WO2020129629A1 - 複合繊維 - Google Patents

複合繊維 Download PDF

Info

Publication number
WO2020129629A1
WO2020129629A1 PCT/JP2019/047333 JP2019047333W WO2020129629A1 WO 2020129629 A1 WO2020129629 A1 WO 2020129629A1 JP 2019047333 W JP2019047333 W JP 2019047333W WO 2020129629 A1 WO2020129629 A1 WO 2020129629A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
fiber
polymer
composite fiber
present
Prior art date
Application number
PCT/JP2019/047333
Other languages
English (en)
French (fr)
Inventor
祥玄 小野木
貴志 池田
慎也 河角
中塚 均
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2020561275A priority Critical patent/JP7090741B2/ja
Priority to CN201980084138.5A priority patent/CN113227474B/zh
Priority to EP19900004.3A priority patent/EP3901335A4/en
Priority to US17/299,369 priority patent/US20220025553A1/en
Publication of WO2020129629A1 publication Critical patent/WO2020129629A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/10Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/16Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/30Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising olefins as the major constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/70Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/12Applications used for fibers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/06Polymer mixtures characterised by other features having improved processability or containing aids for moulding methods

Definitions

  • the present invention relates to a composite fiber having a core-sheath structure, a fiber obtained by leaching a sheath component from the composite fiber, the composite fiber or a cloth containing the fiber, and a method for producing the fiber or the cloth.
  • Patent Document 1 describes a composite fiber obtained by coating a polyurethane elastomer having a glass transition temperature in the range of 25 to 45° C., which is a core component, with an easily soluble thermoplastic polymer.
  • the composite fiber as described in the above-mentioned patent documents has a high stress during elongation and requires a relatively large force for elongation. For this reason, when it is worn on the human body, it may be difficult to move or a feeling of excessive tightening may occur.
  • a body assisting member to be worn during exercise or work that repeatedly expands and contracts during wearing, or an appropriate tightening It was not necessarily suitable as a fiber for forming a correction inner or the like that is required to have a feeling of natural wear while having a feeling of touch.
  • the present invention provides a fiber and a fabric that can be stretched with a small force, have excellent elasticity and high flexibility, and can realize a natural wearing feeling while having an appropriate tightening feeling when worn.
  • the purpose is to Further, in addition to the above-mentioned object, the present invention also aims to provide a fiber and a fabric that are hardly stretched out even when used for clothes that are repeatedly stretched and contracted.
  • a composite fiber for obtaining a fiber having a strength at 100% elongation of 0.04 cN/dtex or less comprising a polyvinyl-based thermoplastic elastomer or a thermoplastic polyurethane elastomer having a glass transition temperature of 0° C. or less.
  • the component X is composed of a resin composition containing a polyvinyl-based thermoplastic elastomer, and the resin composition is at least the following 1) and 2): 1) 50 to 100% by mass has a weight average molecular weight of 200,000 or less, a polymer block a mainly composed of at least two vinyl aromatic compounds and a polymer block b mainly composed of at least one conjugated diene compound. 100 parts by mass of at least one selected from the block copolymer (A) consisting of and a block copolymer (A′) obtained by hydrogenating the copolymer (A); and 2) a hydrocarbon rubber.
  • [4] The conjugate fiber according to any one of [1] to [3] above, which has a single fiber fineness of 0.3 to 50 dtex.
  • [5] A cloth containing at least a part of the composite fiber according to any one of [1] to [4].
  • [6] A fiber comprising a polyvinyl-based thermoplastic elastomer or a thermoplastic polyurethane elastomer having a glass transition temperature of 0° C. or lower, and a strength at 100% elongation of 0.04 cN/dtex or lower.
  • the fiber according to the above [6] which has an extensional elastic modulus of 95% or more after three repeated tests according to JIS L 1096 (method B-1).
  • [8] A fabric containing at least a part of the fiber according to [6] or [7].
  • [9] A step of using the conjugate fiber according to any one of the above [1] to [4] at least in part and leaching the easily soluble thermoplastic polymer (Y component) constituting the conjugate fiber.
  • [10] A step of using at least a part of the conjugate fiber according to any one of [1] to [4], and leaching out the easily soluble thermoplastic polymer (Y component) constituting the conjugate fiber.
  • a fiber and a fabric that can be stretched with a small force have excellent elasticity and high flexibility, and can realize a natural wearing feeling while having an appropriate tightening feeling when worn.
  • the conjugate fiber of the present invention is a conjugate fiber for obtaining a fiber having a strength at 100% elongation of 0.04 cN/dtex or less. More specifically, it is a composite fiber composed of a core component containing a polyvinyl-based thermoplastic elastomer or a thermoplastic polyurethane elastomer having a glass transition temperature of 0° C. or lower, and a sheath component which is an easily soluble thermoplastic polymer.
  • the composite fiber is a fiber obtained by leaching out the easily soluble thermoplastic polymer, which has a 100% elongation strength of 0.04 cN/dtex or less.
  • the core component (X component) constituting the conjugate fiber of the present invention includes a polyvinyl thermoplastic elastomer or a thermoplastic polyurethane elastomer having a glass transition temperature of 0°C or lower.
  • the easily soluble thermoplastic polymer (Y component) which will be described later, can be leached out and then can be elongated with a small force, so that high elasticity and flexibility like rubber can be obtained.
  • a fiber having can be obtained.
  • the polyvinyl-based thermoplastic elastomer is, for example, a block copolymer having a polymer block based on a vinyl aromatic compound and a polymer block based on a conjugated diene compound in a molecule and a hydrogenated product thereof.
  • resin compositions containing various types of hydrocarbon-based softening agents for rubber are, for example, a block copolymer having a polymer block based on a vinyl aromatic compound and a polymer block based on a conjugated diene compound in a molecule and a hydrogenated product thereof.
  • the polyvinyl-based thermoplastic elastomer preferably has a glass transition temperature lower than atmospheric temperature, more preferably 0° C. or lower, and further preferably ⁇ 10° C. or lower.
  • a glass transition temperature lower than the ambient temperature it is possible to reduce stress when the fiber is stretched at room temperature which is a general living environment, and it is possible to obtain a fiber having high stretchability with a smaller force. ..
  • the lower limit of the glass transition temperature of the polyvinyl-based thermoplastic elastomer is not particularly limited, but is usually ⁇ 70° C. or higher, and preferably ⁇ 50° C. or higher.
  • the glass transition temperature of the polyvinyl thermoplastic elastomer may be the glass transition temperature of the elastomer itself, or the glass transition temperature of the polymer portion constituting the elastomer. Good. Further, the glass transition temperature can be measured by a differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • the melt viscosity at 250° C. of the polyvinyl-based thermoplastic elastomer is preferably less than 700 poise, more preferably 650 poise or less, and preferably 300 poise or more, more preferably 350 poise or more.
  • the melt viscosity at 250° C. of the polyvinyl thermoplastic elastomer is not more than the above upper limit value, spinning can be performed at a low temperature and spinning can be performed with high yield.
  • the melt viscosity is at least the above lower limit, the strength of the obtained fiber can be secured.
  • the melt viscosity can be measured using, for example, a capillary rheometer.
  • the polyvinyl-based thermoplastic elastomer serving as the core component of the composite fiber can be expanded with a smaller force, and a fiber having excellent stretchability and flexibility can be obtained.
  • a block copolymer having a polymer block based on it and a polymer block based on a conjugated diene compound in the molecule and a hydrogenated product thereof are preferable, and a polymer block a containing at least two vinyl aromatic compounds as main components ,
  • block copolymer (A′) thus obtained is more preferable, and the block copolymer (A′) is further preferable.
  • the polymer block a containing a vinyl aromatic compound as a main component is not only a polymer block containing a vinyl aromatic compound alone but also a monomer mixture containing a vinyl aromatic compound as a main component. It may include a polymer block obtained by polymerization.
  • “mainly composed of vinyl aromatic compound” or “mainly composed of vinyl aromatic compound” means that the structural unit derived from the vinyl aromatic compound in the polymer block a exceeds 50 mol %.
  • vinyl aromatic compounds constituting the block copolymer (A) include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, dimethylstyrene, vinylnaphthalene, vinylanthracene, and the like. Can be mentioned. Among these, styrene and ⁇ -methylstyrene are preferable, and styrene is more preferable.
  • the aromatic vinyl compounds may be used alone or in combination of two or more.
  • the content of the vinyl aromatic compound in the block copolymer (A) is preferably 5 to 75% by mass, more preferably 5 to 50% by mass, based on the total mass of the block copolymer (A).
  • the content of the vinyl aromatic compound in the block copolymer (A) is within the above range, the rubber elasticity of the fiber obtained from the composite fiber of the present invention can be improved, and even if the expansion and contraction are repeated, it is possible to achieve the full elongation. It is possible to obtain a fiber that does not easily generate
  • the polymer block b containing a conjugated diene compound as a main component is not only a polymer block composed of a conjugated diene compound alone, but also a monomer mixture containing a conjugated diene compound as a main component. It may include a polymer block obtained by polymerization.
  • “mainly composed of conjugated diene compound” or “mainly composed of conjugated diene compound” means that the structural unit derived from the conjugated diene compound in the polymer block b exceeds 50 mol %.
  • conjugated diene compound forming the block copolymer (A) examples include butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and 1,3-hexadiene.
  • the conjugated diene compounds may be used alone or in combination of two or more.
  • the conjugated diene compound is preferably at least one selected from isoprene and butadiene, and more preferably a mixture of isoprene and butadiene.
  • the copolymerization form in the polymer block b may be random, tapered, block or a combination thereof.
  • the block copolymer (A) may have at least one polymer block a and at least one polymer block b, but two or more polymer blocks a from the viewpoint of heat resistance, mechanical properties, and the like. It is preferable to have at least one polymer block b.
  • the binding mode of the polymer block a and the polymer block b may be linear, branched or any combination thereof, but the polymer block a is represented by a′ and the polymer block b is represented by b′.
  • the multiblock copolymer etc. which can be mentioned.
  • those having a triblock structure represented by a'-b'-a' are particularly preferable in terms of heat resistance, mechanical properties, handleability and the like.
  • the block copolymer (A) In the case of constituting the conjugate fiber of the present invention, in the block copolymer (A), some or all of the carbon-carbon double bonds derived from the conjugated diene compound of the polymer block b are hydrogenated. Is preferred.
  • the hydrogenation rate of the block copolymer (A') obtained by hydrogenating the block copolymer (A) is preferably 50% or more, more preferably 75% or more, further preferably 95% or more, and 100 It may be %. When the hydrogenation rate is at least the above lower limit, the heat resistance and weather resistance of the composite fiber can be improved, and the stability against heat during spinning and heat during molding of the composite fiber can be improved.
  • the weight average molecular weight of the block copolymer (A) is preferably 40,000 to 500,000, more preferably 45,000 to 400,000, and still more preferably 50,000 to 300,000.
  • the weight average molecular weight of the block copolymer is within the above range, good moldability can be easily ensured without lowering the mechanical properties of the thermoplastic elastomer.
  • the block copolymer (A) preferably has a weight average molecular weight of 200,000 or less at 50 to 100% by mass. Since 50 to 100% by mass of the block copolymer (A) has a weight average molecular weight of 200,000 or less, the obtained fiber has high rubber elasticity and suppresses the extension of the fiber even when it repeatedly expands and contracts. You can In the present invention, it is more preferable that 80 to 100% by mass of the block copolymer (A) has a weight average molecular weight of 200,000 or less.
  • the weight average molecular weight can be determined using gel permeation chromatography (GPC).
  • the thermoplastic polyurethane elastomer that can constitute the core component (X component) of the composite fiber has a glass transition temperature of 0°C or lower.
  • a thermoplastic polyurethane elastomer having a glass transition temperature of 0° C. or lower By using a thermoplastic polyurethane elastomer having a glass transition temperature of 0° C. or lower, the stress when the fiber is stretched at room temperature, which is a general living environment, can be reduced, and the fiber has high stretchability with a smaller force. Fibers can be obtained.
  • the glass transition temperature of the thermoplastic polyurethane elastomer is preferably ⁇ 5° C. or lower, more preferably ⁇ 10° C. or lower, and the lower limit thereof is not particularly limited, but usually ⁇ 70° C. or higher, and preferably Is -50°C or higher.
  • thermoplastic polyurethane elastomer having a glass transition temperature of 0° C. or lower is a thermoplastic polyurethane obtained by the reaction of a polymer diol, an organic diisocyanate and a chain extender, and is not particularly limited as long as the glass transition temperature is 0° C. or lower. Conventionally known ones can be used.
  • thermoplastic polyurethane elastomer examples include polyether diol, polyester diol, polycarbonate diol, polyester ether diol, and the like.
  • the thermoplastic polyurethane elastomer can be formed by using one kind or two or more kinds of these polymer diols, and specifically, for example, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, 1,4-butanediol. 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol and the like.
  • polyether diol is preferable as the polymer diol
  • polytetramethylene glycol is particularly preferable from the viewpoint of weather resistance and cost.
  • organic diisocyanates that can be used in the production of the thermoplastic polyurethane elastomer include aromatic diisocyanates, alicyclic diisocyanates, and aliphatic diisocyanates. Specific examples include 4,4'-diphenylmethane diisocyanate, toluene diisocyanate, p-phenylene diisocyanate, xylylene diisocyanate, naphthalene diisocyanate, isophorone diisocyanate and hexamethylene diisocyanate. Of these, 4,4'-diphenylmethane diisocyanate is preferable in terms of cost.
  • the chain extender that can be used for producing the thermoplastic polyurethane elastomer
  • a chain extender that has been conventionally used for producing a thermoplastic polyurethane elastomer can be used.
  • the chain extender is not particularly limited, and examples thereof include aliphatic diols, alicyclic diols and aromatic diols, and specific examples include ethylene glycol, diethylene glycol, 1,4-butanediol, 1,5-Pentanediol, 2-methyl-1,3-propanediol, 1,6-hexanediol, neopentyl glycol, 1,9-nonanediol, cyclohexanediol, 1,4-bis( ⁇ -hydroxyethoxy) Examples include benzene. Of these, 1,4-butanediol is preferable in terms of cost.
  • the thermoplastic polyurethane elastomer can be synthesized by reacting a polymer diol, a chain extender and an organic diisocyanate in an appropriate ratio.
  • the synthesis method is not particularly limited, and it may be produced by utilizing a known urethanization reaction.
  • various additives such as a matting material (light shielding material) such as titanium oxide and zinc oxide, an antioxidant and an ultraviolet absorber may be added, if necessary.
  • thermoplastic polyurethane elastomer may be used as the thermoplastic polyurethane elastomer having a glass transition temperature of 0°C or lower.
  • examples of such commercially available products include, for example, "Pandex (registered trademark)” manufactured by DIC Covestropolymer Co., Ltd., "Miractran (registered trademark)” manufactured by Nippon Miractolan Co., Ltd., and "Elastoltran (registered trademark)” manufactured by BASF. And the like.
  • the core component (X component) forming the conjugate fiber preferably contains a polyvinyl thermoplastic elastomer, and is composed of a resin composition containing the polyvinyl thermoplastic elastomer, and the resin composition contains at least the following 1 ) And 2): 1) 50 to 100% by mass has a weight average molecular weight of 200,000 or less, and a polymer block a mainly composed of at least two vinyl aromatic compounds and a polymer block b mainly composed of at least one conjugated diene compound.
  • the core component contains a thermoplastic polyvinyl elastomer, particularly when the core component is a resin composed of the resin composition containing 1) and 2) above, the fiber obtained from the conjugate fiber of the present invention is small. It exhibits high extensibility with force, and can achieve a high effect of suppressing extensional stretch when repeatedly expanded and contracted.
  • softening agent for hydrocarbon rubber examples include process oils such as paraffin oil, naphthene oil, and aroma oil, liquid paraffin, and the like. Among them, paraffin oil, naphthene oil, and the like. Process oils such as These may be used alone or in combination of two or more.
  • the content of the hydrocarbon-based softening agent for hydrocarbon rubber in the resin composition is the block copolymer (A) and/or ( A') is preferably 50 to 300 parts by mass, more preferably 60 to 200 parts by mass, still more preferably 60 to 150 parts by mass, relative to 100 parts by mass.
  • the content of the hydrocarbon-based rubber softening agent is within the above range, fibers having good rubber elasticity can be obtained.
  • the resin composition that can form the core component (X component) of the conjugate fiber of the present invention is a block copolymer (A) and/or a block copolymer (A) as long as it does not affect the effects of the present invention.
  • the conjugate fiber of the present invention is formed into a conjugate fiber by coating the core component (X component) containing the specific thermoplastic elastomer described above with the easily soluble thermoplastic polymer which is the sheath component (Y component). Since the cooling rate becomes slow during the process, the molecular orientation of the X component tends to become loose. As a result, the degree of orientation of the X component finally used as the fiber is lowered, and the Young's modulus and the stress during stretching are reduced. Therefore, the fiber obtained by leaching out the Y component can be stretched with a very small force as compared with the case where the thermoplastic elastomer constituting the X component is used as it is, and it has excellent elasticity and high flexibility.
  • thermoplastic elastomer As compared with the case of manufacturing a fabric by spinning the thermoplastic elastomer as the X component alone, the fiber forming step and the step passability after the fiber forming are improved, and high yield production can be expected. Further, since the X component is covered with the Y component, it can be unwound easily during processing, which is advantageous in terms of productivity of fibers and cloths using the composite fiber.
  • the sheath component (Y component) constituting the conjugate fiber of the present invention is a readily soluble thermoplastic polymer.
  • the easily soluble (or easily decomposable) thermoplastic polymer is capable of being melt-spun and is relatively soluble in a solvent or a drug as compared with the thermoplastic elastomer contained in the component X. It means a thermoplastic polymer having a property of easily decomposing, and it is preferable that it can be dissolved or decomposed with, for example, water (including warm water), alkali, acid and the like.
  • the easily soluble thermoplastic polymer specifically includes, for example, polyvinyl alcohol-based polymers, easily soluble polyester-based polymers, etc., and is selected from polyvinyl alcohol-based polymers and easily soluble polyester-based polymers. Is preferably at least one kind.
  • the readily soluble thermoplastic polymer may be used alone or in combination of two or more.
  • polyester having a high alkali dissolution rate it is preferable to use polyester having a high alkali dissolution rate, and for example, polar group-containing copolymerized polyester, aliphatic polyester and the like can be adopted.
  • Examples of the polar group-containing copolyester include 1 to 5 mol% of an ester-forming sulfonic acid metal salt compound (eg, 5-sodium sulfoisophthalic acid, 5-potassium sulfoisophthalic acid) and a polyalkylene glycol (eg, polypropylene glycol).
  • Examples include copolymerized polyesters obtained by copolymerizing 5 to 30% by mass of poly C1-4 alkylene glycol such as polyethylene glycol) with a conventionally used diol component and dicarboxylic acid component.
  • aliphatic polyesters include polylactic acid; polyesters of aliphatic diols such as poly(ethylene succinate), poly(butylene succinate), poly(butylene succinate-co-butylene adipate), and aliphatic carboxylic acids; Polyhydroxycarboxylic acids such as poly(glycolic acid), poly(3-hydroxybutyric acid), poly(3-hydroxyvaleric acid), poly(6-hydroxycaproic acid); poly( ⁇ -caprolactone) and poly( ⁇ -valero) Examples thereof include poly( ⁇ -hydroxyalkanoate) such as lactone).
  • polylactic acid is preferable, and polylactic acid may be poly D-lactic acid, poly L-lactic acid, or a mixture thereof.
  • the easily soluble polyester-based polymer is, for example, 60 minutes or less, preferably 45 minutes or less, more preferably 30 minutes or less when immersed in a 2% sodium hydroxide aqueous solution at 100° C. at a bath ratio of 1:30.
  • an alkali-dissolvable polyester that is almost completely dissolved (decomposed) within 15 minutes is more preferable.
  • the polyvinyl alcohol-based polymer which is a water-soluble and easily soluble thermoplastic polymer, has, for example, a viscosity average polymerization degree of 200 to 500 and a saponification degree of 90 to 99.99 mol% (preferably 95 to 99 mol%).
  • Polyvinyl alcohol having a melting point of 160 to 230° C. is preferable.
  • the polyvinyl alcohol-based polymer may be a homopolymer or a copolymer, but from the viewpoint of melt spinning property, water solubility, and fiber physical properties, ethylene, propylene and the like ⁇ -olefins having 4 or less carbon atoms, etc. It is preferable to use a copolymerized polyvinyl alcohol modified by 0.1 to 20 mol% (preferably 5 to 15 mol %).
  • the polyvinyl alcohol-based polymer is, for example, 60 minutes or less, preferably 45 minutes or less, more preferably 30 minutes or less, particularly preferably 15 minutes or less when immersed in hot water of 100° C. at a bath ratio of 1:30.
  • a thermoplastic polyvinyl alcohol-based polymer that is almost completely dissolved (decomposed) in is preferable, and a copolymerized polyvinyl alcohol modified with ⁇ -olefin is more preferable.
  • the conjugate fiber of the present invention can be made into a fiber by using a conventionally known conjugate spinning device after determining the combination of the X component and the Y component.
  • a conventionally known conjugate spinning device After determining the combination of the X component and the Y component.
  • it can be produced by an arbitrary spinning method such as a method of performing melt spinning at low speed or medium speed and then stretching, a method of direct spinning and stretching at high speed, a method of simultaneously or subsequently performing stretching and false twisting after spinning.
  • the composite ratio (mass ratio) of the X component and the Y component is 90:10 to 50:50 for X:Y. If the X component is too much, it becomes difficult to obtain the effect of reducing the degree of orientation of the X component due to the core-sheath structure, and it becomes difficult to sufficiently reduce the stress during extension. In addition, the processability of fiber formation, particularly sticking after winding into a fiber, may deteriorate the processability of the product production. On the other hand, if the Y component is too much, the cooling rate of the X component during the composite fiber forming process becomes slow, resulting in poor spinnability.
  • the molecular orientation of the X component becomes too loose, and it may not be possible to obtain a good wearing feeling when worn on the human body.
  • the composite ratio (mass ratio) of the X component and the Y component is more preferably 85:15 to 50:50, and even more preferably 80:20 to 50:50.
  • the Y component In the cross section of the conjugate fiber of the present invention, it is not necessary for the Y component to cover the entire surface of the fiber, but in order to secure the winding processability of fiberizing, the handleability after winding, and the process passability of product production, In the cross section of the fiber, it is important that the X component serves as the core and the Y component covers 70% or more of the total perimeter of the X component, more preferably 80% or more, and more preferably 90% or more. Is particularly preferable.
  • the composite form of the present invention may be a concentric type, an eccentric type, or a multi-core type as long as the Y component can be dissolved and removed by alkali treatment, water treatment, etc., and the X component is not cracked.
  • the X-component fiber cross-sectional shape may be a circular cross-sectional shape, or may be a modified cross-sectional shape such as a triangle, a flat shape, or a multileaf type.
  • the single fiber fineness of the conjugate fiber of the present invention can be appropriately set according to the purpose. From the viewpoint of facilitating the production of the conjugate fiber and improving the spinnability, it can be selected from the range of, for example, 0.3 to 50 dtex, preferably 0.3 to 40 dtex. From the viewpoint of improving the fit to the human body, it is preferably 0.3 to 10 dtex, more preferably 0.3 to 5 dtex. With the composite fiber of the present invention, a fiber having a fineness of 6 dtex or less can be obtained while preventing yarn breakage. These fibers can be used not only as long fibers but also as short fibers or as a shortcut. The single fiber fineness can be calculated from a value obtained by measuring the total fineness of the composite fiber in accordance with JIS L 1013 and dividing this by the number of filaments.
  • the composite fiber of the present invention is a composite fiber for obtaining a fiber having a 100% elongation strength of 0.04 cN/dtex or less, and a 100% elongation strength of the fiber obtained by leaching the Y component is 0. It is less than 04 cN/dtex.
  • the 100% elongation strength of the fiber obtained from the conjugate fiber of the present invention exceeds 0.04 cN/dtex, the force necessary for elongating the fiber tends to increase, and when it is worn on the human body as clothing, Difficulty in movement and excessive tightening are likely to occur.
  • the 100% elongation strength of the fiber obtained from the conjugate fiber is preferably 0.035 cN/dtex or less, more preferably 0.03 cN/dtex or less, and further preferably 0.025 cN/dtex or less.
  • the lower the 100% elongation strength of the obtained fiber the smaller the force required during elongation, and the more natural wearing feeling can be realized when it is worn on the human body as clothes. Therefore, the lower limit value is not particularly limited. However, it is usually 0.004 cN/dtex or more, preferably 0.008 cN/dtex or more, from the viewpoint of appropriate elasticity and tightening feeling.
  • the 100% elongation strength of the fiber is based on the method of JIS L 1013 (tensile strength) after leaching the easily soluble thermoplastic polymer from the composite fiber of the present invention, as described in Examples described later. Can be measured and calculated.
  • a fiber obtained from the composite fiber of the present invention having a strength at 100% elongation of 0.04 cN/dtex or less can be stretched with a very small force, and has excellent elasticity and high flexibility, It is suitable for manufacturing a fabric that can realize a natural wearing feeling while having an appropriate tightening feeling when worn. Accordingly, the present invention is also directed to fibers comprising a thermoplastic polyvinyl-based elastomer or a thermoplastic polyurethane elastomer having a glass transition temperature of 0° C. or lower and a 100% elongation strength of 0.04 cN/dtex or lower.
  • the fiber of the present invention is composed of, for example, an X component containing a polyvinyl-based thermoplastic elastomer or a thermoplastic polyurethane elastomer having a glass transition temperature of 0° C. or less, and a Y component that is a readily soluble thermoplastic polymer,
  • the polyvinyl-based thermoplastic elastomer or the thermoplastic polyurethane elastomer having a glass transition temperature of 0° C. or lower that constitutes the fiber of the present invention has the same thermoplasticity as that exemplified above as the X component that constitutes the conjugate fiber of the present invention. Elastomers may be mentioned.
  • Examples of the easily soluble thermoplastic polymer that constitutes the conjugate fiber for obtaining the fiber of the present invention include the same thermoplastic polymers as those exemplified above as the Y component that constitutes the conjugate fiber of the present invention.
  • the conjugate fiber for obtaining the fiber of the present invention can be produced, for example, according to the same method as the method described above as the method for producing the conjugate fiber of the present invention.
  • the leaching step of the Y component which is the easily soluble thermoplastic polymer, completely dissolves the Y component without affecting the X component finally obtained as the fiber or
  • the method and conditions that can be decomposed are not particularly limited, and may be appropriately selected depending on the types of X component and Y component used, the composite ratio of X component and Y component, and the like. Specifically, for example, the solution and conditions for leaching illustrated in the description of the Y component constituting the conjugate fiber of the present invention can be adopted.
  • the 100% elongation strength of the fiber of the present invention is 0.04 cN/dtex or less, preferably 0.035 cN/dtex or less, more preferably 0.03 cN/dtex or less, and further preferably 0.025 cN/dtex or less. is there.
  • the strength at 100% elongation exceeds 0.04 cN/dtex, the force required to elongate the fibers tends to be large, and when worn on a human body as clothing, it tends to cause difficulty in movement and excessive tightening feeling. Become. The lower the 100% elongation strength of the fiber, the smaller the force required for the elongation, and the more natural wearing feeling can be realized when it is worn on the human body as clothes.
  • the lower limit of the 100% elongation strength of the fiber of the present invention is usually 0.004 cN/dtex or more, preferably 0.008 cN/dtex or more from the viewpoint of appropriate elasticity and tightening feeling.
  • the elongation elastic modulus after repeating the test three times in accordance with JIS L 1096 (method B-1) is preferably 95% or more, and 98% or more. Is more preferable, and may be 100%.
  • the elongation elastic modulus is equal to or more than the lower limit value, it is difficult for the fibers to be stretched and cut when repeating expansion and contraction, and the original elasticity of the fibers is maintained even when used for clothes in which expansion and contraction are repeated many times. It is possible to continuously exhibit high elasticity.
  • the elongation modulus is 1) 50 to 100% by mass has a weight average molecular weight of 200,000 or less and at least two vinyl fragrances.
  • a block copolymer (A) comprising a polymer block a mainly containing a group compound and a polymer block b mainly containing at least one conjugated diene compound and the block copolymer (A) Of a resin composition containing 100 parts by mass of at least one kind selected from the block copolymer (A′) and 2) 50 to 300 parts by mass of a softening agent for hydrocarbon rubber.
  • Cheap a block copolymer (A) comprising a polymer block a mainly containing a group compound and a polymer block b mainly containing at least one conjugated diene compound and the block copolymer (A)
  • a resin composition containing 100 parts by mass of at least one kind selected from the block copolymer (A′) and 2) 50 to 300 parts by mass of a softening agent for hydrocarbon rubber.
  • the conjugate fiber of the present invention and the fiber of the present invention can be used for various woven and knitted fabrics, non-woven fabrics and the like. Therefore, the present invention is directed to a fabric containing the conjugate fiber of the present invention in at least a part thereof, and a fabric containing the fiber of the present invention in at least a part thereof.
  • the Y component is usually leached and removed, and then used as a final product used for the human body.
  • the fabric is produced by a production method including, for example, a step of using the conjugate fiber of the present invention in at least a part thereof and leaching an easily soluble thermoplastic polymer (Y component) constituting the conjugate fiber. You can
  • the conjugate fiber of the present invention or a fabric containing the fiber may be formed of the conjugate fiber of the present invention or the fiber alone, but a woven or knitted fabric or a non-woven fabric formed by using the conjugate fiber of the present invention or a part of the fiber, for example, It may be a spun woven fabric with other fibers such as natural fibers, chemical fibers, and synthetic fibers, or a mixed spun yarn, a woven or knitted fabric used as a mixed woven yarn, and a mixed cotton nonwoven fabric.
  • the proportion of the X component of the composite fiber of the present invention in the woven or knitted fabric or the nonwoven fabric is not particularly limited, but may be, for example, 5% by mass or more, preferably 14% by mass. % Or more, more preferably 15% by mass or more, further preferably 18% by mass or more, particularly preferably 23% by mass or more.
  • the proportion of the X component in the yarn may be, for example, 14 to 95% by mass, preferably 20% by mass or more, preferably 30% by mass or more, and more preferably May be 40% by mass or more.
  • the cloth containing the fiber of the present invention and the cloth obtained by removing the Y component from the cloth containing the conjugate fiber of the present invention can be stretched with a small force and have excellent elasticity and high flexibility. However, it is possible to realize a natural wearing feeling while having an appropriate tightening feeling when worn.
  • the conjugate fiber used in the present invention the single fiber fineness of the thermoplastic elastomer fiber constituting the fabric can be set to, for example, 0.3 to 50 dtex, preferably 0.3 to 40 dtex. When the fineness is to be reduced, it is possible to make the fineness of 0.3 to 10 dtex, preferably 0.3 to 5 dtex.
  • the composite fiber or the fabric containing the fiber of the present invention may be subjected to a raising process such as a raising of a needle cloth or other finishing process, if necessary, after a fabric forming process.
  • the X component and Y component used in Examples and Comparative Examples are as follows.
  • the conjugate fibers of Examples 1 to 5 and Comparative Examples 3 to 5 were prepared according to the following methods. According to the composition shown in Table 1, the X component (core component) and the Y component (sheath component) were melted by separate extruders, and the composite fiber was discharged from the composite spinning nozzle in the core-sheath cross section. Then, after the yarn discharged from the spinneret was cooled by a horizontal blowing type cooling air device having a length of 1.0 m, it was continuously installed at a position 1.3 m from directly below the spinneret and had an inner diameter of 1.0 m.
  • the spinning oil agent an oil agent containing no water-containing antistatic agent component and smoothing agent component was used.
  • Comparative Examples 1 and 2 The fibers of Comparative Examples 1 and 2 were prepared according to the following methods. According to the composition shown in Table 1, the X component was melted by an extruder, and individual fibers were discharged from a spinning nozzle. Then, the yarn discharged from the spinneret is cooled by a horizontal blowing type cooling air device having a length of 1.0 m, a spinning oil is applied, and the yarn is wound through a roller at a take-up speed of 100 m/min, Individual fibers of each total fineness and number of filaments were obtained. As the spinning oil agent, an oil agent containing no water-containing antistatic agent component and smoothing agent component was used.
  • the fibers (Examples 1 to 5) obtained from the conjugate fiber of the present invention each had a small strength at 100% elongation and were extendable with a small force. Further, it was confirmed that by using a polyvinyl-based thermoplastic elastomer as the X component, a fiber having a high recovery property (elongation elastic modulus) upon repeated expansion and contraction and excellent durability was obtained (Examples 1 to 4). ..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Multicomponent Fibers (AREA)

Abstract

本発明は、100%伸長時強度が0.04cN/dtex以下である繊維を得るための複合繊維であって、ポリビニル系熱可塑性エラストマーまたはガラス転移温度が0℃以下である熱可塑性ポリウレタンエラストマーを含んでなるX成分と、易溶解性熱可塑性ポリマーであるY成分とから構成され、X成分とY成分の複合比率(質量比)がX:Y=90:10~50:50であり、繊維断面において、X成分が芯成分、Y成分が鞘成分である芯鞘構造を有する複合繊維に関する。

Description

複合繊維
 本発明は、芯鞘構造の複合繊維、前記複合繊維から鞘成分を溶脱して得られる繊維、前記複合繊維または繊維を含む布帛、並びに、前記繊維または布帛の製造方法に関する。
 人体に装着される布地、特に、運動時または作業時に着用する身体補助部材やインナー等には、人体の動的な動きに対する良好な装着感が求められる。このような良好な装着感を有する布地を提供するために、従来、種々の高分子材料に基づく繊維や布帛が開発されている。例えば、特許文献1には、芯成分となるガラス転移温度が25~45℃の範囲内にあるポリウレタンエラストマーを、易溶解性熱可塑性ポリマーで被覆した複合繊維が記載されている。
特許第6195715号公報
 しかしながら、上記特許文献に記載されるような複合繊維は伸長時の応力が高く、伸長のために比較的大きな力を必要とする。このため、人体に装着した際に、動き難さや過度な締め付け感を生じることがあり、特に、着用時に伸縮を何度も繰り返すような運動時または作業時に着用する身体補助部材や、適度な締め付け感を有しながらも自然な着用感が要求される補正インナー等を構成するための繊維としては、必ずしも適するものではなかった。
 本発明は、小さな力で伸長することができ、優れた伸縮性とともに高い柔軟性を有し、着用時に適度な締め付け感を有しながらも自然な着用感を実現し得る繊維および布帛を提供することを目的とする。さらに、本発明は、前記目的に加えて、何度も伸縮が繰り返される衣類に用いても伸び切りが生じ難い繊維および布帛を提供することも目的とする。
 本発明者等は、上記課題を解決するために詳細に検討を重ねた結果、本発明に到達した。すなわち、本発明は、以下の好適な態様を包含する。
[1]100%伸長時強度が0.04cN/dtex以下である繊維を得るための複合繊維であって、ポリビニル系熱可塑性エラストマーまたはガラス転移温度が0℃以下である熱可塑性ポリウレタンエラストマーを含んでなるX成分と、易溶解性熱可塑性ポリマーであるY成分とから構成され、X成分とY成分の複合比率(質量比)がX:Y=90:10~50:50であり、繊維断面において、X成分が芯成分、Y成分が鞘成分である芯鞘構造を有する複合繊維。
[2]前記易溶解性熱可塑性ポリマーが、ポリビニルアルコール系ポリマー、および易溶解性ポリエステル系ポリマーから選択される少なくとも1種である、前記[1]に記載の複合繊維。
[3]前記X成分がポリビニル系熱可塑性エラストマーを含む樹脂組成物から構成され、前記樹脂組成物が少なくとも下記1)および2):
1)50~100質量%が重量平均分子量200,000以下であり、少なくとも2個のビニル芳香族化合物を主体とする重合体ブロックaと少なくとも1個の共役ジエン化合物を主体とする重合体ブロックbとからなるブロック共重合体(A)および前記共重合体(A)を水素添加してなるブロック共重合体(A’)から選択される少なくとも1種100質量部;および
2)炭化水素系ゴム用軟化剤50~300質量部
を含む、前記[1]または[2]に記載の複合繊維。
[4]単繊維繊度が0.3~50dtexである、前記[1]~[3]のいずれかに記載の複合繊維。
[5]前記[1]~[4]のいずれかに記載の複合繊維を少なくとも一部に含む布帛。
[6]ポリビニル系熱可塑性エラストマーまたはガラス転移温度が0℃以下である熱可塑性ポリウレタンエラストマーを含んでなり、100%伸長時強度が0.04cN/dtex以下である繊維。
[7]JIS L 1096(B-1法)において、3回繰り返し試験後の伸長弾性率が95%以上である、前記[6]に記載の繊維。
[8]前記[6]または[7]に記載の繊維を少なくとも一部に含む布帛。
[9]前記[1]~[4]のいずれかに記載の複合繊維を少なくとも一部に使用し、前記複合繊維を構成する易溶解性熱可塑性ポリマー(Y成分)を溶脱させる工程を含む、前記[6]または[7]に記載の繊維の製造方法。
[10]前記[1]~[4]のいずれかに記載の複合繊維を少なくとも一部に使用し、前記複合繊維を構成する易溶解性熱可塑性ポリマー(Y成分)を溶脱させる工程を含む、前記[8]に記載の布帛の製造方法。
 本発明によれば、小さな力で伸長することができ、優れた伸縮性とともに高い柔軟性を有し、着用時に適度な締め付け感を有しながらも自然な着用感を実現し得る繊維および布帛を提供することができる。さらに、前記目的に加えて、何度も伸縮が繰り返される衣類に用いても伸び切りが生じ難い繊維および布帛を提供することができる。
 以下、本発明の実施の形態について詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更をすることができる。
 <複合繊維>
 本発明の複合繊維は、100%伸長時強度が0.04cN/dtex以下である繊維を得るための複合繊維である。より具体的には、ポリビニル系熱可塑性エラストマーまたはガラス転移温度が0℃以下である熱可塑性ポリウレタンエラストマーを含む芯成分と、易溶解性熱可塑性ポリマーである鞘成分とから構成される複合繊維であって、前記易溶解性熱可塑性ポリマーを溶脱して得られる繊維の100%伸長時強度が0.04cN/dtex以下となる複合繊維である。
 本発明の複合繊維を構成する芯成分(X成分)は、ポリビニル系熱可塑性エラストマーまたはガラス転移温度が0℃以下である熱可塑性ポリウレタンエラストマーを含む。芯成分がこれらの熱可塑性エラストマーを含むことにより、後述する易溶解性熱可塑性ポリマー(Y成分)を溶脱した後、小さな力で伸長することができ、ゴムのような高い伸縮性および柔軟性を有する繊維を得ることができる。
 本発明において、上記ポリビニル系熱可塑性エラストマーとしては、例えば、ビニル芳香族化合物に基づく重合体ブロックと、共役ジエン系化合物に基づく重合体ブロックとを分子中に有するブロック共重合体およびその水添物、および上記重合体に対し各種炭化水素系ゴム用軟化剤を含有してなる樹脂組成物などが挙げられる。
 ポリビニル系熱可塑性エラストマーは、大気温より低いガラス転移温度を有していることが好ましく、より好ましくは0℃以下、さらに好ましくは-10℃以下のガラス転移温度を有する。大気温より低いガラス転移温度を有することにより、一般的な生活環境である常温において繊維を伸長した時の応力を小さくすることができ、より小さな力で高い伸長性を有する繊維を得ることができる。ポリビニル系熱可塑性エラストマーにおけるガラス転移温度の下限は、特に限定されるものではないが、通常、-70℃以上であり、好ましくは-50℃以上である。なお、本発明において、ポリビニル系熱可塑性エラストマーにおける上記ガラス転移温度は、エラストマー自体のガラス転移温度であってもよく、上記エラストマーを構成する重合体部分が有しているガラス転移温度であってもよい。また、ガラス転移温度は、示差走査熱量分析法(DSC)により測定できる。
 本発明において、ポリビニル系熱可塑性エラストマーの250℃における溶融粘度は、好ましくは700poise未満、より好ましくは650poise以下であり、また、好ましくは300poise以上、より好ましくは350poise以上である。ポリビニル系熱可塑性エラストマーの250℃における溶融粘度が上記上限値以下であると、低温での紡糸が可能となり、高収率な紡糸が可能となる。また、上記溶融粘度が上記下限値以上であると、得られる繊維の強度を確保することができる。なお、上記溶融粘度は、例えば、キャピラリーレオメーターを用いて測定することができる。
 本発明において、複合繊維の芯成分となるポリビニル系熱可塑性エラストマーとしては、より小さな力で伸長することができ、優れた伸縮性および柔軟性を有する繊維を得られることから、ビニル芳香族化合物に基づく重合体ブロックと、共役ジエン系化合物に基づく重合体ブロックとを分子中に有するブロック共重合体およびその水添物が好ましく、少なくとも2個のビニル芳香族化合物を主体とする重合体ブロックaと、少なくとも1個の共役ジエン化合物を主体とする重合体ブロックbとからなるブロック共重合体(以下、「ブロック共重合体(A)」ともいう)および前記ブロック共重合体(A)を水素添加してなるブロック共重合体(A’)がより好ましく、ブロック共重合体(A’)がさらに好ましい。
 上記ブロック共重合体(A)において、ビニル芳香族化合物を主体とする重合体ブロックaは、ビニル芳香族化合物単独からなる重合体ブロックだけでなく、ビニル芳香族化合物を主としてなる単量体混合物の重合により得られる重合体ブロックを含み得る。なお、本明細書において「ビニル芳香族化合物を主体とする」または「ビニル芳香族化合物を主としてなる」とは、重合体ブロックaにおけるビニル芳香族化合物に由来する構造単位が50モル%を超えることを意味する。ブロック共重合体(A)を構成するビニル芳香族化合物としては、例えばスチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、ジメチルスチレン、ビニルナフタレン、ビニルアントラセン等が挙げられる。これらの中でも、スチレンおよびα-メチルスチレンが好ましく、スチレンがより好ましい。芳香族ビニル化合物は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ブロック共重合体(A)におけるビニル芳香族化合物の含有量は、ブロック共重合体(A)の総質量に基づき、好ましくは5~75質量%、より好ましくは5~50質量%である。ブロック共重合体(A)におけるビニル芳香族化合物の含有量が上記範囲内であると、本発明の複合繊維から得られる繊維におけるゴム弾性を向上させることができ、伸縮を繰り返す場合にも伸び切りの生じ難い繊維を得ることができる。
 上記ブロック共重合体(A)において、共役ジエン系化合物を主体とする重合体ブロックbは、共役ジエン系化合物単独からなる重合体ブロックだけでなく、共役ジエン系化合物を主としてなる単量体混合物の重合により得られる重合体ブロックを含み得る。なお、本明細書において「共役ジエン系化合物を主体とする」または「共役ジエン系化合物を主としてなる」とは、重合体ブロックbにおける共役ジエン系化合物に由来する構造単位が50モル%を超えることを意味する。ブロック共重合体(A)を構成する共役ジエン系化合物としては、例えばブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等が挙げられる。共役ジエン系化合物は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。中でも、共役ジエン系化合物がイソプレンおよびブタジエンから選ばれる少なくとも1種であることが好ましく、イソプレンとブタジエンとの混合物がより好ましい。共役ジエン系化合物がイソプレンとブタジエンの混合物である場合、重合体ブロックbにおける共重合形態は、ランダム、テーパー、ブロックまたはそれらの組み合わせのいずれであってもよい。
 ブロック共重合体(A)は、重合体ブロックaと重合体ブロックbとをそれぞれ少なくとも1個有していればよいが、耐熱性、力学物性等の観点から、重合体ブロックaを2個以上、重合体ブロックbを1個以上有していることが好ましい。重合体ブロックaと重合体ブロックbの結合様式は、線状、分岐状あるいはこれらの任意の組み合わせであってもよいが、重合体ブロックaをa’で、重合体ブロックbをb’で表したとき、a’-b’-a’で示されるトリブロック構造や、(a’-b’)n、(a’-b’)n-a’(ここでnは2以上の整数を表す)で示されるマルチブロック共重合体などを挙げることができる。中でも、a’-b’-a’で示されるトリブロック構造のものが、耐熱性、力学物性、取り扱い性等の点で特に好ましい。
 本発明の複合繊維を構成する場合、上記ブロック共重合体(A)は、重合体ブロックbの共役ジエン系化合物に由来する炭素-炭素二重結合の一部または全てが水素添加されていることが好ましい。ブロック共重合体(A)を水素添加してなるブロック共重合体(A’)における水添率は、好ましくは50%以上、より好ましくは75%以上、さらに好ましくは95%以上であり、100%であってもよい。水添率が上記下限以上であると、複合繊維の耐熱性や耐候性を向上させることができ、紡糸する際の加熱や複合繊維の成形時の加熱に対する安定性を向上させることができる。
 ブロック共重合体(A)の重量平均分子量は、好ましくは40,000~500,000、より好ましくは45,000~400,000、さらに好ましくは50,000~300,000である。ブロック共重合体の重量平均分子量が上記範囲内であると、熱可塑性エラストマーの力学的物性を低下させることなく、良好な成形性を確保しやすい。
 特に、ブロック共重合体(A)は、その50~100質量%が重量平均分子量200,000以下であることが好ましい。前記ブロック共重合体(A)の50~100質量%が重量平均分子量200,000以下であることにより、得られる繊維が高いゴム弾性を有し、伸縮を繰り返す場合にも伸び切りを抑制することができる。本発明において、ブロック共重合体(A)は、その80~100質量%が重量平均分子量200,000以下であることがより好ましい。なお、重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)を用いて求めることができる。
 本発明において、複合繊維の芯成分(X成分)を構成し得る熱可塑性ポリウレタンエラストマーは、ガラス転移温度が0℃以下である。ガラス転移温度が0℃以下である熱可塑性ポリウレタンエラストマーを用いることにより、一般的な生活環境である常温において繊維を伸長した時の応力を小さくすることができ、より小さな力で高い伸長性を有する繊維を得ることができる。熱可塑性ポリウレタンエラストマーにおけるガラス転移温度は、好ましくは-5℃以下、より好ましくは-10℃以下であり、その下限値は特に限定されるものではないが、通常、-70℃以上であり、好ましくは-50℃以上である。
 ガラス転移温度が0℃以下である熱可塑性ポリウレタンエラストマーは、高分子ジオール、有機ジイソシアネートおよび鎖伸長剤の反応により得られる熱可塑性ポリウレタンであり、ガラス転移温度が0℃以下である限り特に限定されず、従来公知のものを用いることができる。
 上記熱可塑性ポリウレタンエラストマーの製造に用い得る高分子ジオールの例としては、ポリエーテルジオール、ポリエステルジオール、ポリカーボネートジオール、ポリエステルエーテルジオールなどが挙げられる。熱可塑性ポリウレタンエラストマーはこれらの高分子ジオールの1種または2種以上を用いて形成することができ、具体的には、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール等が挙げられる。中でも、耐候性およびコストの面から高分子ジオールとしてはポリエーテルジオールが好ましく、特にポリテトラメチレングリコールが好ましい。
 上記熱可塑性ポリウレタンエラストマーの製造に用い得る有機ジイソシアネートとしては、例えば、芳香族ジイソシアネート、脂環式ジイソシアネートおよび脂肪族ジイソシアネート等が挙げられる。具体的には、例えば、4,4’-ジフェニルメタンジイソシアネート、トルエンジイソシアネート、p-フェニレンジイソシアネート、キシリレンジイソシアネート、ナフタレンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート等が挙げられる。中でも、コストの面から4,4’-ジフェニルメタンジイソシアネートが好ましい。
 上記熱可塑性ポリウレタンエラストマーの製造に用い得る鎖伸長剤としては、熱可塑性ポリウレタンエラストマーの製造に従来用いられている鎖伸長剤を用いることができる。鎖伸長剤としては、特に限定するものではないが、例えば、脂肪族ジオール、脂環式ジオールおよび芳香族ジオール等が挙げられ、具体的には、エチレングリコール、ジエチレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、2-メチル-1,3-プロパンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,9-ノナンジオール、シクロヘキサンジオール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン等が挙げられる。中でも、コストの面から1,4-ブタンジオールが好ましい。
 本発明において、熱可塑性ポリウレタンエラストマーは、高分子ジオール、鎖伸長剤および有機ジイソシアネートを適当な割合で反応させることにより合成できる。これらの成分の割合は適宜決定することができるが、例えば、高分子ジオール:鎖伸長剤:有機ジイソシアネート=11:2~10:2~10のモル比で反応させることにより合成することができる。この際、合成方法は特に限定されず、公知のウレタン化反応を利用して製造すればよい。また、必要に応じて、酸化チタン、酸化亜鉛などの艶消し材(光遮蔽材)、酸化防止剤、紫外線吸収剤などの各種添加剤を添加してもよい。
 本発明において、ガラス転移温度が0℃以下である熱可塑性ポリウレタンエラストマーとして、市販の熱可塑性ポリウレタンエラストマーを使用してもよい。そのような市販品の例として、例えば、DICコベストロポリマー株式会社製「パンデックス(登録商標)」、日本ミラクトラン株式会社製「ミラクトラン(登録商標)」、BASF社製「エラストラン(登録商標)」等が挙げられる。
 本発明において、複合繊維を構成する芯成分(X成分)は、ポリビニル系熱可塑性エラストマーを含むことが好ましく、ポリビニル系熱可塑性エラストマーを含む樹脂組成物から構成され、該樹脂組成物が少なくとも下記1)および2):
1)50~100質量%が重量平均分子量200,000以下であり、少なくとも2個のビニル芳香族化合物を主体とする重合体ブロックaと少なくとも1個の共役ジエン化合物を主体とする重合体ブロックbとからなるブロック共重合体(A)および前記ブロック共重合体(A)を水素添加してなるブロック共重合体(A’)から選択される少なくとも1種100質量部;および
2)炭化水素系ゴム用軟化剤50~300質量部
を含むことがより好ましい。芯成分がポリビニル系熱可塑性エラストマーを含むことにより、特に芯成分が、上記1)および2)を含む樹脂組成物から構成される樹脂であることにより、本発明の複合繊維から得られる繊維が小さな力で高い伸長性を示すとともに、繰り返し伸縮した場合の伸び切りに対する高い抑制効果を実現し得る。
 上記樹脂組成物に用い得る炭化水素系ゴム用軟化剤としては、例えば、パラフィン系オイル、ナフテン系オイル、アロマ系オイル等のプロセスオイル、流動パラフィン等が挙げられ、中でもパラフィン系オイル、ナフテン系オイル等のプロセスオイルが好ましい。これらは1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明の複合繊維の芯成分(X成分)が前記樹脂組成物から構成される場合、樹脂組成物における炭化水素系ゴム用軟化剤の含有量は、ブロック共重合体(A)および/または(A’)100質量部に対して、好ましくは50~300質量部、より好ましくは60~200質量部、さらに好ましくは60~150質量部である。炭化水素系ゴム用軟化剤の含有量が上記範囲内であると、良好なゴム弾性を有する繊維が得られる。
 本発明の複合繊維の芯成分(X成分)を構成し得る前記樹脂組成物は、本発明の効果に影響を及ぼさない限りにおいて、ブロック共重合体(A)および/またはブロック共重合体(A’)および炭化水素系ゴム用軟化剤に加えて、必要に応じて、他の(共)重合体、ブロッキング防止剤、熱安定剤、酸化防止剤、光安定剤、紫外線吸収剤、滑剤、結晶核剤、発泡剤、着色剤等を含んでいてもよい。
 本発明の複合繊維は、先に説明した特定の熱可塑性エラストマーを含む芯成分(X成分)を、鞘成分(Y成分)である易溶解性熱可塑性ポリマーで被覆することにより、複合繊維化の工程中冷却速度が遅くなるためX成分の分子配向が緩くなる傾向にある。これにより、最終的に繊維として用いられるX成分の配向度が低くなり、ヤング率や伸長時の応力が小さくなる。このため、Y成分を溶脱して得られる繊維は、X成分を構成する熱可塑性エラストマーをそのまま繊維として用いる場合と比較して非常に小さな力で伸長することができ、優れた伸縮性とともに高い柔軟性を有し、かつ、熱可塑性エラストマーの本来有する有利な特性は維持しているため、着用時に適度な締め付け感を有しながらも自然な着用感を実現し得る繊維および布帛を提供することができる。また、X成分である熱可塑性エラストマーを単独で紡糸し、布帛を製造する場合と比較して、繊維化工程および繊維化後の工程通過性が良好となり、高収率での生産が期待できる。さらに、X成分がY成分により覆われていることにより、加工時に容易に解舒が可能となることから、該複合繊維を用いた繊維や布帛等の生産性の面においても有利である。
 本発明の複合繊維を構成する鞘成分(Y成分)は、易溶解性熱可塑性ポリマーである。本発明において、易溶解性(または易分解性)熱可塑性ポリマーとは、溶融紡糸可能であるとともに、前記X成分に含まれる熱可塑性エラストマーと比べて、相対的に溶媒または薬剤に対して溶解または分解しやすい性質を有する熱可塑性ポリマーを意味し、例えば、水(温水を含む)、アルカリ、酸等により溶解または分解が可能であることが好ましい。
 本発明において、上記易溶解性熱可塑性ポリマーとしては、具体的には例えば、ポリビニルアルコール系ポリマー、易溶解性ポリエステル系ポリマーなどが挙げられ、ポリビニルアルコール系ポリマーおよび易溶解性ポリエステル系ポリマーから選択される少なくとも1種であることが好ましい。易溶解性熱可塑性ポリマーは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 易溶解性ポリエステル系ポリマーとしては、アルカリ溶解速度が速いポリエステルを用いることが好ましく、例えば、極性基含有共重合ポリエステル、脂肪族ポリエステルなどを採用することができる。
 極性基含有共重合ポリエステルとしては、エステル形成スルホン酸金属塩化合物(例えば、5-ナトリウムスルホイソフタル酸、5-カリウムスルホイソフタル酸など)を1~5モル%と、ポリアルキレングリコール(例えば、ポリプロピレングリコール、ポリエチレングリコールなどのポリC1-4アルキレングリコール)を5~30質量%と従来用いられているジオール成分およびジカルボン酸成分とを共重合してなる共重合ポリエステルなどが挙げられる。
 脂肪族ポリエステルとしては、例えば、ポリ乳酸;ポリ(エチレンサクシネート)、ポリ(ブチレンサクシネート)、ポリ(ブチレンサクシネート-co-ブチレンアジペート)などの脂肪族ジオールと脂肪族カルボン酸とのポリエステル;ポリ(グリコール酸)、ポリ(3-ヒドロキシ酪酸)、ポリ(3-ヒドロキシ吉草酸)、ポリ(6-ヒドロキシカプロン酸)等のポリヒドロキシカルボン酸;ポリ(ε-カプロラクトン)やポリ(δ-バレロラクトン)などのポリ(ω-ヒドロキシアルカノエート)などが挙げられる。これらの脂肪族ポリエステルのうち、ポリ乳酸が好ましく、ポリ乳酸は、ポリD-乳酸、ポリL-乳酸またはそれらの混合物であってもよい。
 易溶解性ポリエステル系ポリマーとしては、例えば、100℃の2%水酸化ナトリウム水溶液に浴比1:30で浸漬した際に、例えば60分以内、好ましくは45分以内、より好ましくは30分以内、特に好ましくは15分以内にほぼ完全に溶解(分解)するようなアルカリ易溶解性ポリエステルがより好ましい。
 水溶性の易溶解性熱可塑性ポリマーであるポリビニルアルコール系ポリマーとしては、例えば、粘度平均重合度が200~500、ケン化度が90~99.99モル%(好ましくは、95~99モル%)、融点が160~230℃のポリビニルアルコールが好ましい。ポリビニルアルコール系ポリマーは、ホモポリマーであっても共重合体であってもよいが、溶融紡糸性、水溶性、繊維物性の観点からは、エチレン、プロピレンなど炭素数が4以下のα-オレフィンなどで0.1~20モル%(好ましくは5~15モル%)変性された共重合ポリビニルアルコールを用いることが好ましい。
 ポリビニルアルコール系ポリマーとしては、例えば、100℃の熱水に浴比1:30で浸漬した際に、例えば60分以内、好ましくは45分以内、より好ましくは30分以内、特に好ましくは15分以内にほぼ完全に溶解(分解)するような熱可塑性ポリビニルアルコール系ポリマーが好ましく、α-オレフィンで変性された共重合ポリビニルアルコールがより好ましい。
 <複合繊維の製造方法>
 本発明の複合繊維は、X成分およびY成分の組み合わせを決定したうえで、従来公知の複合紡糸装置を用いて繊維化することが可能である。例えば、低速、中速で溶融紡糸した後に延伸する方法、高速による直接紡糸延伸方法、紡糸後に延伸と仮撚を同時にまたは続いて行う方法などの任意の製糸方法で製造することができる。
 本発明の複合繊維において、X成分とY成分の複合比率(質量比)は、X:Yが90:10~50:50である。X成分が多すぎると、芯鞘構造とすることによるX成分の配向度低下の効果が得られにくくなり、伸長時の応力を十分に小さくすることが困難となる。また、繊維化工程性、特に繊維化して巻取り後に膠着が発生するため、製品作製の工程通過性が悪化する場合がある。一方、Y成分が多すぎると、複合繊維化工程中X成分の冷却速度が遅くなり、紡糸性に劣る。また、X成分の分子配向が緩くなりすぎ、人体へ着用した際の良好な着用感が得られなくなる可能性がある。本発明の複合繊維において、X成分とY成分の複合比率(質量比)は、X:Yがより好ましくは85:15~50:50、さらに好ましくは80:20~50:50である。
 本発明の複合繊維の断面において、Y成分が繊維表面全体を覆う必要はないが、繊維化の巻取り工程性や、巻取り後の取扱性、製品作製の工程通過性を確保するために、繊維断面において、X成分が芯となり、Y成分がX成分の全周長の70%以上を被覆していることが重要であり、80%以上被覆しているのがより好ましく、90%以上被覆しているのが特に好ましい。
 本発明の複合形態は、アルカリ処理、水処理などによってY成分が溶解除去可能であるとともに、X成分にひび割れが生じない範囲であれば、同芯型、偏芯型、多芯型でもよい。また、X成分の繊維断面形状は、円形断面形状であってもよく、三角形、偏平、多葉型などの異形断面形状であってもよい。さらに、X成分の内部に中空部を設けることも可能であり、一孔中空、二孔中空以上の多孔中空等の中空形状など、各種の断面形状としてもよい。
 本発明の複合繊維の単繊維繊度は、目的に応じて適宜設定することができる。複合繊維を製造しやすく、紡糸性を向上させ得る観点から、例えば、0.3~50dtex、好ましくは0.3~40dtexの範囲から選択できる。また、人体へのフィット感を向上する観点からは、好ましくは0.3~10dtex、より好ましくは0.3~5dtexである。なお、本発明の複合繊維では、糸切れ性を防止しつつ、6dtex以下の細繊度の繊維を得ることができる。これらの繊維は、長繊維のみならず短繊維、あるいはショートカットとしても用いることができる。
 なお、単繊維繊度は、JIS L 1013に準拠して複合繊維の総繊度を測定し、これをフィラメント数で除した値から算出できる。
 本発明の複合繊維は、100%伸長時強度が0.04cN/dtex以下である繊維を得るための複合繊維であり、前記Y成分を溶脱して得られる繊維の100%伸長時強度は0.04cN/dtex以下となる。本発明の複合繊維から得られる繊維の100%伸長時強度が0.04cN/dtexを超えると、繊維を伸長するために必要な力が大きくなる傾向にあり、衣類として人体に着用した際に、動き難さや過度な締め付け感を生じやすくなる。本発明において、複合繊維から得られる繊維の100%伸長時強度は、好ましくは0.035cN/dtex以下、より好ましくは0.03cN/dtex以下、さらに好ましくは0.025cN/dtex以下である。得られる繊維の100%伸長時強度が低いほど伸長時に必要となる力は小さくなり、衣類として人体に着用した際により自然な着用感を実現し得るため、その下限値は特に限定されるものではないが、適度な伸縮性や締め付け感の観点からは、通常0.004cN/dtex以上、好ましくは0.008cN/dtex以上である。なお、繊維の100%伸長時強度は、後述する実施例に記載するように、本発明の複合繊維から易溶解性熱可塑性ポリマーを溶脱した後、JIS L 1013(引張強さ)の方法に準拠して測定、算出することができる。
 100%伸長時強度は0.04cN/dtex以下となる本発明の複合繊維から得られるような繊維は、非常に小さな力で伸長することができ、優れた伸縮性とともに高い柔軟性を有し、着用時に適度な締め付け感を有しながらも自然な着用感を実現し得る布帛の製造に好適である。したがって、本発明は、ポリビニル系熱可塑性エラストマーまたはガラス転移温度が0℃以下である熱可塑性ポリウレタンエラストマーを含んでなり、100%伸長時強度が0.04cN/dtex以下である繊維も対象とする。
 本発明の繊維は、例えば、ポリビニル系熱可塑性エラストマーまたはガラス転移温度が0℃以下である熱可塑性ポリウレタンエラストマーを含んでなるX成分と、易溶解性熱可塑性ポリマーであるY成分とから構成され、X成分とY成分の複合比率(質量比)がX:Y=90:10~50:50であり、繊維断面において、X成分が芯成分、Y成分が鞘成分である芯鞘構造を有する複合繊維を少なくとも一部に使用し、前記複合繊維を構成する易溶解性熱可塑性ポリマー(Y成分)を溶脱させる工程を含む製造方法により製造することができる。
 本発明の繊維を構成するポリビニル系熱可塑性エラストマーまたはガラス転移温度が0℃以下である熱可塑性ポリウレタンエラストマーとしては、本発明の複合繊維を構成するX成分として先に例示したものと同様の熱可塑性エラストマーが挙げられる。また、本発明の繊維を得るための複合繊維を構成する易溶解性熱可塑性ポリマーとしては、本発明の複合繊維を構成するY成分として先に例示したものと同様の熱可塑性ポリマーが挙げられる。また、本発明の繊維を得るための複合繊維は、例えば、本発明の複合繊維の製造方法として先に説明した方法と同様の方法に従い製造することができる。
 本発明の繊維の製造方法において、Y成分(鞘成分)である易溶解性熱可塑性ポリマーの溶脱工程は、最終的に繊維として得られるX成分に影響を及ぼすことなくY成分を完全に溶解または分解し得る方法および条件であれば特に限定されるものではなく、用いるX成分およびY成分の種類、X成分とY成分の複合比率等に応じて適宜選択すればよい。具体的には、例えば、本発明の複合繊維を構成するY成分の説明において例示した溶脱用の溶液や条件を採用し得る。
 本発明の繊維における100%伸長時強度は、0.04cN/dtex以下であり、好ましくは0.035cN/dtex以下、より好ましくは0.03cN/dtex以下、さらに好ましくは0.025cN/dtex以下である。100%伸長時強度が0.04cN/dtexを超えると、繊維を伸長するために必要な力が大きくなる傾向にあり、衣類として人体に着用した際に、動き難さや過度な締め付け感を生じやすくなる。繊維の100%伸長時強度が低いほど伸長時に必要となる力は小さくなり、衣類として人体に着用した際により自然な着用感を実現し得るため、本発明の繊維の100%伸長時強度の下限値は特に限定されるものではないが、適度な伸縮性や締め付け感の観点からは、通常0.004cN/dtex以上、好ましくは0.008cN/dtex以上である。
 また、本発明の好適な一態様において、JIS L 1096(B-1法)に準拠して3回試験を繰り返した後の伸長弾性率が95%以上であることが好ましく、98%以上であることがより好ましく、100%であってもよい。上記伸長弾性率が前記下限値以上であると、伸縮を繰り返した際に繊維の伸び切りが生じ難く、何度も伸縮が繰り返される衣類に用いても繊維が本来有していた伸縮性を維持することができ、継続的に高い伸縮性を発揮することができる。上記伸長弾性率は、本発明の繊維がポリビニル系熱可塑性エラストマーを含んで構成される場合、特に、1)50~100質量%が重量平均分子量200,000以下であり、少なくとも2個のビニル芳香族化合物を主体とする重合体ブロックaと少なくとも1個の共役ジエン化合物を主体とする重合体ブロックbとからなるブロック共重合体(A)および前記ブロック共重合体(A)を水素添加してなるブロック共重合体(A’)から選択される少なくとも1種100質量部と、2)炭化水素系ゴム用軟化剤50~300質量部とを含む樹脂組成物から構成される場合に、実現しやすい。
 本発明の複合繊維および本発明の繊維は、各種織編物、不織布などの布帛に用いることができる。したがって、本発明は、本発明の複合繊維を少なくとも一部に含む布帛、および、本発明の繊維を少なくとも一部に含む布帛を対象とする。なお、本発明の複合繊維を少なくとも一部に含む布帛においては、通常Y成分を溶脱し、取り除いた後、人体に対して用いられる最終製品として用いられる。本発明において前記布帛は、例えば、本発明の複合繊維を少なくとも一部に使用し、前記複合繊維を構成する易溶解性熱可塑性ポリマー(Y成分)を溶脱する工程を含む製造方法により製造することができる。
 本発明の複合繊維または繊維を含む布帛は、本発明の複合繊維または繊維単独で形成されていてもよいが、本発明の複合繊維または繊維を一部に使用してなる織編物や不織布、例えば、天然繊維、化学繊維、合成繊維など他の繊維との交綴織布、あるいは混紡糸、混織糸として用いた織編物、混綿不織布などであってもよい。例えば、他の繊維と組み合わせて用いる場合、織編物や不織布に占める本発明の複合繊維のX成分の割合は、特に制限はないが、例えば、5質量%以上であってよく、好ましくは14質量%以上、より好ましくは15質量%以上、さらに好ましくは18質量%以上、特に好ましくは23質量%以上であってもよい。また、混紡糸、混織糸として用いる場合、その糸におけるX成分の割合は、例えば、14~95質量%であってもよく、好ましくは20質量%以上、好ましくは30質量%以上、より好ましくは40質量%以上であってもよい。
 本発明の繊維を含む布帛、および、本発明の複合繊維を含む布帛からY成分を除去することによって得られる布帛は、小さな力で伸長することができ、優れた伸縮性とともに高い柔軟性を有し、着用時に適度な締め付け感を有しながらも自然な着用感を実現し得る。また、本発明で用いられる複合繊維を用いることにより、布帛を構成する熱可塑性エストラマー繊維の単繊維繊度を、例えば、0.3~50dtex、好ましくは0.3~40dtexの範囲とすることができ、細繊度化する場合、0.3~10dtex、好ましくは0.3~5dtexもの細繊度繊維にすることが可能である。
 本発明の複合繊維または繊維を含む布帛に対しては、布帛化工程を経た後に、必要に応じて針布起毛等による起毛処理やその他の仕上げ加工を施してもよい。
 以下に実施例に基づいて本発明をより詳細に述べるが、以下の実施例は、本発明を限定するものではない。
1.複合繊維
(1)構成成分
 実施例および比較例で使用したX成分およびY成分は以下の通りである。
 <X成分>
・ポリビニル系:EARNESTON(登録商標)CJ101:クラレプラスチックス株式会社製、スチレン-イソプレン・ブタジエン-スチレン型トリブロック共重合体の水添ブロック共重合体およびスチレン-イソプレン-スチレン型トリブロック共重合体(重量平均分子量50000~200000の間にて選定、250℃における溶融粘度480poise、ガラス転移温度-35℃)と炭化水素系ゴム用軟化剤とのコンパウンド、
・ポリウレタン系1:パンデックスT-8175N:DICコベストロポリマー株式会社製、ガラス転移温度:約-45℃
・ポリウレタン系2:特許第6195715号の実施例4の記載に従い、ポリウレタンエラストマーを調製した。ガラス転移温度:35℃
 <Y成分>
・変性PVA:変性ポリビニルアルコール(エクセバール):株式会社クラレ製、ケン化度:98.5、エチレン含有量8.0モル%、重合度:380
・易溶解性ポリエステル:分子量2000のポリエチレングリコール8モル%と、5-ナトリウムスルホイソフタル酸5モル%とを共重合したポリエチレンテレフタレート、固有粘度[η]0.52
・ポリ乳酸:カーギル・ダウ製、6200D
(2)複合繊維の製造
 実施例1~5および比較例3~5
 以下の方法に従い、実施例1~5および比較例3~5の複合繊維をそれぞれ調製した。表1に示す組成に従い、X成分(芯成分)とY成分(鞘成分)とを、それぞれ別々の押出し機で溶融させ、芯鞘断面で複合繊維を複合紡糸ノズルより吐出させた。ついで紡糸口金より吐出された糸条を、長さ1.0mの横吹付け型冷却風装置により冷却した後、連続して紡糸口金直下から1.3mの位置に設置した長さ1.0m、内径30mmのチューブヒーター(内壁温度:130℃)に導入してチューブヒーター内で延伸した。その後、チューブヒーターから出てきた繊維に紡糸油剤を付与し、引き続いてローラーを介して2000m/分の引取り速度で巻き取って、各総繊度・フィラメント数の複合繊維を得た。なお、紡糸油剤としては、水を含まない制電剤成分と平滑剤成分からなる油剤を使用した。
(3)繊維の製造(溶脱方法)
 易溶解性熱可塑性ポリマーとして変性ポリビニルアルコールを用いた実施例1、2、5および比較例3~5の複合繊維、並びに、ポリ乳酸を用いた実施例4の複合繊維を、それぞれ、80℃の熱水に30分間浸漬し、変性ポリビニルアルコールまたはポリ乳酸からなるY成分を溶解除去した。また、易溶解性ポリエステルを用いた実施例3の複合繊維を、可性ソーダ20g/L、浴比1:30のアルカリ水溶液(液温100℃)中に30分間浸漬し、Y成分を選択的に溶解除去した。Y成分の溶脱は、重量変化により確認した。
(4)比較例1および2
 以下の方法に従い、比較例1および2の繊維をそれぞれ調製した。表1に示す組成に従い、X成分を押出し機で溶融させ、単独繊維を紡糸ノズルより吐出させた。ついで紡糸口金より吐出された糸条を、長さ1.0mの横吹付け型冷却風装置により冷却した後、紡糸油剤を付与し、ローラーを介して100m/分の引取り速度で巻き取って、各総繊度・フィラメント数の単独繊維を得た。なお、紡糸油剤としては、水を含まない制電剤成分と平滑剤成分からなる油剤を使用した。
2.繊維の物性/特性評価
 実施例および比較例における繊維の各物性値は以下の方法により測定した。各結果を表1に示す。
 〔100%伸長時強度測定〕
 JIS L 1013(引張強さ)に準拠し、インストロン型の引張り試験機を用いて得られた荷重-伸度曲線から求めた。複合繊維である場合、該測定は易溶解性熱可塑性ポリマーを溶脱後に行った。
 〔伸長弾性率〕
 JIS L 1096(B-1法)に準拠し、3回繰り返し試験を行った後(3回目)の伸長弾性率を求めた。複合繊維である場合、該測定は易溶解性熱可塑性ポリマーを溶脱後に行った。
 〔強度保持率〕
 易溶解性熱可塑性ポリマーを溶脱後に、フェードテスター(スガ試験機株式会社製紫外線ロングライフフェードメーターFAL-5H・B・BL、紫外線カーボンアークランプ、63℃)で100時間照射した後、JIS L 1013(引張強さ)に準拠し、インストロン型の引っ張り試験機を用いて得られた荷重-伸度曲線から求めた。
 〔紡糸性〕
 実施例1~5および比較例1~5の複合繊維または単独繊維について、先に記載の各引取り速度で巻き取った際の紡糸性については、以下の基準に従って評価した。
 12時間断糸なく連続して巻取を続けられた:◎
 12時間で断糸が1~10回発生したが巻取は可能だった:○
 12時間で断糸が11~20回発生したが巻取は可能だった:△
 12時間以内に断糸が21回以上発生し、連続した巻取が困難だった:×
Figure JPOXMLDOC01-appb-T000001
 本発明の複合繊維から得られた繊維(実施例1~5)は、それぞれ、100%伸長時強度が小さく、小さな力で伸長可能な繊維であることが確認された。また、X成分としてポリビニル系熱可塑性エラストマーを用いることにより、繰り返し伸縮した際の回復性(伸長弾性率)が高く、耐久性に優れる繊維を得られることが確認された(実施例1~4)。
3.布帛
(1)布帛の作製
 表2に示す組成に従い、実施例6~10に関してはX成分とY成分とを各質量比で用いて、実施例1と同様の方法で複合繊維を得た。その後、得られた各複合繊維をナイロン糸(Ny-6)と同時に供給し、丸編機(18ゲージ)を用いて実施例6~10の丸編地を作製した。得られた丸編地を、80℃の熱水に30分間浸漬した後、160℃で1分間トンネルセッターを通過させ、X成分から構成される布帛を得た。また、比較例6については比較例1、比較例7については比較例2と同様の方法で単独繊維を得た後、実施例6と同様に、得られた各単独繊維をナイロン糸と同時に供給し、丸編機(18ゲージ)を用いて比較例6および7の丸編地を作製した。
(2)着用感評価
 得られた編物の着用感を、10人のパネラーにより官能評価した。官能評価では、「装着時に締め付けを感じない」を2点、「若干締め付けを感じる」を1点、「締め付けを感じる」を0点として、各パネラーが評価し、その合計点を算出して、着用感を評価した。
 ◎:合計点が15点以上
 ○:合計点が11~14点
 △:合計点が7点~10点
 ×:合計点が6点以下
Figure JPOXMLDOC01-appb-T000002
 布帛へのX成分の使用比率が5%以上であると、締め付けをほぼ感じない快適性のある布帛を得られた。更にX成分の使用比率が40%以上であると、顕著に快適性が向上されることが確認され、本発明の複合繊維の効果を十分に発揮し得る布帛を得られることが確認された(実施例6~10)。一方、比較例6、7では締め付けを感じる傾向にあり、不快感のある布帛となることが確認された。

Claims (10)

  1.  100%伸長時強度が0.04cN/dtex以下である繊維を得るための複合繊維であって、ポリビニル系熱可塑性エラストマーまたはガラス転移温度が0℃以下である熱可塑性ポリウレタンエラストマーを含んでなるX成分と、易溶解性熱可塑性ポリマーであるY成分とから構成され、X成分とY成分の複合比率(質量比)がX:Y=90:10~50:50であり、繊維断面において、X成分が芯成分、Y成分が鞘成分である芯鞘構造を有する複合繊維。
  2.  前記易溶解性熱可塑性ポリマーが、ポリビニルアルコール系ポリマー、および易溶解性ポリエステル系ポリマーから選択される少なくとも1種である、請求項1に記載の複合繊維。
  3.  前記X成分がポリビニル系熱可塑性エラストマーを含む樹脂組成物から構成され、前記樹脂組成物が少なくとも下記1)および2):
    1)50~100質量%が重量平均分子量200,000以下であり、少なくとも2個のビニル芳香族化合物を主体とする重合体ブロックaと少なくとも1個の共役ジエン化合物を主体とする重合体ブロックbとからなるブロック共重合体(A)および前記ブロック共重合体(A)を水素添加してなるブロック共重合体(A’)から選択される少なくとも1種100質量部;および
    2)炭化水素系ゴム用軟化剤50~300質量部
    を含む、請求項1または2に記載の複合繊維。
  4.  単繊維繊度が0.3~50dtexである、請求項1~3のいずれかに記載の複合繊維。
  5.  請求項1~4のいずれかに記載の複合繊維を少なくとも一部に含む布帛。
  6.  ポリビニル系熱可塑性エラストマーまたはガラス転移温度が0℃以下である熱可塑性ポリウレタンエラストマーを含んでなり、100%伸長時強度が0.04cN/dtex以下である繊維。
  7.  JIS L 1096(B-1法)において、3回繰り返し試験後の伸長弾性率が95%以上である、請求項6に記載の繊維。
  8.  請求項6または7に記載の繊維を少なくとも一部に含む布帛。
  9.  請求項1~4のいずれかに記載の複合繊維を少なくとも一部に使用し、前記複合繊維を構成する易溶解性熱可塑性ポリマー(Y成分)を溶脱させる工程を含む、請求項6または7に記載の繊維の製造方法。
  10.  請求項1~4のいずれかに記載の複合繊維を少なくとも一部に使用し、前記複合繊維を構成する易溶解性熱可塑性ポリマー(Y成分)を溶脱させる工程を含む、請求項8に記載の布帛の製造方法。
PCT/JP2019/047333 2018-12-21 2019-12-04 複合繊維 WO2020129629A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020561275A JP7090741B2 (ja) 2018-12-21 2019-12-04 複合繊維
CN201980084138.5A CN113227474B (zh) 2018-12-21 2019-12-04 复合纤维
EP19900004.3A EP3901335A4 (en) 2018-12-21 2019-12-04 COMPOSITE FIBER
US17/299,369 US20220025553A1 (en) 2018-12-21 2019-12-04 Composite fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018240135 2018-12-21
JP2018-240135 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020129629A1 true WO2020129629A1 (ja) 2020-06-25

Family

ID=71102814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047333 WO2020129629A1 (ja) 2018-12-21 2019-12-04 複合繊維

Country Status (5)

Country Link
US (1) US20220025553A1 (ja)
EP (1) EP3901335A4 (ja)
JP (1) JP7090741B2 (ja)
CN (1) CN113227474B (ja)
WO (1) WO2020129629A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230323146A1 (en) * 2022-03-22 2023-10-12 Xerox Corporation Piezoresistive composites via additive manufacturing and composite filaments associated therewith

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049321A (ja) * 2001-05-31 2003-02-21 Chisso Corp 弾性繊維及びこれを用いた不織布、繊維製品
JP2003129330A (ja) * 2001-10-26 2003-05-08 Chisso Corp 弾性繊維,弾性不織布及びこれらを用いた繊維製品
JP2009228150A (ja) * 2008-03-21 2009-10-08 Kuraray Co Ltd 制振機能を有する繊維
WO2013115094A1 (ja) * 2012-01-31 2013-08-08 株式会社クラレ 複合繊維、ポリウレタンエラストマー布帛の製造方法、およびポリウレタンエラストマー布帛
JP2015193953A (ja) * 2014-03-31 2015-11-05 株式会社クラレ 熱可塑性エラストマーからなる複合繊維
JP2016108703A (ja) * 2014-12-09 2016-06-20 株式会社クラレ アクリル系ブロック共重合体からなる複合繊維

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2556649B2 (ja) * 1991-05-14 1996-11-20 鐘紡株式会社 潜在弾性複合繊維、その製造方法及び伸縮弾性を有する繊維構造物の製造方法
JP3145796B2 (ja) * 1992-06-18 2001-03-12 株式会社クラレ 芯鞘型複合繊維
JP2000178833A (ja) * 1998-12-14 2000-06-27 Pilot Ink Co Ltd 感温変形性複合フィラメント
JP5340706B2 (ja) * 2008-11-28 2013-11-13 株式会社クラレ 制振機能を有する複合繊維

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049321A (ja) * 2001-05-31 2003-02-21 Chisso Corp 弾性繊維及びこれを用いた不織布、繊維製品
JP2003129330A (ja) * 2001-10-26 2003-05-08 Chisso Corp 弾性繊維,弾性不織布及びこれらを用いた繊維製品
JP2009228150A (ja) * 2008-03-21 2009-10-08 Kuraray Co Ltd 制振機能を有する繊維
WO2013115094A1 (ja) * 2012-01-31 2013-08-08 株式会社クラレ 複合繊維、ポリウレタンエラストマー布帛の製造方法、およびポリウレタンエラストマー布帛
JP6195715B2 (ja) 2012-01-31 2017-09-13 株式会社クラレ 複合繊維、ポリウレタンエラストマー布帛の製造方法、およびポリウレタンエラストマー布帛
JP2015193953A (ja) * 2014-03-31 2015-11-05 株式会社クラレ 熱可塑性エラストマーからなる複合繊維
JP2016108703A (ja) * 2014-12-09 2016-06-20 株式会社クラレ アクリル系ブロック共重合体からなる複合繊維

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3901335A4

Also Published As

Publication number Publication date
EP3901335A1 (en) 2021-10-27
US20220025553A1 (en) 2022-01-27
JPWO2020129629A1 (ja) 2021-09-27
EP3901335A4 (en) 2023-10-11
CN113227474B (zh) 2024-01-16
JP7090741B2 (ja) 2022-06-24
CN113227474A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
TWI537440B (zh) 彈性多成份纖維及其製造方法
EP2811054B1 (en) Composite fiber, method for producing polyurethane elastomer fabric, and polyurethane elastomer fabric
WO2004048663A1 (ja) 伸長性不織布および該不織布を積層した複合不織布
JP2665049B2 (ja) 粗表面を有する複合弾性フィラメント、その製造方法及びそれよりなる繊維構造物
JP4997890B2 (ja) 人工皮革基材の製造方法
TWI537442B (zh) 可熔性彈性多成份纖維、包含其之織物及其製造方法
JP7090741B2 (ja) 複合繊維
JP6370079B2 (ja) 熱可塑性エラストマーからなる複合繊維
JP2010150676A (ja) ポリウレタン弾性糸およびその製造方法
JP4974942B2 (ja) コンジュゲート繊維
JP3694103B2 (ja) 自然分解性複合繊維及びその応用製品
JP4298427B2 (ja) 分割型ポリ乳酸系複合繊維
JP4795278B2 (ja) バインダー繊維及びこれを用いてなる不織布
JP7269163B2 (ja) 弾性繊維混用融着編地およびその製造方法
JP4361715B2 (ja) ポリ乳酸異収縮混繊糸
JPH062220A (ja) 芯鞘型複合繊維
JP4033712B2 (ja) 潜在捲縮性ポリ乳酸複合繊維
JP3683037B2 (ja) 自然分解性複合糸およびその製品
JP2000054227A (ja) ポリオレフィン系複合繊維
WO2022154035A1 (ja) 海島型複合マルチフィラメントおよび極細マルチフィラメントならびに極細繊維構造体
US20230272145A1 (en) Composite fiber and fiber structure containing same
JPH09209222A (ja) 自然分解性複合糸およびその製品
WO2021068117A1 (en) Polymer compositions comprising cellulose esters
JPH04185716A (ja) 複合弾性繊維
JPH09310237A (ja) 自然分解性複合糸およびその製品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900004

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561275

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019900004

Country of ref document: EP

Effective date: 20210721