WO2020133955A1 - 一种带孔型产气剂模压制品及其制备工艺 - Google Patents

一种带孔型产气剂模压制品及其制备工艺 Download PDF

Info

Publication number
WO2020133955A1
WO2020133955A1 PCT/CN2019/091615 CN2019091615W WO2020133955A1 WO 2020133955 A1 WO2020133955 A1 WO 2020133955A1 CN 2019091615 W CN2019091615 W CN 2019091615W WO 2020133955 A1 WO2020133955 A1 WO 2020133955A1
Authority
WO
WIPO (PCT)
Prior art keywords
generating agent
molded product
hole
gas
range
Prior art date
Application number
PCT/CN2019/091615
Other languages
English (en)
French (fr)
Inventor
罗运强
王秋雨
任响宁
杨志雄
杜涛
王晨
张俊
付文斌
张印明
刘柳
Original Assignee
湖北航鹏化学动力科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北航鹏化学动力科技有限责任公司 filed Critical 湖北航鹏化学动力科技有限责任公司
Publication of WO2020133955A1 publication Critical patent/WO2020133955A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B31/00Compositions containing an inorganic nitrogen-oxygen salt
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B31/00Compositions containing an inorganic nitrogen-oxygen salt
    • C06B31/02Compositions containing an inorganic nitrogen-oxygen salt the salt being an alkali metal or an alkaline earth metal nitrate
    • C06B31/12Compositions containing an inorganic nitrogen-oxygen salt the salt being an alkali metal or an alkaline earth metal nitrate with a nitrated organic compound
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids

Definitions

  • the invention belongs to the technical field of gas generating agents, and relates to a molded product of a gas generating agent with holes and a preparation process thereof, in particular to a molded product of a gas generating agent with holes prepared by a compression molding process.
  • the automobile airbag system is composed of a gas generator that generates gas, an air bag for protection, and an exterior trim supporting the above two parts.
  • the gas generator contains a gas generating agent, which is excited when needed, and the gas generating agent burns to generate a large amount of gas, and the air bag is filled to protect personal safety.
  • the mainstream gas generating agents worldwide are guanidine nitrate and basic copper nitrate gas generating agents, guanidine nitrate is the main fuel, and basic copper nitrate is the main oxidant.
  • the shape of the tablets of this type of gas-generating agent is usually in the form of ordinary discs.
  • the general combustion process is surface-reduction combustion. The gas production in the first half of the combustion is large, which causes great damage to the airbag, easily damages the airbag, and cannot form effective protection.
  • guanidine nitrate and basic copper nitrate gas generator must be improved.
  • solid tablets are generally used as gas generating agents in the airbag gas generating agent industry.
  • the extrusion molding method requires the use of special adhesives, which has certain restrictions on the formulation, and the extrusion process is complicated and costly; the compression molding method can currently only compress large tablets, and the small and medium-hole tablets cannot currently be compressed.
  • the inner diameter and outer diameter of the porous tablets are large, and there are special requirements for the structure of the generator. They are generally used for tubular generators. For the cake generators, only small, medium-hole or porous tablets can be used.
  • the patent CN2786115Y discloses a molded product of a gas-generating composition, including a preparation method thereof.
  • the medicament has a middle hole, and the tablet has a groove to increase the initial ignition surface and improve the ignition efficiency and reliability.
  • the patent uses a hydraulic press to press the pharmaceutical tablets, which has low output efficiency, high requirements for the mold, increased mold manufacturing costs, and a large pillar size, which makes it difficult to adjust the amount of medicine contained in the generator.
  • the patent CN1173901C discloses a gas generating agent for an airbag, which uses a medium hole to control the burning time of tablets, and adopts a formula with a low burning rate, which can also meet the performance requirements of the generator.
  • the burning linear velocity is lower than that of conventional medicines, which improves the burning performance of tablets by changing the medicine type.
  • its pharmaceutical process adopts the method of extruding and cutting, which has higher requirements on the fluidity of pharmaceuticals and the cost of the extruding process increases.
  • the patent CN1220650A discloses a gas generating agent for an airbag.
  • the gas generating composition has low toxicity or low risk, is easy to use, has excellent combustion efficiency and gas generating efficiency, and reduces the amount of residues and energy generated during combustion. It is produced safely and has good molding strength under molding conditions.
  • the agent contains an ammonium nitrate formula and uses an extrusion molding process. Due to the extremely high hygroscopicity of the ammonium nitrate formula, it leaves a hidden danger to the safety of the generator.
  • the purpose of the present invention is to overcome the shortcomings of the prior art, to provide a molded product with a perforated gas generating agent, capable of preparing a perforated gas generating agent with a smaller size, which can be applied to an airbag gas generator to improve its combustion Process, so that the combustion process can be achieved by reducing the surface reduction process, or improved to be equal or increased surface combustion, improve the external pressure performance of the generator, improve the comfort of the airbag deployment, and also reduce the internal pressure, reduce the requirements for materials, reduce Material cost of gas generator.
  • Another object of the present invention is to provide a process for preparing a molded product with a perforated gas generating agent.
  • the method adopts a formula of fuel and oxidant and a functional additive, and is prepared by wet granulation or dry granulation or spray granulation or boiling.
  • the granules or dry powders are mixed and compressed to obtain a small mesoporous gas-generating agent.
  • the prepared gas-generating agent is not easy to be broken and can adapt to the working environment of high-intensity vibration.
  • the preparation process is simple and flexible, the preparation efficiency is high, and the production cost is low.
  • Still another object of the present invention is to provide a pressing mold used for the preparation process of a molded product with a perforated gas generating agent.
  • the mold has a simple structure and flexible application, and is suitable for the preparation of molded products with various shapes of gas-generating agents with holes.
  • Another object of the present invention is to provide the application of mesoporous gas generating agent.
  • the first aspect of the present invention provides a molded product of a gas-generating agent with a hole, the outer shape of which is a columnar body, and a through or non-through hole is provided in the inside.
  • the size or shape of the columnar body in the height direction is the same, as shown in FIGS. 3a-3f; or the size or shape of the columnar body in the height direction is not The same, as shown in Figure 3g-3i.
  • the size or shape of the hole in the height direction is the same, as shown in FIGS. 3a-3e and 3g-3i, or the size or shape of the hole in the height direction Not the same, as shown in Figure 3f.
  • the cross-sectional shape of the columnar body is selected from a circle, a polygon with a circumscribed circle, a petal shape or a star shape, as shown in FIG. 3;
  • the cross-sectional shape of is selected from a circle, a polygon with a circumscribed circle, a petal shape or a star shape.
  • the maximum size of the cross section of the columnar body is in the range of 2.0-20 mm
  • the height is in the range of 2.0-20 mm
  • the maximum size of the cross-section of the hole is 0.5-5 mm Within the range; wherein, the largest dimension of the cross section of the columnar body is the circumscribed circle diameter of the largest cross-sectional shape, and the largest dimension of the hole cross-section is the diameter of the circumscribed circle of the largest cross-sectional shape of the hole, as shown in FIG. 2.
  • the maximum dimension of the cross section of the columnar body is in the range of 3-10 mm, the height is in the range of 2.0-10 mm, and the maximum dimension of the cross section of the hole is in the range of 0.8-4 mm.
  • the maximum dimension of the cross section of the columnar body is in the range of 3-8 mm, the height is in the range of 2.0-8 mm, and the maximum dimension of the cross section of the hole is in the range of 0.8-3 mm.
  • the maximum size of the cross section of the columnar body is in the range of 4-7 mm, the height is in the range of 3.0-7.5 mm, and the maximum size of the cross-section of the hole is in the range of 0.8-2 mm Inside.
  • the largest dimension of the cross-section of the columnar body is in the range of 4-6 mm, the height is within the range of 5.0-7.5 mm, and the largest dimension of the cross-section of the hole is in the range of 1.0-1.8 mm Inside.
  • the upper and lower end surfaces of the columnar body are independently selected from flat, convex or concave surfaces, as shown in FIG. 4; preferably, the upper and lower columns of the columnar body Each end face is flat or convex, or one end face is flat and the other end is convex, which can increase the strength of the perforated gas generating agent molded product.
  • the columnar body and the hole have a demolding slope along the height direction, and the columnar body and the hole have the opposite direction of the demolding slope, so
  • the demolding slope is in the range of 0° to 3°, as shown in FIG. 5; preferably, for a rotationally symmetric columnar body at any angle along the axial direction, the demolding slope is 0° to 0°15′, A non-rotationally symmetrical columnar body at any angle along the axial direction, and the draft angle is 0.5° to 1°.
  • a chamfer is optionally provided at the connection between the outer side of the columnar body and the upper and lower end faces, as shown in FIG. 6, the chamfer is a straight chamfer or a round Chamfer; the range of the straight chamfer is (0.1 to 5 mm) ⁇ (10° to 80°), and the radius of the round chamfer is 0.1 to 5 mm.
  • a rotationally symmetrical columnar body in the axial direction there is no chamfering at the connection between the outer surface of the cylindrical body and the upper and lower end surfaces, which is beneficial to improve the durability of the prepared mold;
  • a rotationally symmetrical columnar body, and a straight chamfer of 0.5 mm ⁇ 60° or a round chamfer with a radius of 0.4 mm is provided at the connection between the outer lateral surface of the columnar body and the upper and lower end surfaces.
  • a chamfer is optionally provided at the connection between the hole and the upper and lower end faces, the chamfer is a straight chamfer or a round chamfer;
  • the range is (0.1 to 5 mm) ⁇ (10° to 80°), and the range of the round chamfer is a radius range of 0.1 to 5 mm.
  • the crushed strength of the perforated gas generating agent molded product is greater than 18 N/mm, preferably 20 to 30 N/mm; the density ranges from 1.60 to 2.20 g/cm 3.
  • the moisture content of the gas generating agent is ⁇ 0.25%.
  • the burning rate of the perforated gas generating agent molded product is 6 to 30 mm/s.
  • a second aspect of the present invention provides a process for preparing a molded product with a perforated gas generating agent according to the first aspect of the present invention, the process being: mixing raw material components containing at least fuel and an oxidant to obtain a direct The mixture material, or the granulated material to obtain the granulated material, the directly mixed material or the granulated material is loaded into the pressing mold, and the perforated type is obtained by compression molding.
  • the particle size of the granulated material is 10 to 200 mesh, and the particle bulk density is 0.5 g/cm 3 to 2.0 g/cm 3 .
  • the content of the fuel is 35%-75%, and the content of the oxidant is 25%-58%.
  • the fuel is selected from guanidine nitrate, aminoguanidine nitrate, melamine cyanurate, melamine, nitroguanidine, 5-aminotetrazole, 3-nitro-1,2,4-tris
  • guanidine nitrate aminoguanidine nitrate
  • melamine cyanurate melamine
  • nitroguanidine 5-aminotetrazole
  • 5-aminotetrazole 3-nitro-1,2,4-tris
  • the oxidant is selected from one of metal basic nitrate, metal basic carbonate, metal nitrate, ammonium perchlorate, metal perchlorate, and chlorate
  • functional additives are metal titanate, titanium dioxide, strontium titanate, aluminum hydroxide, alumina, kaolin, copper phthalocyanine, boron nitride, silica, fumed silica, graphite, talc
  • the catalyst is one or more of metal oxides, ferrocene and its derivatives, cobalt oxide organic lead compound, copper organic complex.
  • the molded product of the perforated gas-generating agent may have positive oxygen balance or negative oxygen balance, and CO, NOx and NH 3 in the combustion products meet the requirements of USCAR; the combustion temperature of the formula It is 500K ⁇ 3000K; the gas production of the formula is 2.0 ⁇ 4.0mol/100g.
  • the compression molding uses a rotary tableting machine
  • the number of punching groups of the rotary tableting machine ranges from 6 to 100 punches
  • the compression capacity of the rotary tableting machine ranges from 1 to 30 t.
  • the speed is from 1 to 25 rpm.
  • a third aspect of the present invention provides a pressing die used in the preparation process described in the second aspect of the present invention.
  • the pressing die includes an upper punch 7-1, a middle die 7-4, and a lower punch 7-7 and the core rod 7-8; the middle die 7-4 is provided with a through hole 7-5; through the punching, down punching and movement of the core rod, the inner die is pressed to make the hole-shaped product Gas molded products.
  • the shape and size of the core rod correspond to the shape and size of the internal hole of the columnar body; the shape and size of the through hole inside the middle mold correspond to the gas production with the hole type
  • the external shape and size of the agent-molded product correspond to each other; the outer shape and size of the upper and lower punching end faces correspond to the outer shape and size of the upper and lower end faces of the columnar body, respectively.
  • the upper punch and the lower punch may be provided with correspondingly shaped through holes 7-2 and 7-11 according to the shape of the core rod, or may not be provided according to the requirements of the medicine type.
  • the upper punch and the lower punch have through holes 7-2 and 7-11 corresponding to the shape of the core rod, and the core rod
  • the holes 7-11 extend, as shown in FIG. 7a, the upper punch and the lower punch move at the same time, the core rod extends into the upper punch through hole 7-2, and finally presses into the middle die through hole 7-5 with a penetration The gas-generating agent molded product of the hole.
  • the undershoot has internal through holes 7-11 corresponding to the shape of the core rod, the core rod extends from the undershoot through hole, and the overshoot has no Hole, the upper punch and the lower punch move at the same time, by adjusting the length of the core rod and the position of the gas generating agent in the middle mold through compression molding, and finally pressed into the through hole 7-5 of the middle mold to form a hole with a through hole Gas-generating agent molded products.
  • the upper punch and the lower punch have through holes 7-2 and 7-11 corresponding to the shape of the core rod, and the core rod
  • the hole 7-2 extends, the upper punch and the lower punch move at the same time, the core rod extends into the lower punch through hole 7-11, and finally presses in the middle die through hole 7-5 to form a gas generating agent with a through hole Products.
  • the upper punch has a through hole 7-2 corresponding to the shape of the core rod, the core rod extends from the through punch 7-2, the There is no hole in the lower punch, the upper punch and the lower punch move at the same time, by adjusting the length of the core rod and the position of the gas-generating agent in the middle mold through compression molding, and finally in the middle mold through hole 7-5 Through-hole molded product of gas generating agent.
  • the upper punch and the lower punch have through holes 7-2 and 7-11 corresponding to the shape of the core rod, and the core rod is punched from the upper
  • the through hole 7-2 and the lower punched through hole 7-11 extend out, the upper punch and the lower punch move at the same time, by adjusting the length of the core rod and the position of the gas generating agent in the middle mold for press molding, and finally The gas-generating agent molded product with through or non-through holes is pressed in the middle mold through holes 7-5.
  • the working parts of the upper punch, the lower punch, the middle die, and the core rod are provided with a plating layer, and the middle die is composed of two materials, as shown in FIG. 8, the hardness of the external material Less than internal material hardness.
  • the internal and external materials are connected by welding.
  • the low hardness of the external material is convenient for processing.
  • the high hardness of the internal material is conducive to the shape of the molding agent.
  • a chamfer is provided at the connection between the outer side surface of the middle mold and the upper and lower end surfaces, which is convenient for the middle mold to enter the rotary tabletting device; the opening edge of the inner through hole 7-5 of the middle mold is provided with an inverted The angle is used to guide the entrance of the die up and down.
  • the through holes and the core rod in the middle mold are set with corresponding tapers according to the demolding slope of the molded product of the perforated gas generating agent, which is convenient for the perforated gas generating agent Molded products are demolded.
  • the outer edges of the upper and lower punch end faces are optionally provided with protruding shapes corresponding to the outer chamfers of the columnar body, and the edges at the through holes of the upper and lower punch end faces are optionally A protruding shape corresponding to the chamfer of the hole in the columnar body is provided, as shown in FIG. 9a.
  • the core rod is configured to have different shapes and sizes in the axial direction, as shown in FIG. 9b, and the through holes in the middle mold are configured to have different shapes and sizes in the axial direction, as shown in FIG. 9c.
  • the side of the upper punch is provided with a discharge groove 7-10.
  • the core rod can be removed from the core rod when passing through the upper punch hole The excess material can extend the durability of the mold.
  • the upper punch, the lower punch, the middle die and the core rod are all provided with positioning units, and the positioning unit includes positioning grooves and positioning holes Or a positioning key to realize the correspondence between the shapes of the upper punch, the lower punch, the middle die and the core rod.
  • the working parts of the upper punch, the middle die, the lower punch and the core rod are plated with a plating layer to improve durability.
  • the fourth aspect of the present invention provides the application of the perforated gas generating agent molded product according to the first aspect of the present invention, which is applied to automobile airbag gas generators, fire extinguishers, solid oxygen Generator or lifeboat aerator and other systems.
  • the present invention has the following beneficial effects:
  • the present invention adjusts the burning surface of the gas generating agent by forming a through or non-penetrating hole in the gas generating agent molding structure, reduces the initial burning surface, and slows down or forms the combustion process of the gas generating agent. Burning surface or increasing surface.
  • the initial combustion surface of the perforated gas-generating agent molded product is smaller than that of the sheet-shaped gas-generating agent molded product, less gas is generated in the early stage of combustion, the external output pressure of the gas generator is low, and the output flame residue is less.
  • the airbag deploys slowly, and the exterior damage is small; the combustion process is slowed down during the mid-combustion period, or it is burned in an equal or increased plane, so the gas is generated quickly, which prompts the airbag to fill quickly; the reduced surface combustion is resumed in the later period of combustion, or than
  • the slow combustion rate in the early stage and middle stage enables the gas to be continuously produced in the later stage, prolong the retention time of the airbag function, and extend the time to protect the personal safety. Even in the case of side collision or non-positive collision, it can provide sufficient protection for a long time.
  • the size of the perforated gas generating agent molded product of the present invention can be adjusted. The smaller size can be applied to various types of airbag gas generators, and the larger size can be adapted to the needs of fire extinguishers, solid oxygen generators, lifeboat inflators, etc. Gas generator for longer gas supply.
  • the present invention adopts perforated gas-generating agent molded products, the initial burning surface is reduced, the internal pressure of the generator is reduced, in addition, the reduction of surface burning, or the combustion of equal or increased surface, is beneficial to the internal pressure
  • the distribution makes the performance smooth and the combustion stable.
  • the reduction in internal pressure lowers the requirements for filter strength, generator housing strength, welding strength, or other structural strength, which can reduce the number of filter layers, reduce the thickness of the generator housing, and reduce the energy consumption for welding needs. Reduce other structures that require strength, or use low-strength materials, thereby reducing costs.
  • the molded product of the gas-generating agent with holes of the present invention can realize the distribution of the internal pressure of the generator and prolong the time above a certain pressure, so it is also possible to use the low burning rate and low burning temperature. Under the influence of the shape of the gas-generating agent and the internal pressure distribution, the combustion will be more complete, and the unburned tablets will not be left, and the utilization rate of the gas-generating agent is higher.
  • the pressure-time curve of the perforated gas generating agent molded product of the present invention in the gas generator is a smooth curve, the early slope is low, the middle slope is high and stable, the late slope is low and the decline is gentle, and the performance is excellent;
  • the mass of a single sheet is larger than that of a general circular sheet, and the quality of the gas-generating agent molded product required by a single gas generator is certain. To a certain extent, the preparation efficiency is improved and the production cost is reduced.
  • the preparation method of the perforated gas generating agent molded product of the present invention can cover the preparation of small and medium-sized perforated gas generating agent molded products, and the compact perforated gas generating agent can be prepared by press molding Molded products make the preparation process simple, easy to operate and control.
  • FIG. 1 is a schematic axial cross-sectional view of a gas-generating agent molded product with holes of the present invention, wherein FIG. 1a is a gas-generating agent molded product with a through hole inside, and FIG. 1b is a gas-generating agent molded product with a non-through hole inside;
  • Fig. 2 is a schematic diagram of the maximum cross-sectional size of the molded product with a perforated gas-generating agent of the present invention, which refers to the diameter of the circumscribed circle indicated by the dotted line in the figure, where Fig. 2a is the column or the cross-section of the inner hole is an equilateral triangle Circumscribed circle, figure 2b is the circumscribed circle when the cross section of the columnar body or inner hole is square, figure 2c is the circumscribed circle when the cross section of the columnar body or inner hole is equilateral hexagon, and figure 2d is the columnar body or inner hole The circumscribed circle when the cross-section is petal-shaped, Figure 2e is the circumscribed circle when the columnar body or inner hole is star-shaped;
  • FIG. 3 is a schematic diagram of the outer shape or inner hole shape of the molded product with a perforated gas generating agent of the present invention, wherein FIG. 3a is the outer shape is cylindrical, and FIG. 3b is the outer shape is an equilateral pentagon; Star shape, Figure 3d is the outer shape is petaloid, Figure 3e is the inner hole shape is an equilateral triangle, Figure 3f is the inner hole shape is the upper part is the largest cross-sectional size of the cylindrical lower half is the largest cross-sectional size A small equilateral triangle, Figure 3g is a round table shape, Figure 3h is a cylindrical shape with different upper and lower dimensions, Figure 3i is a petal shape with different upper and lower dimensions;
  • FIG. 4 is a schematic view of two end faces of a molded product with a perforated gas generating agent according to the present invention.
  • the schematic view is an axial cross-sectional view, in which FIG. 4a is an end face with a flat surface, FIG. 4b is an end face with a convex surface, and FIG. 4c is an end face with a shape Is concave
  • FIG. 5 is a schematic axial cross-sectional view of a molded product with a hole-type gas generating agent of the present invention with a draft angle, in which the direction of the draft angle of the inner hole and the outer shape is opposite;
  • Fig. 6 is a schematic diagram showing the chamfered pattern of the connection between the inner and outer sides and the end surface of the molded product with a hole-type gas generating agent of the present invention, wherein Fig. 6a is no chamfering, Fig. 6b is round chamfering, and Fig. 6c is an angled straight line Chamfer, Figure 6d is used with round chamfer and straight chamfer;
  • FIG. 7 is a schematic diagram of a pressing die of the present invention, wherein FIG. 7a is a combination of pressing dies when the core rod is extended from the lower punch, FIG. 7b is an upper punch with a discharge chute, and FIG. 7c is a lower punch with a through hole , Figure 7d is a core rod with an increased diameter; 7-1 represents the upper punch, 7-2 represents the upper punch through hole, 7-3 represents the upper punch working end, 7-4 represents the middle die, 7-5 Represents the inner hole of the middle die, 7-6 represents the fixed slot of the middle die, 7-7 represents the lower punch, 7-8 represents the core rod, 7-9 represents the fixed end of the core rod, 7-10 represents the upper punch discharge slot, 7- 11 represents the under punch through hole, 7-12 represents the working end of the punch, 7-13 represents the working end of the core rod, and 7-14 represents the portion where the core rod increases the diameter and increases the strength;
  • FIG. 8 is a schematic view of the middle mold of the pressing mold of the present invention, wherein FIG. 8a is a schematic view of the natural angle middle mold, and FIG. 8b is an axial cross-sectional view of the middle mold for illustrating the inner and outer parts;
  • FIG. 9 is a schematic diagram of the pressing mold of the present invention, wherein FIG. 9a is a shape for forming a chamfering up and down conflicting shape, including up and down punching the outer edge of the end surface and the protruding shape of the edge of the end surface through hole, FIG. 9b is provided with two sizes of shapes Core rod, Figure 9c is the middle mold with two sizes and shapes;
  • FIG. 10 is a schematic diagram and pressure-time curve of a perforated gas generating agent molded product used in Example 1, wherein FIG. 10a is a schematic view of a natural angle perforated gas generating agent molded product, and FIG. 10b is the perforated type Axial cross-sectional view of the gas-generating agent molded product.
  • FIG. 10c is the pressure-time curve of the hole-type gas-generating agent molded product when used on the gas generator, including internal pressure and external pressure;
  • Example 11 is a pressure-time curve of the molded product with a perforated gas generating agent used in the gas generator in Example 2, including internal pressure and external pressure;
  • Example 12 is a pressure-time curve of the molded product with a perforated gas generating agent used in the gas generator in Example 3, including internal pressure and external pressure;
  • Example 13 is a pressure-time curve of the molded product with a hole-type gas generating agent used in Example 4, Example 5 and Example 6 when tested on a closed generator;
  • Fig. 14 is a pressure-time comparison curve of the molded product with a perforated gas generating agent used in Example 7 and used on a gas generator, including internal pressure and external pressure, wherein Fig. 14a is a natural angle equilateral hexagon Fig. 14b is an axial cross-sectional view of an equilateral hexagonal perforated gas generating agent molded product, and Fig. 14c is an equilateral hexagonal perforated gas generating agent molded product. Pressure-time comparison curve when testing on the generator;
  • Fig. 15 is a pressure-time comparison curve of the molded product with a perforated gas generating agent used in Example 8 and used on a gas generator, including internal pressure and external pressure, wherein Fig. 15a is a natural angle cross-section as a circle Fig. 15b is an axial cross-sectional view of the gas-generating agent molded product with holes, and the outer and inner holes have round chamfers, and Fig. 15c is a circular cross-section.
  • the pressure-time comparison curve of the gas-generating agent molded product with round shape in the shape and inner hole and round chamfering on the outer and inner holes when tested on the gas generator;
  • FIG. 16 is a pressure-time comparison curve of the molded product with a perforated gas generating agent used in Example 9 and used on a gas generator, including internal pressure and external pressure, wherein FIG. 16a is a perforated product with natural angle Schematic diagram of the aerosol molded product.
  • FIG. 16b is an axial cross-sectional view of the perforated gas generating agent molded product.
  • FIG. 16c is a gas generating agent molded product with a circular cross section and an equilateral triangle in the inner hole. Pressure-time contrast curve when used on
  • FIG. 17 is a pressure-time comparison curve of the disc-shaped and perforated gas generating agent molded products used in Comparative Example 1 and when used on a gas generator, including internal pressure and external pressure, where FIG. 17a is a natural angle Schematic diagram of a disk-shaped gas generating agent molded product.
  • FIG. 17b is an axial cross-sectional view of the disk-shaped gas generating agent molded product.
  • FIG. 17c is a wafer-shaped and perforated gas generating agent molded product used on a gas generator. Time-pressure-time contrast curve;
  • FIG. 18 is a pressure-time comparison curve of the disk-shaped and perforated gas-generating agent molded products used in Comparative Example 2 when used on a gas generator, including internal pressure and external pressure;
  • FIG. 19 is a pressure-time comparison curve of the disk-shaped and perforated gas generating agent molded products used in Comparative Example 3 and when tested on a closed generator, wherein FIG. 19a is the natural angle disk shaped gas generating agent molding Schematic diagram of the product.
  • Figure 19b is an axial cross-sectional view of the disc-shaped gas generating agent molded product.
  • FIG. 19c is a pressure-time comparison curve of the disc-shaped and perforated gas generating agent molded products when tested on a closed generator. ;
  • FIG. 21 is a pressure-time comparison curve of the disk-shaped and perforated gas generating agent molded product used in Comparative Example 5 and when used on a gas generator, including internal pressure and external pressure.
  • the molded product of the perforated gas-generating agent of the present invention may use the material directly mixed with the raw materials or granulated to obtain the granulated material.
  • the specific preparation may use the following methods:
  • the first material is sieved and sieved to obtain a second material with a particle size in the range of 10 to 200 mesh.
  • the water content of the second material is less than 0.5% of the total mass of the second material, and the bulk density of the particles is 0.5g /cm 3 ⁇ 2.0g/cm 3 ;
  • the second material is loaded into a compression mold, compressed and formed by a rotary tablet press, and dried to obtain a perforated gas-generating agent molded product.
  • the raw material components containing at least fuel and oxidant are uniformly mixed using a V-type mixer, a three-dimensional multi-directional motion mixer, an automatic lifting hopper mixer, a ribbon mixer or an acoustic resonance mixer to obtain the first material;
  • the second material is loaded into a compression mold, compressed and formed by a rotary tablet press, and dried to obtain a perforated gas-generating agent molded product.
  • a raw material component containing at least fuel and an oxidant is granulated to obtain a first material;
  • the fuel in the first material is guanidine nitrate, and its content is 50%,
  • the oxidant is basic copper nitrate with a content of 31.75%, the auxiliary oxidant is ammonium perchlorate with a content of 2%;
  • the form-retaining agents are strontium titanate and strontium nitrate with a content of 5.5% and 9.75%; in addition;
  • the first material also includes functional aids.
  • the release aids are talc and graphite, and their contents are 0.75% and 0.25%, respectively.
  • the first material is sieved and sized to obtain a second material with a particle size in the range of 10 to 200 mesh.
  • the second material has a water content of 0.20% and a particle bulk density of 0.903g/cm3;
  • the second material is filled into the compression mold, compressed and formed by a rotary tablet press, and dried to obtain a molded product of a gas-generating agent with a hole.
  • the crushing strength measured with a hardness tester was 19.1 N/mm, and the density measured with a density meter was 2.001 g/cm3; the water content was measured to be 0.05 wt%.
  • the perforated gas-generating agent of the above formula shows low pressure in the early stage, stable gas production in the middle stage, slow pressure reduction in the later stage, and low impact force when the air bag is deployed.
  • the air bag is not prone to tearing and damage, and the design strength of the air bag module assembly is low, thereby reducing the design cost.
  • the raw material components containing at least fuel and oxidant are uniformly mixed to obtain the first material.
  • the mixing equipment may be a V-type mixer, a three-dimensional multi-directional motion mixer, an automatic lifting hopper mixer, and a ribbon mixing Machine or acoustic resonance mixer;
  • the fuel in the first material is guanidine nitrate and amidinourea copper nitrate whose contents are 25% and 30%, respectively, and the oxidant is basic copper nitrate, its content is 30%, auxiliary oxidant It is ammonium perchlorate, the content of which is 3%;
  • the functional aids are strontium titanate and aluminum hydroxide, the contents of which are 7.5% and 3.5%; in addition, the first material also includes auxiliary function aid talc And graphite, its content is 0.75% and 0.25%.
  • the second material is filled into the compression mold, compressed and formed by a rotary tablet press, and dried to obtain a molded product of a gas-generating agent with a hole.
  • the crushing strength measured with a hardness tester was 20.3N/mm, and the density measured with a density meter was 1.995g/cm3; the water content was measured to be 0.04wt%.
  • the molded product of the perforated gas generating agent prepared above was loaded into the PAB test generator, and the internal and external pressure P-t performance tests were performed. The results are shown in FIG. 11.
  • the perforated gas generating agent of the above formula shows a low peak of internal pressure in the PAB generator, and the external pressure gas production is stable, indicating that the above perforated gas generating agent has stable combustion.
  • the raw material components containing at least fuel and oxidant are granulated to obtain a first material;
  • the fuel in the formula of the first material is nitroguanidine and melamine cyanurate.
  • the content is 23.5% and 31.5% respectively
  • the oxidant is basic copper nitrate and basic copper carbonate, its content is 24.4% and 11% respectively
  • the auxiliary oxidant is ammonium perchlorate, its content is 2.5% respectively;
  • the functional auxiliary is The content of strontium titanate is 6%; the content of auxiliary function assistants boron nitride and graphite is 0.75% and 0.35%, respectively.
  • the first material is sieved and sized to obtain a second material with a particle size in the range of 10 to 200 mesh.
  • the second material has a water content of 0.18% and a particle packing density of 1.152g/cm3;
  • the formula has a burning rate of 18.9mm/s, a burning temperature of 1304K, and a gas production of 3.25mol/100g.
  • the second material is filled into the compression mold, compressed and formed by a rotary tablet press, and dried to obtain a molded product of a gas-generating agent with a hole.
  • the crushing strength measured with a hardness tester was 20.1 N/mm, and the density measured with a density meter was 2.017 g/cm3; the water content was measured to be 0.06 wt%.
  • the molded product of the perforated gas generating agent prepared above was loaded into the PAB test generator, and the internal and external pressure P-t performance tests were performed. The results are shown in FIG. 12.
  • Example 3 shows the internal and external pressure curves: the perforated gas generating agent of the above formula in the PAB generator shows a low peak internal pressure and a slow decline in the later period, and the external pressure gas production is stable, indicating that the above formula of perforated gas generating agent The combustion is stable, and the impact of the generator on external components will be reduced.
  • the content is 16.1% and 20.5%
  • the oxidant is strontium nitrate and potassium nitrate, its content is 49.1% and 8.5%
  • the functional aid is kaolin, its content is 5.5%; the auxiliary function aids boron nitride and talc, The contents are 0.1% and 0.2%, respectively.
  • the first material is sieved and sized to obtain a second material with a particle size in the range of 10 to 200 mesh.
  • the second material has a water content of 0.08% and a particle bulk density of 1.105g/cm3;
  • the formula has a burning rate of 25.1 mm/s, a burning temperature of 2851 K, and a gas production of 2.67 mol/100 g.
  • the second material is filled into the compression mold, compressed and formed by a rotary tablet press, and dried to obtain a molded product of a gas-generating agent with a hole.
  • the crushing strength measured with a hardness tester was 21.0N/mm, and the density measured with a density meter was 2.214g/cm3; the water content was measured to be 0.08wt%.
  • the size of the medicine form is the same as that in the first embodiment.
  • the molded product of the perforated gas-generating agent prepared above was loaded into a 30-ml sealed generator, and the P-t performance test was conducted. The results are shown in FIG. 13.
  • the raw material components containing at least fuel and oxidant are granulated to obtain a first material;
  • the fuel in the formula of the first material is nitroguanidine and 5-aminotetrazole Its content is 7% and 31.5% respectively,
  • the oxidant is strontium nitrate and potassium perchlorate, its content is 42% and 11.5% respectively,
  • the functional aid is kaolin, its content is 6%; auxiliary functional aids fumed silica and talc
  • the content of powder is 1% and 1% respectively.
  • the first material is sieved and sieved to obtain a second material with a particle size in the range of 10 to 200 mesh.
  • the second material has a water content of 0.13% and a particle packing density of 1.025g/cm3;
  • the second material is filled into a compression mold, compressed and formed by a rotary tablet press, and dried to obtain a molded product of a gas generating agent with a hole.
  • the crushing strength measured with a hardness tester was 20.8 N/mm, and the density measured with a density meter was 2.198 g/cm3; the water content was measured to be 0.08 wt%.
  • the size of the medicine form is the same as that in the first embodiment.
  • the molded product of the perforated gas-generating agent prepared above was loaded into a 30-ml sealed generator, and the P-t performance test was conducted. The results are shown in FIG. 13.
  • the raw material components containing at least fuel and oxidant are granulated to obtain a first material;
  • the fuel in the formula of the first material is guanidine nitrate and 3-nitro-1 , 2,4-triazol-5-one, their contents are 11% and 50.5%, oxidants are strontium nitrate and sodium nitrate, their contents are 10% and 24.5%, respectively, the catalyst is copper oxide, its content is 3% ;
  • Auxiliary function additives graphite and boron nitride, their contents are 0.5% and 0.5%, respectively.
  • the first material is sieved and sized to obtain a second material with a particle size in the range of 10 to 200 mesh.
  • the second material has a water content of 0.16% and a particle packing density of 0.902g/cm3.
  • the formula has a burning rate of 27.7mm/s, a burning temperature of 2901K, and a gas production of 2.15mol/100g.
  • the second material is filled into the compression mold, compressed and formed by a rotary tablet press, and dried to obtain a molded product of a gas-generating agent with a hole.
  • the crushing strength measured with a hardness tester was 18.2 N/mm, and the density measured with a density meter was 1.951 g/cm3; the water content was measured to be 0.10 wt%.
  • the size of the drug form is the same as in the first embodiment.
  • the molded product of the perforated gas-generating agent prepared above was loaded into a 30-ml sealed generator, and the P-t performance test was conducted. The results are shown in FIG. 13.
  • the compression mold was changed for compression molding to obtain a gas-generating agent molded product with an equilateral hexagonal cross-section and a circular hole as shown in Figs. 14a and 14b.
  • the maximum cross-sectional dimension D is 5.4 mm
  • the height H is 6.0 mm
  • the inner diameter is 1.5 mm.
  • the crushing strength measured with a hardness tester was 20.5N/mm, and the density measured with a density meter was 2.005g/cm3; the water content was measured to be 0.04wt%.
  • the molded product of the perforated gas generating agent prepared above was loaded into the PAB test generator, and the internal and external pressure P-t performance tests were performed. The results are shown in FIG. 14c.
  • Example 7 shows the internal and external pressure curves: the external pressure curve of the equilateral hexagonal perforated gas generating agent in the PAB generator is S-shaped, indicating that the gas production process is slow in the early stage, accelerated in the middle stage, and stabilized in the late stage; the internal pressure curve reflects The gas-generating agent with holes burns inside the generator, and the pressure appears at the peak for about 5ms to be stable, indicating that the gas-generating agent with holes is approximately isosurface burning. Low impact on the air bag and low requirements on the generator shell, which can effectively reduce costs.
  • the compression mold was changed for compression molding to obtain gas production with circular cross section as shown in Figs. 15a and 15b, circular hole in the inner hole, and circular chamfering on the outer and inner holes. Molded products.
  • the crushing strength measured with a hardness tester was 19.4 N/mm, and the density measured with a densitometer was 2.003 g/cm3; the water content was measured to be 0.05 wt%.
  • the maximum dimension D of the cross section is 5.4mm, the height H is 6.0mm, the inner hole diameter is 1.5mm, and the round chamfer dimension R of the outer and inner holes is 0.25mm.
  • Example 8 shows the internal and external pressure curves: the above-mentioned chamfered and perforated gas generating agent in the PAB generator shows that the internal pressure gas production rate is stable and declines slowly in the later period; the early pressure of the external pressure is low, the gas production is stable, and the gas bag The impact force when unfolding is small, and the air bag is not easy to tear.
  • Example 2 Using the same formula as in Example 1, the compression mold was changed for compression molding to obtain a gas-generating agent molded product with a circular cross-section and an equilateral triangle as shown in FIGS. 16a and 16b.
  • the crushing strength measured with a hardness tester was 19.9 N/mm, and the density measured with a density meter was 2.007 g/cm3; the water content was measured to be 0.05 wt%.
  • the maximum dimension D of the cross section is 6.0 mm, the height H is 7.5 mm, and the diameter of the circumscribed circle of the inner hole is 1.8 mm. (Setting parameters of inner hole equilateral triangle mesopore medicine)
  • Example 9 shows the internal and external pressure curves: the hole-forming gas generating agent with an equilateral triangle in the inner hole behaves in the PAB generator as the internal pressure gas production is stable and decreases slowly at the later stage; the external pressure is lower in the early stage and increases steadily in the later stage , The impact force when the air bag is unfolded is small, and the air bag is not easy to be damaged.
  • a disk-shaped gas-generating agent was prepared using the same formula as in Example 1, with an outer diameter D of 5 mm and a thickness H of 1.9 mm, as shown in FIGS. 17a and 17b. Compared with the perforated gas generating agent in Example 1.
  • the disk-shaped gas-generating agent molded product prepared above was loaded into a PAB test generator, and the internal and external pressure P-t performance tests were performed.
  • the comparison result with Example 1 is shown in FIG. 17c.
  • the disk-shaped gas-generating agent of the above formula shows a high peak internal pressure in the PAB generator, fast gas production in the early stage, and a high pressure at 10ms in the early stage of the external pressure, which increases the impact on the air bag and causes manufacturing. Increased costs.
  • the disk-shaped gas-generating agent was prepared using the same formula as in Example 2, and the disk-shaped external dimensions were the same as those in Comparative Example 1. Compared with the perforated gas generating agent in Example 2.
  • the disk-shaped gas-generating agent molded product prepared above was loaded into a PAB test generator, and the internal and external pressure P-t performance tests were performed.
  • the comparison result with Example 2 is shown in FIG. 18.
  • a disk-shaped gas-generating agent was prepared using the exact same formulation as in Example 4, with an outer diameter D of 3 mm and a thickness H of 1.5 mm, as shown in Figures 19a and 19b. And compare it with the perforated gas-generating agent molded product of Example 4. The comparison between the two is shown in Figure 19c
  • the disc-shaped gas-generating agent molded product prepared above was put into a 30ml sealed generator and subjected to P-t performance test.
  • the above-mentioned disc-shaped gas generating agent has a high slope of the curve in a closed generator, a faster burning speed, and an increased impact on the filter screen of the generator, resulting in increased residue.
  • the molded product with a hole-type gas generating agent of Example 7 was compared with the disk-shaped gas generating agent of Comparative Example 1, and the comparison results of the two are shown in FIG. 20.
  • the molded product with a hole-type gas generating agent of Example 8 was compared with the disk-shaped gas generating agent of Comparative Example 1. The comparison results of the two are shown in FIG. 21.
  • the disk-shaped gas-generating agent of the above formula shows a high peak internal pressure in the PAB generator, fast gas production in the early stage, and a high pressure at 10ms in the early stage of the external pressure, increasing the impact on the air bag is easy
  • the air bag is torn, which increases the manufacturing cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Air Bags (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

本发明涉及一种带孔型产气剂模压制品及其制备工艺。该带孔型产气剂模压制品外形为柱状体,内部设有贯通或不贯通的孔。该带孔型产气剂能够实现减缓减面燃烧过程,或者在燃烧过程中一段时间实现等面燃烧或者增面燃烧,以此实现气体发生器前期压力及斜率低,对气囊冲击和伤害小,气囊缓慢展开;中期压力上升快速,气囊被快速填充;后期压力平缓下降,延长气囊保持时间;类似S形压力-时间曲线。初始燃面的降低,减缓减面燃烧或等面燃烧或增面燃烧,降低气体发生器内部的压力,从而降低气体发生器的材料成本及发生器质量。本发明采用压制成型工艺,实现了压制成型的方式制备带孔产气剂,使得制备工艺简单、高效、易于操作与控制。

Description

一种带孔型产气剂模压制品及其制备工艺
本申请要求于2018年12月29日提交中国专利局、申请号为201811636593.5、发明名称为“一种带孔型产气剂模压制品及其制备工艺”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于产气剂技术领域,涉及一种带孔型产气剂模压制品及其制备工艺,尤其涉及采用压制成型工艺制备的带孔产气剂模压制品。
背景技术
汽车安全气囊系统由产生气体的气体发生器和用于防护的气袋以及支持以上两部分的外饰组成。气体发生器中含有产气剂,需要的时候激发,产气剂燃烧产生大量的气体,填充气袋保护人身安全。
目前世界范围内主流的产气剂为硝酸胍和碱式硝酸铜类产气剂,硝酸胍作为主要燃料,碱式硝酸铜作为主要氧化剂。这类产气剂的药片外形通常采用普通圆片状,其一般燃烧过程为减面燃烧,燃烧前半段产气量较大,对气囊伤害大,容易破坏气囊,无法形成有效防护,而且气囊弹出过快,过猛,再加上破坏外饰,这些都容易对人体造成伤害,且对发生器的过滤网以及壳体耐压强度要求较高,增加了发生器的成本;此外燃烧后半段,燃面急剧减少,产气效率降低,气囊保持功用的时间短,无法在侧撞或者人员在非正位时对人员起到保护作用,而且可能燃烧不完全,促使残渣量增加,增加发生器的过滤网成本。
所以必须对硝酸胍和碱式硝酸铜配方产气剂的药型进行改进,改进方法有两种:(1)改变或增加一种或多种高含氮量燃料,添加一种或多种功能助剂能够有效提高产气量;(2)加入孔以及调整其形状就是其中一种方式。其原理在于,由于孔以及形状的存在,药片燃烧的减面过程会变缓,或者改善为等面或增面燃烧,克服了上述缺陷。另外也可以通过设置不通孔或者多孔实现多段不同状况的燃烧,改善燃烧时间段,延长气囊保持功用的时间。
目前安全气囊气体发生剂行业内一般使用实心药片作为产气药剂。对于带孔药剂的成型方式,目前只有挤出成型的方式,尚没有采用压制成型方式。挤出成型方式需要使 用特殊的粘合剂,对配方有一定限制,而且挤出工序复杂成本较高;压制成型方式目前只能压制大药片,对于小型中孔药片目前尚不能压制,大型中孔或多孔药片内径和外径均大,对发生器结构有特殊要求,一般用于管状发生器,而对于饼状发生器只有小型中孔或多孔药片才能使用。
例如专利CN2786115Y公开了一种产气组合物的模塑制品,包括其制备方法,药柱内有一中孔,药片带有凹槽,以增大初始燃面,提高点火效率及可靠性,但是该专利采用油压机压制药片,产量效率低下,对模具要求高,模具制造成本提升,且药柱尺寸较大,发生器中装药量难以调节。
再例如专利CN1173901C公开了一种气囊用产气剂,其采用中孔控制药片燃烧时间,采用低燃速的配方,也能达到发生器性能的要求。其燃烧线速度小于常规药剂,其通过改变药型,改善药片燃烧性能。但是其制药工艺采用挤塑、切断的方式,该方式对药剂流动性要求较高,挤塑工艺成本提升。
再例如专利CN1220650A公开了一种气囊用产气剂,产气组合物具有低毒性或低危险性、容易使用、具有极好的燃烧效率和产气效率、减少了燃烧中产生的残留物量、能被安全地生产并在模塑条件下有较好的模塑强度。但是该药剂中含有硝酸铵配方,且采用挤塑成型工艺,由于硝酸铵配方的吸湿性极强,对发生器的安全性留下了隐患。
发明内容
本发明的目的在于克服现有技术的不足,提供一种带孔型产气剂模压制品,能够制备较小尺寸的带孔型产气剂,可以运用在安全气囊气体发生器上,改善其燃烧过程,使其燃烧过程可以实现减面过程减缓,或者改善为等面或增面燃烧,改善发生器的外部压力性能,提高气囊展开的舒适性,另外降低内部压力,降低对材料的要求,降低气体发生器的材料成本。
本发明的另一个目的在于提供一种带孔型产气剂模压制品的制备工艺,该方法采用燃料和氧化剂及功能助剂的配方,通过湿法制粒或干法制粒或喷雾制粒或沸腾制粒或干粉混合,采用压制成型的方式得到小型中孔产气剂,制备的产气剂不易破碎,能够适应高强度振动的工作环境,制备工艺简单灵活,制备效率高,生产成本低。
本发明的又一个目的在于提供一种用于带孔型产气剂模压制品的制备工艺的压制模具。该模具结构简单,应用灵活,适用于各种形状的带孔型产气剂模压制品的制备。
本发明的又一个目的在于提供中孔产气剂的应用。
本发明的上述目的主要是通过如下技术方案予以实现的:
本发明的第一方面提供一种带孔型产气剂模压制品,其外形为柱状体,内部设有贯通或不贯通的孔。
根据本发明所述的带孔型产气剂模压制品,所述柱状体沿高度方向的尺寸或形状相同,如图3a-3f所示;或所述的柱状体沿高度方向的尺寸或形状不相同,如图3g-3i所示。
根据本发明所述的带孔型产气剂模压制品,所述孔沿高度方向的尺寸或形状相同,如图3a-3e和3g-3i所示,或所述孔沿高度方向的尺寸或形状不相同,如图3f所示。
根据本发明所述的带孔型产气剂模压制品,所述的柱状体的横截面形状选自圆形、具有外接圆的多边形、花瓣状或星形,如图3所示;所述孔的横截面形状选自圆形、具有外接圆的多边形、花瓣状或星形。
根据本发明所述的带孔型产气剂模压制品,所述柱状体横截面的最大尺寸在2.0~20mm范围内,高度在2.0~20mm范围内,所述孔横截面最大尺寸在0.5~5mm范围内;其中,所述柱状体横截面的最大尺寸为最大横截面形状的外接圆直径,所述孔横截面的最大尺寸为孔最大横截面形状的外接圆直径,如图2所示。
在本发明的一些优选实施方式中,所述柱状体横截面的最大尺寸在在3~10mm范围内,高度在2.0~10mm范围内,所述孔横截面最大尺寸在0.8~4mm范围内。
在本发明的一些进一步优选实施方式中,所述柱状体横截面的最大尺寸在在3~8mm范围内,高度在2.0~8mm范围内,所述孔横截面最大尺寸在0.8~3mm范围内。
在本发明的一些更进一步优选实施方式中,所述柱状体横截面的最大尺寸在在4~7mm范围内,高度在3.0~7.5mm范围内,所述孔横截面最大尺寸在0.8~2mm范围内。
在本发明的一些最优选实施方式中,所述柱状体横截面的最大尺寸在在4~6mm范围内,高度在5.0~7.5mm范围内,所述孔横截面最大尺寸在1.0~1.8mm范围内。
根据本发明所述的带孔型产气剂模压制品,所述柱状体上下两个端面各自独立地选自平面、凸面或凹面,如图4所示;优选地,所述的柱状体上下两个端面均为平面或凸面,或一个端面为平面,另一端面为凸面,这样可以增加所述带孔型产气剂模压制品的强度。
根据本发明所述的带孔型产气剂模压制品,所述柱状体和所述孔沿高度方向具有脱模斜度,所述柱状体和所述孔的脱模斜度方向相反设置,所述脱模斜度在0°~3°范围内,如图5所示;优选地,对于沿轴向任意角度旋转对称柱状体,所述脱模斜度为0°~0°15′,对于沿轴向任意角度非旋转对称柱状体,所述脱模斜度为0.5°~1°。
根据本发明所述的带孔型产气剂模压制品,所述柱状体外侧面与上下两个端面连接处任选地设置倒角,如图6所示,所述倒角为直倒角或圆倒角;所述直倒角的范围为 (0.1~5mm)×(10°~80°),所述圆倒角的半径范围为0.1~5mm。
在本发明的一些优选的实施方式中,对于沿轴向旋转对称柱状体,所述柱状体外侧面与上下两个端面连接处无倒角,有利于提高制备模具的耐久性;对于沿轴向非旋转对称柱状体,所述柱状体外侧面与上下两个端面连接处设置0.5mm×60°的直倒角,或半径为0.4mm的圆倒角。
根据本发明所述的带孔型产气剂模压制品所述孔与上下两个端面连接处任选地设置倒角,所述倒角为直倒角或圆倒角;所述直倒角的范围为(0.1~5mm)×(10°~80°),所述圆倒角的范围为半径范围为0.1~5mm。
根据本发明所述的带孔型产气剂模压制品,所述带孔型产气剂模压制品的压碎强度大于18N/mm,优选20~30N/mm;密度范围在1.60~2.20g/cm 3,所述的产气剂水分含量≤0.25%。
根据本发明所述的带孔型产气剂模压制品,所述带孔型产气剂模压制品的燃速为6~30mm/s。
本发明的第二方面提供了一种本发明第一方面所述的带孔型产气剂模压制品的制备工艺,所述制备工艺为:将将至少包含燃料和氧化剂的原料组分混合得到直接混合物料,或造粒得到造粒后的物料,将所述直接混合的物料或者造粒后的物料装填到压制模具中,通过压制成型得到带孔型。
根据本发明所述的制备工艺,所述造粒后的物料的粒径为10~200目,颗粒堆积密度为0.5g/cm 3~2.0g/cm 3
根据本发明所述的制备工艺,所述燃料的含量为35%~75%,所述氧化剂的含量为25%~58%。
根据本发明所述的制备工艺,所述燃料选自硝酸胍、氨基胍硝酸盐、氰尿酸三聚氰胺、三聚氰胺、硝基胍、5-氨基四唑、3-硝基-1,2,4-三唑-5-酮、脒基脲硝酸铜、硝酸铵、双四唑铵盐、双四唑钾盐、NTO、新型含能材料FOX7、FOX12、TKX-50、LLM-105中的一种或多种。
根据本发明所述的制备工艺,所述氧化剂选自金属碱式硝酸盐、金属碱式碳酸盐、金属硝酸盐、高氯酸铵、金属高氯酸盐、氯酸盐中的一种或多种;功能助剂为金属钛酸盐、二氧化钛、钛酸锶、氢氧化铝、氧化铝、高岭土、酞菁铜、氮化硼、二氧化硅、气相二氧化硅、石墨、滑石粉中的一种或多种;催化剂为金属氧化物、二茂铁及其衍生物,氧化钴有机铅化物、铜的有机配合物一种或多种。
根据本发明所述的制备工艺,所述带孔型产气剂模压制品的配方可正氧平衡或者负氧平衡,燃烧产物中CO、NOx和NH 3满足USCAR的要求;所述配方的燃温为 500K~3000K;所述配方的产气量为2.0~4.0mol/100g。
根据本发明所述的制备工艺,所述压制成型采用旋转压片机,所述旋转压片机冲组数范围为6~100冲,所述旋转压片机压制能力范围为1~30t,旋转速度为1~25转/分钟。
本发明第三方面提供了一种用于本发明第二方面所述的制备工艺的压制模具,如图7所示,所述压制模具包括上冲7-1、中模7-4、下冲7-7和芯杆7-8;所述中模7-4内部设有通孔7-5;通过上冲、下冲以及芯杆的运动,在中模内压制成所述带孔型产气剂模压制品。
根据本发明所述的压制模具,所述芯杆的形状和尺寸与所述柱状体内部孔的形状和尺寸相对应;所述中模内部通孔的形状和尺寸与所述带孔型产气剂模压制品外部形状和尺寸相对应;所述上冲和下冲的端面外形和尺寸分别与所述柱状体的上、下端面的外形和尺寸相对应。
根据本发明所述的压制模具,所述上冲和下冲可以根据芯杆形状设置有对应形状的通孔7-2和7-11,也可以根据药型需求选择不设置孔。
在本发明的一些具体实施方式中,所述上冲和所述下冲内部具有与所述芯杆形状对应的通孔7-2和7-11,所述芯杆从所述下冲的通孔7-11伸出,如图7a所示,所述上冲和下冲同时运动,芯杆伸入上冲通孔7-2,最后在中模通孔7-5内压制成带有贯通孔的产气剂模压制品。
在本发明的一些具体实施方式中,所述下冲内部具有与所述芯杆形状对应的通孔7-11,所述芯杆从所述下冲的通孔伸出,所述上冲无孔,所述上冲和下冲同时运动,通过调整所述芯杆长度和产气剂在中模内压制成型的位置,最后在中模通孔7-5内压制成带有不贯通孔的产气剂模压制品。
在本发明的一些具体实施方式中,所述上冲和所述下冲内部具有与所述芯杆形状对应的通孔7-2和7-11,所述芯杆从所述上冲的通孔7-2伸出,所述上冲和下冲同时运动,芯杆伸入下冲通孔7-11,最后在中模通孔7-5内压制成带有贯通孔的产气剂模压制品。
在本发明的一些具体实施方式中,所述上冲内部具有与所述芯杆形状对应的通孔7-2,所述芯杆从所述上冲的通孔7-2伸出,所述下冲无孔,所述上冲和下冲同时运动,通过调整所述芯杆长度和产气剂在中模内压制成型的位置,最后在中模通孔7-5内压制成带有不贯通孔的产气剂模压制品。
在本发明的一些具体实施方式中,所述上冲和所述下冲内部具有与所述芯杆形状对应的通孔7-2和7-11,所述芯杆同时从所述上冲的通孔7-2和所述下冲的通孔7-11伸出,所述上冲和下冲同时运动,通过调整所述芯杆长度和产气剂在中模内压制成型的位置, 最后在中模通孔7-5内压制成带有贯通或不贯通的孔的产气剂模压制品。
根据本发明所述的压制模具,所述的上冲、下冲、中模、芯杆工作部分设置有镀层,且所述中模由内外两种材料构成,如图8所示,外部材料硬度低于内部材料硬度。内外两种材料通过焊接连接,外部材料硬度低便于加工,内部材料硬度高利于成型药剂形状。
根据本发明所述的压制模具,所述中模外部侧面与上下端面连接处设置有倒角,便于中模进入旋转压片设备;所述中模内部通孔7-5的开口边缘设置有倒角,用于上下冲模具入口导向。
根据本发明所述的压制模具,所述中模内部通孔和芯杆根据所述带孔型产气剂模压制品的脱模斜度设置相对应的锥度,便于所述带孔型产气剂模压制品脱模。
根据本发明所述的压制模具,所述上冲和下冲端面外边缘任选地设置与所述柱状体外部倒角相对应的突出形状,上冲和下冲端面通孔处边缘任选地设置与所述柱状体内孔倒角相对应的突出形状,如图9a所示。
在本发明的一些具体的实施方式中,所述芯杆设置成沿轴向形状和尺寸不同,如图9b所示,所述中模内通孔设置成沿轴向形状和尺寸不同,如图9c所示。
根据本发明所述的压制模具,所述上冲侧面设置有卸料槽7-10,在压制贯通孔产气剂模压制品时,芯杆通过上冲通孔时能够卸掉附着在芯杆上的多余物料,能够延长模具的耐久性。
根据本发明所述的压制模具,当所述柱状体沿轴向非旋转对称时,所述上冲、下冲、中模和芯杆均设置定位单元,所述定位单元包括定位槽、定位孔或定位键,实现所述上冲、下冲、中模和芯杆形状的相对应。
根据本发明所述的压制模具,所述的上冲、中模、下冲和芯杆的工作部分镀上镀层,提高耐久性。
本发明的第四方面提供了本发明第一方面所述的带孔型产气剂模压制品的应用,所述带孔型产气剂模压制品应用于汽车安全气囊气体发生器、灭火器、固体氧气发生器或救生艇充气器等系统。
本发明与现有技术相比具有如下有益效果:
(1)本发明通过在产气剂成型结构中形成贯通或不贯通的孔,调节了产气剂燃面,减小了初始燃面,并使产气剂减面燃烧过程减缓,或形成等面或增面燃烧。当需求药剂总质量相同时,带孔型产气剂模压制品初始燃面比片状产气剂模压制品小,燃烧前期燃气产生少,气体发生器外部输出压力低,输出火焰残渣少,对气囊冲击或伤害小,气囊 缓慢展开,对外饰伤害小;燃烧中期减面燃烧过程减缓,或呈等面或增面燃烧,如此快速产生气体,促使气囊快速填充;燃烧后期恢复减面燃烧,或者比前期中期的燃烧速率慢的燃烧,使后期能够持续产生气体,延长气囊功用的保持时间,延长保护人身安全的时间,即使在侧撞或者非正位碰撞时,也能提供足够时长的保护。另外本发明的带孔型产气剂模压制品尺寸可以进行调整,较小尺寸能够适用于各种类型的安全气囊气体发生器,较大尺寸能够适应灭火器、固体氧气发生器、救生艇充气器等需要更长时间供气的气体发生器。
(2)本发明通过采用带孔型产气剂模压制品,其初始燃面减小,发生器内部压力降低,另外减面烧烧的减缓,或等面或增面的燃烧,有利于内部压力的分布,使得性能平缓,燃烧稳定。内压的降低,对过滤网强度、发生器壳体强度、焊接强度,或者其他结构强度的要求降低,从而可以减少过滤网层数、减少发生器壳体的厚度、降低焊接需求的能耗、减少其他需要保证强度的结构,或者使用低强度的材料,进而降低成本。
(3)本发明带孔型产气剂模压制品相对于传统的普通圆型药片,发生器内部压力能够实现分布,延长高于一定压力的时间,因此也可以使用低燃速、低燃温的产气剂配方,在有孔这种形状以及内压分布的影响下,燃烧会更完全,不会留下未烧完药片,产气剂利用率更高。
(4)本发明带孔型产气剂模压制品在气体发生器中的压力-时间曲线是光滑型曲线,前期斜率较低,中期斜率高且稳定,后期斜率低下降平缓,性能优异;
(5)本发明的带孔型产气剂模压制品在密度相等的情况下,单片质量大于普通圆形片,单个气体发生器需求的产气剂模压制品的质量是一定的,因此在一定程度上提升了制备效率,降低了生产成本。
(6)本发明的带孔型产气剂模压制品的制备方法中,能够覆盖小型及中型带孔型产气剂模压制品的制备,并且实现了压制成型的方式制备小型带孔型产气剂模压制品,使得制备工艺简单、易于操作与控制。
附图说明
图1为本发明带孔型产气剂模压制品的轴向剖面示意图,其中图1a为内部有贯通孔的产气剂模压制品,图1b为内部有不贯通孔的产气剂模压制品;
图2为本发明带孔型产气剂模压制品横截面最大尺寸的示意图,该尺寸指图中虚线表示的外接圆的直径,其中图2a为柱状体或内孔横截面为等边三角形时的外接圆,图2b为柱状体或内孔横截面为正方形时的外接圆,图2c为柱状体或内孔横截面为等边六边形时的外接圆,图2d为柱状体或内孔横截面为花瓣状时的外接圆,图2e为柱状体或 内孔横截面为星形时的外接圆;
图3为本发明带孔型产气剂模压制品的外部形状或内孔形状的示意图,其中图3a为外部形状是圆柱形,图3b外部形状是等边五边形;,图3c外部形状是星形,图3d为外部形状是花瓣状,图3e为内孔形状是等边三角形,图3f为内孔形状是上部为横截面最大尺寸较大的圆柱形下半部分是横截面最大尺寸较小的等边三角形,图3g为外部形状是圆台形,图3h为外部形状是上下尺寸不同的圆柱形,图3i为外部形状是上下尺寸不同的花瓣状;
图4为本发明带孔型产气剂模压制品两个端面形状的示意图,该示意图为轴向剖面图,其中图4a为端面形状为平面,图4b为端面形状为凸面,图4c为端面形状为凹面;
图5为本发明带孔型产气剂模压制品带有脱模斜度的轴向剖面示意图,其中内孔与外部形状的拔模斜度的方向是相反的;
图6为本发明带孔型产气剂模压制品用于表示内外侧面与端面连接处倒角样式的示意图,其中图6a为无倒角,图6b为圆倒角,图6c为带角度的直线倒角,图6d为圆倒角和带直线倒角搭配使用;
图7为本发明压制模具的示意图,其中图7a为芯杆从下冲伸出时的一种压制模具组合方式,图7b为带卸料槽的上冲,图7c为带通孔的下冲,图7d为一种带有增加直径的芯杆;其中7-1代表上冲,7-2代表上冲通孔,7-3代表上冲工作端,7-4代表中模,7-5代表中模内孔,7-6代表中模固定槽,7-7代表下冲,7-8代表芯杆,7-9代表芯杆固定端,7-10代表上冲卸料槽,7-11代表下冲通孔,7-12代表下冲工作端,7-13代表芯杆工作端,7-14代表芯杆增加直径增加强度的部分;
图8为本发明压制模具的中模示意图,其中图8a为自然角度中模的示意图,图8b为中模用于示意内外部的轴向剖面图;
图9为本发明压制模具的示意图,其中图9a为用于成型倒角的上下冲突出形状,包括上下冲端面外部边缘和端面通孔处边缘的突出形状,图9b为设置两种尺寸形状的芯杆,图9c为设置两种尺寸形状的中模;
图10为实施例一中所使用的带孔型产气剂模压制品的示意图及压力-时间曲线,其中图10a为自然角度带孔型产气剂模压制品的示意图,图10b为该带孔型产气剂模压制品的轴向剖面图,图10c为该带孔型产气剂模压制品在气体发生器上使用时的压力-时间曲线,包括内部压力及外部压力;
图11为实施例二中所使用的带孔型产气剂模压制品在气体发生器上使用时的压力-时间曲线,包括内部压力及外部压力;
图12为实施例三中所使用的带孔型产气剂模压制品在气体发生器上使用时的压力- 时间曲线,包括内部压力及外部压力;
图13为实施例四、实施例五以及实施例六中所使用的带孔型产气剂模压制品在密闭发生器上测试时的压力-时间曲线;
图14为实施例七中所使用的带孔型产气剂模压制品和在气体发生器上使用时的压力-时间对比曲线,包括内部压力及外部压力,其中图14a是自然角度等边六边形带孔产气剂模压制品的示意图,图14b是该等边六边形带孔产气剂模压制品的轴向剖面图,图14c为等边六边形带孔产气剂模压制品在气体发生器上测试时的压力-时间对比曲线;
图15为实施例八中所使用的带孔型产气剂模压制品和在气体发生器上使用时的压力-时间对比曲线,包括内部压力及外部压力,其中图15a是自然角度横截面为圆形、内孔为圆孔、外部和内孔带圆形倒角的产气剂模压制品的示意图,图15b是该带孔产气剂模压制品的轴向剖面图,图15c为横截面为圆形、内孔为圆孔、外部和内孔带圆形倒角的产气剂模压制品在气体发生器上测试时的压力-时间对比曲线;
图16为实施例九中所使用的带孔型产气剂模压制品和在气体发生器上使用时的压力-时间对比曲线,包括内部压力及外部压力,其中图16a是自然角度带孔型产气剂模压制品的示意图,图16b是该带孔型产气剂模压制品的轴向剖面图,图16c为横截面为圆形、内孔为等边三角形的产气剂模压制品在气体发生器上使用时的压力-时间对比曲线;
图17为对比例一中所使用的圆片形和带孔型产气剂模压制品和在气体发生器上使用时的压力-时间对比曲线,包括内部压力及外部压力,其中图17a是自然角度圆片形产气剂模压制品的示意图,图17b是该圆片形产气剂模压制品的轴向剖面图,图17c为圆片形和带孔型产气剂模压制品在气体发生器上使用时的压力-时间对比曲线;
图18为对比例二中所使用的圆片形和带孔型产气剂模压制品在气体发生器上使用时的压力-时间对比曲线,包括内部压力及外部压力;
图19为对比例三中所使用的圆片形和带孔型产气剂模压制品和在密闭发生器上测试时的压力-时间对比曲线,其中图19a是自然角度圆片形产气剂模压制品的示意图,图19b是该圆片形产气剂模压制品的轴向剖面图,图19c为圆片形和带孔型产气剂模压制品在密闭发生器上测试时的压力-时间对比曲线;
图20为对比例四中所使用的圆片形和带孔型产气剂模压制品和在气体发生器上使用时的压力-时间对比曲线,包括内部压力及外部压力;
图21为对比例五中所使用的圆片形和带孔型产气剂模压制品和在气体发生器上使用时的压力-时间对比曲线,包括内部压力及外部压力。
具体实施方式
本发明的带孔型产气剂模压制品,所使用的物料可以是原料混合得到的直接混合物料或者造粒得到造粒后的物料,具体制备可以采用以下方法:
方法一:
(1)使用湿法制粒、喷雾制粒、沸腾制粒、干法制粒中的一种方法将至少包含燃料和氧化剂的原料组分混合制成颗粒,得到第一物料;
(2)将第一物料过筛、整粒,得到粒径在10~200目范围内的第二物料,第二物料含水量低于第二物料总质量的0.5%,颗粒堆积密度为0.5g/cm 3~2.0g/cm 3
(3)将第二物料装填到压制模具中,通过旋转压片机压制成型,并干燥,得到带孔型产气剂模压制品。
方法二:
(1)将至少包含燃料和氧化剂的原料组分使用V型混合机、三维多向运动混合机、自动提升料斗混合机、螺带混合机或声共振混合机混合均匀,得到第一物料;
(2)将第一物料通过10~200目的筛网,得到第二物料,第二物料水分小于总质量的0.5%,颗粒堆积密度为0.5g/cm 3~2.0g/cm 3
(3)将第二物料装填到压制模具中,通过旋转压片机压制成型,并干燥,得到带孔型产气剂模压制品。
下面结合附图和具体实施例对本发明作进一步详细的描述:
实施例一
(1)按照上述方法一中的湿法制粒法,将至少包含燃料和氧化剂的原料组分制成颗粒,得到第一物料;所述第一物料中燃料为硝酸胍,其含量为50%,氧化剂为碱式硝酸铜,其含量为31.75%,辅助氧化剂为高氯酸铵,其含量分别为2%;形态保持剂为钛酸锶和硝酸锶,其含量分别为5.5%和9.75%;此外,所述第一物料还包括功能助剂有助脱模剂为滑石粉和石墨,其含量分别为0.75%和0.25%。
(2)将第一物料过筛、整粒,得到粒径在10~200目范围内的第二物料,第二物料含水量为0.20%,颗粒堆积密度为0.903g/cm3;
(3)所述配方燃速为21.3mm/s,燃温为2405K,产气量为3.12mol/100g。
(4)将第二物料将第二物料装填到压制模具中,通过旋转压片机压制成型,并干燥,得到带孔型产气剂模压制品。
使用硬度仪测量其压碎强度为19.1N/mm,使用密度仪测量其密度为2.001g/cm3;测得其含水量为0.05wt%。
其外径D为5.4mm,高度H为6.0mm,内孔径为1.5mm,形状如图10a和10b所 示。
将上述制备的带孔型产气剂模压制品装入PAB试验发生器中,进行内压和外压P-t性能试验,结果如图10c所示。
由实施例一内、外压曲线说明:上述配方的带孔型产气剂在PAB发生器中表现为前期压力低、中期产气稳定、后期压力降低缓慢,对气袋展开时的冲击力小,气袋不易产生撕裂和破损现象,对气袋模块总成设计强度要求低,进而降低设计成本。
实施例二
(1)按照上述方法二,将至少包含燃料和氧化剂的原料组分混合均匀得到第一物料,混合设备可以为V型混合机、三维多向运动混合机、自动提升料斗混合机、螺带混合机或声共振混合机;所述第一物料中燃料为燃料为硝酸胍和脒基脲硝酸铜其含量分别为25%和30%,氧化剂为碱式硝酸铜,其含量为30%,辅助氧化剂为高氯酸铵,其含量分别为3%;功能助剂为钛酸锶和氢氧化铝,其含量分别为7.5%和3.5%;此外,所述第一物料还包括辅助功能助剂滑石粉和石墨,其含量分别为0.75%和0.25%。
(2)将第一物料过10~200目的筛网,得到粒径在10~200目物料,上述物料为第二物料,第二物料水分为0.25%,颗粒堆积密度为1.089g/cm3;
(3)所述配方燃速为20.5mm/s,燃温为2117K,产气量为3.04mol/100g。
(4)将第二物料将第二物料装填到压制模具中,通过旋转压片机压制成型,并干燥,得到带孔型产气剂模压制品。
使用硬度仪测量其压碎强度为20.3N/mm,使用密度仪测量其密度为1.995g/cm3;测得其含水量为0.04wt%。
其外径D为5.4mm,高度H为7.0mm,内孔径为1.6mm,形状如图10a和10b所示。
将上述制备的带孔型产气剂模压制品装入PAB试验发生器中,进行内压和外压P-t性能测试,结果如图11所示。
由实施例二内、外压曲线说明:上述配方的带孔型产气剂在PAB发生器中表现为内压峰值低,外压产气稳定,表明上述配方带孔产气剂燃烧稳定。
实施例三
(1)按照上述方法一中的沸腾制粒法,将至少包含燃料和氧化剂的原料组分制成颗粒,得到第一物料;所述第一物料配方中燃料为硝基胍和氰尿酸三聚氰胺其含量分别为23.5%和31.5%,氧化剂为碱式硝酸铜和碱式碳酸铜,其含量分别为24.4%和11%, 辅助氧化剂为高氯酸铵,其含量分别为2.5%;功能助剂为钛酸锶,其含量为6%;辅助功能助剂氮化硼和石墨,其含量分别为0.75%和0.35%。
(2)将第一物料过筛、整粒,得到粒径在10~200目范围内的第二物料,第二物料含水量为0.18%,颗粒堆积密度为1.152g/cm3;
(3)所述配方燃速为18.9mm/s,燃温为1304K,产气量为3.25mol/100g。
(4)将第二物料将第二物料装填到压制模具中,通过旋转压片机压制成型,并干燥,得到带孔型产气剂模压制品。
使用硬度仪测量其压碎强度为20.1N/mm,使用密度仪测量其密度为2.017g/cm3;测得其含水量为0.06wt%。
其外径D为5.7mm,高度H为7.5mm,内孔径为1.3mm,形状如图10a和10b所示。
将上述制备的带孔型产气剂模压制品装入PAB试验发生器中,进行内压和外压P-t性能测试,结果如图12所示。
由实施例三内、外压曲线说明:上述配方的带孔型产气剂在PAB发生器中表现为内压峰值较低且后期下降缓慢,外压产气稳定,表明上述配方带孔产气剂燃烧稳定,发生器对外部组件冲击会减弱。
实施例四
(1)使用方法一中的干法制粒法,将至少包含燃料和氧化剂的原料组分制成颗粒,得到第一物料;所述第一物料配方中燃料为硝酸胍和5-氨基四唑其含量分别为16.1%和20.5%,氧化剂为硝酸锶和硝酸钾,其含量分别为49.1%和8.5%,功能助剂为高岭土,其含量为5.5%;辅助功能助剂氮化硼和滑石粉,其含量分别为0.1%和0.2%。
(2)将第一物料过筛、整粒,得到粒径在10~200目范围内的第二物料,第二物料含水量为0.08%,颗粒堆积密度为1.105g/cm3;
(3)所述配方燃速为25.1mm/s,燃温为2851K,产气量为2.67mol/100g。
(4)将第二物料将第二物料装填到压制模具中,通过旋转压片机压制成型,并干燥,得到带孔型产气剂模压制品。
使用硬度仪测量其压碎强度为21.0N/mm,使用密度仪测量其密度为2.214g/cm3;测得其含水量为0.08wt%。
其药型尺寸同实施例一。
将上述制备的带孔型产气剂模压制品装入30ml密闭发生器中,进行P-t性能测试,结果如图13所示。
由图13中实施例四曲线说明:上述配方的带孔型产气剂在密闭发生器中燃烧稳定,且曲线斜率较陡,燃烧速度较快。
实施例五
(1)使用方法一中的喷雾制粒法,将至少包含燃料和氧化剂的原料组分制成颗粒,得到第一物料;所述第一物料配方中燃料为硝基胍和5-氨基四唑其含量分别为7%和31.5%,氧化剂为硝酸锶和高氯酸钾,其含量分别为42%和11.5%,功能助剂为高岭土,其含量为6%;辅助功能助剂气相二氧化硅和滑石粉,其含量分别为1%和1%。
(2)将第一物料过筛、整粒,得到粒径在10~200目范围内的第二物料,第二物料含水量为0.13%,颗粒堆积密度为1.025g/cm3;
(3)所述配方燃速为24.8mm/s,燃温为2832K,产气量为2.79mol/100g。
(4)将第二物料
将第二物料装填到压制模具中,通过旋转压片机压制成型,并干燥,得到带孔型产气剂模压制品。
使用硬度仪测量其压碎强度为20.8N/mm,使用密度仪测量其密度为2.198g/cm3;测得其含水量为0.08wt%。
其药型尺寸同实施例一。
将上述制备的带孔型产气剂模压制品装入30ml密闭发生器中,进行P-t性能测试,结果如图13所示。
由图13中实施例五曲线说明:上述配方的带孔型产气剂在密闭发生器中燃烧稳定,且曲线前期斜率较大。
实施例六
(1)使用方法一中的湿法制粒法,将至少包含燃料和氧化剂的原料组分制成颗粒,得到第一物料;所述第一物料配方中燃料为硝酸胍和3-硝基-1,2,4-三唑-5-酮其含量分别为11%和50.5%,氧化剂为硝酸锶和硝酸钠,其含量分别为10%和24.5%,催化剂剂为氧化铜,其含量为3%;辅助功能助剂石墨和氮化硼,其含量分别为0.5%和0.5%。
(2)将第一物料过筛、整粒,得到粒径在10~200目范围内的第二物料,第二物料含水量为0.16%,颗粒堆积密度为0.902g/cm3。
(3)所述配方燃速为27.7mm/s,燃温为2901K,产气量为2.15mol/100g。
(4)将第二物料将第二物料装填到压制模具中,通过旋转压片机压制成型,并干燥,得到带孔型产气剂模压制品。
使用硬度仪测量其压碎强度为18.2N/mm,使用密度仪测量其密度为1.951g/cm3;测得其含水量为0.10wt%。
药型尺寸同实施例一。
将上述制备的带孔型产气剂模压制品装入30ml密闭发生器中,进行P-t性能测试,结果如图13所示。
由图13中实施例六曲线说明:上述配方的带孔型产气剂在密闭发生器中燃烧稳定,且曲线前期斜率适中,整体产气偏低但产气稳定。
实施例七
采用与实施例一完全相同的配方,改变压制模具进行压制成型,得到如图14a和14b所示的横截面为等边六边形、内孔为圆孔的产气剂模压制品,其外形横截面最大尺寸D为5.4mm,高度H为6.0mm,内孔径为1.5mm。
使用硬度仪测量其压碎强度为20.5N/mm,使用密度仪测量其密度为2.005g/cm3;测得其含水量为0.04wt%。
将上述制备的带孔型产气剂模压制品装入PAB试验发生器中,进行内压和外压P-t性能测试,结果如图14c所示。
由实施例七内、外压曲线说明:等边六边形带孔产气剂在PAB发生器中外压曲线成S型,表明产气过程前期慢、中期加速、后期稳定;内压曲线反应出带孔产气剂在发生器内部燃烧情况,峰值处出现大概5ms压力平稳,表明这种带孔产气剂为近似等面燃烧。对气袋冲击小,对发生器壳体要求低,可有效降低成本。
实施例八
采用与实施例一完全相同的配方,改变压制模具进行压制成型,得到如图15a和15b所示的横截面为圆形、内孔为圆孔、外部和内孔带圆形倒角的产气剂模压制品。
使用硬度仪测量其压碎强度为19.4N/mm,使用密度仪测量其密度为2.003g/cm3;测得其含水量为0.05wt%。
其横截面最大尺寸D为5.4mm,高度H为6.0mm,内孔径为1.5mm,外部和内孔的圆倒角尺寸R为0.25mm。
将上述制备的带孔型产气剂模压制品装入PAB试验发生器中,进行内压和外压P-t性能测试,结果如图15c所示。
由实施例八内、外压曲线说明:上述有倒角带孔型产气剂在PAB发生器中表现为内压产气量稳定后期下降缓慢;外压前期压力较低、产气稳定,对气袋展开时的冲击力 小,气袋不易产生撕裂。
实施例九
采用与实施例一完全相同的配方,改变压制模具进行压制成型,得到如图16a和16b所示的横截面为圆形、内孔为等边三角形的产气剂模压制品。
使用硬度仪测量其压碎强度为19.9N/mm,使用密度仪测量其密度为2.007g/cm3;测得其含水量为0.05wt%。
其横截面最大尺寸D为6.0mm,高度H为7.5mm,内孔外接圆直径为1.8mm。(设定的内孔等边三角形中孔药参数)
将上述制备的带孔型产气剂模压制品装入PAB试验发生器中,进行内压和外压P-t性能测试,结果如图16c所示。
由实施例九内、外压曲线说明:上述内孔为等边三角形的带孔型产气剂在PAB发生器中表现为内压产气量稳定后期下降缓慢;外压前期压力较低、后期稳定上升,对气袋展开时的冲击力小,气袋不易破损。
对比例一
采用与实施例一完全相同的配方制备了圆片形产气剂,其外径D为5mm,厚度H为1.9mm,如附图17a和17b。与实施例一中带孔型产气剂对比。
将上述制备的圆片形产气剂模压制品装入PAB试验发生器中,进行内压和外压P-t性能测试,与实施例一对比结果如图17c所示。
由对比例P-t曲线说明:上述配方的圆片形产气剂在PAB发生器中表现为内压峰值高,前期产气快,外压前期10ms处压力高,增加对气袋冲击力,造成制造成本增加。
对比例二
采用与实施例二完全相同的配方制备了圆片形产气剂,圆片形外形尺寸同对比例一。与实施例二中带孔型产气剂对比。
将上述制备的圆片形产气剂模压制品装入PAB试验发生器中,进行内压和外压P-t性能测试,与实施例二对比结果如图18所示。
由对比例二P-t曲线说明:上述配方的带孔型产气剂在PAB发生器中表现为内压峰值较高,前期产气较快,由于产气速度过快外压前期压力升高速度过快后期充气不稳定,增加对发生器壳体材料的要求,造成制造成本增加。
对比例三
采用与实施例四完全相同的配方制备了圆片形产气剂,其外径D为3mm,厚度H为1.5mm,如附图19a和19b。,将其与实施例四的带孔型产气剂模压制品对比。两者对比结果如图19c所示
将上述制备的圆片形产气剂模压制品装入30ml密闭发生器中,进行P-t性能测试,。
由对比例三P-t曲线说明:上述配方的圆片形产气剂在密闭发生器中曲线斜率高,燃烧速度较快,对发生器过滤网冲击增大,造成残渣增多。
对比例四
将实施例七的带孔型产气剂模压制品与对比例一的圆片形产气剂进行对比试验,两者对比结果如图20所示。
由对比例四P-t曲线说明:上述配方的圆片形产气剂对比等边六边形带孔产气剂在PAB发生器中表现为内压峰值较高,前期产气较快压力较高后期压力下降快,对气袋冲击很大。
对比例五
将实施例八的带孔型产气剂模压制品与对比例一的圆片形产气剂进行对比试验,两者对比结果如图21所示。
由对比例五P-t曲线说明:上述配方的圆片形产气剂在PAB发生器中表现为内压峰值高,前期产气快,外压前期10ms处压力较高,增加对气袋冲击力易造成气袋撕裂,使制造成本增加。
以上所述,仅为本发明最佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

Claims (29)

  1. 一种带孔型产气剂模压制品,其外形为柱状体,内部设有贯通或不贯通的孔。
  2. 根据权利要求1所述的带孔型产气剂模压制品,其特征在于,所述柱状体沿高度方向的尺寸或形状相同;或
    所述的柱状体沿高度方向的尺寸或形状不相同。
  3. 根据权利要求1所述的带孔型产气剂模压制品,其特征在于,所述孔沿高度方向的尺寸或形状相同;或
    所述孔沿高度方向的尺寸或形状不相同。
  4. 根据权利要求1所述的带孔型产气剂模压制品,其特征在于,所述的柱状体的横截面形状选自圆形、具有外接圆的多边形、花瓣状或星形;所述孔的横截面形状选自圆形、三角形、具有外接圆的多边形、花瓣状或星形。
  5. 根据权利要求4所述的带孔型产气剂模压制品,其特征在于,所述柱状体横截面的最大尺寸在2.0~20mm范围内,高度在2.0~20mm范围内,所述孔横截面最大尺寸在0.5~5mm范围内;其中,所述柱状体横截面的最大尺寸为最大横截面形状的外接圆直径;所述孔横截面的最大尺寸为孔最大横截面形状的外接圆直径。
  6. 根据权利要求5所述的带孔型产气剂模压制品,其特征在于,所述柱状体横截面的最大尺寸在3~10mm范围内,高度在2.0~10mm范围内,所述孔横截面最大尺寸在0.8~4mm范围内;优选地,所述柱状体横截面的最大尺寸在3~8mm范围内,高度在2.0~8mm范围内,所述孔横截面最大尺寸在0.8~3mm范围内;更优选地,所述柱状体横截面的最大尺寸在4~7mm范围内,高度在3.0~7.5mm范围内,所述孔横截面最大尺寸在0.8~2mm范围内;最优选地,所述柱状体横截面的最大尺寸在4~6mm范围内,高度在5.0~7.5mm范围内,所述孔横截面最大尺寸在1.0~1.8mm范围内。
  7. 根据权利要求1所述的带孔型产气剂模压制品,其特征在于,所述柱状体上下两个端面各自独立地选自平面、凸面或凹面;优选地,所述的柱状体上下两个端面均为平面或凸面,或一个端面为平面,另一端面为凸面。
  8. 根据权利要求1-7中任一项所述的带孔型产气剂模压制品,其特征在于,所述柱状体和所述孔沿高度方向具有脱模斜度,所述柱状体和所述孔的脱模斜度方向相反设 置;所述脱模斜度在0°~3°范围内。
  9. 根据权利要求1-7中任一项所述的带孔型产气剂模压制品,其特征在于,所述柱状体外侧面与上下两个端面连接处任选地设置倒角,所述倒角为直倒角或圆倒角;所述直倒角的范围为(0.1~5mm)×(10°~80°),所述圆倒角的半径范围为0.1~5mm。
  10. 根据权利要求1-7中任一项所述的带孔型产气剂模压制品,其特征在于,所述孔与上下两个端面连接处任选地设置倒角,所述倒角为直倒角或圆倒角;所述直倒角的范围为(0.1~5mm)×(10°~80°),所述圆倒角的范围为半径范围为0.1~5mm。
  11. 根据权利要求1-7中任一项所述的带孔型产气剂模压制品,其特征在于,所述带孔型产气剂模压制品的压碎强度大于18N/mm,优选20~30N/mm;密度范围在1.60~2.20g/cm 3
  12. 根据权利要求1-7中任一项所述的带孔型产气剂模压制品,其特征在于,所述带孔型产气剂模压制品的水分含量≤0.25wt%。
  13. 一种根据权利要求1-12中任一项所述的带孔型产气剂模压制品的制备工艺,其特征在于,所述制备工艺为:将至少包含燃料和氧化剂的原料组分混合得到直接混合物料,或造粒得到造粒后的物料,将所述直接混合的物料或者造粒后的物料装填到压制模具中,通过压制成型得到带孔型产气剂模压制品。
  14. 根据权利要求13所述的制备工艺,其特征在于,所述造粒后的物料的粒径为10~200目,颗粒堆积密度为0.5g/cm 3~2.5g/cm 3
  15. 根据权利要求13所述的制备工艺,其特征在于,所述燃料的含量为35%~75%,所述氧化剂的含量为25%~58%;所述燃料选自硝酸胍、氨基胍硝酸盐、氰尿酸三聚氰胺、三聚氰胺、硝基胍、5-氨基四唑、3-硝基-1,2,4-三唑-5-酮、脒基脲硝酸铜、硝酸铵、双四唑铵盐、双四唑钾盐、NTO、新型含能材料FOX7、FOX12、TKX-50、LLM-105中的一种或多种;所述氧化剂选自金属碱式硝酸盐、金属碱式碳酸盐、金属硝酸盐、高氯酸铵、金属高氯酸盐、氯酸盐中的一种或多种;功能助剂为金属钛酸盐、二氧化钛、钛酸锶、氢氧化铝、氧化铝、高岭土、酞菁铜、氮化硼、二氧化硅、气相二氧化硅、石墨、滑石粉中的一种或多种;催化剂为金属氧化物、二茂铁及其衍生物,氧化钴有机铅化物、铜的有机配合物一种或多种。
  16. 根据权利要求13所述的制备工艺,其特征在于,所述带孔型产气剂模压制品的 配方可正氧平衡或者负氧平衡,燃烧产物中CO、NOx和NH 3满足USCAR的要求;所述配方的燃速为6~30mm/s,燃温为500K~3000K;所述配方的产气量为2.0~4.0mol/100g。
  17. 根据权利要求13-16中任一项所述的制备工艺,其特征在于,所述压制成型采用旋转压片机,所述旋转压片机冲组数范围为6~100冲,所述旋转压片机压制能力范围为1~30t,旋转速度为1~25转/分钟。
  18. 一种用于权利要求13-17中任一项所述的制备工艺的压制模具,其包括上冲、中模、下冲、和芯杆,所述中模内部设有通孔;通过上冲、下冲以及芯杆的运动,在中模内压制成所述带孔型产气剂模压制品。
  19. 根据权利要求18所述的压制模具,其特征在于,所述芯杆的形状和尺寸与所述柱状体内部孔的形状和尺寸相对应;所述中模内部通孔的形状和尺寸与所述带孔型产气剂模压制品外部形状和尺寸相对应;所述上冲和下冲的端面分别与所述柱状体的上、下端面的外形相对应。
  20. 根据权利要求18所述的压制模具,其特征在于,所述上冲和所述下冲内部具有与所述芯杆形状对应的通孔,所述芯杆从所述下冲的通孔伸出,与所述上冲的通孔对应,在产气剂模压制品内形成贯通孔;或
    所述下冲内部具有通孔,所述上冲无孔,通过调整芯杆长度和产气剂在中模内的成型的位置,在产气剂模压制品内形成不贯通的孔。
  21. 根据权利要求18所述的压制模具,其特征在于,所述上冲和所述下冲内部具有通孔,所述芯杆从所述上冲的通孔伸出,与所述下冲的通孔对应,在产气剂模压制品内形成贯通孔;或
    所述上冲内部具有通孔,所述下冲无孔,通过调整芯杆长度和产气剂在中模内的成型的位置,在产气剂模压制品内形成不贯通的孔。
  22. 根据权利要求18所述的压制模具,其特征在于,所述上冲和所述下冲内部具有通孔,所述芯杆从所述上冲和下冲的通孔同时伸出,通过调整芯杆位置和产气剂在中模内的成型的位置,在产气剂模压制品内形成贯通或不贯通的孔。
  23. 根据权利要求18所述的压制模具,其特征在于,所述的上冲、下冲、中模、芯杆工作部分设置有镀层,且所述中模由内外两种材料构成,外部材料硬度低于内部材料硬度。
  24. 根据权利要求18所述的压制模具,其特征在于,所述中模外部侧面与上下端面连接处设置有倒角,所述中模内部通孔的开口边缘设置有倒角。
  25. 根据权利要求18所述的压制模具,其特征在于,所述中模和芯杆根据所述带孔型产气剂模压制品的脱模斜度设置相对应的锥度。
  26. 根据权利要求18所述的压制模具,其特征在于,上冲和下冲端面外边缘任选地设置与所述柱状体外部倒角相对应的突出形状,所述上冲和下冲通孔边缘任选地设置与所述柱状体内孔倒角相对应的突出形状。
  27. 根据权利要求18所述的压制模具,其特征在于,所述上冲设置有卸料槽。
  28. 根据权利要求18所述的压制模具,其特征在于,当所述柱状体沿轴向任意角度非旋转对称时,所述上冲、下冲、中模和芯杆均设置定位单元,所述定位单元包括定位槽、定位孔或定位键。
  29. 权利要求1-12中任一项所述的带孔型产气剂模压制品的应用,其特征在于,所述带孔型产气剂模压制品应用于汽车安全气囊气体发生器、灭火器、固体氧气发生器或救生艇充气器等系统。
PCT/CN2019/091615 2018-12-29 2019-06-18 一种带孔型产气剂模压制品及其制备工艺 WO2020133955A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811636593.5A CN109809953A (zh) 2018-12-29 2018-12-29 一种带孔型产气剂模压制品及其制备工艺
CN201811636593.5 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020133955A1 true WO2020133955A1 (zh) 2020-07-02

Family

ID=66602752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091615 WO2020133955A1 (zh) 2018-12-29 2019-06-18 一种带孔型产气剂模压制品及其制备工艺

Country Status (2)

Country Link
CN (1) CN109809953A (zh)
WO (1) WO2020133955A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109809953A (zh) * 2018-12-29 2019-05-28 湖北航鹏化学动力科技有限责任公司 一种带孔型产气剂模压制品及其制备工艺
CN111943789A (zh) * 2020-09-01 2020-11-17 湖北航天化学技术研究所 一种气体发生剂及其制备方法
CN111978136B (zh) * 2020-09-01 2021-11-23 湖北航天化学技术研究所 一种改进的气体发生剂及其制备方法
CN114407420B (zh) * 2022-01-14 2024-03-26 西北工业大学 一种多层圆柱形三明治推进剂、制备模具及制备方法
CN114477095A (zh) * 2022-01-24 2022-05-13 湖北航天化学技术研究所 产气药柱、固体氧气发生器和产气药柱制备方法
CN114539011B (zh) * 2022-02-21 2023-03-28 张延松 一种安全高效的高能膨胀剂及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1556782A (zh) * 2002-09-12 2004-12-22 大赛璐化学工业株式会社 气体发生剂组合物
CN1651361A (zh) * 2005-03-31 2005-08-10 张根发 一种产气药剂的模塑制品及其制备方法
CN1951882A (zh) * 1996-07-22 2007-04-25 大赛璐化学工业株式会社 用于气囊的产气剂
CN109131198A (zh) * 2018-10-29 2019-01-04 湖北航天化学技术研究所 一种气囊用气体发生剂药片及其制备工艺和气体发生器系统
CN109160868A (zh) * 2018-10-31 2019-01-08 湖北航天化学技术研究所 一种气囊用气体发生剂
CN109809953A (zh) * 2018-12-29 2019-05-28 湖北航鹏化学动力科技有限责任公司 一种带孔型产气剂模压制品及其制备工艺
CN209037528U (zh) * 2018-10-29 2019-06-28 湖北航天化学技术研究所 一种气囊用气体发生剂药片及气体发生器系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2067216U (zh) * 1990-05-21 1990-12-12 中国人民解放军空军医学专科学校 片剂致孔冲具
AT402741B (de) * 1995-10-13 1997-08-25 Chemiefaser Lenzing Ag Verfahren zur herstellung cellulosischer fasern
US6527886B1 (en) * 1996-07-22 2003-03-04 Daicel Chemical Industries, Ltd. Gas generant for air bag
JP3608902B2 (ja) * 1997-03-24 2005-01-12 ダイセル化学工業株式会社 ガス発生剤組成物及びその成型体
JP2000103692A (ja) * 1998-09-30 2000-04-11 Daicel Chem Ind Ltd エアバッグ用ガス発生剤組成物成型体
DE69943245D1 (de) * 1999-10-06 2011-04-14 Nof Corp Gaserzeugende zusammensetzung
CN2786115Y (zh) * 2005-03-31 2006-06-07 张根发 一种产气药剂的模塑制品
CN108863691B (zh) * 2018-08-03 2020-06-09 湖北航天化学技术研究所 一种安全气囊用气体发生剂药粒及其压制制备工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1951882A (zh) * 1996-07-22 2007-04-25 大赛璐化学工业株式会社 用于气囊的产气剂
CN1556782A (zh) * 2002-09-12 2004-12-22 大赛璐化学工业株式会社 气体发生剂组合物
CN1651361A (zh) * 2005-03-31 2005-08-10 张根发 一种产气药剂的模塑制品及其制备方法
CN109131198A (zh) * 2018-10-29 2019-01-04 湖北航天化学技术研究所 一种气囊用气体发生剂药片及其制备工艺和气体发生器系统
CN209037528U (zh) * 2018-10-29 2019-06-28 湖北航天化学技术研究所 一种气囊用气体发生剂药片及气体发生器系统
CN109160868A (zh) * 2018-10-31 2019-01-08 湖北航天化学技术研究所 一种气囊用气体发生剂
CN109809953A (zh) * 2018-12-29 2019-05-28 湖北航鹏化学动力科技有限责任公司 一种带孔型产气剂模压制品及其制备工艺

Also Published As

Publication number Publication date
CN109809953A (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
WO2020133955A1 (zh) 一种带孔型产气剂模压制品及其制备工艺
JP4490919B2 (ja) ガス発生器
JP5719763B2 (ja) ガス発生剤組成物及びその成形体、並びにそれを用いたガス発生器
JPH10262U (ja) ガス発生装置
CN108218648B (zh) 一种气体发生器
CN103625413B (zh) 一种气体发生剂及其制备方法
RO122626B1 (ro) Procedeu de fabricare pe cale uscată a obiectelor pirotehnice
US8057611B2 (en) Multi-composition pyrotechnic grain
JPH10100U (ja) ガス発生剤物体、ガスバッグ膨張器及び窒素含有ガス発生装置
US8057612B2 (en) Methods of forming a multi-composition pyrotechnic grain
CN111548242B (zh) 气体发生器
CN109160868A (zh) 一种气囊用气体发生剂
WO2000018619A1 (fr) Corps moule forme d'une composition d'agent generateur de gaz, pour airbags
WO2005014344A1 (ja) ガス発生器
CN108863691B (zh) 一种安全气囊用气体发生剂药粒及其压制制备工艺
EP1688311A3 (en) Volume filling mechanical structures for modifying crash deceleration pulse
CN109131198A (zh) 一种气囊用气体发生剂药片及其制备工艺和气体发生器系统
WO2020133956A1 (zh) 一种多孔产气剂模压制品及其制备工艺
JP2010536691A (ja) 多組成物着火塊と関連する形成方法
CA2538343C (en) Firing agent for gas generating device
CN107285969A (zh) 一种用于安全带预紧器的绿色产气药及其制备方法
JP6781654B2 (ja) ガス発生剤組成物
US6843869B2 (en) Porous igniter for automotive airbag applications
JP2022040125A (ja) ガス発生剤組成物
JP2000239092A (ja) ガス発生剤成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905935

Country of ref document: EP

Kind code of ref document: A1