WO2020130386A1 - Sintered ore manufacturing apparatus, sintered ore manufacturing method, sintered ore, and charging material for manufacturing sintered ore - Google Patents

Sintered ore manufacturing apparatus, sintered ore manufacturing method, sintered ore, and charging material for manufacturing sintered ore Download PDF

Info

Publication number
WO2020130386A1
WO2020130386A1 PCT/KR2019/016282 KR2019016282W WO2020130386A1 WO 2020130386 A1 WO2020130386 A1 WO 2020130386A1 KR 2019016282 W KR2019016282 W KR 2019016282W WO 2020130386 A1 WO2020130386 A1 WO 2020130386A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded body
particle size
sintered
raw material
mixture
Prior art date
Application number
PCT/KR2019/016282
Other languages
French (fr)
Korean (ko)
Inventor
박종인
조병국
유종우
김성완
정은호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2020130386A1 publication Critical patent/WO2020130386A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/16Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using pocketed rollers, e.g. two co-operating pocketed rollers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
    • F27B21/04Sintering pots or sintering pans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge

Definitions

  • the present invention relates to a sintered ore manufacturing apparatus, a sintered ore manufacturing method, a sintered ore and a charge for manufacturing the sintered ore. More specifically, the molded body containing the fine iron ore is loaded into the sintered bogie together with the blended raw material containing the iron ore, but the molded body having a large particle size is induced to be preferentially charged to the lower portion in the sintered bogie to improve air permeability during sintering.
  • the present invention relates to a sintered ore manufacturing apparatus and a method for manufacturing a sintered ore, and thus a charge for manufacturing the sintered ore and the sintered ore.
  • the sintering ore manufacturing process for sintering the fine iron ore to a size suitable for blast furnace use is mainly a Dwight-Lyoid (hereinafter referred to as "DL") sintering process capable of mass production.
  • DL-type sintering process iron ore, auxiliary materials and fuel (powder coke, anthracite) are put in a drum mixer to be mixed and humidified (approximately 7 to 8% by weight of raw material) to pseudo-particle the sintered blended raw material to balance the sintering machine. Charge to a certain height on the bed.
  • the sintered blended raw material proceeds while forcibly sucking air from below and sintered ore is produced.
  • the sintered ore is cooled in a cooler through a crusher of the light distribution unit, and is classified into a particle size of 5 to 50 mm, which is easy to charge and react in the blast furnace, and is transferred to the blast furnace.
  • iron ore having a very high fineness ratio such as fine iron ore produced through the beneficiation process of iron ore, is used as a sintered raw material, it is manufactured as an assembly through a separate pre-treatment. It is common.
  • the strength greatly affects the breathability of the sintered layer. Therefore, there is a need for a method that can be manufactured to have a strength that can withstand mechanical, thermal shock, etc. that the assembly receives during transport, loading, and firing.
  • the molded body containing the fine iron ore is loaded into the sintered bogie together with the blended raw material containing the iron ore, but it is possible to improve the air permeability during sintering by inducing that the molded body having a large particle size is preferentially charged to the lower portion in the sintered bogie. It provides a sintered ore manufacturing apparatus and a method for manufacturing the sintered ore, and thus provides a charge for manufacturing the sintered ore and the sintered ore.
  • An apparatus for manufacturing a sintered ore includes a mixture manufacturing unit for mixing a first mixture raw material containing iron ore to prepare a mixture; Pellet production unit for producing a pellet by mixing and assembling a second blend raw material containing fine iron ore; A molded product manufacturing unit for compression molding the pellet to produce a molded body having a larger particle size or density than the mixed body; A charging unit formed in a cycloidal curved shape, and dropping the mixture and the molded body to induce preferential lower charging of the molded body having a larger particle size or density than the mixed body; And a sintered bogie which is disposed below the charging unit and into which the mixed body and the molded body are charged.
  • the charging unit with respect to the total height 100% of the charge for manufacturing the sintered ore loaded into the sintered bogie, 90% by weight or more of the molded body may be positioned at a height of 40% or less from the inner lower surface of the sintered bogie.
  • the mixture manufacturing unit includes a first storage bin in which the iron ore is stored, a first raw material supplying unit supplying the first mixing raw material; And a first mixer for mixing the first blended raw materials supplied from the first raw material feeder to prepare a mixed body.
  • the pellet manufacturing unit includes a second storage bin in which the fine iron ore is stored, a second raw material supplying unit for supplying the second blended raw material; A second mixer mixing the second blending raw material supplied from the second raw material supplying machine; And a pelletizer that assembles the second blending raw material supplied from the second mixer to manufacture the pellets.
  • the mixture manufacturing unit may further include a iron ore sorting machine for sorting the particle size of the iron ore supplied from the first storage bin and supplying the iron ore having a predetermined particle size or less to the second mixer.
  • a iron ore sorting machine for sorting the particle size of the iron ore supplied from the first storage bin and supplying the iron ore having a predetermined particle size or less to the second mixer.
  • the molded product manufacturing unit a pair of compression rolls arranged side by side to compress the pellets; A pellet feeder disposed on the pair of compression rolls to supply the pellets between the pair of compression rolls; And a crusher for crushing pellets compressed through the pair of compression rolls to produce the molded body.
  • the molded body manufacturing unit may further include a pellet sorter for sorting the particle size of compressed pellets supplied from the pair of compressed rolls and supplying the compressed pellets having a predetermined particle size or less to the pellet feeder.
  • the molded body manufacturing unit may further include a molded body sorting machine for sorting the particle size of the molded body supplied from the crusher and supplying the molded body exceeding a predetermined particle size to the pellet feeder.
  • the charging unit comprises a plurality of charging rolls arranged side by side, and the central axis of the plurality of charging rolls may be arranged along a cycloidal curve.
  • the charging unit may include an integral charging suit formed as a curved surface along a cycloid curve.
  • a method for manufacturing a sintered ore comprises the steps of mixing a first blended raw material containing iron ore to prepare a mixture; Preparing a pellet by mixing and assembling a second blended raw material containing pulverized iron ore; Compression molding the pellet to produce a molded body having a larger particle size or density than the mixed body; And loading the mixture and the molded body into a sintered bogie, but preferentially loading a molded body having a larger particle size or density than the mixed body into the lower portion of the sintered bogie using a charging suit formed along a cycloid curve.
  • the manufacturing of the mixture may include supplying a first blended raw material containing iron ore, an auxiliary raw material, and fuel having a particle size of 10 mm or less; And mixing the first blended raw material through a first mixer to prepare a mixed body.
  • the manufacturing of the mixture may further include; selecting the particle size of the iron ore having a particle size of 10 mm or less and including the iron ore having a particle size of 3 mm or less in the second mixture raw material.
  • the manufacturing of the pellets may include: supplying a second blended raw material containing fine iron ore having a particle size of 100 ⁇ m or less, an auxiliary raw material, and a fuel; Mixing the second blending material through a second mixer; And manufacturing the mixed second blend raw material into pellets having a particle size of 30 mm or less.
  • the manufacturing of the molded body may include compressing the pellets using a pair of compression rolls arranged side by side; And crushing the compressed pellets to produce a molded body having a particle size of 4 cm or less.
  • the step of manufacturing the molded body may further include; selecting the particle size of the compression-molded pellets and supplying the compressed pellets having a particle size of 3 mm or less to the pair of compression rolls.
  • the step of manufacturing the molded body may further include the step of selecting the particle size of the molded body and supplying the molded body having a particle size exceeding 4 cm with the pair of compression rolls.
  • the molded body In the step of loading the mixture and the molded body into a sintered truck, with respect to 100% by weight of the sintered raw material containing the mixture and the molded body, the molded body may be 30% by weight or less.
  • the average particle size of the mixed body may be 10 mm or less, and the average particle size of the molded body may be 4 cm or less.
  • the sintered ore according to an embodiment of the present invention includes a low-reduction portion and a high-reduction portion, and the RI of the low-reduction portion is 65 to 70, and the RI of the high-reduction portion may exceed 70.
  • RI of the testicle may be 75 to 80 days.
  • the charge for manufacturing a sintered ore is a charge for manufacturing a sintered ore located in a sintered bogie, a mixture composed of a first blended raw material containing iron ore; And a molded body made of a second blended raw material containing pulverized iron ore and having a particle size or density greater than that of the mixed body; and including, at least 90% by weight of the molded body, the total height of the charge for manufacturing the sintered ore charged in the sintered bogie 100 With respect to %, it is located at a height of 40% or less from the inner lower surface of the sintered bogie.
  • the molded body may be 30% by weight or less with respect to 100% by weight of the charge for preparing the sintered ore.
  • the molded body containing the fine iron ore is loaded into the sintered bogie together with the blended raw material containing the iron ore, but the molded body having a large particle size or density is preferential to the lower portion in the sintered bogie.
  • the air permeability is improved during sintering, and the effect of improving productivity as the combustion rate increases can be expected.
  • FIG. 1 is a view showing a schematic view of a sintered ore manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view showing a charging unit and a sintering bogie of a sintered ore manufacturing apparatus according to an embodiment of the present invention.
  • Fig. 3 is a diagram showing the equation (left) showing the correlation between the particle size and density of particles and the horizontal drop distance, and the segregation of the sintered raw material (right).
  • FIG. 4 is a view showing the compressive strength of the raw material containing the fine iron ore.
  • FIG. 5 is a view showing the charging of the sintered raw material according to the sintered ore manufacturing method according to an embodiment of the present invention.
  • FIG. 6 is a view showing a state of a sintered ore according to an embodiment of the present invention.
  • FIG. 7 is a chart comparing the sintered ore productivity, the degree of reduction and the generated slag volume in one example and a comparative example of the present invention.
  • first, second and third are used to describe various parts, components, regions, layers and/or sections, but are not limited thereto. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, a first portion, component, region, layer or section described below may be referred to as a second portion, component, region, layer or section without departing from the scope of the present invention.
  • one part When one part is said to be “on” or “on” another part, it may be directly on or on the other part, or another part may be involved therebetween. In contrast, if one part is said to be "just above” another part, no other part is interposed therebetween.
  • the sintered ore manufacturing apparatus is a mixture manufacturing unit for mixing a first mixture raw material containing iron ore, a second mixture raw material containing fine iron ore Pellet production unit for mixing and assembling pellets to produce pellets, compression molded pellets to produce molded bodies having a particle size or density greater than that of the mixture, formed along a cycloidal curve, charging unit and charging unit for dropping the mixture and the molded body It includes a sintered bogie, which is disposed below the unit and charged with a mixture and a molded body.
  • particle size may mean a diameter of particles. In some cases, the particle size can be understood as the mean particle size.
  • the mixture manufacturing unit prepares a mixture by mixing the first mixture raw material containing the iron ore.
  • the first compounding material may include iron ore, an auxiliary material and fuel having a particle size of 10 mm or less.
  • the mixture manufacturing unit includes a first storage bin in which the iron ore is stored, and a first mixer that mixes the first raw material feeder supplying the first raw material feed and the first raw material feed supplied from the first raw material feeder to manufacture the mixed material. It can contain.
  • the first raw material feeder stores a first auxiliary storage bin in which by-products such as dust, water, slaked lime, limestone, tar, starch, and molasses are stored in a binder. It may further include a first fuel storage bin in which bins and buncokes or anthracite are stored.
  • the first mixer is connected to the first raw material feeder, and is supplied with iron ore, an auxiliary raw material, a binder, and fuel from the first raw material feeder to mix and assemble to manufacture a mixture.
  • the first mixer may be composed of a two-stage mixer.
  • the pellet manufacturing unit prepares pellets by mixing and assembling a second blended raw material containing fine iron ore.
  • the second blended raw material may include fine iron ore having a particle size of 100 ⁇ m or less, an auxiliary raw material, and fuel.
  • the pellet manufacturing unit includes a second storage bin in which pulverized iron ore is stored, from a second raw material feeder for supplying the second raw material, and from a second mixer and a second mixer for mixing the second raw material supplied from the second raw material feeder. It may include a pelletizer for manufacturing a pellet by assembling the supplied second compounding material.
  • the second raw material feeder may further include a second storage tank in which limestone is stored, a second fuel storage bin in which coke or anthracite is stored, and a binder storage bin in which coke is stored.
  • a second storage tank in which limestone is stored
  • a second fuel storage bin in which coke or anthracite is stored
  • a binder storage bin in which coke is stored.
  • the second mixer is connected to the second raw material feeder, and may serve to receive and mix pulverized iron ore, auxiliary raw materials, fuel, and binder from the second raw material feeder.
  • the second mixer may be composed of a two-stage mixer.
  • the pelletizer may be manufactured in pellet form by assembling the mixed second blending raw material supplied from the second mixer in connection with the second mixer.
  • the second blended raw material is manufactured in pellet form using a pelletizer composed of a micro-pelletizer before compression molding to facilitate the use of fine powder, and in the future, during compression molding, the loading of the blended raw material is smooth You can do it.
  • the mixture manufacturing unit may further include an iron ore sorter for sorting the particle size of the iron ore supplied from the first storage bin and supplying the iron ore having a predetermined particle size or less to the second mixer.
  • an iron ore sorter for sorting the particle size of the iron ore supplied from the first storage bin and supplying the iron ore having a predetermined particle size or less to the second mixer.
  • the iron ore sorter is connected to the first storage bin and the second mixer to select the particle size of the iron ore supplied from the first storage bin to the first mixer through a screen.
  • the predetermined particle size is 3 mm or less
  • the iron ore having a particle size of 3 mm or less can be supplied to the second mixer to be mixed together with the second blended raw material. Through this, it is possible to improve the efficiency of the use of iron ore having a fine particle size.
  • the molded body manufacturing unit compresses the pellets supplied from the pellet manufacturing unit to produce a molded body having a larger particle size or density than the mixed body.
  • the molded body manufacturing unit is arranged side by side to compress the pellets through a pair of compression rolls, a pair of compression rolls disposed on top of the compression rolls to supply pellets between a pair of compression rolls and a pair of compression rolls It may include a crusher for crushing the pellets to prepare a molded body.
  • a pair of compression rolls are spaced apart from one another at regular intervals and may serve to compress pellets supplied therebetween.
  • the shape of the molded body varies depending on the shape of the roll tire disposed on the outer side of the compressed roll.
  • the pellet feeder is connected to the pelletizer and is disposed on the top of the pair of compression rolls to supply the pellets supplied from the pelletizer between the pair of compression rolls.
  • a pellet screw feeder may be further included to smoothly supply pellets between a pair of compression rolls.
  • Compressed pellets prepared through a pair of compression rolls can be crushed by being placed under a pair of extrusion rolls. Specifically, it can be crushed into a molded body having a particle size of 4 cm or less.
  • the molded body manufacturing unit may further include a pellet sorter for sorting the particle size of compressed pellets supplied from a pair of compression rolls and supplying the compressed pellets having a predetermined particle size or less to a pellet feeder.
  • a pellet sorter for sorting the particle size of compressed pellets supplied from a pair of compression rolls and supplying the compressed pellets having a predetermined particle size or less to a pellet feeder.
  • the pellet sorter is connected to a pair of compressed rolls and a pellet feeder to select the particle size of compressed pellets supplied from a pair of compressed rolls to a crusher through a screen.
  • a predetermined particle size is 3 mm
  • compressed pellets having a particle size of 3 mm or less can be compressed together with pellets supplied from a pelletizer by re-supplying them to a pellet feeder.
  • the molded body manufacturing unit may further include a molded body sorting machine for sorting the particle size of the molded body supplied from the crusher and supplying the molded body exceeding a predetermined particle size to the pellet feeder.
  • the molded body sorting machine is connected to the crusher and the pellet feeder to screen the particle size of the compressed pellets supplied from the crusher to the charging unit through a screen.
  • the predetermined particle size is 4 cm
  • the molded body having a particle size exceeding 4 cm can be compressed with the pellet supplied from the pelletizer by supplying it again to the pellet feeder.
  • the charging unit is formed in the form of a cycloidal curve, and when the mixture and the molded body are dropped, the mixture and the molded body are guided to be charged by the sintering cart along the cycloidal curve.
  • the horizontal dropping distance increases so that the molded body having a relatively large particle size or density of the particle is a mixed body.
  • the horizontal drop distance may increase.
  • L means the horizontal drop distance
  • U means the horizontal departure speed
  • ⁇ p means the density of the particles
  • d means the particle size.
  • is the viscosity of the air in which the particles are present. Means.
  • the charging unit formed in the form of a cycloid curve since the horizontal dropping distance of the molded body having a relatively large particle size or density increases, segregation charge of the sintered raw material containing the mixture and the molded body can be maximized.
  • the sintered raw material containing the mixed body and the molded body is charged in the form of horizontal segregation according to the above-described principle, but is loaded in the sintered bogie moving in the horizontal direction, so that the horizontal segregation can be converted to the vertical segregation form.
  • most of the molded body having a relatively large particle size or density may be located at the bottom of the inside of the sintered bogie, and most of the mixture having a relatively small particle size or density may be located at the top of the sintered bogie.
  • 90% by weight or more of the molded body by the charging unit may be located at a height of 40% or less from the inner bottom surface of the sintered bore with respect to 100% of the total height of the mixed body and the molded body charged in the sintered bogie.
  • the charging unit comprises a plurality of charging rolls arranged side by side, and the central axis of the plurality of charging rolls may be arranged along a cycloidal curve.
  • a plurality of charging rolls are arranged side by side, and the rotational axes of the plurality of charging rolls are arranged along a cycloidal curve based on the side view, so that the mixture and the molded body can be induced to be charged by sintering along the cycloidal curve.
  • the charging unit may include an integral charging suit formed as a curved surface along a cycloid curve.
  • the integral charging suit formed as a curved surface along the cycloid curve it is possible to induce the mixture and the molded body to be charged by the sintering cart along the cycloid curve.
  • the method for manufacturing a sintered ore comprises the steps of mixing a first blended raw material containing iron ore to prepare a mixture, mixing and assembling a second blended raw material containing fine iron ore to produce pellets, And compression molding the pellet to produce a molded body having a larger particle size or density than the mixed body, and charging the mixed body and the molded body into a sintered bogie using a charging suit formed along a cycloid curve.
  • the first mixed raw material containing the iron ore is mixed to prepare the mixed body.
  • the step of manufacturing a mixture includes supplying a first mixture raw material containing iron ore, sub-materials and fuel having a particle size of 10 mm or less and mixing the first mixture raw material through a first mixer to produce a mixture. can do.
  • the supplied first blended raw material After supplying the first blended raw material containing iron ore, sub-raw materials and fuel having a particle size of 10 mm or less, the supplied first blended raw material can be mixed and assembled to produce a mixture.
  • the pellets are prepared by mixing and assembling the second blended raw material containing the fine iron ore.
  • the steps of manufacturing the pellets include supplying a second blended raw material containing fine iron ore having a particle size of 100 ⁇ m or less, auxiliary materials and fuel, mixing the second blended raw material through a second mixer, and the mixed second. It may include the step of preparing the blended raw material into pellets having a particle size of 30 mm or less.
  • the blended raw material After supplying the second blended raw material containing fine iron ore, sub-raw material and fuel having a particle size of 100 ⁇ m or less, the blended raw material is mixed through a second mixer, and the second blended raw material mixed through a pelletizer has a particle size of 30 mm or less. Can be made into pellets.
  • the second blended raw material is manufactured in pellet form using a pelletizer composed of a micro-pelletizer before compression molding to facilitate the use of fine powder, and in the future, during compression molding, the loading of the blended raw material is smooth You can do it. In addition, since it has an effect similar to the two-stage compression, the molding strength may be increased.
  • the step of manufacturing the mixture may further include the step of selecting the particle size of the iron ore having a particle size of 10 mm or less and including the iron ore having a particle size of 3 mm or less in the second compounding material.
  • the efficiency of utilization of iron ore with fine particle size can be improved by supplying the iron ore with a particle size of 3 mm or less through the screen to the second mixer by mixing the particle size of the iron ore supplied to the first mixer with the second mixing raw material.
  • the pellet is compression molded to produce a molded body having a larger particle size or density than the mixed body.
  • the step of manufacturing the molded body may include the step of compressing the pellets using a pair of compression rolls arranged side by side, and the step of crushing the compressed pellets to produce a molded body having a particle size of 4 cm or less.
  • the pellets can be compressed, and the compressed pellets can be crushed to produce a molded body having a particle size of 4 cm or less. This is because, when the particle size of the molded body exceeds 4 cm, when the particle size of the molded body is too large and loaded into the sintered bogie, the heat transfer is not properly performed due to the size of the molded body, and thus, the sintering may be insufficient.
  • It can be compression molded at a pressure of 4000 kgf/Br. As shown in FIG. 4, in the case of fine iron ore, there is a difference in compressive strength for each raw material, and a raw material having a compressive strength of 100 kgf/Br or more may be used. It can be seen that when the molding strength by a pair of compression rolls is increased, the compression strength also tends to increase.
  • the raw material containing the fine iron ore can be used by mixing not only one kind but also two or more kinds of raw materials because the compressive strength at the time of mixing can be predicted when the compressive strength of each raw material is known.
  • the step of manufacturing the molded body may further include the step of selecting the particle size of the compression-molded pellets and supplying the compressed pellets having a particle size of 3 mm or less with a pair of compression rolls.
  • the step of manufacturing the molded body may further include the step of selecting the particle size of the molded body and supplying the molded body having a particle size exceeding 4 cm with a pair of compression rolls.
  • the efficiency of utilization of the second blended raw material containing the fine iron ore can be improved, and the particle size of the molded body is too large to be loaded into the sintered truck.
  • the mixed body and the molded body are dropped into the sintered bogie by using the charging suit formed in the form of a cycloid curve. Accordingly, according to the principle of FIG. 3 and the above equation, as the particle size or density increases, the horizontal dropping distance increases, so that the molded body having a relatively large particle size or density may increase the horizontal dropping distance than the mixed body.
  • the segregation charge of the sintered raw material containing the mixture and the molded body is maximized and charged to the sintered bogie moving in a horizontal direction, so that most of the molded bodies having a relatively large particle size or density are located at the bottom of the inside of the sintered bogie. Most of the mixtures with relatively small particle size or density can be positioned on top of the sintered bogie.
  • the molded body located at the bottom of the sintered bogie can be sintered by lower heat storage.
  • the particle size of the mixed body is 10 mm or less, and the particle size of the molded body is 4 cm or less, the particle size of the molded body is larger than the particle size of the mixed body, so that the sintered raw material can be loaded in the sintered bogie in the form of vertical segregation.
  • the molded body in the step of charging the mixture and the molded body to the sintered truck, with respect to 100% by weight of the sintered raw material containing the mixture and the molded body, the molded body may be 30% by weight or less. When the content of the molded body exceeds 30% by weight, firing may be incomplete due to insufficient fuel.
  • More than 90% by weight of the molded body may be located at a height of 40% or less from the inner bottom surface of the sintered bore, relative to 100% of the total height of the mixed body and the molded body charged in the sintered bogie.
  • a mixture prepared by mixing a molded body with a first compounding material in a first mixer can be charged to a sintered bogie and sintered to produce a sintered ore.
  • the sintered ore according to an embodiment of the present invention includes a low-reduction portion and a high-reduction portion, the RI of the low-reduction portion is 65 to 70, and the RI of the high-reduction portion exceeds 70.
  • RI is a Reducibility Index, and may mean a degree of reduction.
  • the sintered ore according to an embodiment of the present invention may be divided into a low-reduction portion and a high-reduction portion.
  • the portion of the low-reduction portion is a portion represented by a sinter, and may be a portion in which the first blended raw material containing iron ore, sub-material and fuel having a particle size of 10 mm or less is sintered at a temperature of 1100°C or higher.
  • the portion of the high-reduction portion is represented by a briquette, and after the second blended raw material containing fine iron ore, sub-raw materials and fuel having a particle size of 100 ⁇ m or less is manufactured in pellet form, it is manufactured into a compression molded molded body and sintered at a temperature of 1100°C or higher. It can be a part.
  • the RI of the low-reduction portion is 65 to 70, the RI of the high-reduction portion exceeds 70, and specifically, the RI of the high-reduction portion may be 75 to 80.
  • the RI of the high-reduction unit may be greater than the RI of the low-reduction unit.
  • the low-reducing portion and the high-reducing portion coexist so that the advantages of the low-reducing portion and the high-reducing portion can be expected to be mixed.
  • the density and room temperature strength may be higher than the low-reducing portion.
  • the charge for manufacturing a sintered ore is a charge for manufacturing a sintered ore located in a sintered bogie, consisting of a mixture of the first mixture raw material containing iron ore and a second mixture raw material containing fine iron ore, It includes a molded body having a larger particle size or density than the mixed body, and 90% by weight or more of the molded body is located at a height of 40% or less from the inner bottom surface of the sintered bore with respect to the total height 100 of the charge for preparing the sintered ore.
  • the molded body may be 30% by weight or less.
  • the segregation charge of the sintered raw material containing the mixture and the molded body is maximized to be charged in the sintered bogie moving in a horizontal direction, so that most of the molded bodies having a relatively large particle size or density are located at the bottom of the inside of the sintered bogie. Most of the mixtures with relatively small particle size or density can be positioned on top of the sintered bogie.
  • 90% by weight or more of the molded body is located at a height of 40% or less from the inner lower surface of the sintered bore with respect to 100% of the total height of the mixed body and the molded body charged in the sintered bogie.
  • Example 1 A mixture was prepared by mixing a coarse material composed of iron ore, limestone with a particle size of 10 mm or less, and a binder made of coke, fuel and coke composed of anthracite using a first mixer.
  • a fine iron ore having a particle size of 100 ⁇ m or less, a secondary raw material composed of dust produced in a steel mill, and powder and coke, an anthracite fuel and a binder were mixed using a second mixer. Subsequently, pellets having a particle size of 30 mm or less were manufactured through a pelletizer.
  • the pellets were compression molded through a compacting type twin roll type compressor, and then crushed by a crusher to prepare a molded body having a particle size of 4 cm or less.
  • the mixture and the molded body prepared as above were loaded into the sintered bogie using a charging chute formed in the form of a cycle rod curve.
  • the molded body was added to 10% by weight relative to 100% by weight of the total sintered raw material charged to the sintered bogie.
  • the sintered ore was prepared by igniting using an ignition furnace at the top of the sintered bogie and then sucking air at the bottom to sinter at a temperature of 1200°C.
  • Example 2 A sintered ore was prepared under the same conditions as in Example 1, but the molded body was added in an amount of 20% by weight with respect to 100% by weight of the total sintered raw material charged in the sintered bogie.
  • Example 3 A sintered ore was prepared under the same conditions as in Example 1, but the molded body was added in an amount of 30% by weight with respect to 100% by weight of the total sintered raw material charged in the sintered bogie.
  • Comparative Example 1 A mixture was prepared by mixing a binder composed of iron ore and limestone having a particle size of 10 mm or less, limestone, fuel and coke composed of anthracite coal using a first mixer.
  • the sintered ore was prepared by loading the mixture into a sintered bogie, igniting using an ignition furnace at the top of the sintered bogie, and then sucking air at the bottom to sinter at a temperature of 1200°C.
  • Example 2 A sintered ore was manufactured under the same conditions as in Example 2, but instead of being charged to the sintered bogie using a charging suit formed in the form of a cycle rod curve, the sintered bore was loaded using a planar charging chute and then 1200 Sintered ores were prepared by sintering at a temperature of °C.
  • Example 1 to 3 particle analysis was performed on the charging behavior of the mixed body and the molded body charged to the sintered bogie. As shown in FIG. 3, in Examples 1 to 3, the molded body was preferentially charged to the lower portion in the sintered bogie by the charging suit in the form of a cycloid curve.
  • the molded body in the case of Comparative Example 2, which was loaded into the sintered bogie by using the flat type charging chute, the molded body generally showed a shape in which it was charged to the lower portion in the sintered bogie, but more than 90% by weight of the molded body was charged to the sintered bogie. It was not located at a height of 40% or less with respect to the total height of the mixed and molded products.
  • Reducibility Index which means the degree of reduction, was measured by the reduction rate method of ISO 7215.
  • the reduction index was 65 to 70, and the portion where the molded body was sintered was 75 to 80.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Introduced is a sintered ore manufacturing apparatus comprising: a mixture-producing unit for producing a mixture by mixing a first mixed raw material containing iron ore powder; a pellet fabrication unit for fabricating pellets by mixing and assembling a second mixed raw material containing fine iron ore; a molded body fabrication unit for fabricating a molded body having a greater particle size or a greater density than the mixture through compression-molding of the pellets; a charging unit which is formed in the shape of a cycloidal curve, and which drops the mixture and the molded body such that bottom charging of the molded body having the greater particle size or greater density than the mixture can be preferentially induced; and a sintering trailer, into which the mixture and the molded body are charged, arranged under the charging unit.

Description

소결광 제조장치, 소결광 제조방법, 소결광 및 소결광 제조용 장입물Sinter ore manufacturing equipment, sinter ore manufacturing method, sinter ore and charge for manufacturing sinter ore
본 발명은 소결광 제조장치, 소결광 제조방법, 소결광 및 소결광 제조용 장입물에 관한 것이다. 보다 구체적으로, 미분철광석이 포함된 성형체를 분철광석이 포함된 배합원료와 함께 소결 대차에 장입시키되, 입도가 큰 성형체가 소결 대차 내에서 하부에 우선적으로 장입되도록 유도하여 소결 시, 통기성을 향상시킬 수 있는 소결광 제조장치 및 소결광 제조방법에 관한 것이며, 이에 따른 소결광 및 소결광 제조용 장입물에 관한 것이다.The present invention relates to a sintered ore manufacturing apparatus, a sintered ore manufacturing method, a sintered ore and a charge for manufacturing the sintered ore. More specifically, the molded body containing the fine iron ore is loaded into the sintered bogie together with the blended raw material containing the iron ore, but the molded body having a large particle size is induced to be preferentially charged to the lower portion in the sintered bogie to improve air permeability during sintering. The present invention relates to a sintered ore manufacturing apparatus and a method for manufacturing a sintered ore, and thus a charge for manufacturing the sintered ore and the sintered ore.
미립의 분철광석을 소결하여 고로 사용에 적합한 크기로 제조하는 소결광 제조 공정은 대량 생산이 가능한 드와이트-로이드(Dwight-Lyoid, 이하, "DL"이라 함)식 소결 공정이 주로 이용된다. 이러한 DL식 소결 공정에서는 분철광석, 부원료 및 연료(분코크스, 무연탄) 등을 드럼 믹서에 넣어 혼합 및 조습(원료중량비 약 7~8%)을 실시하여 소결 배합원료를 의사 입자화시켜 소결기 대차상에 일정 높이로 장입한다.The sintering ore manufacturing process for sintering the fine iron ore to a size suitable for blast furnace use is mainly a Dwight-Lyoid (hereinafter referred to as "DL") sintering process capable of mass production. In this DL-type sintering process, iron ore, auxiliary materials and fuel (powder coke, anthracite) are put in a drum mixer to be mixed and humidified (approximately 7 to 8% by weight of raw material) to pseudo-particle the sintered blended raw material to balance the sintering machine. Charge to a certain height on the bed.
그리고 점화로에 의해 표면 점화 후, 하방으로부터 공기를 강제 흡인하면서 소결 배합원료의 소성이 진행되고 소결광이 제조된다. 소결이 완료된 소결광은 배광부의 파쇄기(crusher)를 거쳐 냉각기(cooler)에서 냉각되고, 고로 내 장입 및 반응에 용이한 5~50㎜의 입도로 분급되어 고로로 이송된다.Then, after the surface is ignited by the ignition furnace, firing of the sintered blended raw material proceeds while forcibly sucking air from below and sintered ore is produced. After the sintering is completed, the sintered ore is cooled in a cooler through a crusher of the light distribution unit, and is classified into a particle size of 5 to 50 mm, which is easy to charge and react in the blast furnace, and is transferred to the blast furnace.
한편, 소결광 제조에 있어서 철 함량이 높고 입도가 비교적 큰 양질의 고품위 철광석이 감소함에 따라 입도 0.10㎜ 이하의 미분 비율이 높은 저품위 철광석의 사용량이 점차 증가하고 있다. 그런데 DL식 소결 공정에서 소결 반응을 효율적으로 진행시켜 생산성을 향상시키고, 양호한 품질의 소결광을 제조하기 위해서는 적정량의 공기가 층내를 흐를 수 있도록 통기성을 확보하는 것이 중요하다.On the other hand, in the production of sintered ore, the use of low-grade iron ore with a high fineness ratio of 0.10 mm or less is gradually increasing as the high-quality iron ore with a high iron content and a relatively large particle size decreases. However, in order to improve the productivity by efficiently proceeding the sintering reaction in the DL-type sintering process, and to produce a good quality sintered ore, it is important to ensure air permeability so that an appropriate amount of air flows through the layer.
따라서 소결원료 중 미분 비율의 최소화가 필요하며, 철광석의 선광 과정을 거쳐 생산되는 미분 철광석과 같이 미분 비율이 매우 높은 철광석을 사용할 경우에는 별도의 사전 처리를 통해 조립물로 제조하여 소결원료로 사용하는 것이 일반적이다.Therefore, it is necessary to minimize the fineness ratio among the sintered raw materials, and when iron ore having a very high fineness ratio, such as fine iron ore produced through the beneficiation process of iron ore, is used as a sintered raw material, it is manufactured as an assembly through a separate pre-treatment. It is common.
또한, 소결 과정에서 의사 입자의 입도 분포 외에 강도가 소결층의 통기성에 크게 영향을 미친다. 따라서 조립물이 수송, 장입, 그리고 소성 과정에서 받게 되는 기계적, 열적 충격 등에 견딜 수 있는 강도를 갖도록 제조할 수 있는 방법이 요구되고 있다.In addition, in the sintering process, in addition to the particle size distribution of the pseudo particles, the strength greatly affects the breathability of the sintered layer. Therefore, there is a need for a method that can be manufactured to have a strength that can withstand mechanical, thermal shock, etc. that the assembly receives during transport, loading, and firing.
본 발명은 미분철광석이 포함된 성형체를 분철광석이 포함된 배합원료와 함께 소결 대차에 장입시키되, 입도가 큰 성형체가 소결 대차 내에서 하부에 우선적으로 장입되도록 유도하여 소결 시, 통기성을 향상시킬 수 있는 소결광 제조장치 및 소결광 제조방법을 제공하며, 이에 따른 소결광 및 소결광 제조용 장입물을 제공한다.In the present invention, the molded body containing the fine iron ore is loaded into the sintered bogie together with the blended raw material containing the iron ore, but it is possible to improve the air permeability during sintering by inducing that the molded body having a large particle size is preferentially charged to the lower portion in the sintered bogie. It provides a sintered ore manufacturing apparatus and a method for manufacturing the sintered ore, and thus provides a charge for manufacturing the sintered ore and the sintered ore.
본 발명의 일 실시예에 의한 소결광 제조장치는 분철광석이 포함된 제1배합원료를 혼합하여 혼합체를 제조하는 혼합체 제조유닛; 미분철광석이 포함된 제2배합원료를 혼합하고 조립하여 펠렛을 제조하는 펠렛 제조유닛; 상기 펠렛을 압축 성형하여 상기 혼합체보다 입도 또는 밀도가 큰 성형체를 제조하는 성형체 제조유닛; 사이클로이드 곡선 형태로 형성되며, 상기 혼합체 및 상기 성형체를 낙하시키되, 상기 혼합체보다 입도 또는 밀도가 큰 성형체의 우선적인 하부 장입을 유도하는 장입유닛; 및 상기 장입유닛의 하방에 배치되어 상기 혼합체 및 상기 성형체가 장입되는 소결 대차;를 포함한다.An apparatus for manufacturing a sintered ore according to an embodiment of the present invention includes a mixture manufacturing unit for mixing a first mixture raw material containing iron ore to prepare a mixture; Pellet production unit for producing a pellet by mixing and assembling a second blend raw material containing fine iron ore; A molded product manufacturing unit for compression molding the pellet to produce a molded body having a larger particle size or density than the mixed body; A charging unit formed in a cycloidal curved shape, and dropping the mixture and the molded body to induce preferential lower charging of the molded body having a larger particle size or density than the mixed body; And a sintered bogie which is disposed below the charging unit and into which the mixed body and the molded body are charged.
상기 장입유닛은, 상기 소결 대차에 장입된 상기 소결광 제조용 장입물의 전체 높이 100%에 대하여, 상기 성형체의 90 중량% 이상을 상기 소결 대차 내부 하면으로부터 40% 이하의 높이에 위치시킬 수 있다.The charging unit, with respect to the total height 100% of the charge for manufacturing the sintered ore loaded into the sintered bogie, 90% by weight or more of the molded body may be positioned at a height of 40% or less from the inner lower surface of the sintered bogie.
상기 혼합체 제조유닛은, 상기 분철광석이 저장된 제1저장빈을 포함하며, 상기 제1배합원료를 공급하는 제1원료 공급기; 및 상기 제1원료 공급기로부터 공급받은 제1배합원료를 혼합하여 혼합체를 제조하는 제1믹서;를 포함할 수 있다.The mixture manufacturing unit includes a first storage bin in which the iron ore is stored, a first raw material supplying unit supplying the first mixing raw material; And a first mixer for mixing the first blended raw materials supplied from the first raw material feeder to prepare a mixed body.
상기 펠렛 제조유닛은, 상기 미분철광석이 저장된 제2저장빈을 포함하며, 상기 제2배합원료를 공급하는 제2원료 공급기; 상기 제2원료 공급기로부터 공급받은 제2배합원료를 혼합하는 제2믹서; 및 상기 제2믹서로부터 공급받은 제2배합원료를 조립하여 상기 펠렛을 제조하는 펠렛타이저;를 포함할 수 있다.The pellet manufacturing unit includes a second storage bin in which the fine iron ore is stored, a second raw material supplying unit for supplying the second blended raw material; A second mixer mixing the second blending raw material supplied from the second raw material supplying machine; And a pelletizer that assembles the second blending raw material supplied from the second mixer to manufacture the pellets.
상기 혼합체 제조유닛은, 상기 제1저장빈으로부터 공급되는 분철광석의 입도를 선별하여 소정의 입도 이하의 분철광석을 상기 제2믹서로 공급하는 철광석 선별기;를 더 포함할 수 있다.The mixture manufacturing unit may further include a iron ore sorting machine for sorting the particle size of the iron ore supplied from the first storage bin and supplying the iron ore having a predetermined particle size or less to the second mixer.
상기 성형체 제조유닛은, 나란히 배치되어 상기 펠렛을 압축시키는 한 쌍의 압축롤; 상기 한 쌍의 압축롤 상부에 배치되어 상기 펠렛을 상기 한 쌍의 압축롤 사이로 공급하는 펠렛 공급기; 및 상기 한 쌍의 압축롤을 통해 압축된 펠렛을 파쇄하여 상기 성형체를 제조하는 파쇄기;를 포함할 수 있다.The molded product manufacturing unit, a pair of compression rolls arranged side by side to compress the pellets; A pellet feeder disposed on the pair of compression rolls to supply the pellets between the pair of compression rolls; And a crusher for crushing pellets compressed through the pair of compression rolls to produce the molded body.
상기 성형체 제조유닛은, 상기 한 쌍의 압축롤로부터 공급되는 압축된 펠렛의 입도를 선별하여 소정의 입도 이하의 압축된 펠렛을 상기 펠렛 공급기로 공급하는 펠렛 선별기;를 더 포함할 수 있다.The molded body manufacturing unit may further include a pellet sorter for sorting the particle size of compressed pellets supplied from the pair of compressed rolls and supplying the compressed pellets having a predetermined particle size or less to the pellet feeder.
상기 성형체 제조유닛은, 상기 파쇄기로부터 공급되는 성형체의 입도를 선별하여 소정의 입도를 초과하는 성형체를 상기 펠렛 공급기로 공급하는 성형체 선별기;를 더 포함할 수 있다.The molded body manufacturing unit may further include a molded body sorting machine for sorting the particle size of the molded body supplied from the crusher and supplying the molded body exceeding a predetermined particle size to the pellet feeder.
상기 장입유닛은, 복수로 구성되어 나란하게 배치된 장입롤;을 포함하며, 상기 복수의 장입롤의 중심축은 사이클로이드 곡선을 따라 배열될 수 있다.The charging unit comprises a plurality of charging rolls arranged side by side, and the central axis of the plurality of charging rolls may be arranged along a cycloidal curve.
상기 장입유닛은, 사이클로이드 곡선을 따라 곡면으로 형성된 일체형 장입슈트;를 포함할 수 있다.The charging unit may include an integral charging suit formed as a curved surface along a cycloid curve.
본 발명의 일 실시예에 의한 소결광 제조방법은 분철광석이 포함된 제1배합원료를 혼합하여 혼합체를 제조하는 단계; 미분철광석이 포함된 제2배합원료를 혼합하고 조립하여 펠렛을 제조하는 단계; 상기 펠렛을 압축 성형하여 상기 혼합체보다 입도 또는 밀도가 큰 성형체를 제조하는 단계; 및 상기 혼합체 및 상기 성형체를 소결 대차에 장입하되, 사이클로이드 곡선을 따라 형성된 장입슈트를 이용하여 상기 혼합체보다 입도 또는 밀도가 큰 성형체를 상기 소결 대차의 하부에 우선적으로 장입하는 단계;를 포함한다.A method for manufacturing a sintered ore according to an embodiment of the present invention comprises the steps of mixing a first blended raw material containing iron ore to prepare a mixture; Preparing a pellet by mixing and assembling a second blended raw material containing pulverized iron ore; Compression molding the pellet to produce a molded body having a larger particle size or density than the mixed body; And loading the mixture and the molded body into a sintered bogie, but preferentially loading a molded body having a larger particle size or density than the mixed body into the lower portion of the sintered bogie using a charging suit formed along a cycloid curve.
상기 혼합체를 제조하는 단계는, 입도 10mm 이하의 분철광석, 부원료 및 연료가 포함된 제1배합원료를 공급하는 단계; 및 상기 제1배합원료를 제1믹서를 통해 혼합하여 혼합체를 제조하는 단계;를 포함할 수 있다.The manufacturing of the mixture may include supplying a first blended raw material containing iron ore, an auxiliary raw material, and fuel having a particle size of 10 mm or less; And mixing the first blended raw material through a first mixer to prepare a mixed body.
상기 혼합체를 제조하는 단계는, 상기 입도 10mm 이하의 분철광석의 입도를 선별하여 입도 3mm 이하의 분철광석을 제2배합원료에 포함시키는 단계;를 더 포함할 수 있다.The manufacturing of the mixture may further include; selecting the particle size of the iron ore having a particle size of 10 mm or less and including the iron ore having a particle size of 3 mm or less in the second mixture raw material.
상기 펠렛을 제조하는 단계는, 입도 100㎛ 이하의 미분철광석, 부원료 및 연료가 포함된 제2배합원료를 공급하는 단계; 상기 제2배합원료를 제2믹서를 통해 혼합하는 단계; 및 상기 혼합된 제2배합원료를 입도 30mm 이하의 펠렛으로 제조하는 단계;를 포함할 수 있다.The manufacturing of the pellets may include: supplying a second blended raw material containing fine iron ore having a particle size of 100 μm or less, an auxiliary raw material, and a fuel; Mixing the second blending material through a second mixer; And manufacturing the mixed second blend raw material into pellets having a particle size of 30 mm or less.
상기 성형체를 제조하는 단계는, 나란히 배치된 한 쌍의 압축롤을 이용하여 상기 펠렛을 압축하는 단계; 및 상기 압축된 펠렛을 파쇄하여 입도 4cm 이하의 성형체를 제조하는 단계;를 포함할 수 있다.The manufacturing of the molded body may include compressing the pellets using a pair of compression rolls arranged side by side; And crushing the compressed pellets to produce a molded body having a particle size of 4 cm or less.
상기 성형체를 제조하는 단계는, 상기 압축 성형된 펠렛의 입도를 선별하여 입도 3mm 이하의 압축된 펠렛을 상기 한 쌍의 압축롤로 공급하는 단계;를 더 포함할 수 있다.The step of manufacturing the molded body may further include; selecting the particle size of the compression-molded pellets and supplying the compressed pellets having a particle size of 3 mm or less to the pair of compression rolls.
상기 성형체를 제조하는 단계는, 상기 성형체의 입도를 선별하여 입도 4cm를 초과하는 성형체를 상기 한 쌍의 압축롤로 공급하는 단계;를 더 포함할 수 있다.The step of manufacturing the molded body may further include the step of selecting the particle size of the molded body and supplying the molded body having a particle size exceeding 4 cm with the pair of compression rolls.
상기 혼합체 및 성형체를 소결 대차에 장입하는 단계에서, 상기 혼합체 및 상기 성형체가 포함된 소결원료 100 중량%에 대하여, 상기 성형체는 30 중량% 이하일 수 있다.In the step of loading the mixture and the molded body into a sintered truck, with respect to 100% by weight of the sintered raw material containing the mixture and the molded body, the molded body may be 30% by weight or less.
상기 혼합체 및 성형체를 소결 대차에 장입하는 단계에서, 상기 성형체의 90 중량% 이상이 상기 소결 대차에 장입된 혼합체 및 성형체의 전체 높이 100%에 대하여, 상기 소결 대차 내부 하면으로부터 40% 이하의 높이에 위치할 수 있다.In the step of loading the mixture and the molded body to the sintered bogie, 90% by weight or more of the molded body to a height of 40% or less from the inner lower surface of the sintered bore with respect to 100% of the total height of the mixed body and the molded body charged to the sintered bogie Can be located.
상기 혼합체 및 성형체를 소결 대차에 장입하는 단계에서, 상기 혼합체의 평균 입도는 10mm 이하이고, 상기 성형체의 평균 입도는 4cm 이하일 수 있다.In the step of loading the mixed body and the molded body into the sintered bogie, the average particle size of the mixed body may be 10 mm or less, and the average particle size of the molded body may be 4 cm or less.
본 발명의 일 실시예에 의한 소결광은 저환원부 및 고환원부를 포함하고, 상기 저환원부의 RI는 65 내지 70이며, 상기 고환원부의 RI는 70을 초과할 수 있다.The sintered ore according to an embodiment of the present invention includes a low-reduction portion and a high-reduction portion, and the RI of the low-reduction portion is 65 to 70, and the RI of the high-reduction portion may exceed 70.
상기 고환원부의 RI는 75 내지 80일 수 있다.RI of the testicle may be 75 to 80 days.
본 발명의 일 실시예에 의한 소결광 제조용 장입물은 소결 대차 내에 위치하는 소결광 제조용 장입물로서, 분철광석이 포함된 제1배합원료로 이루어진 혼합체; 및 미분철광석이 포함된 제2배합원료로 이루어지며, 상기 혼합체보다 입도 또는 밀도가 큰 성형체;를 포함하고, 상기 성형체의 90 중량% 이상이 상기 소결 대차에 장입된 상기 소결광 제조용 장입물의 전체 높이 100%에 대하여, 상기 소결 대차 내부 하면으로부터 40% 이하의 높이에 위치한다.The charge for manufacturing a sintered ore according to an embodiment of the present invention is a charge for manufacturing a sintered ore located in a sintered bogie, a mixture composed of a first blended raw material containing iron ore; And a molded body made of a second blended raw material containing pulverized iron ore and having a particle size or density greater than that of the mixed body; and including, at least 90% by weight of the molded body, the total height of the charge for manufacturing the sintered ore charged in the sintered bogie 100 With respect to %, it is located at a height of 40% or less from the inner lower surface of the sintered bogie.
상기 소결광 제조용 장입물 전체 100 중량%에 대하여, 상기 성형체는 30 중량% 이하일 수 있다.The molded body may be 30% by weight or less with respect to 100% by weight of the charge for preparing the sintered ore.
본 발명의 일 실시예에 의한 소결광 제조장치의 경우, 미분철광석이 포함된 성형체를 분철광석이 포함된 배합원료와 함께 소결 대차에 장입시키되, 입도 또는 밀도가 큰 성형체가 소결 대차 내에서 하부에 우선적으로 장입되도록 유도하여 소결 시, 통기성이 향상되며, 연소 속도 증가에 따라 생산성이 향상되는 효과를 기대할 수 있다.In the case of a sintered ore manufacturing apparatus according to an embodiment of the present invention, the molded body containing the fine iron ore is loaded into the sintered bogie together with the blended raw material containing the iron ore, but the molded body having a large particle size or density is preferential to the lower portion in the sintered bogie. By inducing it to be charged, the air permeability is improved during sintering, and the effect of improving productivity as the combustion rate increases can be expected.
도 1은 본 발명의 일 실시예에 의한 소결광 제조장치의 모식도를 나타내는 도면이다.1 is a view showing a schematic view of a sintered ore manufacturing apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 의한 소결광 제조장치의 장입유닛 및 소결 대차를 나타낸 도면이다.2 is a view showing a charging unit and a sintering bogie of a sintered ore manufacturing apparatus according to an embodiment of the present invention.
도 3은 입자의 입도 및 밀도와 수평낙하거리의 상관관계를 나타내는 식(왼쪽)과, 소결원료의 편석 모습(오른쪽)을 나타내는 도면이다.Fig. 3 is a diagram showing the equation (left) showing the correlation between the particle size and density of particles and the horizontal drop distance, and the segregation of the sintered raw material (right).
도 4는 미분철광석을 포함하는 원료의 압축강도를 나타내는 도면이다.4 is a view showing the compressive strength of the raw material containing the fine iron ore.
도 5는 본 발명의 일 실시예에 의한 소결광 제조방법에 따른 소결원료의 장입모습을 나타내는 도면이다.5 is a view showing the charging of the sintered raw material according to the sintered ore manufacturing method according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 의한 소결광의 모습을 나타내는 도면이다.6 is a view showing a state of a sintered ore according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예 및 비교예의 소결광 생산성, 환원정도 및 발생 슬래그 부피를 비교한 도표이다.7 is a chart comparing the sintered ore productivity, the degree of reduction and the generated slag volume in one example and a comparative example of the present invention.
제1, 제2 및 제3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.Terms such as first, second and third are used to describe various parts, components, regions, layers and/or sections, but are not limited thereto. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, a first portion, component, region, layer or section described below may be referred to as a second portion, component, region, layer or section without departing from the scope of the present invention.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.The terminology used herein is only to refer to a specific embodiment and is not intended to limit the invention. The singular forms used herein also include plural forms unless the phrases clearly indicate the opposite. As used herein, the meaning of “comprising” embodies a particular property, region, integer, step, action, element, and/or component, and the presence or presence of another property, region, integer, step, action, element, and/or component. It does not exclude addition.
어느 부분이 다른 부분의 "위에" 또는 "상에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다.When one part is said to be "on" or "on" another part, it may be directly on or on the other part, or another part may be involved therebetween. In contrast, if one part is said to be "just above" another part, no other part is interposed therebetween.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.Although not defined differently, all terms including technical terms and scientific terms used herein have the same meaning as those generally understood by those skilled in the art to which the present invention pertains. Commonly used dictionary-defined terms are additionally interpreted as having meanings consistent with related technical documents and currently disclosed contents, and are not interpreted as ideal or very formal meanings unless defined.
이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art to which the present invention pertains can easily practice. However, the present invention can be implemented in many different forms and is not limited to the embodiments described herein.
소결광 제조장치Sinter ore manufacturing equipment
본 발명의 일 실시예에 의한 소결광 제조장치는 도 1 및 도 2에서와 같이, 분철광석이 포함된 제1배합원료를 혼합하여 혼합체를 제조하는 혼합체 제조유닛, 미분철광석이 포함된 제2배합원료를 혼합하고 조립하여 펠렛을 제조하는 펠렛 제조유닛, 펠렛을 압축 성형하여 혼합체보다 입도 또는 밀도가 큰 성형체를 제조하는 성형체 제조유닛, 사이클로이드 곡선을 따라 형성되며, 혼합체 및 성형체를 낙하시키는 장입유닛 및 장입유닛의 하방에 배치되어 혼합체 및 성형체가 장입되는 소결 대차를 포함한다.The sintered ore manufacturing apparatus according to an embodiment of the present invention, as shown in FIGS. 1 and 2, is a mixture manufacturing unit for mixing a first mixture raw material containing iron ore, a second mixture raw material containing fine iron ore Pellet production unit for mixing and assembling pellets to produce pellets, compression molded pellets to produce molded bodies having a particle size or density greater than that of the mixture, formed along a cycloidal curve, charging unit and charging unit for dropping the mixture and the molded body It includes a sintered bogie, which is disposed below the unit and charged with a mixture and a molded body.
본 명세서에서 입도란 입자의 직경을 의미할 수 있다. 경우에 따라서 입도는 평균 입경의 의미로 이해될 수 있다.In the present specification, particle size may mean a diameter of particles. In some cases, the particle size can be understood as the mean particle size.
혼합체 제조유닛은 분철광석이 포함된 제1배합원료를 혼합하여 혼합체를 제조한다. 구체적으로, 제1배합원료는 입도 10mm 이하의 분철광석, 부원료 및 연료를 포함할 수 있다.The mixture manufacturing unit prepares a mixture by mixing the first mixture raw material containing the iron ore. Specifically, the first compounding material may include iron ore, an auxiliary material and fuel having a particle size of 10 mm or less.
혼합체 제조유닛은 분철광석이 저장된 제1저장빈을 포함하며, 제1배합원료를 공급하는 제1원료 공급기 및 제1원료 공급기로부터 공급받은 제1배합원료를 혼합하여 혼합체를 제조하는 제1믹서를 포함할 수 있다.The mixture manufacturing unit includes a first storage bin in which the iron ore is stored, and a first mixer that mixes the first raw material feeder supplying the first raw material feed and the first raw material feed supplied from the first raw material feeder to manufacture the mixed material. It can contain.
제1원료 공급기는 입도 10mm 이하의 분철광석이 저장된 제1저장빈 외에도 더스트와 같은 제철소 부산물이 저장된 제1부원료 저장빈, 물, 소석회, 석회석, 타르, 전분, 당밀 중에서 1종 이상이 저장된 바인더 저장빈 및 분코크스 또는 무연탄이 저장된 제1연료 저장빈을 더 포함할 수 있다.In addition to the first storage bin in which iron ore particles with a particle size of 10 mm or less are stored, the first raw material feeder stores a first auxiliary storage bin in which by-products such as dust, water, slaked lime, limestone, tar, starch, and molasses are stored in a binder. It may further include a first fuel storage bin in which bins and buncokes or anthracite are stored.
제1믹서는 제1원료 공급기와 연결되며, 제1원료 공급기로부터 분철광석, 부원료, 바인더 및 연료를 공급받아 혼합하고 조립하여 혼합체를 제조할 수 있다. 제1믹서는 2단의 믹서로 구성될 수 있다.The first mixer is connected to the first raw material feeder, and is supplied with iron ore, an auxiliary raw material, a binder, and fuel from the first raw material feeder to mix and assemble to manufacture a mixture. The first mixer may be composed of a two-stage mixer.
펠렛 제조유닛은 미분철광석이 포함된 제2배합원료를 혼합하고 조립하여 펠렛을 제조한다. 구체적으로, 제2배합원료는 입도 100㎛ 이하의 미분철광석, 부원료 및 연료를 포함할 수 있다.The pellet manufacturing unit prepares pellets by mixing and assembling a second blended raw material containing fine iron ore. Specifically, the second blended raw material may include fine iron ore having a particle size of 100 µm or less, an auxiliary raw material, and fuel.
펠렛 제조유닛은 미분철광석이 저장된 제2저장빈을 포함하며, 제2배합원료를 공급하는 제2원료 공급기, 제2원료 공급기로부터 공급받은 제2배합원료를 혼합하는 제2믹서 및 제2믹서로부터 공급받은 제2배합원료를 조립하여 펠렛을 제조하는 펠렛타이저를 포함할 수 있다.The pellet manufacturing unit includes a second storage bin in which pulverized iron ore is stored, from a second raw material feeder for supplying the second raw material, and from a second mixer and a second mixer for mixing the second raw material supplied from the second raw material feeder. It may include a pelletizer for manufacturing a pellet by assembling the supplied second compounding material.
제2원료 공급기는 입도 100㎛ 이하의 미분철광석이 저장된 제2저장빈 외에도 석회석이 저장된 제2부원료 저장빈, 분코크스 또는 무연탄이 저장된 제2연료 저장빈 및 코크스가 저장된 결합재 저장빈을 더 포함할 수 있다.In addition to the second storage bin in which fine iron ore having a particle size of 100 µm or less is stored, the second raw material feeder may further include a second storage tank in which limestone is stored, a second fuel storage bin in which coke or anthracite is stored, and a binder storage bin in which coke is stored. Can.
제2믹서는 제2원료 공급기와 연결되며, 제2원료 공급기로부터 미분철광석, 부원료, 연료 및 결합재를 공급받아 혼합하는 역할을 수행할 수 있다. 제2믹서는 2단의 믹서로 구성될 수 있다.The second mixer is connected to the second raw material feeder, and may serve to receive and mix pulverized iron ore, auxiliary raw materials, fuel, and binder from the second raw material feeder. The second mixer may be composed of a two-stage mixer.
펠렛타이저는 제2믹서와 연결되어 제2믹서로부터 공급받은 혼합된 제2배합원료를 조립하여 펠렛 형태로 제조할 수 있다.The pelletizer may be manufactured in pellet form by assembling the mixed second blending raw material supplied from the second mixer in connection with the second mixer.
제2배합원료를 압축 성형 전, 펜팰렛타이저(Micro-pelletizer)로 구성된 펠렛타이저를 이용하여 펠렛 형태로 제조함으로써 미분 활용을 용이하게 하고, 추후, 압축 성형 시, 배합원료의 장입을 원활하게 할 수 있다.The second blended raw material is manufactured in pellet form using a pelletizer composed of a micro-pelletizer before compression molding to facilitate the use of fine powder, and in the future, during compression molding, the loading of the blended raw material is smooth You can do it.
구체적으로, 혼합체 제조유닛은 제1저장빈으로부터 공급되는 분철광석의 입도를 선별하여 소정의 입도 이하의 분철광석을 제2믹서로 공급하는 철광석 선별기를 더 포함할 수 있다.Specifically, the mixture manufacturing unit may further include an iron ore sorter for sorting the particle size of the iron ore supplied from the first storage bin and supplying the iron ore having a predetermined particle size or less to the second mixer.
철광석 선별기는 제1저장빈 및 제2믹서와 연결되어 제1저장빈으로부터 제1믹서로 공급되는 분철광석의 입도를 스크린을 통해 선별할 수 있다. 소정의 입도가 3mm 이하일 경우, 입도 3mm 이하의 분철광석을 제2믹서로 공급함으로써 제2배합원료와 함께 혼합되도록 할 수 있다. 이를 통해, 미세한 입도를 갖는 철광석의 활용에 대한 효율성을 향상시킬 수 있다.The iron ore sorter is connected to the first storage bin and the second mixer to select the particle size of the iron ore supplied from the first storage bin to the first mixer through a screen. When the predetermined particle size is 3 mm or less, the iron ore having a particle size of 3 mm or less can be supplied to the second mixer to be mixed together with the second blended raw material. Through this, it is possible to improve the efficiency of the use of iron ore having a fine particle size.
성형체 제조유닛은 펠렛 제조유닛으로부터 공급받은 펠렛을 압축하여 혼합체보다 입도 또는 밀도가 큰 성형체를 제조한다.The molded body manufacturing unit compresses the pellets supplied from the pellet manufacturing unit to produce a molded body having a larger particle size or density than the mixed body.
구체적으로, 성형체 제조유닛은 나란히 배치되어 펠렛을 압축시키는 한 쌍의 압축롤, 한 쌍의 압축롤 상부에 배치되어 펠렛을 한 쌍의 압축롤 사이로 공급하는 펠렛 공급기 및 한 쌍의 압축롤을 통해 압축된 펠렛을 파쇄하여 성형체를 제조하는 파쇄기를 포함할 수 있다.Specifically, the molded body manufacturing unit is arranged side by side to compress the pellets through a pair of compression rolls, a pair of compression rolls disposed on top of the compression rolls to supply pellets between a pair of compression rolls and a pair of compression rolls It may include a crusher for crushing the pellets to prepare a molded body.
한 쌍의 압축롤은 일정한 간격을 갖고 나란하게 이격 배치되어 그 사이로 공급되는 펠렛을 압축하는 역할을 수행할 수 있다. 압축롤은 압축롤 외측에 배치된 롤타이어의 형태에 따라 성형체의 형상이 달라지는데 성형체가 연속적으로 배출될 수 있는 컴팩팅(Compacting) 타입을 적용함으로써 포켓 타입보다 생산성이 향상되는 효과를 기대할 수 있다.A pair of compression rolls are spaced apart from one another at regular intervals and may serve to compress pellets supplied therebetween. The shape of the molded body varies depending on the shape of the roll tire disposed on the outer side of the compressed roll. By applying a compacting type in which the molded body can be continuously discharged, it is possible to expect an effect of improving productivity compared to the pocket type.
펠렛 공급기는 펠렛타이저와 연결되고, 한 쌍의 압축롤 상부에 배치되어 펠렛타이저로부터 공급받은 펠렛을 한 쌍의 압축롤 사이에 공급할 수 있다. 펠렛 스크류 피더를 더 포함하여 한 쌍의 압축롤 사이로 펠렛의 공급이 원활하게 이루어질 수 있도록 할 수 있다.The pellet feeder is connected to the pelletizer and is disposed on the top of the pair of compression rolls to supply the pellets supplied from the pelletizer between the pair of compression rolls. A pellet screw feeder may be further included to smoothly supply pellets between a pair of compression rolls.
한 쌍의 압출롤 하방에 배치되어 한 쌍의 압축롤을 통해 제조된 압축된 펠렛을 파쇄할 수 있다. 구체적으로, 입도 4cm 이하의 성형체로 파쇄할 수 있다.Compressed pellets prepared through a pair of compression rolls can be crushed by being placed under a pair of extrusion rolls. Specifically, it can be crushed into a molded body having a particle size of 4 cm or less.
구체적으로, 성형체 제조유닛은 한 쌍의 압축롤로부터 공급되는 압축된 펠렛의 입도를 선별하여 소정의 입도 이하의 압축된 펠렛을 펠렛 공급기로 공급하는 펠렛 선별기를 더 포함할 수 있다.Specifically, the molded body manufacturing unit may further include a pellet sorter for sorting the particle size of compressed pellets supplied from a pair of compression rolls and supplying the compressed pellets having a predetermined particle size or less to a pellet feeder.
펠렛 선별기는 한 쌍의 압축롤 및 펠렛 공급기와 연결되어 한 쌍의 압축롤로부터 파쇄기로 공급되는 압축된 펠렛의 입도를 스크린을 통해 선별할 수 있다. 소정의 입도가 3mm 일 경우, 입도 3mm 이하의 압축된 펠렛을 펠렛 공급기로 재차 공급함으로써 펠렛타이저로부터 공급되는 펠렛과 함께 압축되도록 할 수 있다.The pellet sorter is connected to a pair of compressed rolls and a pellet feeder to select the particle size of compressed pellets supplied from a pair of compressed rolls to a crusher through a screen. When a predetermined particle size is 3 mm, compressed pellets having a particle size of 3 mm or less can be compressed together with pellets supplied from a pelletizer by re-supplying them to a pellet feeder.
이를 통해, 미분철광석이 포함된 제2배합원료의 활용에 대한 효율성을 향상시킬 수 있다.Through this, it is possible to improve the efficiency of the utilization of the second blended raw material containing fine iron ore.
또한, 성형체 제조유닛은 파쇄기로부터 공급되는 성형체의 입도를 선별하여 소정의 입도를 초과하는 성형체를 펠렛 공급기로 공급하는 성형체 선별기를 더 포함할 수 있다.In addition, the molded body manufacturing unit may further include a molded body sorting machine for sorting the particle size of the molded body supplied from the crusher and supplying the molded body exceeding a predetermined particle size to the pellet feeder.
성형체 선별기는 파쇄기 및 펠렛 공급기와 연결되어 파쇄기로부터 장입 유닛으로 공급되는 압축된 펠렛의 입도를 스크린을 통해 선별할 수 있다. 소정의 입도가 4cm일 경우, 입도 4cm를 초과하는 성형체를 펠렛 공급기로 재차 공급함으로써 펠렛타이저로부터 공급되는 펠렛과 함께 압축되도록 할 수 있다.The molded body sorting machine is connected to the crusher and the pellet feeder to screen the particle size of the compressed pellets supplied from the crusher to the charging unit through a screen. When the predetermined particle size is 4 cm, the molded body having a particle size exceeding 4 cm can be compressed with the pellet supplied from the pelletizer by supplying it again to the pellet feeder.
이를 통해, 미분철광석이 포함된 제2배합원료의 활용에 대한 효율성을 향상시킬 수 있다. 또한, 성형체의 입도가 너무 커서 소결 대차에 장입되었을 경우, 성형체의 크기로 인해 열전달이 제대로 이루어지지 않아 소성이 충분히 이루어지지 않는 현상을 방지할 수 있다.Through this, it is possible to improve the efficiency of the utilization of the second blended raw material containing fine iron ore. In addition, when the particle size of the molded body is too large and loaded into the sintered bogie, it is possible to prevent a phenomenon in which the heat transfer is not properly performed due to the size of the molded body and thus the firing is not sufficiently performed.
장입유닛은 사이클로이드 곡선 형태로 형성되어 혼합체 및 성형체를 낙하시킬 때, 혼합체 및 성형체가 사이클로이드 곡선을 따라 소결 대차로 장입되도록 유도한다.The charging unit is formed in the form of a cycloidal curve, and when the mixture and the molded body are dropped, the mixture and the molded body are guided to be charged by the sintering cart along the cycloidal curve.
혼합체 및 성형체가 사이클로이드(Cycloid) 곡선을 따라 소결 대차로 낙하할 경우, 도 3 및 하기 식의 원리에 따라 입도 또는 밀도가 클수록 수평낙하거리가 증가하여 입자의 입도 또는 밀도가 상대적으로 큰 성형체가 혼합체보다 수평낙하거리가 증가할 수 있다.When the mixture and the molded body fall to the sintered bogie along the cycloid curve, according to the principle of Figure 3 and the following formula, the larger the particle size or density, the horizontal dropping distance increases so that the molded body having a relatively large particle size or density of the particle is a mixed body. The horizontal drop distance may increase.
[식][expression]
Figure PCTKR2019016282-appb-I000001
Figure PCTKR2019016282-appb-I000001
(상기 식에서, L은 수평낙하거리를 의미하고, U는 수평이탈속도를 의미하며, ρ는 입자의 밀도를 의미하고, d는 입자의 입도를 의미한다. μ는 입자가 존재하는 공기의 점성을 의미한다.)(In the above formula, L means the horizontal drop distance, U means the horizontal departure speed, ρ means the density of the particles, and d means the particle size. μ is the viscosity of the air in which the particles are present. Means.)
사이클로이드 곡선 형태로 형성된 장입유닛을 이용할 경우, 입자의 크기 또는 밀도가 상대적으로 큰 성형체의 수평낙하거리가 증가하므로 혼합체 및 성형체가 포함된 소결원료의 편석 장입을 최대화시킬 수 있다.When the charging unit formed in the form of a cycloid curve is used, since the horizontal dropping distance of the molded body having a relatively large particle size or density increases, segregation charge of the sintered raw material containing the mixture and the molded body can be maximized.
혼합체 및 성형체가 포함된 소결원료는 상기한 원리에 따라 도 3에서와 같이, 수평편석 형태로 장입되나, 수평한 방향으로 움직이는 소결 대차에 장입되므로 수평편석이 수직편석 형태로 전환이 이루어질 수 있다.The sintered raw material containing the mixed body and the molded body is charged in the form of horizontal segregation according to the above-described principle, but is loaded in the sintered bogie moving in the horizontal direction, so that the horizontal segregation can be converted to the vertical segregation form.
이에 따라 상대적으로 입도 또는 밀도가 큰 성형체의 대부분이 소결 대차 내부의 하부에 위치하고, 상대적으로 입도 또는 밀도가 작은 혼합체의 대부분이 소결 대차의 상부에 위치하게 될 수 있다.Accordingly, most of the molded body having a relatively large particle size or density may be located at the bottom of the inside of the sintered bogie, and most of the mixture having a relatively small particle size or density may be located at the top of the sintered bogie.
구체적으로, 장입유닛에 의해 성형체의 90 중량% 이상이 소결 대차에 장입된 혼합체 및 성형체의 전체 높이 100%에 대하여, 소결 대차 내부 하면으로부터 40% 이하의 높이에 위치할 수 있다.Specifically, 90% by weight or more of the molded body by the charging unit may be located at a height of 40% or less from the inner bottom surface of the sintered bore with respect to 100% of the total height of the mixed body and the molded body charged in the sintered bogie.
이로써 소결 대차의 하방으로부터 공기의 강제 흡인을 통해 소성이 진행될 경우, 통기성이 향상됨에 따라 연소 속도가 증가하여 소결광의 생산성이 향상되는 효과를 기대할 수 있다.Accordingly, when the firing proceeds through the forced suction of air from below the sintered bogie, it is possible to expect an effect of improving the productivity of the sintered ore by increasing the combustion rate as air permeability is improved.
한편, 장입유닛은 복수로 구성되어 나란하게 배치된 장입롤을 포함하며, 복수의 장입롤의 중심축이 사이클로이드 곡선을 따라 배열될 수 있다.On the other hand, the charging unit comprises a plurality of charging rolls arranged side by side, and the central axis of the plurality of charging rolls may be arranged along a cycloidal curve.
복수의 장입롤이 나란하게 배치되되, 측면에서 바라볼 때를 기준으로 복수의 장입롤의 회전축이 사이클로이드 곡선을 따라 배치됨으로써 혼합체 및 성형체가 사이클로이드 곡선을 따라 소결 대차로 장입되도록 유도할 수 있다.A plurality of charging rolls are arranged side by side, and the rotational axes of the plurality of charging rolls are arranged along a cycloidal curve based on the side view, so that the mixture and the molded body can be induced to be charged by sintering along the cycloidal curve.
또 다른 형태로서, 장입유닛은 사이클로이드 곡선을 따라 곡면으로 형성된 일체형 장입슈트를 포함할 수 있다.As another form, the charging unit may include an integral charging suit formed as a curved surface along a cycloid curve.
사이클로이드 곡선을 따라 곡면으로 형성된 일체형 장입슈트를 이용함으로써 혼합체 및 성형체가 사이클로이드 곡선을 따라 소결 대차로 장입되도록 유도할 수 있다.By using the integral charging suit formed as a curved surface along the cycloid curve, it is possible to induce the mixture and the molded body to be charged by the sintering cart along the cycloid curve.
소결광 제조방법Method for manufacturing sintered ore
본 발명의 일 실시예에 의한 소결광 제조방법은 분철광석이 포함된 제1배합원료를 혼합하여 혼합체를 제조하는 단계, 미분철광석이 포함된 제2배합원료를 혼합하고 조립하여 펠렛을 제조하는 단계, 펠렛을 압축 성형하여 혼합체보다 입도 또는 밀도가 큰 성형체를 제조하는 단계 및 혼합체 및 성형체를 사이클로이드 곡선을 따라 형성된 장입슈트를 이용하여 소결 대차에 장입하는 단계를 포함한다.The method for manufacturing a sintered ore according to an embodiment of the present invention comprises the steps of mixing a first blended raw material containing iron ore to prepare a mixture, mixing and assembling a second blended raw material containing fine iron ore to produce pellets, And compression molding the pellet to produce a molded body having a larger particle size or density than the mixed body, and charging the mixed body and the molded body into a sintered bogie using a charging suit formed along a cycloid curve.
먼저, 혼합체를 제조하는 단계에서는 분철광석이 포함된 제1배합원료를 혼합하여 혼합체를 제조한다.First, in the step of manufacturing the mixed body, the first mixed raw material containing the iron ore is mixed to prepare the mixed body.
구체적으로, 혼합체를 제조하는 단계는 입도 10mm 이하의 분철광석, 부원료 및 연료가 포함된 제1배합원료를 공급하는 단계 및 제1배합원료를 제1믹서를 통해 혼합하여 혼합체를 제조하는 단계를 포함할 수 있다.Specifically, the step of manufacturing a mixture includes supplying a first mixture raw material containing iron ore, sub-materials and fuel having a particle size of 10 mm or less and mixing the first mixture raw material through a first mixer to produce a mixture. can do.
입도 10mm 이하의 분철광석, 부원료 및 연료가 포함된 제1배합원료를 공급한 후, 공급받은 제1배합원료를 혼합하고 조립하여 혼합체를 제조할 수 있다.After supplying the first blended raw material containing iron ore, sub-raw materials and fuel having a particle size of 10 mm or less, the supplied first blended raw material can be mixed and assembled to produce a mixture.
다음으로, 펠렛을 제조하는 단계에서는 미분철광석이 포함된 제2배합원료를 혼합하고 조립하여 펠렛을 제조한다.Next, in the step of manufacturing the pellets, the pellets are prepared by mixing and assembling the second blended raw material containing the fine iron ore.
구체적으로, 펠렛을 제조하는 단계는 입도 100㎛ 이하의 미분철광석, 부원료 및 연료가 포함된 제2배합원료를 공급하는 단계, 제2배합원료를 제2믹서를 통해 혼합하는 단계 및 혼합된 제2배합원료를 입도 30mm 이하의 펠렛으로 제조하는 단계를 포함할 수 있다.Specifically, the steps of manufacturing the pellets include supplying a second blended raw material containing fine iron ore having a particle size of 100 µm or less, auxiliary materials and fuel, mixing the second blended raw material through a second mixer, and the mixed second. It may include the step of preparing the blended raw material into pellets having a particle size of 30 mm or less.
입도 100㎛ 이하의 미분철광석, 부원료 및 연료가 포함된 제2배합원료를 공급한 후, 배합원료를 제2믹서를 통해 혼합하고, 펠렛타이저를 통해 혼합된 제2배합원료를 입도 30mm 이하의 펠렛으로 제조할 수 있다.After supplying the second blended raw material containing fine iron ore, sub-raw material and fuel having a particle size of 100 μm or less, the blended raw material is mixed through a second mixer, and the second blended raw material mixed through a pelletizer has a particle size of 30 mm or less. Can be made into pellets.
제2배합원료를 압축 성형 전, 펜팰렛타이저(Micro-pelletizer)로 구성된 펠렛타이저를 이용하여 펠렛 형태로 제조함으로써 미분 활용을 용이하게 하고, 추후, 압축 성형 시, 배합원료의 장입을 원활하게 할 수 있다. 또한, 2단 압축과 유사한 효과를 내므로 성형강도가 증가할 수 있다.The second blended raw material is manufactured in pellet form using a pelletizer composed of a micro-pelletizer before compression molding to facilitate the use of fine powder, and in the future, during compression molding, the loading of the blended raw material is smooth You can do it. In addition, since it has an effect similar to the two-stage compression, the molding strength may be increased.
한편, 혼합체를 제조하는 단계는 입도 10mm 이하의 분철광석의 입도를 선별하여 입도 3mm 이하의 분철광석을 제2배합원료에 포함시키는 단계를 더 포함할 수 있다.On the other hand, the step of manufacturing the mixture may further include the step of selecting the particle size of the iron ore having a particle size of 10 mm or less and including the iron ore having a particle size of 3 mm or less in the second compounding material.
제1믹서로 공급되는 분철광석의 입도를 스크린을 통해 입도 3mm 이하의 분철광석을 제2믹서로 공급함으로써 제2배합원료와 함께 혼합되도록 함으로써 미세한 입도를 갖는 철광석의 활용에 대한 효율성을 향상시킬 수 있다.The efficiency of utilization of iron ore with fine particle size can be improved by supplying the iron ore with a particle size of 3 mm or less through the screen to the second mixer by mixing the particle size of the iron ore supplied to the first mixer with the second mixing raw material. have.
다음으로, 성형체를 제조하는 단계에서는 펠렛을 압축 성형하여 혼합체보다 입도 또는 밀도가 큰 성형체를 제조한다.Next, in the step of manufacturing the molded body, the pellet is compression molded to produce a molded body having a larger particle size or density than the mixed body.
구체적으로, 성형체를 제조하는 단계는 나란히 배치된 한 쌍의 압축롤을 이용하여 펠렛을 압축하는 단계 및 압축된 펠렛을 파쇄하여 입도 4cm 이하의 성형체를 제조하는 단계를 포함할 수 있다.Specifically, the step of manufacturing the molded body may include the step of compressing the pellets using a pair of compression rolls arranged side by side, and the step of crushing the compressed pellets to produce a molded body having a particle size of 4 cm or less.
한 쌍의 압축롤을 통해, 펠렛을 압축한 후, 및 압축된 펠렛을 파쇄하여 입도 4cm 이하의 성형체를 제조할 수 있다. 성형체의 입도가 4cm를 초과할 경우, 성형체의 입도가 너무 커서 소결 대차에 장입되었을 때, 성형체의 크기로 인해 열전달이 제대로 이루어지지 않아 소성이 충분히 이루어지지 않는 현상이 발생할 수 있기 때문이다.Through a pair of compression rolls, the pellets can be compressed, and the compressed pellets can be crushed to produce a molded body having a particle size of 4 cm or less. This is because, when the particle size of the molded body exceeds 4 cm, when the particle size of the molded body is too large and loaded into the sintered bogie, the heat transfer is not properly performed due to the size of the molded body, and thus, the sintering may be insufficient.
4000kgf/Br의 압력으로 압축 성형할 수 있다. 도 4에서와 같이, 미분철광석의 경우, 원료별로 압축강도의 차이가 있으며, 100kgf/Br 이상의 압축강도를 갖는 원료를 사용할 수 있다. 한 쌍의 압축롤에 의한 성형강도를 증가시킬 경우, 압축강도 또한 증가하는 경향을 보임을 알 수 있다.It can be compression molded at a pressure of 4000 kgf/Br. As shown in FIG. 4, in the case of fine iron ore, there is a difference in compressive strength for each raw material, and a raw material having a compressive strength of 100 kgf/Br or more may be used. It can be seen that when the molding strength by a pair of compression rolls is increased, the compression strength also tends to increase.
두 원료를 혼합할 경우, 각 원료의 압축강도의 중간범위의 압축강도를 갖는 것을 확인할 수 있다. 따라서 미분철광석이 포함된 원료는 각 원료의 압축강도를 알 경우 혼합시의 압축강도를 예측할 수 있으므로 1종 뿐만아니라 2종 이상의 원료를 혼합하여 사용 가능하다.When the two raw materials are mixed, it can be seen that they have a compressive strength in the middle range of the compressive strength of each raw material. Therefore, the raw material containing the fine iron ore can be used by mixing not only one kind but also two or more kinds of raw materials because the compressive strength at the time of mixing can be predicted when the compressive strength of each raw material is known.
성형체를 제조하는 단계는 압축 성형된 펠렛의 입도를 선별하여 입도 3mm 이하의 압축된 펠렛을 한 쌍의 압축롤로 공급하는 단계를 더 포함할 수 있다.The step of manufacturing the molded body may further include the step of selecting the particle size of the compression-molded pellets and supplying the compressed pellets having a particle size of 3 mm or less with a pair of compression rolls.
입도 3mm 이하의 압축된 펠렛을 펠렛타이저로부터 공급되는 펠렛과 함께 압축시킴으로써 미분철광석이 포함된 제2배합원료의 활용에 대한 효율성을 향상시킬 수 있다.By compressing the compressed pellets having a particle size of 3 mm or less together with the pellets supplied from the pelletizer, it is possible to improve the efficiency of utilization of the second blended raw material containing the fine iron ore.
또한, 성형체를 제조하는 단계는 성형체의 입도를 선별하여 입도 4cm를 초과하는 성형체를 한 쌍의 압축롤로 공급하는 단계를 더 포함할 수 있다.In addition, the step of manufacturing the molded body may further include the step of selecting the particle size of the molded body and supplying the molded body having a particle size exceeding 4 cm with a pair of compression rolls.
입도 4cm를 초과하는 성형체를 펠렛을 펠렛타이저로부터 공급되는 펠렛과 함께 압축시킴으로써 미분철광석이 포함된 제2배합원료의 활용에 대한 효율성을 향상시킬 수 있으며, 성형체의 입도가 너무 커서 소결 대차에 장입되었을 경우, 성형체의 크기로 인해 열전달이 제대로 이루어지지 않아 소성이 충분히 이루어지지 않는 현상을 방지할 수 있다.By compressing the molded body with a particle size exceeding 4 cm with the pellet supplied from the pelletizer, the efficiency of utilization of the second blended raw material containing the fine iron ore can be improved, and the particle size of the molded body is too large to be loaded into the sintered truck. When it is, it is possible to prevent the phenomenon that the heat transfer is not properly performed due to the size of the molded body and thus the firing is not sufficiently performed.
다음으로, 혼합체 및 성형체를 소결 대차에 장입하는 단계에서는 사이클로이드 곡선 형태로 형성된 장입슈트를 이용하여 혼합체 및 성형체를 소결 대차로 낙하시킨다. 이에 따라 도 3 및 상기 식의 원리에 따라 입도 또는 밀도가 클수록 수평낙하거리가 증가하여 입자의 입도 또는 밀도가 상대적으로 큰 성형체가 혼합체보다 수평낙하거리가 증가할 수 있다.Next, in the step of loading the mixed body and the molded body into the sintered bogie, the mixed body and the molded body are dropped into the sintered bogie by using the charging suit formed in the form of a cycloid curve. Accordingly, according to the principle of FIG. 3 and the above equation, as the particle size or density increases, the horizontal dropping distance increases, so that the molded body having a relatively large particle size or density may increase the horizontal dropping distance than the mixed body.
사이클로이드 곡선 형태로 형성된 장입슈트로 인해 혼합체 및 성형체가 포함된 소결원료의 편석 장입을 최대화하여 수평한 방향으로 움직이는 소결 대차에 장입시킴으로써 상대적으로 입도 또는 밀도가 큰 성형체의 대부분이 소결 대차 내부의 하부에 위치하고, 상대적으로 입도 또는 밀도가 작은 혼합체의 대부분이 소결 대차의 상부에 위치하게 될 수 있다.Due to the charging chute formed in the form of a cycloid, the segregation charge of the sintered raw material containing the mixture and the molded body is maximized and charged to the sintered bogie moving in a horizontal direction, so that most of the molded bodies having a relatively large particle size or density are located at the bottom of the inside of the sintered bogie. Most of the mixtures with relatively small particle size or density can be positioned on top of the sintered bogie.
상방으로부터 하방으로 공기를 흡인하여 소결원료를 소결시키므로 소결 대차 내에서 하부에 위치하는 성형체는 하부 축열에 의해 소결이 이루어질 수 있다.Since the sintered raw material is sintered by sucking air from the top to the bottom, the molded body located at the bottom of the sintered bogie can be sintered by lower heat storage.
혼합체의 입도는 10mm 이하이고, 성형체의 입도는 4cm 이하여서 성형체의 입도가 혼합체의 입도보다 크므로 수직편석 형태로 소결 대차 내에 소결원료가 장입될 수 있다.Since the particle size of the mixed body is 10 mm or less, and the particle size of the molded body is 4 cm or less, the particle size of the molded body is larger than the particle size of the mixed body, so that the sintered raw material can be loaded in the sintered bogie in the form of vertical segregation.
구체적으로, 혼합체 및 성형체를 소결 대차에 장입하는 단계에서, 혼합체 및 성형체가 포함된 소결원료 100 중량%에 대하여, 성형체는 30 중량% 이하일 수 있다. 성형체의 함량이 30 중량%를 초과할 경우, 연료의 부족으로 소성이 불완전하게 이루어 질 수 있다.Specifically, in the step of charging the mixture and the molded body to the sintered truck, with respect to 100% by weight of the sintered raw material containing the mixture and the molded body, the molded body may be 30% by weight or less. When the content of the molded body exceeds 30% by weight, firing may be incomplete due to insufficient fuel.
성형체의 90 중량% 이상이 소결 대차에 장입된 혼합체 및 성형체의 전체 높이 100%에 대하여, 소결 대차 내부 하면으로부터 40% 이하의 높이에 위치할 수 있다.More than 90% by weight of the molded body may be located at a height of 40% or less from the inner bottom surface of the sintered bore, relative to 100% of the total height of the mixed body and the molded body charged in the sintered bogie.
이로써 소결 대차의 하방으로부터 공기의 강제 흡인을 통해 소성이 진행될 경우, 통기성이 향상됨에 따라 연소 속도가 증가하여 소결광의 생산성이 향상되는 효과를 기대할 수 있다.Accordingly, when the firing proceeds through the forced suction of air from below the sintered bogie, it is possible to expect an effect of improving the productivity of the sintered ore by increasing the combustion rate as air permeability is improved.
본 발명의 다른 실시예로서, 성형체를 제1배합원료와 함께 제1믹서에서 혼합하여 제조한 혼합물을 소결 대차에 장입하고, 소결하여 소결광을 제조할 수 있다.As another embodiment of the present invention, a mixture prepared by mixing a molded body with a first compounding material in a first mixer can be charged to a sintered bogie and sintered to produce a sintered ore.
소결광Sintered ore
본 발명의 일 실시예에 의한 소결광은 저환원부 및 고환원부를 포함하고, 저환원부의 RI는 65 내지 70이며, 고환원부의 RI는 70을 초과한다. RI는 Reducibility Index로서, 환원 정도를 의미할 수 있다.The sintered ore according to an embodiment of the present invention includes a low-reduction portion and a high-reduction portion, the RI of the low-reduction portion is 65 to 70, and the RI of the high-reduction portion exceeds 70. RI is a Reducibility Index, and may mean a degree of reduction.
도 5에서와 같이, 본 발명의 일 실시예에 의한 소결광은 저환원부 및 고환원부로 구분될 수 있다. 저환원부 부분은 Sinter로 표현되는 부분으로서, 입도 10mm 이하의 분철광석, 부원료 및 연료가 포함된 제1배합원료가 1100℃ 이상의 온도에서 소결된 부분일 수 있다.5, the sintered ore according to an embodiment of the present invention may be divided into a low-reduction portion and a high-reduction portion. The portion of the low-reduction portion is a portion represented by a sinter, and may be a portion in which the first blended raw material containing iron ore, sub-material and fuel having a particle size of 10 mm or less is sintered at a temperature of 1100°C or higher.
고환원부 부분은 Briquette로 표현되는 부분으로서, 입도 100㎛ 이하의 미분철광석, 부원료 및 연료가 포함된 제2배합원료가 펠렛 형태로 제조된 후, 압축 성형된 성형체로 제조되어 1100℃ 이상의 온도에서 소결된 부분일 수 있다.The portion of the high-reduction portion is represented by a briquette, and after the second blended raw material containing fine iron ore, sub-raw materials and fuel having a particle size of 100 µm or less is manufactured in pellet form, it is manufactured into a compression molded molded body and sintered at a temperature of 1100°C or higher. It can be a part.
저환원부의 RI는 65 내지 70이고, 고환원부의 RI는 70을 초과하며, 구체적으로, 고환원부의 RI는 75 내지 80일 수 있다. 고환원부의 RI가 저환원부의 RI보다 클 수 있다.The RI of the low-reduction portion is 65 to 70, the RI of the high-reduction portion exceeds 70, and specifically, the RI of the high-reduction portion may be 75 to 80. The RI of the high-reduction unit may be greater than the RI of the low-reduction unit.
도 5와 같이, 저환원부와 고환원부가 공존하여 저환원부와 고환원부의 장점이 혼합된 효과를 기대할 수 있다.As shown in FIG. 5, the low-reducing portion and the high-reducing portion coexist so that the advantages of the low-reducing portion and the high-reducing portion can be expected to be mixed.
구체적으로, 고환원부의 경우, 펠렛이 압축 성형된 후, 소결된 형태이므로 저환원부보다 밀도 및 상온강도가 높을 수 있다.Specifically, in the case of the high-reducing portion, since the pellet is compression molded and sintered, the density and room temperature strength may be higher than the low-reducing portion.
소결광 제조용 장입물Charge for manufacturing sintered ore
본 발명의 일 실시예에 의한 소결광 제조용 장입물은 소결 대차 내에 위치하는 소결광 제조용 장입물로서, 분철광석이 포함된 제1배합원료로 이루어진 혼합체 및 미분철광석이 포함된 제2배합원료로 이루어지며, 상기 혼합체보다 입도 또는 밀도가 큰 성형체를 포함하고, 성형체의 90 중량% 이상이 소결 대차에 장입된 소결광 제조용 장입물의 전체 높이 100에 대하여, 소결 대차 내부 하면으로부터 40% 이하의 높이에 위치한다.The charge for manufacturing a sintered ore according to an embodiment of the present invention is a charge for manufacturing a sintered ore located in a sintered bogie, consisting of a mixture of the first mixture raw material containing iron ore and a second mixture raw material containing fine iron ore, It includes a molded body having a larger particle size or density than the mixed body, and 90% by weight or more of the molded body is located at a height of 40% or less from the inner bottom surface of the sintered bore with respect to the total height 100 of the charge for preparing the sintered ore.
구체적으로, 소결광 제조용 장입물 전체 100 중량%에 대하여, 성형체는 30 중량% 이하일 수 있다.Specifically, with respect to 100% by weight of the total charge for producing sintered ore, the molded body may be 30% by weight or less.
사이클로이드 곡선 형태로 형성된 장입슈트로 인해 혼합체 및 성형체가 포함된 소결원료의 편석 장입을 최대화하여 수평한 방향으로 움직이는 소결 대차에 장입시킴으로써 상대적으로 입도 또는 밀도가 큰 성형체의 대부분이 소결 대차 내부의 하부에 위치하고, 상대적으로 입도 또는 밀도가 작은 혼합체의 대부분이 소결 대차의 상부에 위치하게 될 수 있다.Due to the charging chute formed in the form of a cycloid, the segregation charge of the sintered raw material containing the mixture and the molded body is maximized to be charged in the sintered bogie moving in a horizontal direction, so that most of the molded bodies having a relatively large particle size or density are located at the bottom of the inside of the sintered bogie. Most of the mixtures with relatively small particle size or density can be positioned on top of the sintered bogie.
이에 따라 성형체의 90 중량% 이상이 소결 대차에 장입된 혼합체 및 성형체의 전체 높이 100%에 대하여, 소결 대차 내부 하면으로부터 40% 이하의 높이에 위치한다.Accordingly, 90% by weight or more of the molded body is located at a height of 40% or less from the inner lower surface of the sintered bore with respect to 100% of the total height of the mixed body and the molded body charged in the sintered bogie.
이로써 소결 대차의 하방으로부터 공기의 강제 흡인을 통해 소성이 진행될 경우, 통기성이 향상됨에 따라 연소 속도가 증가하여 소결광의 생산성이 향상되는 효과를 기대할 수 있다.Accordingly, when the firing proceeds through the forced suction of air from below the sintered bogie, it is possible to expect an effect of improving the productivity of the sintered ore by increasing the combustion rate as air permeability is improved.
이외의 본 발명의 일 실시예에 의한 소결광 제조용 장입물에 대한 설명은 상기한 소결광 제조방법에 대한 설명으로 대신하기로 한다.The description of the charge for manufacturing a sintered ore according to an embodiment of the present invention will be replaced by the description of the method for manufacturing the sintered ore.
이하 본 발명의 구체적인 실시예를 기재한다. 그러나 하기 실시예는 본 발명의 구체적인 일 실시예일뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.Hereinafter, specific examples of the present invention will be described. However, the following examples are only specific examples of the present invention, and the present invention is not limited to the following examples.
실시예Example
(1) 소결광의 제조(1) Preparation of sintered ore
[실시예 1] 입도 10mm 이하의 분철광석, 석회석으로 구성된 부원료 및 분코크스, 무연탄으로 구성된 연료 및 코크스로 구성된 결합재를 제1믹서를 이용하여 혼합함으로써 혼합체를 제조하였다.[Example 1] A mixture was prepared by mixing a coarse material composed of iron ore, limestone with a particle size of 10 mm or less, and a binder made of coke, fuel and coke composed of anthracite using a first mixer.
입도 100㎛ 이하의 미분철광석, 제철소에서 생성된 더스트로 구성된 부원료 및 분코크스, 무연탄으로 구성된 연료 및 바인더를 제2믹서를 이용하여 혼합하였다. 이후, 펠렛타이저를 통해 입도 30mm 이하의 펠렛으로 제조하였다.A fine iron ore having a particle size of 100 µm or less, a secondary raw material composed of dust produced in a steel mill, and powder and coke, an anthracite fuel and a binder were mixed using a second mixer. Subsequently, pellets having a particle size of 30 mm or less were manufactured through a pelletizer.
펠렛을 컴팩팅(compacting) 타입의 쌍롤형 압축기를 통해 압축 성형한 후, 파쇄기로 파쇄하여 입도 4cm 이하의 성형체를 제조하였다.The pellets were compression molded through a compacting type twin roll type compressor, and then crushed by a crusher to prepare a molded body having a particle size of 4 cm or less.
위와 같이 마련된 혼합체 및 성형체를 사이클로드 곡선 형태로 형성된 장입슈트를 이용하여 소결 대차에 장입하였다.The mixture and the molded body prepared as above were loaded into the sintered bogie using a charging chute formed in the form of a cycle rod curve.
이때, 성형체는 소결 대차에 장입되는 소결원료 전체 100 중량%에 대하여, 10 중량% 투입하였다.At this time, the molded body was added to 10% by weight relative to 100% by weight of the total sintered raw material charged to the sintered bogie.
소결 대차 상부의 점화로를 이용하여 점화시킨 다음 하부에서 공기를 흡인하여 1200℃의 온도에서 소결함으로써 소결광을 제조하였다.The sintered ore was prepared by igniting using an ignition furnace at the top of the sintered bogie and then sucking air at the bottom to sinter at a temperature of 1200°C.
[실시예 2] 실시예 1과 동일한 조건으로 소결광을 제조하되, 성형체는 소결 대차에 장입되는 소결원료 전체 100 중량%에 대하여, 20 중량% 투입하였다.[Example 2] A sintered ore was prepared under the same conditions as in Example 1, but the molded body was added in an amount of 20% by weight with respect to 100% by weight of the total sintered raw material charged in the sintered bogie.
[실시예 3] 실시예 1과 동일한 조건으로 소결광을 제조하되, 성형체는 소결 대차에 장입되는 소결원료 전체 100 중량%에 대하여, 30 중량% 투입하였다.[Example 3] A sintered ore was prepared under the same conditions as in Example 1, but the molded body was added in an amount of 30% by weight with respect to 100% by weight of the total sintered raw material charged in the sintered bogie.
[비교예 1] 입도 10mm 이하의 분철광석, 석회석으로 구성된 부원료 및 분코크스, 무연탄으로 구성된 연료 및 코크스로 구성된 결합재를 제1믹서를 이용하여 혼합함으로써 혼합체를 제조하였다.[Comparative Example 1] A mixture was prepared by mixing a binder composed of iron ore and limestone having a particle size of 10 mm or less, limestone, fuel and coke composed of anthracite coal using a first mixer.
혼합체를 소결 대차에 장입시키고, 소결 대차 상부의 점화로를 이용하여 점화시킨 다음 하부에서 공기를 흡인하여 1200℃의 온도에서 소결함으로써 소결광을 제조하였다.The sintered ore was prepared by loading the mixture into a sintered bogie, igniting using an ignition furnace at the top of the sintered bogie, and then sucking air at the bottom to sinter at a temperature of 1200°C.
[비교예 2] 실시예 2와 동일한 조건으로 소결광을 제조하되, 사이클로드 곡선 형태로 형성된 장입슈트를 이용하여 소결 대차에 장입하는 대신, 평면 형태의 장입슈트를 이용하여 소결 대차에 장입한 다음 1200℃의 온도에서 소결함으로써 소결광을 제조하였다.[Comparative Example 2] A sintered ore was manufactured under the same conditions as in Example 2, but instead of being charged to the sintered bogie using a charging suit formed in the form of a cycle rod curve, the sintered bore was loaded using a planar charging chute and then 1200 Sintered ores were prepared by sintering at a temperature of ℃.
(2) 성형체의 장입거동 해석(2) Analysis of charging behavior of the molded body
실시예 1 내지 실시예 3에 의해 소결 대차에 장입되는 혼합체 및 성형체의 장입거동에 대한 입자해석을 실시하였다. 도 3에서와 같이, 실시예 1 내지 실시예 3 모두 사이클로이드 곡선 형태의 장입슈트에 의해 성형체가 소결 대차 내에서 하부에 우선적으로 장입되었다.According to Examples 1 to 3, particle analysis was performed on the charging behavior of the mixed body and the molded body charged to the sintered bogie. As shown in FIG. 3, in Examples 1 to 3, the molded body was preferentially charged to the lower portion in the sintered bogie by the charging suit in the form of a cycloid curve.
그 결과, 성형체의 90 중량% 이상이 소결 대차에 장입된 혼합체 및 성형체의 전체 높이에 대하여, 40% 이하의 높이에 위치하였음을 확인할 수 있다.As a result, it can be confirmed that 90% by weight or more of the molded body was located at a height of 40% or less with respect to the total height of the mixture and the molded body loaded in the sintered bogie.
반면, 평면 형태의 장입슈트를 이용하여 소결 대차에 장입한 비교예 2의 경우, 대체적으로 성형체가 소결 대차 내에서 하부에 장입되는 형태를 보이기는 하였으나, 성형체의 90 중량% 이상이 소결 대차에 장입된 혼합체 및 성형체의 전체 높이에 대하여, 40% 이하의 높이에 위치하지 않았다.On the other hand, in the case of Comparative Example 2, which was loaded into the sintered bogie by using the flat type charging chute, the molded body generally showed a shape in which it was charged to the lower portion in the sintered bogie, but more than 90% by weight of the molded body was charged to the sintered bogie. It was not located at a height of 40% or less with respect to the total height of the mixed and molded products.
그 이유는 다음과 같았다.The reason was as follows.
사이클로이드 곡선 형태의 장입슈트를 이용한 실시예 2의 경우, 평면 형태의 장입슈트를 이용한 비교예 2 보다 성형체의 배사거리가 27% 증가된 거동을 보였기 때문이다.This is because, in the case of Example 2 using the cycloid curve-shaped charging suit, the emission distance of the molded body increased by 27% compared to Comparative Example 2 using the plane-shaped charging suit.
(3) 소결광의 평가(3) Evaluation of sintered ore
환원 정도를 의미하는 RI는 Reducibility Index는 ISO 7215의 환원율법을 통해 측정하였다.Reducibility Index, which means the degree of reduction, was measured by the reduction rate method of ISO 7215.
실시예에 의해 제조된 소결광의 경우, 도 6에서 확인할 수 있는 바와 같이, 혼합체가 소결된 부분과 성형체가 소결된 부분이 혼합된 형태로 형성되어 있는 것을 확인할 수 있다.In the case of the sintered ore prepared by the example, as can be seen in Figure 6, it can be seen that the mixture is sintered portion and the molded body is formed in a sintered portion is formed in a mixed form.
혼합체가 소결된 부분의 경우 환원지수(Reduction Index)가 65 내지 70이었고, 성형체가 소결된 부분은 환원지수가 75 내지 80이었다.In the case where the mixture was sintered, the reduction index was 65 to 70, and the portion where the molded body was sintered was 75 to 80.
도 7에서와 같이, 비교예 1의 경우보다 생산성이 향상되었고, 환원지수가 증가하였으며, 생성되는 슬래그의 부피는 감소하였음을 알 수 있다.As shown in FIG. 7, it can be seen that productivity was improved, the reduction index was increased, and the volume of the generated slag was decreased compared to that of Comparative Example 1.
한편, 소결광의 통기성을 평가하였을 때, 사이클로이드 곡선 형태의 장입슈트를 이용한 실시예 2의 경우, 평면 형태의 장입슈트를 이용한 비교예 2 보다 소결광의 통기성이 7.4% 증가하였음을 확인하였다.On the other hand, when evaluating the air permeability of the sintered ore, in the case of Example 2 using the cycloid curved charging suit, it was confirmed that the air permeability of the sintered ore increased by 7.4% compared to Comparative Example 2 using the flat charging charging suit.
본 발명은 상기 구현예 및/또는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 구현예 및/또는 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The present invention is not limited to the above embodiments and/or embodiments, but may be manufactured in various different forms, and those skilled in the art to which the present invention pertains may change the technical spirit or essential features of the present invention. It will be understood that it may be practiced in other specific forms without. Therefore, it should be understood that the above-described embodiments and/or embodiments are illustrative in all respects and not restrictive.

Claims (24)

  1. 분철광석이 포함된 제1배합원료를 혼합하여 혼합체를 제조하는 혼합체 제조유닛;A mixture manufacturing unit for preparing a mixture by mixing the first mixture raw material containing the iron ore;
    미분철광석이 포함된 제2배합원료를 혼합하고 조립하여 펠렛을 제조하는 펠렛 제조유닛;Pellet production unit for producing a pellet by mixing and assembling a second blend raw material containing fine iron ore;
    상기 펠렛을 압축 성형하여 상기 혼합체보다 입도 또는 밀도가 큰 성형체를 제조하는 성형체 제조유닛;A molded product manufacturing unit for compression molding the pellet to produce a molded body having a larger particle size or density than the mixed body;
    사이클로이드 곡선 형태로 형성되며, 상기 혼합체 및 상기 성형체를 낙하시키되, 상기 혼합체보다 입도 또는 밀도가 큰 성형체의 우선적인 하부 장입을 유도하는 장입유닛; 및A charging unit formed in a cycloidal curved shape, and dropping the mixture and the molded body to induce preferential lower charging of the molded body having a larger particle size or density than the mixed body; And
    상기 장입유닛의 하방에 배치되어 상기 혼합체 및 상기 성형체가 장입되는 소결 대차;를 포함하는 소결광 제조장치.It is disposed below the charging unit, the sintered ore manufacturing apparatus comprising a; sintered bogie to which the mixture and the molded body are charged.
  2. 제1항에 있어서,According to claim 1,
    상기 장입유닛은,The charging unit,
    상기 소결 대차에 장입된 상기 소결광 제조용 장입물의 전체 높이 100%에 대하여, 상기 성형체의 90 중량% 이상을 상기 소결 대차 내부 하면으로부터 40% 이하의 높이에 위치시키는 소결광 제조장치.With respect to 100% of the total height of the charge for manufacturing the sintered ore loaded into the sintered bogie, 90% by weight or more of the molded body is positioned at a height of 40% or less from the inner bottom surface of the sintered bogie.
  3. 제1항에 있어서,According to claim 1,
    상기 혼합체 제조유닛은,The mixture manufacturing unit,
    상기 분철광석이 저장된 제1저장빈을 포함하며, 상기 제1배합원료를 공급하는 제1원료 공급기; 및A first raw material feeder including a first storage bin in which the iron ore is stored, and supplying the first combined raw material; And
    상기 제1원료 공급기로부터 공급받은 제1배합원료를 혼합하여 혼합체를 제조하는 제1믹서;를 포함하는 소결광 제조장치.And a first mixer for mixing the first blended raw materials supplied from the first raw material feeder to produce a mixed body.
  4. 제3항에 있어서,According to claim 3,
    상기 펠렛 제조유닛은,The pellet manufacturing unit,
    상기 미분철광석이 저장된 제2저장빈을 포함하며, 상기 제2배합원료를 공급하는 제2원료 공급기;A second raw material feeder including a second storage bin in which the fine iron ore is stored, and supplying the second combined raw material;
    상기 제2원료 공급기로부터 공급받은 제2배합원료를 혼합하는 제2믹서; 및A second mixer mixing the second blending raw material supplied from the second raw material supplying machine; And
    상기 제2믹서로부터 공급받은 제2배합원료를 조립하여 상기 펠렛을 제조하는 펠렛타이저;를 포함하는 소결광 제조장치.And a pelletizer for assembling the pellets by assembling the second blending raw material supplied from the second mixer.
  5. 제4항에 있어서,According to claim 4,
    상기 혼합체 제조유닛은,The mixture manufacturing unit,
    상기 제1저장빈으로부터 공급되는 분철광석의 입도를 선별하여 소정의 입도 이하의 분철광석을 상기 제2믹서로 공급하는 철광석 선별기;를 더 포함하는 소결광 제조장치.And an iron ore sorter for sorting the particle size of the iron ore supplied from the first storage bin and supplying the iron ore having a predetermined particle size or less to the second mixer.
  6. 제1항에 있어서,According to claim 1,
    상기 성형체 제조유닛은,The molded body manufacturing unit,
    나란히 배치되어 상기 펠렛을 압축시키는 한 쌍의 압축롤;A pair of compression rolls arranged side by side to compress the pellets;
    상기 한 쌍의 압축롤 상부에 배치되어 상기 펠렛을 상기 한 쌍의 압축롤 사이로 공급하는 펠렛 공급기; 및A pellet feeder disposed on the pair of compression rolls to supply the pellets between the pair of compression rolls; And
    상기 한 쌍의 압축롤을 통해 압축된 펠렛을 파쇄하여 상기 성형체를 제조하는 파쇄기;를 포함하는 소결광 제조장치.And a crushing machine for crushing pellets compressed through the pair of compression rolls to produce the molded body.
  7. 제6항에 있어서,The method of claim 6,
    상기 성형체 제조유닛은,The molded body manufacturing unit,
    상기 한 쌍의 압축롤로부터 공급되는 압축된 펠렛의 입도를 선별하여 소정의 입도 이하의 압축된 펠렛을 상기 펠렛 공급기로 공급하는 펠렛 선별기;를 더 포함하는 소결광 제조장치.And a pellet sorter for sorting the particle size of the compressed pellets supplied from the pair of compressed rolls and supplying the compressed pellets having a predetermined particle size or less to the pellet feeder.
  8. 제6항에 있어서,The method of claim 6,
    상기 성형체 제조유닛은,The molded body manufacturing unit,
    상기 파쇄기로부터 공급되는 성형체의 입도를 선별하여 소정의 입도를 초과하는 성형체를 상기 펠렛 공급기로 공급하는 성형체 선별기;를 더 포함하는 소결광 제조장치.And a molded body sorting machine for sorting the particle size of the molded body supplied from the crusher and supplying the molded body exceeding a predetermined particle size to the pellet feeder.
  9. 제1항에 있어서,According to claim 1,
    상기 장입유닛은,The charging unit,
    복수로 구성되어 나란하게 배치된 장입롤;을 포함하며,Containing a plurality of loading rolls arranged side by side; includes,
    상기 복수의 장입롤의 중심축은 사이클로이드 곡선을 따라 배열된 소결광 제조장치.The central axis of the plurality of charging rolls is a sintered ore manufacturing apparatus arranged along a cycloid curve.
  10. 제1항에 있어서,According to claim 1,
    상기 장입유닛은,The charging unit,
    사이클로이드 곡선을 따라 곡면으로 형성된 일체형 장입슈트;를 포함하는 소결광 제조장치.A sintered ore manufacturing apparatus comprising; an integral charging suit formed as a curved surface along a cycloid curve.
  11. 분철광석이 포함된 제1배합원료를 혼합하여 혼합체를 제조하는 단계;Preparing a mixture by mixing the first mixture raw material containing the iron ore;
    미분철광석이 포함된 제2배합원료를 혼합하고 조립하여 펠렛을 제조하는 단계;Preparing a pellet by mixing and assembling a second blended raw material containing pulverized iron ore;
    상기 펠렛을 압축 성형하여 상기 혼합체보다 입도 또는 밀도가 큰 성형체를 제조하는 단계; 및Compression molding the pellet to produce a molded body having a larger particle size or density than the mixed body; And
    상기 혼합체 및 상기 성형체를 소결 대차에 장입하되, 사이클로이드 곡선을 따라 형성된 장입슈트를 이용하여 상기 혼합체보다 입도 또는 밀도가 큰 성형체를 상기 소결 대차의 하부에 우선적으로 장입하는 단계;를 포함하는 소결광 제조방법.A method of manufacturing a sintered ore comprising the steps of: loading the mixture and the molded body into a sintered vehicle, and preferentially loading a molded body having a particle size or density higher than that of the mixed body under the sintered vehicle using a charging suit formed along a cycloid curve. .
  12. 제11항에 있어서,The method of claim 11,
    상기 혼합체를 제조하는 단계는,The step of preparing the mixture,
    입도 10mm 이하의 분철광석, 부원료 및 연료가 포함된 제1배합원료를 공급하는 단계; 및Supplying a first blended raw material containing iron ore, sub-raw materials and fuel having a particle size of 10 mm or less; And
    상기 제1배합원료를 제1믹서를 통해 혼합하여 혼합체를 제조하는 단계;를 포함하는 소결광 제조방법.A method of manufacturing a sintered ore comprising; mixing the first mixture raw material through a first mixer to prepare a mixture.
  13. 제12항에 있어서,The method of claim 12,
    상기 혼합체를 제조하는 단계는,The step of preparing the mixture,
    상기 입도 10mm 이하의 분철광석의 입도를 선별하여 입도 3mm 이하의 분철광석을 제2배합원료에 포함시키는 단계;를 더 포함하는 소결광 제조방법.A method for manufacturing a sintered ore, further comprising: selecting the particle size of the iron ore having a particle size of 10 mm or less and including the iron ore having a particle size of 3 mm or less in the second blended raw material.
  14. 제11항에 있어서,The method of claim 11,
    상기 펠렛을 제조하는 단계는,The step of preparing the pellets,
    입도 100㎛ 이하의 미분철광석, 부원료 및 연료가 포함된 제2배합원료를 공급하는 단계;Supplying a second blended raw material containing fine iron ore having a particle size of 100 µm or less, an auxiliary raw material, and a fuel;
    상기 제2배합원료를 제2믹서를 통해 혼합하는 단계; 및Mixing the second blending material through a second mixer; And
    상기 혼합된 제2배합원료를 입도 30mm 이하의 펠렛으로 제조하는 단계;를 포함하는 소결광 제조방법.A method of manufacturing a sintered ore comprising the steps of: manufacturing the mixed second mixture raw material into pellets having a particle size of 30 mm or less.
  15. 제11항에 있어서,The method of claim 11,
    상기 성형체를 제조하는 단계는,The step of manufacturing the molded body,
    나란히 배치된 한 쌍의 압축롤을 이용하여 상기 펠렛을 압축하는 단계; 및Compressing the pellets using a pair of compression rolls arranged side by side; And
    상기 압축된 펠렛을 파쇄하여 입도 4cm 이하의 성형체를 제조하는 단계;를 포함하는 소결광 제조방법.Crushing the compressed pellets to produce a molded body having a particle size of 4 cm or less.
  16. 제15항에 있어서,The method of claim 15,
    상기 성형체를 제조하는 단계는,The step of manufacturing the molded body,
    상기 압축된 펠렛의 입도를 선별하여 입도 3mm 이하의 압축된 펠렛을 상기 한 쌍의 압축롤로 공급하는 단계;를 더 포함하는 소결광 제조방법.And selecting the particle size of the compressed pellets and supplying the compressed pellets having a particle size of 3 mm or less to the pair of compressed rolls.
  17. 제15항에 있어서,The method of claim 15,
    상기 성형체를 제조하는 단계는,The step of manufacturing the molded body,
    상기 성형체의 입도를 선별하여 입도 4cm를 초과하는 성형체를 상기 한 쌍의 압축롤로 공급하는 단계;를 더 포함하는 소결광 제조방법.A method of manufacturing a sintered ore, further comprising: selecting a particle size of the molded body and supplying a molded body having a particle size exceeding 4 cm with the pair of compression rolls.
  18. 제11항에 있어서,The method of claim 11,
    상기 혼합체 및 성형체를 소결 대차에 장입하는 단계에서,In the step of loading the mixture and the molded body to the sintered bogie,
    상기 혼합체 및 상기 성형체가 포함된 소결원료 100 중량%에 대하여, 상기 성형체는 30 중량% 이하인 소결광 제조방법.With respect to 100% by weight of the sintered raw material containing the mixture and the molded body, the molded body is 30% by weight or less.
  19. 제11항에 있어서,The method of claim 11,
    상기 혼합체 및 성형체를 소결 대차에 장입하는 단계에서,In the step of loading the mixture and the molded body to the sintered bogie,
    상기 성형체의 90 중량% 이상이 상기 소결 대차에 장입된 혼합체 및 성형체의 전체 높이 100%에 대하여, 상기 소결 대차 내부 하면으로부터 40% 이하의 높이에 위치하는 소결광 제조방법.A method of manufacturing a sintered ore, wherein at least 90% by weight of the molded body is located at a height of 40% or less from the inner lower surface of the sintered bore, relative to 100% of the total height of the mixed body and the molded body charged in the sintered bogie.
  20. 제11항에 있어서,The method of claim 11,
    상기 혼합체 및 성형체를 소결 대차에 장입하는 단계에서,In the step of loading the mixture and the molded body to the sintered bogie,
    상기 혼합체의 입도는 10mm 이하이고,The particle size of the mixture is 10 mm or less,
    상기 성형체의 입도는 4cm 이하인 소결광 제조방법.Method for producing a sintered ore having a particle size of the molded body is 4 cm or less.
  21. 저환원부 및 고환원부를 포함하고,It includes a low-reduction unit and a high-reduction unit,
    상기 저환원부의 RI는 65 내지 70이며,RI of the low-reduction portion is 65 to 70,
    상기 고환원부의 RI는 70을 초과하는 소결광.The high reduction part RI has a sintered ore exceeding 70.
  22. 제21항에 있어서,The method of claim 21,
    상기 고환원부의 RI는 75 내지 80인 소결광.The RI of the high reduction part is 75 to 80 sintered ore.
  23. 소결 대차 내에 위치하는 소결광 제조용 장입물로서,As a charge for manufacturing sintered ore located in the sintered bogie,
    분철광석이 포함된 제1배합원료로 이루어진 혼합체; 및A mixture composed of a first blended raw material containing iron ore; And
    미분철광석이 포함된 제2배합원료로 이루어지며, 상기 혼합체보다 입도 또는 밀도가 큰 성형체;를 포함하고,Consists of a second blended raw material containing fine iron ore, a molded body having a larger particle size or density than the mixture; includes,
    상기 성형체의 90 중량% 이상이 상기 소결 대차에 장입된 상기 소결광 제조용 장입물의 전체 높이 100%에 대하여, 상기 소결 대차 내부 하면으로부터 40% 이하의 높이에 위치하는 소결광 제조용 장입물.With respect to 100% of the total height of the charge for manufacturing the sintered ore, in which 90% by weight or more of the molded body is charged to the sintered bogie, the charge for manufacturing the sintered ore is located at a height of 40% or less from the inner bottom surface of the sintered bogie.
  24. 제23항에 있어서,The method of claim 23,
    상기 소결광 제조용 장입물 전체 100 중량%에 대하여, 상기 성형체는 30 중량% 이하인 소결광 제조용 장입물.With respect to 100% by weight of the total charge for producing the sintered ore, the molded body is 30% by weight or less.
PCT/KR2019/016282 2018-12-18 2019-11-25 Sintered ore manufacturing apparatus, sintered ore manufacturing method, sintered ore, and charging material for manufacturing sintered ore WO2020130386A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0164385 2018-12-18
KR20180164385 2018-12-18

Publications (1)

Publication Number Publication Date
WO2020130386A1 true WO2020130386A1 (en) 2020-06-25

Family

ID=71102876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016282 WO2020130386A1 (en) 2018-12-18 2019-11-25 Sintered ore manufacturing apparatus, sintered ore manufacturing method, sintered ore, and charging material for manufacturing sintered ore

Country Status (1)

Country Link
WO (1) WO2020130386A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212291A (en) * 1993-01-13 1994-08-02 Sumitomo Metal Ind Ltd Pretreatment method of sintered raw material in manufacturing sintered ore
JP2008169442A (en) * 2007-01-12 2008-07-24 Jfe Steel Kk Method for granulating raw material to be sintered
JP2015193889A (en) * 2014-03-31 2015-11-05 新日鐵住金株式会社 Sintered ore production method
KR20160038157A (en) * 2014-09-29 2016-04-07 주식회사 포스코 Charging apparatus for raw material and charging method thereof
KR20180060207A (en) * 2016-11-28 2018-06-07 주식회사 포스코 Method of sintered ore

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212291A (en) * 1993-01-13 1994-08-02 Sumitomo Metal Ind Ltd Pretreatment method of sintered raw material in manufacturing sintered ore
JP2008169442A (en) * 2007-01-12 2008-07-24 Jfe Steel Kk Method for granulating raw material to be sintered
JP2015193889A (en) * 2014-03-31 2015-11-05 新日鐵住金株式会社 Sintered ore production method
KR20160038157A (en) * 2014-09-29 2016-04-07 주식회사 포스코 Charging apparatus for raw material and charging method thereof
KR20180060207A (en) * 2016-11-28 2018-06-07 주식회사 포스코 Method of sintered ore

Similar Documents

Publication Publication Date Title
WO2018097387A1 (en) Granulated product manufacturing apparatus, sintered ore manufacturing apparatus comprising same, and sintered ore manufacturing method
KR101304686B1 (en) Part reduced iron for blast furnace and method thereof
WO2014104624A1 (en) Coal briquette manufacturing method and coal briquette manufacturing apparatus
JPS6223944A (en) Refining method for nickel oxide or the like
KR100929182B1 (en) Binderless briquette manufacturing method and manufacturing apparatus
WO2020130386A1 (en) Sintered ore manufacturing apparatus, sintered ore manufacturing method, sintered ore, and charging material for manufacturing sintered ore
KR101433019B1 (en) Block manufacturing method using ferronickel slag and apparatus using the same
WO2012086961A2 (en) Method for manufacturing partially carbonized coal briquettes, apparatus for manufacturing partially carbonized coal briquettes, and apparatus for manufacturing molten iron
EP0614993B1 (en) Method for producing sintered ore
KR100797828B1 (en) Apparatus for manufacturing pellet and method for manufacturing pellet
US20010030389A1 (en) Apparatus for producing reduced iron
KR101908482B1 (en) Method of sintered ore
WO2005111248A1 (en) Semi-reduced sintered ore and method for production thereof
WO2017078429A1 (en) Apparatus and method for charging raw material
JP2014043646A (en) Process of producing metallic iron
US20160024611A1 (en) Method for recycling iron-containing by-products discharged from coal-based molten ironmaking process, system therefor, and reduced iron agglomeration system
JPH01147023A (en) Manufacture of sintered ore
KR102175837B1 (en) The assembly for manufacturing sintered ore, sintered ore manufacturing method of using the same, material for manufacturing pig iron, and pig iron manufacturing method of using the same
JPH062912B2 (en) Pretreatment method of raw material for smelting furnace
KR102458931B1 (en) Method for manufacturing sintered ore
KR20080094414A (en) Smo fabricating method and apparatus using the fe-containing sludge
KR102045597B1 (en) The method for recycling by-product emitted from coal-based iron making process and equipment for hot compacting iron
JPS60114526A (en) Production of sintered ore
JPS63128128A (en) Manufacture of sintered ore
US20200032369A1 (en) Method of operating a pelletizing plant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898933

Country of ref document: EP

Kind code of ref document: A1