔽,用以保证周围设备以及维修人员免受过量γ射线和中子的辐照。通过将进球通道与出球管道相连通形成供球形元件变向流动的变向流动通道,在变向导流和导向作用,可以有效降低落球速度,不会发生球形元件落球破损情况,消除了安全隐患。
本申请提供的卸料暂存装置,能够在接收堆芯卸出的球形元件时确保球形元件的几何完整性,能够暂存球形元件并可靠地执行余热排出和γ射线防护的安全功能。
本申请提供的卸料暂存装置,能够执行球形元件接收、暂存、气氛切换和卸料功能,同时具备保证球形元件几何完整性、放射性防护和余热排出的安全功能,具有结构紧凑、可靠性高、维修方便的优点。
附图说明
图1是本申请实施例卸料暂存装置的正面剖视图;
图2是本申请实施例卸料暂存装置的俯视图;
图3是本申请实施例卸料暂存装置中装料模组的结构示意图;
图4是本申请实施例卸料暂存装置中漏尘件的结构示意图;
图5是本申请实施例卸料暂存装置中底护板组件的示意图;
图6是本申请实施例卸料暂存装置中转盘组件的示意图。
图中:
1:球形元件;
100:装料模组;101:支撑板;102:过流件;103:进球件;104:进球孔;105:导流孔;106:过流孔;107:变向限流轨迹;108:出球管道;109:出球通道;110:导向轨迹;111:反弹轨迹;112:滚落轨迹;
200:屏蔽模组;201:电机屏蔽;202:外屏蔽;203:中子屏蔽;204:屏蔽压板;205:内屏蔽;206:钢质筒框;207:铅屏蔽体;
300:料仓外部构件;301:出球接管;302:粉尘接管;303:吊环;304:第一盲板;305:排气管口;306:进气管口;307:冷却水入口;308:冷却水出口;309:进球接管;310:温度测点;311:压力测点;312:第一扰动机构;313:第二扰动机构;314:冷却水套;
400:料仓;401:端法兰;402:轴承座套;403:箱体;404:第二盲板;405:锥形段;406:锥形面;407:料筒;408:内筒壁;409:进料支座;
500:料仓内部构件;501:直筒仓;502:内衬筒;503:斜料筒;504:斜筒仓;505:二次挡板;506:球床;507:卸料仓;508:底护板组件;509:粉尘出口;510:球形元件出口;511:底弧板;512:漏尘件;513:导流槽;514:第一碎屑口;515:导料桥;516:第二碎屑口;
600:卸料机构;601:动力机构;602:传动机构;603:执行机构;604:止推轴承;605:轴系;606:退卸轴承套;607:主轴轴承;608:转盘组件;609:取料孔;610:刮板。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1-6所示,本申请实施例提供一种卸料暂存装置,包括装料模组100、屏蔽模组200、料仓外部构件300、料仓400、料仓内部构件500和卸料机构600。
所述料仓400是由端法兰401、轴承座套402、箱体403、第二盲板404和料筒407相互连接构成的一个包容氦气的承压装置,同时也用于支撑所述装料模组100、屏蔽模组200、料仓外部构件300、料仓内部构件500和卸料机构600。所述料筒407位于所述箱体403上方,所述箱体403与所述料筒407之间连接有过渡锥形段405,所述锥形段405包括上大下小的中空锥形腔体。所述料筒407顶部还设有进料支座409。
本申请实施例所述的卸料暂存装置,是介于堆芯燃料循环和乏燃料球形元件厂内贮存之间重要的中端工艺设备,由于前端堆芯和后端球形元件贮存系统气氛不同,通常是连续向球形元件贮存系统输送球形元件,也即,卸完暂存装置内的球形元件后再进行装料操作。受安装空间限制,所述卸料暂存装置需要采取紧凑、简单的结构。为此,在所述料筒407顶部设有进料支座409,所述进料支座409可以与所述料筒407焊接为一体。所述料筒407通过所述进料支座409与所述装料模组100进行连接。
所述料仓内部构件500包括设置在所述料筒407中的直筒仓501、设置在所述箱体403中的斜料筒503、以及设置在所述箱体403中的卸料仓507,所述斜料筒503中设有斜筒仓504,所述直筒仓501、斜筒仓504和卸料仓507依次连通。所述锥形腔体的上端与所述直筒仓501相连通,所述锥形腔体的下端与所述斜筒仓504相连通。所述卸料仓507中设有底护板组件508,所述底护板组件508与所述斜料筒503的左端相连。在所述斜料筒503的顶部内壁上悬挂连接有二次挡板505,所述二次挡板505设置于所述斜料筒503上靠近所述卸料仓507的位置处。所述斜筒仓504上方设有内衬筒502,所述内衬筒502与所述锥形段405的底部内壁相连,所述内衬筒502的下部呈曲面铲结构,从而与所述斜筒仓504的曲面基本对应,用以形成一道球流拦截坝。
所述直筒仓501、斜筒仓504和卸料仓507共同构成一个现场暂存球形元件1的大容量料仓。在本实施例中,该料仓总容积为4000个球形元件。在所述料仓内利用所述内衬筒502和所述二次挡板505形成两道截流坝,以减小料仓内球床506对所述卸料机构600的压力。在转盘组件608转动过程中,便于料仓内的球形元件1顺利进入取料孔609。
由于从堆芯卸出的球形元件1首先要经过一次氦气气力输送后,以一 定的初速度进入本申请实施例所述的卸料暂存装置。一方面,本实施例中直筒仓501及斜筒仓504的内空高度接近2米,球形元件1到达料仓底部或球床506时将具备一定的末速度。由于所述球形元件1通常都已经过一次装料、15次循环和一次卸料提升,在经历多次不同落差的自由下落、气力输送和堆内流动后,相对于初始设计限制,球形元件1强度将发生不同程度的降低。如果球形元件1直接下落到所述斜料筒503,落球速度过大可能导致破损。另一方面,由于球形元件1与斜料筒503碰撞后反弹,如果速度过大,将与内衬筒502的下部曲面铲碰撞,也容易产生咬伤。
故此,本实施例中,在球形元件进入卸料暂存装置处设置了所述装料模组100,用于减缓上游球形元件1的下落速度、改变其运动轨迹,避免碰撞破损。
所述装料模组100包括设置在料筒407上方的装料本体,所述装料本体中设有进球通道,所述装料本体下端连接有出球管道108,所述出球管道108的一端与所述进球通道相连通,所述出球管道108的另一端与所述料筒407的内筒壁408相接触,且所述出球管道108的另一端与所述直筒仓501相连通。
其中,所述装料本体包括支撑板101、与所述支撑板101上端连接的进球件103、以及与所述支撑板101下端连接的过流件102,所述进球件103设有进球孔104,所述进球孔104为变向通道。所述支撑板101设有导流孔105,所述导流孔105为竖直向通道。所述过流件102设有过流孔106,所述过流孔106为变向通道。所述进球孔104、导流孔105和过流孔106等径依次连通形成所述进球通道。
其中,所述进球件103上还设有进球接管309,所述进球接管309与所述进球孔104相连通。
其中,所述出球管道108包括倾斜管道和竖直管道,其中所述倾斜管道与所述过流孔106相连通,所述竖直管道与所述料筒407的内筒壁408相接触。所述倾斜管道与所述竖直管道相连通形成变向的出球通道109。
其中,所述进球通道与所述出球通道109形成供球形元件1变向流动的变向流动通道。
其中,所述进料支座409设有安装孔,所述过流件102紧固安装在所 述安装孔中,所述支撑板101与所述进料支座409的上端紧固连接。所述进料支座409设有过球孔,所述进球通道、所述过球孔以及所述出球通道109依次等径连通,所述球形元件1依次通过所述进球通道、所述过球孔以及所述出球通道109时,所述球形元件1的球心将形成一条3次折弯的变向限流轨迹107。
所述球形元件1沿着变向限流轨迹107流动时,由于限流轨迹107的三次变向,球形元件1在3个变向处发生碰撞,每次碰撞都有部分动量转化为冲量,从而每次得以缓冲减速。所述出球通道109的出口与所述料筒407的内筒壁408相切设置,离开出球通道109后,在出球通道109的导流作用下,球形元件1引起自重和惯性下落,球心的下落轨迹形成导向轨迹110。当下落到锥形段405时,在锥形面406处发生碰撞而缓冲减速,之后的球心运动轨迹可能是反弹轨迹111,或者是滚落轨迹112。其中反弹轨迹111可能与另一侧的筒壁相交,从而使球形元件1再次与内筒壁408碰撞减速后下落,或者反弹距离不足以到达内筒壁408而下落到对侧的锥形段405,之后轻微反弹或向斜筒仓504滚落。无论是反弹轨迹111,还是直接过滚落轨迹112,球形元件1最终下落到斜筒仓504的速度均较低,或者直接沿斜料筒503壁面滚落到卸料仓507,或者斜料筒503壁面经斜筒仓504壁面轻微反弹后向卸料仓507滚落。
本申请经由出球通道109后的导向轨迹110落球,与现有技术经由导流孔从中心直接下落,这两种情况经过对比实验表明,在斜筒仓504内没有形成球床506前,现有技术只是1~2次缓冲,其损伤率高达30%以上,而本申请经过了多次缓冲,损伤率小于1%。其原因在于,在经过进球件103、过流件102、出球管道108、锥形段405以及斜筒仓504壁面机械缓冲后,球形元件1下落速度能够得到有效控制和总体减缓。
所述料仓外部构件300至少包括设置在所述料筒407外部的冷却水套314。
所述屏蔽模组200包括设置在所述料筒407外部的外屏蔽202、设置在所述外屏蔽202外部的中子屏蔽203、以及设置在所述箱体内部的内屏蔽205。所述内屏蔽205设置在所述卸料仓507上部。在所述外屏蔽202和所述中子屏蔽203的上端安装有屏蔽压板204,所述屏蔽压板204与所 述装料本体相连。
对于大容量直筒仓501内的球形元件1,必须同时考虑对γ射线和中子辐照的防护,通过在料筒407外部分别设置外屏蔽202和含硼聚乙烯中子屏蔽203,以确保维修人员安全。其中外屏蔽202包括钢质筒框206以及设置在所述钢质筒框206中的铅屏蔽体207,所述铅屏蔽体207由纯铅液浇注而形。
本实施例所述卸料暂存装置,料仓设计容量为4000个球形元件1,如需进一步减小相关气氛切换阀门动作次数,以保证阀门寿命,可以增大料仓设计容量。在4000个球形元件1的设计容量下,经计算分析,由于球形元件球形元件1的余热作用,料筒407的内壁和内部氦气温度将达到250℃,而所述中子屏蔽203处的温度也将超过100℃,导致中子屏蔽203出现层软化现象而失去支撑强度。如果加大设计容量,料筒407和中子屏蔽203的温度将更高,从而影响料筒407和中子屏蔽203的机械强度。
为改善上述运行工况,在本申请的实施例中,在所述料筒407外壁设置了半圆管冷却水套314。所述冷却水套314通过进水管路与冷却水入口307相连,所述冷却水套314通过出水管路与冷却水出口308相连。通过设置所述冷却水套314,一方面能够利用冷却水对料筒407实施强制冷却,另一方面保证中子屏蔽203不超温软化。
所述卸料机构600包括从上到下依次连接的动力机构601、传动机构602以及执行机构603。
本实施例中,所述动力机构601包括电机以及与所述电机连接的减速机。
本实施例中,传动机构602采用磁力传动器,利用其无接触软连接传动特性,将动密封转化为静密封,实现对放射性氦气的零泄漏密封。
本实施例中,所述执行机构603包括立式轴系605以及带有多个取料孔609的转盘组件608。其中,所述轴系605包括退卸轴承套606,所述退卸轴承套606与主轴轴承607可拆卸连接。
当电机通过磁力传动器带动轴系605转动时,所述转盘组件608随之同步转动,所述转盘组件608上设置的多个取料孔609,能够从料仓球床506内取得球形元件1,并逐一卸出。本实施例中,所述轴系605的轴承 工作在轻载低速下,因而轴承运行寿命长,运转可靠。
具体地,所述屏蔽模组200还包括设置在所述动力机构601外部的电机屏蔽201。所述电机屏蔽201为一个钢套,能够保护所述动力机构601免受过度的累积γ射线剂量照射,从而延长所述动力机构601的使用寿命。
本申请实施例所述的卸料暂存装置,通过HTR-PM双堆卸料管路向装置内卸料,因此设置了两个进球接管309,两个进球接管309分别与两个进球通道对应连通,两个进球通道分别与两个出球管道108对应连通。
对于HTR-PM双堆而言,可以按照两种模式工作,以保证系统运行可靠性,其一是两台所述卸料暂存装置分别与两座反应堆对应连接,执行独立的球形元件接收、暂存和卸料功能。其二是一台所述卸料暂存装置同时执行双堆球形元件的接收、暂存和卸料功能。
所有球形元件1最终均通过卸料暂存装置下游的管路气力输送至球形元件贮存系统作场内暂存,输送过程中,无需安装外形和尺寸严格区分完好球与碎球,因此,基于本申请所述的卸料暂存装置进行球形元件的卸料操作,无需额外设置功能完备、结构复杂、独立的碎球分离器。
所述底护板组件508包括底弧板511,所述底弧板511的上表面设有与所述转盘组件608的刮板610形状匹配的导流槽513。在所述导流槽513上设有球形元件出口510和粉尘出口509,所述球形元件出口510和粉尘出口509设置在所述导流槽513的相对两侧。所述导流槽513中还设有漏尘件512,所述漏尘件512安装于所述粉尘出口509上方。所述粉尘出口509与粉尘接管302相连,所述球形元件出口510与出球接管301相连。
所述漏尘件512包括漏尘件本体,所述漏尘件本体设有第一碎屑口514和第二碎屑口516,所述第一碎屑口514和第二碎屑口516之间设有导料桥515。所述第一碎屑口514和第二碎屑口516分别与所述粉尘出口509相连通。
当所述转盘组件608转动时,球形元件1、粉尘和碎屑在重力流作用下,进入取料孔609,继续转动时,刮板610推动球形元件1前行,粉尘和碎屑则通过所述漏尘件512的第一碎屑口514和第二碎屑口516进入所述粉尘出口509,进而进入粉尘接管302中,最终通过粉尘接管302漏入下游粉尘管收集并暂存。
所述料仓外部构件300还包括第一扰动机构312和第二驱动机构313,所述第一扰动机构312和第二驱动机构313分别对应安装于所述内衬筒502和所述二次挡板505后。所述第一扰动机构312和第二驱动机构313分别包括推杆,一旦在所述内衬筒502和所述二次挡板505两道截流坝处形成接拱,导致所述转盘组件608无法取到球形元件1,就可以通过核电站DCS指令相应电磁驱动机构,通过所述推杆进行扰动破拱,以保证卸料畅通。
本申请实施例所述的卸料暂存装置,球形元件的卸料工艺流程包括三个阶段:阶段a、从堆芯卸出球形元件1。阶段b、经由所述卸料暂存装置进行球形元件1的接收、暂存和卸料。阶段c、直到最终输送至球形元件贮存系统作厂内暂存。其中,阶段a和阶段c的环境分别为与堆芯连通的高压、放射性氦气和与外界相通的大气,因而阶段b必须进行气氛切换,以保证堆芯氦气的纯度,避免放射性氦气排入大气。
为此,所述料仓外部构件300还包括进气管口306、排气管口305、压力测点311和温度测点310。在隔离堆芯与大气气氛后,排气管口305用于向氦气净化与贮存系统排放氦气,并在常压后进行抽真空排放。进气管口306则用于从氦气净化与贮存系统补充氦气。压力测点311和温度测点310用于检测料仓内的压力与温度。
本申请实施例所述的卸料暂存装置,进球路径并不限于两路,可以是一路或两路以上的多路。实际情况下,卸料不限于乏燃料球形元件,可以是其他球形物料,由于球形物料质量、进球路径和初速度的不同、料筒高度与内径不同、锥形段长度与角度不同,可以通过改变导流孔和过流孔长度、出球通道长度、角度及方向等参数,改变导向轨迹,使之与筒壁、锥形段、斜料筒发生不同强度和次数的碰撞以减速缓冲。
本申请实施例所述的卸料暂存装置,装料模组100对球形元件的限流、导向与缓冲作用,主要针对斜筒仓504无球形元件的情况,当斜筒仓504有球形元件的情况下,球床506具有很好的缓冲作用,从而落球对球形元件和设备影响不大。
本申请实施例所述的卸料暂存装置,设置了两个进球路径,基于现有设计方案,不会发生两路同时进球的工况,故满载后形成一个靠近出料孔 的堆积面,料筒有效容量有一定限制。对于多个通路同时进球的情况,料筒容量需要相对增大。
综上所述,本申请实施例所述的卸料暂存装置,通过在料筒外部设置冷却水套进行强制冷却,从而有效排出料仓内球形元件的余热,进而保证料筒、仓室和球形元件的温度低于设计限值。
本申请提供的卸料暂存装置,通过在料筒外部依次设置外屏蔽和中子屏蔽,用以保证周围设备以及维修人员免受过量γ射线和中子的辐照。
本申请提供的卸料暂存装置,将进球通道与出球管道相连通形成供球形元件变向流动的变向流动通道,在变向导流和导向作用可以有效降低落球速度,不会发生球形元件落球破损情况,消除了安全隐患。,
本申请提供的卸料暂存装置,能够执行球形元件接收、暂存、气氛切换和卸料等功能,能够在接收堆芯卸出的球形元件时确保球形元件的几何完整性,能够暂存球形元件并可靠地执行余热排出和γ射线防护的安全功能,具有结构紧凑、可靠性高、维修方便的优点。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本申请的描述中,除非另有说明,“若干”的含义是一个或多个;“多个”的含义是两个或两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的机或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种卸料暂存装置,其特征在于:至少包括料仓、料仓外部构件、料仓内部构件、屏蔽模组和装料模组;
    所述料仓包括从上到下依次设置的料筒和箱体;
    所述料仓外部构件包括设置在所述料筒外部的冷却水套;
    所述料仓内部构件包括设置在所述料筒中的直筒仓以及设置在所述箱体中的斜筒仓和卸料仓,所述直筒仓、斜筒仓和卸料仓依次连通;
    所述屏蔽模组包括设置在所述料筒外部的外屏蔽以及设置在所述外屏蔽外部的中子屏蔽;
    所述装料模组包括设置在料筒顶部的装料本体,所述装料本体中设有进球通道,所述装料本体下端连接有出球管道,所述出球管道的一端与所述进球通道相连通,所述出球管道的另一端与所述料筒的筒壁相接触,且所述出球管道的另一端与所述直筒仓相连通,所述进球通道与所述出球管道形成供球形元件变向流动的变向流动通道。
  2. 根据权利要求1所述的卸料暂存装置,其特征在于:所述料筒与所述箱体之间通过锥形段相连,所述锥形段包括上大下小的中空锥形腔体,所述锥形腔体的上端与所述直筒仓相连通,所述锥形腔体的下端与所述斜筒仓相连通。
  3. 根据权利要求1所述的卸料暂存装置,其特征在于:所述屏蔽模组还包括设置在所述箱体内部的内屏蔽,所述内屏蔽设置在所述卸料仓上部。
  4. 根据权利要求1所述的卸料暂存装置,其特征在于:所述装料本体包括支撑板、与所述支撑板上端连接的进球件、以及与所述支撑板下端连接的过流件,所述进球件中设有进球孔,所述支撑板中设有导流孔,所述过流件中设有过流孔,所述进球孔、导流孔和过流孔依次连通形成所述进球通道。
  5. 根据权利要求4所述的卸料暂存装置,其特征在于:所述进球件上还设有进球接管,所述进球接管与所述进球孔相连通。
  6. 根据权利要求4所述的卸料暂存装置,其特征在于:所述出球管道包括相互连接的倾斜管道和竖直管道,其中所述倾斜管道与所述进球通 道相连,所述竖直管道与所述料筒的内筒壁相接触。
  7. 根据权利要求1所述的卸料暂存装置,其特征在于:所述料筒的上端安装有进料支座,所述进料支座与所述装料本体相连;在所述外屏蔽和所述中子屏蔽的上端安装有屏蔽压板,所述屏蔽压板与所述装料本体相连。
  8. 根据权利要求1所述的卸料暂存装置,其特征在于:还包括与所述箱体相连的卸料机构,所述卸料机构包括从上到下依次连接的动力机构、传动机构以及执行机构。
  9. 根据权利要求8所述的卸料暂存装置,其特征在于:所述屏蔽模组还包括设置在所述动力机构外部的电机屏蔽。
  10. 根据权利要求1所述的卸料暂存装置,其特征在于:所述卸料仓中设有底护板组件,所述底护板组件中设有漏尘件,所述漏尘件与粉尘出口相连,所述粉尘出口与粉尘接管相连。
PCT/CN2019/098593 2018-12-29 2019-07-31 一种卸料暂存装置 WO2020134076A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19902303.7A EP3886118B1 (en) 2018-12-29 2019-07-31 Unloading and temporary storage device
US17/258,322 US11887740B2 (en) 2018-12-29 2019-07-31 Unloading and temporary storage device
KR1020207015555A KR102342415B1 (ko) 2018-12-29 2019-07-31 인출 연료 임시 저장 장치
RU2020141030A RU2748758C1 (ru) 2018-12-29 2019-07-31 Устройство выгрузки и временного хранения
JP2020545321A JP6957766B2 (ja) 2018-12-29 2019-07-31 アンロード及び一時保管用装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811636610.5A CN109616235B (zh) 2018-12-29 2018-12-29 一种卸料暂存装置
CN201811636610.5 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020134076A1 true WO2020134076A1 (zh) 2020-07-02

Family

ID=66016624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098593 WO2020134076A1 (zh) 2018-12-29 2019-07-31 一种卸料暂存装置

Country Status (7)

Country Link
US (1) US11887740B2 (zh)
EP (1) EP3886118B1 (zh)
JP (1) JP6957766B2 (zh)
KR (1) KR102342415B1 (zh)
CN (1) CN109616235B (zh)
RU (1) RU2748758C1 (zh)
WO (1) WO2020134076A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113223742A (zh) * 2021-04-19 2021-08-06 中广核工程有限公司 辐射屏蔽及隔热装置
CN115295193A (zh) * 2022-08-19 2022-11-04 华能山东石岛湾核电有限公司 一种燃料元件的提升装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109607240B (zh) 2018-12-29 2020-02-11 清华大学 一种卸料装置
CN109616235B (zh) 2018-12-29 2020-05-05 清华大学 一种卸料暂存装置
CN112191287B (zh) * 2020-09-30 2021-11-02 中国核动力研究设计院 一种高温熔融物全自动释放机构及其控制方法
CN113593737B (zh) * 2021-07-14 2024-03-08 中国科学院上海应用物理研究所 一种自动卸料装置
CN113482924B (zh) * 2021-08-03 2022-07-05 华能山东石岛湾核电有限公司 一种基于乏燃料输送系统的风机工作频率确定方法及系统
CN115295195A (zh) 2022-08-15 2022-11-04 清华大学 高温气冷堆抽吸装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1790552A (zh) * 2004-12-16 2006-06-21 中国核动力研究设计院 直行式核反应堆燃料组件换料装卸工艺
CN102855951A (zh) * 2012-09-27 2013-01-02 清华大学 球床高温堆的新燃料装料暂存装置
CN102881343A (zh) * 2012-09-29 2013-01-16 清华大学 球床高温堆乏燃料卸料暂存装置
JP2013156133A (ja) * 2012-01-30 2013-08-15 Toshiba Corp 原子炉内燃料取出し方法及び装置
CN105603139A (zh) * 2015-11-26 2016-05-25 中冶赛迪工程技术股份有限公司 一种物料二次分配系统
CN109616235A (zh) * 2018-12-29 2019-04-12 清华大学 一种卸料暂存装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2929790A1 (de) * 1979-07-23 1981-02-12 Kraftwerk Union Ag Lager fuer verbrauchte laengliche brennelemente
DE3404905A1 (de) 1984-02-11 1985-08-14 Hochtemperatur-Reaktorbau GmbH, 4600 Dortmund Hochtemperaturreaktor mittlerer leistung
JP4043206B2 (ja) * 2001-06-29 2008-02-06 三菱重工業株式会社 放射性物質の輸送用容器、および密閉容器の装填方法
CA2580378C (en) * 2004-09-15 2013-01-22 Pebble Bed Modular Reactor (Proprietary) Limited Storage of nuclear fuel
JP2007225524A (ja) * 2006-02-24 2007-09-06 Mitsubishi Heavy Ind Ltd キャスク並びにキャスクの真空乾燥方法及び装置
JP4686437B2 (ja) * 2006-11-15 2011-05-25 日立Geニュークリア・エナジー株式会社 金属キャスクの中性子遮へい材の施工方法およびその施工方法により製作された金属キャスク
JP4966214B2 (ja) * 2008-01-21 2012-07-04 東京電力株式会社 使用済燃料の熱回収システム
RU2408099C2 (ru) * 2008-11-26 2010-12-27 Открытое акционерное общество "Центральное конструкторское бюро машиностроения" Устройство перегрузки блоков с отработавшими тепловыделяющими сборками
JP2010223844A (ja) * 2009-03-25 2010-10-07 Hitachi-Ge Nuclear Energy Ltd 可動翼列型スリットを有する遮へいルーバ
CN102097144B (zh) * 2010-11-02 2012-11-14 清华大学 应用于高温气冷堆的球形元件单一化输送装置
JP5875942B2 (ja) * 2012-06-08 2016-03-02 日立Geニュークリア・エナジー株式会社 放射性物質貯蔵施設
US10902962B2 (en) 2015-12-31 2021-01-26 Tsinghua University Nuclear power plant spent fuel negative pressure unloading system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1790552A (zh) * 2004-12-16 2006-06-21 中国核动力研究设计院 直行式核反应堆燃料组件换料装卸工艺
JP2013156133A (ja) * 2012-01-30 2013-08-15 Toshiba Corp 原子炉内燃料取出し方法及び装置
CN102855951A (zh) * 2012-09-27 2013-01-02 清华大学 球床高温堆的新燃料装料暂存装置
CN102881343A (zh) * 2012-09-29 2013-01-16 清华大学 球床高温堆乏燃料卸料暂存装置
CN105603139A (zh) * 2015-11-26 2016-05-25 中冶赛迪工程技术股份有限公司 一种物料二次分配系统
CN109616235A (zh) * 2018-12-29 2019-04-12 清华大学 一种卸料暂存装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113223742A (zh) * 2021-04-19 2021-08-06 中广核工程有限公司 辐射屏蔽及隔热装置
CN115295193A (zh) * 2022-08-19 2022-11-04 华能山东石岛湾核电有限公司 一种燃料元件的提升装置
CN115295193B (zh) * 2022-08-19 2024-02-23 华能山东石岛湾核电有限公司 一种燃料元件的提升装置

Also Published As

Publication number Publication date
EP3886118B1 (en) 2023-09-06
RU2748758C1 (ru) 2021-05-31
US20210272712A1 (en) 2021-09-02
CN109616235A (zh) 2019-04-12
EP3886118C0 (en) 2023-09-06
JP2021520481A (ja) 2021-08-19
KR20200083547A (ko) 2020-07-08
JP6957766B2 (ja) 2021-11-02
KR102342415B1 (ko) 2021-12-23
EP3886118A1 (en) 2021-09-29
CN109616235B (zh) 2020-05-05
US11887740B2 (en) 2024-01-30
EP3886118A4 (en) 2022-02-23

Similar Documents

Publication Publication Date Title
WO2020134076A1 (zh) 一种卸料暂存装置
EP2727117B1 (en) System and method for pneumatically lifting fuel elements of pebble-bed reactor group by group
CN103474113B (zh) 球床模块式高温气冷堆燃料装卸系统
CN105066718B (zh) 一种烧结余热综合利用系统
CN101853708B (zh) 一种球形物料缓冲输送装置
EP3399526B1 (en) Nuclear power plant spent fuel negative pressure unloading system
CN115083642B (zh) 高温气冷堆燃料元件输送系统及高温气冷堆系统
CN102881343B (zh) 球床高温堆乏燃料卸料暂存装置
CN1447342A (zh) 应用于气冷反应堆的吸收球第二停堆系统
CN1327453C (zh) 球床高温气冷堆双径球碎球分选装置
WO2020134074A1 (zh) 一种卸料装置
CN101777397B (zh) 高温气冷堆堆芯进球装置
CN102262907B (zh) 一种高温气冷堆吸收球气力输送供料器及输送系统
CN101770825B (zh) 高温气冷堆一体化卸料装置
CN210516242U (zh) 一种自动扶梯式燃料传输装置
CN102855951B (zh) 球床高温堆的新燃料装料暂存装置
CN115410733A (zh) 一种高温气冷堆用吊篮式燃料球传输系统
CN115148385B (zh) 一种球床堆堆芯卸料装置和方法
CN209697054U (zh) 一种中速磨煤机
CN108931140B (zh) 塔式烧结矿冷却机及烧结矿冷却方法
CN115064295B (zh) 一种利用重水堆核电站生产放射性同位素的系统和方法
CN115206565A (zh) 一种多功能阻流锁气的装置和方法
CN219003803U (zh) 一种高温气冷堆燃料装卸系统的碎球分选装置
CN1384507A (zh) 球床型高温气冷堆双区堆芯交界面的测定方法及装置
CN115295192B (zh) 一种使用流体驱动在重水堆中装卸靶件的装置和方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20207015555

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902303

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020545321

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019902303

Country of ref document: EP

Effective date: 20210113