WO2020133355A1 - 一种气体混合器 - Google Patents

一种气体混合器 Download PDF

Info

Publication number
WO2020133355A1
WO2020133355A1 PCT/CN2018/125355 CN2018125355W WO2020133355A1 WO 2020133355 A1 WO2020133355 A1 WO 2020133355A1 CN 2018125355 W CN2018125355 W CN 2018125355W WO 2020133355 A1 WO2020133355 A1 WO 2020133355A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
egr
injection
core
injection pipe
Prior art date
Application number
PCT/CN2018/125355
Other languages
English (en)
French (fr)
Inventor
李卫
潘洁
孙洲律
陈静
Original Assignee
潍柴动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍柴动力股份有限公司 filed Critical 潍柴动力股份有限公司
Priority to CN201880099949.8A priority Critical patent/CN113423940B/zh
Priority to PCT/CN2018/125355 priority patent/WO2020133355A1/zh
Publication of WO2020133355A1 publication Critical patent/WO2020133355A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/04Gas-air mixing apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/19Means for improving the mixing of air and recirculated exhaust gases, e.g. venturis or multiple openings to the intake system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the invention relates to the technical field of gas mixers for gas engines, in particular to a gas mixer.
  • EGR exhaust Gas Recycle
  • Pressure loss is one of the evaluation indexes of the intake system, mainly because the large intake resistance directly affects the engine's inflation efficiency, which in turn affects the engine's intake air volume.
  • the resistance of the mixer is also one of the concerns.
  • the existing mixer structure is mainly divided into two categories.
  • One type is to insert natural gas and EGR injection pipes into the core of the mixer, introduce natural gas and EGR into the channels of the core of the mixer, and complete the mixing with the air.
  • the disadvantage of this type of method is that the natural gas and EGR injection tubes are very simple in form, usually a single round straight tube or a drop type straight tube.
  • the mixing core has a narrowing feature at the position of the EGR mixing area, the purpose is to make the airflow accelerate there through to improve the mixing effect of air, natural gas and EGR.
  • the pressure loss at the inlet and outlet of the mixer is low, the mixing effect is poor.
  • the distribution characteristics of the mixed gas before entering the cylinder head are more sensitive to the shape of the intake pipe downstream of the mixer.
  • the other type is to decompose the mixer core into a number of separate bodies, cast them separately by die casting, and then combine the separate bodies together to form a more complex form of natural gas and EGR injection tubes.
  • the windward area increases and the mixer flow area decreases, making the mixer inlet and outlet pressure loss higher.
  • the mixing core does not have a shrinkage feature at the position of the EGR mixing area, which adversely affects the mixing effect.
  • the production process and processing costs are high.
  • the main disadvantages of the current traditional mixers are: it is difficult to achieve a good mixing effect and at the same time have a low flow pressure loss; for small-displacement gas engines, the diameter of the intake line is generally small, affected by The restriction of the pressure loss of the intake pipe is mostly used as a single round straight pipe or a drop-shaped straight pipe as natural gas and EGR injection pipe. It is difficult to improve the mixing effect through a complex form of injection pipe, resulting in a generally poor mixing effect; mixing The mixing effect of the device has a high sensitivity to the guidance of the downstream pipeline.
  • the object of the present invention is to provide a gas mixer for improving the uniformity of gas mixing, while reducing the sensitivity of the mixer to the guidance of downstream pipelines.
  • a gas mixer includes a mixer housing and a cylindrical mixer core body, the mixer core body includes a gas core body and an EGR core body arranged in this order along the air supply direction;
  • the gas core body is provided with two gas injection tubes arranged in a staggered manner and each extending radially along the gas core.
  • the intake end opening of the gas injection tube communicates with the outside of the gas core.
  • the injection tube is provided with a plurality of gas injection holes distributed along its axial direction;
  • the EGR core body is provided with four EGR injection tubes extending in the radial direction of the EGR core body, and the intake end opening of each EGR injection tube communicates with the outer side of the EGR core body, four A plurality of EGR injection holes are opened on the EGR injection tube, and the outlet openings of the EGR injection tube communicate with each other to form an EGR mixing core with a cross structure.
  • the four EGR injection tubes include two proximal injection tubes and two distal injection tubes, and the intake end opening of the proximal injection tube is connected to the The distance of the EGR inlet is smaller than the distance between the intake end opening of the distal injection pipe and the EGR inlet, and the flow cross-sectional area of all the EGR injection holes on the proximal injection pipe is smaller than the distal injection The flow cross-sectional area of all the EGR injection holes on the tube.
  • the opening size of each of the EGR injection holes formed on the EGR injection tube is the same, and the number of the EGR injection holes on the proximal injection tube is less than The number of the EGR injection holes on the distal injection tube.
  • the two gas injection pipes are arranged perpendicular to each other, and the projections of the EGR injection pipe and the gas injection pipe in the air supply direction overlap.
  • an impeller is provided at an outlet end of the gas mixer, the impeller includes four impingement blades, a side of the impingement blades facing the EGR injection pipe is arranged perpendicular to the air supply direction, and The four impact blades overlap the projection of the EGR injection tube in the air supply direction.
  • At least one swirling blade is further arranged between adjacent impinging blades, and the swirling blades are arranged obliquely with respect to the impinging blades.
  • the number of the swirling blades is four, four of the impinging blades and four of the swirling blades are alternately arranged in the circumferential direction, and four of the swirling blades The tilt direction and tilt angle are consistent.
  • a row of the gas injection holes is opened on both sides of the gas injection pipe, and the axial direction of the gas injection holes is perpendicular to the gas supply direction.
  • the EGR injection tube is a flat tube, and the left and right injection planes of the EGR injection tube extend in the air supply direction, and the EGR injection holes are distributed on the injection plane.
  • two of the injection planes of the EGR injection pipe gradually approach in the air supply direction, and a side of the EGR injection pipe facing the gas injection pipe is provided with an arc transition surface.
  • a plurality of gas inlet holes are opened in the circumferential direction of the gas core, and a plurality of EGR inlet holes are opened in the circumferential direction of the EGR core.
  • the intake end of the gas core is provided with a constriction guide section whose diameter gradually decreases in the air supply direction.
  • the outer periphery of the intake end of the gas injection pipe is tightly fitted with the mounting hole of the gas injection pipe on the gas core, and the outer periphery of the intake end of the EGR injection pipe and the EGR The EGR injection tube mounting holes on the core are tightly fitted.
  • an axial injection pipe extending along the axial direction of the EGR core is arranged in the EGR core, and the outlet ends of the four EGR injection pipes are all connected to the axial injection
  • a plurality of EGR injection holes are opened in the circumferential direction of the axial injection tube.
  • the two gas injection pipes are cross-connected together to form a cross-structure gas mixing core.
  • each of the gas injection pipes is divided into two sections of gas injection branches, and the gas outlets of the four gas injection pipes are connected and fixed through a gas injection pipe connection to form a cross-shaped structure
  • the gas mixing core and the EGR mixing core further include EGR injection pipe connectors, and the outlet ends of the four EGR injection pipes are connected and fixed through the EGR injection pipe connectors.
  • the gas injection pipe connecting piece includes two first connecting plates that cross each other, and the intersection of the two first connecting plates is provided for communicating with the four gas injection branch pipes Opening of the gas injection branch, a first fixing structure for fixing the first connecting plate is provided inside the opening of the gas outlet of the gas injection pipe, the EGR injection pipe connecting piece includes two second connecting plates that cross, and two An opening for communicating the four EGR injection tubes is provided at the intersection of the second connecting plate, and a second fixing structure for fixing the second connecting plate is provided inside the outlet end of the EGR injection tube.
  • the first fixing structure is a first slot provided inside the opening of the gas outlet of the gas injection pipe and interference-fitting with the first connecting plate
  • the first The second fixing structure is a second slot provided inside the opening of the outlet end of the EGR injection pipe and having an interference fit with the second connecting plate.
  • the working process of the gas mixer provided by the present invention is as follows:
  • the present invention designs both the gas mixing core structure and the EGR mixing core structure of the gas mixer as a cross-shaped combination, so that both gas and EGR exhaust gas can be injected from multiple injection holes of the radial injection pipe and fill the mixer
  • the cross section of the core body thereby improving the uniformity of the gas and EGR exhaust gas entering the mixer core body, which has both low pressure loss and high working reliability, and at the same time, can also reduce the mixing effect of the mixer on the downstream pipeline Orientation sensitivity.
  • FIG. 1 is a quarter sectional view of the first gas mixer in a specific embodiment of the present invention.
  • FIG. 2 is a front view of the first gas mixer in a specific embodiment of the present invention.
  • FIG. 3 is a rear view of the first gas mixer in a specific embodiment of the present invention.
  • FIG. 4 is a schematic view of the overall structure of the first EGR hybrid core in a specific embodiment of the present invention.
  • FIG. 5 is a quarter cross-sectional view of the first EGR hybrid core in a specific embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the overall structure of the first mixer core in a specific embodiment of the present invention.
  • FIG. 8 is a quarter cross-sectional view of a second gas mixer in a specific embodiment of the present invention.
  • FIG. 9 is a front view of a second gas mixer in a specific embodiment of the present invention.
  • FIG. 10 is a rear view of a second gas mixer in a specific embodiment of the present invention.
  • FIG. 11 is an exploded front view of a second fuel gas mixing core in a specific embodiment of the present invention.
  • FIG. 12 is an exploded front view of a second type of EGR hybrid core in a specific embodiment of the present invention.
  • FIG. 13 is a schematic diagram of the overall structure of the second mixer core in a specific embodiment of the present invention.
  • An embodiment of the present invention proposes a gas mixer for a gas engine with a cross-shaped asymmetrical injection tube feature.
  • the gas mixer is mainly used to solve the trade-off relationship between the mixing effect and the flow resistance loss to achieve a good mixing effect. At the same time, it also has a low flow resistance loss.
  • a gas mixer is characterized by including a mixer housing 1 and a cylindrical mixer core 2, the mixer core 2 includes a gas core 21 and a gas core 21 arranged in sequence along the air supply direction EGR core 22; the air supply direction mentioned in this article refers to the air supply direction in which air enters from the intake end of the mixer core 2 and is mixed with fuel gas and EGR exhaust gas, and then flows out through the outlet end of the mixer core 2, as shown in the figure As indicated by the arrow in 1.
  • the gas core 21 is provided with two gas injection tubes 3 staggered and extending radially along the gas core 21 to form a gas mixing core.
  • the inlet end of the gas injection tube 3 communicates with the gas core 21.
  • the gas injection tube 3 is provided with a plurality of gas injection holes 31 distributed along its axial direction;
  • the EGR core 22 is provided with four EGR injection tubes extending in the radial direction of the EGR core 22, and the intake end opening of each EGR injection tube communicates with the outside of the EGR core 22, and the outlet ends of the four EGR injection tubes The openings communicate with each other to form a cross-shaped EGR mixing core, and a plurality of EGR injection holes 9 are opened on the EGR injection tube.
  • the working process of the gas mixer provided by the present invention is as follows:
  • the gas and air are mixed; the EGR exhaust gas passes through After the EGR inlet 12 enters the EGR core 22 through four EGR injection pipes, the mixed gas with gas and air is mixed again to complete the entire mixing process, and the mixed gas then enters the cylinder through the pipeline to complete the combustion process.
  • the present invention designs both the gas mixing core structure and the EGR mixing core structure of the gas mixer as a cross-shaped combination, so that both gas and EGR exhaust gas can be injected from multiple injection holes of the radial injection pipe and fill the mixer
  • the cross-section of the core 2 further improves the uniformity of the fuel gas and EGR exhaust gas entering the mixer core 2 and has both lower pressure loss and higher working reliability. At the same time, it can also reduce the mixing effect of the mixer on the downstream Sensitivity of pipeline guidance.
  • the four EGR injection tubes include two proximal injection tubes 4 and two distal injection tubes 5, and the distance between the intake end opening of the proximal injection tube 4 and the EGR inlet 12 of the mixer housing 1 is smaller than the distal injection
  • the distance between the intake end opening of the tube 5 and the EGR inlet 12 and the flow cross-sectional area of all EGR injection holes 9 on the proximal injection tube 4 is smaller than the flow cross-sectional area of all EGR injection holes 9 on the distal injection tube 5 . Since the EGR exhaust gas enters the four EGR injection pipes from the EGR inlet 12, the near-end injection pipe 4 has a higher air flow velocity and air flow rate than the far-end injection pipe 5.
  • the total flow cross-sectional area of all EGR injection holes 9 on the distal injection tube 5 is designed to be larger than the total flow cross-sectional area of all EGR injection holes 9 on the proximal injection tube 4. It is possible to make the air output of the near-end injection tube 4 and the far-end injection tube 5 more uniform, thereby improving the uniformity of the gas and EGR exhaust gas entering the mixer core 2.
  • each EGR injection hole 9 formed in the EGR injection tube The orifices have the same size, and the number of EGR injection holes 9 on the proximal injection tube 4 is less than the number of EGR injection holes 9 on the distal injection tube 5.
  • the number of EGR injection holes 9 of the proximal injection tube 4 and the distal injection tube 5 is asymmetrically arranged, so that the flow cross-sectional area of all EGR injection holes 9 on the proximal injection tube 4 is smaller than that of the distal end
  • the flow cross-sectional areas of all the EGR injection holes 9 on the injection tube 5 can make the air output of the proximal injection tube 4 and the distal injection tube 5 more uniform.
  • the number of EGR injection holes 9 of the proximal injection tube 4 and the distal injection tube 5 may be designed to be equal, or the number of EGR injection holes 9 of the proximal injection tube 4 may be designed to be less than the distal injection tube 5 Number of EGR injection holes 9, but the diameter of the EGR injection hole 9 of the distal injection tube 5 is designed to be larger than the diameter of the EGR injection hole 9 of the proximal injection tube 4, as long as the total flow intercept of all EGR injection holes 9 of the two is ensured
  • the area satisfies the above relationship, and the above technical effects can also be obtained.
  • the structure of the EGR mixing core of the gas mixer is designed as a cross combination, and the number of EGR injection holes 9 on the proximal injection tube 4 is less than the number of 9 EGR injection holes on the distal injection tube 5, EGR
  • the number of injection holes 9 is asymmetrically arranged, so that the air output of the near-end injection tube 4 and the far-end injection tube 5 is more uniform, thereby improving the uniformity of the gas and EGR exhaust gas entering the mixer core 2 and having a lower level Pressure loss and higher working reliability, at the same time, it can also reduce the sensitivity of the mixing effect of the mixer to the downstream pipeline guidance.
  • the number of openings of the EGR injection holes 9 on the proximal injection tube 4 is 40% less than the number of openings of the EGR injection holes 9 on the distal injection tube 5, which is based on The simulation and test results are optimized. For different types and different displacement gas engines, this value needs to be determined after commissioning.
  • FIG. 2 the front view of the assembly effect of the gas mixer is shown in FIG. 2, FIG. 9, and FIG. 3 and FIG. 10 show the rear view of the gas mixer assembly effect.
  • the two gas injection pipes 3 are arranged perpendicular to each other, and the projections of the EGR injection pipe and the gas injection pipe 3 in the air supply direction overlap. Arranged in this way, the mixture of air and gas from the upstream in the mixer core 2 collides with the EGR injection pipe when flowing to the EGR injection pipe, thereby further dispersing the airflow and thereby mixing with the EGR exhaust gas more fully, improving Mixed effects.
  • the outlet end of the gas mixer is provided with an impeller 7, the impeller 7 includes four impingement blades 71, the side of the impingement blades 71 facing the EGR injection pipe is arranged perpendicular to the air supply direction, and the four impingement blades 71 It overlaps with the projection of the EGR injection pipe in the air supply direction, as shown in FIGS. 3 and 10. In this way, the mixed flow of air, gas, and EGR exhaust gas from the upstream of the mixer core 2 can hit the surface of the impinging blade 71, thereby enhancing the mixing and further enhancing the mixing effect.
  • At least one swirling blade 72 is further arranged between adjacent impinging blades 71, as shown in FIGS. 2, 3, 9 and 10, the swirling blade 72 is relatively opposed to the impinging blade 71 is arranged obliquely, that is, the swirl blades 72 are arranged deflecting with respect to the air supply direction.
  • the mixed airflow flowing between the adjacent impinging blades 71 will form a swirling flow under the deflection effect of the swirling blades 72, thereby further enhancing the mixing with the mixed airflow scattered after hitting the impinging blades 71 by the swirling flow. This ensures a better mixing effect and lower flow pressure loss, and at the same time, reduces the sensitivity of the mixer's mixing effect to the downstream pipeline guidance.
  • the number of swirling blades 72 is four, and four impingement blades 71 and four swirling blades 72 are alternately arranged along the circumferential direction of the impeller 7, thereby forming a blade with eight blades In the impeller 7, the inclination direction and the inclination angle of the four swirl blades 72 are the same. Further, the four impinging blades 71 and the four swirling blades 72 are evenly and alternately distributed in the circumferential direction, and the four swirling blades 72 are all deflected by 30° relative to the impinging blades 71, and are arranged in this way to form a swirling flow to further enhance the mixing effect.
  • the number of swirl blades 72 can be set to 6, 8, etc.
  • the deflection angle of each swirl blade 72 can also be designed to other angle values, all of which can play the effect of using swirl to enhance mixing. This article will not repeat them.
  • the gas injection pipe 3 is provided with a plurality of gas injection holes 31 along its own axis, and the gas entering the gas injection pipe 3 from the gas inlet 11 is injected from the plurality of gas injection holes 31, thereby The fresh air in the gas core 21 is mixed.
  • a row of gas injection holes 31 are opened on both sides of the gas injection pipe 3, and the axial direction of the gas injection holes 31 is perpendicular to the air supply direction.
  • the gas injected from the gas injection hole 31 can be vertically and cross-mixed with the air flow, thereby achieving the best mixing effect.
  • the plurality of gas injection holes 31 in each row of the gas injection pipe 3 are evenly distributed, so that the injected gas can be more uniform, thereby optimizing the mixing effect.
  • the EGR injection tube in this solution can be designed in various structural forms, such as a drop-shaped cross-section tube, a round tube, a square tube, an elliptical cross-section tube, or other shaped cross-section tubes.
  • the four EGR injection tubes are all flat tubes, and the flat tube includes two left and right injection planes, and the two left and right injection planes of the EGR injection tube are along the The air supply direction extends, and the EGR injection holes 9 are distributed on the injection plane.
  • the injection plane of the EGR injection pipe extends in the air supply direction, the injection direction of the EGR injection hole 9 on the injection plane will cross-mix with the air-fuel mixture from the upstream, so that the mixing effect can be further improved.
  • the EGR injection tube is designed into a flat tube shape, so that the EGR exhaust gas flow can fill the EGR core 22 more, and the mixing area of the EGR exhaust gas and the mixed gas is further expanded, thereby improving the mixing effect.
  • the two injection planes of the EGR injection pipe gradually approach in the air supply direction, and the side of the EGR injection pipe facing the gas injection pipe 3 is provided with an arc transition surface.
  • the arrangement is such that the cross-section of the EGR injection pipe is similar to the shape of a water drop.
  • the two jet planes can accelerate the airflow speed and reduce the airflow resistance, so that the mixed airflow has a lower pressure loss.
  • the gas core 21 is provided with a plurality of gas inlet holes 24 in the circumferential direction
  • the EGR core 22 is provided with a plurality of EGR inlet holes 25 in the circumferential direction.
  • a gas inlet cavity arranged around the gas core 21 is formed between the gas core 21 and the mixer housing 1. After the gas enters the gas inlet cavity through the gas inlet 11 on the mixer housing 1, it passes through the gas core The end of the gas injection pipe at the outer periphery of the body 21 is opened into the gas injection pipe 3, and finally injected from the gas injection hole 31 into the interior of the gas core 21 and mixed with air.
  • a plurality of gas inlet holes 24 arranged in a ring shape are opened in the circumferential direction of the gas core 21, so that the gas entering the gas inlet cavity can be directly injected into the gas core 21 from the gas inlet holes 24 In this way, gas can be injected into the gas core 21 from multiple radial directions, so that the gas distributed in the gas core 21 is more uniform, and the mixing effect is improved.
  • An EGR intake cavity arranged around the EGR core 22 is also formed between the EGR core 22 and the mixer housing 1.
  • EGR exhaust gas After the EGR exhaust gas enters the EGR intake cavity through the EGR inlet 12 on the mixer housing 11, it passes through the EGR
  • the intake end opening of the EGR injection pipe on the outer periphery of the core 22 enters the EGR injection pipe, and finally is injected into the EGR core 22 from the EGR injection hole 9 and mixed with air and gas.
  • the purpose of setting the EGR intake hole 25 in this solution is similar to the purpose of providing the gas intake hole 24, which is to inject EGR exhaust gas into the EGR core 22 from multiple radial directions, so that the EGR distributed in the EGR core 22 The exhaust gas is more uniform, improving the mixing effect.
  • the intake end of the gas core 21 is provided with a constricting guide section 23 whose diameter gradually decreases in the air supply direction.
  • the purpose is to accelerate the air flow through here to improve the mixing effect.
  • the outer periphery of the intake end of the gas injection pipe 3 is hermetically fitted with the gas injection pipe mounting hole on the gas core 21, and the outer periphery of the intake end of the EGR injection pipe and the EGR on the EGR core 22
  • the injection tube mounting holes are tightly fitted.
  • the above-mentioned sealing and matching method may use an interference assembly method or a sealing adhesive for sealing. This arrangement ensures that the connection between each injection tube and the corresponding core body does not leak air, thereby ensuring that the gas can smoothly enter the injection tube from the intake cavity and improve the intake air utilization rate.
  • an axial injection pipe 6 extending along the axial direction of the EGR core 22 is arranged in the EGR core 22.
  • the outlet end is connected to the axial injection pipe 6 to form a five-part structure EGR mixing core.
  • a plurality of EGR injection holes 9 are also opened in the circumferential direction of the axial injection pipe 6, the purpose is that the EGR exhaust gas can also The axial injection pipe 6 injects, thereby supplementing the EGR exhaust gas at the central portion of the EGR core 22, and improving the mixing efficiency.
  • Another function of providing the axial injection pipe 6 in the first type of gas mixer is that the air-fuel mixture from the upstream can collide with the end of the axial injection pipe 6 to further enhance the mixing.
  • the outer periphery of the outlet end of the EGR injection pipe is tightly fitted with the installation hole of the EGR injection pipe on the axial injection pipe 6 to ensure no air leakage at the connection.
  • the axial injection pipe 6 is closed at one end toward the gas injection pipe 3, and the other end is closed by a sealing plug 61, and only a plurality of EGR injection holes 9 are provided in the circumferential direction of the axial injection pipe 6 and EGR injection pipe installation holes, as shown in Figure 2 and Figure 3.
  • the two gas injection pipes 3 are inserted into the gas core body 21 through the gas injection pipe mounting holes in an interference fit manner, and then, the sealing plug 61 is inserted into the axial injection pipe 6 in an interference manner, and then the installation
  • the axial injection tube 6 with a sealing plug 61 is placed and fixed in the mixer core 2 in advance, and the two proximal injection tubes 4 are inserted into the EGR from the first EGR injection tube mounting hole of the EGR core 22 in a clearance fit manner In the core body 22, continue to insert into the second EGR injection pipe mounting hole of the axial injection pipe 6 in an interference manner, and two distal injection pipes 5 are inserted into the second EGR injection pipe of the axial injection pipe 6 in the same manner Mounting holes.
  • FIG. 7 shows the difference between the explosion pressure limit of each cylinder corresponding to different speeds of the present invention and the conventional scheme under the test conditions of the WP13 gas engine.
  • each cylinder of the scheme of the present invention is lower than that of the conventional scheme, especially in the large torque range, each cylinder of the scheme of the present invention
  • the limit value of burst pressure can be controlled within 8bar, which is obviously improved compared with the original level (12.5bar).
  • the structure of the gas mixing core of the gas mixer is designed as a combined form, which has the characteristics of cross symmetry. This structure can ensure that the length of the mixer is shortened under the condition that the mixing effect is unchanged, and it is more conducive to the layout of the intake line.
  • the second type of gas mixer is a compact gas mixer mainly suitable for small-displacement gas engines. It has a gas mixing core with a cross-shaped symmetrical injection tube and an EGR mixing core with an asymmetrical injection tube. Diameter intake line.
  • the gas mixer is mainly used to solve the trade-off relationship between the mixing effect of small-sized intake pipes and the flow resistance loss, while achieving a good mixing effect, it also has a low flow resistance loss.
  • the two gas injection pipes 3 can realize cross-cross communication in various ways, for example, one of the gas injection pipes 3 is directly crossed through the other gas injection pipe 3 Cross mounting holes; or divide each gas injection pipe 3 into two sections, use a cross-shaped sleeve to connect the outlet openings of the four sections of the pipe to be fixed, or use a connecting plate or connection support to fix the outlet of each section of the pipe The ends are connected to each other to achieve a cross arrangement, or directly use an adhesive to fix the outlet end of the four-section tube, and so on.
  • the EGR injection pipe in this solution has a cross communication similar to the gas injection pipe 3.
  • each gas injection pipe 3 in this solution is divided into two sections of gas injection pipes, and the gas outlets of the four gas injection pipes are connected and fixed through a gas injection pipe connection to form a gas mixing core with a cross structure.
  • the EGR mixing core further includes EGR injection pipe connectors, and the outlet ends of the four EGR injection pipes are connected and fixed through the EGR injection pipe connectors.
  • the above gas injection pipe connector and EGR injection pipe connector can be implemented in a variety of structural forms, such as a cross-connecting plate structure, or a support frame, or a lock or tie rod built into the injection pipe, etc. Structure and so on, these structures can simultaneously achieve the function of connecting and fixing the gas.
  • the gas injection pipe connecting piece includes two first connecting plates 32 that cross each other, and the intersection of the two first connecting plates 32 is provided with openings for communicating with the four gas injection branches, and the outlet end of the gas injection pipe is opened inside A first fixing structure for fixing the first connecting plate 32 is provided.
  • the EGR injection pipe connector includes two second connecting plates 10 that cross each other. The intersection of the two second connecting plates 10 is provided for communicating four EGR injections.
  • a second fixing structure for fixing the second connecting plate 10 is provided inside the opening of the tube and the outlet end opening of the EGR injection tube.
  • first fixing structure and the second fixing structure can be designed as a slot, a slot, a block, etc.
  • first fixing structure is provided inside the opening of the gas outlet of the gas injection pipe and is
  • first socket of the first connecting plate 32 is interference fit, preferably two symmetrically distributed first sockets are provided;
  • second fixing structure is arranged inside the opening of the outlet end of the EGR injection pipe and is interference with the second connecting plate 10
  • the matched second slots are preferably provided with two symmetrically distributed second slots.
  • the first connecting plate 32 is placed in the mixer core 2 in advance; then four gas injection manifolds are inserted through the gas injection tube mounting holes of the gas core 21 in a gap fitting manner, and are connected to the first in an interference manner
  • the plate 32 is inserted and fixed, and an adhesive is applied to the connection between the four gas injection pipes and the gas core 21 to achieve fixing.
  • the installation method of EGR mixing core is similar to that of gas mixing core.
  • the two proximal injection tubes 4 are inserted into the EGR core 22 from the outside of the EGR core 22 with a clearance fit, and continue to interact with the second
  • the connecting plate 10 is inserted and fixed, and the two distal injection tubes 5 are inserted and fixed to the second connecting plate 10 in the same installation manner.
  • an adhesive is applied to the connection between the proximal injection tube 4 and the EGR core 22 and the connection between the distal injection tube 5 and the EGR core 22 to achieve fixation.
  • the above assembly is assembled into the mixer housing 1 and fixed by bolts. Among them, the gas inlet chamber and the EGR inlet chamber are isolated and sealed by a sealing ring 8 to ensure the tightness of the entire gas mixer, and the gas mixer is now assembled.
  • the structure of the EGR hybrid core has been changed so that it has a cross-shaped asymmetry. Under the premise of no significant increase in the inlet and outlet pressure loss of the mixer, it can significantly improve the uniformity of the mixing of the mixed gas, while reducing the sensitivity of the mixer to the downstream pipeline guidance
  • the eight-blade impeller downstream of the EGR mixing core, four impinging blades, and four swirling blades are evenly and staggered along the circumferential direction.
  • the impact of the blades causes air, gas and EGR to hit the surface of the blades to play a role in enhancing the mixing, while the other four swirling blades can form a swirling flow to further enhance the mixing.
  • the gas mixer provided by the present invention can be applied not only to natural gas engines, but also to gas engines using other fuel gases such as liquefied petroleum gas, hydrogen, etc., with broad market prospects and high economic benefits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

一种气体混合器,包括混合器外壳(1)和混合器芯体(2),混合器芯体(2)包括燃气芯体(21)和EGR芯体(22),燃气芯体(21)内设置有两个交错布置的燃气喷射管(3),EGR芯体(22)内设置有四个EGR喷射管(4,5)并形成十字交叉的EGR混合芯。将气体混合器的燃气混合芯结构和EGR混合芯结构均设计为十字交叉的组合形式,从而使得燃气和EGR废气均能够从径向喷射管的多个喷射孔中喷出并充满混合器芯体(2)的截面,进而改善进入混合器芯体的燃气以及EGR废气的均匀程度,兼具较低的压力损失以及较高的工作可靠性,同时,还能够降低混合器的混合效果对下游管路导向的敏感度。

Description

一种气体混合器 技术领域
本发明涉及燃气发动机用气体混合器技术领域,尤其涉及一种气体混合器。
背景技术
天然气与空气、EGR(Exhaust Gas Recycle,废气再循环)的混合均匀性对天然气发动机的动力性、经济性、排放等有显著的影响。在发动机的进气过程中,如果混合气分布不均匀,经进气管分配到各缸的燃气量不一致,必然导致发动机各缸出现工作不均匀、爆震、失火等问题。因此,混合气的均匀性是评价混合器的重要指标之一。随着排放法规的升级,EGR率需求也越来越高。目前通常使用脉冲排气系统来提高EGR率。如果EGR混合不均匀,会进一步加剧天然气发动机的工作不稳定性,因此,对EGR部分的混合均匀性提出了更高要求。
压力损失作为进气系统的评价指标之一,主要是因为进气阻力大直接影响发动机的充气效率,进而影响发动机的进气量。在发动机进气过程中,如果混合器的压力损失过大,会导致发动机的油耗变差。因此在评价混合器的效果时,混合器的阻力也是关注的环节之一。
现有的混合器结构主要分为两类。一类是在混合器芯体内插入天然气和EGR喷射管,将天然气和EGR分别引入到混合器芯体内通道,与空气完成混合。此类方式的不足是天然气和EGR喷射管形式很简单,通常为单体式圆形直管或水滴型直管。混合芯在EGR混合区域位置处具有缩口特征,目的是使得气流经过此处产生加速,以提升空气、天然气和EGR的混合效果。虽然混合器进出口压损较低,但是混合效果差。同时,进入气缸盖之前的混合气分布特征对于混合器下游的进气管形态较为敏感。另一类是将混合器芯体分解为多个分离体,分别通过压铸方式铸造,随后将各个分离体组合到一起,能够形成 更为复杂的天然气和EGR喷射管形式。但是由于复杂的喷射管形式,导致迎风面积增大,混合器流通面积减小,使得混合器进出口压损较高。同时,混合芯在EGR混合区域位置处不具有缩口特征,对混合效果产生了不利影响。另外,生产工艺和加工成本高。
总体而言,目前传统的混合器存在的主要缺点是:难以实现良好的混合效果,同时兼具较低的流动压力损失;针对小排量燃气发动机而言,一般进气管路直径较小,受进气管路压损的限制,多采用单体式圆形直管或水滴型直管作为天然气以及EGR喷射管,很难通过复杂形式的喷射管来提升混合效果,导致混合效果普遍较差;混合器的混合效果对下游管路的导向性具有较高的敏感度。
发明内容
有鉴于此,本发明的目的在于提供一种气体混合器,用于改善气体混合的均匀性,同时降低混合器对下游管路导向的敏感度。
为了实现上述目的,本发明提供了如下技术方案:
一种气体混合器,包括混合器外壳和筒形的混合器芯体,所述混合器芯体包括沿送气方向依次布置的燃气芯体和EGR芯体;
所述燃气芯体内设置有两个交错布置并且均沿所述燃气芯体径向延伸的燃气喷射管,所述燃气喷射管的进气端开口连通于所述燃气芯体的外侧,所述燃气喷射管上开设有多个沿自身轴向分布的燃气喷射孔;
所述EGR芯体内设置有四个沿所述EGR芯体径向延伸的EGR喷射管,每个所述EGR喷射管的进气端开口均连通于所述EGR芯体的外侧,四个所述EGR喷射管的出气端开口连通在一起以形成十字交叉结构的EGR混合芯,所述EGR喷射管上开设有多个EGR喷射孔。
优选地,在上述气体混合器中,四个所述EGR喷射管包括两个近端喷射管和两个远端喷射管,所述近端喷射管的进气端开口与所述混合器外壳的EGR入口的距离小于所述远端喷射管的进气端开口与所述EGR入口的距离,且所述近端喷射管上的全部所述EGR喷射孔的通流截面积小于所述远端喷射 管上的全部所述EGR喷射孔的通流截面积。
优选地,在上述气体混合器中,所述EGR喷射管上开设的每个所述EGR喷射孔的孔口大小一致,所述近端喷射管上的所述EGR喷射孔的个数少于所述远端喷射管上的所述EGR喷射孔的个数。
优选地,在上述气体混合器中,两个所述燃气喷射管相互垂直布置,且所述EGR喷射管和所述燃气喷射管在沿送气方向上的投影重叠。
优选地,在上述气体混合器中,所述气体混合器的出气端设置有叶轮,所述叶轮包括四个撞击叶片,所述撞击叶片朝向所述EGR喷射管的一面与送气方向垂直布置,且四个所述撞击叶片与所述EGR喷射管在沿送气方向上的投影重叠。
优选地,在上述气体混合器中,相邻所述撞击叶片之间还布置有至少一个旋流叶片,所述旋流叶片相对所述撞击叶片倾斜布置。
优选地,在上述气体混合器中,所述旋流叶片的数量为四个,四个所述撞击叶片与四个所述旋流叶片沿周向交替布置,且四个所述旋流叶片的倾斜方向和倾斜角度一致。
优选地,在上述气体混合器中,所述燃气喷射管的两侧均开设有一行所述燃气喷射孔,且所述燃气喷射孔的轴向与送气方向垂直。
优选地,在上述气体混合器中,所述EGR喷射管为扁管,且所述EGR喷射管的左右两个喷射平面沿送气方向延伸,所述EGR喷射孔分布于所述喷射平面上。
优选地,在上述气体混合器中,所述EGR喷射管的两个所述喷射平面沿送气方向逐渐靠近,且所述EGR喷射管朝向所述燃气喷射管的一侧设有圆弧过渡面。
优选地,在上述气体混合器中,所述燃气芯体的周向开设有多个燃气进气孔,所述EGR芯体的周向开设有多个EGR进气孔。
优选地,在上述气体混合器中,所述燃气芯体的进气端设有沿送气方向直径逐渐缩小的缩口导流段。
优选地,在上述气体混合器中,所述燃气喷射管的进气端外周与所述燃气芯体上的燃气喷射管安装孔密封配合,所述EGR喷射管的进气端外周与所述 EGR芯体上的EGR喷射管安装孔密封配合。
优选地,在上述气体混合器中,所述EGR芯体内布置有沿所述EGR芯体轴向延伸的轴向喷射管,四个所述EGR喷射管的出气端均连通于所述轴向喷射管,所述轴向喷射管的周向开设有多个所述EGR喷射孔。
优选地,在上述气体混合器中,两个所述燃气喷射管交叉连通在一起以形成十字交叉结构的燃气混合芯。
优选地,在上述气体混合器中,每个所述燃气喷射管均分为两段燃气喷射分管,四个所述燃气喷射分管的出气端通过燃气喷射管连接件连通固定以形成十字交叉结构的所述燃气混合芯,所述EGR混合芯还包括EGR喷射管连接件,四个所述EGR喷射管的出气端通过所述EGR喷射管连接件连通固定。
优选地,在上述气体混合器中,所述燃气喷射管连接件包括十字交叉的两个第一连接板,两个所述第一连接板的交叉部位设有用于连通四个所述燃气喷射分管的开口,所述燃气喷射分管的出气端开口内侧设有用于固定所述第一连接板的第一固定结构,所述EGR喷射管连接件包括十字交叉的两个第二连接板,两个所述第二连接板的交叉部位设有用于连通四个所述EGR喷射管的开口,所述EGR喷射管的出气端开口内侧设有用于固定所述第二连接板的第二固定结构。
优选地,在上述气体混合器中,所述第一固定结构为设置于所述燃气喷射分管的出气端开口内侧的并且与所述第一连接板过盈配合的第一插槽,所述第二固定结构为设置于所述EGR喷射管出气端开口内侧的并且与所述第二连接板过盈配合的第二插槽。
本发明提供的气体混合器的工作过程如下:
新鲜空气从混合器芯体的进气端进入燃气芯体内,燃气通过两个交错布置的燃气喷射管进入燃气芯体内,实现燃气与空气的混合;EGR尾气通过四个EGR喷射管进入EGR芯体内,实现与燃气和空气的混合气再次混合,从而完成整个混合过程,混合后的气体随后通过管道进入气缸完成燃烧过程。
本发明将气体混合器的燃气混合芯结构和EGR混合芯结构均设计为十字交叉的组合形式,从而使得燃气和EGR废气均能够从径向喷射管的多个喷射孔中喷出并充满混合器芯体的截面,进而改善进入混合器芯体的燃气以及 EGR废气的均匀程度,兼具较低的压力损失以及较高的工作可靠性,同时,还能够降低混合器的混合效果对下游管路导向的敏感度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明具体实施例中的第一种气体混合器的四分之一剖视图;
图2为本发明具体实施例中的第一种气体混合器的前视图;
图3为本发明具体实施例中的第一种气体混合器的后视图;
图4为本发明具体实施例中的第一种EGR混合芯整体结构示意图;
图5为本发明具体实施例中的第一种EGR混合芯四分之一剖视图;
图6为本发明具体实施例中的第一种混合器芯体整体结构示意图;
图7为本发明与常规方案在不同转速下各缸爆压极限差值对比图;
图8为本发明具体实施例中的第二种气体混合器的四分之一剖视图;
图9为本发明具体实施例中的第二种气体混合器的前视图;
图10为本发明具体实施例中的第二种气体混合器的后视图;
图11为本发明具体实施例中的第二种燃气混合芯分解正视图;
图12为本发明具体实施例中的第二种EGR混合芯分解正视图;
图13为本发明具体实施例中的第二种混合器芯体整体结构示意图。
图1至图13中:
1-混合器外壳、2-混合器芯体、3-燃气喷射管、4-近端喷射管、5-远端喷射管、6-轴向喷射管、7-叶轮、8-密封圈、9-EGR喷射孔、10-第二连接板、11-燃气入口、12-EGR入口、21-燃气芯体、22-EGR芯体、23-缩口导流段、24-燃气进气孔、25-EGR进气孔、31-燃气喷射孔、32-第一连接板、61-密封塞、71-撞击叶片、72-旋流叶片。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本发明实施例提出了一种具有十字叉型非对称喷射管特征的燃气发动机用气体混合器,该气体混合器主要用于解决混合效果和流动阻力损失的trade-off关系,在实现良好混合效果的同时,兼具较低的流动阻力损失。
请参照图1至图13,一种气体混合器,其特征在于,包括混合器外壳1和筒形的混合器芯体2,混合器芯体2包括沿送气方向依次布置的燃气芯体21和EGR芯体22;本文中所述的送气方向是指空气从混合器芯体2的进气端进入后与燃气和EGR废气混合再经混合器芯体2的出气端流出的送气方向,如图1中的箭头所示。
其中,燃气芯体21内设置有两个交错布置并且均沿燃气芯体21径向延伸的燃气喷射管3,组成燃气混合芯,燃气喷射管3的进气端开口连通于燃气芯体21的外侧,燃气喷射管3上开设有多个沿自身轴向分布的燃气喷射孔31;
EGR芯体22内设置有四个沿EGR芯体22径向延伸的EGR喷射管,每个EGR喷射管的进气端开口均连通于EGR芯体22的外侧,四个EGR喷射管的出气端开口连通在一起以形成十字交叉结构的EGR混合芯,EGR喷射管上开设有多个EGR喷射孔9。
请参照图1,本发明提供的气体混合器的工作过程如下:
新鲜空气从混合器芯体2的进气端进入燃气芯体21内,燃气经燃气入口11后通过两个燃气喷射管3进入燃气芯体21内,首先实现燃气与空气的混合;EGR尾气经EGR入口12后通过四个EGR喷射管进入EGR芯体22内,实现与燃气和空气的混合气再次混合,从而完成整个混合过程,混合后的气体随后通过管道进入气缸完成燃烧过程。
本发明将气体混合器的燃气混合芯结构和EGR混合芯结构均设计为十字交叉的组合形式,从而使得燃气和EGR废气均能够从径向喷射管的多个喷射 孔中喷出并充满混合器芯体2的截面,进而改善进入混合器芯体2的燃气以及EGR废气的均匀程度,兼具较低的压力损失以及较高的工作可靠性,同时,还能够降低混合器的混合效果对下游管路导向的敏感度。
优选地,四个EGR喷射管包括两个近端喷射管4和两个远端喷射管5,近端喷射管4的进气端开口与混合器外壳1的EGR入口12的距离小于远端喷射管5的进气端开口与EGR入口12的距离,且近端喷射管4上的全部EGR喷射孔9的通流截面积小于远端喷射管5上的全部EGR喷射孔9的通流截面积。由于EGR废气从EGR入口12进入到四个EGR喷射管中时,近端喷射管4较远端喷射管5具有更高的气流速度和气流量,因此,为了避免气流到达远端喷射管5之后的流量不足,本方案将远端喷射管5上的全部EGR喷射孔9的总通流截面积设计为大于近端喷射管4上的全部EGR喷射孔9的总通流截面积,如此设置,就可以使得近端喷射管4和远端喷射管5的出气量更加均匀,进而改善进入混合器芯体2的燃气以及EGR废气的均匀程度。
需要说明的是,本方案中可以通过多种方式来设计上述近端喷射管4和远端喷射管5的总通流截面积,优选地,EGR喷射管上开设的每个EGR喷射孔9的孔口大小一致,近端喷射管4上的EGR喷射孔9的个数少于远端喷射管5上的EGR喷射孔9的个数。如此设置,近端喷射管4和远端喷射管5的EGR喷射孔9个数就采用非对称布置方式,从而使得近端喷射管4上的全部EGR喷射孔9的通流截面积小于远端喷射管5上的全部EGR喷射孔9的通流截面积,这样就可以使得近端喷射管4和远端喷射管5的出气量更加均匀。当然,本方案还可以将近端喷射管4和远端喷射管5的EGR喷射孔9数量设计为相等,或者将近端喷射管4的EGR喷射孔9数量设计为少于远端喷射管5的EGR喷射孔9数量,但是将远端喷射管5的EGR喷射孔9孔径设计为大于近端喷射管4的EGR喷射孔9孔径,只要保证两者的全部EGR喷射孔9的总通流截面积满足上述关系,同样可以得到上述技术效果。
本发明将气体混合器的EGR混合芯结构设计为十字交叉的组合形式,且近端喷射管4上的EGR喷射孔9个数少于远端喷射管5上的EGR喷射孔9个数,EGR喷射孔9个数采用非对称布置,从而使得近端喷射管4和远端喷射管5的出气量更加均匀,进而改善进入混合器芯体2的燃气以及EGR废气 的均匀程度,兼具较低的压力损失以及较高的工作可靠性,同时,还能够降低混合器的混合效果对下游管路导向的敏感度。
具体的,在本实施例方案中,近端喷射管4上的EGR喷射孔9的开孔个数较远端喷射管5上的EGR喷射孔9开孔个数少40%,该数值是基于仿真及试验结果优化得来的,针对不同类型、不同排量的燃气发动机,该数值需要调试后再确定。
请参照图2、图3、图9和图10,该气体混合器的装配效果的前视图如图2、图9所示,图3和图10则示出了该气体混合器装配的后视图效果。在一种优选实施例方案中,在上述气体混合器中,两个燃气喷射管3相互垂直布置,且EGR喷射管和燃气喷射管3在沿送气方向上的投影重叠。如此布置,使得混合器芯体2中由上游来的空气与燃气的混合气体流动至EGR喷射管时与EGR喷射管相撞击,从而进一步使气流分散,进而与EGR废气更加充分地混合,提升了混合效果。
在一种优选实施例方案中,气体混合器的出气端设置有叶轮7,叶轮7包括四个撞击叶片71,撞击叶片71朝向EGR喷射管的一面与送气方向垂直布置,且四个撞击叶片71与EGR喷射管在沿送气方向上的投影重叠,如图3和图10所示。如此设置,使得混合器芯体2中由上游来的空气、燃气以及EGR废气的混合气流能够撞击到撞击叶片71表面,从而起到强化混合的作用,进一步提升混合效果。
进一步优选地,在上述气体混合器中,相邻撞击叶片71之间还布置有至少一个旋流叶片72,如图2、图3、图9和图10所示,旋流叶片72相对撞击叶片71倾斜布置,即,旋流叶片72是相对送气方向偏转布置的。如此布置,流动至相邻撞击叶片71之间的混合气流则会在旋流叶片72的偏转作用下形成旋流,从而与撞击到撞击叶片71后分散开的混合气流通过旋流进一步加强混合,保证了更好了混合效果以及较低的流动压力损失,同时,降低了混合器的混合效果对下游管路导向的敏感度。
进一步优选地,在上述气体混合器中,旋流叶片72的数量为四个,四个撞击叶片71与四个旋流叶片72沿叶轮7的周向交替布置,从而形成一个具有八个 叶片的叶轮7,并且,四个旋流叶片72的倾斜方向和倾斜角度一致。进一步地,四个撞击叶片71与四个旋流叶片72沿周向均匀交替分布,四个旋流叶片72均相对撞击叶片71偏转30°,如此设置,形成旋流,进一步加强混合效果。当然,本方案还可以将旋流叶片72的数量设置为6个、8个等,各个旋流叶片72的偏转角度也可以设计为其他角度值,均可以起到利用旋流加强混合的效果,本文不再赘述。
需要说明的是,燃气喷射管3上沿自身轴向开设有多个燃气喷射孔31,由燃气入口11进入到燃气喷射管3内的燃气从多个燃气喷射孔31喷射出,从而与进入到燃气芯体21内的新鲜空气混合。为了进一步加强燃气与空气的混合效果,优选地,在上述气体混合器中,燃气喷射管3的两侧均开设有一行燃气喷射孔31,且燃气喷射孔31的轴向与送气方向垂直。如此设置,从燃气喷射孔31喷射出的燃气就可以与空气气流垂直交叉混合,从而使混合效果达到最佳。进一步优选地,燃气喷射管3上的每一行多个燃气喷射孔31均匀分布,这样可以使喷射出的燃气更加均匀,从而优化混合效果。
需要说明的是,本方案中的EGR喷射管可以设计为多种结构形式,例如水滴形截面的管、圆管、方管、椭圆形截面的管或其他异形截面管。如图4和图5所示,优选地,在上述气体混合器中,4个EGR喷射管均为扁管,扁管包括左右两个喷射平面,且该EGR喷射管的左右两个喷射平面沿送气方向延伸,EGR喷射孔9分布于喷射平面上。如此设置,由于EGR喷射管的喷射平面沿送气方向延伸,因此,喷射平面上的EGR喷射孔9的喷射方向就会与由上游来的空气燃气混合气交叉混合,从而可以进一步提升混合效果。另外,本方案将EGR喷射管设计成扁管形状,可以使EGR废气气流更多地充满EGR芯体22内,使EGR废气与混合气的混合区域进一步扩大,从而提升混合效果。
进一步优选地,在上述气体混合器中,EGR喷射管的两个喷射平面沿送气方向逐渐靠近,且EGR喷射管朝向燃气喷射管3的一侧设有圆弧过渡面。如此设置,使得EGR喷射管的横截面呈类似于水滴形状,由上游来的空气与燃气混合气流撞击到EGR喷射管的圆弧过渡面时,可以快速地分散开,且沿送气方向逐渐靠近的两个喷射平面可以加快气流速度,减小气流阻力,从而使混合气流 具有较低的压力损失。
如图6所示,优选地,在上述气体混合器中,燃气芯体21的周向开设有多个燃气进气孔24,EGR芯体22的周向开设有多个EGR进气孔25,具体的,燃气芯体21与混合器外壳1之间形成环绕燃气芯体21布置的燃气进气腔,燃气经混合器外壳1上的燃气入口11进入到燃气进气腔中后,经燃气芯体21外周的燃气喷射管端部开口进入到燃气喷射管3内,最后从燃气喷射孔31喷射进入到燃气芯体21内部与空气混合。本方案在燃气芯体21的周向开设有环状布置的多个燃气进气孔24,从而可以使进入到燃气进气腔中的燃气直接从燃气进气孔24喷射到燃气芯体21内部,这样就可以使得燃气从多个径向方向喷射进入燃气芯体21内,使得燃气芯体21内分布的燃气更加均匀,提升混合效果。EGR芯体22与混合器外壳1之间也形成了一个环绕EGR芯体22布置的EGR进气腔,EGR废气经混合器外壳11上的EGR入口12进入到EGR进气腔中后,经EGR芯体22外周的EGR喷射管进气端开口进入到EGR喷射管内,最后从EGR喷射孔9喷射进入到EGR芯体22内部与空气和燃气混合。本方案设置EGR进气孔25的目的与设置燃气进气孔24的目的类似,都是为了使EGR废气从多个径向方向喷射进入EGR芯体22内,使得EGR芯体22内分布的EGR废气更加均匀,提升混合效果。
优选地,在上述气体混合器中,燃气芯体21的进气端设有沿送气方向直径逐渐缩小的缩口导流段23。目的是使得气流经过此处产生加速,以提升混合效果。
优选地,在上述气体混合器中,燃气喷射管3的进气端外周与燃气芯体21上的燃气喷射管安装孔密封配合,EGR喷射管的进气端外周与EGR芯体22上的EGR喷射管安装孔密封配合。上述密封配合方式可以选用过盈装配方式,或者采用密封粘结剂进行密封。如此设置,保证各个喷射管与对应芯体的连接处不漏气,从而保证气体能够顺利从进气腔进入喷射管,提高进气利用率。
请参照图1至图6,优选地,在本发明第一种气体混合器中,EGR芯体22内布置有沿EGR芯体22轴向延伸的轴向喷射管6,四个EGR喷射管的出气端均连通于轴向喷射管6,从而组成五部分结构的EGR混合芯,本方案在轴向喷射管6的周向也开设有多个EGR喷射孔9,目的是为了EGR废气也可以从轴向喷射 管6喷射出,从而补充EGR芯体22中心部位的EGR废气,提高混合效率。第一种气体混合器中设置轴向喷射管6的另一个作用是,可以使上游来的空气燃气混合气与轴向喷射管6的端部发生撞击,从而进一步加强混合。EGR喷射管的出气端外周与轴向喷射管6上的EGR喷射管安装孔密封配合,保证连接处不漏气。
需要说明的是,本方案中的轴向喷射管6朝向燃气喷射管3的一端封闭,另一端通过密封塞61封闭,仅在轴向喷射管6的周向开设有多个EGR喷射孔9和EGR喷射管安装孔,如图2和图3所示。
下面介绍一下第一种气体混合器的具体组装过程:
首先,将两根燃气喷射管3以过盈装配方式经燃气喷射管安装孔插入到燃气芯体21中,然后,将密封塞61以过盈方式插入到轴向喷射管6内,随后将安装有密封塞61的轴向喷射管6预先放置固定在混合器芯体2内,将两个近端喷射管4分别从EGR芯体22的第一EGR喷射管安装孔以间隙配合方式插入到EGR芯体22内,再以过盈方式继续插入到轴向喷射管6的第二EGR喷射管安装孔,两个远端喷射管5以同样方式插入到轴向喷射管6的第二EGR喷射管安装孔。随后,在近端喷射管4与EGR芯体22的连接处以及远端喷射管5与EGR芯体22的连接处涂抹粘结剂,实现密封固定,如图6所示,此时完成了混合器芯体2的组装。最后,将上述组装好的混合器芯体2装入到混合器外壳1中,并通过螺栓固定。其中,燃气进气腔与EGR进气腔之间通过密封圈8隔离密封,确保整个气体混合器的密封性,至此,气体混合器组装完毕。
通过对仿真方法获取到常规方案和本发明方案的EGR混合效果进行对比,发现本发明方案在进气歧管处的EGR浓度分布更加均匀。请参照图7,图7给出了WP13气体机在试验条件下,本发明与常规方案在不同转速对应的各缸爆压极限差值,混合效果越好,那么各缸爆压极限差值越小,可以发现,在大部分转速工况下,本发明方案的各缸爆压极限差值低于常规方案的各缸爆压极限差值,尤其是在大扭矩区间,本发明方案的各缸爆压极限差值可以控制在8bar以内,较原水平(12.5bar)改进明显。
请参照图8至图13,优选地,在本发明第二种气体混合器中,两个燃气喷 射管3交叉连通在一起以形成十字交叉结构的燃气混合芯。本发明将气体混合器的燃气混合芯结构设计为组合形式,具备十字交叉对称特征,此种结构可以确保在混合效果不变的情况下,使混合器长度缩短,更有利于进气管路布置。第二种气体混合器为主要适用于小排量燃气发动机的紧凑型气体混合器,其具有十字叉型对称喷射管特征的燃气混合芯以及非对称喷射管特征的EGR混合芯,能够适应小管径的进气管路。该气体混合器主要用于解决小尺寸进气管路的混合效果和流动阻力损失的trade-off关系,实现良好混合效果的同时,兼具较低的流动阻力损失。
需要说明的是,在上述第二种气体混合器中,两个燃气喷射管3可以通过多种方式实现十字交叉连通,例如将其中一个燃气喷射管3直接交叉穿过另一个燃气喷射管3上的交叉安装孔;或者将每个燃气喷射管3分成两段,使用十字形套管将四段管的出气端开口连通固定,或者使用连接板或连接支撑架等连接件固定各段管的出气端以实现相互连通交叉布置,或者直接采用粘结剂将四段管的出气端开口粘合固定,等等。本方案中的EGR喷射管的交叉连通方式与燃气喷射管3类似。
优选地,本方案中的每个燃气喷射管3均分为两段燃气喷射分管,四个燃气喷射分管的出气端通过燃气喷射管连接件连通固定以形成十字交叉结构的燃气混合芯,同时,EGR混合芯还包括EGR喷射管连接件,四个EGR喷射管的出气端通过EGR喷射管连接件连通固定。
需要说明的是,上述燃气喷射管连接件和EGR喷射管连接件均可以采用多种结构形式来实现,例如交叉的连接板结构,或者连接支撑架,或者内置于喷射管内的锁扣或拉杆等结构等等,这些结构均可以同时实现连接固定与连通气体的功能。优选地,燃气喷射管连接件包括十字交叉的两个第一连接板32,两个第一连接板32的交叉部位设有用于连通四个燃气喷射分管的开口,燃气喷射分管的出气端开口内侧设有用于固定第一连接板32的第一固定结构,EGR喷射管连接件包括十字交叉的两个第二连接板10,两个第二连接板10的交叉部位设有用于连通四个EGR喷射管的开口,EGR喷射管的出气端开口内侧设有用于固定第二连接板10的第二固定结构。
需要说明的是,上述第一固定结构和第二固定结构可以设计为卡槽、插槽、卡块等结构,优选地,第一固定结构为设置于燃气喷射分管的出气端开口内侧的并且与第一连接板32过盈配合的第一插槽,优选设置对称分布的两道第一插槽;第二固定结构为设置于EGR喷射管出气端开口内侧的并且与第二连接板10过盈配合的第二插槽,优选设置对称分布的两道第二插槽。
下面介绍一下上述第二种气体混合器的具体的组装过程:
首先,预先将第一连接板32放置在混合器芯体2内;随后将四根燃气喷射分管以间隙装配方式穿过燃气芯体21的燃气喷射管安装孔,以过盈方式与第一连接板32插接固定,在四个燃气喷射分管和燃气芯体21的连接处涂抹粘结剂,实现固定。EGR混合芯的安装方式与燃气混合芯安装方式类似。先将第二连接板10放置在EGR芯体22内,两根近端喷射管4分别从EGR芯体22外部以间隙配合方式插入到EGR芯体22内,并以过盈方式继续与第二连接板10插接固定,两根远端喷射管5以同样安装方式与第二连接板10插接固定。随后,在近端喷射管4和EGR芯体22的连接处、远端喷射管5和EGR芯体22的连接处涂抹粘结剂,实现固定。最后将上述组合体装入到混合器外壳1中,并通过螺栓固定。其中,燃气进气腔与EGR进气腔之间通过密封圈8隔离密封,确保整个气体混合器的密封性,至此,气体混合器组装完毕。
本方案具有以下优点:
(1)改变了EGR混合芯结构,使其具备十字叉型非对称特征。在混合器进出口压损没有明显增加的前提下,能够显著改善混合气混合的均匀性,同时降低了混合器对下游管路导向的敏感度
(2)EGR混合芯的布置方位与上游燃气混合芯沿流动方向重合,使得空气、燃气与EGR相撞击,提升了混合效果。
(3)EGR混合芯下游的八叶片的叶轮,四个撞击叶片以及四个旋流叶片沿周向均匀交错布置。撞击叶片使得空气、燃气以及EGR撞击到叶片表面,起到强化混合的作用,而另外四个旋流叶片可以形成旋流,进一步加强混合。
本发明提供的气体混合器不仅可以应用于天然气发动机,还可以应用于采用其他燃气如液化石油气、氢气等的气体发动机,市场前景广阔,经济效益高。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本方案。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本方案的精神或范围的情况下,在其它实施例中实现。因此,本方案将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (18)

  1. 一种气体混合器,其特征在于,包括混合器外壳(1)和筒形的混合器芯体(2),所述混合器芯体(2)包括沿送气方向依次布置的燃气芯体(21)和EGR芯体(22);
    所述燃气芯体(21)内设置有两个交错布置并且均沿所述燃气芯体(21)径向延伸的燃气喷射管(3),所述燃气喷射管(3)的进气端开口连通于所述燃气芯体(21)的外侧,所述燃气喷射管(3)上开设有多个沿自身轴向分布的燃气喷射孔(31);
    所述EGR芯体(22)内设置有四个沿所述EGR芯体(22)径向延伸的EGR喷射管,每个所述EGR喷射管的进气端开口均连通于所述EGR芯体(22)的外侧,四个所述EGR喷射管的出气端开口连通在一起以形成十字交叉结构的EGR混合芯,所述EGR喷射管上开设有多个EGR喷射孔(9)。
  2. 根据权利要求1所述的气体混合器,其特征在于,四个所述EGR喷射管包括两个近端喷射管(4)和两个远端喷射管(5),所述近端喷射管(4)的进气端开口与所述混合器外壳(1)的EGR入口(12)的距离小于所述远端喷射管(5)的进气端开口与所述EGR入口(12)的距离,且所述近端喷射管(4)上的全部所述EGR喷射孔(9)的通流截面积小于所述远端喷射管(5)上的全部所述EGR喷射孔(9)的通流截面积。
  3. 根据权利要求2所述的气体混合器,其特征在于,所述EGR喷射管上开设的每个所述EGR喷射孔(9)的孔口大小一致,所述近端喷射管(4)上的所述EGR喷射孔(9)的个数少于所述远端喷射管(5)上的所述EGR喷射孔(9)的个数。
  4. 根据权利要求1所述的气体混合器,其特征在于,两个所述燃气喷射管(3)相互垂直布置,且所述EGR喷射管和所述燃气喷射管(3)在沿送气方向上的投影重叠。
  5. 根据权利要求4所述的气体混合器,其特征在于,所述气体混合器的出气端设置有叶轮(7),所述叶轮(7)包括四个撞击叶片(71),所述撞击叶片(71)朝向所述EGR喷射管的一面与送气方向垂直布置,且四个所述撞击 叶片(71)与所述EGR喷射管在沿送气方向上的投影重叠。
  6. 根据权利要求5所述的气体混合器,其特征在于,相邻所述撞击叶片(71)之间还布置有至少一个旋流叶片(72),所述旋流叶片(72)相对所述撞击叶片(71)倾斜布置。
  7. 根据权利要求6所述的气体混合器,其特征在于,所述旋流叶片(72)的数量为四个,四个所述撞击叶片(71)与四个所述旋流叶片(72)沿周向交替布置,且四个所述旋流叶片(72)的倾斜方向和倾斜角度一致。
  8. 根据权利要求1所述的气体混合器,其特征在于,所述燃气喷射管(3)的两侧均开设有一行所述燃气喷射孔(31),且所述燃气喷射孔(31)的轴向与送气方向垂直。
  9. 根据权利要求1所述的气体混合器,其特征在于,所述EGR喷射管为扁管,且所述EGR喷射管的左右两个喷射平面沿送气方向延伸,所述EGR喷射孔(9)分布于所述喷射平面上。
  10. 根据权利要求9所述的气体混合器,其特征在于,所述EGR喷射管的两个所述喷射平面沿送气方向逐渐靠近,且所述EGR喷射管朝向所述燃气喷射管(3)的一侧设有圆弧过渡面。
  11. 根据权利要求1所述的气体混合器,其特征在于,所述燃气芯体(21)的周向开设有多个燃气进气孔(24),所述EGR芯体(22)的周向开设有多个EGR进气孔(25)。
  12. 根据权利要求1所述的气体混合器,其特征在于,所述燃气芯体(21)的进气端设有沿送气方向直径逐渐缩小的缩口导流段(23)。
  13. 根据权利要求1所述的气体混合器,其特征在于,所述燃气喷射管(3)的进气端外周与所述燃气芯体(21)上的燃气喷射管安装孔密封配合,所述EGR喷射管的进气端外周与所述EGR芯体(22)上的EGR喷射管安装孔密封配合。
  14. 根据权利要求1所述的气体混合器,其特征在于,所述EGR芯体(22)内布置有沿所述EGR芯体(22)轴向延伸的轴向喷射管(6),四个所述EGR喷射管的出气端均连通于所述轴向喷射管(6),所述轴向喷射管(6)的周向开设有多个所述EGR喷射孔(9)。
  15. 根据权利要求1所述的气体混合器,其特征在于,两个所述燃气喷射管(3)交叉连通在一起以形成十字交叉结构的燃气混合芯。
  16. 根据权利要求15所述的气体混合器,其特征在于,每个所述燃气喷射管(3)均分为两段燃气喷射分管,四个所述燃气喷射分管的出气端通过燃气喷射管连接件连通固定以形成十字交叉结构的所述燃气混合芯,所述EGR混合芯还包括EGR喷射管连接件,四个所述EGR喷射管的出气端通过所述EGR喷射管连接件连通固定。
  17. 根据权利要求16所述的气体混合器,其特征在于,所述燃气喷射管连接件包括十字交叉的两个第一连接板(32),两个所述第一连接板(32)的交叉部位设有用于连通四个所述燃气喷射分管的开口,所述燃气喷射分管的出气端开口内侧设有用于固定所述第一连接板(32)的第一固定结构,所述EGR喷射管连接件包括十字交叉的两个第二连接板(10),两个所述第二连接板(10)的交叉部位设有用于连通四个所述EGR喷射管的开口,所述EGR喷射管的出气端开口内侧设有用于固定所述第二连接板(10)的第二固定结构。
  18. 根据权利要求17所述的气体混合器,其特征在于,所述第一固定结构为设置于所述燃气喷射分管的出气端开口内侧的并且与所述第一连接板(32)过盈配合的第一插槽,所述第二固定结构为设置于所述EGR喷射管出气端开口内侧的并且与所述第二连接板(10)过盈配合的第二插槽。
PCT/CN2018/125355 2018-12-29 2018-12-29 一种气体混合器 WO2020133355A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880099949.8A CN113423940B (zh) 2018-12-29 2018-12-29 一种气体混合器
PCT/CN2018/125355 WO2020133355A1 (zh) 2018-12-29 2018-12-29 一种气体混合器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/125355 WO2020133355A1 (zh) 2018-12-29 2018-12-29 一种气体混合器

Publications (1)

Publication Number Publication Date
WO2020133355A1 true WO2020133355A1 (zh) 2020-07-02

Family

ID=71128884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125355 WO2020133355A1 (zh) 2018-12-29 2018-12-29 一种气体混合器

Country Status (2)

Country Link
CN (1) CN113423940B (zh)
WO (1) WO2020133355A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112282983A (zh) * 2020-10-29 2021-01-29 东风商用车有限公司 天然气发动机用扰流式集成混合器
CN113883519A (zh) * 2021-10-14 2022-01-04 江苏圣君纳米科技有限公司 一种玻璃成型火头燃烧用外接气体混合器
GB2606773A (en) * 2021-05-21 2022-11-23 Diffusion Tech Limited Fluid introduction system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202542A (ja) * 2007-02-21 2008-09-04 Mitsubishi Heavy Ind Ltd 燃焼器及びロケットエンジン
JP2015151994A (ja) * 2014-02-19 2015-08-24 株式会社Ihiシバウラ ガスエンジン
CN107061060A (zh) * 2017-04-06 2017-08-18 中国第汽车股份有限公司 一种集成式气体混合器
CN206681861U (zh) * 2017-04-06 2017-11-28 中国第一汽车股份有限公司 一种集成式气体混合器
CN208236519U (zh) * 2018-06-04 2018-12-14 广西玉柴机器股份有限公司 集成燃气和egr的混合器
CN109099460A (zh) * 2017-06-20 2018-12-28 中国航发商用航空发动机有限责任公司 一种进气面积调节装置和燃烧室

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248500A (ja) * 2000-03-06 2001-09-14 Osaka Gas Co Ltd ガスエンジンの燃料ガス供給構造
CN203822490U (zh) * 2014-04-11 2014-09-10 东风商用车有限公司 一种集成有混合器的天然气发动机气轨总成
CN104405539A (zh) * 2014-10-23 2015-03-11 成都耐尔特科技有限公司 一种混合器
CN204783341U (zh) * 2015-08-10 2015-11-18 广西玉柴机器股份有限公司 混合器
CN205578139U (zh) * 2016-04-14 2016-09-14 潍柴西港新能源动力有限公司 混合器
CN106438115B (zh) * 2016-11-30 2019-04-05 东风商用车有限公司 一种天然气混合器
CN108425768A (zh) * 2018-06-04 2018-08-21 广西玉柴机器股份有限公司 集成燃气和egr的混合器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202542A (ja) * 2007-02-21 2008-09-04 Mitsubishi Heavy Ind Ltd 燃焼器及びロケットエンジン
JP2015151994A (ja) * 2014-02-19 2015-08-24 株式会社Ihiシバウラ ガスエンジン
CN107061060A (zh) * 2017-04-06 2017-08-18 中国第汽车股份有限公司 一种集成式气体混合器
CN206681861U (zh) * 2017-04-06 2017-11-28 中国第一汽车股份有限公司 一种集成式气体混合器
CN109099460A (zh) * 2017-06-20 2018-12-28 中国航发商用航空发动机有限责任公司 一种进气面积调节装置和燃烧室
CN208236519U (zh) * 2018-06-04 2018-12-14 广西玉柴机器股份有限公司 集成燃气和egr的混合器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112282983A (zh) * 2020-10-29 2021-01-29 东风商用车有限公司 天然气发动机用扰流式集成混合器
CN112282983B (zh) * 2020-10-29 2023-05-12 东风商用车有限公司 天然气发动机用扰流式集成混合器
GB2606773A (en) * 2021-05-21 2022-11-23 Diffusion Tech Limited Fluid introduction system and method
CN113883519A (zh) * 2021-10-14 2022-01-04 江苏圣君纳米科技有限公司 一种玻璃成型火头燃烧用外接气体混合器
CN113883519B (zh) * 2021-10-14 2023-07-21 江苏圣君纳米科技有限公司 一种玻璃成型火头燃烧用外接气体混合器

Also Published As

Publication number Publication date
CN113423940A (zh) 2021-09-21
CN113423940B (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
WO2020133355A1 (zh) 一种气体混合器
CN112282983B (zh) 天然气发动机用扰流式集成混合器
CN109707541B (zh) 一种气体混合器
CN212716931U (zh) 气体混合装置和燃气发动机
CN108397311B (zh) 一种气体发动机进气混合腔
CN211623564U (zh) 高压燃气喷射结构
US7150267B2 (en) Intake port structure for internal combustion engine
CN111005824A (zh) 一种气体燃料发动机强化导流式大流量喷射装置
CN111760476A (zh) 航空发动机高空舱气体混合方法及基于文丘里管的气体混合器
CN113944575B (zh) 一种混合器
RU2785726C1 (ru) Газовый смеситель
WO2010123905A1 (en) Fluid mixing system
CN213205863U (zh) 一种发动机进气管路
CN210483861U (zh) 一种箱式后处理混合器
CN113062817A (zh) 一种多通道气体混合器
CN114635814A (zh) 一种加强高强化柴油机油气混合的缩放喷管加速混合器
CN210660361U (zh) 一种进气混合装置及发动机
CN217270528U (zh) 一种混合器及燃气喷射管
CN219711689U (zh) 一种天然气发动机混合器
CN216841974U (zh) 一种气体混合器
CN112160852B (zh) 一种进气混合装置与一种发动机
CN113006982B (zh) 发动机egr混合装置及发动机
CN215927597U (zh) 一种进气系统及车辆
US1741417A (en) Venturi combustion chamber for internal-combustion engines
CN108286477A (zh) 直喷式汽油发动机气缸盖

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944312

Country of ref document: EP

Kind code of ref document: A1