JP2008169442A - Method for granulating raw material to be sintered - Google Patents

Method for granulating raw material to be sintered Download PDF

Info

Publication number
JP2008169442A
JP2008169442A JP2007004432A JP2007004432A JP2008169442A JP 2008169442 A JP2008169442 A JP 2008169442A JP 2007004432 A JP2007004432 A JP 2007004432A JP 2007004432 A JP2007004432 A JP 2007004432A JP 2008169442 A JP2008169442 A JP 2008169442A
Authority
JP
Japan
Prior art keywords
limestone
sintered
granulated
viscosity
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007004432A
Other languages
Japanese (ja)
Inventor
Nobuyuki Oyama
伸幸 大山
Hideaki Sato
秀明 佐藤
Satoshi Machida
智 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007004432A priority Critical patent/JP2008169442A/en
Publication of JP2008169442A publication Critical patent/JP2008169442A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for granulating a raw material to be sintered, which improves the production efficiency of a sintered ore, and is suitable for producing a sintered ore that has calcium ferrite with high strength formed on the surface thereof and hematite with high reducibility in the inner part. <P>SOLUTION: The method for granulating the raw material to be sintered by the steps of granulating the material to be sintered which does not contain limestone and coke breeze, with a drum mixer, and then adding the limestone and the coke breeze to the granulated pseudo-particles to make the limestone and the coke breeze deposit on the surface of the granulated pseudo-particles, when producing the sintered ore for a blast furnace, includes adjusting the viscosity of water for granulation to 500 mPa s or higher, when granulating the material to be sintered which does not contain the limestone and the coke breeze, granulating the material, and adding the limestone and the coke breeze to the granulated pseudo-particles to make the limestone and the coke breeze deposit on the granulated pseudo-particles. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高炉で使用する焼結鉱を製造する原料(以下、焼結原料という)を、ドワイトロイド式焼結機に装入するに先立って造粒する方法に関するものである。詳しくは、焼結鉱の生産効率を向上させるとともに、表面に高強度のカルシウムフェライトを生成させ、内部に被還元性の高いヘマタイトを生成させた焼結鉱を製造するに好適な焼結原料の造粒方法に関するものである。   The present invention relates to a method of granulating a raw material for producing a sintered ore used in a blast furnace (hereinafter referred to as a sintered raw material) prior to charging it into a dweroid-type sintering machine. In detail, while improving the production efficiency of sintered ore, a high-strength calcium ferrite is formed on the surface, and a sintering raw material suitable for producing sintered ore having high reducible hematite inside is produced. It relates to a granulation method.

一般に焼結鉱は、図7に示すような工程を経て製造される。まず、10mm以下で重量平均径1.0〜5.0mmの各種原料、たとえば
(a)鉄鉱石粉,石灰石,ドロマイト等のCaOを含有する原料、
(b)製鉄所内で回収された各種の粉体、
(c)焼結鉱の篩下粉、
(d)生石灰等の造粒助剤、
(e)粉コークス,無煙炭等の凝結剤
を所定の割合で各ホッパー2から切り出してドラムミキサー3aに装入する。ドラムミキサー3a内でこれら(a)〜(e)の焼結原料を混合しながら水4を添加して調湿し、次いでドラムミキサー3bで造粒して、平均粒径が3.0〜6.0mmの粒子(以下、擬似粒子という)とする。なお図7には2台のドラムミキサーを使用する例を示したが、1台のみで混合,調湿,造粒を行なう例(図示せず)もある。
In general, sintered ore is manufactured through a process as shown in FIG. First, various raw materials having a weight average diameter of 1.0 to 5.0 mm at 10 mm or less, such as
(a) raw materials containing CaO such as iron ore powder, limestone, dolomite,
(b) various powders collected in the steelworks,
(c) Sintered ore sieve powder,
(d) Granulation aids such as quicklime
(e) A coagulant such as powdered coke or anthracite is cut out from each hopper 2 at a predetermined ratio and charged into the drum mixer 3a. While mixing the sintering raw materials (a) to (e) in the drum mixer 3a, water 4 is added to adjust the humidity, and then granulated by the drum mixer 3b to obtain an average particle size of 3.0 to 6.0 mm. Particles (hereinafter referred to as pseudo particles). Although FIG. 7 shows an example in which two drum mixers are used, there is an example (not shown) in which mixing, humidity conditioning and granulation are performed with only one drum mixer.

この擬似粒子をサージホッパー5に一旦貯留してドラムフィーダー6で切り出し、シュート7を介して無端移動式のパレット8上に400〜600mmの高さで充填する。パレット8は矢印aの方向へ常時移動するので、シュート7からパレット8に充填された擬似粒子は点火炉9を通過する。点火炉9にて、パレット8に充填された擬似粒子の表層に分布する粉コークス(上記の(e)参照)に点火する。   The pseudo particles are temporarily stored in the surge hopper 5, cut out by the drum feeder 6, and filled on the endless movable pallet 8 through the chute 7 at a height of 400 to 600 mm. Since the pallet 8 always moves in the direction of the arrow a, the pseudo particles filled in the pallet 8 from the chute 7 pass through the ignition furnace 9. In the ignition furnace 9, the powder coke (see (e) above) distributed on the surface layer of the pseudo particles filled in the pallet 8 is ignited.

点火炉9を通過した後は、パレット8の下方に設置された排風機によって空気を吸引
するので、順次、表層の炭材から底層に分布する炭材が点火される。このようにしてパレット8に充填された擬似粒子内の凝結剤が燃焼し、その燃焼熱で擬似粒子の焼結が進行する。得られた焼結ケーキを破砕,整粒して粒径5.0mm以上の焼結鉱を高炉(図示せず)に装入する。
After passing through the ignition furnace 9, the air is sucked by the exhaust fan installed below the pallet 8, so that the carbon materials distributed from the surface carbon material to the bottom layer are sequentially ignited. In this way, the coagulant in the pseudo particles filled in the pallet 8 burns, and the sintering of the pseudo particles proceeds with the combustion heat. The obtained sintered cake is crushed and sized, and sintered ore having a particle size of 5.0 mm or more is charged into a blast furnace (not shown).

このようにして製造される焼結鉱の生産量は、ドワイトロイド式焼結機1の機長,パレット8の幅,パレット8上の充填層厚,擬似粒子の嵩密度(原料の銘柄による)に応じて定まる。また、これらの条件が一定である場合には、パレット8上の充填層の通気性を改善して焼結時間を短縮する、あるいは焼結ケーキの冷間強度を高めて歩留りを向上することによって、焼結鉱の生産効率を高めることができる。   The production amount of the sintered ore thus produced is determined by the length of the dwelloid-type sintering machine 1, the width of the pallet 8, the packed bed thickness on the pallet 8, and the bulk density of pseudo particles (depending on the brand of the raw material). It depends on your needs. Moreover, when these conditions are constant, by improving the air permeability of the packed layer on the pallet 8 to shorten the sintering time, or by increasing the cold strength of the sintered cake to improve the yield. The production efficiency of sintered ore can be increased.

そこで焼結時間の短縮に着目すると、充填層の通気性を改善するためには、充填する擬似粒子の強度を増加して、焼結過程で擬似粒子が崩壊し難くする必要がある。したがって強度を増加するためには、造粒助剤を使用して各種原料を強固に付着させなければならない。焼結原料の造粒助剤、すなわちバインダーは、代表的には生石灰が用いられるが、近年、粘度の高いバインダーを用いた焼結原料の造粒方法の提案がなされている。すなわち、造粒粒子である擬似粒子の強度を増加する有効な手段として、粘度の高いバインダーを使用して擬似粒子の強度を増加させ、粒子径を大きくすることが挙げられる。   Therefore, focusing on shortening the sintering time, in order to improve the air permeability of the packed bed, it is necessary to increase the strength of the pseudo particles to be filled so that the pseudo particles do not easily collapse during the sintering process. Therefore, in order to increase the strength, various raw materials must be firmly attached using a granulation aid. As a granulation aid for the sintering raw material, ie, a binder, quick lime is typically used. Recently, a method for granulating a sintering raw material using a binder having a high viscosity has been proposed. That is, as an effective means for increasing the strength of the pseudo particles that are the granulated particles, it is possible to increase the size of the pseudo particles by increasing the strength of the pseudo particles using a binder having a high viscosity.

ここで、擬似粒子である造粒体の強度σは、下記の(1)式で与えられる。
σ=6ΨS(〔1−ε〕/ε)(γ/D)cosθ
+(3πμR4 /2)(da/dt) ・・・(1)
σ:造粒体の引張強度
γ:架橋物質の表面張力
θ:粉体との接触角
μ:架橋物質の粘度
S:粉体の表面積
Ψ:液充満度(=0.6)
ε:造粒物の空隙率
D:比表面積相当径
a:架橋液体の曲率半径
なお(1)式の6ΨS(〔1−ε〕/ε)(γ/D)cosθは毛細管力による吸引圧力を指し、(3πμR4/2)(da/dt)は外力に対する抗力を指す。
Here, the strength σ of the granulated body which is a pseudo particle is given by the following equation (1).
σ = 6ΨS ([1-ε] / ε) (γ / D) cos θ
+ (3πμR 4/2) ( da / dt) ··· (1)
σ: Tensile strength of granulated material γ: Surface tension of cross-linked substance θ: Contact angle with powder μ: Viscosity of cross-linked substance S: Surface area of powder Ψ: Degree of liquid fullness (= 0.6)
ε: Porosity of granulated material D: Specific surface area equivalent diameter a: Curvature radius of cross-linking liquid Note that 6ΨS ([1-ε] / ε) (γ / D) cosθ in equation (1) is the suction pressure by capillary force refers, (3πμR 4/2) ( da / dt) refers to the resistance to external force.

これによると、造粒体の強度σを向上させるためには、粉体と架橋物質(一般的には水とバインダーの混合溶融体である造粒水)との接触角を低下させる方法、あるいは架橋物質(造粒水)の粘度を増加させる方法がある。
しかし、これまでに高粘度バインダーを用いて造粒水の粘度を増加させると、造粒粒子の強度が増加し、造粒粒子径が増加するが、粉状の石灰石やコークスも鉄鉱石粉とともに造粒粒子内に取り込まれるために、燃焼反応や溶融反応が円滑に進まない。その結果、操業成績が芳しくないことが知られていた。つまり、粘度の高いバインダー(以下、高粘度バインダーという)を使用すると、造粒水粘度が上昇し、粘度の高い造粒水を使用した造粒では、擬似粒子の強度は高まるものの、鉄鉱石とともに石灰石(上記の(a)参照)や粉コークス(上記の(e)参照)が擬似粒子の中に取り込まれるので、燃焼反応と溶融反応が円滑に進行せず、焼結鉱の生産性は向上できなかった。
According to this, in order to improve the strength σ of the granulated body, a method of reducing the contact angle between the powder and the cross-linking substance (generally granulated water which is a mixed melt of water and binder), or There is a method of increasing the viscosity of the cross-linking substance (granulated water).
However, increasing the viscosity of granulated water using a high-viscosity binder so far increases the strength of the granulated particles and increases the granulated particle diameter, but powdered limestone and coke are also produced together with iron ore powder. Since it is taken into the particles, the combustion reaction and the melting reaction do not proceed smoothly. As a result, it was known that the operation results were not good. In other words, if a binder with a high viscosity (hereinafter referred to as a high viscosity binder) is used, the viscosity of the granulated water rises, and in the granulation using the granulated water with a high viscosity, the strength of the pseudo particles increases, but with iron ore. Limestone (see (a) above) and coke coke (see (e) above) are taken into the pseudo-particles, so the combustion and melting reactions do not proceed smoothly, improving the productivity of sintered ore. could not.

たとえば特許文献1〜3に開示された技術では、粘度の高いカルボキシル基等の使用によって粉コークスが擬似粒子内に取り込まれるので、粉コークスの燃焼性が悪化して燃焼反応の進行が阻害され、焼結鉱の生産効率に問題を起こすことがあった。
つまり、高粘度バインダーを用いて擬似粒子の強度を増加させ、焼結鉱の生産効率を向上させる技術は、未だ実用化に至っていない。
特開2002-241851号公報 特開2004-76137号公報 特開2004-76134号公報
For example, in the techniques disclosed in Patent Documents 1 to 3, since the powder coke is taken into the pseudo particles by using a high viscosity carboxyl group or the like, the combustibility of the powder coke is deteriorated and the progress of the combustion reaction is inhibited, There was a problem in the production efficiency of sintered ore.
That is, a technique for increasing the strength of pseudo particles using a high-viscosity binder and improving the production efficiency of sintered ore has not yet been put into practical use.
JP 2002-241851 A JP 2004-76137 A JP 2004-76134 A

本発明は、ドワイトロイド式焼結機で焼結鉱を製造するにあたって、新たな設備を必要とせず、焼結鉱の生産効率を向上させるとともに、表面に高強度のカルシウムフェライトを生成させ、内部に被還元性の高いヘマタイトを生成させた焼結鉱を製造するに好適な焼結原料の造粒方法を提供することを目的とする。   The present invention does not require a new facility for producing a sintered ore with a dweroid-type sintering machine, improves the production efficiency of the sintered ore, generates high-strength calcium ferrite on the surface, Another object of the present invention is to provide a method for granulating a sintering raw material suitable for producing a sintered ore in which hematite having a high reducibility is produced.

発明者らは、高粘度バインダーを用いて擬似粒子の強度を増加し、かつ焼結鉱の生産効率を向上する方法について鋭意検討した。すなわち、高粘度バインダーを使用し、擬似粒子強度を高め、内在された粉コークスの燃焼性に問題を生じるということは、一旦擬似粒子化されていれば、擬似粒子の崩壊が少なく、そのような擬似粒子に対して副原料である石灰石と凝結剤である粉コークスとを擬似粒子の表面に付着(すなわち外装化)させることができれば、最も好ましい焼結用擬似粒子を得ることができるという知見を得た。   The inventors diligently studied a method for increasing the strength of pseudo particles and improving the production efficiency of sintered ore using a high-viscosity binder. That is, using a high-viscosity binder, increasing the pseudo particle strength and causing a problem in the combustibility of the internal powder coke means that once pseudo particles are formed, the pseudo particles are less likely to collapse. The knowledge that the most preferable pseudo-particles for sintering can be obtained if limestone, which is an auxiliary raw material, and powder coke, which is a coagulant, can be attached to the surface of the pseudo-particles (ie, the exterior). Obtained.

本出願人は特許文献4の技術を保有している。その技術では、擬似粒子の表面に石灰石と粉コークスを外装化することによって、表面に高強度のカルシウムフェライトを生成させ、内部に被還元性の高いヘマタイトを生成させた焼結鉱を得ることができる。
つまり、擬似粒子から石灰石と粉コークスを除外し、擬似粒子の表面に石灰石と粉コークスを外装化する際、石灰石と粉コークスを除外した焼結原料の擬似粒子の造粒過程で、高粘度バインダーを使用することによって擬似粒子の強度を増加させ、その後、出願人が保有する外装化の技術、すなわち擬似粒子の表面に焼結時の熱源として必要な粉コークスおよび高炉操業に必要な石灰石を付着させることによって、焼結時の燃焼反応と溶融反応を確保することにより、焼結鉱の生産効率向上と、表面に高強度のカルシウムフェライトを生成させ、内部に被還元性の高いヘマタイトを生成させた焼結鉱を得ることができる。
The present applicant possesses the technique of Patent Document 4. In this technology, limestone and coke breeze are coated on the surface of the pseudo particles to produce high-strength calcium ferrite on the surface and to obtain a sintered ore in which highly reducible hematite is produced inside. it can.
In other words, when excluding limestone and powdered coke from the pseudo particles and exteriorizing the limestone and powdered coke on the surface of the pseudoparticles, the high viscosity binder in the granulation process of the pseudoparticles of the sintered material excluding the limestone and powdered coke After that, the strength of the pseudo particles is increased, and then the exterior coating technology possessed by the applicant, that is, the powder coke necessary as a heat source during sintering and the limestone necessary for blast furnace operation are adhered to the surface of the pseudo particles By ensuring the combustion reaction and melting reaction during sintering, the production efficiency of sintered ore is increased, high strength calcium ferrite is generated on the surface, and highly reducible hematite is generated inside. Sintered ore can be obtained.

本発明は、これらの知見に基づいてなされたものである。
すなわち本発明は、高炉用焼結鉱を製造する際、石灰石と粉コークスを除いた焼結原料をドラムミキサーで造粒した後、その造粒擬似粒子に石灰石と粉コークスを添加して造粒擬似粒子の表面に石灰石と粉コークスを付着させる焼結原料の造粒方法において、石灰石と粉コークスを除いた焼結原料を造粒する際に造粒水の粘度を500mPa・s以上の粘度として調整し、造粒した後、造粒した擬似粒子に石灰石と粉コークスを添加し、造粒擬似粒子に石灰石と粉コークスを付着させる焼結原料の造粒方法である。
The present invention has been made based on these findings.
That is, the present invention, when producing a blast furnace sintered ore, after granulating the sintering raw material excluding limestone and powder coke with a drum mixer, granulated by adding limestone and powder coke to the granulated pseudo particles In the granulation method of the sintering raw material in which limestone and powder coke are adhered to the surface of the pseudo particles, the viscosity of the granulated water is set to 500 mPa · s or more when granulating the sintering raw material excluding limestone and powder coke. This is a method for granulating a sintered material in which limestone and powdered coke are added to the granulated pseudo particles after adjustment and granulation, and limestone and powdered coke are adhered to the granulated pseudo particles.

本発明によれば、ドワイトロイド式焼結機で焼結鉱を製造するにあたって、新たな設備を必要とせず、焼結鉱の生産効率を向上させるとともに、表面に高強度のカルシウムフェライトを生成させ、内部に被還元性の高いヘマタイトを生成させた焼結鉱を製造するに好適な焼結原料を造粒できる。また本発明によって、高粘度バインダーを使用する際の弊害を一挙に解決することができる。   According to the present invention, when manufacturing a sintered ore with a Dwytroid type sintering machine, no new equipment is required, the production efficiency of the sintered ore is improved, and high strength calcium ferrite is generated on the surface. In addition, it is possible to granulate a sintering raw material suitable for producing a sintered ore in which hematite having a high reducibility is formed inside. In addition, the present invention can solve all the harmful effects of using a high-viscosity binder at once.

本発明について図面を参照して説明する。
図1は、焼結鉱の被還元性と高炉のガス利用率との関係を示すグラフである。焼結鉱の被還元性はJIS規格で定義されており、ここではJIS-RIと記す。高炉のガス利用率ηCOは下記の(2)式で算出される値である。
ηCO=CO2(%)/〔CO(%)+CO2(%)〕 ・・・(2)
図1から明らかなように、焼結鉱の被還元性JIS-RIが増加すると、高炉のガス利用率ηCOが増加する。
The present invention will be described with reference to the drawings.
FIG. 1 is a graph showing the relationship between the reducibility of sintered ore and the gas utilization rate of a blast furnace. The reducibility of sintered ore is defined by JIS standards, and is described here as JIS-RI. The gas utilization rate η CO of the blast furnace is a value calculated by the following equation (2).
η CO = CO 2 (%) / [CO (%) + CO 2 (%)] (2)
As is clear from FIG. 1, when the reducible JIS-RI of the sintered ore increases, the gas utilization rate η CO of the blast furnace increases.

図2は、高炉のガス利用率ηCOと高炉の燃料比との関係を示すグラフである。高炉の燃料比は銑鉄1tonあたりのコークス使用量を指す。図2から明らかなように、高炉のガス利用率ηCOが増加すると、燃料比が減少する。
これらの図1,図2から、JIS-RIが増加すると、燃料比が減少することが分かる。燃料比の減少は、コークス使用量の低減を意味しており、高炉操業における原料コストの削減に寄与する。つまり焼結鉱の被還元性JIS-RIを向上すれば、高炉操業のコストダウンを達成できる。
FIG. 2 is a graph showing the relationship between the gas utilization rate η CO of the blast furnace and the fuel ratio of the blast furnace. Blast furnace fuel ratio refers to the amount of coke used per ton of pig iron. As is apparent from FIG. 2, the fuel ratio decreases as the gas utilization rate η CO of the blast furnace increases.
From these FIG. 1 and FIG. 2, it can be seen that as the JIS-RI increases, the fuel ratio decreases. The reduction in fuel ratio means a reduction in the amount of coke used, contributing to a reduction in raw material costs in blast furnace operation. In other words, if the reducible JIS-RI of sintered ore is improved, the cost reduction of blast furnace operation can be achieved.

また、焼結鉱の冷間強度は高炉の操業に多大な影響を及ぼす。つまり、冷間強度の低い焼結鉱は崩壊し易いので、高炉に装入されるときに容易に粉砕され、高炉内の通気性を阻害する。したがって、被還元性に優れかつ冷間強度の高い焼結鉱は、高炉の操業に好適な焼結鉱である。
焼結鉱を構成する鉱物組織は、ヘマタイト(HE),カルシウムフェライト(CF),カルシウムシリケート(CS),マグネタイト(MG)であり、各鉱物組織の引張強度とJIS-RIは表1に示す通りである。表1から明らかなように、被還元性が最も高い鉱物組織はヘマタイト(HE)であり、引張強度が最も大きい鉱物組織はカルシウムフェライト(CF)である。
In addition, the cold strength of the sintered ore has a great influence on the operation of the blast furnace. That is, since the sintered ore with low cold strength is easy to collapse, it is easily pulverized when charged in the blast furnace, and impairs the air permeability in the blast furnace. Therefore, a sintered ore excellent in reducibility and having a high cold strength is a sintered ore suitable for blast furnace operation.
The mineral structures that make up the sintered ore are hematite (HE), calcium ferrite (CF), calcium silicate (CS), and magnetite (MG). The tensile strength and JIS-RI of each mineral structure are as shown in Table 1. It is. As is apparent from Table 1, the mineral structure having the highest reducibility is hematite (HE), and the mineral structure having the largest tensile strength is calcium ferrite (CF).

Figure 2008169442
Figure 2008169442

表1に示す鉱物組織で構成される焼結鉱の被還元性と冷間強度を共に向上させるためには、焼結鉱の表面に引張強度の大きいカルシウムフェライトを生成させ、焼結鉱の内部に被還元性の高いヘマタイトを生成させる必要がある。発明者らの研究によれば、石灰石と粉コークスを除いた焼結原料をドラムミキサーにて水を添加しながら造粒して擬似粒子とし、さらにドラムミキサー内で擬似粒子の表面に石灰石と粉コークスとを水によって付着させた造粒物を焼結することによって、カルシウムフェライトを表面に、ヘマタイトを内部に選択的に生成させた焼結鉱を製造できることが判明した。   In order to improve both the reducibility and the cold strength of the sintered ore composed of the mineral structure shown in Table 1, calcium ferrite having a high tensile strength is formed on the surface of the sintered ore, It is necessary to produce hematite with high reducibility. According to the research by the inventors, the sintered raw material excluding limestone and powder coke is granulated while adding water with a drum mixer to form pseudo particles, and further, the limestone and powder are formed on the surface of the pseudo particles in the drum mixer. It has been found that by sintering a granulated product in which coke is adhered to water, a sintered ore in which calcium ferrite is selectively produced on the surface and hematite is selectively produced inside can be produced.

図3は、その説明図であり、焼結原料をそのまま造粒すると、図3(A)に示すように、擬似粒子は、鉄系原料,CaO系原料,SiO2 系原料,熱源を同時に混合して得るため、焼結鉱にはヘマタイト(HE),カルシウムフェライト(CF),カルシウムシリケート(CS),マグネタイト(MG)の4種の鉱物組織が混在することになる。
そこで図3(B)に示すように、焼結原料から石灰石と粉コークスを除いた擬似粒子の周囲に石灰石と粉コークスとを付着させた造粒物とすると、得られた焼結鉱の組織がカルシウムフェライト(CF)を表面に、ヘマタイト(HE)を内部に選択的に生成させたものになる。
FIG. 3 is an explanatory diagram. When the sintered raw material is granulated as it is, as shown in FIG. 3 (A), the pseudo particles are mixed with an iron-based raw material, a CaO-based raw material, a SiO 2 -based raw material, and a heat source at the same time. Therefore, the sintered ore contains four types of mineral structures: hematite (HE), calcium ferrite (CF), calcium silicate (CS), and magnetite (MG).
Therefore, as shown in FIG. 3 (B), when the granulated product is made by adhering limestone and powdered coke around the pseudo particles obtained by removing limestone and powdered coke from the sintering raw material, the structure of the obtained sintered ore is obtained. However, calcium ferrite (CF) is selectively generated on the surface and hematite (HE) is selectively generated inside.

本出願人の発明である特許文献4では、焼結原料から石灰石と粉コークスを除いた擬似粒子の周囲に石灰石と粉コークスとを付着させた造粒物となるため、石灰石と粉コークスの添加後のドラムミキサー内の滞留時間を制御することによって実現していた。
しかし、このような石灰石や粉コークスの外装化効果をより多く発現させるには、図3における核鉱石(粗粒の粒子)+粉鉱石(粗粒より細粒の粒子)の部分、すなわち石灰石と粉コークスを除いて得た擬似粒子部分を、より強固に、より大きくすることの実現が望まれていた。これが実現できれば、特に石灰石と核鉱石+粉鉱石部分の接触する境界層が完成し、その境界層において石灰石と鉄系原料が反応し、カルシウムフェライト(CF)が確実に形成されることになるからである。また、粉コークスについては、擬似粒子の外周部分に存在するため、燃焼性が悪化して燃焼反応の進行が阻害され、焼結鉱の生産効率に問題を起こすことはない。
In Patent Document 4 which is the invention of the present applicant, a granulated product is obtained by adhering limestone and powdered coke around the pseudo particles obtained by removing limestone and powdered coke from the sintered raw material. This was realized by controlling the residence time in the later drum mixer.
However, in order to make the limestone and powdered coke more effective, the portion of nuclear ore (coarse particles) + powdered ore (fine particles from coarse particles) in FIG. It has been desired to realize a stronger and larger pseudo particle portion obtained by removing the powder coke. If this can be achieved, a boundary layer where limestone and nuclear ore + fine ore will be in contact will be completed, and in this boundary layer, limestone and iron-based materials will react, and calcium ferrite (CF) will be formed reliably. It is. Further, since the powder coke is present at the outer peripheral portion of the pseudo particle, the combustibility is deteriorated and the progress of the combustion reaction is hindered, and there is no problem in the production efficiency of the sintered ore.

そこで発明者らは、石灰石と粉コークスを除いた焼結原料を造粒して擬似粒子とする過程で、高粘度バインダーを用い、その結果、得られる造粒水の粘度と擬似粒子の強度について検討した。
その結果、高粘度バインダーを使用して、粘度500mPa・s以上の造粒水を使用すれば、ドラムミキサーによる造粒の過程で、擬似粒子の粒径が上昇し、擬似粒子化した後のドラムミキサー内の滞留においても、擬似粒子の崩壊が少ない強固な擬似粒子を得ることができることを見出した。したがって、本発明で使用する造粒水の粘度は500mPa・s以上とする。
Therefore, the inventors used a high-viscosity binder in the process of granulating the sintered raw material excluding limestone and powdered coke into pseudo particles, and as a result, about the viscosity of the resulting granulated water and the strength of the pseudo particles investigated.
As a result, if a high viscosity binder is used and granulated water having a viscosity of 500 mPa · s or more is used, the particle size of the pseudo particles increases during the granulation process by the drum mixer, and the drum after the pseudo particles are formed. It has been found that strong pseudo particles with less decay of the pseudo particles can be obtained even in the residence in the mixer. Therefore, the viscosity of the granulated water used in the present invention is 500 mPa · s or more.

500mPa・s以上の造粒水を得るための高粘度バインダーの種類は、カルボキシル基群、またカルボキシル基の中でもセルロース系増粘剤(たとえばカルボキシルメチルセルロース等)、またガム系物質(たとえばグアガム,アラビアガム等)、あるいはバインダーにさらに粘度調整剤として水ガラス,ベントナイトを用いるものが好ましい。これらのバインダーを水に溶解して、所定の粘度になるように調整して使用する。粘度調整は、バインダーの添加量を調整することによって行なう。   The types of high-viscosity binders for obtaining granulated water of 500 mPa · s or higher are carboxyl group groups, and among the carboxyl groups, cellulosic thickeners (such as carboxymethyl cellulose) and gum substances (such as guar gum and gum arabic) Etc.), or a binder using water glass or bentonite as a viscosity modifier. These binders are dissolved in water and used by adjusting to a predetermined viscosity. The viscosity is adjusted by adjusting the amount of binder added.

図4は、造粒時の添加水中に含まれるバインダーの濃度と粘度との関係の一例を示すグラフである。バインダーとしての添加剤Aは生石灰,添加剤Bはグアガム,添加剤Cはカルボキシメチルセルロースを指す。図4から明らかなように、生石灰では粘度の上昇は少ないが、グアガムやカルボキシメチルセルロースでは0.3質量%の添加でほぼ500mPa・sに達し、高粘度バインダーとして使用する際の経済的負担も少ない。なお、図4の造粒時の添加水分は7質量%である。   FIG. 4 is a graph showing an example of the relationship between the concentration and the viscosity of the binder contained in the added water during granulation. Additive A as a binder refers to quicklime, additive B refers to guar gum, and additive C refers to carboxymethylcellulose. As is clear from FIG. 4, quick increase in viscosity is small with quick lime, but with guar gum and carboxymethylcellulose, the addition of 0.3 mass% reaches almost 500 mPa · s, and the economic burden when used as a high-viscosity binder is small. In addition, the addition water | moisture content at the time of granulation of FIG. 4 is 7 mass%.

図5(A),(B)に、高粘度バインダーを用いて粘度調整を行ない、造粒に使用した際の造粒水粘度と、焼結鉱生産効率(焼結時間,生産率)を示し、図5(C),(D)に、得られた焼結鉱の歩留り(歩留り向上は冷間強度上昇を指す)と、JIS-RIとの関係を示す。図5から明らかなように、造粒水粘度500mPa・sで焼結時間および生産率の向上が発現され、本発明で粘度を500mPa・s以上とする理由である。また、粘度5000mPa・sが上限であり、好ましくは1000〜4000mPa・sである。   Figures 5 (A) and 5 (B) show the viscosity of the granulated water and the sinter production efficiency (sintering time and production rate) when the viscosity is adjusted using a high-viscosity binder and used for granulation. 5 (C) and 5 (D) show the relationship between the yield of sintered ore obtained (improvement in yield indicates an increase in cold strength) and JIS-RI. As is apparent from FIG. 5, the improvement of the sintering time and the production rate is manifested at a granulated water viscosity of 500 mPa · s, which is the reason why the viscosity is set to 500 mPa · s or more in the present invention. Further, the upper limit is a viscosity of 5000 mPa · s, preferably 1000 to 4000 mPa · s.

なお、造粒水の粘度調整として使用する高粘度バインダーは、造粒時の添加水に予め添加,混合,溶解させ、粘度調整を行なって使用すること、あるいは高粘度バインダーと石灰石と粉コークスを除く焼結原料を混合して、その造粒過程で添加水と接することで、粘度を発現させるようにしても構わない。いずれであっても、造粒水は粘度を帯びて同様な効果を得ることができる。   The high-viscosity binder used to adjust the viscosity of the granulated water is pre-added, mixed and dissolved in the water added during granulation, and the viscosity is adjusted, or the high-viscosity binder, limestone and powder coke are used. The sintered raw materials to be removed may be mixed and brought into contact with the added water during the granulation process so as to develop the viscosity. In any case, the granulated water has viscosity and can obtain the same effect.

図6に示すように、石灰石と粉コークスを除く焼結原料をホッパー2cからそれぞれ切り出して所定量をドラムミキサー3に装入し、かつ高粘度バインダー10を添加して造粒した。また、ホッパー2a,2bから石灰石と粉コークスを切り出して所定量をドラムミキサー3の出側から装入した。なお、高粘度バインダー10は、カルボキシメチルセルロースを水に溶解して粘度が1000mPa・sとなるように調整したものを使用した。   As shown in FIG. 6, the sintering raw materials excluding limestone and powdered coke were cut out from the hopper 2c, and a predetermined amount was charged into the drum mixer 3, and granulated by adding the high viscosity binder 10. Further, limestone and powder coke were cut out from the hoppers 2a and 2b and a predetermined amount was charged from the outlet side of the drum mixer 3. The high-viscosity binder 10 was prepared by dissolving carboxymethyl cellulose in water and adjusting the viscosity to 1000 mPa · s.

このようにして、石灰石と粉コークスを除く焼結原料からなる擬似粒子の表面に石灰石と粉コークスを付着させた造粒物をサージホッパー5に一旦貯留してドラムフィーダー6で切り出し、ドワイトロイド式焼結鉱1にて焼結を行なった。これを発明例とする。
一方、比較例1として、高粘度バインダー10の代わりに水と生石灰(2質量%添加)を使用し、それ以外は発明例と同様の方法で得られた造粒物をドワイトロイド式焼結鉱1に装入して焼結を行なった。
In this way, the granulated material in which the limestone and the powder coke are adhered to the surface of the pseudo particles made of the sintering raw material excluding the limestone and the powder coke is temporarily stored in the surge hopper 5 and cut out by the drum feeder 6, and the Dwytroid type Sintering was performed with the sinter 1. This is an invention example.
On the other hand, as Comparative Example 1, water and quicklime (added by 2% by mass) were used in place of the high-viscosity binder 10, and the granulated product obtained by the same method as that of the inventive example was used. 1 was charged and sintered.

また比較例2として、石灰石と粉コークスを除くことなく、焼結原料をそのまま造粒し、その造粒の際、カルボキシメチルセルロースを水に溶解して粘度が1000mPa・sとなるように調整したものを使用して、得られた造粒物をドワイトロイド式焼結機1に装入して焼結を行なった。
発明例の焼結時間は27分,生産性は1.78ton/hr・m2 ,JIS-RIは75%であった。比較例1の焼結時間は35分,生産性は1.4ton/hr・m2 ,JIS-RIは65%であった。比較例2の焼結時間は42分,生産性は1.0ton/hr・m2 ,JIS-RIは53%であった。
In Comparative Example 2, the sintered raw material was granulated as it was without removing limestone and powder coke, and the carboxymethyl cellulose was dissolved in water and adjusted to a viscosity of 1000 mPa · s. Was used, and the obtained granulated material was charged in the Dwytroid type sintering machine 1 for sintering.
The sintering time of the inventive example was 27 minutes, the productivity was 1.78 ton / hr · m 2 , and the JIS-RI was 75%. The sintering time of Comparative Example 1 was 35 minutes, the productivity was 1.4 ton / hr · m 2 , and the JIS-RI was 65%. The sintering time of Comparative Example 2 was 42 minutes, the productivity was 1.0 ton / hr · m 2 , and the JIS-RI was 53%.

焼結鉱の被還元性JIS-RIと高炉のガス利用率ηCOとの関係を示すグラフである。It is a graph which shows the relationship between the reducible JIS-RI of a sintered ore, and the gas utilization rate (eta) CO of a blast furnace. 高炉のガス利用率ηCOと燃料比との関係を示すグラフである。It is a graph which shows the relationship between the gas utilization rate (eta) CO of a blast furnace, and a fuel ratio. 造粒粒子と焼結鉱の例を模式的に示す断面図である。It is sectional drawing which shows the example of a granulated particle and a sintered ore typically. バインダーの濃度と粘度との関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of a binder, and a viscosity. 造粒水粘度と焼結時間,生産率,歩留り,JIS-RIとの関係を示すグラフである。It is a graph which shows the relationship between granulated water viscosity, sintering time, production rate, yield, and JIS-RI. 本発明の方法で造粒した焼結原料を用いて焼結鉱を製造する工程の例を示すフロー図である。It is a flowchart which shows the example of the process of manufacturing a sintered ore using the sintering raw material granulated with the method of this invention. 従来の焼結鉱の製造工程の例を示すフロー図である。It is a flowchart which shows the example of the manufacturing process of the conventional sintered ore.

符号の説明Explanation of symbols

1 ドワイトロイド式焼結機
2 ホッパー
2a 石灰石のホッパー
2b 粉コークスのホッパー
2c その他の原料のホッパー
3 ドラムミキサー
3a ドラムミキサー
3b ドラムミキサー
4 水
5 サージホッパー
6 ドラムフィーダー
7 シュート
8 パレット
9 点火炉
10 高粘度バインダー
1 Dwightroid sintering machine 2 Hopper
2a Limestone hopper
2b powder coke hopper
2c Other raw material hopper 3 Drum mixer
3a drum mixer
3b Drum mixer 4 Water 5 Surge hopper 6 Drum feeder 7 Chute 8 Pallet 9 Ignition furnace
10 High viscosity binder

Claims (1)

高炉用焼結鉱を製造する際、石灰石と粉コークスを除いた焼結原料をドラムミキサーで造粒した後、その造粒擬似粒子に石灰石と粉コークスを添加して造粒擬似粒子の表面に石灰石と粉コークスを付着させる焼結原料の造粒方法において、前記石灰石と前記粉コークスを除いた焼結原料を造粒する際に造粒水の粘度を500mPa・s以上の粘度として調整し、造粒した後、造粒した擬似粒子に石灰石と粉コークスを添加し、造粒擬似粒子に石灰石と粉コークスを付着させることを特徴とする焼結原料の造粒方法。   When producing sintered ore for blast furnace, after granulating the sintering raw material excluding limestone and powdered coke with a drum mixer, limestone and powdered coke are added to the granulated pseudoparticles to the surface of the granulated pseudoparticles. In the granulation method of the sintered raw material for adhering limestone and powder coke, when granulating the sintered raw material excluding the limestone and powder coke, the viscosity of the granulated water is adjusted to a viscosity of 500 mPa · s or more, A method for granulating a sintered raw material, characterized in that after granulation, limestone and powder coke are added to the granulated pseudo particles, and limestone and powder coke are adhered to the granulated pseudo particles.
JP2007004432A 2007-01-12 2007-01-12 Method for granulating raw material to be sintered Pending JP2008169442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007004432A JP2008169442A (en) 2007-01-12 2007-01-12 Method for granulating raw material to be sintered

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007004432A JP2008169442A (en) 2007-01-12 2007-01-12 Method for granulating raw material to be sintered

Publications (1)

Publication Number Publication Date
JP2008169442A true JP2008169442A (en) 2008-07-24

Family

ID=39697817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007004432A Pending JP2008169442A (en) 2007-01-12 2007-01-12 Method for granulating raw material to be sintered

Country Status (1)

Country Link
JP (1) JP2008169442A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020130386A1 (en) * 2018-12-18 2020-06-25 주식회사 포스코 Sintered ore manufacturing apparatus, sintered ore manufacturing method, sintered ore, and charging material for manufacturing sintered ore
CN114806671A (en) * 2022-04-28 2022-07-29 鞍钢股份有限公司 Sintered solid fuel modifier and preparation and use methods thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020130386A1 (en) * 2018-12-18 2020-06-25 주식회사 포스코 Sintered ore manufacturing apparatus, sintered ore manufacturing method, sintered ore, and charging material for manufacturing sintered ore
CN114806671A (en) * 2022-04-28 2022-07-29 鞍钢股份有限公司 Sintered solid fuel modifier and preparation and use methods thereof

Similar Documents

Publication Publication Date Title
JP4840524B2 (en) Method for manufacturing raw materials for sintering
JP5375742B2 (en) Granulation method of sintering raw material
CN104232885A (en) Method for blending ore of vanadium-titanium sintered ore
JP6686974B2 (en) Sintered ore manufacturing method
RU2366735C2 (en) AGGLOMERATE STONE FOR USAGE IN SHAFT FURNACES, Corex FURNACES OR BLAST FURNACES; METHOD OF PREPARATION OF AGGLOMERATE STONES (VERSIONS) AND USING FINE ORE FOR PREPARATION OF AGGLOMERATE STONES
JP6102463B2 (en) Method for producing sintered ore
JP5051317B1 (en) Method for manufacturing raw materials for sintering
JP6327082B2 (en) Pretreatment method for sintered aggregates
JP5954546B2 (en) Method for producing granulated raw material for sintering
JP2008169442A (en) Method for granulating raw material to be sintered
KR102085054B1 (en) Method for producing sintered ore
JP5146572B1 (en) Method for manufacturing raw materials for sintering
JP5935979B2 (en) Method for producing pseudo-particles for producing sinter and method for producing sinter
JP4918754B2 (en) Semi-reduced sintered ore and method for producing the same
JP5146573B1 (en) Method for manufacturing raw materials for sintering
JP5821362B2 (en) Method for manufacturing raw materials for sintering
JP4228694B2 (en) Method for manufacturing raw materials for sintering
JP3794332B2 (en) Granulation method of sintering raw material
JP6323297B2 (en) Pretreatment method of sintering raw materials
JP2014201763A (en) Method for producing granulation raw material for sintering
JP6885386B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
JP2000290734A (en) Pretreatment of sintering raw material
JP7424339B2 (en) Raw material particles for producing agglomerates, method for producing raw material particles for producing agglomerates, agglomerates, method for producing agglomerates, and method for producing reduced iron
JP3058985B2 (en) Sinter production method
JP4992549B2 (en) Hot metal production method using vertical scrap melting furnace