WO2020129673A1 - Image display device - Google Patents

Image display device Download PDF

Info

Publication number
WO2020129673A1
WO2020129673A1 PCT/JP2019/047597 JP2019047597W WO2020129673A1 WO 2020129673 A1 WO2020129673 A1 WO 2020129673A1 JP 2019047597 W JP2019047597 W JP 2019047597W WO 2020129673 A1 WO2020129673 A1 WO 2020129673A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
pixel
light
display device
image display
Prior art date
Application number
PCT/JP2019/047597
Other languages
French (fr)
Japanese (ja)
Inventor
誠一郎 甚田
勝史 宮崎
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN201980081869.4A priority Critical patent/CN113168080B/en
Priority to KR1020217017807A priority patent/KR20210104699A/en
Publication of WO2020129673A1 publication Critical patent/WO2020129673A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/10Projectors with built-in or built-on screen
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/142Adjusting of projection optics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3188Scale or resolution adjustment

Definitions

  • the present technology relates to an image display device such as a projector.
  • the display panel is divided into a central display area, a peripheral display area, and a frame area.
  • the translucent cover is arranged with respect to the display panel such that the lens portion of the translucent cover overlaps the peripheral display area of the display panel.
  • the image generated by the peripheral display area is magnified by the lens portion of the translucent cover, so that a virtual image is projected on the frame area.
  • the displayed image can be made to appear as if it is on the frame, making it difficult to see the frame region.
  • an object of the present technology is to provide an image display device capable of realizing high quality image display.
  • an image display device includes an image generation unit and a projection optical system.
  • the image generation unit has a first pixel region and a second pixel region, and first pixel light generated by the first pixel region and second pixel light generated by the second pixel region. Image light including two pixel lights is generated.
  • the projection optical system is configured such that the image state of the first partial image formed by the first pixel light is different from the image state of the second partial image formed by the second pixel light. Projects image light.
  • image light including first pixel light generated by the first pixel area and second pixel light generated by the second pixel area is generated. Then, the image light is projected such that the image state of the first partial image formed by the first pixel light and the image state of the second partial image formed by the second pixel light are different from each other. It This makes it possible to realize high-quality image display.
  • the first pixel area may be a central area located at the center of the image generating unit.
  • the second pixel region may be a peripheral region surrounding the periphery of the central region.
  • the image status may include the resolution of the image.
  • the projection optical system may project the image light such that the resolution of the first partial image is different from the resolution of the second partial image.
  • the projection optical system may project the image light such that the resolution of the second partial image is lower than the resolution of the first partial image.
  • the pixel pitch of the first pixel area may be different from the pixel pitch of the second pixel area.
  • the pixel pitch of the second pixel area may be larger than the pixel pitch of the first pixel area.
  • the pixel pitch of the first pixel area may be equal to the pixel pitch of the second pixel area.
  • the projection optical system may include a first projection unit that projects the first pixel light and a second projection unit that projects the second pixel light.
  • the first projection unit may project the first pixel light at a predetermined enlargement ratio.
  • the second projection unit may project the second pixel light at a larger enlargement ratio than the first projection unit.
  • the first projection unit may project the first pixel light at a predetermined enlargement ratio.
  • the second projection unit may project the second pixel light at an enlargement ratio equal to that of the first projection unit.
  • the projection optical system may include a projection lens unit that projects the image light incident along a predetermined direction along a predetermined optical axis direction.
  • the projection optical system may include a magnifying lens unit that magnifies at least a part of the second pixel light and makes the second pixel light incident on the projection lens unit along the predetermined direction.
  • the first pixel area may be a central area located at the center of the image generating unit.
  • the second pixel region may be a peripheral region surrounding the periphery of the central region.
  • the magnifying lens unit magnifies the pixel light generated by an outer region of the second pixel light, which is located on the opposite side of the second pixel region from the central region, and the magnifying lens unit expands the predetermined direction. You may make it inject into the said projection lens part along.
  • the projection optical system may include a magnifying lens that causes at least a part of the second image light to enter the projection lens unit along a direction intersecting the predetermined direction.
  • the first pixel area may be a central area located at the center of the image generating unit.
  • the second pixel region may be a peripheral region surrounding the periphery of the central region.
  • the magnifying lens unit intersects, in the predetermined direction, pixel light generated by an outer area of the second pixel light, which is located on the opposite side of the central area of the second pixel area. You may make it inject into the said projection lens part along a direction.
  • the magnifying lens unit may include a plurality of microlenses arranged in each of a plurality of pixels included in the second pixel area.
  • Each of the plurality of microlenses may have a curvature according to the position of the pixel to be arranged.
  • the image generation unit may have a non-generation region in which pixel light is not generated between the first pixel region and the second pixel region.
  • FIG. 9 is a schematic diagram showing an example of a circuit configuration of a pixel area of an LCD according to a second embodiment. It is a schematic diagram which shows an example of a circuit structure of the pixel area of LCD which concerns on 3rd Embodiment. It is a schematic diagram which shows the other example of the pixel structure of LCD. It is a schematic diagram which shows the other example of the pixel structure of LCD. It is a schematic diagram which shows the other example of the pixel structure of LCD. It is a schematic diagram which shows the other example of the pixel structure of LCD. It is a schematic diagram which shows the other example of the pixel structure of LCD. It is a schematic diagram of a three-plate type image display device using a reflective display panel.
  • FIG. 3 is a schematic view of a single-panel type image display device using a transmissive display panel having a color filter built therein. It is a schematic diagram of a 1-panel type image display device using a self-luminous display panel. It is a schematic diagram which shows an example of a circuit in case the pixel for displaying a projection image is RGB3 pixel. It is a schematic diagram which shows the blending of a projection image.
  • FIG. 1 is a schematic diagram showing a configuration example of an image display device according to a first embodiment of the present technology.
  • the image display device 500 is used, for example, as a projector for a presentation or a digital cinema.
  • the present technology described below is also applicable to image display devices used for other purposes.
  • a three-panel type image display device 500 using a transmissive display panel is used.
  • the present technology can be applied to other various types of image display devices.
  • the image display device 500 includes a light source device 100, an image generation system 200, and a projection system 400.
  • the light source device 100 emits white light W1 to the image generation system 200.
  • a solid-state light source such as an LED (Light Emitting Diode) or an LD (Laser Diode), or a mercury lamp or a xenon lamp is arranged.
  • a solid-state light source for RGB that can emit light of each color of RGB may be used, and the emitted light may be combined to generate the white light W1.
  • a solid-state light source that emits light in the blue wavelength band and a phosphor that is excited by blue light and emits yellow fluorescence may be arranged. In this case, the blue light and the yellow light are combined to emit the white light W1.
  • any method and any configuration for generating and emitting the white light W1 may be adopted.
  • the image generation system 200 has an integrator optical system 210 and an illumination optical system 220.
  • the integrator optical system 210 includes an integrator element 211, a polarization conversion element 212, and a condenser lens 213.
  • the integrator element 211 includes a first fly-eye lens 211a having a plurality of microlenses arranged two-dimensionally and a second flyeye lens having a plurality of microlenses arranged so as to correspond to the plurality of microlenses one by one. And a fly-eye lens 211b.
  • the white light W1 incident on the integrator element 211 is divided into a plurality of light beams by the microlens of the first fly-eye lens 211a, and is imaged on the corresponding microlens provided on the second fly-eye lens 211b. ..
  • Each of the micro lenses of the second fly-eye lens 211b functions as a secondary light source, and emits a plurality of parallel lights with uniform brightness to the polarization conversion element 212 in the subsequent stage.
  • the polarization conversion element 212 has a function of aligning the polarization states of incident light that enters through the integrator element 211.
  • the light passing through the polarization conversion element 212 is emitted to the illumination optical system 220 via the condenser lens 213.
  • the integrator optical system 210 as a whole has a function of adjusting the white light W1 traveling to the illumination optical system 220 to a uniform luminance distribution and adjusting the polarized light to uniform light.
  • the specific configuration of the integrator optical system 210 is not limited.
  • the illumination optical system 220 includes dichroic mirrors 230 and 240, mirrors 250, 260 and 270, field lenses 280R, 280G and 280B, relay lenses 290 and 300, LCDs (Liquid crystal display) 310R, 310G and 310B as image generating elements, It includes a dichroic prism 320.
  • the LCDs 310R, 310G and 310B function as a transmissive display panel.
  • the dichroic mirrors 230 and 240 have a property of selectively reflecting color light in a predetermined wavelength range and transmitting light in other wavelength ranges.
  • the dichroic mirror 230 selectively reflects the green light G1 and the blue light B1 included in the white light W1, and transmits the red light R1 included in the white light W1.
  • the dichroic mirror 240 selectively reflects the green light G1 reflected by the dichroic mirror 230 and transmits the blue light B1. As a result, different colored lights are separated into different optical paths. It should be noted that the configuration for separating the RGB color lights, the device used, and the like are not limited.
  • the separated red light R1 is reflected by the mirror 250, collimated by the field lens 280R, and then enters the LCD 310R for modulating red light.
  • the green light G1 is collimated by the field lens 280G and then enters the LCD 310G for modulating green light.
  • the blue light B1 passes through the relay lens 290 and is reflected by the mirror 260, and further passes through the lens 300 and is reflected by the mirror 270.
  • the blue light B1 reflected by the mirror 270 is collimated by the field lens 280B, and then enters the LCD 310B for blue light modulation.
  • the LCDs 310R, 310G, and 310B are electrically connected to a signal source (for example, PC or the like) (not shown) that supplies an image signal including image information.
  • the LCDs 310R, 310G, and 310B modulate the incident light for each pixel based on the supplied image signals of the respective colors, and generate red image light R2, green image light G2, and blue image light B2, respectively.
  • the image light corresponds to the light that constitutes an image.
  • the generated RGB image lights R2, G2, and B2 enter the dichroic prism 320 and are combined.
  • the dichroic prism 320 coaxially superimposes and combines the image lights R2, G2, and B2 of the respective colors incident from the three directions to generate the image light W2.
  • the generated image light W2 is emitted toward the projection system 400 along a predetermined direction.
  • the projection system 400 projects the image light W2 generated by the image generation system 200.
  • the projection system 400 has a plurality of lenses 410 and the like, and projects the image light W2 combined and emitted by the dichroic prism 320 onto a projection object such as a screen (not shown). As a result, a full-color image is displayed on the projection target.
  • the specific configuration of the projection system 400 is not limited.
  • FIG. 2 is a schematic diagram showing an example of a projection image projected by the image display device 500.
  • the projection image 30 is displayed.
  • the projection image 30 corresponds to an image formed by the image light W2.
  • any object such as a screen, a wall, or a car body may be used as the projection target.
  • the shape of the projection surface on which the image light W2 is projected, that is, the display surface on which the projection image 30 is displayed is not limited.
  • a flat screen or a curved screen may be used.
  • a screen that is curved so as to surround a user who views an image it is possible to improve the immersive feeling in the image and provide a high-quality viewing experience.
  • an image including the effective image 10 and the extended image 20 is displayed as the projection image 30.
  • the projection image 30 an image showing a landscape such as mountains, the sea, and private houses is displayed.
  • the specific content of the projection image 30 is not limited, and various images may be displayed.
  • an image includes both a still image and a moving image. It is also possible to regard a plurality of frame images forming a moving image as a plurality of still images.
  • the present technology can be applied to any still image such as a photograph or any moving image such as a movie or a game video.
  • the effective image 10 is displayed in the central area 11 of the projected image 30. This covers, for example, the central visual field of the user (the area in which the user focuses) that faces the front with respect to the projection image 30 and the stable gazing field (the area in which information can be gazed in a stable state).
  • the effective image 10 can be displayed.
  • the extended image 20 is displayed in the peripheral area 21 surrounding the central area 11 of the projection image 30. That is, the extended image 20 is displayed so as to surround the periphery of the effective image 10. Thereby, for example, the extended image 20 can be displayed in the peripheral visual field of the user who faces the front with respect to the projection image 30 (a region in which the first impression or the general view is grasped). Thus, in addition to the effective image 10, the extended image 20 is displayed around the effective image 10. As a result, the user can obtain a realistic viewing experience as if wrapped in an image. As a result, high quality image display is realized.
  • an image corresponding to full HD having an aspect ratio of 16:9 and horizontal 1920 pixels ⁇ vertical 1080 pixels is displayed.
  • An extended image 20 that enhances the sense of realism is displayed in the vicinity thereof.
  • the structure of the projected image 30 is not limited to this.
  • the image light W2 is projected and the projection image 30 is displayed so that the resolution of the effective image 10 is different from the resolution of the extended image 20. Specifically, the image light W2 is projected so that the resolution of the extended image 20 is lower than the resolution of the effective image 10.
  • a high-resolution and high-definition image is displayed as the effective image 10 displayed in the stable gaze field of the user.
  • a low-resolution image is displayed as the extended image 20 displayed in the peripheral visual field of the user.
  • the peripheral visual field image may be an out-of-focus image that is out of focus.
  • the resolution of the effective image 10 and the resolution of the extended image 20 can be defined by the density of effective pixels included in the effective image 10 and the density of extended pixels included in the extended image 20.
  • the resolution of the image displayed on the projection object is included in the image state displayed on the projection object. That is, in the present embodiment, the image light W2 is projected such that the image state of the effective image is different from the image state of the extended image.
  • the image state includes various parameters related to how the image is displayed on the projection object. For example, the magnification of the image light W2, the pixel size, and the like may be included in the image state.
  • the method of generating effective image data for displaying the effective image 10 and extended image data for displaying the extended image 20 is not limited.
  • valid image data and extended image data may be prepared in advance for each content.
  • the image data of the main content displayed on the entire conventional display is used as the effective image data.
  • the extended image data may be appropriately generated based on the effective image data.
  • image data near the periphery of the effective image 10 may be used as it is as extended image data.
  • image data near the periphery of the effective image 10 may be used as it is as extended image data.
  • the image around the effective image 10 may be detected, and the extended image data may be generated.
  • the extended image data may be generated by analyzing the information of the preceding and following frame images.
  • FIG. 3 is a diagram schematically showing an example of the pixel configuration of the LCD 310.
  • the LCDs 310R, 310G and 310B shown in FIG. 1 have the same pixel configuration. Therefore, the LCD 310R, 310G, and 310B will be described as the LCD 310 without distinction.
  • the description of the combination of the red image light R2, the green image light G2, and the blue image light B2 generated by the LCDs 310R, 310G, and 310B is omitted, and the image light generated by the LCD 310 is shown in FIG. It may be described as the image light W2.
  • the pixel area in which the pixels of the LCD 310 are arranged is divided into an effective pixel area 15 and an extended pixel area 25.
  • the effective pixel area 15 is set in the central area 11 located at the center of the pixel area.
  • Effective pixel light is generated by the effective pixel region 15. That is, the pixel light emitted from the effective pixel 16 included in the effective pixel region 15 constitutes the effective pixel light.
  • the extended pixel area 25 is set in the peripheral area 21 that surrounds the periphery of the central area 11 of the pixel area. That is, the extended pixel area 25 is set so as to surround the periphery of the effective pixel area 15. Extended pixel light is generated by the extended pixel region 25. That is, the pixel light emitted from the expansion pixel 26 included in the expansion pixel region 25 constitutes the expansion pixel light.
  • the LCD 310 generates the image light W2 including the effective pixel light and the extended pixel light.
  • the effective pixel light included in the image light W2 corresponds to the full-color effective pixel light in which the effective pixel lights of the RGB colors are combined.
  • the extended pixel light included in the image light W2 corresponds to full-color extended pixel light in which the extended pixel lights of RGB colors are combined.
  • the effective image light shown in FIG. 2 is formed by the effective pixel light included in the image light W2.
  • the extended image light shown in FIG. 2 is formed by the extended pixel light included in the image light W2. That is, the image display device 500 projects the image light W2 such that the image state of the effective image 10 formed by the effective pixel light is different from the image state of the extended image 20 formed by the extended pixel light.
  • the effective pixel area 15 an area having an aspect ratio of 16:9 and including a pixel configuration corresponding to full HD of 1920 pixels horizontal ⁇ 1080 pixels vertical is set.
  • An extended pixel area that improves the sense of presence is set around the area.
  • the pixel configuration of the projection image 30 is not limited to this.
  • the pixel pitch of the effective pixel area 15 is set to be different from the pixel pitch of the extended pixel area 25.
  • the pixel pitch of the extended pixel area 25 is set to be larger than the pixel pitch of the effective pixel area 15. As shown in FIG. 3, it can be said that the pixel density of the extended pixel area 25 is higher than the pixel density of the effective pixel area 15.
  • the effective pixel area 15 and the effective pixel light correspond to the first pixel area and the first pixel light.
  • the extended pixel area 25 and the extended pixel light correspond to the second pixel area and the second pixel light.
  • the LCD 310 has a first pixel area and a second pixel area, and has a first pixel light generated by the first pixel area and a second pixel light generated by the second pixel area. It corresponds to an image generation unit that generates image light including.
  • the effective image 10 corresponds to the first partial image formed by the first pixel light.
  • the extended image 20 corresponds to the second partial image formed by the second pixel light.
  • FIG. 4 is a schematic diagram showing an example of the circuit configuration of the pixel area of the LCD 310.
  • the number of effective pixels 16 and the number of extension pixels 26 are small.
  • the numbers of effective pixels and extended pixels are not limited, and may be set arbitrarily.
  • the LCD 310 has a plurality of effective pixels 16, a plurality of extended pixels 26, a gate driver 311, a source driver 315, a plurality of gate lines 312, and a plurality of source lines 316.
  • the gate line 312 is shown as “Gate( )” and the source line 316 is shown as “Sig( )”.
  • a total of 36 effective pixels 16 of 6 ⁇ 6 are arranged.
  • the area in which the 36 effective pixels 16 are arranged becomes the effective pixel area 15.
  • two extension pixels 26 arranged side by side are arranged above and below the effective pixel area 15. Further, a total of four 2 ⁇ 2 extended pixels 26 are arranged on the left and right of the effective pixel area 15. Further, two extension pixels 26 arranged on the left and right are arranged at four corners of the LCD 310. The area in which the total of 20 expansion pixels 26 are arranged becomes the expansion pixel area 25.
  • Gate lines 1 to 6 and source lines 1 to 6 are arranged corresponding to the 36 effective pixels 16, respectively.
  • the gate line T1 is arranged for the extended pixels 26 arranged side by side at the top of the LCD 310.
  • the gate line B1 is arranged at the bottom of the LCD 310 for the extension pixels 26 arranged side by side.
  • the source lines L1 and L2 are arranged with respect to the two rows of extended pixels 26 arranged vertically from the left end of the LCD 310.
  • the source lines R1 and R2 are arranged for the two columns of the extension pixels 26 arranged vertically from the right end of the LCD 310.
  • any one of the gate lines 1 to 3 as a gate line.
  • Any one of the gate lines 4 to 6 can be used as the gate line for the extended pixels 26 arranged on the left and right in the second row from the bottom of the LCD 310.
  • any one of the source lines 1 to 3 can be used as a source line.
  • Any one of the source lines 4 to 6 can be used as the source line for the extension pixels 26 arranged one above the other in the third row from the right end of the LCD 310.
  • the pixel pitch of the extension pixel 26 is designed to be an integral multiple of the pixel pitch of the effective pixel 16. This facilitates the design of the circuit configuration.
  • the effective pixel 16 and the extended pixel 26 can share the gate line 312 and the source line 316, and the circuit configuration and the manufacturing process can be simplified.
  • the number, shape, and size of the effective pixels 16 and the extension pixels 26 are not limited.
  • the number, shape, and size of the effective pixels 16 and the extension pixels 26 may be arbitrarily set according to the shape and size of the LCD 310.
  • FIG. 5 is a schematic diagram for explaining the projection of the image light generated by the LCD 310. As described above, the image light generated by the LCD 310 will be described as the image light W2 shown in FIG.
  • a projection lens unit 50 in the figure is a schematic illustration of a lens optical system including a plurality of projection lenses 410 in the projection system 400 shown in FIG.
  • the LCD 310 has a plurality of effective pixels 16, a plurality of extension pixels 26, and a frame 36.
  • the frame 36 is arranged so as to surround the periphery of the extended pixel 26 and incorporates a peripheral circuit for causing the LCD 310 to function.
  • the image light W2 generated by the LCD 310 is emitted toward the projection lens unit 50 along a predetermined direction.
  • the projection lens unit 50 projects the image light W2 incident along a predetermined direction on the screen 60 along the predetermined optical axis direction.
  • the predetermined direction corresponds to the optical axis direction of the projection lens unit 50 (projection lens optical system).
  • the predetermined optical axis direction is the optical axis direction of the image display device 500.
  • the projection lens unit 50 projects an image, which is vertically and horizontally inverted with respect to the incident image light W2, onto the screen 60. Note that the configuration of the projection optical system is not limited to this.
  • the projection lens unit 50 magnifies the image light W2 generated by the LCD 310 at a predetermined magnification ratio and projects the magnified light onto the screen 60.
  • the image size of the projection image 30 displayed on the screen 60 is determined by the enlargement ratio of the projection lens unit 50, the distance between the screen 60 and the image display device 500, and the like.
  • FIG. 5 schematically shows a diagram in which the image light W2 generated by the LCD 310 is not enlarged and is projected on the screen 60.
  • This figure can also be said to be an example of a state in which the image light W2 is enlarged at the same enlargement ratio and projected on the screen 60 as a whole.
  • the pixel pitch of the extended pixel area 25 of the LCD 310 is designed to be larger than the pixel pitch of the effective pixel area 15. Then, as shown in FIG. 5, the image light W2 generated by the LCD 310 is enlarged at the same enlargement ratio as a whole and projected on the screen 60 (equal magnification in the example of FIG. 5).
  • the image light W2 is projected such that the resolution of the extended image formed by the extended pixel light 27 is lower than the resolution of the effective image 10 formed by the effective pixel light 17.
  • This makes it possible to project a projection image 30 having a high resolution at the center and a low resolution at the periphery as illustrated in FIG. As a result, it is possible to realize high quality image display.
  • the projection lens unit 50 causes the image state of the first partial image formed by the first pixel light to be different from the image state of the second partial image formed by the second pixel light.
  • it functions as a projection optical system that projects image light.
  • the projection lens unit 50 also functions as a first projection unit that projects the effective pixel light 17 (first pixel light) and a second projection unit that projects the extended pixel light (second pixel light). To do.
  • the portion of the projection lens unit 50 that exerts an optical action on the effective pixel light 17 is regarded as a first projection unit, and the portion that exerts an optical action on the extended pixel light 27 is referred to as a second portion.
  • the first projection unit projects the effective pixel light at a predetermined enlargement ratio
  • the second projection unit projects the expanded pixel light at the same enlargement ratio as the first projection unit.
  • FIGS. 6 to 9 are schematic diagrams showing another example of the projection method of the effective image and the extended image.
  • microlenses are added to increase the area of the expanded image 20 of the projected image 30. Note that as the area of the expanded image increases, the resolution of the expanded image further decreases.
  • the microlens may be configured separately from the LCD 310 or may be configured integrally with the LCD 310. Further, the specific configuration of the microlens is not limited, and any configuration such as a Fresnel lens or a diffractive lens may be adopted. In addition, any technique for realizing a microlens may be used.
  • the first microlens 51 and the second microlens 52 are arranged so as to cover the extended pixel region 25. That is, the first microlens 51 and the second microlens 52 are arranged on the optical path of the extended pixel light 27 emitted from the extended pixel 26.
  • the first microlens 51 and the second microlens 52 magnify the expanded pixel light 27 and make it enter the projection lens unit 50 along a predetermined direction.
  • This makes it possible to project the projection image 30 obtained by further expanding the extended image 20 on the screen 60.
  • a more realistic image display can be realized and a high quality viewing experience can be provided.
  • the enlarged image 20 of the projection image 30 can be enlarged without enlarging the LCD 310, which is very advantageous for downsizing the device.
  • the expanded pixel light 27 is projected on the screen 60 by the first microlens 51 and the second microlens 52 so as to spread in the direction of the frame 36.
  • the expanded image 20 can be displayed on the screen 60 wider than the area of the expanded pixel region 25. This makes it possible to narrow the frame by utilizing the area in which the frame 36 is arranged.
  • the first microlens 51 and the second microlens 52 are part of the second projection unit that projects the second pixel light at a magnification rate larger than that of the first projection unit. Function as. Further, the first microlens 51 and the second microlens 52 function as a magnifying lens unit that magnifies at least a part of the extended pixel light 27 and makes it enter the projection lens unit 50 along a predetermined direction.
  • the third microlens 53 is arranged so as to cover the extended pixel area 25. That is, the third microlens 53 is arranged on the optical path of the extended pixel light 27 emitted from the extended pixel 26.
  • the third microlens 53 causes the extended pixel light 27 to enter the projection lens unit 50 along a direction intersecting a predetermined direction.
  • the extended pixel light 27 is incident on the projection lens unit 50 so that the extended pixel lights intersect on the front side of the projection lens unit 50.
  • the projection image 30 obtained by further expanding the extended image 20 on the screen 60.
  • a more realistic image display can be realized and a high quality viewing experience can be provided.
  • the enlarged image 20 of the projection image 30 can be enlarged without enlarging the LCD 310, which is very advantageous for downsizing the device.
  • the effective image 10 and the expanded image 20 are designed in the optical system. Due to the above variation, the effective image 10 and the extended image 20 may partially overlap each other.
  • the third microlens 53 functions as a part of the second projection unit that projects the second pixel light with a larger magnification rate than the first projection unit. Further, the third microlens 53 functions as a magnifying lens unit that causes at least a part of the extended pixel light 27 to enter the projection lens unit 50 along a direction intersecting a predetermined direction.
  • the fourth microlens 54 is arranged so as to cover a part of the extended pixel region 25. Specifically, the fourth microlens 54 is arranged so as to cover the outer region 28 located on the opposite side of the central region 18 of the effective pixel region 15. The outer region 28 can also be said to be a region on the peripheral side of the extended pixel region 25. The fourth microlens 54 is arranged on the optical path of the extended pixel light 27 emitted from the extended pixel 26 included in the outer region 28.
  • the fourth microlens 54 makes the extended pixel light 27 generated by the outer region 28 incident on the projection lens unit 50 along a direction intersecting a predetermined direction.
  • the extended pixel light 27 is incident on the projection lens unit 50 so that the extended pixel light 27 intersects on the front side of the projection lens unit 50.
  • a more realistic image display can be realized and a high quality viewing experience can be provided.
  • the enlarged image 20 of the projection image 30 can be enlarged without enlarging the LCD 310, which is very advantageous for downsizing the device.
  • the fourth microlens 54 functions as a part of the second projection unit that projects the second pixel light with a larger magnification rate than the first projection unit.
  • the fourth microlens 54 functions as a magnifying lens unit that causes at least a part of the extended pixel light 27 to enter the projection lens unit 50 along a direction intersecting a predetermined direction.
  • first microlens 51 and the second microlens 52 illustrated in FIG. 6 can be arranged so as to cover only the outer region 28.
  • the first microlens 51 and the second microlens 52 magnify the extended pixel light 27 generated by the outer region 28 and make it enter the projection lens unit 50 along a predetermined direction. Thereby, it becomes possible to project the projection image 30 in which the extended image 20 corresponding to the outer area 28 is further enlarged, onto the screen 60.
  • the fifth microlens 55 is arranged in each of the plurality of extension pixels 26 included in the extension pixel area. That is, one fifth microlens 55 is arranged for one extended pixel 26.
  • the plurality of fifth microlenses 55 cause the extension pixel light 27 emitted from each extension pixel 26 to enter the projection lens unit 50 along a direction intersecting a predetermined direction. This makes it possible to project the projection image 30 obtained by further expanding the extended image 20 on the screen 60.
  • each of the plurality of fifth microlenses 54 can be designed to have a curvature according to the position of the extended pixel 26 to be arranged. As a result, the area of the extended image 20 and the like can be finely controlled, and high-quality image display is realized.
  • the difference between the example shown in FIG. 9 and the examples shown in FIGS. 7 and 8 is that the fifth microlens 55 is used for each of the extension pixels 26, and thus the fifth microlens 55 for each extension pixel 26 It is possible to change the curvature. Thereby, the position of the extended image displayed on the screen 60 can be controlled.
  • the projected position of the extended pixel light 27 can be controlled, it is possible to prevent the overlapping by controlling the effective pixels 16 or the extended pixels 26 in the overlapping portion according to the distance between the image display device 500 and the screen 60. be able to.
  • the types of lenses used for the first microlens 51, the second microlens 52, the third microlens 53, the fourth microlens 54, and the fifth microlens are not limited.
  • any lens such as a convex lens, a concave lens, and a liquid crystal lens may be used.
  • the positions where the first microlens 51, the second microlens 52, the third microlens 53, the fourth microlens 54, and the fifth microlens are arranged are not limited. For example, it may be built in each pixel of the LCD 310 or attached to each pixel of the LCD 310.
  • the first microlens 51, the second microlens 52, the third microlens 53, the fourth microlens 54, and the fifth microlens are the effective image 10 and the extended image as shown in FIG. 20 may be configured to have any type and curvature so as to be projected on the projection object so as to have different image states.
  • the lens used is an aspherical surface. Examples include convex lenses, Fresnel lenses based on concave lenses, and diffractive lenses. With these lenses, the image display device 500 can be easily manufactured.
  • the fifth microlens 55 functions as a part of the second projection unit that projects the second pixel light with a larger magnification rate than the first projection unit.
  • the fifth microlens 55 functions as a magnifying lens unit that causes at least a part of the extended pixel light 27 to enter the projection lens unit 50 along a direction intersecting a predetermined direction.
  • the image light W2 including the effective pixel light 17 generated by the effective pixel region 15 and the extended pixel light 27 generated by the extended pixel region 25 is generated. Then, the image light W2 is projected such that the image state of the effective image 10 formed by the effective pixel light 17 is different from the image state of the extended image 20 formed by the extended pixel light 27. This enables high-quality image display.
  • a large screen and high resolution is achieved by blending a plurality of projectors, or a specially designed lens of one projector is used to display a middle resolution in the center and a lower resolution in the periphery. It can be mentioned.
  • the cost increases with a plurality of projectors or a projector using a specially designed lens.
  • peripheral pixels are added to the effective pixel area of the display panel of one projector.
  • the added peripheral pixels have a resolution smaller than or equal to the pixel size of the effective pixels.
  • the peripheral pixels may be designed as microlenses so as to spread to the outer periphery.
  • the effective image displayed in the center is widely expanded by the expansion pixels, and the user's field of view is filled with the image.
  • a single projector can realize a projected image with high resolution in the center and low resolution in the periphery at low cost by using an existing lens. This enables high-quality image display.
  • a rectangular translucent cover TC is arranged on the display panel PNL.
  • the translucent cover TC has a flat plate portion TCF and a lens portion TCL provided on four sides of the translucent cover TC.
  • the lens unit TCL refracts the high-definition image light of the peripheral display area PA toward the frame area PF side to display a virtual image on the frame.
  • the image density of the image deteriorates because the pixel density of the peripheral display area PA displayed on the frame is enlarged by the lens compared to the pixel density displayed on the central display area CA.
  • the pixel density of the peripheral display area PA is increased as it becomes closer to the frame area PF.
  • the technology is disclosed with the important purpose of making the image quality of the image displayed in the central display area CA and the image displayed on the frame uniform.
  • Patent Document 1 “the image state of the first partial image formed by the first pixel light differs from the image state of the second partial image formed by the second pixel light according to the present technology. As described above, the technical idea of “projecting image light” is not described or suggested, and it is considered that the present technology cannot be easily conceived based on Patent Document 1.
  • FIG. 10 is a schematic diagram showing an example of a circuit configuration of a pixel region of the LCD 318 according to the second embodiment of the present technology.
  • the number of effective pixels 66 and the number of extension pixels 76 are shown small to simplify the illustration.
  • the numbers of effective pixels and extended pixels are not limited, and may be set arbitrarily.
  • the pixel pitch of the extension pixels 76 is designed to be equal to the pixel pitch of the effective pixels 66.
  • the wirings such as the gate line 312 and the source line 316 can have a simple structure, and thus can be easily manufactured.
  • the image state of the effective image 10 formed by the effective pixel light 17 is changed to the extended image formed by the extended pixel light 27 by appropriately designing and disposing the projection lens unit 50, the microlens, and the like. It is possible to project the image light W2 differently from the image state of 20. For example, it is possible to adopt the configurations illustrated in FIGS. 6 to 9. Of course, other configurations may be adopted.
  • FIG. 11 is a schematic diagram showing an example of the circuit configuration of the pixel region of the LCD 319 according to the third embodiment of the present technology.
  • the number of effective pixels 67 and the number of extension pixels 86 are small.
  • the numbers of the effective pixels 67 and the extension pixels 86 are not limited and may be set arbitrarily.
  • the LCD 319 includes a plurality of effective pixels 67, a plurality of extended pixels 86, a gate driver 311L, a gate driver 311R, a source driver 315T, a source driver 315B, a plurality of gate lines 312, and a plurality of source lines 316.
  • a gate driver 311L a gate driver 311R
  • a source driver 315T a source driver 315B
  • a plurality of gate lines 312 a plurality of gate lines 316.
  • a gate line and a source line are arranged corresponding to each effective pixel 67 and each extended pixel 86.
  • the gate lines 1a and 1b to 6a and 6b and the source lines 1a and 1b to 6a and 6b are provided for the effective pixel 67 and the extended pixel 86 arranged on the same gate line and source line as the effective pixel 67. Any one of them can be used as a gate line and a source line.
  • any one of the gate lines T1 to T4 and the gate lines B1 to B4 can be used as a gate line. It is possible. Further, for the extended pixels 86 arranged at the four corners of the LCD 319, any one of the source lines L1 to L4 and the source lines R1 to R4 can be used as a source line.
  • the pixel pitch of the extension pixels 76 is designed to be smaller than the pixel pitch of the effective pixels 67. That is, the density of pixels arranged in the extended pixel region 25 is increased.
  • the image state of the effective image 10 formed by the effective pixel light 17 is changed to the extended image formed by the extended pixel light 27 by appropriately designing and disposing the projection lens unit 50, the microlens, and the like. It is possible to project the image light W2 differently from the image state of 20. For example, it is possible to adopt the configurations illustrated in FIGS. 6 to 9. Of course, other configurations may be adopted.
  • any one of the examples shown in FIGS. 6 to 9 is used as a projection method.
  • the resolution of the projected extended image becomes lower than the resolution of the effective image.
  • the resolution of the extended image 20 emitted from the extended pixel 86 is assumed to be included in the peripheral visual field of the user, and thus may be lower than that of the effective image 10 displayed in the center. That is, even if the extended image 20 has a low resolution such as out-of-focus, the user can experience the realistic sensation of being fully enveloped in the image.
  • the reason why the pixel pitch of the expansion pixels 86 is arranged to be narrower than the pixel pitch of the effective pixels 67 arranged in the center is that the expansion pixel light emitted when the pixel pitch of the expansion pixels 86 is narrower. It is possible to finely control the position projected on the screen 60.
  • the pixel pitch of the extended pixels 86 is It is arranged so as to be narrower than the pixel pitch of the effective pixels 67. This enables high-quality image display without impairing the user's sense of presence.
  • the projection image 30 in which the resolution of the extended image is lower than the resolution of the effective image is displayed.
  • the present invention is not limited to this, and the projection image 30 in which the resolution of the extended image is higher than the resolution of the effective image may be displayed depending on the application.
  • the configuration illustrated in FIG. 5 may be adopted.
  • [Other example of pixel configuration] 12 to 15 are schematic diagrams showing other examples of the pixel configuration of the LCD 310.
  • a plurality of effective pixels are arranged in the effective pixel area 131 at an equal pixel pitch.
  • the effective pixel 130 may have any pixel configuration such as WUXGA (Wide Ultra Extended Graphics Array), WQXGA (Wide Quad Extended Graphics Array), and 4k.
  • a plurality of types of extension pixels 140 having different pixel sizes are arranged in the extension pixel area 141 around the effective pixel area 131.
  • the pixel size of the extended pixel 140 is set based on the pixel size of the effective pixel 130. This can simplify the circuit configuration and the manufacturing process.
  • the pixel area of the LCD 310 is divided by straight lines 132 to 135 that extend four sides of the effective pixel area 131. Furthermore, the pixel area of the LCD 310 is divided by straight lines 132 to 135 that divide the effective pixel area 131 into 16 effective pixels 130 of 4 ⁇ 4 in total. Extended pixels 142 each having a pixel size corresponding to an area divided by these straight lines 132 to 135 are arranged.
  • the extended image 20 is displayed at a resolution lower than that of the effective image 10 in the regions adjacent to the upper, lower, left and right sides of the effective image 10. Then, the extended image 20 having the lowest resolution is displayed at the four corners of the projected image 30.
  • the pixel size of the extension pixel 145 may be arranged so as to increase as the distance from the center of the effective pixel region 131 increases. That is, the expansion pixels 145 are arranged in the finest position adjacent to the effective pixel region 131. As a result, it is possible to finely control the extension pixels 145 adjacent to the effective pixel area 131, and prevent the effective image 10 and the extension image 20 from overlapping.
  • the extended image 20 having a relatively high resolution is displayed in the adjacent portion of the effective image 10, and the extended image 20 is displayed such that the resolution becomes lower toward the outside.
  • the example shown in FIG. 14 is further divided closer to the effective pixel region 15 than the example shown in FIG.
  • An extended image 20 having a relatively high resolution is displayed in a portion adjacent to the effective image 10, and the resolution becomes lower toward the outside.
  • the pixel pitch of the extended pixel area 141 can be defined by, for example, the average value of the pixel pitches between pixels adjacent to each other.
  • the pixel pitch of the extended pixels 140 is smaller than the pixel pitch of the effective pixels 130.
  • the pixel pitch may be defined by other parameters.
  • the resolution of the extended image 20 displayed is not likely to be uniform over the entire extended image. Even in such a case, for example, the resolution of the extended image 20 can be defined based on the density of the extended pixels 140 included in the extended pixel area 141. Of course, the resolution of the image may be defined by other parameters.
  • the pixel pitch of the effective pixels 130 may not be uniform, or the resolution of the effective image 10 may not be uniform in the entire image. Even in such a case, the pixel pitch, the resolution, etc. can be defined by using the average pixel pitch, the pixel density, and the like.
  • the example shown in FIG. 15 is an example of a method for preventing the effective image 10 of the projection image 30 and the extended image 20 from overlapping.
  • the space 150 is a region through which wiring for forming a circuit diagram passes and which shields light.
  • Each pixel light emitted from the effective pixel 130 and the extended pixel 145 is projected by the projection lens unit 50, the first microlens 51, and the like so that the effective image 10 and the extended image 20 are not vacant.
  • the space 150 is provided between the effective pixel region 131 and the extended pixel 145. Is provided.
  • the pixel size and the number of pixels of the effective pixel 130 and the extended image 145 are not limited.
  • the pixel size of the effective pixel 130 may be a size that is not divisible by the pixel size of the extension pixel 145.
  • the extension pixel 145 is arranged at an arbitrary position.
  • black display pixels may be used.
  • the effective pixels 130 or the extended pixels 145 pixels that perform black display may be arranged in a region corresponding to the space 150 with a predetermined number of pixels.
  • the space 150 corresponds to a non-generation area in which pixel light is not generated between the first pixel area and the second pixel area.
  • FIG. 16 to 20 are schematic diagrams showing a configuration example of an image display device according to another embodiment.
  • FIG. 16 is a schematic diagram of a three-panel type image display device 900 using a reflective display panel.
  • the white light W1 emitted from the light source device 600 is separated into RGB lights.
  • the light is incident on the reflection type display panel 701 RGB for RGB.
  • the red image light R1, the green image light G1, and the blue image light B1 generated by the reflective display panel 701 are combined and projected by the projection system 800 as full-color image light W2.
  • a reflective display panel 701 for example, a reflective LCD or a digital micromirror device (DMD) may be used.
  • the present technology can be applied to a three-plate type image display device 900 using such a reflective display panel.
  • the reflective display panels 701R, 701G, and 701B for RGB are set as the image generation unit according to the present technology, and the effective pixel area and the extended pixel area are set, respectively. Then, the image light W2 is projected such that the image state of the effective image formed by the effective pixel light is different from the image state of the extended image formed by the extended pixel light.
  • the various pixel configurations described above, microlenses, and the like may be appropriately used.
  • FIG. 17 is a schematic diagram of a three-panel type image display device 950 using a self-luminous display panel.
  • the RGB self-luminous display panels 911R, 911G, and 911B generate color image light R1, green image light G1, and blue image light B1.
  • the image lights of the RGB colors are combined and projected as full-color image light W2 by the projection system 930.
  • As the self-luminous display panel 911 for example, an organic EL (Organic Electro Luminescence) panel or the like is used.
  • the present technology can be applied to a three-plate type image display device 950 using such a self-luminous display panel.
  • the RGB self-luminous display panels 911R, 911G, and 911B are used as the image generation unit according to the present technology to set the effective pixel region and the extended pixel region, respectively. Then, the image light W2 is projected such that the image state of the effective image formed by the effective pixel light is different from the image state of the extended image formed by the extended pixel light.
  • the various pixel configurations described above, microlenses, and the like may be appropriately used.
  • FIG. 18 is a schematic diagram of a one-panel type image display device using a transmissive display panel.
  • the image display apparatus 1000 has a projection optical system that expresses colors using the color wheel 1020.
  • the red image light R1, the green image light G1, and the blue image light B1 are time-divisionally projected by the projection system 930.
  • the present technology can be applied to the one-plate type image display device 1000 using such a reflective display panel.
  • an effective pixel area and an extended pixel area are set using a reflective display panel as an image generation unit according to the present technology.
  • the image light of each color of RGB is time-divisionally projected such that the image state of the effective image formed by the effective pixel light and the image state of the extended image formed by the extended pixel light are different.
  • the various pixel configurations described above, microlenses, and the like may be appropriately used.
  • FIG. 19 is a schematic diagram of a single-panel image display device using a transmissive display panel with a built-in color filter.
  • White light W1 is incident on the display panel 1031.
  • RGB sub-pixels are formed for one pixel of the display panel 1031.
  • the RGB color lights that have passed through the color filters are modulated by the RGB sub-pixels, and full-color image light W2 is projected by the projection system 930.
  • the present technology can be applied to such an image display device 1030.
  • a transmissive display panel including RGB sub-pixels is used as an image generation unit according to the present technology to set an effective pixel area and an extended pixel area.
  • the effective pixel area and the extended pixel area are set in units of one pixel composed of RGB sub-pixels.
  • Image state of an effective image formed by effective pixel light (light generated by RGB sub-pixels of effective pixel) and expansion formed by extended pixel light (light generated by RGB sub-pixels of extended pixel) Full-color image light is projected such that the image state of the image is different.
  • effective pixel light light generated by RGB sub-pixels of effective pixel
  • extended pixel light light generated by RGB sub-pixels of extended pixel
  • the specific configuration of the sub-pixel that constitutes one pixel is not limited.
  • W sub-pixels may be provided.
  • a plurality of sub-pixels of the same color may be provided.
  • the present technology can be applied to a unit of one pixel that is composed of sub-pixels.
  • FIG. 20 is a schematic diagram of a one-panel type image display device using a self-luminous display panel.
  • RGB sub-pixels are formed for one pixel of the display panel 1041.
  • the RGB sub-pixels generate image light of RGB colors, and the full-color image light W2 is projected by the projection system 930.
  • a configuration capable of emitting image light of each color of RGB may be used, or image light of each color of RGB may be generated via a color filter.
  • the present technology can be applied to such an image display device 1040.
  • a self-luminous display panel including RGB sub-pixels is used as an image generation unit according to the present technology to set an effective pixel region and an extended pixel region, respectively.
  • the effective pixel area and the extended pixel area are set in units of one pixel composed of RGB sub-pixels.
  • Image state of an effective image formed by effective pixel light (light generated by RGB sub-pixels of effective pixel) and expansion formed by extended pixel light (light generated by RGB sub-pixels of extended pixel) Full-color image light is projected such that the image state of the image is different.
  • effective pixel light light generated by RGB sub-pixels of effective pixel
  • extended pixel light light generated by RGB sub-pixels of extended pixel
  • FIG. 21 is a schematic diagram showing an example of a circuit when the pixels for displaying the projection image are RGB 3 pixels.
  • the LCD 1050 is an example of the LCD 1031 or the LCD 1041.
  • the LCD 1050 has a plurality of effective pixels 1060 and a plurality of extension pixels 1070.
  • the plurality of extension pixels 1070 are arranged such that the pixel pitch is wider than that of the effective pixels 1060, as in the LCD 310 of FIG.
  • the plurality of effective pixels 1060 have R effective pixels capable of emitting red light, G effective pixels capable of emitting green light, and B effective pixels capable of emitting blue light.
  • the plurality of effective pixels 1060 are arranged along the H direction in the order of R effective pixel, G effective pixel, and B effective pixel.
  • the effective pixels of each color are arranged along the V direction.
  • the plurality of extension pixels 1070 include R extension pixels 1071 capable of emitting red light, G extension pixels 1072 capable of emitting green light, and B extension pixels 1073 capable of emitting blue light.
  • the R extension pixel 1071, the G extension pixel 1072, and the B extension pixel 1073 are arranged in the order of RGB along the H direction, and are arranged for each extension pixel along the V direction.
  • the effective image and extended image projected on the projection object emit images of various colors depending on the effective pixels and extended pixels of each color. As a result, a full-color projection image is projected on the projection object.
  • the effective pixel and the extended pixel of each color have the same pixel size ratio for ease of chromaticity adjustment.
  • the present invention is not limited to this, and when it is desired to give priority to luminance, the size of the G effective pixel and the B extension pixel 1073 that can emit green light may be increased. Further, for example, when it is desired to give priority to chromaticity, the size ratio of pixels of each color may be set according to the chromaticity to be emphasized. Furthermore, for example, when priority is given to brightness, RGBW4 pixels in which white (W) light is added to RGB may be used.
  • the projection image 30 is projected also on the LCD 1050 having three pixels of RGB by using the examples shown in FIGS. 5 to 9. That is, image light including the effective pixel light generated by the effective pixel 1060 and the extended pixel light generated by the extended pixel 1070 is generated, and projected onto the screen so that the effective image and the extended image have different resolutions.
  • the projection image 30 is generated and projected by the single image display device 500.
  • the present invention is not limited to this, and a plurality of image display devices may generate and project a projection image.
  • FIG. 22 is a schematic diagram showing blending of the projected image.
  • axes dotted lines indicating the H direction and the V direction are shown for convenience of description.
  • the direction of the arrow is a positive direction, and the intersection of the H axis and the V axis is the origin.
  • the four image display devices 500 a, b, c, and d display the projection images 1250 a, b, c, and d including one of the four corners of the rectangular projection image 1300. Project on a screen not shown. Further, the two sides of each projection image 1250a, b, c, and d are in contact with the H axis and the V axis. That is, the projection images 1250a, b, c, and d are projected on the screen, so that the projection image 1300 showing one image is displayed.
  • the projected image 1250a is arranged in the region of the negative direction in the H-axis direction and the positive direction in the V-axis direction.
  • the projected image 1250a has an effective image 1100a projected at a position including the origin, and an extended image 1200a arranged adjacent to the effective image 1100a in the negative direction in the H-axis direction and the positive direction in the V-axis direction.
  • the extended image 1200a is an image obtained by enlarging the effective image 1100a in the negative direction in the H-axis direction and the positive direction in the V-axis direction. That is, the resolution of the extended image 1200a is projected so as to be lower than the resolution of the effective image 1100a.
  • the projected image 1250b is arranged in the region of the negative direction in the H-axis direction and the negative direction in the V-axis direction.
  • the projected image 1250b has an effective image 1100b projected at a position including the origin, and an extended image 1200b arranged adjacent to the effective image 1100b in the negative direction in the H-axis direction and the negative direction in the V-axis direction.
  • the projected image 1250c is arranged in the region of the H-axis direction positive direction and the V-axis direction negative direction.
  • the projected image 1250c has an effective image 1100c projected at a position including the origin, and an extended image 1200c arranged adjacent to the positive direction of the H-axis direction and the negative direction of the V-axis direction of the effective image 1100c.
  • the projected image 1250d is arranged in a region having a positive direction in the H-axis direction and a positive direction in the V-axis direction.
  • the projected image 1250d has an effective image 1100d projected at a position including the origin, and an extended image 1200d arranged adjacent to the effective image 1100d in the positive direction of the H axis direction and the positive direction of the V axis direction.
  • the four image display devices 500a, b, c, and d perform blending in a region in contact with the H axis and V axis of the projected images 1250a, b, c, and d.
  • Blending is a technique that corrects the joints of areas in which a plurality of images are in contact with each other or overlapping areas so as to make them inconspicuous.
  • the projection images 1250a, 1b, c, and d are recognized as one projection image 1300 by the user.
  • a larger image is projected on the screen so that the viewer can experience a realistic sensation of being wrapped in an image.
  • four image display devices project a projection image 1300 having high definition in the center and low resolution in the periphery.
  • the effective pixel area and extended pixel area of the LCD are also set.
  • the correction of the projection image performed by the image display device 500 is not limited.
  • the brightness or color tone of the projected images 1250a, 1b, c, and d may be corrected.
  • the distortion or the like of the projected images 1250a, b, c, and d may be corrected according to the displayed area.
  • the enlarged image 20 is an enlarged image of the effective image 10.
  • the image is not limited to this, and various images may be used as the extended image 20.
  • image data in which the extended image 20 is originally prepared may be used for the image projected by the projector. That is, in a television or the like that does not have the function of the image display device 500, only the valid image 10 may be displayed on the display, and in a projector that has the function of the image display device 500, the valid image 10 and the extended image 20 may be projected. ..
  • the extended image 20 may be generated by performing image analysis before and after the projected image of a specific time.
  • the background of the video past the video in which the character is currently running may be used as the extended image on the right side of the screen. That is, the left extended image uses the background image of the place where the character is about to run (future image), and the right extended image uses the background image of the place where the character has run.
  • the system using three LCDs was used.
  • the present invention is not limited to this, and a DMD (Digital Mirror Device) may be used instead of the LCD. Since the DMD has less deterioration over time than the LCD, the DMD has high reliability and can be used for a long time. Further, since the number of parts constituting the image display device 500 can be suppressed, the weight and the size can be reduced.
  • DMD Digital Mirror Device
  • an LCOS Liquid Crystal On Silicon
  • the image display device 500 is arranged directly in front of the screen 60. That is, the image display device 500 is arranged so that the projected image 30 to be projected is vertically incident on the screen 60.
  • the present invention is not limited to this, and the image display device 500 may be arbitrarily arranged as long as it can project the projection image 30 on the screen 60.
  • the image display device 500 may perform various corrections based on the position and orientation of the projection target. For example, when the projection image 30 is obliquely incident on the screen 60, the image display device 500 may correct the vertical or horizontal trapezoidal distortion of the effective image 10. Further, the image display device 500 does not need to correct the trapezoidal distortion of the extended image 20 because the resolution of the extended image 20 may be low. Of course, the trapezoidal distortion of the extended image 20 may be corrected.
  • the image display device 500 may automatically control the effective image 10 so that it is in focus. Further, the image display device 500 may be controlled to project the projected image 30 with a screen aspect ratio suitable for the projected image 30. Further, the image display device 500 may control the area when the projection image 30 is projected based on the size (area) of the screen 60.
  • a predetermined range for example, ⁇ 10% of the range
  • a concept such as “substantially equal” is also included in “equal”.
  • the effects described in the present disclosure are merely examples and are not limited, and there may be other effects.
  • the above description of the plurality of effects does not mean that those effects are necessarily exhibited simultaneously. It means that at least one of the above effects can be obtained depending on the conditions and the like, and of course, an effect not described in the present disclosure may be exhibited.
  • the present technology can also take the following configurations.
  • First pixel light having a first pixel area and a second pixel area, the first pixel light generated by the first pixel area, and the second pixel generated by the second pixel area
  • An image generation unit that generates image light including light, Projection for projecting the image light such that the image state of the first partial image formed by the first pixel light is different from the image state of the second partial image formed by the second pixel light.
  • An image display device including an optical system.
  • the first pixel region is a central region located in the center of the image generation unit, The image display device, wherein the second pixel region is a peripheral region surrounding the periphery of the central region.
  • the image display device includes image resolution
  • the image display device according to any one of (1) to (3), The image display device, wherein the projection optical system projects the image light so that the resolution of the second partial image is lower than the resolution of the first partial image.
  • the image display device according to any one of (1) to (4), An image display device in which a pixel pitch of the first pixel area is different from a pixel pitch of the second pixel area.
  • the image display device according to any one of (1) to (5), An image display device, wherein a pixel pitch of the second pixel area is larger than a pixel pitch of the first pixel area.
  • the image display device according to any one of (1) to (4), An image display device, wherein the pixel pitch of the first pixel area is equal to the pixel pitch of the second pixel area.
  • the projection optical system is an image display device including a first projection unit that projects the first pixel light and a second projection unit that projects the second pixel light.
  • the image display device (9) The image display device according to (8), The first projection unit projects the first pixel light at a predetermined enlargement ratio, The image display device in which the second projection unit projects the second pixel light at a magnification rate higher than that of the first projection unit. (10) The image display device according to (8), The first projection unit projects the first pixel light at a predetermined enlargement ratio, The image display device in which the second projection unit projects the second pixel light at an enlargement ratio equal to that of the first projection unit. (11) The image display device according to any one of (1) to (10), The projection optical system is an image display device having a projection lens unit for projecting the image light incident along a predetermined direction along a predetermined optical axis direction.
  • the image display device includes an image display device including a magnifying lens unit that magnifies at least a part of the second pixel light and causes the second pixel light to enter the projection lens unit along the predetermined direction.
  • the image display device is a central region located in the center of the image generation unit, The second pixel region is a peripheral region surrounding the periphery of the central region, The magnifying lens unit magnifies pixel light generated by an outer region of the second pixel light, which is located on the opposite side of the central region of the second pixel region, and expands the pixel light along the predetermined direction.
  • An image display device which is incident on the projection lens unit.
  • the image display device is an image display device having a magnifying lens unit that causes at least a part of the second image light to enter the projection lens unit along a direction intersecting the predetermined direction.
  • the image display device is a central region located in the center of the image generation unit, The second pixel region is a peripheral region surrounding the periphery of the central region, The magnifying lens unit allows pixel light generated by an outer region of the second pixel light, which is located on the opposite side of the central region of the second pixel region, along a direction intersecting the predetermined direction.
  • An image display device that makes the light incident on the projection lens unit.
  • the image display device according to any one of (12) to (15),
  • the magnifying lens unit is an image display device having a plurality of microlenses arranged in each of a plurality of pixels included in the second pixel region.
  • the image display device according to (16) An image display device in which each of the plurality of microlenses has a curvature corresponding to a position of a pixel to be arranged.
  • the image display device according to any one of (1) to (17), The image display device, wherein the image generation unit has a non-generation region in which pixel light is not generated between the first pixel region and the second pixel region.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Projection Apparatus (AREA)
  • Liquid Crystal (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

An image display device according to an embodiment of the present invention is equipped with an image generation unit and a projection optical system. The image generation unit includes a first pixel region and a second pixel region and generates image light that includes first pixel light generated from the first pixel region and second pixel light generated from the second pixel region. The projection optical system projects the image light so that the image state of a first partial image constituted by the first pixel light is different from the image state of a second partial image constituted by the second pixel light.

Description

画像表示装置Image display
 本技術は、プロジェクタ等の画像表示装置に関する。 The present technology relates to an image display device such as a projector.
 特許文献1に記載の表示装置では、表示パネルが、中央表示領域と周辺表示領域と額縁領域とに分けられる。表示パネルの周辺表示領域に透光性カバーのレンズ部が重なるように、表示パネルに対して透光性カバーが配置される。周辺表示領域により生成される画像が、透光性カバーのレンズ部により拡大されることで、額縁領域上に虚像が投射される。これにより、表示される画像があたかも額縁上にあるように見せることができ、額縁領域を見え難くすることが図られている。(特許文献1の明細書段落[0012][0016]図1、2等)。 In the display device described in Patent Document 1, the display panel is divided into a central display area, a peripheral display area, and a frame area. The translucent cover is arranged with respect to the display panel such that the lens portion of the translucent cover overlaps the peripheral display area of the display panel. The image generated by the peripheral display area is magnified by the lens portion of the translucent cover, so that a virtual image is projected on the frame area. As a result, the displayed image can be made to appear as if it is on the frame, making it difficult to see the frame region. (Specification paragraphs [0012] and [0016] in Patent Document 1, FIGS. 1 and 2, etc.).
特開2015-172661号公報JP, 2005-172661, A
 プロジェクタ等の画像表示装置に関して、高品質な画像表示を実現することが可能となる技術が求められている。 With regard to image display devices such as projectors, there is a demand for technology that can realize high-quality image display.
 以上のような事情に鑑み、本技術の目的は、高品質な画像表示を実現することが可能となる画像表示装置を提供することにある。 In view of the above circumstances, an object of the present technology is to provide an image display device capable of realizing high quality image display.
 上記目的を達成するため、本技術の一形態に係る画像表示装置は、画像生成部と、投射光学系とを具備する。
 前記画像生成部は、第1の画素領域と第2の画素領域とを有し、前記第1の画素領域により生成される第1の画素光と、前記第2の画素領域により生成される第2の画素光とを含む画像光を生成する。
 前記投射光学系は、前記第1の画素光により構成される第1の部分画像の画像状態が、前記第2の画素光により構成される第2の部分画像の画像状態と異なるように、前記画像光を投射する。
To achieve the above object, an image display device according to an aspect of the present technology includes an image generation unit and a projection optical system.
The image generation unit has a first pixel region and a second pixel region, and first pixel light generated by the first pixel region and second pixel light generated by the second pixel region. Image light including two pixel lights is generated.
The projection optical system is configured such that the image state of the first partial image formed by the first pixel light is different from the image state of the second partial image formed by the second pixel light. Projects image light.
 この画像表示装置では、第1の画素領域により生成される第1の画素光と、第2の画素領域により生成される第2の画素光とを含む画像光が生成される。そして第1の画素光により構成される第1の部分画像の画像状態と、第2の画素光により構成される第2の部分画像の画像状態とが、互いに異なるように、画像光が投射される。これにより、高品質な画像表示を実現することが可能となる。 In this image display device, image light including first pixel light generated by the first pixel area and second pixel light generated by the second pixel area is generated. Then, the image light is projected such that the image state of the first partial image formed by the first pixel light and the image state of the second partial image formed by the second pixel light are different from each other. It This makes it possible to realize high-quality image display.
 前記第1の画素領域は、前記画像生成部の中央に位置する中央領域であってもよい。この場合、前記第2の画素領域は、前記中央領域の周辺を囲む周辺領域であってもよい。 The first pixel area may be a central area located at the center of the image generating unit. In this case, the second pixel region may be a peripheral region surrounding the periphery of the central region.
 前記画像状態は、画像の解像度を含んでもよい。この場合、前記投射光学系は、前記第1の部分画像の解像度が、前記第2の部分画像の解像度と異なるように、前記画像光を投射してもよい。 The image status may include the resolution of the image. In this case, the projection optical system may project the image light such that the resolution of the first partial image is different from the resolution of the second partial image.
 前記投射光学系は、前記第2の部分画像の解像度が、前記第1の部分画像の解像度よりも低くなるように、前記画像光を投射してもよい。 The projection optical system may project the image light such that the resolution of the second partial image is lower than the resolution of the first partial image.
 前記第1の画素領域の画素ピッチは、前記第2の画素領域の画素ピッチと異なってもよい。 The pixel pitch of the first pixel area may be different from the pixel pitch of the second pixel area.
 前記第2の画素領域の画素ピッチは、前記第1の画素領域の画素ピッチよりも大きくてもよい。 The pixel pitch of the second pixel area may be larger than the pixel pitch of the first pixel area.
 前記第1の画素領域の画素ピッチは、前記第2の画素領域の画素ピッチと等しくてもよい。 The pixel pitch of the first pixel area may be equal to the pixel pitch of the second pixel area.
 前記投射光学系は、前記第1の画素光を投射する第1の投射部と、前記第2の画素光を投射する第2の投射部とを有してもよい。 The projection optical system may include a first projection unit that projects the first pixel light and a second projection unit that projects the second pixel light.
 前記第1の投射部は、所定の拡大率で、前記第1の画素光を投射してもよい。この場合、前記第2の投射部は、前記第1の投射部よりも大きい拡大率で、前記第2の画素光を投射してもよい。 The first projection unit may project the first pixel light at a predetermined enlargement ratio. In this case, the second projection unit may project the second pixel light at a larger enlargement ratio than the first projection unit.
 前記第1の投射部は、所定の拡大率で、前記第1の画素光を投射してもよい。この場合、前記第2の投射部は、前記第1の投射部と等しい拡大率で、前記第2の画素光を投射してもよい。 The first projection unit may project the first pixel light at a predetermined enlargement ratio. In this case, the second projection unit may project the second pixel light at an enlargement ratio equal to that of the first projection unit.
 前記投射光学系は、所定の方向に沿って入射する前記画像光を、所定の光軸方向に沿って投射する投射レンズ部を有してもよい。 The projection optical system may include a projection lens unit that projects the image light incident along a predetermined direction along a predetermined optical axis direction.
 前記投射光学系は、前記第2の画素光の少なくとも一部を拡大させて前記所定の方向に沿って前記投射レンズ部に入射させる拡大レンズ部を有してもよい。 The projection optical system may include a magnifying lens unit that magnifies at least a part of the second pixel light and makes the second pixel light incident on the projection lens unit along the predetermined direction.
 前記第1の画素領域は、前記画像生成部の中央に位置する中央領域であってもよい。この場合、前記第2の画素領域は、前記中央領域の周辺を囲む周辺領域であってもよい。この場合、前記拡大レンズ部は、前記第2の画素光のうち前記第2の画素領域の前記中央領域とは反対側に位置する外側領域により生成される画素光を拡大させて前記所定の方向に沿って前記投射レンズ部に入射させてもよい。 The first pixel area may be a central area located at the center of the image generating unit. In this case, the second pixel region may be a peripheral region surrounding the periphery of the central region. In this case, the magnifying lens unit magnifies the pixel light generated by an outer region of the second pixel light, which is located on the opposite side of the second pixel region from the central region, and the magnifying lens unit expands the predetermined direction. You may make it inject into the said projection lens part along.
 前記投射光学系は、前記第2の画像光の少なくとも一部を前記所定の方向に交差する方向に沿って前記投射レンズ部に入射させる拡大レンズを有してもよい。 The projection optical system may include a magnifying lens that causes at least a part of the second image light to enter the projection lens unit along a direction intersecting the predetermined direction.
 前記第1の画素領域は、前記画像生成部の中央に位置する中央領域であってもよい。この場合、前記第2の画素領域は、前記中央領域の周辺を囲む周辺領域であってもよい。この場合、前記拡大レンズ部は、前記第2の画素光のうち前記第2の画素領域の前記中央領域とは反対側に位置する外側領域により生成される画素光を前記所定の方向に交差する方向に沿って前記投射レンズ部に入射させてもよい。 The first pixel area may be a central area located at the center of the image generating unit. In this case, the second pixel region may be a peripheral region surrounding the periphery of the central region. In this case, the magnifying lens unit intersects, in the predetermined direction, pixel light generated by an outer area of the second pixel light, which is located on the opposite side of the central area of the second pixel area. You may make it inject into the said projection lens part along a direction.
 前記拡大レンズ部は、前記第2の画素領域に含まれる複数の画素の各々に配置される複数のマイクロレンズを有してもよい。 The magnifying lens unit may include a plurality of microlenses arranged in each of a plurality of pixels included in the second pixel area.
 前記複数のマイクロレンズの各々は、配置される画素の位置に応じた曲率を有してもよい。 Each of the plurality of microlenses may have a curvature according to the position of the pixel to be arranged.
 前記画像生成部は、前記第1の画素領域と前記第2の画素領域との間に、画素光が生成されない非生成領域を有してもよい。 The image generation unit may have a non-generation region in which pixel light is not generated between the first pixel region and the second pixel region.
第1の実施形態に係る画像表示装置の構成例を示す概略図である。It is a schematic diagram showing an example of composition of an image display device concerning a 1st embodiment. 画像表示装置により投射される投射画像の一例を示す模式図である。It is a schematic diagram which shows an example of the projection image projected by an image display apparatus. LCDの画素構成の一例を模式的に示す図である。It is a figure which shows typically an example of the pixel structure of LCD. 投射画像を表示するための画素の回路の一例を示す模式図である。It is a schematic diagram which shows an example of the circuit of the pixel for displaying a projection image. LCDにより生成された画像光の投射を説明するための模式図である。It is a schematic diagram for demonstrating the projection of the image light produced|generated by LCD. 有効画像及び拡張画像の投射方法の他の一例を示す模式図である。It is a schematic diagram which shows another example of the projection method of an effective image and an extended image. 有効画像及び拡張画像の投射方法の他の一例を示す模式図である。It is a schematic diagram which shows another example of the projection method of an effective image and an extended image. 有効画像及び拡張画像の投射方法の他の一例を示す模式図である。It is a schematic diagram which shows another example of the projection method of an effective image and an extended image. 有効画像及び拡張画像の投射方法の他の一例を示す模式図である。It is a schematic diagram which shows another example of the projection method of an effective image and an extended image. 第2の実施形態に係るLCDの画素領域の回路構成の一例を示す模式図である。FIG. 9 is a schematic diagram showing an example of a circuit configuration of a pixel area of an LCD according to a second embodiment. 第3の実施形態に係るLCDの画素領域の回路構成の一例を示す模式図である。It is a schematic diagram which shows an example of a circuit structure of the pixel area of LCD which concerns on 3rd Embodiment. LCDの画素構成の他の例を示す模式図である。It is a schematic diagram which shows the other example of the pixel structure of LCD. LCDの画素構成の他の例を示す模式図である。It is a schematic diagram which shows the other example of the pixel structure of LCD. LCDの画素構成の他の例を示す模式図である。It is a schematic diagram which shows the other example of the pixel structure of LCD. LCDの画素構成の他の例を示す模式図である。It is a schematic diagram which shows the other example of the pixel structure of LCD. 反射型の表示パネルを用いた3板方式の画像表示装置の模式図である。It is a schematic diagram of a three-plate type image display device using a reflective display panel. 自発光型の表示パネルを用いた3板方式の画像表示装置の模式図である。It is a schematic diagram of a three-plate type image display device using a self-luminous display panel. 透過型の表示パネルを用いた1板方式の画像表示装置の模式図である。It is a schematic diagram of a 1-panel type image display device using a transmissive display panel. カラーフィルターを内蔵した透過型の表示パネルを用いた1板方式の画像表示装置の模式図である。FIG. 3 is a schematic view of a single-panel type image display device using a transmissive display panel having a color filter built therein. 自発光型の表示パネルを用いた1板方式の画像表示装置の模式図である。It is a schematic diagram of a 1-panel type image display device using a self-luminous display panel. 投射画像を表示するための画素がRGB3画素の場合の回路の一例を示す模式図である。It is a schematic diagram which shows an example of a circuit in case the pixel for displaying a projection image is RGB3 pixel. 投射画像のブレンディングを示す模式図である。It is a schematic diagram which shows the blending of a projection image.
 以下、本技術に係る実施形態を、図面を参照しながら説明する。 Hereinafter, an embodiment according to the present technology will be described with reference to the drawings.
 <第1の実施形態>
 [画像表示装置]
 図1は、本技術の第1の実施形態に係る画像表示装置の構成例を示す概略図である。画像表示装置500は、例えばプレゼンテーション用、もしくはデジタルシネマ用のプロジェクタとして用いられる。その他の用途に用いられる画像表示装置にも、以下に説明する本技術は適用可能である。
<First Embodiment>
[Image display device]
FIG. 1 is a schematic diagram showing a configuration example of an image display device according to a first embodiment of the present technology. The image display device 500 is used, for example, as a projector for a presentation or a digital cinema. The present technology described below is also applicable to image display devices used for other purposes.
 また本実施形態では、透過型の表示パネルを用いた3板方式の画像表示装置500が用いられる。後にも説明するが、他の種々の方式の画像表示装置に対して、本技術は適用可能である。 Further, in the present embodiment, a three-panel type image display device 500 using a transmissive display panel is used. As will be described later, the present technology can be applied to other various types of image display devices.
 図1に示すように、画像表示装置500は、光源装置100と、画像生成システム200と、投射システム400とを有する。 As shown in FIG. 1, the image display device 500 includes a light source device 100, an image generation system 200, and a projection system 400.
 光源装置100は、白色光W1を画像生成システム200に出射する。光源装置100には、LED(Light Emitting Diode)やLD(Laser Diode)等の固体光源、又は水銀ランプやキセノンランプ等が配置される。 The light source device 100 emits white light W1 to the image generation system 200. In the light source device 100, a solid-state light source such as an LED (Light Emitting Diode) or an LD (Laser Diode), or a mercury lamp or a xenon lamp is arranged.
 例えばRGBの各色の光をそれぞれ出射可能なRGB用の固体光源が用いられ、これらの出射光が合成されて白色光W1が生成されてもよい。または青色の波長帯域の光を出射する固体光源と、青色光により励起されて黄色の蛍光を発する蛍光体とが配置されてもよい。この場合、青色光と黄色光とが合成されて白色光W1が出射される。その他、白色光W1を生成して出射するための任意の方法や任意の構成が採用されてよい。 For example, a solid-state light source for RGB that can emit light of each color of RGB may be used, and the emitted light may be combined to generate the white light W1. Alternatively, a solid-state light source that emits light in the blue wavelength band and a phosphor that is excited by blue light and emits yellow fluorescence may be arranged. In this case, the blue light and the yellow light are combined to emit the white light W1. In addition, any method and any configuration for generating and emitting the white light W1 may be adopted.
 画像生成システム200は、インテグレータ光学系210と、照明光学系220とを有する。インテグレータ光学系210は、インテグレータ素子211と、偏光変換素子212と、集光レンズ213とを有する。 The image generation system 200 has an integrator optical system 210 and an illumination optical system 220. The integrator optical system 210 includes an integrator element 211, a polarization conversion element 212, and a condenser lens 213.
 インテグレータ素子211は、二次元に配列された複数のマイクロレンズを有する第1のフライアイレンズ211aと、その複数のマイクロレンズに一つずつ対応するように配列された複数のマイクロレンズを有する第2のフライアイレンズ211bとを有する。 The integrator element 211 includes a first fly-eye lens 211a having a plurality of microlenses arranged two-dimensionally and a second flyeye lens having a plurality of microlenses arranged so as to correspond to the plurality of microlenses one by one. And a fly-eye lens 211b.
 インテグレータ素子211に入射した白色光W1は、第1のフライアイレンズ211aのマイクロレンズによって複数の光束に分割され、第2のフライアイレンズ211bに設けられた対応するマイクロレンズにそれぞれ結像される。第2のフライアイレンズ211bのマイクロレンズのそれぞれが二次光源として機能し、輝度が揃った複数の平行光を、後段の偏光変換素子212に出射する。 The white light W1 incident on the integrator element 211 is divided into a plurality of light beams by the microlens of the first fly-eye lens 211a, and is imaged on the corresponding microlens provided on the second fly-eye lens 211b. .. Each of the micro lenses of the second fly-eye lens 211b functions as a secondary light source, and emits a plurality of parallel lights with uniform brightness to the polarization conversion element 212 in the subsequent stage.
 偏光変換素子212は、インテグレータ素子211を介して入射する入射光の偏光状態を揃える機能を有する。偏光変換素子212を通った光は、集光レンズ213を介して照明光学系220に出射される。 The polarization conversion element 212 has a function of aligning the polarization states of incident light that enters through the integrator element 211. The light passing through the polarization conversion element 212 is emitted to the illumination optical system 220 via the condenser lens 213.
 インテグレータ光学系210は、全体として、照明光学系220へ向かう白色光W1を均一な輝度分布に整え、偏光状態の揃った光に調整する機能を有する。インテグレータ光学系210の具体的な構成は限定されない。 The integrator optical system 210 as a whole has a function of adjusting the white light W1 traveling to the illumination optical system 220 to a uniform luminance distribution and adjusting the polarized light to uniform light. The specific configuration of the integrator optical system 210 is not limited.
 照明光学系220は、ダイクロイックミラー230及び240、ミラー250、260及び270、フィールドレンズ280R、280G及び280B、リレーレンズ290及び300、画像生成素子としてのLCD(Liquid crystal display)310R、310G及び310B、ダイクロイックプリズム320を含んでいる。LCD310R、310G及び310Bは、透過型の表示パネルとして機能する。 The illumination optical system 220 includes dichroic mirrors 230 and 240, mirrors 250, 260 and 270, field lenses 280R, 280G and 280B, relay lenses 290 and 300, LCDs (Liquid crystal display) 310R, 310G and 310B as image generating elements, It includes a dichroic prism 320. The LCDs 310R, 310G and 310B function as a transmissive display panel.
 ダイクロイックミラー230及び240は、所定の波長域の色光を選択的に反射し、それ以外の波長域の光を透過させる性質を有する。ダイクロイックミラー230は、白色光W1に含まれる緑色光G1及び青色光B1を選択的に反射し、白色光W1に含まれる赤色光R1を透過させる。ダイクロイックミラー240は、ダイクロイックミラー230により反射された緑色光G1を選択的に反射し、青色光B1を透過させる。これにより異なる色光は、それぞれ異なる光路に分離される。なおRGBの各色光を分離するための構成や、用いられるデバイス等は限定されない。 The dichroic mirrors 230 and 240 have a property of selectively reflecting color light in a predetermined wavelength range and transmitting light in other wavelength ranges. The dichroic mirror 230 selectively reflects the green light G1 and the blue light B1 included in the white light W1, and transmits the red light R1 included in the white light W1. The dichroic mirror 240 selectively reflects the green light G1 reflected by the dichroic mirror 230 and transmits the blue light B1. As a result, different colored lights are separated into different optical paths. It should be noted that the configuration for separating the RGB color lights, the device used, and the like are not limited.
 分離された赤色光R1は、ミラー250により反射され、フィールドレンズ280Rにより平行化された後、赤色光の変調用のLCD310Rに入射する。緑色光G1は、フィールドレンズ280Gにより平行化された後、緑色光の変調用のLCD310Gに入射する。青色光B1はリレーレンズ290を通ってミラー260によって反射され、さらにレンズ300を通ってミラー270によって反射される。ミラー270により反射された青色光B1は、フィールドレンズ280Bにより平行化された後、青色光の変調用のLCD310Bに入射する。 The separated red light R1 is reflected by the mirror 250, collimated by the field lens 280R, and then enters the LCD 310R for modulating red light. The green light G1 is collimated by the field lens 280G and then enters the LCD 310G for modulating green light. The blue light B1 passes through the relay lens 290 and is reflected by the mirror 260, and further passes through the lens 300 and is reflected by the mirror 270. The blue light B1 reflected by the mirror 270 is collimated by the field lens 280B, and then enters the LCD 310B for blue light modulation.
 LCD310R、310G及び310Bは、画像情報を含んだ画像信号を供給する図示しない信号源(例えばPC等)と電気的に接続されている。LCD310R、310G及び310Bは、供給される各色の画像信号に基づき、入射光を画素毎に変調し、それぞれ赤色の画像光R2、緑色の画像光G2及び青色の画像光B2を生成する。なお、画像光は、画像を構成する光に相当する。 The LCDs 310R, 310G, and 310B are electrically connected to a signal source (for example, PC or the like) (not shown) that supplies an image signal including image information. The LCDs 310R, 310G, and 310B modulate the incident light for each pixel based on the supplied image signals of the respective colors, and generate red image light R2, green image light G2, and blue image light B2, respectively. The image light corresponds to the light that constitutes an image.
 生成されたRGBの各色の画像光R2、G2及びB2は、ダイクロイックプリズム320に入射して合成される。ダイクロイックプリズム320は、3つの方向から入射した各色の画像光R2、G2及びB2を同軸上に重ね合わせて合成し、画像光W2を生成する。生成された画像光W2は、所定の方向に沿って、投射システム400に向けて出射される。 The generated RGB image lights R2, G2, and B2 enter the dichroic prism 320 and are combined. The dichroic prism 320 coaxially superimposes and combines the image lights R2, G2, and B2 of the respective colors incident from the three directions to generate the image light W2. The generated image light W2 is emitted toward the projection system 400 along a predetermined direction.
 投射システム400は、画像生成システム200により生成された画像光W2を投射する。投射システム400は、複数のレンズ410等を有し、ダイクロイックプリズム320により合成されて出射された画像光W2を図示しないスクリーン等の被投射物に投射する。これにより被投射物上にフルカラーの画像が表示される。投射システム400の具体的な構成は限定されない。 The projection system 400 projects the image light W2 generated by the image generation system 200. The projection system 400 has a plurality of lenses 410 and the like, and projects the image light W2 combined and emitted by the dichroic prism 320 onto a projection object such as a screen (not shown). As a result, a full-color image is displayed on the projection target. The specific configuration of the projection system 400 is not limited.
 [投射画像]
 図2は、画像表示装置500により投射される投射画像の一例を示す模式図である。画像表示装置500から出射された画像光W2がスクリーン等の被投射物に投射されると、投射画像30が表示される。投射画像30は、画像光W2により構成される画像に相当する。
[Projected image]
FIG. 2 is a schematic diagram showing an example of a projection image projected by the image display device 500. When the image light W2 emitted from the image display device 500 is projected onto a projection object such as a screen, the projection image 30 is displayed. The projection image 30 corresponds to an image formed by the image light W2.
 なお被投射物としては、スクリーン、壁、車体等、任意の物体が用いられてよい。画像光W2が投射される投射面、すなわち投射画像30が表示される表示面の形状も限定されない。例えば平面形状のスクリーンや、湾曲したスクリーン等が用いられてよい。例えば画像を視聴するユーザを囲むように湾曲したスクリーンが用いられることで、画像への没入感を向上させることが可能となり、高品質の視聴体験を提供することが可能となる。 Note that any object such as a screen, a wall, or a car body may be used as the projection target. The shape of the projection surface on which the image light W2 is projected, that is, the display surface on which the projection image 30 is displayed is not limited. For example, a flat screen or a curved screen may be used. For example, by using a screen that is curved so as to surround a user who views an image, it is possible to improve the immersive feeling in the image and provide a high-quality viewing experience.
 図2に示すように本実施形態では、投射画像30として、有効画像10と拡張画像20とを含む画像が表示される。図2に示す例では、投射画像30として、山、海及び民家等の風景を示す画像が表示される。もちろん、投射画像30の具体的な内容(コンテンツ)は限定されず、様々な画像が表示されてよい。 As shown in FIG. 2, in this embodiment, an image including the effective image 10 and the extended image 20 is displayed as the projection image 30. In the example shown in FIG. 2, as the projection image 30, an image showing a landscape such as mountains, the sea, and private houses is displayed. Of course, the specific content of the projection image 30 is not limited, and various images may be displayed.
 なお本開示において、画像は、静止画像及び動画像の両方を含む。動画像を構成する複数のフレーム画像を、複数の静止画像とみなすことも可能である。例えば、写真等の任意の静止画像、映画やゲーム映像等の任意の動画像に対して、本技術は適用可能である。 Note that in the present disclosure, an image includes both a still image and a moving image. It is also possible to regard a plurality of frame images forming a moving image as a plurality of still images. For example, the present technology can be applied to any still image such as a photograph or any moving image such as a movie or a game video.
 有効画像10は、投射画像30の中央領域11に表示される。これにより、例えば投射画像30に対して正面を向くユーザの中心視野(ユーザが焦点を合わせている領域)と、安定注視野(安定した状態で情報を注視できる領域)とをカバーするように、有効画像10を表示することが可能となる。 The effective image 10 is displayed in the central area 11 of the projected image 30. This covers, for example, the central visual field of the user (the area in which the user focuses) that faces the front with respect to the projection image 30 and the stable gazing field (the area in which information can be gazed in a stable state). The effective image 10 can be displayed.
 拡張画像20は、投射画像30の中央領域11の周辺を囲む周辺領域21に表示される。すなわち拡張画像20は、有効画像10の周辺を囲むように表示される。これにより、例えば投射画像30に対して正面を向くユーザの周辺視野(第1印象や全体観をつかむ領域)に、拡張画像20を表示することが可能となる。このように有効画像10に加えて、有効画像10の周辺に拡張画像20が表示される。これによりユーザは、画像に包まれるような臨場感のある視聴体験を得ることが可能となる。この結果、高品質な画像表示が実現される。 The extended image 20 is displayed in the peripheral area 21 surrounding the central area 11 of the projection image 30. That is, the extended image 20 is displayed so as to surround the periphery of the effective image 10. Thereby, for example, the extended image 20 can be displayed in the peripheral visual field of the user who faces the front with respect to the projection image 30 (a region in which the first impression or the general view is grasped). Thus, in addition to the effective image 10, the extended image 20 is displayed around the effective image 10. As a result, the user can obtain a realistic viewing experience as if wrapped in an image. As a result, high quality image display is realized.
 例えば、有効画像10として、アスペクト比が16:9であり、横1920画素×縦1080画素のフルHD相当の画像が表示される。その周辺に、臨場感を向上させるような拡張画像20が表示される。もちろん、このような投射画像30の構成に限定される訳ではない。 For example, as the effective image 10, an image corresponding to full HD having an aspect ratio of 16:9 and horizontal 1920 pixels×vertical 1080 pixels is displayed. An extended image 20 that enhances the sense of realism is displayed in the vicinity thereof. Of course, the structure of the projected image 30 is not limited to this.
 本実施形態では、有効画像10の解像度が、拡張画像20の解像度と異なるように、画像光W2が投射され投射画像30が表示される。具体的には、拡張画像20の解像度が、有効画像10の解像度よりも低くなるように、画像光W2が投射される。 In this embodiment, the image light W2 is projected and the projection image 30 is displayed so that the resolution of the effective image 10 is different from the resolution of the extended image 20. Specifically, the image light W2 is projected so that the resolution of the extended image 20 is lower than the resolution of the effective image 10.
 例えば、ユーザの安定注視野に表示される有効画像10として高解像度の高精細な画像が表示される。そしてユーザの周辺視野に表示される拡張画像20として、低解像度の画像が表示される。なおこの周辺視野の画像はフォーカスがずれたピンボケ気味の画像でもよい。これにより、臨場感を感じながら有効画像10に意識を集中することが可能となる。すなわち拡張画像20により注意が散漫となってしまうような状態を十分に防止することが可能となり、非常に高品質の画像表示が実現される。 For example, a high-resolution and high-definition image is displayed as the effective image 10 displayed in the stable gaze field of the user. Then, a low-resolution image is displayed as the extended image 20 displayed in the peripheral visual field of the user. The peripheral visual field image may be an out-of-focus image that is out of focus. As a result, it becomes possible to concentrate the attention on the effective image 10 while feeling the presence. That is, it becomes possible to sufficiently prevent the extended image 20 from causing a distraction, and a very high quality image display is realized.
 なお、有効画像10の解像度及び拡張画像20の解像度は、有効画像10に含まれる有効画素の密度及び拡張画像20に含まれる拡張画素の密度により規定することが可能である。 Note that the resolution of the effective image 10 and the resolution of the extended image 20 can be defined by the density of effective pixels included in the effective image 10 and the density of extended pixels included in the extended image 20.
 本実施形態において、被投射物に表示される画像の解像度は、被投射物に表示される画像状態に含まれる。すなわち本実施形態では、有効画像の画像状態が、拡張画像の画像状態と異なるように、画像光W2が投射されている。 In the present embodiment, the resolution of the image displayed on the projection object is included in the image state displayed on the projection object. That is, in the present embodiment, the image light W2 is projected such that the image state of the effective image is different from the image state of the extended image.
 なお本開示において、画像状態とは、被投射物に画像がどのように表示されるかに関連する種々のパラメータを含む。例えば、画像光W2に対する拡大率や、画素サイズ等も、画像状態に含まれ得る。 In the present disclosure, the image state includes various parameters related to how the image is displayed on the projection object. For example, the magnification of the image light W2, the pixel size, and the like may be included in the image state.
 有効画像10を表示するための有効画像データ、及び拡張画像20を表示するための拡張画像データを生成する方法は限定されない。例えば、コンテンツごとに、有効画像データ及び拡張画像データが予め準備されていてもよい。あるいは、従来のディスプレイ全体に表示されるメインコンテンツの画像データを有効画像データとして用いる。そして有効画像データに基づいて、拡張画像データが適宜生成されてもよい。 The method of generating effective image data for displaying the effective image 10 and extended image data for displaying the extended image 20 is not limited. For example, valid image data and extended image data may be prepared in advance for each content. Alternatively, the image data of the main content displayed on the entire conventional display is used as the effective image data. Then, the extended image data may be appropriately generated based on the effective image data.
 例えば有効画像10の周縁付近の画像データが、そのまま拡張画像データとして用いられてもよい。あるいは、有効画像データを解析することで、有効画像10の周辺の画像を検出し、拡張画像データが生成されてもよい。あるいは映像コンテンツ等が表示される場合には、前後のフレーム画像の情報を分析することで、拡張画像データが生成されてもよい。 For example, image data near the periphery of the effective image 10 may be used as it is as extended image data. Alternatively, by analyzing the effective image data, the image around the effective image 10 may be detected, and the extended image data may be generated. Alternatively, when the video content or the like is displayed, the extended image data may be generated by analyzing the information of the preceding and following frame images.
 図3は、LCD310の画素構成の一例を模式的に示す図である。図1に示すLCD310R、310G及び310Bは、互いに等しい画素構成を有する。従って、LCD310R、310G及び310Bを区別することなく、LCD310として説明を行う。 FIG. 3 is a diagram schematically showing an example of the pixel configuration of the LCD 310. The LCDs 310R, 310G and 310B shown in FIG. 1 have the same pixel configuration. Therefore, the LCD 310R, 310G, and 310B will be described as the LCD 310 without distinction.
 またLCD310R、310G及び310Bにより生成される赤色の画像光R2、緑色の画像光G2及び青色の画像光B2の合成についての記載を省略して、LCD310により生成される画像光を、図1に示す画像光W2として説明する場合もある。 Also, the description of the combination of the red image light R2, the green image light G2, and the blue image light B2 generated by the LCDs 310R, 310G, and 310B is omitted, and the image light generated by the LCD 310 is shown in FIG. It may be described as the image light W2.
 LCD310の画素が配置される画素領域は、有効画素領域15と、拡張画素領域25とに区分される。有効画素領域15は、画素領域の中央に位置する中央領域11に設定される。有効画素領域15により、有効画素光が生成される。すなわち、有効画素領域15に含まれる有効画素16から出射される画素光により、有効画素光が構成される。 The pixel area in which the pixels of the LCD 310 are arranged is divided into an effective pixel area 15 and an extended pixel area 25. The effective pixel area 15 is set in the central area 11 located at the center of the pixel area. Effective pixel light is generated by the effective pixel region 15. That is, the pixel light emitted from the effective pixel 16 included in the effective pixel region 15 constitutes the effective pixel light.
 拡張画素領域25は、画素領域の中央領域11の周辺を囲む周辺領域21に設定される。すなわち拡張画素領域25は、有効画素領域15の周辺を囲むように設定される。拡張画素領域25により、拡張画素光が生成される。すなわち拡張画素領域25に含まれる拡張画素26から出射される画素光により、拡張画素光が構成される。 The extended pixel area 25 is set in the peripheral area 21 that surrounds the periphery of the central area 11 of the pixel area. That is, the extended pixel area 25 is set so as to surround the periphery of the effective pixel area 15. Extended pixel light is generated by the extended pixel region 25. That is, the pixel light emitted from the expansion pixel 26 included in the expansion pixel region 25 constitutes the expansion pixel light.
 本実施形態では、LCD310により、有効画素光及び拡張画素光を含む画像光W2が生成される。なおRGBの合成について説明すると、画像光W2に含まれる有効画素光は、RGBの各色の有効画素光が合成されたフルカラーの有効画素光に相当する。また画像光W2に含まれる拡張画素光は、RGBの各色の拡張画素光が合成されたフルカラーの拡張画素光に相当する。 In the present embodiment, the LCD 310 generates the image light W2 including the effective pixel light and the extended pixel light. Explaining the RGB combination, the effective pixel light included in the image light W2 corresponds to the full-color effective pixel light in which the effective pixel lights of the RGB colors are combined. The extended pixel light included in the image light W2 corresponds to full-color extended pixel light in which the extended pixel lights of RGB colors are combined.
 被投射物に画像光W2が投射されると、画像光W2に含まれる有効画素光により、図2に示す有効画像10が構成される。また画像光W2に含まれる拡張画素光により、図2に示す拡張画像20が構成される。すなわち画像表示装置500は、有効画素光により構成される有効画像10の画像状態が、拡張画素光により構成される拡張画像20の画像状態と異なるように、画像光W2を投射する。 When the image light W2 is projected on the projection object, the effective image light shown in FIG. 2 is formed by the effective pixel light included in the image light W2. The extended image light shown in FIG. 2 is formed by the extended pixel light included in the image light W2. That is, the image display device 500 projects the image light W2 such that the image state of the effective image 10 formed by the effective pixel light is different from the image state of the extended image 20 formed by the extended pixel light.
 例えば、有効画素領域15として、アスペクト比が16:9であり、横1920画素×縦1080画素のフルHD相当の画素構成を含む領域が設定される。その周辺に、臨場感を向上させるような拡張画素領域が設定される。もちろん、このような投射画像30の画素構成に限定される訳ではない。 For example, as the effective pixel area 15, an area having an aspect ratio of 16:9 and including a pixel configuration corresponding to full HD of 1920 pixels horizontal×1080 pixels vertical is set. An extended pixel area that improves the sense of presence is set around the area. Of course, the pixel configuration of the projection image 30 is not limited to this.
 本実施形態では、有効画素領域15の画素ピッチが、拡張画素領域25の画素ピッチと異なるように設定される。具体的には、拡張画素領域25の画素ピッチが、有効画素領域15の画素ピッチよりも大きくなるように設定される。なお図3に示すように、拡張画素領域25の画素の密度が、有効画素領域15の画素の密度よりも大きくなっているとも言える。 In the present embodiment, the pixel pitch of the effective pixel area 15 is set to be different from the pixel pitch of the extended pixel area 25. Specifically, the pixel pitch of the extended pixel area 25 is set to be larger than the pixel pitch of the effective pixel area 15. As shown in FIG. 3, it can be said that the pixel density of the extended pixel area 25 is higher than the pixel density of the effective pixel area 15.
 本実施形態において、有効画素領域15及び有効画素光は、第1の画素領域及び第1の画素光に相当する。拡張画素領域25及び拡張画素光が、第2の画素領域及び第2の画素光に相当する。LCD310は、第1の画素領域と第2の画素領域とを有し、第1の画素領域により生成される第1の画素光と、第2の画素領域により生成される第2の画素光とを含む画像光を生成する画像生成部に相当する。 In the present embodiment, the effective pixel area 15 and the effective pixel light correspond to the first pixel area and the first pixel light. The extended pixel area 25 and the extended pixel light correspond to the second pixel area and the second pixel light. The LCD 310 has a first pixel area and a second pixel area, and has a first pixel light generated by the first pixel area and a second pixel light generated by the second pixel area. It corresponds to an image generation unit that generates image light including.
 また本実施形態において、有効画像10は、第1の画素光により構成される第1の部分画像に相当する。拡張画像20が、第2の画素光により構成さる第2の部分画像に相当する。 In addition, in the present embodiment, the effective image 10 corresponds to the first partial image formed by the first pixel light. The extended image 20 corresponds to the second partial image formed by the second pixel light.
 図4は、LCD310の画素領域の回路構成の一例を示す模式図である。図4では、図示を簡素化するために、有効画素16及び拡張画素26の数が少なく図示されている。もちろん有効画素及び拡張画素の数は限定されず、任意に設定されてよい。 FIG. 4 is a schematic diagram showing an example of the circuit configuration of the pixel area of the LCD 310. In FIG. 4, in order to simplify the illustration, the number of effective pixels 16 and the number of extension pixels 26 are small. Of course, the numbers of effective pixels and extended pixels are not limited, and may be set arbitrarily.
 LCD310は、複数の有効画素16と、複数の拡張画素26と、ゲートドライバー311と、ソースドライバー315と、複数のゲート線312と、複数のソース線316とを有する。なお図中では、ゲート線312は「Gate()」と図示され、ソース線316は「Sig()」と図示されている。 The LCD 310 has a plurality of effective pixels 16, a plurality of extended pixels 26, a gate driver 311, a source driver 315, a plurality of gate lines 312, and a plurality of source lines 316. In the figure, the gate line 312 is shown as “Gate( )” and the source line 316 is shown as “Sig( )”.
 図4に示す例では、6×6の合計36個の有効画素16が配置される。この36個の有効画素16が配置される領域が、有効画素領域15となる。 In the example shown in FIG. 4, a total of 36 effective pixels 16 of 6×6 are arranged. The area in which the 36 effective pixels 16 are arranged becomes the effective pixel area 15.
 拡張画素26は、3×3の合計9個の有効画素16分のサイズを有する。すなわち拡張画素26の画素サイズは、有効画素16の画素サイズの9倍となる。また拡張画素26の画素ピッチは、有効画素16の画素ピッチの3倍となる。 The extension pixel 26 has a size of 3×3=9 effective pixels 16 minutes. That is, the pixel size of the extension pixel 26 is nine times the pixel size of the effective pixel 16. The pixel pitch of the extended pixels 26 is three times the pixel pitch of the effective pixels 16.
 図4に示すように、本実施形態では、有効画素領域15の上下に、左右に並ぶ拡張画素26が2つずつ配置される。また有効画素領域15の左右に2×2の合計4つの拡張画素26がそれぞれ配置される。またLCD310の4隅部には、左右に並ぶ拡張画素26が2つずつ配置される。これら合計20個の拡張画素26が配置される領域が、拡張画素領域25となる。 As shown in FIG. 4, in the present embodiment, two extension pixels 26 arranged side by side are arranged above and below the effective pixel area 15. Further, a total of four 2×2 extended pixels 26 are arranged on the left and right of the effective pixel area 15. Further, two extension pixels 26 arranged on the left and right are arranged at four corners of the LCD 310. The area in which the total of 20 expansion pixels 26 are arranged becomes the expansion pixel area 25.
 36個の有効画素16に対応して、ゲート線1~6、及びソース線1~6がそれぞれ配置される。LCD310の最上部に左右に並ぶ拡張画素26に対してゲート線T1が配置される。LCD310の最下部に左右に並ぶ拡張画素26に対してゲート線B1が配置される。またLCD310の左端部から上下に並ぶ2列の拡張画素26に対して、ソース線L1及びL2が配置される。LCD310の右端部から上下に並ぶ2列の拡張画素26に対して、ソース線R1及びR2が配置される。 Gate lines 1 to 6 and source lines 1 to 6 are arranged corresponding to the 36 effective pixels 16, respectively. The gate line T1 is arranged for the extended pixels 26 arranged side by side at the top of the LCD 310. The gate line B1 is arranged at the bottom of the LCD 310 for the extension pixels 26 arranged side by side. Further, the source lines L1 and L2 are arranged with respect to the two rows of extended pixels 26 arranged vertically from the left end of the LCD 310. The source lines R1 and R2 are arranged for the two columns of the extension pixels 26 arranged vertically from the right end of the LCD 310.
 LCD310の最上部から2行目の左右に並ぶ拡張画素26に対しては、ゲート線1~3のうちの任意の1つを、ゲート線として用いることが可能である。LCD310の最下部から2行目の左右に並ぶ拡張画素26に対しては、ゲート線4~6のうちの任意の1つを、ゲート線として用いることが可能である。 With respect to the extended pixels 26 arranged on the left and right in the second row from the top of the LCD 310, it is possible to use any one of the gate lines 1 to 3 as a gate line. Any one of the gate lines 4 to 6 can be used as the gate line for the extended pixels 26 arranged on the left and right in the second row from the bottom of the LCD 310.
 LCD310の左端部から3行目の上下に1つずつ配置される拡張画素26に対しては、ソース線1~3のうちの任意の1つを、ソース線として用いることが可能である。LCD310の右端部から3行目の上下に1つずつ配置される拡張画素26に対しては、ソース線4~6のうちの任意の1つを、ソース線として用いることが可能である。 With respect to the extension pixels 26 arranged one above the other in the third row from the left end of the LCD 310, any one of the source lines 1 to 3 can be used as a source line. Any one of the source lines 4 to 6 can be used as the source line for the extension pixels 26 arranged one above the other in the third row from the right end of the LCD 310.
 図4に示す例のように、拡張画素26の画素ピッチが、有効画素16の画素ピッチの整数倍となるように設計する。これにより回路構成の設計が容易となる。例えば、有効画素16と拡張画素26とでゲート線312やソース線316を共有させることも可能となり、回路構成及び製造工程の簡素化を実現することが可能となる。 As in the example shown in FIG. 4, the pixel pitch of the extension pixel 26 is designed to be an integral multiple of the pixel pitch of the effective pixel 16. This facilitates the design of the circuit configuration. For example, the effective pixel 16 and the extended pixel 26 can share the gate line 312 and the source line 316, and the circuit configuration and the manufacturing process can be simplified.
 もちろん、有効画素16及び拡張画素26の数、形状、及びサイズは限定されない。例えば、LCD310の形状や大きさに合わせて任意に有効画素16及び拡張画素26の数、形状、及びサイズが設定されてもよい。 Of course, the number, shape, and size of the effective pixels 16 and the extension pixels 26 are not limited. For example, the number, shape, and size of the effective pixels 16 and the extension pixels 26 may be arbitrarily set according to the shape and size of the LCD 310.
 図5は、LCD310により生成された画像光の投射を説明するための模式図である。上記でも記載したが、LCD310により生成された画像光を、図1に示す画像光W2として説明を行う。図中の投射レンズ部50は、図1に示す投射システム400内の複数の投射レンズ410を含むレンズ光学系を模式的に図示したものである。 FIG. 5 is a schematic diagram for explaining the projection of the image light generated by the LCD 310. As described above, the image light generated by the LCD 310 will be described as the image light W2 shown in FIG. A projection lens unit 50 in the figure is a schematic illustration of a lens optical system including a plurality of projection lenses 410 in the projection system 400 shown in FIG.
 LCD310は、複数の有効画素16、複数の拡張画素26、及び額縁36を有する。額縁36は、拡張画素26の周囲を囲うように配置され、LCD310を機能させるための周辺回路を内蔵する。 The LCD 310 has a plurality of effective pixels 16, a plurality of extension pixels 26, and a frame 36. The frame 36 is arranged so as to surround the periphery of the extended pixel 26 and incorporates a peripheral circuit for causing the LCD 310 to function.
 LCD310により生成された画像光W2は、所定の方向に沿って、投射レンズ部50に向かって出射される。投射レンズ部50は、所定の方向に沿って入射する画像光W2を、所定の光軸方向に沿って、スクリーン60に投射する。 The image light W2 generated by the LCD 310 is emitted toward the projection lens unit 50 along a predetermined direction. The projection lens unit 50 projects the image light W2 incident along a predetermined direction on the screen 60 along the predetermined optical axis direction.
 典型的には、所定の方向は、投射レンズ部50(投射レンズ光学系)の光軸方向に相当する。また所定の光軸方向は、画像表示装置500の光軸方向となる。また図5に示すように、投射レンズ部50は、入射する画像光W2に対して、上下左右が反転された画像を、スクリーン60に投射する。なお、このような投射光学系の構成に限定される訳ではない。 Typically, the predetermined direction corresponds to the optical axis direction of the projection lens unit 50 (projection lens optical system). The predetermined optical axis direction is the optical axis direction of the image display device 500. Further, as shown in FIG. 5, the projection lens unit 50 projects an image, which is vertically and horizontally inverted with respect to the incident image light W2, onto the screen 60. Note that the configuration of the projection optical system is not limited to this.
 また実際には、投射レンズ部50により、LCD310により生成された画像光W2が、所定の拡大率で拡大されてスクリーン60に投射される。スクリーン60に表示される投射画像30の画像サイズは、投射レンズ部50の拡大率、及びスクリーン60と画像表示装置500との距離等により定められる。 Actually, the projection lens unit 50 magnifies the image light W2 generated by the LCD 310 at a predetermined magnification ratio and projects the magnified light onto the screen 60. The image size of the projection image 30 displayed on the screen 60 is determined by the enlargement ratio of the projection lens unit 50, the distance between the screen 60 and the image display device 500, and the like.
 後に、画像光W2に対する投射画像30の拡大率について説明を行う。その説明を分かりやすくするために、図5では、LCD310により生成された画像光W2が拡大されずに、スクリーン60に投射される図が模式的に図示されている。この図は、画像光W2が全体的に同一の拡大率で拡大されてスクリーン60に投射される状態の一例を表す図ともいえる。 Later, the enlargement ratio of the projection image 30 with respect to the image light W2 will be described. In order to make the description easy to understand, FIG. 5 schematically shows a diagram in which the image light W2 generated by the LCD 310 is not enlarged and is projected on the screen 60. This figure can also be said to be an example of a state in which the image light W2 is enlarged at the same enlargement ratio and projected on the screen 60 as a whole.
 図3及び図4を参照して説明したように、LCD310の拡張画素領域25の画素ピッチが、有効画素領域15の画素ピッチよりも大きくなるように設計される。そして図5に示すように、LCD310により生成された画像光W2が、全体的に同一の拡大率で拡大されてスクリーン60に投射される(図5の例では等倍率)。 As described with reference to FIGS. 3 and 4, the pixel pitch of the extended pixel area 25 of the LCD 310 is designed to be larger than the pixel pitch of the effective pixel area 15. Then, as shown in FIG. 5, the image light W2 generated by the LCD 310 is enlarged at the same enlargement ratio as a whole and projected on the screen 60 (equal magnification in the example of FIG. 5).
 従って、拡張画素光27により構成される拡張画像の解像度が、有効画素光17により構成される有効画像10の解像度よりも低くなるように、画像光W2が投射される。これにより、図2に例示するような、中央が高解像であり、その周辺が低解像となる投射画像30を投射することが可能となる。この結果、高品質な画像表示を実現することが可能となる。 Therefore, the image light W2 is projected such that the resolution of the extended image formed by the extended pixel light 27 is lower than the resolution of the effective image 10 formed by the effective pixel light 17. This makes it possible to project a projection image 30 having a high resolution at the center and a low resolution at the periphery as illustrated in FIG. As a result, it is possible to realize high quality image display.
 本実施形態において、投射レンズ部50は、第1の画素光により構成される第1の部分画像の画像状態が、第2の画素光により構成される第2の部分画像の画像状態と異なるように、画像光を投射する投射光学系として機能する。 In the present embodiment, the projection lens unit 50 causes the image state of the first partial image formed by the first pixel light to be different from the image state of the second partial image formed by the second pixel light. In addition, it functions as a projection optical system that projects image light.
 また、投射レンズ部50は、有効画素光17(第1の画素光)を投射する第1の投射部、及び拡張画素光(第2の画素光)を投射する第2の投射部としても機能する。なお、投射レンズ部50の、有効画素光17に対して光学的な作用を及ぼす部分を第1の投射部として見做し、拡張画素光27に対して光学的な作用を及ぼす部分を第2の投射部として見做すことも可能である。 The projection lens unit 50 also functions as a first projection unit that projects the effective pixel light 17 (first pixel light) and a second projection unit that projects the extended pixel light (second pixel light). To do. The portion of the projection lens unit 50 that exerts an optical action on the effective pixel light 17 is regarded as a first projection unit, and the portion that exerts an optical action on the extended pixel light 27 is referred to as a second portion. Can also be considered as a projection unit of
 図5に示す例では、次の事項が成り立つ。すなわち第1の投射部は、所定の拡大率で有効画素光を投射し、第2の投射部は第1の投射部と等しい拡大率で、拡張画素光を投射する。 In the example shown in Fig. 5, the following items are established. That is, the first projection unit projects the effective pixel light at a predetermined enlargement ratio, and the second projection unit projects the expanded pixel light at the same enlargement ratio as the first projection unit.
 [第1の実施形態の変形例]
 図6~図9を参照して、第1の実施形態の変形例について説明する。図6~図9は、有効画像及び拡張画像の投射方法の他の一例を示す模式図である。図6~図9に例示する構成では、投射画像30の拡張画像20の面積をより大きくするために、マイクロレンズが追加される。なお拡張画像の面積が大きくなると、拡張画像の解像度はさらに低くなる。
[Modification of First Embodiment]
A modified example of the first embodiment will be described with reference to FIGS. 6 to 9. 6 to 9 are schematic diagrams showing another example of the projection method of the effective image and the extended image. In the configurations illustrated in FIGS. 6 to 9, microlenses are added to increase the area of the expanded image 20 of the projected image 30. Note that as the area of the expanded image increases, the resolution of the expanded image further decreases.
 マイクロレンズは、LCD310とは別個に構成されてもよいし、LCD310と一体的に構成されてもよい。またマイクロレンズの具体的な構成も限定されず、フレネルレンズや回折レンズ等の任意の構成が採用されてよい。その他、マイクロレンズを実現するための任意の技術が用いられてよい。 The microlens may be configured separately from the LCD 310 or may be configured integrally with the LCD 310. Further, the specific configuration of the microlens is not limited, and any configuration such as a Fresnel lens or a diffractive lens may be adopted. In addition, any technique for realizing a microlens may be used.
 図6に示す例では、拡張画素領域25を覆うように、第1のマイクロレンズ51及び第2のマイクロレンズ52が配置される。すなわち拡張画素26から出射される拡張画素光27の光路上に、第1のマイクロレンズ51及び第2のマイクロレンズ52が配置される。 In the example shown in FIG. 6, the first microlens 51 and the second microlens 52 are arranged so as to cover the extended pixel region 25. That is, the first microlens 51 and the second microlens 52 are arranged on the optical path of the extended pixel light 27 emitted from the extended pixel 26.
 図6に示すように、第1のマイクロレンズ51及び第2のマイクロレンズ52は、拡張画素光27を拡大させて、所定の方向に沿って、投射レンズ部50に入射させる。これにより拡張画像20がさらに拡大された投射画像30を、スクリーン60に投射させることが可能となる。この結果、さらに臨場感のある画像表示が実現され、高品質な視聴体験を提供することが可能となる。またLCD310を大型化させることなく、投射画像30の拡張画像20を拡大させることが可能となり、装置の小型化に非常に有利である。 As shown in FIG. 6, the first microlens 51 and the second microlens 52 magnify the expanded pixel light 27 and make it enter the projection lens unit 50 along a predetermined direction. This makes it possible to project the projection image 30 obtained by further expanding the extended image 20 on the screen 60. As a result, a more realistic image display can be realized and a high quality viewing experience can be provided. Further, the enlarged image 20 of the projection image 30 can be enlarged without enlarging the LCD 310, which is very advantageous for downsizing the device.
 また図6では、拡張画素光27は、第1のマイクロレンズ51及び第2のマイクロレンズ52により額縁36方向に広がるようにスクリーン60に投射される。この結果、拡張画素領域25の面積に対して、より広く拡張画像20をスクリーン60に表示できることが可能となる。これにより、額縁36が配置されている領域を活用することで狭額縁化が可能となる。 Further, in FIG. 6, the expanded pixel light 27 is projected on the screen 60 by the first microlens 51 and the second microlens 52 so as to spread in the direction of the frame 36. As a result, the expanded image 20 can be displayed on the screen 60 wider than the area of the expanded pixel region 25. This makes it possible to narrow the frame by utilizing the area in which the frame 36 is arranged.
 図6に示す例において、第1のマイクロレンズ51及び第2のマイクロレンズ52は、第1の投射部よりも大きい拡大率で、第2の画素光を投射する第2の投射部の一部として機能する。また第1のマイクロレンズ51及び第2のマイクロレンズ52は、拡張画素光27の少なくとも一部を拡大させて、所定の方向に沿って投射レンズ部50に入射させる拡大レンズ部として機能する。 In the example shown in FIG. 6, the first microlens 51 and the second microlens 52 are part of the second projection unit that projects the second pixel light at a magnification rate larger than that of the first projection unit. Function as. Further, the first microlens 51 and the second microlens 52 function as a magnifying lens unit that magnifies at least a part of the extended pixel light 27 and makes it enter the projection lens unit 50 along a predetermined direction.
 図7に示す例では、拡張画素領域25を覆うように、第3のマイクロレンズ53が配置される。すなわち拡張画素26から出射される拡張画素光27の光路上に、第3のマイクロレンズ53が配置される。 In the example shown in FIG. 7, the third microlens 53 is arranged so as to cover the extended pixel area 25. That is, the third microlens 53 is arranged on the optical path of the extended pixel light 27 emitted from the extended pixel 26.
 図7に示すように、第3のマイクロレンズ53は、拡張画素光27を、所定の方向に交差する方向に沿って、投射レンズ部50に入射させる。本実施形態では、投射レンズ部50の前段側にて、拡張画素光が交差するように、拡張画素光27が投射レンズ部50に入射される。 As shown in FIG. 7, the third microlens 53 causes the extended pixel light 27 to enter the projection lens unit 50 along a direction intersecting a predetermined direction. In the present embodiment, the extended pixel light 27 is incident on the projection lens unit 50 so that the extended pixel lights intersect on the front side of the projection lens unit 50.
 これにより拡張画像20がさらに拡大された投射画像30を、スクリーン60に投射させることが可能となる。この結果、さらに臨場感のある画像表示が実現され、高品質な視聴体験を提供することが可能となる。またLCD310を大型化させることなく、投射画像30の拡張画像20を拡大させることが可能となり、装置の小型化に非常に有利である。 With this, it becomes possible to project the projection image 30 obtained by further expanding the extended image 20 on the screen 60. As a result, a more realistic image display can be realized and a high quality viewing experience can be provided. Further, the enlarged image 20 of the projection image 30 can be enlarged without enlarging the LCD 310, which is very advantageous for downsizing the device.
 図6に示す例との差異として図7に示す例では、拡張画素領域25を拡大させた場合、投射レンズ部50に垂直に入るため、拡張画素領域25の面積に合わせて投射レンズ部50のサイズを大きくする必要がある。 In the example shown in FIG. 7 as a difference from the example shown in FIG. 6, when the extended pixel region 25 is enlarged, it enters the projection lens unit 50 vertically, so that the projection lens unit 50 is adjusted according to the area of the extended pixel region 25. Need to increase size.
 しかし、図7に示す例では、拡張画素領域25を拡大させた場合でも、第3のマイクロレンズ53の曲率等を調整することで投射レンズ部50のサイズを変える必要がない。これにより、既定サイズの投射レンズのままで拡張画像20を大きく表示することが可能となる。 However, in the example shown in FIG. 7, it is not necessary to change the size of the projection lens unit 50 by adjusting the curvature of the third microlens 53 and the like even when the extension pixel region 25 is enlarged. As a result, it is possible to display the extended image 20 in a large size with the projection lens having the predetermined size.
 また図7に示す例では、第2のマイクロレンズ52により拡張画素光が投射レンズに対して有効画素光と同じ方向に入射されていないため、有効画像10と拡張画像20とが光学系の設計上のバラツキから有効画像10と拡張画像20との一部分が重なる場合がある。 Further, in the example shown in FIG. 7, since the expanded pixel light is not incident on the projection lens in the same direction as the effective pixel light by the second microlens 52, the effective image 10 and the expanded image 20 are designed in the optical system. Due to the above variation, the effective image 10 and the extended image 20 may partially overlap each other.
 この場合、有効画像10と拡張画像20との重なりを防止する方法の例として、重なった部分の有効画素16又は拡張画素26を黒表示にする方法、及びLCD310上で有効画素16と拡張画素26との間を空ける方法が挙げられる。 In this case, as an example of a method of preventing the effective image 10 and the extended image 20 from overlapping, a method of displaying the effective pixel 16 or the extended pixel 26 in the overlapping portion in black, and a method of displaying the effective pixel 16 and the extended pixel 26 on the LCD 310. There is a way to leave a gap between them.
 これにより、有効画像10と拡張画像20との重なりが防止され、高品質な画像表示が可能となる。 This prevents overlapping of the effective image 10 and the extended image 20 and enables high quality image display.
 図7に示す例において、第3のマイクロレンズ53は、第1の投射部よりも大きい拡大率で、第2の画素光を投射する第2の投射部の一部として機能する。また第3のマイクロレンズ53は、拡張画素光27の少なくとも一部を所定の方向に交差する方向に沿って投射レンズ部50に入射させる拡大レンズ部として機能する。 In the example shown in FIG. 7, the third microlens 53 functions as a part of the second projection unit that projects the second pixel light with a larger magnification rate than the first projection unit. Further, the third microlens 53 functions as a magnifying lens unit that causes at least a part of the extended pixel light 27 to enter the projection lens unit 50 along a direction intersecting a predetermined direction.
 図8に示す例では、拡張画素領域25の一部を覆うように、第4のマイクロレンズ54が配置される。具体的には、有効画素領域15の中央領域18とは反対側に位置する外側領域28を覆うように、第4のマイクロレンズ54が配置される。外側領域28は、拡張画素領域25の周縁側の領域とも言える。第4のマイクロレンズ54は、外側領域28に含まれる拡張画素26から出射される拡張画素光27の光路上に配置されることになる。 In the example shown in FIG. 8, the fourth microlens 54 is arranged so as to cover a part of the extended pixel region 25. Specifically, the fourth microlens 54 is arranged so as to cover the outer region 28 located on the opposite side of the central region 18 of the effective pixel region 15. The outer region 28 can also be said to be a region on the peripheral side of the extended pixel region 25. The fourth microlens 54 is arranged on the optical path of the extended pixel light 27 emitted from the extended pixel 26 included in the outer region 28.
 図8に示すように、第4のマイクロレンズ54は、外側領域28により生成される拡張画素光27を、所定の方向に交差する方向に沿って、投射レンズ部50に入射させる。本実施形態では、投射レンズ部50の前段側にて、拡張画素光27が交差するように、拡張画素光27が投射レンズ部50に入射される。 As shown in FIG. 8, the fourth microlens 54 makes the extended pixel light 27 generated by the outer region 28 incident on the projection lens unit 50 along a direction intersecting a predetermined direction. In the present embodiment, the extended pixel light 27 is incident on the projection lens unit 50 so that the extended pixel light 27 intersects on the front side of the projection lens unit 50.
 これにより外側領域28に対応する拡張画像20がさらに拡大された投射画像30を、スクリーン60に投射させることが可能となる。この結果、さらに臨場感のある画像表示が実現され、高品質な視聴体験を提供することが可能となる。またLCD310を大型化させることなく、投射画像30の拡張画像20を拡大させることが可能となり、装置の小型化に非常に有利である。 With this, it becomes possible to project the projection image 30 in which the extended image 20 corresponding to the outer area 28 is further enlarged, onto the screen 60. As a result, a more realistic image display can be realized and a high quality viewing experience can be provided. Further, the enlarged image 20 of the projection image 30 can be enlarged without enlarging the LCD 310, which is very advantageous for downsizing the device.
 図8に示す例では、有効画素16と隣接する拡張画素26から出射される拡張画素光がスクリーンに垂直に入射するため、有効画素光と拡張画素光とが重なることを防止することが可能となる。 In the example shown in FIG. 8, since the extended pixel light emitted from the extended pixel 26 adjacent to the effective pixel 16 is vertically incident on the screen, it is possible to prevent the effective pixel light and the extended pixel light from overlapping with each other. Become.
 図8に示す例において、第4のマイクロレンズ54は、第1の投射部よりも大きい拡大率で、第2の画素光を投射する第2の投射部の一部として機能する。また第4のマイクロレンズ54は、拡張画素光27の少なくとも一部を所定の方向に交差する方向に沿って投射レンズ部50に入射させる拡大レンズ部として機能する。 In the example shown in FIG. 8, the fourth microlens 54 functions as a part of the second projection unit that projects the second pixel light with a larger magnification rate than the first projection unit. In addition, the fourth microlens 54 functions as a magnifying lens unit that causes at least a part of the extended pixel light 27 to enter the projection lens unit 50 along a direction intersecting a predetermined direction.
 なお、図6に例示する第1のマイクロレンズ51及び第2のマイクロレンズ52を、外側領域28のみを覆うように配置することも可能である。この場合、第1のマイクロレンズ51及び第2のマイクロレンズ52は、外側領域28により生成される拡張画素光27を拡大させて、所定の方向に沿って、投射レンズ部50に入射させる。これにより外側領域28に対応する拡張画像20がさらに拡大された投射画像30を、スクリーン60に投射させることが可能となる。 Note that the first microlens 51 and the second microlens 52 illustrated in FIG. 6 can be arranged so as to cover only the outer region 28. In this case, the first microlens 51 and the second microlens 52 magnify the extended pixel light 27 generated by the outer region 28 and make it enter the projection lens unit 50 along a predetermined direction. Thereby, it becomes possible to project the projection image 30 in which the extended image 20 corresponding to the outer area 28 is further enlarged, onto the screen 60.
 図9に示す例では、拡張画素領域に含まれる複数の拡張画素26の各々に、第5のマイクロレンズ55が配置される。すなわち1つの拡張画素26に対して、1つの第5のマイクロレンズ55が配置される。 In the example shown in FIG. 9, the fifth microlens 55 is arranged in each of the plurality of extension pixels 26 included in the extension pixel area. That is, one fifth microlens 55 is arranged for one extended pixel 26.
 複数の第5のマイクロレンズ55は、各々の拡張画素26から出射される拡張画素光27を、所定の方向に交差する方向に沿って、投射レンズ部50に入射させる。これにより拡張画像20がさらに拡大された投射画像30を、スクリーン60に投射させることが可能となる。例えば、複数の第5のマイクロレンズ54の各々は、配置される拡張画素26の位置に応じた曲率を有するように設計することも可能である。これにより、拡張画像20の面積等を細かく制御することが可能となり、高品質な画像表示が実現される。 The plurality of fifth microlenses 55 cause the extension pixel light 27 emitted from each extension pixel 26 to enter the projection lens unit 50 along a direction intersecting a predetermined direction. This makes it possible to project the projection image 30 obtained by further expanding the extended image 20 on the screen 60. For example, each of the plurality of fifth microlenses 54 can be designed to have a curvature according to the position of the extended pixel 26 to be arranged. As a result, the area of the extended image 20 and the like can be finely controlled, and high-quality image display is realized.
 図9に示す例と図7及び図8に示す例との差異としては、拡張画素26の各々に第5のマイクロレンズ55が用いられることにより、拡張画素26ごとに第5のマイクロレンズ55の曲率を変えることが可能となる。これにより、スクリーン60に表示される拡張画像の位置を制御することができる。 The difference between the example shown in FIG. 9 and the examples shown in FIGS. 7 and 8 is that the fifth microlens 55 is used for each of the extension pixels 26, and thus the fifth microlens 55 for each extension pixel 26 It is possible to change the curvature. Thereby, the position of the extended image displayed on the screen 60 can be controlled.
 また図9に示す例では、図7に示す例と同様に光学系の設計上のバラツキから重なる場合がある。この場合、拡張画素光の投射される位置をそれぞれの第5のマイクロレンズ55により制御できるため有効画素光17と拡張画素光27とが重なることを防止することができる。 Also, in the example shown in FIG. 9, as in the example shown in FIG. 7, there may be overlap due to variations in the design of the optical system. In this case, since the projected position of the extended pixel light can be controlled by each of the fifth microlenses 55, it is possible to prevent the effective pixel light 17 and the extended pixel light 27 from overlapping.
 また拡張画素光27の投射される位置を制御できるため、画像表示装置500とスクリーン60との距離に応じて、重なった部分の有効画素16又は拡張画素26を制御することで重なることを防止することができる。 In addition, since the projected position of the extended pixel light 27 can be controlled, it is possible to prevent the overlapping by controlling the effective pixels 16 or the extended pixels 26 in the overlapping portion according to the distance between the image display device 500 and the screen 60. be able to.
 なお、第1のマイクロレンズ51、第2のマイクロレンズ52、第3のマイクロレンズ53、第4のマイクロレンズ54、及び第5のマイクロレンズに用いられるレンズの種類は限定されない。例えば、凸レンズ、凹レンズ、及び液晶レンズ等の任意のレンズが用いられてもよい。 The types of lenses used for the first microlens 51, the second microlens 52, the third microlens 53, the fourth microlens 54, and the fifth microlens are not limited. For example, any lens such as a convex lens, a concave lens, and a liquid crystal lens may be used.
 また第1のマイクロレンズ51、第2のマイクロレンズ52、第3のマイクロレンズ53、第4のマイクロレンズ54、及び第5のマイクロレンズが配置される位置も限定されない。例えば、LCD310の各画素に内蔵されたり、LCD310の各画素に貼り付けられてもよい。 Also, the positions where the first microlens 51, the second microlens 52, the third microlens 53, the fourth microlens 54, and the fifth microlens are arranged are not limited. For example, it may be built in each pixel of the LCD 310 or attached to each pixel of the LCD 310.
 すなわち、第1のマイクロレンズ51、第2のマイクロレンズ52、第3のマイクロレンズ53、第4のマイクロレンズ54、及び第5のマイクロレンズは、図2に示すような有効画像10及び拡張画像20が被投射物に対して互いに異なる画像状態となるように投射されるように任意の種類や曲率で構成されてもよい。 That is, the first microlens 51, the second microlens 52, the third microlens 53, the fourth microlens 54, and the fifth microlens are the effective image 10 and the extended image as shown in FIG. 20 may be configured to have any type and curvature so as to be projected on the projection object so as to have different image states.
 製造工程を考慮した場合、図6に示す例では、第1のマイクロレンズ51をLCD310の各画素に貼り付け、第2のマイクロレンズ52を離して配置すると作りやすい。また図7に示す例では、第3のマイクロレンズ53をLCD310に貼り付けると作りやすい。さらにまた図8及び図9に示す例では、第4のマイクロレンズ54及び第5のマイクロレンズ55をLCD310に内蔵すると作りやすい。 Considering the manufacturing process, in the example shown in FIG. 6, it is easy to make by attaching the first microlens 51 to each pixel of the LCD 310 and disposing the second microlens 52 apart. Further, in the example shown in FIG. 7, if the third microlens 53 is attached to the LCD 310, it is easy to make. Furthermore, in the example shown in FIGS. 8 and 9, it is easy to make the fourth microlens 54 and the fifth microlens 55 in the LCD 310.
 LCD310に第1のマイクロレンズ51、第2のマイクロレンズ52、第3のマイクロレンズ53、第4のマイクロレンズ54、及び第5のマイクロレンズが内蔵される場合、使用されるレンズは、非球面凸レンズ、凹レンズをベースにしたフレネルレンズ、又は回折レンズが挙げられる。これらのレンズの場合、容易に画像表示装置500を製造可能となる。 When the LCD 310 includes the first microlens 51, the second microlens 52, the third microlens 53, the fourth microlens 54, and the fifth microlens, the lens used is an aspherical surface. Examples include convex lenses, Fresnel lenses based on concave lenses, and diffractive lenses. With these lenses, the image display device 500 can be easily manufactured.
 図9に示す例において、第5のマイクロレンズ55は、第1の投射部よりも大きい拡大率で、第2の画素光を投射する第2の投射部の一部として機能する。また第5のマイクロレンズ55は、拡張画素光27の少なくとも一部を所定の方向に交差する方向に沿って投射レンズ部50に入射させる拡大レンズ部として機能する。 In the example shown in FIG. 9, the fifth microlens 55 functions as a part of the second projection unit that projects the second pixel light with a larger magnification rate than the first projection unit. The fifth microlens 55 functions as a magnifying lens unit that causes at least a part of the extended pixel light 27 to enter the projection lens unit 50 along a direction intersecting a predetermined direction.
 以上、本実施形態に係る画像表示装置500では、有効画素領域15により生成される有効画素光17と、拡張画素領域25により生成される拡張画素光27とを含む画像光W2が生成される。そして有効画素光17により構成される有効画像10の画像状態が、拡張画素光27により構成される拡張画像20の画像状態と異なる様に、画像光W2が投射される。これにより、高品質な画像表示が可能となる。 As described above, in the image display device 500 according to the present embodiment, the image light W2 including the effective pixel light 17 generated by the effective pixel region 15 and the extended pixel light 27 generated by the extended pixel region 25 is generated. Then, the image light W2 is projected such that the image state of the effective image 10 formed by the effective pixel light 17 is different from the image state of the extended image 20 formed by the extended pixel light 27. This enables high-quality image display.
 臨場感のある画像表示を行う場合、例えば、複数台のプロジェクタのブレンディングで大画面かつ高解像度、又は1台のプロジェクタの特殊設計のレンズを用いて中央は中解像度、周辺ほど低解像度に表示することが挙げられる。一方、複数台のプロジェクタや特殊設計のレンズを用いたプロジェクタではコストが増加してしまう。 When displaying an image with a sense of reality, for example, a large screen and high resolution is achieved by blending a plurality of projectors, or a specially designed lens of one projector is used to display a middle resolution in the center and a lower resolution in the periphery. It can be mentioned. On the other hand, the cost increases with a plurality of projectors or a projector using a specially designed lens.
 そこで、本技術では、1台のプロジェクタの表示パネルの有効画素領域に低解像度の周辺画素を追加する。追加された周辺画素は、有効画素の画素サイズと同等以下で低解像度にする。また周辺画素は、外周に広がるようにマイクロレンズの設計を行ってもよい。 Therefore, in this technology, low-resolution peripheral pixels are added to the effective pixel area of the display panel of one projector. The added peripheral pixels have a resolution smaller than or equal to the pixel size of the effective pixels. In addition, the peripheral pixels may be designed as microlenses so as to spread to the outer periphery.
 すなわち、スクリーンに投射される投射画像は、拡張画素により中央に表示される有効画像が広く拡張され、ユーザの視界が画像で満たされる。この結果、1台のプロジェクタで中央は高解像度、周辺は低解像度となる投射画像を既存のレンズを使って低コストで実現することが可能となる。これにより、高品質な画像表示が可能となる。 That is, in the projection image projected on the screen, the effective image displayed in the center is widely expanded by the expansion pixels, and the user's field of view is filled with the image. As a result, a single projector can realize a projected image with high resolution in the center and low resolution in the periphery at low cost by using an existing lens. This enables high-quality image display.
 上記した特許文献1に記載の表示装置では、表示パネルPNL内の表示領域AAが有する周辺表示領域PAが、額縁領域PF方向に近くなるほど高精細化する。すなわち、周辺表示領域PAは、中央表示領域CAから遠ざかるほど画素密度が大きくなる。 In the display device described in Patent Document 1 described above, the higher the definition is, the closer the peripheral display area PA of the display area AA in the display panel PNL is toward the frame area PF. That is, in the peripheral display area PA, the pixel density increases as the distance from the central display area CA increases.
 また特許文献1に記載の表示装置は、表示パネルPNL上に矩形状の透光性カバーTCが配置される。透光性カバーTCは、平板部TCFと透光性カバーTCの4辺に設けられたレンズ部TCLとを有する。レンズ部TCLは、周辺表示領域PAの高精細な画像光を額縁領域PF側に屈折させ、額縁上に虚像を表示させる。 In the display device described in Patent Document 1, a rectangular translucent cover TC is arranged on the display panel PNL. The translucent cover TC has a flat plate portion TCF and a lens portion TCL provided on four sides of the translucent cover TC. The lens unit TCL refracts the high-definition image light of the peripheral display area PA toward the frame area PF side to display a virtual image on the frame.
 額縁上に表示される周辺表示領域PAの画素密度が中央表示領域CAに表示される画素密度と比べて、レンズで拡大されることにより映像の画質低下が起こる。特許文献1では、これを補正するために周辺表示領域PAの画素密度を額縁領域PF方向に近くなるほど高密度化をするようにしている。このように特許文献1では、中央表示領域CAに表示される映像と額縁上に表示される映像の画質を均一にすることを重要な目的として、技術の開示がなされている。 The image density of the image deteriorates because the pixel density of the peripheral display area PA displayed on the frame is enlarged by the lens compared to the pixel density displayed on the central display area CA. In Patent Document 1, in order to correct this, the pixel density of the peripheral display area PA is increased as it becomes closer to the frame area PF. As described above, in Patent Document 1, the technology is disclosed with the important purpose of making the image quality of the image displayed in the central display area CA and the image displayed on the frame uniform.
 すなわち特許文献1には、本技術に係る「第1の画素光により構成される第1の部分画像の画像状態が、第2の画素光により構成される第2の部分画像の画像状態と異なるように、画像光を投射する」という技術思想については記載や示唆はなく、特許文献1に基づいて本技術を容易に想到するといったこともないものと考えられる。 That is, in Patent Document 1, “the image state of the first partial image formed by the first pixel light differs from the image state of the second partial image formed by the second pixel light according to the present technology. As described above, the technical idea of “projecting image light” is not described or suggested, and it is considered that the present technology cannot be easily conceived based on Patent Document 1.
 <第2の実施形態>
 本技術に係る第2の実施形態の画像表示装置について説明する。これ以降の説明では、上記の実施形態で説明した画像表示装置500における構成及び作用と同様な部分については、その説明を省略又は簡略化する。
<Second Embodiment>
The image display device of the second embodiment according to the present technology will be described. In the following description, the description of the same parts as those in the configuration and operation of the image display device 500 described in the above embodiment will be omitted or simplified.
 図10は、本技術の第2の実施形態に係るLCD318の画素領域の回路構成の一例を示す模式図である。図10では、図示を簡素化するために、有効画素66及び拡張画素76の数が少なく図示されている。もちろん有効画素及び拡張画素の数は限定されず、任意に設定されてよい。 FIG. 10 is a schematic diagram showing an example of a circuit configuration of a pixel region of the LCD 318 according to the second embodiment of the present technology. In FIG. 10, the number of effective pixels 66 and the number of extension pixels 76 are shown small to simplify the illustration. Of course, the numbers of effective pixels and extended pixels are not limited, and may be set arbitrarily.
 本実施形態では、拡張画素76の画素ピッチは、有効画素66の画素ピッチと等しくなるように設計される。有効画素66及び拡張画素76の画素ピッチが互いに等しい場合、ゲート線312やソース線316等の配線を簡単な構造にすることができるため、容易に製造可能となる。 In the present embodiment, the pixel pitch of the extension pixels 76 is designed to be equal to the pixel pitch of the effective pixels 66. When the pixel pitches of the effective pixel 66 and the extension pixel 76 are equal to each other, the wirings such as the gate line 312 and the source line 316 can have a simple structure, and thus can be easily manufactured.
 本実施形態では、投射レンズ部50や、マイクロレンズ等を適宜設計して配置することで、有効画素光17により構成される有効画像10の画像状態が、拡張画素光27により構成される拡張画像20の画像状態と異なる様に、画像光W2を投射することが可能である。例えば図6~図9に例示した構成等を採用することが可能である。もちろん他の構成が採用されてもよい。 In the present embodiment, the image state of the effective image 10 formed by the effective pixel light 17 is changed to the extended image formed by the extended pixel light 27 by appropriately designing and disposing the projection lens unit 50, the microlens, and the like. It is possible to project the image light W2 differently from the image state of 20. For example, it is possible to adopt the configurations illustrated in FIGS. 6 to 9. Of course, other configurations may be adopted.
 <第3の実施形態>
 図11は、本技術の第3の実施形態に係るLCD319の画素領域の回路構成の一例を示す模式図である。図11では、図示を簡素化するために、有効画素67及び拡張画素86の数が少なく図示されている。もちろん有効画素67及び拡張画素86の数は限定されず、任意に設定されてよい。
<Third Embodiment>
FIG. 11 is a schematic diagram showing an example of the circuit configuration of the pixel region of the LCD 319 according to the third embodiment of the present technology. In FIG. 11, in order to simplify the illustration, the number of effective pixels 67 and the number of extension pixels 86 are small. Of course, the numbers of the effective pixels 67 and the extension pixels 86 are not limited and may be set arbitrarily.
 LCD319は、複数の有効画素67と、複数の拡張画素86と、ゲートドライバー311Lと、ゲートドライバー311Rと、ソースドライバー315Tと、ソースドライバー315Bと、複数のゲート線312と、複数のソース線316とを有する。 The LCD 319 includes a plurality of effective pixels 67, a plurality of extended pixels 86, a gate driver 311L, a gate driver 311R, a source driver 315T, a source driver 315B, a plurality of gate lines 312, and a plurality of source lines 316. Have.
 各有効画素67及び各拡張画素86に対応して、ゲート線及びソース線が配置される。図11に示す例では、有効画素67及び有効画素67と同じゲート線及びソース線に並ぶ拡張画素86に対して、ゲート線1a及び1b~6a及び6bとソース線1a及び1b~6a及び6bのうちの任意の1つのゲート線及びソース線として用いることが可能である。 A gate line and a source line are arranged corresponding to each effective pixel 67 and each extended pixel 86. In the example shown in FIG. 11, the gate lines 1a and 1b to 6a and 6b and the source lines 1a and 1b to 6a and 6b are provided for the effective pixel 67 and the extended pixel 86 arranged on the same gate line and source line as the effective pixel 67. Any one of them can be used as a gate line and a source line.
 また図11に示す例では、LCD319の4隅部に配置される拡張画素86に対して、ゲート線T1~T4及びゲート線B1~B4のうちの任意の1つを、ゲート線として用いることが可能である。またLCD319の4隅部に配置される拡張画素86に対して、ソース線L1~L4及びソース線R1~R4のうちの任意の1つを、ソース線として用いることが可能である。 Further, in the example shown in FIG. 11, for the extended pixels 86 arranged at the four corners of the LCD 319, any one of the gate lines T1 to T4 and the gate lines B1 to B4 can be used as a gate line. It is possible. Further, for the extended pixels 86 arranged at the four corners of the LCD 319, any one of the source lines L1 to L4 and the source lines R1 to R4 can be used as a source line.
 本実施形態では、拡張画素76の画素ピッチは、有効画素67の画素ピッチよりも小さくなるように設計される。すなわち、拡張画素領域25に配置される画素の密度を大きくする。 In this embodiment, the pixel pitch of the extension pixels 76 is designed to be smaller than the pixel pitch of the effective pixels 67. That is, the density of pixels arranged in the extended pixel region 25 is increased.
 これにより、拡張画素86の画素ピッチが狭く配置されることで、LCD319全体のサイズを小さくすることが可能となる。すなわち、画像表示装置500の製造する際の低コスト化が可能となる。 Due to this, by arranging the pixel pitch of the expansion pixels 86 to be narrow, it is possible to reduce the size of the LCD 319 as a whole. That is, it is possible to reduce the cost when manufacturing the image display device 500.
 本実施形態では、投射レンズ部50や、マイクロレンズ等を適宜設計して配置することで、有効画素光17により構成される有効画像10の画像状態が、拡張画素光27により構成される拡張画像20の画像状態と異なる様に、画像光W2を投射することが可能である。例えば図6~図9に例示した構成等を採用することが可能である。もちろん他の構成が採用されてもよい。 In the present embodiment, the image state of the effective image 10 formed by the effective pixel light 17 is changed to the extended image formed by the extended pixel light 27 by appropriately designing and disposing the projection lens unit 50, the microlens, and the like. It is possible to project the image light W2 differently from the image state of 20. For example, it is possible to adopt the configurations illustrated in FIGS. 6 to 9. Of course, other configurations may be adopted.
 LCD319が画像表示装置500に用いられた場合、投射する方法としては、図6~図9に示す例のいずれか1つが用いられる。これにより、投射される拡張画像の解像度は、有効画像の解像度よりも低くなる。 When the LCD 319 is used in the image display device 500, any one of the examples shown in FIGS. 6 to 9 is used as a projection method. As a result, the resolution of the projected extended image becomes lower than the resolution of the effective image.
 本技術では、拡張画素86から出射される拡張画像20の解像度は、ユーザの周辺視野に含まれることが想定されているため中央に表示される有効画像10よりも解像度が低くてよい。すなわち、拡張画像20がピンボケしているような低解像度であっても、ユーザは十分に映像に包まれたような臨場感を体験することができる。 In the present technology, the resolution of the extended image 20 emitted from the extended pixel 86 is assumed to be included in the peripheral visual field of the user, and thus may be lower than that of the effective image 10 displayed in the center. That is, even if the extended image 20 has a low resolution such as out-of-focus, the user can experience the realistic sensation of being fully enveloped in the image.
 また本技術において、拡張画素86の画素ピッチが中央に配置される有効画素67の画素ピッチよりも狭くなるように配置される理由は、拡張画素86の画素ピッチが狭いほど出射される拡張画素光のスクリーン60に投射される位置の制御を細かく行えることが挙げられる。 Further, in the present technology, the reason why the pixel pitch of the expansion pixels 86 is arranged to be narrower than the pixel pitch of the effective pixels 67 arranged in the center is that the expansion pixel light emitted when the pixel pitch of the expansion pixels 86 is narrower. It is possible to finely control the position projected on the screen 60.
 すなわち、本技術では、図9に示す例のように拡張画素光が投射される位置を制御し、有効画像10と拡張画像20とが重なることを防止する方法として、拡張画素86の画素ピッチが有効画素67の画素ピッチよりも狭くなるように配置される。これにより、ユーザの臨場感を損なわせない高品質な画像表示が可能となる。 That is, in the present technology, as a method of controlling the position where the extended pixel light is projected as in the example illustrated in FIG. 9 and preventing the effective image 10 and the extended image 20 from overlapping, the pixel pitch of the extended pixels 86 is It is arranged so as to be narrower than the pixel pitch of the effective pixels 67. This enables high-quality image display without impairing the user's sense of presence.
 なお、典型的には、拡張画像の解像度が有効画像の解像度よりも低い投射画像30が表示される。これに限定されず、用途等によっては、拡張画像の解像度が有効画像の解像度よりも高い投射画像30が表示されてもよい。例えば、本実施形態において、図5に例示する構成が採用されてもよい。 Note that typically, the projection image 30 in which the resolution of the extended image is lower than the resolution of the effective image is displayed. The present invention is not limited to this, and the projection image 30 in which the resolution of the extended image is higher than the resolution of the effective image may be displayed depending on the application. For example, in the present embodiment, the configuration illustrated in FIG. 5 may be adopted.
 [画素構成の他の例]
 図12~図15は、LCD310の画素構成の他の例を示す模式図である。
[Other example of pixel configuration]
12 to 15 are schematic diagrams showing other examples of the pixel configuration of the LCD 310.
 図12~図14に示す例では、有効画素領域131内に、均等な画素ピッチで複数の有効画素が配置される。例えば、有効画素130は、WUXGA(Wide Ultra Extended Graphics Array)、WQXGA(Wide Quad Extended Graphics Array)、及び4k等の任意の画素構成を有していてもよい。 In the examples shown in FIGS. 12 to 14, a plurality of effective pixels are arranged in the effective pixel area 131 at an equal pixel pitch. For example, the effective pixel 130 may have any pixel configuration such as WUXGA (Wide Ultra Extended Graphics Array), WQXGA (Wide Quad Extended Graphics Array), and 4k.
 有効画素領域131の周辺の拡張画素領域141には、画素サイズが異なる複数の種類の拡張画素140が配置される。なお、拡張画素140の画素サイズは、有効画素130の画素サイズを基準として設定される。これにより回路構成及び製造工程の簡素化を図ることが可能である。 A plurality of types of extension pixels 140 having different pixel sizes are arranged in the extension pixel area 141 around the effective pixel area 131. The pixel size of the extended pixel 140 is set based on the pixel size of the effective pixel 130. This can simplify the circuit configuration and the manufacturing process.
 図12に示す例では、LCD310の画素領域が、有効画素領域131の4辺を延長した直線132~135により区分けされる。さらに、有効画素領域131を4×4の合計16個の有効画素130を1つの単位として区分けする直線132~135により、LCD310の画素領域が区分けされる。これら直線132~135により区分けされた領域に相当する画素サイズの、拡張画素142がそれぞれ配置される。 In the example shown in FIG. 12, the pixel area of the LCD 310 is divided by straight lines 132 to 135 that extend four sides of the effective pixel area 131. Furthermore, the pixel area of the LCD 310 is divided by straight lines 132 to 135 that divide the effective pixel area 131 into 16 effective pixels 130 of 4×4 in total. Extended pixels 142 each having a pixel size corresponding to an area divided by these straight lines 132 to 135 are arranged.
 図12に示す画素構成によれば、有効画像10の上下左右に隣接する領域では、有効画像10よりも低い解像度で拡張画像20が表示される。そして投射画像30の4隅部にて、最も解像度の低い拡張画像20が表示される。 According to the pixel configuration shown in FIG. 12, the extended image 20 is displayed at a resolution lower than that of the effective image 10 in the regions adjacent to the upper, lower, left and right sides of the effective image 10. Then, the extended image 20 having the lowest resolution is displayed at the four corners of the projected image 30.
 図13に示す例では、拡張画素145の画素サイズは、有効画素領域131の中心から遠ざかる程大きくなるように配置されてもよい。すなわち、拡張画素145は、有効画素領域131と隣接する位置が最も細かく配置される。これにより、有効画素領域131と隣接する拡張画素145の制御を細かく行うことができ、有効画像10と拡張画像20とが重なることを防止することができる。 In the example shown in FIG. 13, the pixel size of the extension pixel 145 may be arranged so as to increase as the distance from the center of the effective pixel region 131 increases. That is, the expansion pixels 145 are arranged in the finest position adjacent to the effective pixel region 131. As a result, it is possible to finely control the extension pixels 145 adjacent to the effective pixel area 131, and prevent the effective image 10 and the extension image 20 from overlapping.
 また図13に示す例では、有効画像10の隣接する部分では解像度が比較的高い拡張画像20が表示され、外側にいくほど拡張画像20の解像度が低くなるように表示される。 In the example shown in FIG. 13, the extended image 20 having a relatively high resolution is displayed in the adjacent portion of the effective image 10, and the extended image 20 is displayed such that the resolution becomes lower toward the outside.
 図14に示す例では、図13に示す例よりさらに有効画素領域15の近くでさらに細かく分けられる。有効画像10の隣接する部分では解像度が比較的高い拡張画像20が表示され、外側にいくほど解像度が低くなる。 The example shown in FIG. 14 is further divided closer to the effective pixel region 15 than the example shown in FIG. An extended image 20 having a relatively high resolution is displayed in a portion adjacent to the effective image 10, and the resolution becomes lower toward the outside.
 このように画素サイズが異なる複数の種類の拡張画素140が配置されてもよい。このような構成において、拡張画素領域141の画素ピッチは、例えば互いに隣接する画素間の画素ピッチの平均値により規定することが可能である。例えば有効画素130の画素ピッチと比べて、拡張画素領域141の画素ピッチの平均が小さい場合に、拡張画素140の画素ピッチが、有効画素130の画素ピッチよりも小さいということも可能である。もちろん他のパラメータにより、画素ピッチが規定されてもよい。 As described above, a plurality of types of extended pixels 140 having different pixel sizes may be arranged. In such a configuration, the pixel pitch of the extended pixel area 141 can be defined by, for example, the average value of the pixel pitches between pixels adjacent to each other. For example, when the average pixel pitch of the extended pixel regions 141 is smaller than the pixel pitch of the effective pixels 130, it is possible that the pixel pitch of the extended pixels 140 is smaller than the pixel pitch of the effective pixels 130. Of course, the pixel pitch may be defined by other parameters.
 なお、図12~図14に例示する画素構成では、表示される拡張画像20の解像度は、拡張画像全体で均一とはならない可能性が高い。このような場合でも、例えば拡張画素領域141に含まれる拡張画素140の密度に基づいて、拡張画像20の解像度を規定することが可能である。もちろん他のパラメータにより、画像の解像度が規定されてもよい。 Note that with the pixel configurations illustrated in FIGS. 12 to 14, the resolution of the extended image 20 displayed is not likely to be uniform over the entire extended image. Even in such a case, for example, the resolution of the extended image 20 can be defined based on the density of the extended pixels 140 included in the extended pixel area 141. Of course, the resolution of the image may be defined by other parameters.
 有効画素130の画素ピッチが均等でない場合や、有効画像10の解像度が画像全体で均一とならない場合もあり得る。このような場合でも、画素ピッチの平均や画素の密度等を用いて、画素ピッチや解像度等を規定することが可能である。 The pixel pitch of the effective pixels 130 may not be uniform, or the resolution of the effective image 10 may not be uniform in the entire image. Even in such a case, the pixel pitch, the resolution, etc. can be defined by using the average pixel pitch, the pixel density, and the like.
 図15に示す例は、投射画像30の有効画像10と拡張画像20とが重なることを防止する方法の一例である。 The example shown in FIG. 15 is an example of a method for preventing the effective image 10 of the projection image 30 and the extended image 20 from overlapping.
 空間150は、回路図を構成するための配線が通り、光を遮光する領域である。有効画素130及び拡張画素145から出射される各画素光は、投射レンズ部50や第1のマイクロレンズ51等により、有効画像10と拡張画像20との間が空かないように投射する。 The space 150 is a region through which wiring for forming a circuit diagram passes and which shields light. Each pixel light emitted from the effective pixel 130 and the extended pixel 145 is projected by the projection lens unit 50, the first microlens 51, and the like so that the effective image 10 and the extended image 20 are not vacant.
 このように、有効画像10と拡張画像20とが重なることを防止する方法の例は、有効画素と隣接する拡張画素を細かく配置する以外に、有効画素領域131と拡張画素145の間に空間150を設けることが挙げられる。 As described above, in the example of the method of preventing the effective image 10 and the extended image 20 from overlapping, in addition to finely arranging the extended pixels adjacent to the effective pixel, the space 150 is provided between the effective pixel region 131 and the extended pixel 145. Is provided.
 なお、有効画素130及び拡張画像145の画素サイズ及び画素数は限定されない。例えば、有効画素130の画素サイズは、拡張画素145の画素サイズに割り切れないサイズでもよい。この場合、拡張画素145は、任意の位置で配置される。 The pixel size and the number of pixels of the effective pixel 130 and the extended image 145 are not limited. For example, the pixel size of the effective pixel 130 may be a size that is not divisible by the pixel size of the extension pixel 145. In this case, the extension pixel 145 is arranged at an arbitrary position.
 また空間150は、黒表示の画素が用いられてもよい。例えば、有効画素130又は拡張画素145として、空間150に該当する領域に所定の画素数で黒表示を行う画素が配置されてもよい。 Also, in the space 150, black display pixels may be used. For example, as the effective pixels 130 or the extended pixels 145, pixels that perform black display may be arranged in a region corresponding to the space 150 with a predetermined number of pixels.
 本実施形態において、空間150は、第1の画素領域と第2の画素領域との間に、画素光が生成されない非生成領域に相当する。 In the present embodiment, the space 150 corresponds to a non-generation area in which pixel light is not generated between the first pixel area and the second pixel area.
 <その他の実施形態>
 本技術は、以上説明した実施形態に限定されず、他の種々の実施形態を実現することができる。
<Other embodiments>
The present technology is not limited to the embodiments described above, and various other embodiments can be realized.
 図16~図20は、他の実施形態に係る画像表示装置の構成例を示す概略図である。図16は、反射型の表示パネルを用いた3板方式の画像表示装置900の模式図である。光源装置600から出射された白色光W1がRGBの各光に分離され。RGB用の反射型の表示パネル701RGBに入射される。 16 to 20 are schematic diagrams showing a configuration example of an image display device according to another embodiment. FIG. 16 is a schematic diagram of a three-panel type image display device 900 using a reflective display panel. The white light W1 emitted from the light source device 600 is separated into RGB lights. The light is incident on the reflection type display panel 701 RGB for RGB.
 反射型の表示パネル701により生成された赤色の画像光R1、緑色の画像光G1、及び青色の画像光B1は合成され、フルカラーの画像光W2として、投射システム800により投射される。反射型の表示パネル701としては、例えば反射型のLCDや、デジタルマイクロミラーデバイス(DMD)等が用いられてよい。 The red image light R1, the green image light G1, and the blue image light B1 generated by the reflective display panel 701 are combined and projected by the projection system 800 as full-color image light W2. As the reflective display panel 701, for example, a reflective LCD or a digital micromirror device (DMD) may be used.
 このような反射型の表示パネルを用いた3板方式の画像表示装置900に対して、本技術を適用することが可能である。例えばRGB用の反射型の表示パネル701R、701G、及び701Bを本技術に係る画像生成部として、有効画素領域及び拡張画素領域をそれぞれ設定する。そして、有効画素光により構成される有効画像の画像状態と、拡張画素光により構成される拡張画像の画像状態とが異なるように、画像光W2が投射される。もちろん上記で説明した種々の画素構成や、マイクロレンズ等が適宜用いられてよい。 The present technology can be applied to a three-plate type image display device 900 using such a reflective display panel. For example, the reflective display panels 701R, 701G, and 701B for RGB are set as the image generation unit according to the present technology, and the effective pixel area and the extended pixel area are set, respectively. Then, the image light W2 is projected such that the image state of the effective image formed by the effective pixel light is different from the image state of the extended image formed by the extended pixel light. Of course, the various pixel configurations described above, microlenses, and the like may be appropriately used.
 図17は、自発光型の表示パネルを用いた3板方式の画像表示装置950の模式図である。RGB用の自発光型の表示パネル911R、911G、及び911Bにより、色の画像光R1、緑色の画像光G1、及び青色の画像光B1が生成される。RGB各色の画像光合成され、フルカラーの画像光W2として、投射システム930により投射される。自発光型の表示パネル911としては、例えば有機EL(Organic Electro Luminescence)パネル等が用いられる。 FIG. 17 is a schematic diagram of a three-panel type image display device 950 using a self-luminous display panel. The RGB self- luminous display panels 911R, 911G, and 911B generate color image light R1, green image light G1, and blue image light B1. The image lights of the RGB colors are combined and projected as full-color image light W2 by the projection system 930. As the self-luminous display panel 911, for example, an organic EL (Organic Electro Luminescence) panel or the like is used.
 このような自発光型の表示パネルを用いた3板方式の画像表示装置950に対して、本技術を適用することが可能である。例えばRGB用の自発光型の表示パネル911R、911G、及び911Bを本技術に係る画像生成部として、有効画素領域及び拡張画素領域をそれぞれ設定する。そして、有効画素光により構成される有効画像の画像状態と、拡張画素光により構成される拡張画像の画像状態とが異なるように、画像光W2が投射される。もちろん上記で説明した種々の画素構成や、マイクロレンズ等が適宜用いられてよい。 The present technology can be applied to a three-plate type image display device 950 using such a self-luminous display panel. For example, the RGB self- luminous display panels 911R, 911G, and 911B are used as the image generation unit according to the present technology to set the effective pixel region and the extended pixel region, respectively. Then, the image light W2 is projected such that the image state of the effective image formed by the effective pixel light is different from the image state of the extended image formed by the extended pixel light. Of course, the various pixel configurations described above, microlenses, and the like may be appropriately used.
 図18は、透過型の表示パネルを用いた1板方式の画像表示装置の模式図である。画像表示装置1000では、カラーホイール1020を用いて色を表現する投射光学系を有している。画像表示装置1000では、赤色の画像光R1、緑色の画像光G1、及び青色の画像光B1が、時分割で、投射システム930により投射される。 FIG. 18 is a schematic diagram of a one-panel type image display device using a transmissive display panel. The image display apparatus 1000 has a projection optical system that expresses colors using the color wheel 1020. In the image display device 1000, the red image light R1, the green image light G1, and the blue image light B1 are time-divisionally projected by the projection system 930.
 このような反射型の表示パネルを用いた1板方式の画像表示装置1000に対して、本技術を適用することが可能である。例えば反射型の表示パネルを本技術に係る画像生成部として、有効画素領域及び拡張画素領域をそれぞれ設定する。そして、有効画素光により構成される有効画像の画像状態と、拡張画素光により構成される拡張画像の画像状態とが異なるように、時分割で、RGBの各色の画像光が投射される。もちろん上記で説明した種々の画素構成や、マイクロレンズ等が適宜用いられてよい。 The present technology can be applied to the one-plate type image display device 1000 using such a reflective display panel. For example, an effective pixel area and an extended pixel area are set using a reflective display panel as an image generation unit according to the present technology. Then, the image light of each color of RGB is time-divisionally projected such that the image state of the effective image formed by the effective pixel light and the image state of the extended image formed by the extended pixel light are different. Of course, the various pixel configurations described above, microlenses, and the like may be appropriately used.
 図19は、カラーフィルターを内蔵した透過型の表示パネルを用いた1板方式の画像表示装置の模式図である。表示パネル1031には白色光W1が入射される。表示パネル1031の1つの画素に対して、RGBのサブ画素が構成されている。RGBのサブ画素にてカラーフィルターを通ったRGBの各色光が変調され、フルカラーの画像光W2が投射システム930により投射される。 FIG. 19 is a schematic diagram of a single-panel image display device using a transmissive display panel with a built-in color filter. White light W1 is incident on the display panel 1031. RGB sub-pixels are formed for one pixel of the display panel 1031. The RGB color lights that have passed through the color filters are modulated by the RGB sub-pixels, and full-color image light W2 is projected by the projection system 930.
 このような画像表示装置1030に対して、本技術を適用することが可能である。例えばRGBのサブ画素が構成されている透過型の表示パネルを本技術に係る画像生成部として、有効画素領域及び拡張画素領域をそれぞれ設定する。この際には、RGBのサブ画素により構成される1つの画素を単位として、有効画素領域及び拡張画素領域が設定される。 The present technology can be applied to such an image display device 1030. For example, a transmissive display panel including RGB sub-pixels is used as an image generation unit according to the present technology to set an effective pixel area and an extended pixel area. At this time, the effective pixel area and the extended pixel area are set in units of one pixel composed of RGB sub-pixels.
 有効画素光(有効画素のRGBのサブ画素により生成される光)により構成される有効画像の画像状態と、拡張画素光(拡張画素のRGBのサブ画素により生成される光)により構成される拡張画像の画像状態とが異なるように、フルカラーの画像光が投射される。もちろん上記で説明した種々の画素構成や、マイクロレンズ等が適宜用いられてよい。 Image state of an effective image formed by effective pixel light (light generated by RGB sub-pixels of effective pixel) and expansion formed by extended pixel light (light generated by RGB sub-pixels of extended pixel) Full-color image light is projected such that the image state of the image is different. Of course, the various pixel configurations described above, microlenses, and the like may be appropriately used.
 なお、1つの画素を構成するサブ画素の具体的な構成は限定されない。RGBに加えてWのサブ画素が設けられてもよい。また同じ色のサブ画素が複数個設けられてもよい。いずれにせよ、サブ画素により構成され1つの画素を単位として、本技術を適用することが可能である。 Note that the specific configuration of the sub-pixel that constitutes one pixel is not limited. In addition to RGB, W sub-pixels may be provided. Also, a plurality of sub-pixels of the same color may be provided. In any case, the present technology can be applied to a unit of one pixel that is composed of sub-pixels.
 図20は、自発光型の表示パネルを用いた1板方式の画像表示装置の模式図である。表示パネル1041の1つの画素に対して、RGBのサブ画素が構成されている。RGBのサブ画素により、RGBの各色の画像光が生成され、フルカラーの画像光W2が投射システム930により投射される。RGBの各色の画像光を出射可能な構成が用いられてもよいし、カラーフィルターを介して、RGBの各色の画像光が生成されてもよい。 FIG. 20 is a schematic diagram of a one-panel type image display device using a self-luminous display panel. RGB sub-pixels are formed for one pixel of the display panel 1041. The RGB sub-pixels generate image light of RGB colors, and the full-color image light W2 is projected by the projection system 930. A configuration capable of emitting image light of each color of RGB may be used, or image light of each color of RGB may be generated via a color filter.
 このような画像表示装置1040に対して、本技術を適用することが可能である。例えばRGBのサブ画素が構成されている自発光型の表示パネルを本技術に係る画像生成部として、有効画素領域及び拡張画素領域をそれぞれ設定する。この際には、RGBのサブ画素により構成される1つの画素を単位として、有効画素領域及び拡張画素領域が設定される。 The present technology can be applied to such an image display device 1040. For example, a self-luminous display panel including RGB sub-pixels is used as an image generation unit according to the present technology to set an effective pixel region and an extended pixel region, respectively. At this time, the effective pixel area and the extended pixel area are set in units of one pixel composed of RGB sub-pixels.
 有効画素光(有効画素のRGBのサブ画素により生成される光)により構成される有効画像の画像状態と、拡張画素光(拡張画素のRGBのサブ画素により生成される光)により構成される拡張画像の画像状態とが異なるように、フルカラーの画像光が投射される。もちろん上記で説明した種々の画素構成や、マイクロレンズ等が適宜用いられてよい。 Image state of an effective image formed by effective pixel light (light generated by RGB sub-pixels of effective pixel) and expansion formed by extended pixel light (light generated by RGB sub-pixels of extended pixel) Full-color image light is projected such that the image state of the image is different. Of course, the various pixel configurations described above, microlenses, and the like may be appropriately used.
 図21は、投射画像を表示するための画素がRGB3画素の場合の回路の一例を示す模式図である。LCD1050は、LCD1031やLCD1041の一例である。 FIG. 21 is a schematic diagram showing an example of a circuit when the pixels for displaying the projection image are RGB 3 pixels. The LCD 1050 is an example of the LCD 1031 or the LCD 1041.
 図21に示すように、LCD1050は、複数の有効画素1060及び複数の拡張画素1070を有する。複数の拡張画素1070は、図4のLCD310と同様に、有効画素1060よりも画素ピッチが広くなるように配置される。 As shown in FIG. 21, the LCD 1050 has a plurality of effective pixels 1060 and a plurality of extension pixels 1070. The plurality of extension pixels 1070 are arranged such that the pixel pitch is wider than that of the effective pixels 1060, as in the LCD 310 of FIG.
 複数の有効画素1060は、赤色光を出射可能なR有効画素、緑色光を出射可能なG有効画素、及び青色光を出射可能なB有効画素を有する。また複数の有効画素1060は、R有効画素、G有効画素、及びB有効画素の順でH方向に沿って配置される。それぞれの色の有効画素は、V方向に沿って配置される。 The plurality of effective pixels 1060 have R effective pixels capable of emitting red light, G effective pixels capable of emitting green light, and B effective pixels capable of emitting blue light. The plurality of effective pixels 1060 are arranged along the H direction in the order of R effective pixel, G effective pixel, and B effective pixel. The effective pixels of each color are arranged along the V direction.
 また同様に、複数の拡張画素1070は、赤色光を出射可能なR拡張画素1071、緑色光を出射可能なG拡張画素1072、及び青色光を出射可能なB拡張画素1073を有する。R拡張画素1071、G拡張画素1072、及びB拡張画素1073は、H方向に沿ってRGBの順に並んでおり、V方向に沿って各拡張画素ごとに配置される。 Similarly, the plurality of extension pixels 1070 include R extension pixels 1071 capable of emitting red light, G extension pixels 1072 capable of emitting green light, and B extension pixels 1073 capable of emitting blue light. The R extension pixel 1071, the G extension pixel 1072, and the B extension pixel 1073 are arranged in the order of RGB along the H direction, and are arranged for each extension pixel along the V direction.
 被投射物に投射される有効画像及び拡張画像は、各色の有効画素及び拡張画素により様々な色の画像を出射する。この結果、被投射物にフルカラーの投射画像が投射される。 The effective image and extended image projected on the projection object emit images of various colors depending on the effective pixels and extended pixels of each color. As a result, a full-color projection image is projected on the projection object.
 本実施形態では、各色の有効画素及び拡張画素は、色度調整の容易さから画素のサイズ比率が同じである。もちろんこれに限定されず、輝度を優先したい場合は緑色光を出射可能なG有効画素及びB拡張画素1073の画素のサイズを大きくしてもよい。また例えば、色度を優先したい場合は、強調したい色度に合わせた各色の画素のサイズ比率にしてもよい。さらに例えば、明るさを優先する場合は、RGBに白色(W)光が追加されたRGBW4画素が用いられてもよい。 In the present embodiment, the effective pixel and the extended pixel of each color have the same pixel size ratio for ease of chromaticity adjustment. Of course, the present invention is not limited to this, and when it is desired to give priority to luminance, the size of the G effective pixel and the B extension pixel 1073 that can emit green light may be increased. Further, for example, when it is desired to give priority to chromaticity, the size ratio of pixels of each color may be set according to the chromaticity to be emphasized. Furthermore, for example, when priority is given to brightness, RGBW4 pixels in which white (W) light is added to RGB may be used.
 RGB3画素のLCD1050でも、図5~図9に示す例を用いることで、投射画像30が投射される。すなわち、有効画素1060により生成される有効画素光と拡張画素1070により生成される拡張画素光とを含む画像光が生成され、スクリーンに有効画像及び拡張画像の解像度が異なるように投射される。 The projection image 30 is projected also on the LCD 1050 having three pixels of RGB by using the examples shown in FIGS. 5 to 9. That is, image light including the effective pixel light generated by the effective pixel 1060 and the extended pixel light generated by the extended pixel 1070 is generated, and projected onto the screen so that the effective image and the extended image have different resolutions.
 上記の実施形態では、1台の画像表示装置500により投射画像30が生成及び投射された。これに限定されず、複数台の画像表示装置により投射画像が生成及び投射がされてもよい。 In the above embodiment, the projection image 30 is generated and projected by the single image display device 500. The present invention is not limited to this, and a plurality of image display devices may generate and project a projection image.
 図22は、投射画像のブレンディングを示す模式図である。図22では、説明の便宜上H方向及びV方向を示す軸(点線)が記載されている。矢印方向を正の方向とし、H軸とV軸との交点が原点である。 FIG. 22 is a schematic diagram showing blending of the projected image. In FIG. 22, axes (dotted lines) indicating the H direction and the V direction are shown for convenience of description. The direction of the arrow is a positive direction, and the intersection of the H axis and the V axis is the origin.
 図22に示すように、4台の画像表示装置500a、b、c、及びdは、矩形状の投射画像1300の4隅の内の1つを含む投射画像1250a、b、c、及びdを図示しないスクリーンに投射する。また各投射画像1250a、b、c、及びdの2辺は、H軸及びV軸に接している。すなわち、投射画像1250a、b、c、及びdがスクリーンに投射されることにより、1枚の画像を示す投射画像1300が表示される。 As shown in FIG. 22, the four image display devices 500 a, b, c, and d display the projection images 1250 a, b, c, and d including one of the four corners of the rectangular projection image 1300. Project on a screen not shown. Further, the two sides of each projection image 1250a, b, c, and d are in contact with the H axis and the V axis. That is, the projection images 1250a, b, c, and d are projected on the screen, so that the projection image 1300 showing one image is displayed.
 投射画像1250aは、H軸方向負の方向とV軸方向正の方向との領域に配置される。投射画像1250aは、原点を含む位置に投射される有効画像1100aと、有効画像1100aのH軸方向負の方向とV軸方向正の方向とに隣接して配置される拡張画像1200aを有する。 The projected image 1250a is arranged in the region of the negative direction in the H-axis direction and the positive direction in the V-axis direction. The projected image 1250a has an effective image 1100a projected at a position including the origin, and an extended image 1200a arranged adjacent to the effective image 1100a in the negative direction in the H-axis direction and the positive direction in the V-axis direction.
 拡張画像1200aは、有効画像1100aをH軸方向負の方向とV軸方向正の方向とに拡大した画像である。すなわち拡張画像1200aの解像度は、有効画像1100aの解像度よりも低くなるように投射される。 The extended image 1200a is an image obtained by enlarging the effective image 1100a in the negative direction in the H-axis direction and the positive direction in the V-axis direction. That is, the resolution of the extended image 1200a is projected so as to be lower than the resolution of the effective image 1100a.
 同様に、投射画像1250bは、H軸方向負の方向とV軸方向負の方向との領域に配置される。投射画像1250bは、原点を含む位置に投射される有効画像1100bと、有効画像1100bのH軸方向負の方向とV軸方向負の方向とに隣接して配置される拡張画像1200bを有する。 Similarly, the projected image 1250b is arranged in the region of the negative direction in the H-axis direction and the negative direction in the V-axis direction. The projected image 1250b has an effective image 1100b projected at a position including the origin, and an extended image 1200b arranged adjacent to the effective image 1100b in the negative direction in the H-axis direction and the negative direction in the V-axis direction.
 投射画像1250cは、H軸方向正の方向とV軸方向負の方向との領域に配置される。投射画像1250cは、原点を含む位置に投射される有効画像1100cと、有効画像1100cのH軸方向正の方向とV軸方向負の方向とに隣接して配置される拡張画像1200cを有する。 The projected image 1250c is arranged in the region of the H-axis direction positive direction and the V-axis direction negative direction. The projected image 1250c has an effective image 1100c projected at a position including the origin, and an extended image 1200c arranged adjacent to the positive direction of the H-axis direction and the negative direction of the V-axis direction of the effective image 1100c.
 投射画像1250dは、H軸方向正の方向とV軸方向正の方向との領域に配置される。投射画像1250dは、原点を含む位置に投射される有効画像1100dと、有効画像1100dのH軸方向正の方向とV軸方向正の方向とに隣接して配置される拡張画像1200dを有する。 The projected image 1250d is arranged in a region having a positive direction in the H-axis direction and a positive direction in the V-axis direction. The projected image 1250d has an effective image 1100d projected at a position including the origin, and an extended image 1200d arranged adjacent to the effective image 1100d in the positive direction of the H axis direction and the positive direction of the V axis direction.
 4台の画像表示装置500a、b、c、及びdは、投射画像1250a、b、c、及びdのH軸及びV軸に接している領域でブレンディングを行う。ブレンディングは、複数の画像の各画像の接する領域又は重なる領域のつなぎ目を目立たない様に補正する技術である。この結果、投射画像1250a、b、c、及びdが1つの画像である投射画像1300としてユーザに認識される。これにより、より大きな画像がスクリーンに投射されることで映像に包まれたような臨場感を体験することができる。 The four image display devices 500a, b, c, and d perform blending in a region in contact with the H axis and V axis of the projected images 1250a, b, c, and d. Blending is a technique that corrects the joints of areas in which a plurality of images are in contact with each other or overlapping areas so as to make them inconspicuous. As a result, the projection images 1250a, 1b, c, and d are recognized as one projection image 1300 by the user. As a result, a larger image is projected on the screen so that the viewer can experience a realistic sensation of being wrapped in an image.
 すなわち、図22に示す例では、4つの画像表示装置により、中央が高精細であり周辺が低解像度の投射画像1300が投射される。この場合LCDの有効画素領域及び拡張画素領域も設定される。 That is, in the example shown in FIG. 22, four image display devices project a projection image 1300 having high definition in the center and low resolution in the periphery. In this case, the effective pixel area and extended pixel area of the LCD are also set.
 なお、画像表示装置500の行う投射画像の補正は限定されない。例えば、投射画像1250a、b、c、及びdの輝度や色合いを補正してもよい。また例えば、ドーム型や多面型のような湾曲したスクリーンの場合、表示される領域に応じて投射画像1250a、b、c、及びdの歪み等が補正されてもよい。 Note that the correction of the projection image performed by the image display device 500 is not limited. For example, the brightness or color tone of the projected images 1250a, 1b, c, and d may be corrected. Further, for example, in the case of a curved screen such as a dome type or a polyhedral type, the distortion or the like of the projected images 1250a, b, c, and d may be corrected according to the displayed area.
 上記の実施形態では、拡張画像20は、有効画像10を拡大した画像が用いられた。これに限定されず、様々な画像が拡張画像20として用いられてもよい。例えば、プロジェクタが投射する映像に元々拡張画像20が用意された画像データが用いられてもよい。すなわち、画像表示装置500の機能を有さないテレビ等では、ディスプレイに有効画像10のみが表示され、画像表示装置500の機能を有するプロジェクタでは、有効画像10及び拡張画像20が投射されてもよい。 In the above embodiment, the enlarged image 20 is an enlarged image of the effective image 10. The image is not limited to this, and various images may be used as the extended image 20. For example, image data in which the extended image 20 is originally prepared may be used for the image projected by the projector. That is, in a television or the like that does not have the function of the image display device 500, only the valid image 10 may be displayed on the display, and in a projector that has the function of the image display device 500, the valid image 10 and the extended image 20 may be projected. ..
 これ以外にも、投射される特定の時間の映像の前後が画像解析されることで拡張画像20が生成されてもよい。例えば、キャラクターが右から左に走っている映像等の場合、画面右側の拡張画像をキャラクターが現在走っている映像よりも過去の映像の背景が用いられてもよい。すなわち、左側の拡張画像は、キャラクターがこれから走り抜ける場所の背景映像(未来の映像)が用いられ、右側の拡張画像は、キャラクターが走り抜けた場所の背景映像が用いられる。 In addition to this, the extended image 20 may be generated by performing image analysis before and after the projected image of a specific time. For example, in the case of a video in which the character is running from right to left, the background of the video past the video in which the character is currently running may be used as the extended image on the right side of the screen. That is, the left extended image uses the background image of the place where the character is about to run (future image), and the right extended image uses the background image of the place where the character has run.
 上記の図1、図16及び図17に記載の投射光学系では、3枚のLCDが用いられる方式が用いられた。これに限定されず、LCDの代わりにDMD(Digital Mirror Device)が用いられてもよい。DMDは、LCDと比べて経年劣化が少ないため信頼性が高く、長期間の利用が可能となる。また画像表示装置500を構成する部品の点数を抑えられるため、軽量化及び小型化が可能となる。 In the projection optical system shown in FIG. 1, FIG. 16 and FIG. 17, the system using three LCDs was used. The present invention is not limited to this, and a DMD (Digital Mirror Device) may be used instead of the LCD. Since the DMD has less deterioration over time than the LCD, the DMD has high reliability and can be used for a long time. Further, since the number of parts constituting the image display device 500 can be suppressed, the weight and the size can be reduced.
 また上記の実施形態で用いられたLCD以外にも、LCOS(Liquid Crystal On Silicon)が用いられてもよい。この場合、LCDを用いた画像表示装置よりも高精細な投射画像を投射することが可能となる。 In addition to the LCD used in the above embodiment, an LCOS (Liquid Crystal On Silicon) may be used. In this case, it is possible to project a higher-definition projection image than an image display device using an LCD.
 上記の実施形態では、画像表示装置500は、スクリーン60の真正面に配置されていた。すなわち、画像表示装置500は、投射される投射画像30がスクリーン60に対して垂直に入射するように配置された。これに限定されず、画像表示装置500は、スクリーン60に投射画像30を投射可能な位置であれば任意に配置されてよい。 In the above-described embodiment, the image display device 500 is arranged directly in front of the screen 60. That is, the image display device 500 is arranged so that the projected image 30 to be projected is vertically incident on the screen 60. The present invention is not limited to this, and the image display device 500 may be arbitrarily arranged as long as it can project the projection image 30 on the screen 60.
 この場合画像表示装置500は、被投射物に対して配置された位置や向きに基づいて、様々な補正を行ってよい。例えば、投射画像30がスクリーン60に対して斜めに入射される際、画像表示装置500は、有効画像10の縦や横の台形歪みを補正してもよい。また画像表示装置500は、拡張画像20の解像度が低くてもよいため、拡張画像20の台形歪みを補正しなくてもよい。もちろん拡張画像20の台形歪みを補正してもよい。 In this case, the image display device 500 may perform various corrections based on the position and orientation of the projection target. For example, when the projection image 30 is obliquely incident on the screen 60, the image display device 500 may correct the vertical or horizontal trapezoidal distortion of the effective image 10. Further, the image display device 500 does not need to correct the trapezoidal distortion of the extended image 20 because the resolution of the extended image 20 may be low. Of course, the trapezoidal distortion of the extended image 20 may be corrected.
 これ以外にも、画像表示装置500は、有効画像10のフォーカスが合うように自動的に制御してもよい。また画像表示装置500は、投射画像30に適した画面アスペクト比で投射するように制御してもよい。また画像表示装置500は、スクリーン60のサイズ(面積)に基づいて、投射画像30の投射される際の面積を制御してもよい。 Alternatively, the image display device 500 may automatically control the effective image 10 so that it is in focus. Further, the image display device 500 may be controlled to project the projected image 30 with a screen aspect ratio suitable for the projected image 30. Further, the image display device 500 may control the area when the projection image 30 is projected based on the size (area) of the screen 60.
 本開示において、「等しい」「同じ」「均一」「中心」「中央」「垂直」「平行」等は、「実質的に等しい」「実質的に同じ」「実質的に均一」「実質的に中心」「実質的に中央」「実質的に垂直」「実質的に平行」等を含む概念とする。 In the present disclosure, “equal”, “same”, “uniform”, “center”, “center”, “vertical”, “parallel”, etc. mean “substantially equal” “substantially the same” “substantially uniform” “substantially equal”. The concept includes “center”, “substantially center”, “substantially vertical”, “substantially parallel” and the like.
 例えば「完全に等しい」「完全に同じ」「完全に均一」「完全に中心」「完全に中央」「完全に垂直」「完全に平行」等を基準とした所定の範囲(例えば±10%の範囲)に含まれる状態も含まれる。従って、「略等しい」等といった概念も「等しい」等に含まれる概念となる。 For example, a predetermined range (for example, ±10% of the range) such as “perfectly equal”, “perfectly the same”, “perfectly uniform”, “perfectly centered”, “perfectly centered”, “perfectly vertical”, “perfectly parallel”, etc. Range) is also included. Therefore, a concept such as “substantially equal” is also included in “equal”.
 なお、本開示中に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。上記の複数の効果の記載は、それらの効果が必ずしも同時に発揮されるということを意味しているのではない。条件等により、少なくとも上記した効果のいずれかが得られることを意味しており、もちろん本開示中に記載されていない効果が発揮される可能性もある。 Note that the effects described in the present disclosure are merely examples and are not limited, and there may be other effects. The above description of the plurality of effects does not mean that those effects are necessarily exhibited simultaneously. It means that at least one of the above effects can be obtained depending on the conditions and the like, and of course, an effect not described in the present disclosure may be exhibited.
 以上説明した各形態の特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。すなわち各実施形態で説明した種々の特徴部分は、各実施形態の区別なく、任意に組み合わされてもよい。 It is also possible to combine at least two feature parts among the feature parts of each form explained above. That is, the various characteristic portions described in the respective embodiments may be arbitrarily combined without distinction between the respective embodiments.
 なお、本技術は以下のような構成も採ることができる。
(1)第1の画素領域と第2の画素領域とを有し、前記第1の画素領域により生成される第1の画素光と、前記第2の画素領域により生成される第2の画素光とを含む画像光を生成する画像生成部と、
 前記第1の画素光により構成される第1の部分画像の画像状態が、前記第2の画素光により構成される第2の部分画像の画像状態と異なるように、前記画像光を投射する投射光学系と
 を具備する画像表示装置。
(2)(1)に記載の画像表示装置であって、
 前記第1の画素領域は、前記画像生成部の中央に位置する中央領域であり、
 前記第2の画素領域は、前記中央領域の周辺を囲む周辺領域である
 画像表示装置。
(3)(1)又は(2)に記載の画像表示装置であって、
 前記画像状態は、画像の解像度を含み、
 前記投射光学系は、前記第1の部分画像の解像度が、前記第2の部分画像の解像度と異なるように、前記画像光を投射する
 画像表示装置。
(4)(1)から(3)のうちいずれか1つに記載の画像表示装置であって、
 前記投射光学系は、前記第2の部分画像の解像度が、前記第1の部分画像の解像度よりも低くなるように、前記画像光を投射する
 画像表示装置。
(5)(1)から(4)のうちいずれか1つに記載の画像表示装置であって、
 前記第1の画素領域の画素ピッチは、前記第2の画素領域の画素ピッチと異なる
 画像表示装置。
(6)(1)から(5)のうちいずれか1つに記載の画像表示装置であって、
 前記第2の画素領域の画素ピッチは、前記第1の画素領域の画素ピッチよりも大きい
 画像表示装置。
(7)(1)から(4)のうちいずれか1つに記載の画像表示装置であって、
 前記第1の画素領域の画素ピッチは、前記第2の画素領域の画素ピッチと等しい
 画像表示装置。
(8)(1)から(7)のうちいずれか1つに記載の画像表示装置であって、
 前記投射光学系は、前記第1の画素光を投射する第1の投射部と、前記第2の画素光を投射する第2の投射部とを有する
 画像表示装置。
(9)(8)に記載の画像表示装置であって、
 前記第1の投射部は、所定の拡大率で、前記第1の画素光を投射し、
 前記第2の投射部は、前記第1の投射部よりも大きい拡大率で、前記第2の画素光を投射する
 画像表示装置。
(10)(8)に記載の画像表示装置であって、
 前記第1の投射部は、所定の拡大率で、前記第1の画素光を投射し、
 前記第2の投射部は、前記第1の投射部と等しい拡大率で、前記第2の画素光を投射する
 画像表示装置。
(11)(1)から(10)のうちいずれか1つに記載の画像表示装置であって、
 前記投射光学系は、所定の方向に沿って入射する前記画像光を、所定の光軸方向に沿って投射する投射レンズ部を有する
 画像表示装置。
(12)(11)に記載の画像表示装置であって、
 前記投射光学系は、前記第2の画素光の少なくとも一部を拡大させて前記所定の方向に沿って前記投射レンズ部に入射させる拡大レンズ部を有する
 画像表示装置。
(13)(12)に記載の画像表示装置であって、
 前記第1の画素領域は、前記画像生成部の中央に位置する中央領域であり、
 前記第2の画素領域は、前記中央領域の周辺を囲む周辺領域であり、
 前記拡大レンズ部は、前記第2の画素光のうち前記第2の画素領域の前記中央領域とは反対側に位置する外側領域により生成される画素光を拡大させて前記所定の方向に沿って前記投射レンズ部に入射させる
 画像表示装置。
(14)(11)に記載の画像表示装置であって、
 前記投射光学系は、前記第2の画像光の少なくとも一部を前記所定の方向に交差する方向に沿って前記投射レンズ部に入射させる拡大レンズ部を有する
 画像表示装置。
(15)(14)に記載の画像表示装置であって、
 前記第1の画素領域は、前記画像生成部の中央に位置する中央領域であり、
 前記第2の画素領域は、前記中央領域の周辺を囲む周辺領域であり、
 前記拡大レンズ部は、前記第2の画素光のうち前記第2の画素領域の前記中央領域とは反対側に位置する外側領域により生成される画素光を前記所定の方向に交差する方向に沿って前記投射レンズ部に入射させる
 画像表示装置。
(16)(12)から(15)のうちいずれか1つに記載の画像表示装置であって、
 前記拡大レンズ部は、前記第2の画素領域に含まれる複数の画素の各々に配置される複数のマイクロレンズを有する
 画像表示装置。
(17)(16)に記載の画像表示装置であって、
 前記複数のマイクロレンズの各々は、配置される画素の位置に応じた曲率を有する
 画像表示装置。
(18)(1)から(17)のうちいずれか1つに記載の画像表示装置であって、
 前記画像生成部は、前記第1の画素領域と前記第2の画素領域との間に、画素光が生成されない非生成領域を有する
 画像表示装置。
Note that the present technology can also take the following configurations.
(1) First pixel light having a first pixel area and a second pixel area, the first pixel light generated by the first pixel area, and the second pixel generated by the second pixel area An image generation unit that generates image light including light,
Projection for projecting the image light such that the image state of the first partial image formed by the first pixel light is different from the image state of the second partial image formed by the second pixel light. An image display device including an optical system.
(2) The image display device according to (1),
The first pixel region is a central region located in the center of the image generation unit,
The image display device, wherein the second pixel region is a peripheral region surrounding the periphery of the central region.
(3) The image display device according to (1) or (2),
The image state includes image resolution,
The image display device, wherein the projection optical system projects the image light such that the resolution of the first partial image is different from the resolution of the second partial image.
(4) The image display device according to any one of (1) to (3),
The image display device, wherein the projection optical system projects the image light so that the resolution of the second partial image is lower than the resolution of the first partial image.
(5) The image display device according to any one of (1) to (4),
An image display device in which a pixel pitch of the first pixel area is different from a pixel pitch of the second pixel area.
(6) The image display device according to any one of (1) to (5),
An image display device, wherein a pixel pitch of the second pixel area is larger than a pixel pitch of the first pixel area.
(7) The image display device according to any one of (1) to (4),
An image display device, wherein the pixel pitch of the first pixel area is equal to the pixel pitch of the second pixel area.
(8) The image display device according to any one of (1) to (7),
The projection optical system is an image display device including a first projection unit that projects the first pixel light and a second projection unit that projects the second pixel light.
(9) The image display device according to (8),
The first projection unit projects the first pixel light at a predetermined enlargement ratio,
The image display device in which the second projection unit projects the second pixel light at a magnification rate higher than that of the first projection unit.
(10) The image display device according to (8),
The first projection unit projects the first pixel light at a predetermined enlargement ratio,
The image display device in which the second projection unit projects the second pixel light at an enlargement ratio equal to that of the first projection unit.
(11) The image display device according to any one of (1) to (10),
The projection optical system is an image display device having a projection lens unit for projecting the image light incident along a predetermined direction along a predetermined optical axis direction.
(12) The image display device according to (11),
The projection optical system includes an image display device including a magnifying lens unit that magnifies at least a part of the second pixel light and causes the second pixel light to enter the projection lens unit along the predetermined direction.
(13) The image display device according to (12),
The first pixel region is a central region located in the center of the image generation unit,
The second pixel region is a peripheral region surrounding the periphery of the central region,
The magnifying lens unit magnifies pixel light generated by an outer region of the second pixel light, which is located on the opposite side of the central region of the second pixel region, and expands the pixel light along the predetermined direction. An image display device which is incident on the projection lens unit.
(14) The image display device according to (11),
The projection optical system is an image display device having a magnifying lens unit that causes at least a part of the second image light to enter the projection lens unit along a direction intersecting the predetermined direction.
(15) The image display device according to (14),
The first pixel region is a central region located in the center of the image generation unit,
The second pixel region is a peripheral region surrounding the periphery of the central region,
The magnifying lens unit allows pixel light generated by an outer region of the second pixel light, which is located on the opposite side of the central region of the second pixel region, along a direction intersecting the predetermined direction. An image display device that makes the light incident on the projection lens unit.
(16) The image display device according to any one of (12) to (15),
The magnifying lens unit is an image display device having a plurality of microlenses arranged in each of a plurality of pixels included in the second pixel region.
(17) The image display device according to (16),
An image display device in which each of the plurality of microlenses has a curvature corresponding to a position of a pixel to be arranged.
(18) The image display device according to any one of (1) to (17),
The image display device, wherein the image generation unit has a non-generation region in which pixel light is not generated between the first pixel region and the second pixel region.
 10…有効画像
 15…有効画素領域
 20…拡張画像
 25…拡張画素領域
 30…投射画像
 50…投射レンズ部
 51…第1のマイクロレンズ
 52…第2のマイクロレンズ
 53…第3のマイクロレンズ
 54…第4のマイクロレンズ
 55…第5のマイクロレンズ
 150…空間
 310…LCD
 400…投射システム
 500…画像表示装置
10... Effective image 15... Effective pixel area 20... Extended image 25... Extended pixel area 30... Projected image 50... Projection lens unit 51... First microlens 52... Second microlens 53... Third microlens 54... Fourth microlens 55... Fifth microlens 150... Space 310... LCD
400... Projection system 500... Image display device

Claims (18)

  1.  第1の画素領域と第2の画素領域とを有し、前記第1の画素領域により生成される第1の画素光と、前記第2の画素領域により生成される第2の画素光とを含む画像光を生成する画像生成部と、
     前記第1の画素光により構成される第1の部分画像の画像状態が、前記第2の画素光により構成される第2の部分画像の画像状態と異なるように、前記画像光を投射する投射光学系と
     を具備する画像表示装置。
    A first pixel region and a second pixel region, and a first pixel light generated by the first pixel region and a second pixel light generated by the second pixel region. An image generation unit that generates image light including
    Projection for projecting the image light such that the image state of the first partial image formed by the first pixel light is different from the image state of the second partial image formed by the second pixel light. An image display device including an optical system.
  2.  請求項1に記載の画像表示装置であって、
     前記第1の画素領域は、前記画像生成部の中央に位置する中央領域であり、
     前記第2の画素領域は、前記中央領域の周辺を囲む周辺領域である
     画像表示装置。
    The image display device according to claim 1, wherein
    The first pixel region is a central region located in the center of the image generation unit,
    The image display device, wherein the second pixel region is a peripheral region surrounding the periphery of the central region.
  3.  請求項1に記載の画像表示装置であって、
     前記画像状態は、画像の解像度を含み、
     前記投射光学系は、前記第1の部分画像の解像度が、前記第2の部分画像の解像度と異なるように、前記画像光を投射する
     画像表示装置。
    The image display device according to claim 1, wherein
    The image state includes image resolution,
    The image display device, wherein the projection optical system projects the image light so that the resolution of the first partial image is different from the resolution of the second partial image.
  4.  請求項1に記載の画像表示装置であって、
     前記投射光学系は、前記第2の部分画像の解像度が、前記第1の部分画像の解像度よりも低くなるように、前記画像光を投射する
     画像表示装置。
    The image display device according to claim 1, wherein
    The image display device, wherein the projection optical system projects the image light so that the resolution of the second partial image is lower than the resolution of the first partial image.
  5.  請求項1に記載の画像表示装置であって、
     前記第1の画素領域の画素ピッチは、前記第2の画素領域の画素ピッチと異なる
     画像表示装置。
    The image display device according to claim 1, wherein
    An image display device in which a pixel pitch of the first pixel area is different from a pixel pitch of the second pixel area.
  6.  請求項1に記載の画像表示装置であって、
     前記第2の画素領域の画素ピッチは、前記第1の画素領域の画素ピッチよりも大きい
     画像表示装置。
    The image display device according to claim 1, wherein
    An image display device, wherein a pixel pitch of the second pixel area is larger than a pixel pitch of the first pixel area.
  7.  請求項1に記載の画像表示装置であって、
     前記第1の画素領域の画素ピッチは、前記第2の画素領域の画素ピッチと等しい
     画像表示装置。
    The image display device according to claim 1, wherein
    An image display device, wherein the pixel pitch of the first pixel area is equal to the pixel pitch of the second pixel area.
  8.  請求項1に記載の画像表示装置であって、
     前記投射光学系は、前記第1の画素光を投射する第1の投射部と、前記第2の画素光を投射する第2の投射部とを有する
     画像表示装置。
    The image display device according to claim 1, wherein
    The projection optical system is an image display device having a first projection unit that projects the first pixel light and a second projection unit that projects the second pixel light.
  9.  請求項8に記載の画像表示装置であって、
     前記第1の投射部は、所定の拡大率で、前記第1の画素光を投射し、
     前記第2の投射部は、前記第1の投射部よりも大きい拡大率で、前記第2の画素光を投射する
     画像表示装置。
    The image display device according to claim 8,
    The first projection unit projects the first pixel light at a predetermined enlargement ratio,
    The image display device in which the second projection unit projects the second pixel light at a magnification rate higher than that of the first projection unit.
  10.  請求項8に記載の画像表示装置であって、
     前記第1の投射部は、所定の拡大率で、前記第1の画素光を投射し、
     前記第2の投射部は、前記第1の投射部と等しい拡大率で、前記第2の画素光を投射する
     画像表示装置。
    The image display device according to claim 8,
    The first projection unit projects the first pixel light at a predetermined enlargement ratio,
    The image display device in which the second projection unit projects the second pixel light at an enlargement ratio equal to that of the first projection unit.
  11.  請求項1に記載の画像表示装置であって、
     前記投射光学系は、所定の方向に沿って入射する前記画像光を、所定の光軸方向に沿って投射する投射レンズ部を有する
     画像表示装置。
    The image display device according to claim 1, wherein
    The image display device, wherein the projection optical system includes a projection lens unit that projects the image light incident along a predetermined direction along a predetermined optical axis direction.
  12.  請求項11に記載の画像表示装置であって、
     前記投射光学系は、前記第2の画素光の少なくとも一部を拡大させて前記所定の方向に沿って前記投射レンズ部に入射させる拡大レンズ部を有する
     画像表示装置。
    The image display device according to claim 11,
    The projection optical system is an image display device having a magnifying lens unit that magnifies at least a part of the second pixel light and causes the light to enter the projection lens unit along the predetermined direction.
  13.  請求項12に記載の画像表示装置であって、
     前記第1の画素領域は、前記画像生成部の中央に位置する中央領域であり、
     前記第2の画素領域は、前記中央領域の周辺を囲む周辺領域であり、
     前記拡大レンズ部は、前記第2の画素光のうち前記第2の画素領域の前記中央領域とは反対側に位置する外側領域により生成される画素光を拡大させて前記所定の方向に沿って前記投射レンズ部に入射させる
     画像表示装置。
    The image display device according to claim 12,
    The first pixel region is a central region located in the center of the image generating unit,
    The second pixel region is a peripheral region surrounding the periphery of the central region,
    The magnifying lens unit magnifies the pixel light generated by an outer region of the second pixel light, which is located on the opposite side of the second pixel region from the central region, and extends along the predetermined direction. An image display device which is incident on the projection lens unit.
  14.  請求項11に記載の画像表示装置であって、
     前記投射光学系は、前記第2の画像光の少なくとも一部を前記所定の方向に交差する方向に沿って前記投射レンズ部に入射させる拡大レンズ部を有する
     画像表示装置。
    The image display device according to claim 11,
    The projection optical system is an image display device having a magnifying lens unit that causes at least a part of the second image light to enter the projection lens unit along a direction intersecting with the predetermined direction.
  15.  請求項14に記載の画像表示装置であって、
     前記第1の画素領域は、前記画像生成部の中央に位置する中央領域であり、
     前記第2の画素領域は、前記中央領域の周辺を囲む周辺領域であり、
     前記拡大レンズ部は、前記第2の画素光のうち前記第2の画素領域の前記中央領域とは反対側に位置する外側領域により生成される画素光を前記所定の方向に交差する方向に沿って前記投射レンズ部に入射させる
     画像表示装置。
    The image display device according to claim 14,
    The first pixel region is a central region located in the center of the image generation unit,
    The second pixel region is a peripheral region surrounding the periphery of the central region,
    The magnifying lens unit allows pixel light generated by an outer region of the second pixel light, which is located on the opposite side of the central region of the second pixel region, along a direction intersecting the predetermined direction. An image display device that makes the light incident on the projection lens unit.
  16.  請求項12に記載の画像表示装置であって、
     前記拡大レンズ部は、前記第2の画素領域に含まれる複数の画素の各々に配置される複数のマイクロレンズを有する
     画像表示装置。
    The image display device according to claim 12,
    The magnifying lens unit is an image display device having a plurality of microlenses arranged in each of a plurality of pixels included in the second pixel region.
  17.  請求項16に記載の画像表示装置であって、
     前記複数のマイクロレンズの各々は、配置される画素の位置に応じた曲率を有する
     画像表示装置。
    The image display device according to claim 16,
    An image display device in which each of the plurality of microlenses has a curvature corresponding to a position of a pixel to be arranged.
  18.  請求項1に記載の画像表示装置であって、
     前記画像生成部は、前記第1の画素領域と前記第2の画素領域との間に、画素光が生成されない非生成領域を有する
     画像表示装置。
    The image display device according to claim 1, wherein
    The image display device, wherein the image generation unit has a non-generation region in which pixel light is not generated between the first pixel region and the second pixel region.
PCT/JP2019/047597 2018-12-18 2019-12-05 Image display device WO2020129673A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980081869.4A CN113168080B (en) 2018-12-18 2019-12-05 Image display device
KR1020217017807A KR20210104699A (en) 2018-12-18 2019-12-05 image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-236510 2018-12-18
JP2018236510A JP2020098273A (en) 2018-12-18 2018-12-18 Image display device

Publications (1)

Publication Number Publication Date
WO2020129673A1 true WO2020129673A1 (en) 2020-06-25

Family

ID=71102839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047597 WO2020129673A1 (en) 2018-12-18 2019-12-05 Image display device

Country Status (4)

Country Link
JP (1) JP2020098273A (en)
KR (1) KR20210104699A (en)
CN (1) CN113168080B (en)
WO (1) WO2020129673A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7468227B2 (en) * 2020-07-30 2024-04-16 セイコーエプソン株式会社 Virtual Image Display

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010511A (en) * 1996-06-18 1998-01-16 Sharp Corp Projection type color liquid crystal display device
JP2001264750A (en) * 2000-03-23 2001-09-26 Matsushita Electric Ind Co Ltd Liquid crystal display panel, method for driving the same, image display device, projection type display device, view finder, light receiving method and light transmitter device
JP2001324763A (en) * 2000-05-17 2001-11-22 Toshiba Corp Display device
JP2003518655A (en) * 1999-12-23 2003-06-10 スクリーン・テクノロジー・リミテツド Pixel placement for flat panel displays
US20070024944A1 (en) * 2005-07-30 2007-02-01 Anurag Gupta Projection system modulator reducing distortion and field curvature effects projection system lens
JP2007140014A (en) * 2005-11-17 2007-06-07 Seiko Epson Corp Optical low-pass filter, image display device, and projector
JP2009206665A (en) * 2008-02-26 2009-09-10 Sony Corp Image projection system, image projection method, program, and recording medium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275817A (en) * 2007-04-27 2008-11-13 Fujitsu Ltd Hologram recording device
US20120223885A1 (en) * 2011-03-02 2012-09-06 Microsoft Corporation Immersive display experience
WO2013076994A1 (en) * 2011-11-24 2013-05-30 パナソニック株式会社 Head-mounted display device
JP6310734B2 (en) 2014-03-12 2018-04-11 株式会社ジャパンディスプレイ Display device
CN108810504A (en) * 2018-08-29 2018-11-13 歌尔股份有限公司 Image processing method, projecting method and equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010511A (en) * 1996-06-18 1998-01-16 Sharp Corp Projection type color liquid crystal display device
JP2003518655A (en) * 1999-12-23 2003-06-10 スクリーン・テクノロジー・リミテツド Pixel placement for flat panel displays
JP2001264750A (en) * 2000-03-23 2001-09-26 Matsushita Electric Ind Co Ltd Liquid crystal display panel, method for driving the same, image display device, projection type display device, view finder, light receiving method and light transmitter device
JP2001324763A (en) * 2000-05-17 2001-11-22 Toshiba Corp Display device
US20070024944A1 (en) * 2005-07-30 2007-02-01 Anurag Gupta Projection system modulator reducing distortion and field curvature effects projection system lens
JP2007140014A (en) * 2005-11-17 2007-06-07 Seiko Epson Corp Optical low-pass filter, image display device, and projector
JP2009206665A (en) * 2008-02-26 2009-09-10 Sony Corp Image projection system, image projection method, program, and recording medium

Also Published As

Publication number Publication date
KR20210104699A (en) 2021-08-25
JP2020098273A (en) 2020-06-25
CN113168080B (en) 2023-09-22
CN113168080A (en) 2021-07-23

Similar Documents

Publication Publication Date Title
JP4301304B2 (en) Image display device
US7042527B2 (en) Field sequential display of color video picture with color breakup prevention
JP4893004B2 (en) projector
US6637888B1 (en) Full color rear screen projection system using a single monochrome TFT LCD panel
JP4158776B2 (en) Image display device and projector
JP6172773B2 (en) Projector and image display method
CN101013198A (en) High-resolution display including pixel moving optical system
US20070058088A1 (en) Image-projection system with imager provided with a color wheel having a plurality of sub- sets of colored segments, and corresponding projection appliance
JP2009156898A (en) Display device
JP4285425B2 (en) Image display device and projector
WO2020129673A1 (en) Image display device
US20090122089A1 (en) Image display apparatus and image display method
KR20120107297A (en) Beam projector capable of simultaneous and multi-faced beam projection
JPS62194788A (en) Projector
US20070030403A1 (en) Reduced &#34;chin&#34; height projection TV
JP2015145934A (en) projector
JP2006330058A (en) Projector
JP2004252273A (en) Display device and circuit device to be used therefor
JP2009156900A (en) Image quality conversion unit
JPH09265106A (en) Liquid crystal display panel and projection type liquid crystal display device
JP2006053205A (en) Multi-projection display, projector unit, and electrooptical modulator
JP2009204693A (en) Projector and manufacturing method thereof
JPH07191310A (en) Projection type color liquid crystal display device
JPH04207773A (en) Liquid crystal projection type television
JP2009086377A (en) Display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897623

Country of ref document: EP

Kind code of ref document: A1