WO2020133137A1 - 一种基于有机无机杂化钙钛矿的阈值开关器件及其制备方法 - Google Patents

一种基于有机无机杂化钙钛矿的阈值开关器件及其制备方法 Download PDF

Info

Publication number
WO2020133137A1
WO2020133137A1 PCT/CN2018/124609 CN2018124609W WO2020133137A1 WO 2020133137 A1 WO2020133137 A1 WO 2020133137A1 CN 2018124609 W CN2018124609 W CN 2018124609W WO 2020133137 A1 WO2020133137 A1 WO 2020133137A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
electrode
perovskite
organic
top electrode
Prior art date
Application number
PCT/CN2018/124609
Other languages
English (en)
French (fr)
Inventor
王晨
樊宏波
黄阳
郝亮
边继明
杨一鸣
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to PCT/CN2018/124609 priority Critical patent/WO2020133137A1/zh
Publication of WO2020133137A1 publication Critical patent/WO2020133137A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching

Definitions

  • the invention belongs to the field of data storage, provides a non-linear current and voltage response for a storage device, is used for suppressing the problem of stealth current in a cross-switch structure, and provides a threshold switch device based on an organic-inorganic hybrid perovskite and a preparation method thereof.
  • Organic-inorganic hybrid perovskites are generally cubic or octahedral, the expression is ABX 3 , A represents organic cations, generally CH3NH 3+ (MA); B represents metal cations, generally Pb 2+ ; X represents halogen anion, typically Cl -, Br -, I - and the like.
  • BX 6 constitutes an octahedron
  • B atoms are located in the core of the octahedron
  • X halogen atoms occupy the corners of the octahedron
  • a atoms are located at the top corner of the face-centered cubic lattice
  • the common vertexes of the halogen octahedron are connected to form a three-dimensional frame structure.
  • This kind of octahedral common vertex connection is more stable, and the gap is larger, which is conducive to the diffusion and migration of defects.
  • organic-inorganic hybrid perovskites exhibit excellent photoelectric performance and potential, it has caused extensive research on organic-inorganic hybrid perovskite solar cells.
  • hysteresis in the study of solar cells, which is an undesirable shift in the current-voltage (I-V) curve.
  • I-V current-voltage
  • this hysteresis caused by defects and charge trapping makes organic-inorganic hybrid perovskite materials have strong application potential in resistive memory devices that use defect drift or migration as the operating mechanism.
  • a resistive random access memory (RRAM: Resistive Random-Access Memory) is composed of a bottom electrode 103, a top electrode 101, and a resistive layer 102 in the middle.
  • the structure is shown in FIG. Fig. 2 is an IV characteristic diagram of RRAM.
  • RRAM changes the high and low resistance states according to the polarity and magnitude of the voltage signal applied to its top electrode. When the forward voltage is equal to or greater than Vset, RRAM becomes a low resistance state. When the negative voltage is equal to or greater than the Vreset voltage, the RRAM returns to the high-impedance state. If the applied voltage is between Vset and Vreset, RRAM is not affected. And when the RRAM is set to a specific resistance, its state can still be retained for a period of time after the voltage is removed.
  • the RRAM that uses organic-inorganic hybrid perovskite as the resistive layer has the following advantages:
  • Organic-inorganic hybrid perovskite is a flexible material that can be manufactured on a flexible substrate, so that organic-inorganic hybrid perovskite material devices can be applied to flexible electronic products.
  • the organic-inorganic hybrid perovskite RRAM can become an electric/optical control RRAM, and light can achieve a non-contact effect that cannot be achieved by an electric field, thereby greatly expanding RRAM application space.
  • FIG. 3 is a part of the crossbar structure.
  • the top electrodes 301, 302 and the bottom electrodes 303, 304 are formed in an orthogonal manner, and the middle cross nodes 305, 306, 307, 308 are memory devices.
  • the target cell can be selected by selecting a group of top and bottom electrodes, however, it is precisely because the top electrodes of all cells in one row are connected to each other and all bottom electrodes in one column are connected to each other. This leads to stealth current problems.
  • the sneak current problem is that, in an ideal situation, we want current to flow from the source to the ground, and only activate the cell where the intersection of the row and column we selected is located.
  • the voltage applied to the target cell will cause some current to flow through the non-target cell, and these currents are This is called sneak current.
  • the first is to add a diode gating to each memory cell in the array, which is to form a 1D1R structure.
  • the second is to add each memory cell.
  • a transistor but because the transistor is a three-terminal device, will reduce the integration density of RRAM.
  • the threshold switching device is a nonlinear component. As shown in FIG. 4, it has the same structure as RRAM. It consists of a bottom electrode 403, a top electrode 401, and an intermediate dielectric layer 402. Its IV characteristic diagram is shown in FIG. 5.
  • the applied voltage does not reach V th , the device assumes a high resistance state.
  • the applied voltage reaches Vth, the device switches to a low-resistance state.
  • the potential difference between the upper and lower electrodes decreases spontaneously.
  • the potential difference between the upper and lower electrodes is less than V hold , the device changes from the high-resistance state Switch to low impedance state.
  • the threshold switching device when the threshold switching device is set to a specific resistance value, it will return to a high resistance state spontaneously after the voltage is removed. Threshold switching devices are superimposed on the RRAM of each cell node, respectively, so that the originally linear RRAM device is in a non-linear characteristic after being connected in series with the threshold switching device. As shown in Figure 6, when the RRAM is connected in series with the threshold switching device, when the forward voltage reaches V th1 , the threshold switching device switches from the high resistance state to the low resistance state, and the remaining voltage is applied to the RRAM, making the RRAM low resistance State, when the voltage decreases to V th2 , the threshold switching device switches from the low resistance state to the high resistance state, so that the entire cell is in the high resistance state.
  • the threshold switching device switches from the high resistance state to the low resistance state, and the remaining voltage is applied to the RRAM.
  • the voltage reaches V th4 the RRAM is switched back from the low resistance state to the high resistance state.
  • the threshold switch device can be well compatible with RRAM, and will not affect the scalability and three-dimensional stacking capacity of RRAM. It has become one of the best choices to solve the problem of stealth current in the cross-switch array.
  • the present invention provides a threshold switching device using an organic-inorganic hybrid perovskite as a dielectric layer, silver as a top electrode, and FTO conductive glass as a bottom electrode, and a preparation method thereof.
  • a threshold switching device based on organic-inorganic hybrid perovskite, from bottom to top are bottom electrode, dielectric layer, top electrode; the top electrode is a silver electrode, the bottom electrode is FTO conductive glass, and the dielectric layer uses ( Cs x FA y MA 1-xy )Pb(I z Br 1-z ) 3 , prepared by low temperature solution spin coating.
  • the threshold switch device has two resistance states: high resistance and low resistance.
  • the threshold switching device When the voltage applied between the top electrode and the bottom electrode does not reach the threshold voltage, the threshold switching device remains in a high resistance state.
  • the threshold switching device switches from the high resistance state to the low resistance state.
  • Threshold switch device When the voltage applied between the top electrode and the bottom electrode is no longer greater than or equal to the threshold voltage, the potential difference between the top electrode and the bottom electrode drops spontaneously, when the potential difference between the top electrode and the bottom electrode is less than or equal to the turn-off voltage , Threshold switch device returns to high impedance state.
  • the thickness of the FTO conductive glass is 200-600 nm; the thickness of the perovskite layer is 400-800 nm; and the thickness of the silver electrode is 200-300 nm.
  • a method for preparing a threshold switch device based on organic-inorganic hybrid perovskite includes the following steps:
  • Step 1 Clean FTO conductive glass:
  • Step 2 Preparation of organic-inorganic hybrid perovskite (Cs x FA y MA 1-xy ) Pb(I z Br 1-z ) 3 solution:
  • the volume ratio of dimethylformamide DMF and dimethyl sulfoxide DMSO in the mixed solution is 4:1.
  • Step 3 The organic-inorganic perovskite layer is made. The whole process is carried out in a dry air environment:
  • the entire spin coating is divided into two parts: the first part is spin-coated 5 ⁇ 15S after accelerating from 500 ⁇ 1000RPM/S acceleration to 1000RPM; the second part is in the first part On the basis, after continuing to accelerate to 1000 ⁇ 4000RPM with the acceleration of 1000RPM/S, spin coating 20 ⁇ 30S.
  • the anti-solvent chlorobenzene is added dropwise at 3 ⁇ 10S before the second stage of spin coating, so that the perovskite crystallizes rapidly, and then annealed at 100 ⁇ 150°C for 30 ⁇ 50 minutes to obtain calcium on the conductive surface Titanium thin film. Add 50-150ul of anti-solvent chlorobenzene per 4cm 2 of conductive surface.
  • a vacuum thermal evaporation method is used to deposit silver on the perovskite film obtained in step 3 as a top electrode, the top electrode is Ag, its thickness is 200-300 nm, the shape is circular, and the diameter is 50-1000 ⁇ m.
  • Step 5 Apply continuous electrical pulse stimulation:
  • the device is divided into three layers, FTO conductive glass is used as the substrate and the lower electrode, and then a layer of perovskite is grown on the FTO through the low temperature solution spin coating process, and then grown on the perovskite by thermal evaporation Silver electrode.
  • Silver is a live wave metal. Under continuous small electrical stimulation, silver particles will move in the direction of the electric field in the perovskite layer.
  • a voltage is applied, a conductive path is formed and becomes a low resistance state. After the voltage is removed, Silver relaxes back to its original position and returns the device to a high-impedance state.
  • the performance of the device reaches a non-linearity of positive 10 3 and negative 10 2 , and can perform more than 10 2 stable cycles, especially the positive Negative switch is super fast switching, and the switching time is within the range of nanoseconds.
  • the device has a simple manufacturing process and low production cost, it has important engineering application prospects.
  • the perovskite film growth process is optimized: the preparation of perovskite in the present invention is in a dry air environment and does not need to be performed in a nitrogen environment. Therefore, compared with the perovskite film grown by the traditional process, the present invention The texture is slightly fluffy, which allows the silver electrode to have a larger contact area with the perovskite, which is more conducive to the movement and diffusion of silver particles in the film.
  • Figure 1 is a schematic diagram of a conventional RRAM structure.
  • Fig. 2 is the traditional IV RAM simulation IV characteristic curve.
  • Fig. 3 is a schematic diagram of the sneak current in a conventional crossbar array.
  • FIG. 4 is a schematic diagram of the structure of a conventional threshold switching device.
  • Fig. 5 is the simulation IV characteristic curve of the traditional threshold switch device.
  • Fig. 6 is the simulation IV curve of the traditional threshold switching device and RRAM in series.
  • FIG. 7 is a schematic structural view of an example of the present invention.
  • FIG. 8 is an IV characteristic curve of the DC sweep 103 times of the example of the present invention.
  • Fig. 9 is the switching time of the example of the present invention under the stimulation of a single pulse in the forward direction.
  • FIG. 10 is the switching time of the example of the present invention under the stimulation of a negative single pulse.
  • the invention is a threshold switching device using organic-inorganic hybrid perovskite as the dielectric layer, silver as the top electrode, and FTO conductive glass as the bottom electrode.
  • a silver electrode layer 701 is an organic-inorganic hybrid perovskite (CsFAMAPb (I x Br 1-x ) 3 ) layer, and the bottom electrode 703FTO conductive glass.
  • CsFAMAPb organic-inorganic hybrid perovskite
  • the method for preparing examples of the present invention includes the following.
  • Step 1 Clean FTO conductive glass:
  • the size of the FTO glass used is 2cm*2cm.
  • Step 2 Prepare organic-inorganic hybrid perovskite CsFAMAPb(I x Br 1-x ) 3 solution:
  • Step 3 Make the organic and inorganic perovskite layer:
  • the entire spin coating is divided into two parts.
  • the first part is to accelerate to 1000 RPM with an acceleration of 1000 RPM/S and spin coat 10S.
  • the second part is to spin on 20S after accelerating to 6000RPM at an acceleration of 1000RPM./S based on the first part.
  • Step 4 the top electrode is evaporated:
  • a 1000 um diameter and 200 nm thick silver was deposited on the perovskite layer through the reticle as the top electrode.
  • Step 5 Apply electrical pulse stimulation:
  • an electrical pulse of 0.1 V was applied to the silver electrode for 10 minutes to cause silver to diffuse into the perovskite layer.
  • FIG. 8 is a graph of the DC scan IV characteristic curve of 102 cycles of the example of the present invention.
  • the forward voltage reaches about 0.5V
  • the device switches from the high resistance state to the low resistance state, and when the voltage is 0V, the device changes from the low resistance state Switch to high impedance state.
  • the negative voltage reaches -2V
  • the device switches from a high resistance state to a low resistance state, and when the voltage is 0V, the device switches from a high resistance state to a low resistance state.
  • the positive nonlinearity of the device is 10 3.
  • the negative nonlinearity is 10 2 .
  • Fig. 9 shows the switching time of an example of the present invention under the stimulation of a single pulse in the positive direction.
  • the pulse waveform is a rising edge of 200ns, a duration of 5ms, a falling edge of 500ns, and an amplitude of 1V.
  • the turn-on time is about 120ns and the turn-off time is about 185ns. (The switching time calculation method, the turn-on time is the time from when the current reaches from 0 to 1/2 of the maximum value, and the turn-off time is the time from when the voltage reaches 0 to when the current reaches 0)
  • FIG. 10 shows the switching time of the example of the present invention under negative single pulse stimulation.
  • the pulse waveform is a rising edge of 500 ns, a duration of 5 ms, a falling edge of 500 ns, and an amplitude of -3V.
  • the turn-on time is about 175ns and the turn-off time is about 295ns. (The switching time calculation method, the turn-on time is the time from when the current reaches 0 to 1/2 of the maximum value, and the turn-off time is the time from when the voltage reaches 0 to when the current reaches 0)

Landscapes

  • Semiconductor Memories (AREA)

Abstract

一种基于有机无机杂化钙钛矿的阈值开关器件及其制备方法,属于数据存储领域,包括底部电极(703)、介质层(702)、顶部电极(701),顶部电极(701)为银电极,底部电极(703)为FTO导电玻璃,介质层(702)采用(Cs xFA yMA 1-x-y)Pb(I zBr 1-z) 3。该阈值开关器件存在高电阻和低电阻状态。步骤:首先,在底部电极(703)导电面上滴加(Cs xFA yMA 1-x-y)Pb(I zBr 1-z) 3溶液,开启匀胶机进行旋涂,在旋涂结束前滴加反溶剂氯苯,使钙钛矿快速结晶;其次,进行退火处理在导电面上得到钙钛矿薄膜;最后,在钙钛矿薄膜上沉积顶电极(701),并在银电极(701)上施加持续的电脉冲刺激,使银扩散进钙钛矿层中得到阈值开关器件。采用低温溶液旋涂工艺在干燥空气中进行,不需要高温工艺、高真空或惰性环境,生产成本低,工艺简单,适用于大规模制造。

Description

一种基于有机无机杂化钙钛矿的阈值开关器件及其制备方法 技术领域
本发明属于数据存储领域,为存储器件提供非线性的电流电压响应,用于抑制交叉开关结构中的潜行电流问题,提供一种基于有机无机杂化钙钛矿的阈值开关器件及其制备方法。
背景技术
有机无机杂化钙钛矿一般是立方体或八面体结构,其表达式为ABX 3,A表示有机阳离子,一般为CH3NH 3+(MA);B表示金属阳离子,一般为Pb 2+;X表示卤素阴离子,一般为Cl -,Br -,I -等。其中,BX 6构成了八面体,B原子位于八面体核心,X卤素原子占据八面体的角,A原子位于面心立方晶格顶角位置,卤素八面体共顶点连接形成了三维框架结构,这种八面体共顶点的连接方式更稳定,而且空隙较大,有利于缺陷的扩散迁移。这些特性使它们适用于各种应用,例如薄膜晶体管,太阳能电池,发光二极管(LED)等。近年来,由于有机无机杂化钙钛矿展现出优异的光电性能和潜力,引起了对有机无机杂化钙钛矿太阳能电池的广泛研究。然而,在太阳能电池的研究中它显示出滞后现象,这种现象是电流-电压(I - V)曲线的不希望的偏移。但是这种由于缺陷和电荷捕获所产生的滞后现象却使得有机无机杂化钙钛矿材料在利用缺陷漂移或迁移作为操作机制的阻变式存储器件中具有很强的应用潜力。
阻变式存储器(RRAM: Resistive Random-Access Memory)由底部电极103,顶部电极101以及中间的阻变层102构成,结构如图1所示。图2是RRAM的IV特性图。RRAM根据施加在其顶部电极的电压信号的极性和大小而改变高低阻态。当正向电压等于或大于Vset时,RRAM变为低阻值状态。当负向电压等于或大于Vreset电压时,RRAM重新回到高阻态。如果施加电压在Vset和Vreset之间时,RRAM不受影响。并且当RRAM被设定为特定阻值后,撤去电压后其状态依旧可以保留一段时间。
与传统的由过渡金属氧化物、氮化物、硫族化合物、无机钙钛矿等作为阻变层的RRAM相比,由有机无机杂化钙钛矿作为阻变层的RRAM拥有以下优点:
(1)低温溶液制造,工艺简单,生产成本低。
(2)有机无机杂化钙钛矿是一种柔性材料,可以在柔性基底上制造,使得有机无机杂化钙钛矿材料器件可以应用于柔性电子产品中。
(3)由于有机无机杂化钙钛矿出色的光吸收特性,使得有机无机杂化钙钛矿RRAM可以成为电/光控RRAM,而光可以实现电场无法达到的非接触式作用,从而大大拓展了RRAM应用的空间。
与传统RRAM三维集成相同,有机无机杂化钙钛矿RRAM在大规模集成的交叉开关结构中也面临着潜行电流问题。图3所示的结构就是交叉开关结构的一部分,其顶部电极301,302与底部电极303,304以正交的方式组成,中间交叉节点305,306,307,308处则为存储器件。通过选中一组顶部电极与底部电极就可以选中目标单元,然而,正是由于一行中所有单元的顶部电极彼此连接并且一列中所有的底部电极彼此连接。从而导致了潜行电流问题。潜行电流问题就是,在理想情况下,我们希望电流从源端流向接地端,仅仅激活我们所选中的行与列的交叉点所处的单元。但是在实际操作中,为了确定处于高阻的目标单元状态,但其它一些单元处于低阻状态时,由于共用电极,施加在目标单元的电压会导致一些电流流过非目标单元,这些电流就被称为潜行电流。如图3所示,当305,306,307处于低阻态,308处于高阻态时,当我们读取308的状态时,会有潜行电流309流过305,306,307,也就相当于与目标单元并联了一个电阻,可能使得将目标单元308错误的读取为低阻态。
人们为了解决交叉开关结构中的潜行电流问题,提出了多种解决方案。首先提出的是在阵列中的每个存储单元添加一个二极管门控也就是形成一个1D1R的结构,但由于二极管的单向导通性,无法适用于双极性RRAM,其次就是给每个存储单元添加一个晶体管,但由于晶体管是三端器件,会降低RRAM的集成密度。还有就是使用两个极性相反的RRAM互相叠加,在操作中使得总有一个RRAM处于高阻态,也就是总体总时处于一个高阻态。通过区分“R High+R Low”和“R Low+R High”来定义“0”“1”态。但这种结构面临的最大问题就是,读取是破坏性阅读,因此这种结构需要一种复杂的读取方式。
阈值开关器件是一种非线性元器件,如图4所示,拥有与RRAM相同的结构,由底部电极403,顶部电极401和中间介质层402组成,其IV特性图如图5所示,当施加电压未达到V th时,器件呈现高阻值状态。当施加电压达到Vth时,器件切换到低阻态,当电压小于V th时,上下电极间的电位差自发的减小,当上下电极之间的电位差小于V hold时,器件由高阻态切换到低阻态。与RRAM不同,当阈值开关器件被设定为特定的阻值后,撤去电压后便会自发的回到高阻态。通过阈值开关器件分别与每个单元节点的RRAM叠加,使得原本线性的RRAM器件在与阈值开关器件串联后整体呈现为非线性特征。如图6所示,当RRAM与阈值开关器件串联后,当正向电压达到V th1时,阈值开关器件由高阻态切换到低阻态,其余电压施加在RRAM上,使RRAM变为低阻态,当电压减小至V th2时,阈值开关器件由低阻态切换到高阻态,使得整个单元处于高阻状态。当反向电压达到V th3时,阈值开关器件由高阻态切换到低阻态,其余电压施加在RRAM上,当电压达到V th4时,使RRAM由低阻态切换回高阻态。当电压小于V th1和V th3时,整体单元处于高阻状态。从而抑制了潜行电流的产生。并且与其它的解决方案相比阈值开关器件可以很好的与RRAM兼容,并不会影响RRAM的可扩展性和三维堆叠能力,成为解决交叉开关阵列中潜行电流问题的最优选择之一。但是目前尚且没有基于有机无机杂化钙钛矿的阈值开关器件。
技术问题
为了解决上述问题,本发明提供一种由有机无机杂化钙钛矿作为介质层,银作为顶部电极,FTO导电玻璃作为底部电极的阈值开关器件及其制备方法。
技术解决方案
本发明采用的技术方案为:
一种基于有机无机杂化钙钛矿的阈值开关器件,从下到上依次是底部电极、介质层、顶部电极;所述的顶部电极为银电极,底部电极为FTO导电玻璃,介质层采用(Cs xFA yMA 1-x-y)Pb(I zBr 1-z) 3,通过低温溶液旋涂法制得。所述的阈值开关器件存在两种电阻状态:高电阻和低电阻状态。
当施加在顶部电极与底部电极之间的电压未达到阈值电压时,阈值开关器件保持在高阻状态。
当施加在顶部电极与底部电极之间的电压大于或等于阈值电压时,阈值开关器件从高阻状态切换到低阻状态。
当施加在顶部电极与底部电极之间电压不再大于或等于阈值电压时,顶部电极与底部电极间的电位差自发下降,当顶部电极与底部电极之间的电位差小于或等于关断电压时,阈值开关器件回到高阻状态。
进一步的,所述的FTO导电玻璃厚度为200~600nm;钙钛矿层厚度为400~800nm;银电极厚度为200~300nm。
一种基于有机无机杂化钙钛矿的阈值开关器件的制备方法,包括以下步骤:
步骤1,清洗FTO导电玻璃:
依次使用玻璃洗涤剂、去离子水、无水乙醇、丙酮、异丙酮,分别超声清洗FTO导电玻璃20~60分钟,然后鼓风干燥箱烘干,在UV仪器中紫外光照射FTO导电玻璃表面10~50分钟。
步骤2,制备有机无机杂化钙钛矿(Cs xFA yMA 1-x-y)Pb(I zBr 1-z) 3溶液:
(1)将FAI、MABr、PbI2、PbBr2溶解于由二甲基甲酰胺DMF和二甲基亚砜DMSO的混合溶液中得到溶液A,每1mL混合溶液中对应加入0.8~1.2mol FAI,0.15~0.25mol MABr,0.85~1.32mol PbI 2,0.15~0.3mol PbBr 2
所述的混合溶液中二甲基甲酰胺DMF和二甲基亚砜DMSO的体积比为4:1。
(2)将CsI溶解于1mL的DMSO溶液中得到溶液B,每1mlDMSO溶液中对应加入~1.5mol CsI。
(3)将溶液A和溶液B分别在50~70℃条件下搅拌1~2h后,分别使用0.22μm的过滤器过滤,去除溶液中的大颗粒,获得淡黄色的溶液A和无色透明的溶液B。
(4)室温下,将出过滤后的溶液B加入过滤后的溶液A中,得到 (Cs xFA yMA 1-x-y)Pb(I zBr 1-z) 3溶液。每1mL过滤后的溶液A中对应加入50~100ul的溶液B。
步骤3,制作有机无机钙钛矿层,整个流程在干燥空气环境下进行:
(1)在FTO导电玻璃的导电面上滴加(Cs xFA yMA 1-x-y)Pb(I zBr 1-z) 3溶液,并涂抹均匀。每4cm 2的导电面上滴加15~50ul的(Cs xFA yMA 1-x-y)Pb(I zBr 1-z) 3溶液。
(2)开启匀胶机进行旋涂,整个旋涂分为两个部分:第一部分是以500~1000RPM/S的加速度加速到1000RPM后,旋涂5~15S;第二部分是在第一部分的基础上继续以1000RPM/S的加速度加速到4000~7000RPM后,旋涂20~30S。
(3)在旋涂第二阶段结束前3~10S时滴加反溶剂氯苯,使得钙钛矿快速结晶,然后在100~150℃条件下退火处理30~50分钟,在导电面上得到钙钛矿薄膜。每4cm 2的导电面上滴加50~150ul的反溶剂氯苯。
步骤4,制备顶部电极:
采用真空热蒸发法在步骤3得到的钙钛矿薄膜上沉积银作为顶电极,顶电极为Ag,其厚度为200~300nm,形状为圆形,直径为50~1000μm。
步骤5,施加持续的电脉冲刺激:
在银电极上施加5~20分钟持续的幅度为0.1V~0.5V的电脉冲刺激,使银扩散进钙钛矿层中,得到基于有机无机杂化钙钛矿的阈值开关器件。
本发明的技术方案和原理:
器件结构和原理:器件分为三层,FTO导电玻璃作为衬底与下电极,然后通过低温溶液旋涂工艺在FTO上生长一层钙钛矿,再通过热蒸发的方法在钙钛矿上生长银电极。银属于活波金属,在持续的小幅度的电刺激下,会使得银粒子在钙钛矿层中沿着电场方向迁移,当施加电压时,形成导电通路,变成低阻态,撤去电压后,银弛豫回原来的位置使器件重新回到高阻态。
有益效果
与现有技术相比,本发明的有益效果有以下两个方面:
(1)首次使用有机无机杂化钙钛矿作为介质层形成阈值开关器件,器件性能达到正向10 3负向10 2的非线性,可以进行10 2次以上的稳定循环,尤其是实现了正负向开关超快切换,其切换时间均在纳秒范围内。另外由于该器件制造工艺简单,生产成本低廉,具备重要的工程应用前景。
(2)优化了钙钛矿薄膜生长工艺:本发明制备钙钛矿时均是处于干燥空气的环境下,无需在氮气环境内进行,因此与传统工艺生长的钙钛矿薄膜相比,本发明质地略蓬松,这使得银电极能够和钙钛矿有更大的接触面积,更有利于银粒子在薄膜中移动扩散。
附图说明
图1是传统RRAM结构示意图。
图2是传统RRAM模拟IV特性曲线。
图3是传统交叉开关阵列中潜行电流示意图。
图4是传统阈值开关器件结构示意图。
图5是传统阈值开关器件模拟IV特性曲线。
图6是传统阈值开关器件与RRAM串联后模拟IV曲线。
图7是本发明实例的结构示意图。
图8是本发明实例103次直流扫描IV特性曲线。
图9是本发明实例在正向单个脉冲刺激下的开关时间。
图10是本发明实例在负向单个脉冲刺激下的开关时间。
图中:101传统阻变式存储器的顶部电极;102传统阻变式存储器的阻变层;103传统阻变式存储器的底部电极; 301、302传统交叉开关的顶部电极;303、304传统交叉开关的底部电极;305,306,307,308中间交叉节点处的存储器;309潜行电流;401传统阈值开关器的顶部电极;402传统阈值开关器的中间介质层;403传统阈值开关器的底部电极;701银电极层;702介质层;703底部电极。
本发明的实施方式
本发明为一种由有机无机杂化钙钛矿作为介质层,银作为顶部电极,FTO导电玻璃作为底部电极的阈值开关器件。
图7所示为本发明器件的结构图,分别为银电极层701,介质层702为有机无机杂化钙钛矿(CsFAMAPb(I xBr 1-x) 3)层,底部电极703FTO导电玻璃。
本发明实例制备方法包括以下内容。
步骤1,清洗FTO导电玻璃:
依次使用洗涤剂,去离子水,无水乙醇,丙酮,异丙酮,分别超声清洗20分钟,然后氮气吹干后,紫外臭氧处理25分钟。
在本发明实例中,所使用的FTO玻璃尺寸均为2cm*2cm。
步骤2,制备有机无机杂化钙钛矿CsFAMAPb(I xBr 1-x) 3溶液:
(1) 将1mol FAI,0.2mol MABr,0.95mol PbI 2,0.2 PbBr 2,共同溶解在由DMF(二甲基甲酰胺)和DMSO(二甲基亚砜)以4比1比例混合的1ml溶液中,得到溶液A。
(2)将1molCsI溶解于1ml的DMSO溶液中,得到溶液B。
(3)将溶液A和溶液B分别在50℃加热条件下搅拌2h后,分别使用过滤器过滤,去除溶液中的大颗粒。
(4)取出50ul的溶液B加入到溶液A中,就得到了本次发明实例中所使用的CsFAMAPb(I xBr 1-x) 3溶液。
步骤3,制作有机无机钙钛矿层:
(1)在4cm 2的FTO导电玻璃上滴加30ul的有机无机杂化钙钛矿溶液,并涂抹均匀。
(2)开启匀胶机,开始旋涂,整个旋涂分为两个部分,第一部分是以1000RPM/S的加速度加速到1000RPM后,旋涂10S。第二部分是在第一部分的基础上继续以1000RPM./S的加速度加速到6000RPM后,旋涂20S。
(3)在旋涂第二阶段结束前5S时滴加150ul的氯苯。
(4)将旋涂完成的器件在100摄氏度下退火50分钟。
需要注意的是,该步骤中整个流程都是在干燥环境下进行的。
步骤4,蒸镀顶部电极:
通过掩模版在钙钛矿层上蒸镀直径为1000um,厚度为200nm的银作为顶部电极。
步骤5,施加电脉冲刺激:
对制备好的器件在银电极上施加10分钟0.1V的电脉冲刺激,使得银扩散进钙钛矿层中。
图8为本发明实例的102次循环的直流扫描IV特性曲线图,当正向电压达到0.5V左右时,器件由高阻态切换为低阻态,当电压为0V时,器件由低阻态切换为高阻态。当负向电压达到-2V时,器件由高阻态切换为低阻态,当电压为0V时,器件由高阻态切换为低阻态。并且器件的正向的非线性为10 3.负向的非线性为10 2 。(非线性计算公式为k=I Vop/ I 1/2Vop,即开启电压时的电流比上二分之一开启电压时的电流。)
图9为本发明实例在正向单个脉冲刺激下的开关时间,脉冲波形为,200ns的上升沿,5ms的持续时间,500ns的下降沿,幅值为1V。开启时间约为120ns,关断时间约为185ns。(开关时间计算方法,开启时间是电流从0到电流达到最大值的1/2时所用时间,关断时间是电压达到0至电流达到0的所用时间)
图10为本发明实例在负向单个脉冲刺激下的开关时间,脉冲波形为500ns的上升沿,5ms的持续时间,500ns的下降沿,幅值为-3V。开启时间约为175ns,关断时间约为295ns。(开关时间计算方法,开启时间是电流从0到电流达到最大值的1/2时所用时间,关断时间是电压达到0至电流达到0时所用时间)
以上所述实施例仅表达了本发明的实施方式,但并不能因此而理解为对本发明专利的范围的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。

Claims (5)

  1. 一种基于有机无机杂化钙钛矿的阈值开关器件,其特征在于,所述的阈值开关器件从下到上依次是底部电极、介质层、顶部电极;所述的顶部电极为银电极,底部电极为FTO导电玻璃,介质层采用(Cs xFA yMA 1-x-y)Pb(I zBr 1-z) 3材料,通过低温溶液旋涂法制得;所述的阈值开关器件存在两种电阻状态:高电阻和低电阻状态;
    当施加在顶部电极与底部电极之间的电压未达到阈值电压时,阈值开关器件保持在高阻状态;当施加在顶部电极与底部电极之间的电压大于或等于阈值电压时,阈值开关器件从高阻状态切换到低阻状态; 当施加在顶部电极与底部电极之间电压不再大于或等于阈值电压时,顶部电极与底部电极间的电位差自发下降,当顶部电极与底部电极之间的电位差小于或等于关断电压时,阈值开关器件回到高阻状态。
  2. 根据权利要求1所述的一种基于有机无机杂化钙钛矿的阈值开关器件,其特征在于,所述的FTO导电玻璃厚度为200~600nm;介质层厚度为400~800nm;银电极厚度为200~300nm。
  3. 一种基于有机无机杂化钙钛矿的阈值开关器件的制备方法,其特征在于以下步骤:
    步骤1,清洗FTO导电玻璃;
    步骤2,制备有机无机杂化钙钛矿(Cs xFA yMA 1-x-y)Pb(I zBr 1-z) 3溶液:
    (1)将FAI、MABr、PbI2、PbBr2溶解于由二甲基甲酰胺DMF和二甲基亚砜DMSO的混合溶液中得到溶液A,每1mL混合溶液中对应加入0.8~1.2mol FAI,0.15~0.25mol MABr,0.85~1.32mol PbI 2,0.15~0.3mol PbBr 2
    (2)将CsI溶解于1mL的DMSO溶液中得到溶液B,每1mlDMSO溶液中对应加入~1.5mol CsI;
    (3)将溶液A和溶液B分别在50~70℃条件下搅拌1~2h后,分别使用0.22μm的过滤器过滤,去除溶液中的大颗粒,获得淡黄色的溶液A和无色透明的溶液B;
    (4)室温下,将出过滤后的溶液B加入过滤后的溶液A中,得到 (Cs xFA yMA 1-x-y)Pb(I zBr 1-z) 3溶液;每1mL过滤后的溶液A中对应加入50~100ul的溶液B;
    步骤3,制作有机无机钙钛矿层,整个流程在干燥空气环境下进行:
    (1)在FTO导电玻璃的导电面上滴加(Cs xFA yMA 1-x-y)Pb(I zBr 1-z) 3溶液,并涂抹均匀;每4cm 2的导电面上滴加15~50ul的(Cs xFA yMA 1-x-y)Pb(I zBr 1-z) 3溶液;
    (2)开启匀胶机进行旋涂,整个旋涂分为两个部分:第一部分是以500~1000RPM/S的加速度加速到1000RPM后,旋涂5~15S;第二部分是在第一部分的基础上继续以1000RPM/S的加速度加速到4000~7000RPM后,旋涂20~30S;
    (3)在旋涂第二阶段结束前3~10S时滴加反溶剂氯苯,使得钙钛矿快速结晶,然后在100~150℃条件下退火处理30~50分钟,在导电面上得到钙钛矿薄膜;每4cm 2的导电面上滴加50~150ul的反溶剂氯苯;
    步骤4,制备顶部电极:
    采用真空热蒸发法在步骤3得到的钙钛矿薄膜上沉积银作为顶电极Ag;
    步骤5,施加持续的电脉冲刺激:
    在银电极上施加5~20分钟持续的幅度为0.1V~0.5V的电脉冲刺激,使银扩散进钙钛矿层中,得到基于有机无机杂化钙钛矿的阈值开关器件。
  4. 根据权利要求3所述的制备方法,其特征在于,所述的步骤1清洗FTO导电玻璃具体为:依次使用玻璃洗涤剂、去离子水、无水乙醇、丙酮、异丙酮,分别超声清洗20~60分钟,然后鼓风干燥箱烘干,在UV仪器中紫外光照射FTO表面10~50分钟。
  5. 根据权利要求3或4所述的制备方法,其特征在于,所述的步骤2中混合溶液中二甲基甲酰胺DMF和二甲基亚砜DMSO的体积比为4:1。
PCT/CN2018/124609 2018-12-28 2018-12-28 一种基于有机无机杂化钙钛矿的阈值开关器件及其制备方法 WO2020133137A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/124609 WO2020133137A1 (zh) 2018-12-28 2018-12-28 一种基于有机无机杂化钙钛矿的阈值开关器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/124609 WO2020133137A1 (zh) 2018-12-28 2018-12-28 一种基于有机无机杂化钙钛矿的阈值开关器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2020133137A1 true WO2020133137A1 (zh) 2020-07-02

Family

ID=71126707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124609 WO2020133137A1 (zh) 2018-12-28 2018-12-28 一种基于有机无机杂化钙钛矿的阈值开关器件及其制备方法

Country Status (1)

Country Link
WO (1) WO2020133137A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113224235A (zh) * 2021-04-28 2021-08-06 大连理工大学 一种具有超低阈值电压的双向选通器及其制备方法
CN113725357A (zh) * 2021-08-17 2021-11-30 南京邮电大学 一种忆阻器及其制备方法
CN113809232A (zh) * 2021-08-25 2021-12-17 西安电子科技大学 物理瞬态阈值开关器件及其制备方法和装置
CN114875472A (zh) * 2022-04-25 2022-08-09 河南大学 一种有机-无机杂化手性钙钛矿螺旋结构微米片及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050151277A1 (en) * 2004-01-14 2005-07-14 Sharp Kabushiki Kaisha Nonvolatile semiconductor memory device
CN102136487A (zh) * 2010-12-31 2011-07-27 中国科学院上海硅酸盐研究所 一种基于氧化锌材料的电阻式ram存储单元及制备方法
CN107732008A (zh) * 2017-08-14 2018-02-23 湖北大学 一种油酸钝化有机无机杂化钙钛矿阻变存储器及其制备方法
CN108389967A (zh) * 2018-02-27 2018-08-10 华南理工大学 太阳能电池的吸光层材料、宽带隙钙钛矿太阳能电池及其制备方法
CN108899420A (zh) * 2018-06-25 2018-11-27 南京邮电大学 钙钛矿薄膜的制备方法及钙钛矿太阳能电池器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050151277A1 (en) * 2004-01-14 2005-07-14 Sharp Kabushiki Kaisha Nonvolatile semiconductor memory device
CN102136487A (zh) * 2010-12-31 2011-07-27 中国科学院上海硅酸盐研究所 一种基于氧化锌材料的电阻式ram存储单元及制备方法
CN107732008A (zh) * 2017-08-14 2018-02-23 湖北大学 一种油酸钝化有机无机杂化钙钛矿阻变存储器及其制备方法
CN108389967A (zh) * 2018-02-27 2018-08-10 华南理工大学 太阳能电池的吸光层材料、宽带隙钙钛矿太阳能电池及其制备方法
CN108899420A (zh) * 2018-06-25 2018-11-27 南京邮电大学 钙钛矿薄膜的制备方法及钙钛矿太阳能电池器件

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113224235A (zh) * 2021-04-28 2021-08-06 大连理工大学 一种具有超低阈值电压的双向选通器及其制备方法
CN113725357A (zh) * 2021-08-17 2021-11-30 南京邮电大学 一种忆阻器及其制备方法
CN113725357B (zh) * 2021-08-17 2023-11-14 南京邮电大学 一种忆阻器及其制备方法
CN113809232A (zh) * 2021-08-25 2021-12-17 西安电子科技大学 物理瞬态阈值开关器件及其制备方法和装置
CN114875472A (zh) * 2022-04-25 2022-08-09 河南大学 一种有机-无机杂化手性钙钛矿螺旋结构微米片及其制备方法与应用
CN114875472B (zh) * 2022-04-25 2023-11-03 河南大学 一种有机-无机杂化手性钙钛矿螺旋结构微米片及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN109755391B (zh) 一种基于有机无机杂化钙钛矿的阈值开关器件及其制备方法
WO2020133137A1 (zh) 一种基于有机无机杂化钙钛矿的阈值开关器件及其制备方法
Wang et al. Nanoionics‐enabled memristive devices: strategies and materials for neuromorphic applications
Dai et al. Recent advances in transistor‐based artificial synapses
Xiao et al. Recent advances in halide perovskite memristors: materials, structures, mechanisms, and applications
Kim et al. Recent advances in memristive materials for artificial synapses
Li et al. Metal halide perovskites for resistive switching memory devices and artificial synapses
CN108258115B (zh) 一种基于氧化铌选通管和氧化锆阻变层的1s1r器件及其制造方法
CN109755388B (zh) 基于有机/无机杂化钙钛矿材料同时实现易失和非易失的阻变存储器及其制备方法
JPH01214078A (ja) スイッチング素子
KR20190092577A (ko) 포르피린 멤리스터 및 그의 제조 방법
Sahoo et al. Nano-ionic solid state resistive memories (re-RAM): A review
Li et al. Electronic synaptic characteristics and simulation application of Ag/CeO2/Pt memristor
WO2022262836A1 (zh) 选通器及其制备方法
Sun et al. Logic function and random number generator build based on perovskite resistive switching memory and performance conversion via flexible bending
KR102009569B1 (ko) 3차원 구조의 시냅스 소자 및 이의 제조 방법
Chang et al. Emerging polymer electrets for transistor-structured memory devices and artificial synapses
CN112467031A (zh) 基于Ag-In-Zn-S量子点的低功耗忆阻器及其制备方法
Gupta et al. Perovskite based low power synaptic memristor device for neuromorphic application
Zeng et al. Solution-processed InGaZnO-based artificial neuron for neuromorphic system
CN112687792B (zh) 一种光刺激两端人工突触器件及制备方法和应用
Xu et al. Organic frameworks memristor: An emerging candidate for data storage, artificial synapse, and neuromorphic device
US8531861B2 (en) One time programming memory and method of storage and manufacture of the same
CN208127244U (zh) 一种基于氧化铌选通管和氧化锆阻变层的1s1r器件
Chen et al. Synaptic plasticity of a microfluidic memristor with a temporary memory function based on an ionic liquid in a capillary tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18945116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18945116

Country of ref document: EP

Kind code of ref document: A1