CN108261184B - 一种脂肪温度的测量方法和装置 - Google Patents

一种脂肪温度的测量方法和装置 Download PDF

Info

Publication number
CN108261184B
CN108261184B CN201611263103.2A CN201611263103A CN108261184B CN 108261184 B CN108261184 B CN 108261184B CN 201611263103 A CN201611263103 A CN 201611263103A CN 108261184 B CN108261184 B CN 108261184B
Authority
CN
China
Prior art keywords
spin
relaxation time
temperature
steady state
adipose tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611263103.2A
Other languages
English (en)
Other versions
CN108261184A (zh
Inventor
郑海荣
刘新
乔阳紫
邹超
帖长军
程传力
孟德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Priority to CN201611263103.2A priority Critical patent/CN108261184B/zh
Publication of CN108261184A publication Critical patent/CN108261184A/zh
Application granted granted Critical
Publication of CN108261184B publication Critical patent/CN108261184B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

一种脂肪温度的测量方法包括:基于间隔扫描三回波稳态iTESS序列检测脂肪组织的自旋‑自旋弛豫时间T2;根据预先标定的脂肪温度与脂肪组织的自旋‑自旋弛豫时间T2的对应关系,查找检测的自旋‑自旋弛豫时间T2所对应的脂肪温度。本方法基于iTESS序列T2检测的脂肪温度测量,不受单纯脂肪组织约束,可进行快速检测,序列所使用的射频脉冲翻转角小,不易出现SAR值超标问题。

Description

一种脂肪温度的测量方法和装置
技术领域
本发明属于脂肪温度测量领域,尤其涉及一种脂肪温度的测量方法和装置。
背景技术
高强度聚焦超声(High intensity focused ultrasound,HIFU)可利用超声波的穿透性和能量沉积性将体外低能量超声波汇聚于特定深度的靶组织,使焦域内温度迅速升高至60℃,引发蛋白质变性和组织凝固性坏死,而不损伤周围正常组织,HIFU治疗已逐渐发展为一种重要的肿瘤治疗手段。HIFU治疗过程中实时监控靶组织的温度是治疗成功的关键所在。
磁共振成像由于其多方位立体成像、特有的温度监控、多种组织对比等特点,已成为HIFU治疗监控的重要手段。而脂肪组织的温度监控是HIFU发展过程中必需要解决的问题,一方面,随着HIFU治疗技术的不断发展,其作用部位也在不断扩展,如对富含脂肪的胸部肿瘤进行治疗;另一方面,非目标区域的组织灼伤仍是HIFU治疗过程中的首要安全问题,其中以富含脂肪的皮下脂肪层灼伤最为常见。
在温度监控方面,基于质子共振频率转移(Proton resonance frequency shift,PRFS)原理的磁共振温度成像已广泛应用于多种组织治疗过程中的温度监控,该方法主要基于水分子质子共振频率与温度变化呈现较为理想的线性关系。但脂肪内质子的共振频率与水分子不同,且不随温度的改变而改变,使得PRFS温度检测在应用于脂肪、及富含脂肪的组织时受限。除质子共振频率外,组织的固有特性T2也与组织温度相关,但目前常用的T2检测方法,利用快速自选回波序列(TSE)检测T2从而实现脂肪温度监控,但TSE序列检测得到的T2值受激励回波及组织T1影响,并不是脂肪组织的实际T2值。该TSE序列连续使用多个180°射频脉冲,在高场应用时常常出现SAR值超标问题,且TSE序列一次只能扫描一个平面,扫描速度慢,无法实现对温度的实时监控。
发明内容
本发明的目的在于提供一种脂肪温度的测量方法,以解决现有技术通过TSE序列检测T2值不准确,并且经常出现SAR超标,以及扫描速度慢,无法实现对温度的实时监测的问题。
第一方面,本发明实施例提供了一种脂肪温度的测量方法,所述方法包括:
基于间隔扫描三回波稳态iTESS序列检测脂肪组织的自旋-自旋弛豫时间T2;
根据预先标定的脂肪温度与脂肪组织的自旋-自旋弛豫时间T2的对应关系,查找检测的自旋-自旋弛豫时间T2所对应的脂肪温度。
结合第一方面,在第一方面的第一种可能实现方式中,所述基于间隔扫描三回波稳态iTESS序列检测脂肪组织的自旋-自旋弛豫时间T2步骤包括:
基于间隔扫描三回波稳态iTESS序列扫描一次,得到三个不同阶次的稳态信号;
将三个信号值对应的信号值与不同的自旋-自旋弛豫时间T2值对应的解析解进行比较,均方差最小时得到的T2值即为脂肪组织的自旋-自旋弛豫时间T2值。
结合第一方面的第一种可能实现方式,在第一方面的第二种可能实现方式中,所述将三个信号值与不同的自旋-自旋弛豫时间T2值对应的解析解进行比较,均方差最小时得到的T2值即为脂肪组织的自旋-自旋弛豫时间T2值步骤具体为:
根据公式
Figure DEST_PATH_GDA0001275736730000031
获取三个不同阶次的稳态信号S-1,S0,S1对应的解析解,其中:u0=p(p2-q2)-1/2
Figure DEST_PATH_GDA0001275736730000032
E1=exp(-TR/T1),E2=exp(-TR/T2),p=1-E1cosα-E2 2(E1-cosα),q=E2(1-E1)(1+cosα);其中TR指重复时间,α指翻转角,T1为自旋-晶格弛豫时间;
根据公式T2=argmin{[S1-M0F1]2+[S0-M0F0]2+[S-1-M0F-1]2}计算得到脂肪组织的自旋-自旋弛豫时间T2值,其中:M0为平衡态时的纵向磁化矢量。
结合第一方面,在第一方面的第三种可能实现方式中,在所述基于间隔扫描三回波稳态iTESS序列检测脂肪组织的自旋-自旋弛豫时间T2步骤之前,所述方法还包括:
将脂肪组织均匀的升温或降温至预定温度,通过间隔扫描三回波稳态iTESS序列检测脂肪组织的自旋-自旋弛豫时间T2;
根据预设的多个温度与检测的多个脂肪组织的自旋-自旋弛豫时间T2之间的对应关系进行线性拟合,得到脂肪组织的自旋-自旋弛豫时间T2与脂肪温度的线性对应关系的相关参数。
结合第一方面的第三种可能实现方式,在第一方面的第四种可能实现方式中,所述将脂肪组织均匀的升温或降温至预定温度步骤具体为:
通过水浴法将所述脂肪组织升温或者降温至预定温度。
第二方面,本发明实施例提供了一种脂肪温度的测量方法,所述方法包括:
T2检测单元,用于基于间隔扫描三回波稳态iTESS序列检测脂肪组织的自旋-自旋弛豫时间T2;
温度查找单元,用于根据预先标定的脂肪温度与脂肪组织的自旋-自旋弛豫时间T2的对应关系,查找检测的自旋-自旋弛豫时间T2所对应的脂肪温度。
结合第二方面,在第二方面的第一种可能实现方式中,所述T2检测单元包括:
扫描子单元,用于基于间隔扫描三回波稳态iTESS序列扫描一次,得到三个不同阶次的稳态信号;
比较子单元,用于将三个信号值与不同的自旋-自旋弛豫时间T2值对应的解析解进行比较,均方差最小时得到的T2值即为脂肪组织的自旋-自旋弛豫时间T2值。
结合第二方面的第一种可能实现方式,在第二方面的第二种可能实现方式中,所述比较子单元具体用于:
根据公式
Figure DEST_PATH_GDA0001275736730000041
获取三个不同阶次的稳态信号S-1,S0,S1对应的解析解,其中:u0=p(p2-q2)-1/2
Figure DEST_PATH_GDA0001275736730000042
p=1-E1cosα-E2 2(E1-cosα),q=E2(1-E1)(1+cosα);E1=exp(-TR/T1),E2=exp(-TR/T2),其中TR指重复时间,α指翻转角,,T1为自旋-晶格弛豫时间;
根据公式T2=argmin{[S1-M0F1]2+[S0-M0F0]2+[S-1-M0F-1]2}计算得到脂肪组织的自旋-自旋弛豫时间T2值,其中:M0为平衡态时的纵向磁化矢量。
结合第二方面,在第二方面的第三种可能实现方式中,所述装置还包括:
温度设定单元,用于将脂肪组织均匀的升温或降温至预定温度,通过间隔扫描三回波稳态iTESS序列检测脂肪组织的自旋-自旋弛豫时间T2;
拟合单元,用于根据预设的多个温度与检测的多个脂肪组织的自旋-自旋弛豫时间T2之间的对应关系进行线性拟合,得到脂肪组织的自旋-自旋弛豫时间T2与脂肪温度的线性对应关系的相关参数。
结合第二方面的第三种可能实现方式,在第二方面的第四种可能实现方式中,所述温度设定单元具体用于:
通过水浴法将所述脂肪组织升温或者降温至预定温度。
在本发明中,基于间隔扫描三回波稳态iTESS序列检测脂肪组织的自旋-自旋弛豫时间T2,根据预先标定的脂肪温度与脂肪组织的自旋-自旋弛豫时间T2的对应关系,查找检测的自旋-自旋弛豫时间T2所对应的脂肪温度。本方法基于iTESS序列T2检测的脂肪温度测量,不受单纯脂肪组织约束,可进行快速检测,序列所使用的射频脉冲翻转角小,不易出现SAR值超标问题。
附图说明
图1是本发明实施例提供的脂肪温度的测量方法的实现流程图;
图2是本发明实施例提供的脂肪温度的测量装置的结构示意图;
图3是本发明实施例提供的间隔扫描三回波稳态iTESS序列的时序示意图;
图4是本发明实施例提供的自旋-自旋弛豫时间T2与脂肪温度的对应关系实验结果图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例的目的在于提供一种脂肪温度的测量方法,以解决现有技术的磁共振温度监控的方法中,基于质子共振频率转移(Proton resonance frequency shift,PRFS)原理的磁共振温度成像已广泛应用于多种组织治疗过程中的温度监控,该方法主要基于水分子质子共振频率与温度变化呈现较为理想的线性关系。但脂肪内质子的共振频率与水分子不同,且不随温度的改变而改变,使得PRFS温度检测在应用于脂肪、及富含脂肪的组织时受限。而现有技术中除质子共振频率外,目前通过检测自旋-自旋弛豫时间T2的方法,检测速度相对较慢,无法实现对温度的实时监测。下面结合附图,对本发明作进一步的说明。
图1示出了本发明第一实施例提供的脂肪温度的测量方法的实现流程,详述如下:
在步骤S101中,基于间隔扫描三回波稳态iTESS序列检测脂肪组织的自旋-自旋弛豫时间T2。
具体的,所述基于间隔扫描三回波稳态iTESS序列检测脂肪组织的自旋-自旋弛豫时间T2步骤包括:
基于间隔扫描三回波稳态iTESS序列扫描一次,得到三个不同阶次的稳态信号。
将三个信号值与不同的自旋-自旋弛豫时间T2值对应的解析解进行比较,均方差最小时得到的T2值即为脂肪组织的自旋-自旋弛豫时间T2值。
比如,基于间隔扫描三回波稳态iTESS序列扫描一次,得到三个不同阶次的稳态信号分别为S-1,S0,S1,那么三个不同阶次的稳态信号对应的解析解分别为:
Figure DEST_PATH_GDA0001275736730000061
其中:u0=p(p2-q2)-1/2
Figure DEST_PATH_GDA0001275736730000062
E1=exp(-TR/T1),E2=exp(-TR/T2),p=1-E1cosα-E2 2(E1-cosα),q=E2(1-E1)(1+cosα);其中TR指重复时间,α指翻转角,T1为自旋-晶格弛豫时间;
根据公式T2=argmin{[S1-M0F1]2+[S0-M0F0]2+[S-1-M0F-1]2}计算得到脂肪组织的自旋-自旋弛豫时间T2值,其中:M0为平衡态时的纵向磁化矢量。
在步骤S102中,根据预先标定的脂肪温度与脂肪组织的自旋-自旋弛豫时间T2的对应关系,查找检测的自旋-自旋弛豫时间T2所对应的脂肪温度。
所述对应关系可以为脂肪温度与脂肪组织的自旋-自旋弛豫时间T2的对应表,也可以为脂肪温度与脂肪组织的自旋-自旋弛豫时间T2对应的线性函数。在根据对应关系表或者线性函数查找脂肪组织的自旋-自旋弛豫时间T2对应的脂肪温度前,还需要建立脂肪温度与脂肪组织的自旋-自旋弛豫时间T2的对应关系表,或者拟合脂肪温度与脂肪组织的自旋-自旋弛豫时间T2的线性函数。具体可以为:
将脂肪组织均匀的升温或降温至预定温度,通过间隔扫描三回波稳态iTESS序列检测脂肪组织的自旋-自旋弛豫时间T2;
根据预设的多个温度与检测的多个脂肪组织的自旋-自旋弛豫时间T2之间的对应关系进行线性拟合,得到脂肪组织的自旋-自旋弛豫时间T2与脂肪温度的线性对应关系的相关参数。
其中,通过间隔扫描三回波稳态iTESS序列检测脂肪组织的自旋-自旋弛豫时间T2的具体过程,与步骤S101中获取脂肪组织的自旋-自旋弛豫时间T2的过程基本相同。
比如,通过多次测量后,得到脂肪组织的自旋-自旋弛豫时间T2与脂肪温度的线性对应关系可以表示为:Temp=a*T2+b,其中Temp为脂肪温度,T2为脂肪组织的自旋-自旋弛豫时间,a、b分别为线性函数的斜率和截距。
在高强度聚焦超声(High intensity focused ultrasound,HIFU)治疗过程中,可以利用本方法基于间隔扫描三回波稳态iTESS序列进行扫描,根据求解关系式Temp=a*T2+b得到脂肪组织内的温度及其变化情况。
本方法基于间隔扫描三回波稳态iTESS序列检测脂肪组织的自旋-自旋弛豫时间T2,根据预先标定的脂肪温度与脂肪组织的自旋-自旋弛豫时间T2的对应关系,查找检测的自旋-自旋弛豫时间T2所对应的脂肪温度。本方法基于iTESS序列T2检测的脂肪温度测量,不受单纯脂肪组织约束,可进行快速检测,序列所使用的射频脉冲翻转角小,不易出现SAR值超标问题。
图2为本发明实施例提供的脂肪温度的测量装置的结构示意图。如图2所示,所述脂肪温度的测量装置,包括:
T2检测单元,用于基于间隔扫描三回波稳态iTESS序列检测脂肪组织的自旋-自旋弛豫时间T2;
温度查找单元,用于根据预先标定的脂肪温度与脂肪组织的自旋-自旋弛豫时间T2的对应关系,查找检测的自旋-自旋弛豫时间T2所对应的脂肪温度。
优选的,所述T2检测单元包括:
扫描子单元,用于基于间隔扫描三回波稳态iTESS序列扫描一次,得到三个不同阶次的稳态信号;
比较子单元,用于将三个信号值对应的信号值与不同的自旋-自旋弛豫时间T2值对应的解析解进行比较,均方差最小时得到的T2值即为脂肪组织的自旋-自旋弛豫时间T2值。
优选的,所述比较子单元具体用于:
根据公式
Figure DEST_PATH_GDA0001275736730000081
获取三个不同阶次的稳态信号S-1,S0,S1对应的解析解,其中:u0=p(p2-q2)-1/2
Figure DEST_PATH_GDA0001275736730000082
E1,2=exp(-TR/T1,2),
p=1-E1cosα-E2 2(E1-cosα),q=E2(1-E1)(1+cosα);其中TR指重复时间,α指翻转角,T1为自旋-晶格弛豫时间
根据公式T2=argmin{[S1-M0F1]2+[S0-M0F0]2+[S-1-M0F-1]2}计算得到脂肪组织的自旋-自旋弛豫时间T2值,其中:其中:M0为平衡态时的纵向磁化矢量。E1=exp(-TR/T1),E2=exp(-TR/T2),p=1-E1cosα-E2 2(E1-cosα),q=E2(1-E1)(1+cosα);其中TR指重复时间,α指翻转角,T1为自旋-晶格弛豫时间;
根据公式T2=argmin{[S1-M0F1]2+[S0-M0F0]2+[S-1-M0F-1]2}计算得到脂肪组织的自旋-自旋弛豫时间T2值,其中:M0为平衡态时的纵向磁化矢量。
优选的,所述装置还包括:
温度设定单元,用于将脂肪组织均匀的升温或降温至预定温度,通过间隔扫描三回波稳态iTESS序列检测脂肪组织的自旋-自旋弛豫时间T2;
拟合单元,用于根据预设的多个温度与检测的多个脂肪组织的自旋-自旋弛豫时间T2之间的对应关系进行线性拟合,得到脂肪组织的自旋-自旋弛豫时间T2与脂肪温度的线性对应关系的相关参数。
优选的,所述温度设定单元具体用于:
通过水浴法将所述脂肪组织升温或者降温至预定温度。
图2所述脂肪温度的测量装置,与图1中所述的脂肪温度的测量方法对应,在此不作重复赘述。
为了验证本发明的可行性,在西门子3T磁共振成像系统(Siemens TIMTrio,Erlangen,German)上进行实验,实验对象为脂肪仿体,先将仿体加热至约50°,使其在检测过程中自然冷却降温至大约室温20°,脂肪仿体中插有光纤温度计,对脂肪仿体的温度进行同步检测。磁共振检测序列为iTESS序列,序列时序图如图3所示,扫描的序列参数为:重复时间TR=10ms,回波时间TE=5ms,翻转角FA=20°,层厚=3.0mm,采集层数=24,视野FOV=192mm,矩阵大小Matrix Size=192*192,带宽Bandwidth=606Hz/pixel。
图4为检测得到的脂肪仿体的自旋-自旋弛豫时间T2随温度改变情况,脂肪组织内温度变化与T2存在线性相关,拟合曲线斜率为1.274,即温度每升高1℃,检测到的T2值增大1.274ms。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种脂肪温度的测量方法,其特征在于,所述方法包括:
基于间隔扫描三回波稳态iTESS序列检测脂肪组织的自旋-自旋弛豫时间T2;
根据预先标定的脂肪温度与脂肪组织的自旋-自旋弛豫时间T2的对应关系,查找检测的自旋-自旋弛豫时间T2所对应的脂肪温度;
所述基于间隔扫描三回波稳态iTESS序列检测脂肪组织的自旋-自旋弛豫时间T2步骤包括:
基于间隔扫描三回波稳态iTESS序列扫描一次,得到三个不同阶次的稳态信号,所述三个不同阶次的稳态信号分别在三个不同的TR周期采集;
将三个信号值与不同的自旋-自旋弛豫时间T2值对应的解析解进行比较,均方差最小时得到的T2值即为脂肪组织的自旋-自旋弛豫时间T2值;
所述将三个信号值与不同的自旋-自旋弛豫时间T2值对应的解析解进行比较,均方差最小时得到的T2值即为脂肪组织的自旋-自旋弛豫时间T2值步骤具体为:
根据公式
Figure 619320DEST_PATH_IMAGE002
获取三个不同阶次的稳态信号S-1,S0,S1对应的解析解,其中:
Figure 5302DEST_PATH_IMAGE004
Figure 253881DEST_PATH_IMAGE006
Figure 117932DEST_PATH_IMAGE008
Figure 401145DEST_PATH_IMAGE010
Figure 692449DEST_PATH_IMAGE012
Figure 428324DEST_PATH_IMAGE014
;其中TR指重复时间,
Figure 96066DEST_PATH_IMAGE016
指翻转角,T1为自旋-晶格弛豫时间;
根据公式
Figure 171469DEST_PATH_IMAGE018
计算得到脂肪组织的自旋-自旋弛豫时间T2值,其中:M0为平衡态时的纵向磁化矢量。
2.根据权利要求1所述方法,其特征在于,在所述基于间隔扫描三回波稳态iTESS序列检测脂肪组织的自旋-自旋弛豫时间T2步骤之前,所述方法还包括:
将脂肪组织均匀的升温或降温至预定温度,通过间隔扫描三回波稳态iTESS序列检测脂肪组织的自旋-自旋弛豫时间T2;
根据预设的多个温度与检测的多个脂肪组织的自旋-自旋弛豫时间T2之间的对应关系进行线性拟合,得到脂肪组织的自旋-自旋弛豫时间T2与脂肪温度的线性对应关系的相关参数。
3.根据权利要求2所述方法,其特征在于,所述将脂肪组织均匀的升温或降温至预定温度步骤具体为:
通过水浴法将所述脂肪组织升温或者降温至预定温度。
4.一种脂肪温度的测量装置,其特征在于,所述测量装置包括:
T2检测单元,用于基于间隔扫描三回波稳态iTESS序列检测脂肪组织的自旋-自旋弛豫时间T2;
温度查找单元,用于根据预先标定的脂肪温度与脂肪组织的自旋-自旋弛豫时间T2的对应关系,查找检测的自旋-自旋弛豫时间T2所对应的脂肪温度;
所述T2检测单元包括:
扫描子单元,用于基于间隔扫描三回波稳态iTESS序列扫描一次,得到三个不同阶次的稳态信号,所述三个不同阶次的稳态信号分别在三个不同的TR周期采集;
比较子单元,用于将三个信号值对应的信号值与不同的自旋-自旋弛豫时间T2值对应的解析解进行比较,均方差最小时得到的T2值即为脂肪组织的自旋-自旋弛豫时间T2值;
所述比较子单元具体用于:
根据公式
Figure DEST_PATH_IMAGE020
获取三个不同阶次的稳态信号S-1,S0,S1对应的解析解,其中:
Figure DEST_PATH_IMAGE022
Figure DEST_PATH_IMAGE024
Figure DEST_PATH_IMAGE026
Figure DEST_PATH_IMAGE028
Figure DEST_PATH_IMAGE030
Figure DEST_PATH_IMAGE032
;其中TR指重复时间,
Figure DEST_PATH_IMAGE034
指翻转角,T1为自旋-晶格弛豫时间;
根据公式
Figure DEST_PATH_IMAGE036
计算得到脂肪组织的自旋-自旋弛豫时间T2值,其中:M0为平衡态时的纵向磁化矢量。
5.根据权利要求4所述装置,其特征在于,所述装置还包括:
温度设定单元,用于将脂肪组织均匀的升温或降温至预定温度,通过间隔扫描三回波稳态iTESS序列检测脂肪组织的自旋-自旋弛豫时间T2;
拟合单元,用于根据预设的多个温度与检测的多个脂肪组织的自旋-自旋弛豫时间T2之间的对应关系进行线性拟合,得到脂肪组织的自旋-自旋弛豫时间T2与脂肪温度的线性对应关系的相关参数。
6.根据权利要求5所述装置,其特征在于,所述温度设定单元具体用于:
通过水浴法将所述脂肪组织升温或者降温至预定温度。
CN201611263103.2A 2016-12-30 2016-12-30 一种脂肪温度的测量方法和装置 Active CN108261184B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611263103.2A CN108261184B (zh) 2016-12-30 2016-12-30 一种脂肪温度的测量方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611263103.2A CN108261184B (zh) 2016-12-30 2016-12-30 一种脂肪温度的测量方法和装置

Publications (2)

Publication Number Publication Date
CN108261184A CN108261184A (zh) 2018-07-10
CN108261184B true CN108261184B (zh) 2021-03-05

Family

ID=62755292

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611263103.2A Active CN108261184B (zh) 2016-12-30 2016-12-30 一种脂肪温度的测量方法和装置

Country Status (1)

Country Link
CN (1) CN108261184B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109480844B (zh) * 2018-12-27 2021-04-02 深圳先进技术研究院 组织位移和温度的同步监测方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101352342A (zh) * 2008-09-12 2009-01-28 新奥博为技术有限公司 一种基于三维稳态自由进动的磁共振成像测温方法
CN103080764A (zh) * 2010-08-30 2013-05-01 皇家飞利浦电子股份有限公司 利用横向弛豫时间测量数据和质子共振频率偏移数据的储水组织和脂肪组织的mri热成像
CN104224180A (zh) * 2014-09-11 2014-12-24 訾振军 一种用于在体脂肪的基于磁共振成像的测温方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101352342A (zh) * 2008-09-12 2009-01-28 新奥博为技术有限公司 一种基于三维稳态自由进动的磁共振成像测温方法
CN103080764A (zh) * 2010-08-30 2013-05-01 皇家飞利浦电子股份有限公司 利用横向弛豫时间测量数据和质子共振频率偏移数据的储水组织和脂肪组织的mri热成像
CN104224180A (zh) * 2014-09-11 2014-12-24 訾振军 一种用于在体脂肪的基于磁共振成像的测温方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Triple Echo Steady-State(TESS) Relaxometry;Rahel Heule等;《Magnetic Resonance in Medicine》;20140402;第71卷(第1期);参见230–237页 *

Also Published As

Publication number Publication date
CN108261184A (zh) 2018-07-10

Similar Documents

Publication Publication Date Title
US10219722B2 (en) MRI thermal imaging of water tissue and fat tissue using transverse relaxometry data and proton resonance frequency shift data
EP2812718B1 (en) Temperature determination using b1 field mapping
WO2018192233A1 (zh) 一种预先评估mr下有源植入物周围组织温度的方法和磁共振成像系统
Solovchuk et al. Temperature elevation by HIFU in ex vivo porcine muscle: MRI measurement and simulation study
Ramsay et al. Temperature‐dependent MR signals in cortical bone: Potential for monitoring temperature changes during high‐intensity focused ultrasound treatment in bone
Allegretti et al. Magnetic resonance-based thermometry during laser ablation on ex-vivo swine pancreas and liver
Han et al. Quantifying temperature‐dependent T 1 changes in cortical bone using ultrashort echo‐time MRI
EP3600101B1 (en) Locating ablated tissues using electric properties tomography
Gensler et al. MR safety: Fast T1 thermometry of the RF‐induced heating of medical devices
Faridi et al. Experimental assessment of microwave ablation computational modeling with MR thermometry
Overduin et al. 3D MR thermometry of frozen tissue: feasibility and accuracy during cryoablation at 3T
CN104224180B (zh) 一种用于在体脂肪的基于磁共振成像的测温方法
Allen et al. MR‐based detection of individual histotripsy bubble clouds formed in tissues and phantoms
CN108261184B (zh) 一种脂肪温度的测量方法和装置
US11079452B2 (en) Systems and methods for magnetic resonance thermometry using balanced steady state free precession
CN105208959B (zh) 用于沉积能量的治疗系统
Kim et al. Simultaneous fat‐referenced proton resonance frequency shift thermometry and MR elastography for the monitoring of thermal ablations
CN108152770A (zh) 一种同步检测组织位移和t2的方法及装置
Ilovitsh et al. Acoustic radiation force imaging using a single-shot spiral readout
CN104739382A (zh) 无参考温度成像方法及装置
CN103829947B (zh) 用于快速识别变化了的温度的区域的方法和装置
CN108245158B (zh) 一种磁共振温度测量方法及装置
CN107249690B (zh) 高强度聚焦超声损伤判定方法及装置
Qiao et al. Simultaneous acoustic radiation force imaging and MR thermometry based on a coherent echo-shifted sequence
Ruano et al. Time-spatial ultrasound induced temperature evaluation on perfused phantoms

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant