WO2020133927A1 - 低温制冷风阀的控制方法及其装置 - Google Patents

低温制冷风阀的控制方法及其装置 Download PDF

Info

Publication number
WO2020133927A1
WO2020133927A1 PCT/CN2019/090145 CN2019090145W WO2020133927A1 WO 2020133927 A1 WO2020133927 A1 WO 2020133927A1 CN 2019090145 W CN2019090145 W CN 2019090145W WO 2020133927 A1 WO2020133927 A1 WO 2020133927A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
pressure
target pressure
damper
current system
Prior art date
Application number
PCT/CN2019/090145
Other languages
English (en)
French (fr)
Inventor
梁鑫
杨国忠
王命仁
谭志军
Original Assignee
合肥美的暖通设备有限公司
广东美的暖通设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥美的暖通设备有限公司, 广东美的暖通设备有限公司 filed Critical 合肥美的暖通设备有限公司
Priority to CA3121658A priority Critical patent/CA3121658C/en
Publication of WO2020133927A1 publication Critical patent/WO2020133927A1/zh
Priority to US17/361,198 priority patent/US20210325101A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • F24F2140/12Heat-exchange fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of air conditioning, in particular to a low-temperature refrigeration air valve control method and a low-temperature refrigeration air valve control device.
  • related technologies include optimizing the control strategy of multi-line air conditioners, such as reducing the speed of outdoor unit fans, shutting down some heat exchangers, switching some external heat exchangers from condenser to evaporator by design, and controlling throttling components in the system And other ways.
  • the problem with the related art is that in an ultra-low temperature environment (for example, below -15°C), the convection heat exchange between the heat exchanger and the air still cannot match the requirements of the cooling load and cannot meet the cooling demand.
  • the present invention aims to solve one of the technical problems in the related art at least to a certain extent. Therefore, the first object of the present invention is to provide a control method for a low-temperature refrigeration air valve, which can adjust the opening of the air valve according to the difference between the current system target pressure and the current system actual pressure to satisfy the user’s Refrigeration demand under ultra-low temperature environment, and expand the scope of refrigeration operation.
  • the second object of the present invention is to propose a control device for a low-temperature refrigeration air valve.
  • a method for controlling a low-temperature refrigeration air valve proposed in an embodiment of the first aspect of the present invention includes: acquiring the current ambient temperature; and determining the initial target pressure of the current system and the initial opening of the air valve according to the current environmental temperature ; Obtain the current system actual pressure and the current system target pressure; and adjust the opening of the damper according to the difference between the current system target pressure and the current system actual pressure; wherein, the damper is set at On the low temperature hood.
  • the current ambient temperature is obtained, and the initial target pressure of the current system and the initial opening of the air valve are determined according to the current ambient temperature, and the actual system pressure and the current system target are obtained The pressure, thereby adjusting the opening of the damper according to the difference between the current system target pressure and the current system actual pressure; wherein the damper is provided on the low-temperature hood. Therefore, according to the control method of the low-temperature refrigeration air valve proposed in the embodiment of the present invention, the opening degree of the air valve is adjusted according to the difference between the current system target pressure and the current system actual pressure to satisfy the user's refrigeration in an ultra-low temperature environment Demand and expand the scope of cooling operations.
  • control method of the low-temperature refrigeration air valve according to the above embodiment of the present invention may also have the following additional technical features:
  • the current actual system pressure is the compressor discharge pressure or the condenser condensation pressure.
  • the initial target pressure of the current system and the initial opening of the damper are used to determine the adjustment amount of the damper opening.
  • the acquiring the current system target pressure includes: acquiring the current ambient temperature every preset time, and adjusting the current system target pressure according to the current ambient temperature, and acquiring The adjusted current system target pressure.
  • the adjusting the opening degree of the damper includes adjusting the opening degree of the damper according to the adjustment amount of the damper opening, wherein the damper is opened
  • the degree adjustment is obtained according to the following formula:
  • ⁇ Xt represents the adjustment amount of the damper opening at the last t
  • ⁇ P represents the difference between the actual system pressure and the system target pressure at the current moment
  • ⁇ Pt represents the difference between the actual system pressure and the system target pressure at the last t.
  • a control device for a low-temperature refrigeration air valve includes: a first acquisition module for acquiring a current ambient temperature; and a determination module for determining The initial target pressure of the current system and the initial opening of the damper; the second obtaining module, used to obtain the current actual system pressure and the current system target pressure; and the control module, used to obtain the current system target pressure and the current system actual pressure The difference in pressure adjusts the opening of the air valve; wherein the air valve is installed on the low-temperature hood.
  • the current ambient temperature is acquired by the first acquisition module, and the initial target pressure of the current system and the initial opening of the damper are determined by the determination module according to the current ambient temperature, and by The second obtaining module obtains the current system actual pressure and the current system target pressure, and then, through the control module, adjusts the opening degree of the air valve according to the difference between the current system target pressure and the current system actual pressure. Therefore, according to the difference between the current system target pressure and the current system actual pressure, the low-temperature refrigeration air valve control device proposed in the embodiment of the present invention adjusts the opening of the air valve to meet the user's refrigeration needs in an ultra-low temperature environment , And expand the cooling operation range.
  • control device of the low-temperature refrigeration air valve according to the above embodiment of the present invention may also have the following additional technical features:
  • the actual pressure of the current system is the compressor discharge pressure or the condenser condensation pressure.
  • the determination module is further configured to determine the adjustment amount of the opening degree of the damper according to the initial target pressure of the current system and the initial opening degree of the damper.
  • the acquiring the current system target pressure includes: the first acquiring module is further used to acquire the current ambient temperature every preset time; and the determining module is further used to determine the current environment The temperature adjusts the target pressure of the current system die; the second acquisition module is also used to acquire the adjusted target pressure of the current system.
  • the adjusting the opening degree of the damper includes: the control module is further configured to adjust the opening degree of the damper according to the adjustment amount of the opening degree of the damper, wherein ,
  • the adjustment amount of the opening of the damper is obtained according to the following formula:
  • ⁇ Xt represents the adjustment amount of the damper opening at the last t
  • ⁇ P represents the difference between the actual system pressure and the system target pressure at the current moment
  • ⁇ Pt represents the difference between the actual system pressure and the system target pressure at the last t.
  • FIG. 1 is a schematic flowchart of a control method of a low-temperature refrigeration air valve according to an embodiment of the present invention
  • FIG. 2 is a block schematic diagram of a control device for a low-temperature refrigeration air valve according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a control method of a low-temperature refrigeration air valve according to an embodiment of the present invention.
  • control method of the low-temperature refrigeration air valve includes:
  • a temperature sensor may be provided on the outdoor unit to obtain the current ambient temperature Ts.
  • S102 Determine the initial target pressure of the current system and the initial opening of the damper according to the current ambient temperature.
  • the initial target pressure Pc of the current system and the initial opening degree Kc of the damper are used to determine the adjustment amount ⁇ X of the damper opening.
  • the actual system actual pressure Ps may be the compressor discharge pressure or the condenser condensation pressure.
  • the current system actual pressure Ps can be obtained by installing a pressure sensor at any position between the compressor outlet of the refrigeration system and the external heat exchanger.
  • acquiring the current system target pressure Ps includes: acquiring the current ambient temperature Ts every preset time t, and adjusting the current system target pressure Pm according to the current ambient temperature Ts, and acquiring The adjusted current system target pressure Pm.
  • every preset time t by obtaining the current ambient temperature Ts, and adjusting the current system target pressure Pm according to the current ambient temperature Ts, and obtaining the adjusted current system target pressure Pm for determining the damper Opening adjustment amount ⁇ X.
  • S104 Adjust the opening of the air valve according to the difference between the current system target pressure and the current system actual pressure.
  • control method of the low-temperature refrigeration air valve proposed in the embodiment of the present invention can adjust the opening of the air valve to the difference between the current system target pressure and the current system actual pressure to meet the user's refrigeration needs in an ultra-low temperature environment , And expand the cooling operation range.
  • adjusting the opening degree of the damper includes: adjusting the opening degree K of the damper according to the adjustment amount ⁇ X of the damper opening, wherein the adjustment amount ⁇ X of the damper opening is based on The following formula is obtained:
  • ⁇ Xt represents the adjustment amount of the damper opening at the last t
  • ⁇ P represents the difference between the actual system pressure and the system target pressure at the current moment
  • ⁇ Pt represents the difference between the actual system pressure and the system target pressure at the last t.
  • the current ambient temperature Ts is obtained, and the initial target pressure Pc of the system and the initial opening Kc of the damper are determined according to the current ambient temperature Ts, which is used to subsequently confirm the adjustment amount ⁇ X of the damper opening.
  • the current ambient temperature is obtained, and the initial target pressure of the current system and the initial opening of the damper are determined according to the current ambient temperature, and the actual system actual pressure and The current system target pressure, thus adjusting the opening of the damper according to the difference between the current system target pressure and the current system actual pressure; wherein the damper is provided on the low-temperature hood. Therefore, according to the control method of the low-temperature refrigeration air valve proposed in the embodiment of the present invention, the opening degree of the air valve is adjusted according to the difference between the current system target pressure and the current system actual pressure to satisfy the user's refrigeration in an ultra-low temperature environment Demand and expand the scope of cooling operations.
  • FIG. 2 is a block schematic diagram of a control device for a low-temperature refrigeration air valve according to an embodiment of the present invention.
  • the control device 100 for a low-temperature refrigeration air valve includes: a first acquisition module 1, a determination module 2, a second acquisition module 3, and a control module 4.
  • the first acquisition module 1 is used to acquire the current ambient temperature
  • the determination module 2 is used to determine the initial target pressure of the current system and the initial opening of the damper according to the current ambient temperature
  • the second acquisition module 3 is used to acquire the actual current system The pressure and the current system target pressure
  • the control module 4 is used to adjust the opening of the air valve according to the difference between the current system target pressure and the current system actual pressure; wherein, the air valve is provided on the low-temperature hood.
  • the first acquisition module 1 such as a temperature sensor may be provided on the outdoor unit to obtain the current ambient temperature, and may be set anywhere between the compressor outlet of the refrigeration system and the heat exchanger of the external unit
  • the second acquisition module 3 is, for example, a pressure sensor to acquire the actual system actual pressure Ps.
  • the determination module 2 is further configured to determine the adjustment amount of the damper opening degree according to the initial target pressure of the current system and the initial damper opening degree.
  • the adjustment amount of the damper opening degree is also determined according to the initial target pressure of the current system and the initial opening degree of the damper.
  • the current actual system pressure may be the compressor discharge pressure or the condenser condensation pressure.
  • the actual pressure of the current system may also be the pressure at any position between the compressor outlet of the aforementioned refrigeration system and the external heat exchanger.
  • the first acquisition module 1 is further used to acquire the current ambient temperature every preset time; the determination module 2 is also used to adjust the current system target pressure according to the current ambient temperature; The second obtaining module 3 is also used to obtain the adjusted current system target pressure.
  • the first acquisition module 1 acquires the current ambient temperature every preset time, it also adjusts the current system target pressure according to the current ambient temperature through the determination module 2, and then acquires the adjusted Current system target pressure.
  • control module 4 is further configured to adjust the opening degree of the damper according to the adjustment amount of the damper opening, wherein the adjustment amount of the damper opening is obtained according to the following formula:
  • ⁇ Xt represents the adjustment amount of the damper opening at the last t
  • ⁇ P represents the difference between the actual system pressure and the system target pressure at the current moment
  • ⁇ Pt represents the difference between the actual system pressure and the system target pressure at the last t.
  • f( ⁇ Xt) f0+f1* ⁇ Xt+f2* ⁇ Xt ⁇ 2+...+fn* ⁇ Xt ⁇ n
  • g( ⁇ P) g0+g1* ⁇ P+g2 * ⁇ P ⁇ 2+...+gn* ⁇ P ⁇ n
  • h( ⁇ Pt) h0+h1* ⁇ Pt+h2* ⁇ Pt ⁇ 2+...+hn* ⁇ Pt ⁇ n, where f0 ⁇ fn, g0 ⁇ gn, h0 ⁇ hn is the preset coefficient.
  • the current ambient temperature is acquired through the first acquisition module, and the initial target pressure of the current system and the initial opening of the damper are determined by the determination module according to the current ambient temperature.
  • the current actual system pressure and the current system target pressure are acquired through the second acquisition module, and further, the opening degree of the air valve is adjusted according to the difference between the current system target pressure and the current system actual pressure through the control module. Therefore, according to the difference between the current system target pressure and the current system actual pressure, the low-temperature refrigeration air valve control device proposed in the embodiment of the present invention adjusts the opening of the air valve to meet the user's refrigeration needs in an ultra-low temperature environment , And expand the cooling operation range.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer-readable media include the following: electrical connections (electronic devices) with one or more wires, portable computer cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other appropriate if necessary Process to obtain the program electronically and then store it in computer memory.
  • each part of the present invention may be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in memory and executed by a suitable instruction execution system.
  • a logic gate circuit for implementing a logic function on a data signal
  • PGA programmable gate arrays
  • FPGA field programmable gate arrays
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined as “first” and “second” may include at least one of the features explicitly or implicitly.
  • the meaning of “plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • connection In the present invention, unless otherwise clearly specified and defined, the terms “installation”, “connection”, “connection”, “fixation” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , Or integrated; may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediary, may be the connection between two elements or the interaction between two elements, unless otherwise specified Limit. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.
  • the first feature is "on” or “below” the second feature may be that the first and second features are in direct contact, or the first and second features are indirectly through an intermediary contact.
  • the first feature is “above”, “above” and “above” the second feature may be that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below”, and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontal than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明提出一种低温制冷风阀的控制方法及其装置,其中,方法包括:获取当前环境温度;根据当前环境温度,确定当前系统的初始目标压力和风阀的初始开度;获取当前系统实际压力和当前系统目标压力;以及根据当前系统目标压力和当前系统实际压力的差值,对风阀的开度进行调整;其中,风阀设置于低温罩上。由此,通过本发明实施例提出的低温制冷风阀控制方法,根据当前系统目标压力和当前系统实际压力的差值,对风阀的开度进行调整,以满足用户在超低温环境下的制冷需求,并扩展制冷运行范围。

Description

低温制冷风阀的控制方法及其装置 技术领域
本发明涉及空调技术领域,尤其涉及一种低温制冷风阀的控制方法和一种低温制冷风阀的控制装置。
背景技术
随着市场需求的不断增加,外界环境温度较低时的制冷能力越来越受到用户的关注。然而,在外界低温环境中,室外机冷凝器的冷凝温度与环境温度温差太大,冷凝散热量太大,容易造成系统高压低低压低,换热器积液,压缩机启动困难等一系列的问题。
目前,相关技术包括优化多联机空调的控制策略,例如减小室外机风机的转速,关闭部分换热器,通过设计将部分外换热器从冷凝器切换为蒸发器,控制系统中节流部件的开度等方式。
但相关技术的问题在于,在超低温环境(例如-15℃以下)下,换热器与空气的对流换热依然无法匹配制冷负荷的要求,无法满足制冷需求。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的第一个目的在于提出一种低温制冷风阀的控制方法,能够根据当前系统目标压力和当前系统实际压力的差值,对风阀的开度进行调整,以满足用户在超低温环境下的制冷需求,并扩展制冷运行范围。
本发明的第二个目的在于提出一种低温制冷风阀的控制装置。
为达到上述目的,本发明第一方面实施例提出的一种低温制冷风阀的控制方法包括:获取当前环境温度;根据所述当前环境温度,确定当前系统的初始目标压力和风阀的初始开度;获取当前系统实际压力和当前系统目标压力;以及根据所述当前系统目标压力和所述当前系统实际压力的差值,对所述风阀的开度进行调整;其中,所述风阀设置于低温罩上。
根据本发明实施例提出的低温制冷风阀的控制方法,获取当前环境温度,并根据当前环境温度,确定当前系统的初始目标压力和风阀的初始开度,并获取当前系统实际压力和当前系统目标压力,从而,根据当前系统目标压力和当前系统实际压力的差值,对风阀的开度进行调整;其中,风阀设置于低温罩上。由此,通过本发明实施例提出的低温制冷风阀的控制方法,根据当前系统目标压力和当前系统实际压力的差值,对风阀的开度进行调 整,以满足用户在超低温环境下的制冷需求,并扩展制冷运行范围。
另外,根据本发明上述实施例的低温制冷风阀的控制方法还可以具有如下附加的技术特征:
根据本发明的一个实施例,所述当前系统实际压力为压缩机排气压力或冷凝器冷凝压力。
根据本发明的一个实施例,所述当前系统的初始目标压力和所述风阀的初始开度用于确定风阀开度调节量。
根据本发明的一个实施例,所述获取当前系统目标压力包括:每隔预设时间,获取所述当前环境温度,并根据所述当前环境温度,对所述当前系统目标压力进行调整,并获取调整后的所述当前系统目标压力。
根据本发明的一个实施例,所述对所述风阀的开度进行调整,包括:根据所述风阀开度调节量对所述风阀的开度进行调节,其中,所述风阀开度调节量根据以下公式获得:
ΔX=f(ΔXt)+g(ΔP)+h(ΔPt)
其中,ΔXt表示上一t时刻的风阀开度调节量,ΔP表示当前时刻的系统实际压力与系统目标压力的差值,ΔPt表示上一t时刻的系统实际与系统目标压力的差值。
根据本发明的一个实施例,f(ΔXt)=f0+f1*ΔXt+f2*ΔXt^2+…+fn*ΔXt^n;g(ΔP)=g0+g1*ΔP+g2*ΔP^2+…+gn*ΔP^n;h(ΔPt)=h0+h1*ΔPt+h2*ΔPt^2+…+hn*ΔPt^n,其中,f0~fn、g0~gn、h0~hn为预设系数。
为达到上述目的,本发明第二方面实施例提出的一种低温制冷风阀的控制装置包括:第一获取模块,用于获取当前环境温度;确定模块,用于根据所述当前环境温度,确定当前系统的初始目标压力和风阀的初始开度;第二获取模块,用于获取当前系统实际压力和当前系统目标压力;以及控制模块,用于根据所述当前系统目标压力和所述当前系统实际压力的差值,对所述风阀的开度进行调整;其中,所述风阀设置于低温罩上。
根据发明实施例提出的低温制冷风阀的控制装置,通过第一获取模块获取当前环境温度,并通过确定模块根据当前环境温度,确定当前系统的初始目标压力和风阀的初始开度,以及,通过第二获取模块获取当前系统实际压力和当前系统目标压力,进而,通过控制模块根据当前系统目标压力和当前系统实际压力的差值,对风阀的开度进行调整。由此,通过本发明实施例提出的低温制冷风阀控制装置,根据当前系统目标压力和当前系统实际压力的差值,对风阀的开度进行调整,以满足用户在超低温环境下的制冷需求,并扩展制冷运行范围。
另外,根据本发明上述实施例的低温制冷风阀的控制装置还可以具有如下附加的技术特征:
根据本发明一个实施例,所述当前系统实际压力为压缩机排气压力或冷凝器冷凝压力。
根据本发明一个实施例,所述确定模块还用于根据所述当前系统的初始目标压力和所述风阀的初始开度确定风阀开度调节量。
根据本发明一个实施例,所述获取当前系统目标压力包括:所述第一获取模块还用于每隔预设时间,获取所述当前环境温度;所述确定模块还用于根据所述当前环境温度,对所述当前系统模目标压力进行调整;所述第二获取模块还用于获取调整后的所述当前系统目标压力。
根据本发明一个实施例,所述对所述风阀的开度进行调整,包括:所述控制模块还用于根据所述风阀开度调节量对所述风阀的开度进行调整,其中,所述风阀开度调节量根据以下公式获得:
ΔX=f(ΔXt)+g(ΔP)+h(ΔPt)
其中,ΔXt表示上一t时刻的风阀开度调节量,ΔP表示当前时刻的系统实际压力与系统目标压力的差值,ΔPt表示上一t时刻的系统实际与系统目标压力的差值。
根据本发明一个实施例,f(ΔXt)=f0+f1*ΔXt+f2*ΔXt^2+…+fn*ΔXt^n;g(ΔP)=g0+g1*ΔP+g2*ΔP^2+…+gn*ΔP^n;h(ΔPt)=h0+h1*ΔPt+h2*ΔPt^2+…+hn*ΔPt^n,其中,f0~fn、g0~gn、h0~hn为预设系数。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1为根据本发明实施例的低温制冷风阀的控制方法的流程示意图;
图2为根据本发明实施例的低温制冷风阀的控制装置的方框示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图描述本发明实施例的低温制冷风阀的控制方法及其装置。
图1为根据本发明实施例的低温制冷风阀的控制方法的流程示意图。
如图1所示,低温制冷风阀的控制方法包括:
S101,获取当前环境温度。
可选地,在制冷系统中,可通过在室外机上设置温度传感器,以获取当前环境温度Ts。
S102,根据当前环境温度,确定当前系统的初始目标压力和风阀的初始开度。
具体地,根据本发明的一个实施例,当前系统的初始目标压力Pc和风阀的初始开度Kc用于确定风阀开度调节量ΔX。
S103,获取当前系统实际压力和当前系统目标压力。
具体地,根据本发明的一个实施例,当前系统实际压力Ps可为压缩机排气压力或冷凝器冷凝压力。
需要说明的是,可通过在制冷系统的压缩机出口至外机换热器之间的任意位置设置压力传感器,以获取当前系统实际压力Ps。
进一步地,根据本发明的一个实施例,获取当前系统目标压力Ps包括:每隔预设时间t,获取当前环境温度Ts,并根据当前环境温度Ts,对当前系统目标压力Pm进行调整,并获取调整后的当前系统目标压力Pm。
也就是说,每隔预设时间t,通过获取当前环境温度Ts,并根据当前环境温度Ts对当前系统目标压力Pm进行调整,并获取调整后的当前系统目标压力Pm,以用于确定风阀开度调节量ΔX。
S104,根据当前系统目标压力和当前系统实际压力的差值,对风阀的开度进行调整。
也就是说,本发明实施例提出的低温制冷风阀的控制方法能够当前系统目标压力和当前系统实际压力的差值,对风阀的开度进行调整,以满足用户在超低温环境下的制冷需求,并扩展制冷运行范围。
具体地,根据本发明的一个实施例,对风阀的开度进行调整,包括:根据风阀开度调节量ΔX对风阀的开度K进行调节,其中,风阀开度调节量ΔX根据以下公式获得:
ΔX=f(ΔXt)+g(ΔP)+h(ΔPt)
其中,ΔXt表示上一t时刻的风阀开度调节量,ΔP表示当前时刻的系统实际压力与系统目标压力的差值,ΔPt表示上一t时刻的系统实际与系统目标压力的差值。
进一步地,根据本发明的一个实施例,f(ΔXt)=f0+f1*ΔXt+f2*ΔXt^2+…+fn*ΔXt^n;g(ΔP)=g0+g1*ΔP+g2*ΔP^2+…+gn*ΔP^n;h(ΔPt)=h0+h1*ΔPt+h2*ΔPt^2+…+hn*ΔPt^n,其中,f0~fn、g0~gn、h0~hn为预设系数。
举例而言,当制冷系统开机运行后,获取当前环境温度Ts,并根据当前环境温度Ts,确定系统初始目标压力Pc和风阀的初始开度Kc,用于后续确认风阀开度调节量ΔX。并在制冷系统运行过程中,每经过预设时间t(例如20秒),获取当前系统实际压力Ps,并再次获取当前环境温度Ts,以调整系统当前目标压力Pm,进而,获取调整后的当前系统实际压力Pc与当前系统目标压力Pm的差值ΔP,即ΔP=Pm-Ps,并结合前述系统目标压力Pc和风阀的初始开度Kc,根据公式ΔX=f(ΔXt)+g(ΔP)+h(ΔPt),确定风阀开度调节量ΔX, 并根据风阀开度调节量ΔX对风阀的开度K进行调整。
综上,根据本发明实施例提出的低温制冷风阀的控制方法,获取当前环境温度,并根据当前环境温度,确定当前系统的初始目标压力和风阀的初始开度,并获取当前系统实际压力和当前系统目标压力,从而,根据当前系统目标压力和当前系统实际压力的差值,对风阀的开度进行调整;其中,风阀设置于低温罩上。由此,通过本发明实施例提出的低温制冷风阀的控制方法,根据当前系统目标压力和当前系统实际压力的差值,对风阀的开度进行调整,以满足用户在超低温环境下的制冷需求,并扩展制冷运行范围。
图2为根据本发明实施例的低温制冷风阀的控制装置的方框示意图。
如图2所示,低温制冷风阀的控制装置100包括:第一获取模块1、确定模块2、第二获取模块3和控制模块4。
具体地,第一获取模块1用于获取当前环境温度;确定模块2用于根据当前环境温度,确定当前系统的初始目标压力和风阀的初始开度;第二获取模块3用于获取当前系统实际压力和当前系统目标压力;以及控制模块4用于根据当前系统目标压力和当前系统实际压力的差值,对风阀的开度进行调整;其中,风阀设置于低温罩上。
可选地,在制冷系统中,可通过在室外机上设置第一获取模块1例如温度传感器,以获取当前环境温度,并在制冷系统的压缩机出口至外机换热器之间的任意位置设置第二获取模块3例如压力传感器,以获取当前系统实际压力Ps。
进一步地,根据本发明的一个实施例,确定模块2还用于根据当前系统的初始目标压力和风阀的初始开度确定风阀开度调节量。
也就是说,在确定模块2根据当前环境温度,确定当前系统的初始目标压力和风阀的初始开度后,还根据当前系统的初始目标压力和风阀的初始开度确定风阀开度调节量。
进一步地,在本发明的一些实施例中,当前系统实际压力可为压缩机排气压力或冷凝器冷凝压力。
需要说明的是,当前系统实际压力也可为前述制冷系统的压缩机出口至外机换热器之间的任意位置压力。
进一步地,根据本发明的一个实施例,第一获取模块1还用于每隔预设时间,获取当前环境温度;确定模块2还用于根据当前环境温度,对当前系统目标压力进行调整;第二获取模块3还用于获取调整后的当前系统目标压力。
也就是说,当第一获取模块1每隔预设时间,获取当前环境温度后,还通过确定模块2根据当前环境温度对当前系统目标压力进行调整,进而通过第二获取模块3获取调整后的当前系统目标压力。
进一步地,根据本发明的一个实施例,控制模块4还用于根据风阀开度调节量对风阀 的开度进行调整,其中,风阀开度调节量根据以下公式获得:
ΔX=f(ΔXt)+g(ΔP)+h(ΔPt),
其中,ΔXt表示上一t时刻的风阀开度调节量,ΔP表示当前时刻的系统实际压力与系统目标压力的差值,ΔPt表示上一t时刻的系统实际与系统目标压力的差值。
具体地,根据本发明的一个实施例,其中,f(ΔXt)=f0+f1*ΔXt+f2*ΔXt^2+…+fn*ΔXt^n;g(ΔP)=g0+g1*ΔP+g2*ΔP^2+…+gn*ΔP^n;h(ΔPt)=h0+h1*ΔPt+h2*ΔPt^2+…+hn*ΔPt^n,其中,f0~fn、g0~gn、h0~hn为预设系数。
综上,根据发明实施例提出的低温制冷风阀的控制装置,通过第一获取模块获取当前环境温度,并通过确定模块根据当前环境温度,确定当前系统的初始目标压力和风阀的初始开度,以及,通过第二获取模块获取当前系统实际压力和当前系统目标压力,进而,通过控制模块根据当前系统目标压力和当前系统实际压力的差值,对风阀的开度进行调整。由此,通过本发明实施例提出的低温制冷风阀控制装置,根据当前系统目标压力和当前系统实际压力的差值,对风阀的开度进行调整,以满足用户在超低温环境下的制冷需求,并扩展制冷运行范围。
需要说明的是,在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现 场可编程门阵列(FPGA)等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (12)

  1. 一种低温制冷风阀的控制方法,其特征在于,包括:
    获取当前环境温度;
    根据所述当前环境温度,确定当前系统的初始目标压力和风阀的初始开度;
    获取当前系统实际压力和当前系统目标压力;以及
    根据所述当前系统目标压力和所述当前系统实际压力的差值,对所述风阀的开度进行调整;
    其中,所述风阀设置于低温罩上。
  2. 如权利要求1所述的控制方法,其特征在于,所述当前系统实际压力为压缩机排气压力或冷凝器冷凝压力。
  3. 如权利要求1所述的控制方法,其特征在于,所述当前系统的初始目标压力和所述风阀的初始开度用于确定风阀开度调节量。
  4. 如权利要求1所述的控制方法,其特征在于,所述获取当前系统目标压力包括:
    每隔预设时间,获取所述当前环境温度,并根据所述当前环境温度,对所述当前系统目标压力进行调整,并获取调整后的所述当前系统目标压力。
  5. 如权利要求1所述的控制方法,其特征在于,所述对所述风阀的开度进行调整,包括:
    根据所述风阀开度调节量对所述风阀的开度进行调整,其中,所述风阀开度调节量根据以下公式获得:
    ΔX=f(ΔXt)+g(ΔP)+h(ΔPt),
    其中,ΔXt表示上一t时刻的风阀开度调节量,ΔP表示当前时刻的系统实际压力与系统目标压力的差值,ΔPt表示上一t时刻的系统实际与系统目标压力的差值。
  6. 如权利要求5所述的空调器的控制方法,其特征在于,其中,
    f(ΔXt)=f0+f1*ΔXt+f2*ΔXt^2+…+fn*ΔXt^n;
    g(ΔP)=g0+g1*ΔP+g2*ΔP^2+…+gn*ΔP^n;
    h(ΔPt)=h0+h1*ΔPt+h2*ΔPt^2+…+hn*ΔPt^n,
    其中,f0~fn、g0~gn、h0~hn为预设系数。
  7. 一种低温制冷风阀的控制装置,其特征在于,包括:
    第一获取模块,用于获取当前环境温度;
    确定模块,用于根据所述当前环境温度,确定当前系统的初始目标压力和风阀的初始开度;
    第二获取模块,用于获取当前系统实际压力和当前系统目标压力;以及
    控制模块,用于根据所述当前系统目标压力和所述当前系统实际压力的差值,对所述风阀的开度进行调整;
    其中,所述风阀设置于低温罩上。
  8. 如权利要求7所述的控制装置,其特征在于,所述当前系统实际压力为压缩机排气压力或冷凝器冷凝压力。
  9. 如权利要求7所述的控制装置,其特征在于,所述确定模块还用于根据所述当前系统的初始目标压力和所述风阀的初始开度确定风阀开度调节量。
  10. 如权利要求7所述的控制装置,其特征在于,其中
    所述第一获取模块还用于每隔预设时间,获取所述当前环境温度;
    所述确定模块还用于根据所述当前环境温度,对所述当前系统模目标压力进行调整;
    所述第二获取模块还用于获取调整后的所述当前系统目标压力。
  11. 如权利要求7所述的控制装置,其特征在于,其中,所述控制模块还用于根据所述风阀开度调节量对所述风阀的开度进行调整,其中,所述风阀开度调节量根据以下公式获得:
    ΔX=f(ΔXt)+g(ΔP)+h(ΔPt)
    其中,ΔXt表示上一t时刻的风阀开度调节量,ΔP表示当前时刻的系统实际压力与系统目标压力的差值,ΔPt表示上一t时刻的系统实际与系统目标压力的差值。
  12. 如权利要求11所述的空调器的控制装置,其特征在于,其中,
    f(ΔXt)=f0+f1*ΔXt+f2*ΔXt^2+…+fn*ΔXt^n;
    g(ΔP)=g0+g1*ΔP+g2*ΔP^2+…+gn*ΔP^n;
    h(ΔPt)=h0+h1*ΔPt+h2*ΔPt^2+…+hn*ΔPt^n,
    其中,f0~fn、g0~gn、h0~hn为预设系数。
PCT/CN2019/090145 2018-12-29 2019-06-05 低温制冷风阀的控制方法及其装置 WO2020133927A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3121658A CA3121658C (en) 2018-12-29 2019-06-05 Method and device for controlling low-temperature refrigeration air valve
US17/361,198 US20210325101A1 (en) 2018-12-29 2021-06-28 Method and Device for Controlling a Low-Temperature Refrigeration Air Valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811641425.5A CN109708273B (zh) 2018-12-29 2018-12-29 低温制冷风阀的控制方法及其装置
CN201811641425.5 2018-12-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/361,198 Continuation US20210325101A1 (en) 2018-12-29 2021-06-28 Method and Device for Controlling a Low-Temperature Refrigeration Air Valve

Publications (1)

Publication Number Publication Date
WO2020133927A1 true WO2020133927A1 (zh) 2020-07-02

Family

ID=66260279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090145 WO2020133927A1 (zh) 2018-12-29 2019-06-05 低温制冷风阀的控制方法及其装置

Country Status (4)

Country Link
US (1) US20210325101A1 (zh)
CN (1) CN109708273B (zh)
CA (1) CA3121658C (zh)
WO (1) WO2020133927A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113959105A (zh) * 2021-11-03 2022-01-21 青岛海尔空调电子有限公司 用于供气系统的控制方法及装置、制冷设备、存储介质
CN117313252A (zh) * 2023-12-01 2023-12-29 山东街景智能制造科技股份有限公司 一种用于定制产品模拟涂装的处理方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708273B (zh) * 2018-12-29 2021-10-08 广东美的暖通设备有限公司 低温制冷风阀的控制方法及其装置
CN115854499B (zh) * 2022-12-21 2024-05-10 珠海格力电器股份有限公司 空调机组控制方法、空调机组及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292421A (zh) * 2013-06-17 2013-09-11 南京天加空调设备有限公司 多联机制冷运行外风机转速控制方法
CN105757890A (zh) * 2016-03-10 2016-07-13 青岛大学 一种室外冷凝器冷却风量的控制方法
CN107152822A (zh) * 2017-06-23 2017-09-12 广东美的暖通设备有限公司 室外机的控制方法、空调器、及存储介质
CN109708273A (zh) * 2018-12-29 2019-05-03 广东美的暖通设备有限公司 低温制冷风阀的控制方法及其装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4711706B2 (ja) * 2005-03-18 2011-06-29 三菱電機株式会社 空気調和装置
SE537022C2 (sv) * 2012-12-21 2014-12-09 Fläkt Woods AB Förfarande och anordning för avfrostning av en förångare vidett luftbehandlingsaggregat
CN104019528B (zh) * 2014-06-26 2016-06-22 东元总合科技(杭州)有限公司 变频空调高效节能运转控制算法
JP2016061447A (ja) * 2014-09-12 2016-04-25 株式会社東芝 空調制御装置、空調制御方法及びコンピュータプログラム
CN104949283B (zh) * 2015-06-30 2017-06-20 上海卓思智能科技股份有限公司 一种控制风量的风阀调节方法及系统
CN105605747A (zh) * 2016-03-10 2016-05-25 青岛大学 一种室外冷凝器冷却风量的自动控制装置
CN106052020A (zh) * 2016-05-30 2016-10-26 华为技术有限公司 一种空调系统的压缩机控制方法,装置及空调系统
CN107238180B (zh) * 2017-06-23 2020-07-07 特灵空调系统(中国)有限公司 风冷冷水机组的风量控制方法及系统
CN108917218A (zh) * 2018-08-13 2018-11-30 珠海格力电器股份有限公司 一种调整系统压差的方法、装置及一种机组
CN109708274B (zh) * 2018-12-29 2021-09-17 广东美的暖通设备有限公司 低温制冷风阀的控制方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292421A (zh) * 2013-06-17 2013-09-11 南京天加空调设备有限公司 多联机制冷运行外风机转速控制方法
CN105757890A (zh) * 2016-03-10 2016-07-13 青岛大学 一种室外冷凝器冷却风量的控制方法
CN107152822A (zh) * 2017-06-23 2017-09-12 广东美的暖通设备有限公司 室外机的控制方法、空调器、及存储介质
CN109708273A (zh) * 2018-12-29 2019-05-03 广东美的暖通设备有限公司 低温制冷风阀的控制方法及其装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113959105A (zh) * 2021-11-03 2022-01-21 青岛海尔空调电子有限公司 用于供气系统的控制方法及装置、制冷设备、存储介质
CN113959105B (zh) * 2021-11-03 2023-06-20 青岛海尔空调电子有限公司 用于供气系统的控制方法及装置、制冷设备、存储介质
CN117313252A (zh) * 2023-12-01 2023-12-29 山东街景智能制造科技股份有限公司 一种用于定制产品模拟涂装的处理方法
CN117313252B (zh) * 2023-12-01 2024-02-13 山东街景智能制造科技股份有限公司 一种用于定制产品模拟涂装的处理方法

Also Published As

Publication number Publication date
CN109708273B (zh) 2021-10-08
US20210325101A1 (en) 2021-10-21
CA3121658C (en) 2023-10-03
CA3121658A1 (en) 2020-07-02
CN109708273A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
WO2020133927A1 (zh) 低温制冷风阀的控制方法及其装置
CN108731224B (zh) 定频空调系统的控制方法、装置、设备及定频空调系统
JP6377093B2 (ja) 空気調和装置
WO2019052074A1 (zh) 空调器及其控制方法、装置
WO2019105028A1 (zh) 空调器及其控制方法和装置
WO2018126581A1 (zh) 风管机空调系统及其的室内风机的控制方法和装置
WO2019057036A1 (zh) 一种空调器温湿度控制方法及空调器
WO2018233147A1 (zh) 新风机及其的控制方法和装置
CN110986334A (zh) 空调器的控制方法、装置、空调器和电子设备
CN107192085B (zh) 一种空调器制冷运行控制方法
CN112880030B (zh) 新风控制方法、装置及空调器
CN107084479B (zh) 一种空调器制热运行控制方法
US11300302B2 (en) Air conditioner system, air conditioner control device, air conditioner method, and program for control using water circulation and based on indoor latent and sensible heat loads
US7213404B2 (en) Method for controlling operation of air conditioning system
CN113739344B (zh) 一种内机膨胀阀的控制方法、空调、计算机可读存储介质
CN108548269B (zh) 空调的控制方法
WO2021175013A1 (zh) 空调器及其控制方法
CN108534322B (zh) 空调的开机控制方法
WO2024001534A1 (zh) 空调系统的室外机控制方法、装置、室外机和空调系统
WO2018196688A1 (zh) 一种空调器及其控制方法
CN110986326A (zh) 空调器及其控制方法
CN113531801A (zh) 多联式空调器的控制方法、装置和可读存储介质
WO2022161439A1 (zh) 制冷设备及其控制方法、装置、电子设备及存储介质
US12038192B2 (en) Control methods and devices for a low-temperature cooling air valve
CN109945434B (zh) 空调的控制方法、装置和空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904036

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3121658

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904036

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/12/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19904036

Country of ref document: EP

Kind code of ref document: A1