WO2020133519A1 - 组织位移和温度的同步监测方法、装置、设备及存储介质 - Google Patents

组织位移和温度的同步监测方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2020133519A1
WO2020133519A1 PCT/CN2018/125844 CN2018125844W WO2020133519A1 WO 2020133519 A1 WO2020133519 A1 WO 2020133519A1 CN 2018125844 W CN2018125844 W CN 2018125844W WO 2020133519 A1 WO2020133519 A1 WO 2020133519A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
temperature
image
displacement
time
Prior art date
Application number
PCT/CN2018/125844
Other languages
English (en)
French (fr)
Inventor
郑海荣
刘新
邹超
许宗为
乔阳紫
程传力
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2020133519A1 publication Critical patent/WO2020133519A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0858Detecting organic movements or changes, e.g. tumours, cysts, swellings involving measuring tissue layers, e.g. skin, interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5261Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from different diagnostic modalities, e.g. ultrasound and X-ray
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection

Definitions

  • the embodiments of the present application relate to the field of biomedical signal processing, for example, to a method, device, device and storage medium for synchronous monitoring of tissue displacement and temperature.
  • Magnetic resonance imaging (MR-ARFI) technology can detect the micron-level displacement of biological tissues and is used to reflect the elasticity of tissues. It is an important means of focus positioning in Focused Ultrasound (FUS) treatment. .
  • FUS Focused Ultrasound
  • the ARFI measurement is repeated, for example, when the phase of the sound beam is continuously adjusted for FUS, the heat accumulation of the tissue in the focal area may become very significant. Therefore, it is necessary to monitor the tissue displacement and temperature at the same time to ensure the safety of the FUS treatment process.
  • the ARFI Gradientrecalled echo-ARFI, GRE-ARFI
  • GRE-ARFI gradient echo-ARFI
  • the ARFI utilizes the linear relationship between the resonance frequency of hydrogen protons in water and temperature for temperature imaging, which can simultaneously monitor changes in temperature and displacement.
  • the temperature increase of the focal tissue usually occurs at the tissue interface such as subcutaneous fat tissue, and the hydrogen protons in the fat tissue are not sensitive to temperature. Therefore, GRE-ARFI can only achieve simultaneous monitoring of the displacement and temperature of other tissues except adipose tissue, and is not suitable for temperature imaging of tissues containing fat.
  • the embodiments of the present application provide a method, device, equipment and storage medium for synchronous monitoring of tissue displacement and temperature, which solves the problem that the displacement and temperature of fat tissue cannot be simultaneously monitored in the related art.
  • an embodiment of the present application provides a method for simultaneously monitoring tissue displacement and temperature.
  • the method may include:
  • MR-ARFI When the sequence in magnetic resonance acoustic radiography MR-ARFI satisfies the condition that the ratio of echo time to lateral relaxation time is less than the preset first threshold, and the ratio of repetition time to longitudinal relaxation time is greater than the preset second threshold , Based on MR-ARFI technology to scan the tissue to obtain images of the tissue;
  • the amplitude of the image at the current time the cumulative phase of the images at multiple times, and the amplitude of the image at the initial time and the temperature of the tissue, the displacement and temperature of the tissue at the current time are monitored synchronously.
  • an embodiment of the present application further provides a synchronous monitoring device for tissue displacement and temperature.
  • the device may include:
  • the tissue image acquisition module is set to be such that when the sequence in the magnetic resonance acoustic radiation imaging MR-ARFI satisfies the ratio of the echo time to the lateral relaxation time is less than the preset first threshold, and the ratio of the repetition time to the longitudinal relaxation time is greater than the pre
  • the condition of the second threshold is set, the tissue is scanned based on the MR-ARFI technology to obtain an image of the tissue;
  • the synchronous monitoring module for tissue displacement and temperature is set to monitor the tissue at the current time synchronously according to the amplitude of the image at the current time, the cumulative phase of the images at multiple times, and the amplitude of the image at the initial time and the temperature of the tissue Displacement and temperature.
  • an embodiment of the present application further provides a device, which may include:
  • One or more processors are One or more processors;
  • Memory set to store one or more programs
  • the one or more processors implement the method for simultaneously monitoring tissue displacement and temperature provided by any embodiment of the present application.
  • an embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored, which when executed by a processor implements synchronous monitoring of tissue displacement and temperature provided by any embodiment of the present application method.
  • FIG. 1 is a flowchart of a method for synchronously monitoring tissue displacement and temperature in Embodiment 1 of the present application;
  • FIG. 2 is a flowchart of a method for simultaneously monitoring tissue displacement and temperature in Embodiment 2 of the present application;
  • Example 4a is a relationship diagram between the actual temperature and the predicted temperature of an 8-time test in Example 2 of the present application;
  • 4b is a relationship diagram between the actual temperature and the predicted temperature of a three-time test in Example 2 of the present application;
  • Example 5a is a schematic phase diagram of an image of adipose tissue in Example 2 of the present application.
  • 5b is a schematic diagram of a temperature curve of an image of adipose tissue in Example 2 of the present application;
  • FIG. 6 is a structural diagram of a synchronous monitoring device for tissue displacement and temperature in Embodiment 3 of the present application.
  • FIG. 7 is a schematic structural diagram of a device in Embodiment 4 of the present application.
  • FIG. 1 is a flowchart of a method for simultaneously monitoring tissue displacement and temperature provided in Embodiment 1 of the present application.
  • This embodiment can be applied to the case of simultaneous monitoring of tissue displacement and temperature, for example, to the case of simultaneous monitoring of displacement and temperature of adipose tissue during focused ultrasound FUS treatment.
  • the method may be performed by a synchronous monitoring device for tissue displacement and temperature provided by an embodiment of the present application, and the device may be implemented by software and/or hardware.
  • the method of the embodiment of the present application includes the following steps:
  • acoustic radiation force is a phenomenon that occurs when the sound wave propagates inside the substance.
  • the frequency of the sound wave reaches the megahertz level, that is, ultrasound
  • the sound wave can produce two phenomena inside the propagating substance: generated in the direction of sound wave propagation Momentum exchange and heat generation.
  • the momentum exchange can generate a force to push the propagating material to produce a certain displacement, which can reflect the elasticity of the propagating material; and heat will cause the temperature inside the material to increase.
  • Magnetic resonance acoustic radiation imaging is the use of the acoustic radiation force generated by the focused ultrasonic beam within a safe power range to cause small deformations in local areas of biological tissues, adding displacement to the magnetic resonance sequence
  • the gradient is encoded and the small deformation is displacement-coded, and finally the magnetic resonance focused ultrasound elastography technique is used to estimate the tissue displacement of the focal region using the phase change after the encoding.
  • the imaging technology can be applied to breast cancer detection, atherosclerotic plaque diagnosis, and focused ultrasound treatment safety monitoring.
  • Commonly used sequences in the MR-ARFI monitoring process include one-dimensional line scan ARFI sequences, spin echo (Spin Echo, SE)-ARFI sequences, plane echo (Echo Planar Imaging (EPI)-SE-ARFI sequences, gradient echo sequences Wait.
  • the 180° radio frequency pulse peculiar to the SE-ARFI sequence can effectively eliminate the spin scattered phase caused by magnetic field inhomogeneity and magnetic susceptibility.
  • Multiple sequences include the echo time (Echo Time, TE), which is the time interval from the midpoint of the pulse of the macro transverse magnetization vector to the midpoint of the echo, and the repetition time (TR), that is, the time between the two excitation pulses Intervals.
  • the tissue includes a transverse relaxation time T2, that is, a time constant in which transverse magnetization disappears, and a longitudinal relaxation time T1, which is a time constant in which longitudinal magnetization recovers.
  • the sequence in MR-ARFI meets the following conditions: the ratio of echo time to lateral relaxation time Less than the preset first threshold, and the ratio of repetition time and longitudinal relaxation time
  • the condition is greater than the preset second threshold
  • the temperature and displacement of the tissue can be monitored synchronously.
  • the sequence satisfies TE ⁇ T2 and TR>>T1
  • T1 is in the range of 100 to 200, you can Simultaneous monitoring of tissue temperature and displacement.
  • the tissue is scanned based on the MR-ARFI technology including a sequence that satisfies the above conditions, and an image of the tissue is acquired.
  • the above method is based on the commonality of tissues. Therefore, the above tissues may be adipose tissues, that is, fat-containing tissues, or non-adipose tissues, which contain no fat.
  • the image obtained based on the MR-ARFI technology includes phase information and amplitude information, according to the phase information can monitor the displacement of the focus of the tissue, according to the amplitude information can monitor the temperature of the tissue.
  • the acquired images include images at least two moments in time. Images at multiple times include phase information and amplitude information.
  • the image at the initial moment can be regarded as the first acquired image, that is, the initially acquired image; the image at the current moment can be regarded as the last image acquired, that is, the last acquired image.
  • the amplitude of the image at the current time the cumulative phase of the images at multiple times, the amplitude of the image at the initial time and the temperature of the tissue at the initial time, the displacement and temperature of the tissue at the current time can be monitored simultaneously.
  • the method may further include: performing smoothing processing on the image of the tissue, and using the smoothed image as the image of the tissue.
  • the preset area in the image can be used as the area of interest, and the area of interest is smoothed, and the amplitude information and phase information obtained from the smoothed image are favorable for reflecting the average level of the image.
  • the image of the tissue acquired based on the MR-ARFI technology includes amplitude information and phase information; moreover, the amplitude of the image at the current time acquired based on the above sequence, the cumulative phase of the image at multiple times And, the amplitude of the image at the initial time and the temperature of the tissue can simultaneously monitor the displacement and temperature of the tissue at the current time.
  • the above technical solution realizes the simultaneous monitoring of the displacement and temperature of any tissue, such as adipose tissue, and ensures the safety of the FUS focusing process.
  • Embodiment 2 is a flowchart of a method for synchronously monitoring tissue displacement and temperature provided in Embodiment 2 of the present application.
  • This embodiment is optimized based on the above technical solution.
  • “according to the amplitude of the image at the current time, the cumulative phase of the images at multiple times, and the amplitude of the image at the initial time and the temperature of the tissue, the displacement and temperature of the tissue at the current time are monitored synchronously
  • the amplitude and temperature of the tissue monitor the temperature of the tissue at the current moment.
  • the method of this embodiment may include the following steps:
  • the cumulative phase of the image at multiple times is acquired, and the cumulative phase is converted into the displacement of the tissue at the current time according to a preset displacement conversion function.
  • the phase information in the image may be considered to be a specific phase difference caused by the encoding gradient in the ARFI sequence, that is, while motion encoding, the FUS focusing process causes tissue displacement.
  • the encoding gradient may be a bipolar repetitive displacement encoding gradient, a unipolar motion encoding gradient, or a reverse positive and negative polarity motion encoding gradient.
  • Applying an encoding gradient in the ARFI sequence can convert the macroscopic displacement of hydrogen protons in the tissue caused by focused ultrasound FUS into the amount of change in the proton resonance frequency, which produces a cumulative phase in the phase diagram of the image.
  • the cumulative phase ⁇ can be generated by the following formula:
  • is the amount of change in the proton resonance frequency
  • G is the motion encoding gradient
  • r is the proton displacement.
  • the frequencies in different locations in the tissue are different, and the frequency can be calculated according to the motion encoding time t, for example, the cumulative phase is obtained according to the frequency.
  • the cumulative phase can be converted into the displacement of the tissue at the current moment according to a preset displacement conversion function, for example, the phase difference can be obtained according to the phase difference when different motion encoding gradients are used.
  • the temperature of the tissue at the current time is monitored according to the amplitude of the image at the current time, and the amplitude of the image at the initial time and the temperature of the tissue.
  • the temperature of the tissue is related to many factors in the magnetic resonance image.
  • the proton density is linearly related to the temperature;
  • the transverse relaxation time T2 is linearly related to the temperature;
  • the fast spin echo based on T1 weighting ( Turbo spin echo (TSE) sequence image amplitude signal has a linear relationship with temperature;
  • the image amplitude S is related to the initial amplitude S0, repetition time TR and echo time TE, etc.
  • the amplitude S of the image can be expressed as:
  • the preset coefficient in T can be regarded as the temperature of the tissue at the moment corresponding to the initial amplitude S0.
  • the above derivation can be known, depending on the magnitude of the current image in the image S time amplitude S (T), and, at the initial time temperature T 0 (T 0) and tissue can monitor the current time of the tissue temperature T .
  • the technical solution of the embodiment of the present application can determine the displacement of the tissue at the current time by acquiring the cumulative phase of the images at multiple times; according to the amplitude of the image at the current time, and the amplitude of the image at the initial time and the temperature of the tissue The temperature of the tissue at the current moment can be monitored, and the accurate simultaneous monitoring of tissue displacement and temperature is truly achieved.
  • acquiring the cumulative phase of the image at multiple times, and converting the cumulative phase to the displacement of the tissue at the current time according to a preset displacement conversion function may include: acquiring based on preset positive and negative motion encoding gradients The phase difference ⁇ of the image at the current time, and the phase difference ⁇ is converted into the tissue displacement ⁇ x at the current time by the following formula: Where t is the motion encoding time, ⁇ is the gyromagnetic ratio, and G is the motion encoding gradient.
  • the motion encoding gradients applied to the sequence are positive motion encoding gradients and negative motion encoding gradients, respectively, the phase map of the image acquired based on the positive motion encoding gradients, that is, the positive cumulative phase, and, based on The phase map of the image acquired by the negative motion encoding gradient is the negative cumulative phase, then the difference between the two sets of phase maps is the phase difference ⁇ .
  • the phase difference ⁇ at this time corresponds to twice the value of the displacement ⁇ x of the image at the current time.
  • the implementation process of the above solution may be: adding a first positive motion encoding gradient before the 180° convergence pulse of EPI-SE-ARFI, and adding a second positive polarity after the 180° convergence pulse Motion coding gradient, the first and second positive motion coding gradients will both become negative motion coding gradients during the next image acquisition (ie, the first negative motion coding gradient and the second negative motion coding gradient) .
  • the two image acquisition methods for encoding gradients alternate.
  • the start and end time of the focused ultrasound pulse can be determined; when the focused ultrasound pulse is working, two sets of phase diagrams with opposite polarities of the motion encoding gradient are collected; according to the above
  • the formula finds the displacement ⁇ x of the tissue at the current moment, where ⁇ is the phase difference between the two sets of phase diagrams of the motion encoding gradient with the same intensity and action time and opposite polarity.
  • the phase difference can be subtracted from the phase diagram of the image when ultrasound is not turned on.
  • the phase difference can be subtracted from the baseline phase map, and the phase difference can be updated according to the result of the subtraction.
  • the calculation process of the baseline phase map may be: dividing the image of the tissue at the current moment into a region of interest, that is, a region where displacement occurs in the tissue, and a reference region, that is, a region where no displacement occurs in the tissue; the phase in the reference region
  • the figure is simulated by polynomial fitting, and the obtained polynomial coefficients are used for interpolation to obtain a baseline phase diagram.
  • phase map of the image acquired based on the unipolar motion encoding gradient can also be subtracted from the phase map of the image when ultrasound is not turned on, or subtracted from the baseline phase map to avoid the effects of field effects.
  • monitoring the temperature of the tissue at the current time according to the amplitude of the image at the current time, and the amplitude of the image at the initial time and the temperature of the tissue may include: monitoring the temperature T of the tissue at the current time by the following formula : Where, p is a preset scale factor, S(T) is the amplitude of the image at the current time, S(T 0 ) is the amplitude of the image at the initial time, and T 0 is the temperature of the tissue at the initial time.
  • An image acquired based on a conditional sequence that satisfies the ratio of the echo time to the lateral relaxation time is less than the preset first threshold and the ratio of the repetition time to the longitudinal relaxation time is greater than the preset second threshold is determined by the proton density, which can be called Proton density weighted image.
  • the proton density is linearly related to temperature, and the proton density weighted image is proportional to the proton density.
  • S(T) is the amplitude of the proton density weighted image at temperature T and S(T 0 ) is the amplitude of the proton density weighted image at temperature T 0 , it can be monitored synchronously based on the proton density weighted ARFI sequence Tissue displacement and temperature. Moreover, considering that only one image is needed for the proton density weighted image to monitor displacement and temperature, the imaging speed is faster, which ensures the real-time monitoring.
  • the proportionality factor p can be determined by the following steps: temperature control of the tissue based on a preset temperature control method and a preset coil, and monitoring at least two temperatures of the tissue based on a preset temperature monitoring method; respectively Acquire the amplitude of the image corresponding to at least two temperatures, and obtain the proportionality coefficient p by linear fitting.
  • the amplitude S(T) of the image at the current time, the amplitude S(T 0 ) of the image at the initial time, and the temperature T 0 of the tissue at the initial time can be directly measured. Therefore, in order to accurately monitor the temperature of the tissue
  • the determination of the proportionality factor p is crucial. Considering that the increase in tissue temperature may be due to the application of ultrasound during FUS treatment, but the temperature cannot be directly measured under the action of ultrasound, therefore, the temperature of the tissue can be controlled based on a preset temperature control method, for example, through a water bath circulation device Control the temperature of the tissue.
  • the preset temperature monitoring method during the experiment can be based on the measurement of the temperature of the tissue based on the optical fiber thermometer.
  • the determination process of the proportional coefficient p may be: temperature control of the tissue based on a preset temperature control method and a preset coil, collecting the amplitude of the tissue at different temperatures, and determining the proportional coefficient p by linear fitting.
  • the amplitude of tissue at different temperatures may be collected based on a preset time interval, and the amplitude of tissue at different temperatures may also be collected based on a preset temperature interval.
  • the preset coil may be a small flexible coil or a neck coil.
  • the step of determining the proportionality coefficient p may further include: repeatedly executing the temperature control of the tissue based on the preset temperature control method and the preset coil until the preset execution end condition is satisfied, and the calculated The average value of the proportional coefficient p, and update the calculation result to the proportional coefficient p.
  • the above technical solution may be repeatedly executed, and each execution may be regarded as an experiment.
  • the operation of collecting the amplitude of tissue at different temperatures is repeatedly performed under the same coil, and each time linear fitting can obtain a p value, and the average value of multiple p values is calculated as a proportionality factor p.
  • different coils can also be used to repeatedly perform the operation of collecting the amplitude of the tissue at different temperatures, and calculate the average value of the multiple p values obtained by linear fitting.
  • the preset execution end condition may be the number of trials or a convergence condition. Under normal circumstances, the scale factor p of the average value obtained through multiple tests tends to be stable, and can be applied to the temperature monitoring of tissues of different individuals.
  • the temperature T c and the amplitude S(T c ) of the corresponding image are in a one-to-one correspondence, and the temperature and the amplitude corresponding to the correspondence have the same time.
  • the first preset coefficient A and the second preset coefficient B can be obtained after linear fitting .
  • the proportionality factor p can be obtained. It is more universally applicable to obtain the proportional coefficient p by linear fitting.
  • the parameters of the sequence need to be set, for example: setting TE and TR so that TE ⁇ T2 and TR >> T1, and motion coding gradient (MEG) time.
  • the scaling factor p needs to be calibrated.
  • the water bath circulation device is used to heat the adipose tissue, and the temperature is monitored by an optical fiber thermometer inserted into the adipose tissue.
  • the first set of data of the fiber optic thermometer is taken as the temperature T 0 of the tissue at the initial time, and the amplitude S(T 0 ) of the image corresponding to T 0 is taken as the initial time Amplitude of the image, substituting multiple data points S(T) and scale factor p of each test into the formula ,
  • the temperature T of the tissue at the current moment is obtained.
  • the reading of the light thermometer is the actual temperature T c of the adipose tissue, and the obtained temperature is the predicted temperature T of the adipose tissue. As shown in FIG.
  • Figure 4a is the relationship between the actual temperature and the predicted temperature of each data point in the 8 trials. For example, the actual temperature and the predicted temperature of multiple data points are equal, or the actual temperature is greater than the predicted temperature, or, The actual temperature is less than the predicted temperature. It can be seen that multiple data points are evenly distributed around the reference line, indicating that the proportional coefficient p obtained by linear fitting is more accurate, and the difference between the predicted temperature and the actual temperature monitored based on the proportional coefficient p is small.
  • the work of FUS causes the displacement of fat tissue, and the displacement of fat tissue is calculated according to the phase of the acquired image.
  • the phase map 20 of the image includes the focus area 10, the phase value S of the multiple data points in the focus area 10 may be 3 or 4, and the phase value outside the focus area may be 0. Therefore, only the tissue in the focal area will be displaced.
  • the method can directly monitor the temperature rise of the adipose tissue during the 6-25th scan, that is, during the FUS work. 5a and 5b, it can be directly proved that the method can simultaneously monitor the displacement and temperature of the tissue.
  • FIG. 6 is a structural block diagram of a synchronous monitoring device for tissue displacement and temperature provided in Embodiment 3 of the present application.
  • the device is used to perform a synchronous monitoring method for tissue displacement and temperature provided in any of the foregoing embodiments.
  • This device belongs to the same application concept as the synchronous monitoring method of tissue displacement and temperature in the above multiple embodiments.
  • the device may include: a tissue image acquisition module 310 and a synchronous monitoring module 320 for tissue displacement and temperature.
  • the tissue image acquisition module 310 is set to be such that when the sequence in the magnetic resonance acoustic radiation imaging MR-ARFI satisfies the ratio of the echo time to the lateral relaxation time is less than the preset first threshold, and the repetition time and the longitudinal relaxation time When the ratio is greater than the preset second threshold, the tissue is scanned based on the MR-ARFI technology to obtain an image of the tissue;
  • the synchronous monitoring module 320 for tissue displacement and temperature is set to monitor the tissue at the current time synchronously according to the amplitude of the image at the current time, the cumulative phase of the images at multiple times, and the amplitude of the image at the initial time and the temperature of the tissue Displacement and temperature.
  • the synchronous monitoring module 320 for tissue displacement and temperature may include:
  • the tissue displacement monitoring unit is set to acquire the cumulative phase of the image at multiple times, and convert the cumulative phase to the tissue displacement at the current time according to a preset displacement conversion function;
  • the tissue temperature monitoring unit is configured to monitor the temperature of the tissue at the current time based on the amplitude of the image at the current time, and the amplitude of the image at the initial time and the temperature of the tissue.
  • the tissue temperature monitoring unit may monitor the temperature T of the tissue at the current moment by the following formula:
  • p is a preset scale factor
  • S(T) is the amplitude of the image at the current time
  • S(T 0 ) is the amplitude of the image at the initial time
  • T 0 is the temperature of the tissue at the initial time.
  • the above device may further include a scale factor determination module, and the scale factor determination module may determine the scale factor p by the following unit:
  • a temperature monitoring unit configured to control the temperature of the tissue based on a preset temperature control method and a preset coil, and monitor at least two temperatures of the tissue based on the preset temperature monitoring method;
  • the determination unit of the proportional coefficient p is set to separately obtain the amplitudes of the images corresponding to at least two temperatures, and obtain the proportional coefficient p by linear fitting.
  • the scaling coefficient p determining unit may substitute at least two temperatures T c and the amplitude S(T c ) of the image corresponding to the at least two temperatures into the following formula, and convert it into a scaling coefficient p through linear fitting :
  • A is the first preset coefficient
  • B is the second preset coefficient
  • the proportional coefficient p determination module may further include:
  • the average calculation unit of the proportional coefficient p is set to repeatedly execute the temperature control of the tissue based on the preset temperature control method and the preset coil until the preset execution end condition is met, and the average value of the calculated multiple proportional coefficients p , And update the calculation result to proportional coefficient p.
  • the tissue displacement monitoring unit may include:
  • the tissue displacement monitoring subunit is set to acquire the phase difference ⁇ of the image at the current time based on the preset positive and negative motion encoding gradients, and convert the phase difference ⁇ into the tissue displacement ⁇ x at the current time by the following formula:
  • t is the motion encoding time
  • is the gyromagnetic ratio
  • G is the motion encoding gradient
  • the tissue image obtained through the tissue image acquisition module includes amplitude information and phase information; moreover, the synchronous monitoring module based on tissue displacement and temperature can synchronously monitor the current The displacement and temperature of the tissue at the moment.
  • the above device realizes the simultaneous monitoring of the displacement and temperature of any tissue, especially fat tissue, and ensures the safety of the FUS focusing process.
  • the synchronous monitoring device for tissue displacement and temperature provided by the embodiments of the present application can execute the synchronous monitoring method for tissue displacement and temperature provided by any embodiment of the present application, and has corresponding function modules and beneficial effects of the execution method.
  • the multiple units and modules included are only divided according to functional logic, but are not limited to the above division, as long as the corresponding functions can be achieved That's it.
  • FIG. 7 is a schematic structural diagram of a device provided in Embodiment 4 of the present application.
  • the device includes a memory 410, a processor 420, an input device 430, and an output device 440.
  • the number of processors 420 in the device may be one or more, and one processor 420 is taken as an example in FIG. 7; the memory 410, processor 420, input device 430, and output device 440 in the device may be connected by a bus or other means In FIG. 7, the connection through the bus 450 is taken as an example.
  • the memory 410 is a computer-readable storage medium, and can be used to store software programs, computer executable programs, and modules, such as program instructions/modules (for example, tissue displacement) corresponding to the synchronous monitoring method of tissue displacement and temperature in the embodiments of the present application.
  • the processor 420 runs the software programs, instructions, and modules stored in the memory 410 to execute various functional applications and data processing of the device, that is, to realize the above-described synchronous monitoring method of tissue displacement and temperature.
  • the memory 410 may mainly include a storage program area and a storage data area, where the storage program area may store an operating system and application programs required by at least one function; the storage data area may store data created according to the use of the device, and the like.
  • the memory 410 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 410 may include memories remotely provided with respect to the processor 420, and these remote memories may be connected to the device through a network. Examples of the aforementioned network include, but are not limited to, the Internet, intranet, local area network, mobile communication network, and combinations thereof.
  • the input device 430 can be used to receive input numeric or character information, and generate key signal input related to user settings and function control of the device.
  • the output device 440 may include a display device such as a display screen.
  • Embodiment 5 of the present application provides a storage medium containing computer-executable instructions.
  • a method for synchronously monitoring tissue displacement and temperature is performed. The method includes:
  • MR-ARFI When the sequence in magnetic resonance acoustic radiography MR-ARFI satisfies the condition that the ratio of echo time to lateral relaxation time is less than the preset first threshold, and the ratio of repetition time to longitudinal relaxation time is greater than the preset second threshold , Based on MR-ARFI technology to scan the tissue to obtain images of the tissue;
  • the amplitude of the image at the current time the cumulative phase of the images at multiple times, and the amplitude of the image at the initial time and the temperature of the tissue, the displacement and temperature of the tissue at the current time are monitored synchronously.
  • An embodiment of the present application provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are not limited to the method operations described above, and can also perform synchronous monitoring of tissue displacement and temperature provided by any embodiment of the present application. Related operations in the method.
  • the present application can be implemented by software and necessary general hardware, or by hardware, but in many cases the former is a better embodiment.
  • the technical solution or part of the technical solution of the present application may be embodied in the form of a software product, and the computer software product may be stored in a computer-readable storage medium, such as a computer floppy disk, read-only memory (Read-Only Memory, ROM), random Access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or CD-ROM, etc., including multiple instructions to enable a computer device (which can be a personal computer, server, or network device, etc.) to execute multiple applications The method described in the examples.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physiology (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

一种组织位移和温度的同步监测方法、装置、设备及存储介质。该监测方法包括:当磁共振声辐射力成像MR-ARFI中的序列满足回波时间(TE)与横向弛豫时间(T2)的比值小于预设第一阈值,且重复时间(TR)与纵向弛豫时间(T1)的比值大于预设第二阈值的条件时,基于MR-ARFI技术对组织进行扫描,获取组织的图像;根据当前时刻的图像的幅值,各时刻的图像的累积相位,以及初始时刻的图像的幅值和所述组织的温度,同步监测当前时刻的所述组织的位移和温度。

Description

组织位移和温度的同步监测方法、装置、设备及存储介质
本申请要求在2018年12月27日提交中国专利局、申请号为201811610504.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及生物医学信号处理领域,例如涉及一种组织位移和温度的同步监测方法、装置、设备及存储介质。
背景技术
磁共振声辐射力成像(Magnetic resonance acoustic radiation force imaging,MR-ARFI)技术可以检测生物组织的微米级位移,用于反映组织弹性,是聚焦超声(Focused ultrasound,FUS)治疗中焦点定位的重要手段。但是,重复进行的ARFI测量,例如不断调整声束相位进行FUS时,焦点局部区域的组织的热积累可能变得十分显著。因此,需要同时监测组织的位移和温度,以保证FUS治疗过程的安全性。
基于质子共振频率漂移的梯度回波的ARFI(Gradient recalled echo-ARFI,GRE-ARFI)技术利用水中氢质子的共振频率与温度的线性关系进行温度成像,可以同时监测温度和位移的变化。但是,焦域组织的温度升高通常发生在组织界面例如皮下脂肪组织,脂肪组织中的氢质子对温度不敏感。因此,GRE-ARFI只能实现除脂肪组织之外的其余组织的位移和温度的同时监测,不适合应用于含有脂肪的组织的温度成像。
发明内容
本申请实施例提供了一种组织位移和温度的同步监测方法、装置、设备及存储介质,解决了相关技术中无法同时监测脂肪组织的位移和温度的问题。
第一方面,本申请实施例提供了一种组织位移和温度的同步监测方法,该 方法可以包括:
当磁共振声辐射力成像MR-ARFI中的序列满足回波时间与横向弛豫时间的比值小于预设第一阈值,且重复时间与纵向弛豫时间的比值大于预设第二阈值的条件时,基于MR-ARFI技术对组织进行扫描,获取组织的图像;
根据当前时刻的图像的幅值,多个时刻的图像的累积相位,以及,初始时刻的图像的幅值和组织的温度,同步监测当前时刻的组织的位移和温度。
第二方面,本申请实施例还提供了一种组织位移和温度的同步监测装置,该装置可以包括:
组织图像获取模块,设置为当磁共振声辐射力成像MR-ARFI中的序列满足回波时间与横向弛豫时间的比值小于预设第一阈值,且重复时间与纵向弛豫时间的比值大于预设第二阈值的条件时,基于MR-ARFI技术对组织进行扫描,获取组织的图像;
组织位移和温度的同步监测模块,设置为根据当前时刻的图像的幅值,多个时刻的图像的累积相位,以及,初始时刻的图像的幅值和组织的温度,同步监测当前时刻的组织的位移和温度。
第三方面,本申请实施例还提供了一种设备,该设备可以包括:
一个或多个处理器;
存储器,设置为存储一个或多个程序,
当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现本申请任意实施例所提供的组织位移和温度的同步监测方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现本申请任意实施例所提供的组织位移和温度的同步监测方法。
附图说明
图1是本申请实施例一中的一种组织位移和温度的同步监测方法的流程图;
图2是本申请实施例二中的一种组织位移和温度的同步监测方法的流程图;
图3是本申请实施例二中的一种示例性说明的流程图;
图4a是本申请实施例二中的一种8次试验的实际温度和预测温度的关系图;
图4b是本申请实施例二中的一种3次试验的实际温度和预测温度的关系图;
图5a是本申请实施例二中的一种脂肪组织的图像的相位示意图;
图5b是本申请实施例二中的一种脂肪组织的图像的温度曲线示意图;
图6是本申请实施例三中的一种组织位移和温度的同步监测装置的结构图;
图7是本申请实施例四中的一种设备的结构示意图。
具体实施方式
为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
实施例一
图1是本申请实施例一中提供的一种组织位移和温度的同步监测方法的流程图。本实施例可适用于组织的位移和温度的同步监测的情况,例如适合于聚焦超声FUS治疗中脂肪组织的位移和温度的同步监测的情况。该方法可以由本申请实施例提供的组织位移和温度的同步监测装置来执行,该装置可以由软件和/或硬件的方式实现。参见图1,本申请实施例的方法包括如下步骤:
S110中,当磁共振声辐射力成像MR-ARFI中的序列满足回波时间与横向弛豫时间的比值小于预设第一阈值,且重复时间与纵向弛豫时间的比值大于预设第二阈值的条件时,基于MR-ARFI技术对组织进行扫描,获取组织的图像。
其中,声辐射力(acoustic radiation force,ARF)是声波在物质内部传播过程产生的现象,当声波频率达到兆赫兹级别即超声波时,声波在传播物质内部可产生两种现象:在声波传播方向产生动量交换且发热。其中,动量交换可产生一个作用力,推动传播物质产生一定位移,该位移可反映传播物质的弹性;而发热会使得物质内部的温度升高。
磁共振声辐射力成像(Magnetic resonance acoustic radiation force imaging,MR-ARFI)是利用安全功率范围内的聚焦超声波束产生的声辐射力, 使生物组织局部区域产生微小形变,在磁共振序列中加入位移编码梯度并对该微小形变进行位移编码,最后利用编码后的相位变化对焦点区域组织位移估计的磁共振聚焦超声弹性成像技术。该成像技术可以应用于乳腺癌检测、动脉粥状斑块诊断、聚焦超声治疗安全监控等方面。
MR-ARFI监测过程中常用的序列包括一维线扫描ARFI序列、自旋回波(Spin Echo,SE)-ARFI序列、平面回波(Echo Planar Imaging,EPI)-SE-ARFI序列、梯度回波序列等。其中,SE-ARFI序列特有的180°射频脉冲可以有效消除磁场不均匀性及磁化率引起的自旋散相。多个序列包括回波时间(Echo Time,TE),即宏观横向磁化矢量的脉冲中点到回波中点的时间间隔,以及,重复时间(Repetition Time,TR),即两个激发脉冲间的间隔时间。另外,组织中包括横向弛豫时间T2,即横向磁化强度消失的时间常数,以及,纵向豫驰时间T1,即纵向磁化强度恢复的时间常数。
当MR-ARFI中的序列满足如下条件:回波时间与横向弛豫时间的比值
Figure PCTCN2018125844-appb-000001
小于预设第一阈值,且重复时间与纵向弛豫时间的比值
Figure PCTCN2018125844-appb-000002
大于预设第二阈值的条件时,可以对组织的温度和位移进行同步监测。换言之,通常情况下,当序列满足TE<<T2且TR>>T1时,例如,当组织是脂肪组织时,TE<30ms,TR>600ms,T2为60,T1处于100至200范围内,可以对组织的温度和位移进行同步监测。因此,基于包括满足上述条件的序列的MR-ARFI技术对组织进行扫描,获取组织的图像。上述方法是基于组织的共性实现的,因此上述组织可以是脂肪组织即含有脂肪的组织,也可以是非脂肪组织既未含有脂肪的组织。
S120中,根据当前时刻的图像的幅值,多个时刻的图像的累积相位,以及,初始时刻的图像的幅值和组织的温度,同步监测当前时刻的组织的位移和温度。
其中,基于MR-ARFI技术获取的图像包括相位信息和幅值信息,根据相位信息可以监测组织焦点处的位移,根据幅值信息可以监测组织的温度。考虑到MR-ARFI技术可以对组织进行持续扫描,因此获取的图像包括至少两个时刻的图像。多个时刻的图像都包括相位信息和幅值信息。而且,初始时刻的图像可以 认为是已获取的第一张图像,即最初获取的图像;当前时刻的图像可以认为是已获取的最后一张图像,即最终获取的图像。那么,根据当前时刻的图像的幅值,多个时刻的图像的累积相位,初始时刻的图像的幅值和初始时刻的组织的温度,可以同步监测当前时刻的组织的位移和温度。
在一实施例中,在获取组织的图像之后,所述方法还可以包括:对组织的图像进行平滑处理,并将平滑处理后的图像作为组织的图像。例如,可以将图像中的预设区域作为感兴趣区域,并对感兴趣区域进行平滑处理,根据平滑后的图像获取的幅值信息和相位信息有利于反映图像的平均水平。
本申请实施例的技术方案,当磁共振声辐射力成像MR-ARFI中的序列满足回波时间与横向弛豫时间的比值小于预设第一阈值,且重复时间与纵向弛豫时间的比值大于预设第二阈值的条件时,基于MR-ARFI技术获取的组织的图像包括幅值信息和相位信息;而且,基于上述序列获取的当前时刻的图像的幅值,多个时刻的图像的累积相位,以及,初始时刻的图像的幅值和组织的温度,可以同步监测当前时刻的组织的位移和温度。上述技术方案,实现了任何组织,例如脂肪组织的位移和温度的同步监测,保证了FUS对焦过程的安全性。
实施例二
图2是本申请实施例二中提供的一种组织位移和温度的同步监测方法的流程图。本实施例以上述技术方案为基础进行优化。在本实施例中,将“根据当前时刻的图像的幅值,多个时刻的图像的累积相位,以及,初始时刻的图像的幅值和组织的温度,同步监测当前时刻的组织的位移和温度”可以优化为“获取多个时刻的图像的累积相位,并根据预设的位移转换函数将累积相位转换为当前时刻的组织的位移;根据当前时刻的图像的幅值,以及,初始时刻的图像的幅值和组织的温度监测当前时刻的组织的温度”。其中,与上述多个实施例相同或相应的术语的解释在此不再赘述。相应的,如图2所示,本实施例的方法可以包括如下步骤:
S210中,当磁共振声辐射力成像MR-ARFI中的序列满足回波时间与横向弛 豫时间的比值小于预设第一阈值,且重复时间与纵向弛豫时间的比值大于预设第二阈值的条件时,基于MR-ARFI技术对组织进行扫描,获取组织的图像。
S220中,获取多个时刻的图像的累积相位,并根据预设的位移转换函数将累积相位转换为当前时刻的组织的位移。
其中,所述图像中的相位信息可以认为是由于ARFI序列中编码梯度造成的特定的相位差异,即在运动编码的同时,FUS对焦过程使得组织产生位移。而编码梯度可以是双极重复位移编码梯度、单极运动编码梯度或反向正负极性运动编码梯度等。在ARFI序列中施加编码梯度,可以将由聚焦超声FUS引起的组织中氢质子的宏观位移转化为质子共振频率的改变量,在图像的相位图中产生累积相位。例如,可以通过如下公式产生累计相位Φ:
Figure PCTCN2018125844-appb-000003
其中,t为运动编码时间,Δω为质子共振频率的改变量,G为运动编码梯度,γ为旋磁比且γ/2π=42.58MHz/T,r为质子位移。在一实施例中,组织中不同位置的频率不同,根据运动编码时间t可以计算频率,例如,根据频率得到累积相位。而且,根据预设的位移转换函数可以将累积相位转换为当前时刻的组织的位移,例如,根据不同运动编码梯度时相位的差值可以得到相位差。
S230中,根据当前时刻的图像的幅值,以及,初始时刻的图像的幅值和组织的温度监测当前时刻的组织的温度。
其中,组织的温度与磁共振图像中诸多因素有关,例如,在一定温度范围内,质子密度与温度呈线性关系;横向弛豫时间T2与温度呈线性关系;基于T1加权的快速自旋回波(Turbo spin echo,TSE)序列的图像的幅值信号与温度具有线性关系;图像的幅值S与初始幅值S0、重复时间TR以及回波时间TE相关等。而且,图像的幅值S可以表示为:
Figure PCTCN2018125844-appb-000004
当回波时间TE很短,即TE<<T2;且重复时间TR很长,即TR>>T1时,S与S0成正比。由于不同温度T下图像的幅值不同,且质子密度与温度T的线性关 系,因此,初始幅值S0可以表示为:S0(T)=a*T+b;其中,a和b是线性关系中的预设系数,T可以认为是与初始幅值S0相对应的时刻下组织的温度。
假若幅值S与初始幅值S0之间的正比例系数为K,再考虑到距离和不同线圈灵敏度的影响Q,当前时刻的图像的幅值S(T)可以表示为:S(T)=K*Q(aT+b)=AT+B;其中,A是第一预设系数,B是第二预设系数。那么,当初始时刻的组织的温度是T 0时,初始时刻的图像的幅值S(T 0)可以表示为:S(T 0)=K*Q(aT 0+b)=AT 0+B。根据上述推导过程可以得知,根据当前时刻的图像的幅值S(T),以及,初始时刻的图像的幅值S(T 0)和组织的温度T 0可以监测当前时刻的组织的温度T。
本申请实施例的技术方案,通过获取多个时刻的图像的累积相位,可以确定当前时刻的组织的位移;根据当前时刻的图像的幅值,以及,初始时刻的图像的幅值和组织的温度可以监测当前时刻的组织的温度,真正实现了组织位移和温度的准确地同步监测。
在一实施例中,获取多个时刻的图像的累积相位,根据预设的位移转换函数将累积相位转换为当前时刻的组织的位移,可以包括:基于预设的正负极性运动编码梯度获取当前时刻的图像的相位差ΔΦ,并通过如下公式将相位差ΔΦ转换为当前时刻的组织的位移Δx:
Figure PCTCN2018125844-appb-000005
其中,t为运动编码时间,γ为旋磁比,G为运动编码梯度。
其中,当施加于序列中的运动编码梯度分别是正极性运动编码梯度和负极性运动编码梯度时,可以分别获取基于正极性运动编码梯度采集到的图像的相位图即正累积相位,以及,基于负极性运动编码梯度采集到的图像的相位图即负累积相位,那么两组相位图的差值即为相位差ΔΦ。而且,此时的相位差ΔΦ与当前时刻的图像的位移Δx的数值的2倍相对应。
在一实施例中,上述方案的实现过程可以是:在EPI-SE-ARFI的180°回聚脉冲前添加第一个正极性运动编码梯度,在180°回聚脉冲后添加第二个正极性运动编码梯度,所述第一个和第二个正极性运动编码梯度在下次图像采集时, 均变为负极性运动编码梯度(即第一负极性运动编码梯度和第二负极性运动编码梯度)。在整个采集过程中,两种编码梯度的图像采集方法交替进行。基于第一个正极性运动编码梯度和第一个负极性运动编码梯度可以确定聚焦超声脉冲的起止时间点;在聚焦超声脉冲工作时分别采集运动编码梯度极性相反的两组相位图;根据上述公式求得当前时刻的组织的位移Δx,其中ΔΦ是施加强度和作用时间相同、极性相反的运动编码梯度的两组相位图的相位差。上述步骤设置的好处在于,基于施加于序列中的正负极性运动编码梯度可以间接监测当前时刻的图像的位移,实现过程较为简单。
为了更好地避免场效应的影响,提高位移监测的准确率,在一实施例中,在得到当前时刻的图像的相位差后,可以将相位差与未开启超声时图像的相位图相减,或者,还可以将相位差与基线相位图相减,并根据相减结果更新相位差。其中,基线相位图的计算过程可以是:将当前时刻的组织的图像分割为感兴趣区域即组织中发生位移的区域,以及,参考区域即组织中未发生位移的区域;对参考区域中的相位图进行多项式模拟拟合,利用求得的多项式系数进行内插,得到基线相位图。
另外,基于单极性运动编码梯度,例如正极性运动编码梯度或者负极性运动编码梯度依然可以实现位移的监测。同样地,基于单极性运动编码梯度采集到的图像的相位图,还可以与未开启超声时图像的相位图相减,或者,与基线相位图相减,以避免场效应的影响。
在一实施例中,根据当前时刻的图像的幅值,以及,初始时刻的图像的幅值和组织的温度监测当前时刻的组织的温度,可以包括:通过如下公式监测当前时刻的组织的温度T:
Figure PCTCN2018125844-appb-000006
其中,p是预设的比例系数,S(T)是当前时刻的图像的幅值,S(T 0)是初始时刻的图像的幅值,T 0是初始时刻的组织的温度。
其中,根据S(T)=K*Q(aT+b)=AT+B和S(T 0)=K*Q(aT 0+b)= AT 0+B的比值,可以得到:
Figure PCTCN2018125844-appb-000007
Figure PCTCN2018125844-appb-000008
时,可以转换为
Figure PCTCN2018125844-appb-000009
那么,当前时刻的组织的温度T可以表示为:
Figure PCTCN2018125844-appb-000010
Figure PCTCN2018125844-appb-000011
基于满足回波时间与横向弛豫时间的比值小于预设第一阈值,且重复时间与纵向弛豫时间的比值大于预设第二阈值的条件序列获取的图像由质子密度决定,可以称之为质子密度加权像。在一实施例中,在一定温度范围内,质子密度与温度呈线性关系,而质子密度加权像与质子密度成正比。当S(T)是温度为T时的质子密度加权像的幅值,S(T 0)是温度为T 0时的质子密度加权像的幅值时,可以基于质子密度加权的ARFI序列同步监测组织的位移和温度。而且,考虑到质子密度加权像只需要1幅图像即可以监测位移和温度,成像速度较快,保证了监测的实时性。
采用上述组织位移和温度的同步监测方法,基于T1或是T2加权的ARFI序列,或是,基于将ARFI序列设置为不同的TE而拟合得到的T2或质子密度,或是,基于将ARFI序列设置为不同的TR而拟合得到的T1,均可以实现组织位移和温度的同步监测。
在一实施例中,通过如下步骤可以确定比例系数p:基于预设的控温方法和预设的线圈对组织进行控温,并基于预设的温度监测法监测组织的至少两个温度;分别获取与至少两个温度对应的图像的幅值,通过线性拟合得到比例系数p。
其中,当前时刻的图像的幅值S(T)、初始时刻的图像的幅值S(T 0)以及初始时刻的组织的温度T 0是可以直接测量得到的,因此,为了准确监测组织的温度,比例系数p的确定至关重要。考虑到组织温度的升高可能是由于FUS治疗过程中超声波的应用,但是在超声波的作用下无法直接测量温度,因此,可以基于预设的控温方法控制组织的温度,例如可以通过水浴循环装置控制组织的温度。而实验过程中的预设的温度监测法可以是基于光纤温度计测量组织的温度。
比例系数p的确定过程可以是:基于预设的控温方法和预设的线圈对组织进行控温,采集不同温度下的组织的幅值,并通过线性拟合的方式确定比例系数p。 可以基于预设的时间间隔采集不同温度下的组织的幅值,还可以基于预设的温度间隔采集不同温度下的组织的幅值。其中,预设的线圈可以是小柔线圈,还可以是颈部线圈。
在一实施例中,确定比例系数p的步骤,还可以包括:重复执行基于预设的控温方法和预设的线圈对组织进行控温,直至满足预设的执行结束条件,计算得到的多个比例系数p的平均值,并将计算结果更新为比例系数p。
其中,为了更加准确的确定比例系数p,可以重复执行上述技术方案,每执行一次可以认为是一次试验。例如,在相同的线圈下重复执行采集不同温度下的组织的幅值的操作,每次线性拟合可以得到一个p值,对多个p值计算平均值,作为比例系数p。当然,还可以采用不同的线圈重复执行采集不同温度下的组织的幅值的操作,将线性拟合得到的多个p值计算平均值。另外,预设的执行结束条件可以是试验次数,还可以是收敛条件。通常情况下,经过多次试验得到的平均值的比例系数p趋于稳定,可以适用于不同个体的组织的温度的监测。
在一实施例中,通过线性拟合得到比例系数p,可以包括:将至少两个温度T c以及与至少两个温度对应的图像的幅值S(T c)代入如下公式S(T c)=A*T c+B,经过线性拟合转换为比例系数p;其中,A是第一预设系数,B是第二预设系数,且
Figure PCTCN2018125844-appb-000012
其中,温度T c以及与其对应的图像的幅值S(T c)是一一对应的关系,具有对应关系的温度和幅值具有相同的时刻。分别将至少两个温度T c以及与至少两个温度对应的图像的幅值S(T c)代入上述公式中,经过线性拟合可以求得第一预设系数A和第二预设系数B。例如,根据
Figure PCTCN2018125844-appb-000013
可以求得比例系数p。通过线性拟合的方式求得比例系数p更加具有普遍适用性。
下面结合示例“基于质子密度加权的ARFI序列对离体猪肉的脂肪组织进行位移和温度的同步监测”对本实施例的方法进行示例性的说明。
示例性的,参见图3,在对组织进行扫描前,需要设置序列的参数,例如:设置TE和TR,使得TE<<T2且TR>>T1,以及运动编码梯度(Motion coding  gradient,MEG)时间。在对组织进行位移和温度的同步监测之前,需要对比例系数p进行标定。利用水浴循环装置对脂肪组织进行加热,通过插入脂肪组织中的光纤温度计进行温度监测。待光线温度计的示数稳定后,采集不同温度下光纤温度计对应层面的图像,且将光纤温度计周围的图像的幅值的平均值作为S(T c),将光纤温度计的示数作为T c,代入公式S(T c)=A*T c+B,
Figure PCTCN2018125844-appb-000014
中,线性拟合得到比例系数p。为了使得比例系数p趋于稳定,采用小柔线圈进行4次试验,且采用颈部线圈进行4次试验,共8组实验,求得比例系数p的平均值。
为了验证标定的比例系数p的准确性,以光纤温度计的第一组数据作为初始时刻的组织的温度T 0,以及,以与T 0相对应的图像的幅值S(T 0)作为初始时刻图像的幅值,将每组试验的多个数据点S(T)和比例系数p代入公式
Figure PCTCN2018125844-appb-000015
Figure PCTCN2018125844-appb-000016
中,得到当前时刻的组织的温度T。光线温度计的示数是脂肪组织的实际温度T c,求解得到的温度是脂肪组织的预测温度T。如图4a所示,将横坐标作为实际温度,纵坐标作为预测温度,参考线是实际温度与预测温度相等的情况。由此可知,图4a是8次试验中每个数据点的实际温度和预测温度的关系图,例如多个数据点的实际温度和预测温度相等,或是,实际温度大于预测温度,或是,实际温度小于预测温度。可以看出,多个数据点均匀分布在参考线周边,说明线性拟合得到的比例系数p较为准确,基于比例系数p监测到的预测温度和实际温度的差异性很小。为了更加清楚地展现每组试验中的数据点,如图4b所示,仅以小柔线圈的第一次试验、小柔线圈的第二次试验和颈部线圈的第一次试验为例,进行展示。比例系数p仅需标定一次即可,可以适用于不同组织的温度和位移的监测。
为了验证FUS中基于质子密度加权的ARFI序列同步监测脂肪组织位移和温度的可行性,基于如下参数的一维线扫描序列对脂肪组织进行扫描:B0=3T,TR=300ms,TE=30ms,采集时间9.6s,分辨率1.5×1.5mm 2,脂肪组织层厚5mm,翻转角90°,运动编码时间15.22ms,激发平面与回聚平面夹角为55°,18W固定功率的FUS。当序列在运动编码期间,FUS的工作使得脂肪组织产生位移, 根据获取的图像的相位计算脂肪组织的位移。如图5a所示,图像的相位图20中包括焦点区域10,焦点区域10中多个数据点的相位值S可能是3或是4,焦点区域以外的相位值可能是0。因此,只有焦点区域的组织才会发生位移。
考虑到ARFI正常情况下的热效应并不显著,为了观察到明显的温度升高现象,采用连续FUS的方式。在一实施例中,在18W固定功率FUS下进行100次的图像扫描,其中第6-25次的图像扫描是在FUS工作时进行,其余图像扫描是在FUS不工作时进行。将室温作为初始时刻的脂肪组织的温度T 0=23℃。将获取的图像的幅值S(T)代入公式
Figure PCTCN2018125844-appb-000017
中,得到了超声焦点处脂肪组织的温度变化曲线。如图5b所示,横坐标是图像的扫描次数,纵坐标是焦点处的预测温度。由此可以看出,采用所述方法可以直接监测到第6-25次扫描期间即FUS工作期间,脂肪组织温度上升的情况。结合图5a和图5b,可以直接证明所述方法可以同步监测组织的位移和温度。
实施例三
图6为本申请实施例三提供的组织位移和温度的同步监测装置的结构框图,该装置用于执行上述任意实施例所提供的组织位移和温度的同步监测方法。该装置与上述多个实施例的组织位移和温度的同步监测方法属于同一个申请构思,在组织位移和温度的同步监测装置的实施例中未详尽描述的细节内容,可以参考上述组织位移和温度的同步监测方法的实施例。参见图6,该装置可包括:组织图像获取模块310和组织位移和温度的同步监测模块320。
其中,组织图像获取模块310,设置为当磁共振声辐射力成像MR-ARFI中的序列满足回波时间与横向弛豫时间的比值小于预设第一阈值,且重复时间与纵向弛豫时间的比值大于预设第二阈值的条件时,基于MR-ARFI技术对组织进行扫描,获取组织的图像;
组织位移和温度的同步监测模块320,设置为根据当前时刻的图像的幅值,多个时刻的图像的累积相位,以及,初始时刻的图像的幅值和组织的温度,同 步监测当前时刻的组织的位移和温度。
在一实施例中,组织位移和温度的同步监测模块320,可以包括:
组织位移监测单元,设置为获取多个时刻的图像的累积相位,并根据预设位移转换函数将累积相位转换为当前时刻的组织的位移;
组织温度监测单元,设置为根据当前时刻的图像的幅值,以及,初始时刻的图像的幅值和组织的温度监测当前时刻的组织的温度。
在一实施例中,组织温度监测单元可以通过如下公式监测当前时刻的组织的温度T:
Figure PCTCN2018125844-appb-000018
其中,p是预设的比例系数,S(T)是当前时刻的图像的幅值,S(T 0)是初始时刻的图像的幅值,T 0是初始时刻的组织的温度。
在一实施例中,上述装置还可以包括比例系数确定模块,所述比例系数确定模块可以通过如下单元确定比例系数p:
温度监测单元,设置为基于预设的控温方法和预设的线圈对组织进行控温,并基于预设的温度监测法监测组织的至少两个温度;
比例系数p确定单元,设置为分别获取与至少两个温度对应的图像的幅值,通过线性拟合得到比例系数p。
在一实施例中,比例系数p确定单元,可以将至少两个温度T c以及与至少两个温度对应的图像的幅值S(T c)代入如下公式,经过线性拟合转换为比例系数p:
S(T c)=A*T c+B
其中,A是第一预设系数,B是第二预设系数,且
Figure PCTCN2018125844-appb-000019
在一实施例中,比例系数p确定模块,还可以包括:
比例系数p平均值计算单元,设置为重复执行基于预设的控温方法和预设的线圈对组织进行控温,直至满足预设的执行结束条件,计算得到的多个比例系数p的平均值,并将计算结果更新为比例系数p。
在一实施例中,组织位移监测单元,可以包括:
组织位移监测子单元,设置为基于预设的正负极性运动编码梯度获取当前时刻的图像的相位差ΔΦ,并通过如下公式将所述相位差ΔΦ转换为当前时刻的组织的位移Δx:
Figure PCTCN2018125844-appb-000020
其中,t为运动编码时间,γ为旋磁比,G为运动编码梯度。
本申请实施例三提供的组织位移和温度的同步监测装置,通过组织图像获取模块可以获取的组织的图像包括幅值信息和相位信息;而且,基于组织位移和温度的同步监测模块可以同步监测当前时刻的组织的位移和温度。上述装置,实现了任何组织,尤其是脂肪组织的位移和温度的同步监测,保证了FUS对焦过程的安全性。
本申请实施例所提供的组织位移和温度的同步监测装置可执行本申请任意实施例所提供的组织位移和温度的同步监测方法,具备执行方法相应的功能模块和有益效果。
值得注意的是,上述组织位移和温度的同步监测装置的实施例中,所包括的多个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可。
实施例四
图7为本申请实施例四提供的一种设备的结构示意图,如图7所示,该设备包括存储器410、处理器420、输入装置430和输出装置440。设备中的处理器420的数量可以是一个或多个,图7中以一个处理器420为例;设备中的存储器410、处理器420、输入装置430和输出装置440可以通过总线或其它方式连接,图7中以通过总线450连接为例。
存储器410作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请实施例中的组织位移和温度的同步监测方法对应的程序指令/模块(例如,组织位移和温度的同步监测装置中的组织图像获取 模块310和组织位移和温度的同步监测模块320)。处理器420通过运行存储在存储器410中的软件程序、指令以及模块,从而执行设备的多种功能应用以及数据处理,即实现上述的组织位移和温度的同步监测方法。
存储器410可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器410可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器410可包括相对于处理器420远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置430可用于接收输入的数字或字符信息,以及产生与装置的用户设置以及功能控制有关的键信号输入。输出装置440可包括显示屏等显示设备。
实施例五
本申请实施例五提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种组织位移和温度的同步监测方法,该方法包括:
当磁共振声辐射力成像MR-ARFI中的序列满足回波时间与横向弛豫时间的比值小于预设第一阈值,且重复时间与纵向弛豫时间的比值大于预设第二阈值的条件时,基于MR-ARFI技术对组织进行扫描,获取组织的图像;
根据当前时刻的图像的幅值,多个时刻的图像的累积相位,以及,初始时刻的图像的幅值和组织的温度,同步监测当前时刻的组织的位移和温度。
本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的组织位移和温度的同步监测方法中的相关操作。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,也可以通过硬件实现,但很多情 况下前者是更佳的实施方式。本申请的技术方案或部分技术方案可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请多个实施例所述的方法。

Claims (10)

  1. 一种组织位移和温度的同步监测方法,包括:
    当磁共振声辐射力成像MR-ARFI中的序列满足回波时间与横向弛豫时间的比值小于预设第一阈值,且重复时间与纵向弛豫时间的比值大于预设第二阈值的条件时,基于所述MR-ARFI技术对组织进行扫描,获取所述组织的图像;以及
    根据当前时刻的图像的幅值,多个时刻的图像的累积相位,以及,初始时刻的图像的幅值和所述组织的温度,同步监测当前时刻的所述组织的位移和温度。
  2. 根据权利要求1所述的方法,其中,所述根据当前时刻的图像的幅值,多个时刻的图像的累积相位,以及,初始时刻的图像的幅值和所述组织的温度,同步监测当前时刻的所述组织的位移和温度,包括:
    获取多个时刻的图像的累积相位,并根据预设的位移转换函数将所述累积相位转换为当前时刻的所述组织的位移;
    根据当前时刻的图像的幅值,以及,初始时刻的图像的幅值和所述组织的温度监测当前时刻的所述组织的温度。
  3. 根据权利要求2所述的方法,其中,所述根据当前时刻的图像的幅值,以及,初始时刻的图像的幅值和所述组织的温度监测当前时刻的所述组织的温度,包括:通过如下公式监测当前时刻的所述组织的温度T:
    Figure PCTCN2018125844-appb-100001
    其中,p是预设的比例系数,S(T)是当前时刻的图像的幅值,S(T 0)是初始时刻的图像的幅值,T 0是初始时刻的所述组织的温度。
  4. 根据权利要求3所述的方法,其中,通过如下步骤确定所述比例系数p:
    基于预设的控温方法和预设的线圈对所述组织进行控温,并基于预设的温度监测法监测所述组织的至少两个温度;
    分别获取与多个所述温度对应的图像的幅值,通过线性拟合得到比例系数p。
  5. 根据权利要求4所述的方法,其中,所述通过线性拟合得到比例系数p, 包括:将至少两个温度T c以及与多个所述温度对应的图像的幅值S(T c)代入如下公式,经过线性拟合转换为所述比例系数p:
    S(T c)=A*T c+B
    其中,A是第一预设系数,B是第二预设系数,且
    Figure PCTCN2018125844-appb-100002
  6. 根据权利要求4所述的方法,其中,确定所述比例系数p的步骤,还包括:
    重复执行基于预设的控温方法和预设的线圈对所述组织进行控温,直至满足预设的执行结束条件,计算得到的多个所述比例系数p的平均值,并将计算结果更新为所述比例系数p。
  7. 根据权利要求2所述的方法,其中,所述获取多个时刻的图像的累积相位,并根据预设的位移转换函数将所述累积相位转换为当前时刻的所述组织的位移,包括:
    基于预设的正负极性运动编码梯度获取当前时刻的图像的相位差ΔΦ,并通过如下公式将所述相位差ΔΦ转换为当前时刻的所述组织的位移Δx:
    Figure PCTCN2018125844-appb-100003
    其中,t为运动编码时间,γ为旋磁比,G为运动编码梯度。
  8. 一种组织位移和温度的同步监测装置,包括:
    组织图像获取模块,设置为当磁共振声辐射力成像MR-ARFI中的序列满足回波时间与横向弛豫时间的比值小于预设第一阈值,且重复时间与纵向弛豫时间的比值大于预设第二阈值的条件时,基于所述MR-ARFI技术对组织进行扫描,获取所述组织的图像;
    组织位移和温度的同步监测模块,设置为根据当前时刻的图像的幅值,多个时刻的图像的累积相位,以及,初始时刻的图像的幅值和所述组织的温度,同步监测当前时刻的所述组织的位移和温度。
  9. 一种设备,包括:
    至少一个处理器;
    存储器,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-7中任一所述的组织位移和温度的同步监测方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1-7中任一所述的组织位移和温度的同步监测方法。
PCT/CN2018/125844 2018-12-27 2018-12-29 组织位移和温度的同步监测方法、装置、设备及存储介质 WO2020133519A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811610504.X 2018-12-27
CN201811610504.XA CN109480844B (zh) 2018-12-27 2018-12-27 组织位移和温度的同步监测方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2020133519A1 true WO2020133519A1 (zh) 2020-07-02

Family

ID=65712584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125844 WO2020133519A1 (zh) 2018-12-27 2018-12-29 组织位移和温度的同步监测方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN109480844B (zh)
WO (1) WO2020133519A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109480844B (zh) * 2018-12-27 2021-04-02 深圳先进技术研究院 组织位移和温度的同步监测方法、装置、设备及存储介质
CN110988764B (zh) * 2019-12-11 2021-08-31 深圳先进技术研究院 组织参数监控方法、装置、成像系统及介质
CN111227835B (zh) * 2020-01-16 2023-05-30 四川大学华西医院 一种膝关节动态成像装置及其使用方法
CN114325523B (zh) * 2020-09-27 2023-10-03 上海联影医疗科技股份有限公司 T1值确定方法、装置、电子设备和存储介质
CN114167333B (zh) * 2021-12-06 2022-07-22 无锡鸣石峻致医疗科技有限公司 一种纵向弛豫时间测定方法、装置、计算机设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140350439A1 (en) * 2013-05-23 2014-11-27 General Electric Company System and method for focusing of high intensity focused ultrasound based on magnetic resonance - acoustic radiation force imaging feedback
CN104602761A (zh) * 2012-07-09 2015-05-06 皇家飞利浦有限公司 声辐射力磁共振成像
CN105796101A (zh) * 2014-12-29 2016-07-27 中国科学院深圳先进技术研究院 基于磁共振声辐射力成像的组织位移测量方法和系统
WO2017123536A1 (en) * 2016-01-14 2017-07-20 University Of Utah Research Foundation Elastography imaging with magnetic resonance imaging guided focused ultrasound
CN107405502A (zh) * 2015-03-04 2017-11-28 皇家飞利浦有限公司 声辐射力成像
WO2018065245A1 (en) * 2016-10-04 2018-04-12 Koninklijke Philips N.V. Improvement of simultaneous measure of the temperature and the displacement measured with magnetic resonance acoustic radiation force imaging
CN108152770A (zh) * 2017-12-22 2018-06-12 深圳先进技术研究院 一种同步检测组织位移和t2的方法及装置
CN109480844A (zh) * 2018-12-27 2019-03-19 深圳先进技术研究院 组织位移和温度的同步监测方法、装置、设备及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080097207A1 (en) * 2006-09-12 2008-04-24 Siemens Medical Solutions Usa, Inc. Ultrasound therapy monitoring with diagnostic ultrasound
CN101507603B (zh) * 2008-10-14 2012-11-14 清华大学 一种磁共振测温的方法和装置
EP2423700A1 (en) * 2010-08-30 2012-02-29 Koninklijke Philips Electronics N.V. Apparatus, computer-implemented method, and computer program product for calculating temperature in accordance with MRI transverse relaxometry data
EP2624004A1 (en) * 2012-02-06 2013-08-07 Koninklijke Philips Electronics N.V. Temperature determination using magnetic resonance B1 field mapping
WO2016057962A1 (en) * 2014-10-11 2016-04-14 University Of Virginia Patent Foundation Systems and methods for magnetic resonance thermometry using balanced steady state free precession
CN108261184B (zh) * 2016-12-30 2021-03-05 中国科学院深圳先进技术研究院 一种脂肪温度的测量方法和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104602761A (zh) * 2012-07-09 2015-05-06 皇家飞利浦有限公司 声辐射力磁共振成像
US20140350439A1 (en) * 2013-05-23 2014-11-27 General Electric Company System and method for focusing of high intensity focused ultrasound based on magnetic resonance - acoustic radiation force imaging feedback
CN105796101A (zh) * 2014-12-29 2016-07-27 中国科学院深圳先进技术研究院 基于磁共振声辐射力成像的组织位移测量方法和系统
CN107405502A (zh) * 2015-03-04 2017-11-28 皇家飞利浦有限公司 声辐射力成像
WO2017123536A1 (en) * 2016-01-14 2017-07-20 University Of Utah Research Foundation Elastography imaging with magnetic resonance imaging guided focused ultrasound
WO2018065245A1 (en) * 2016-10-04 2018-04-12 Koninklijke Philips N.V. Improvement of simultaneous measure of the temperature and the displacement measured with magnetic resonance acoustic radiation force imaging
CN108152770A (zh) * 2017-12-22 2018-06-12 深圳先进技术研究院 一种同步检测组织位移和t2的方法及装置
CN109480844A (zh) * 2018-12-27 2019-03-19 深圳先进技术研究院 组织位移和温度的同步监测方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN109480844A (zh) 2019-03-19
CN109480844B (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
WO2020133519A1 (zh) 组织位移和温度的同步监测方法、装置、设备及存储介质
JP6147059B2 (ja) 磁気共鳴および超音波パラメータの画像融合
Crawley et al. Three-dimensional terahertz pulse imaging of dental tissue
US8401614B2 (en) Magnetic resonance thermometry method
JP5441568B2 (ja) 測定シーケンスの作成方法および装置
EP2500740A1 (en) Accelerated magnetic resonance thermometry
US9202124B2 (en) Image information acquiring apparatus, image information acquiring method and image information acquiring program
JP2013031633A (ja) 磁気共鳴イメージング装置及びsar予測方法
JP2016087220A (ja) 被検体情報取得装置
US8638099B2 (en) Method for reducing magnetic resonance temperature measurement errors in a magnetic resonance monitored HIFU treatment
US11079452B2 (en) Systems and methods for magnetic resonance thermometry using balanced steady state free precession
WO2021115074A1 (zh) 组织参数监控方法、装置、成像系统及介质
WO2017113178A1 (zh) 一种聚焦超声位移成像方法及装置
Kalibatas et al. Flow field imaging with ultrasonic guided waves for exploring metallic melts
WO2019119536A1 (zh) 一种同步检测组织位移和t2的方法及装置
JP4336243B2 (ja) 磁気共鳴イメージング装置
Huang et al. MR acoustic radiation force imaging: in vivo comparison to ultrasound motion tracking
CN111568390B (zh) 一种减少实时磁共振温度成像中系统温度误差的方法
JP4208646B2 (ja) 磁気共鳴イメージング装置
JP7237719B2 (ja) 磁気共鳴イメージング装置
WO2023282051A1 (ja) 撮影装置
US20230070342A1 (en) Data processing device, magnetic resonance imaging device, and data processing method
JP5384032B2 (ja) 磁気共鳴装置
Qu et al. Localized motion imaging for monitoring HIFU therapy: Comparison of modulating frequencies and utilization of square modulating wave
JP2020022523A (ja) 超音波画像化装置、超音波画像化方法、超音波画像化プログラム、及び超音波ct装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944830

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 18.11.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18944830

Country of ref document: EP

Kind code of ref document: A1