WO2020129601A1 - Laser annealing method and laser annealing apparatus - Google Patents

Laser annealing method and laser annealing apparatus Download PDF

Info

Publication number
WO2020129601A1
WO2020129601A1 PCT/JP2019/047137 JP2019047137W WO2020129601A1 WO 2020129601 A1 WO2020129601 A1 WO 2020129601A1 JP 2019047137 W JP2019047137 W JP 2019047137W WO 2020129601 A1 WO2020129601 A1 WO 2020129601A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser beam
beam spot
silicon film
amorphous silicon
Prior art date
Application number
PCT/JP2019/047137
Other languages
French (fr)
Japanese (ja)
Inventor
水村 通伸
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2020129601A1 publication Critical patent/WO2020129601A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Definitions

  • the present invention relates to a laser annealing method and a laser annealing apparatus.
  • the laser annealing process was performed using a single wavelength laser having a wavelength that is absorbed by the amorphous silicon film to be annealed.
  • a laser wavelength having a high absorptivity with respect to an amorphous silicon film is ultraviolet
  • a semiconductor laser needs to have a wavelength range of about 400 to 450 nm.
  • the output of the semiconductor laser is about several W, and in order to perform the laser annealing process on a wide area, a structure has been proposed in which a plurality of semiconductor lasers are collectively output. Therefore, the conventional laser annealing method using continuous wave laser light has problems that the efficiency of the laser annealing process is low and the cost is high.
  • a first laser beam having a wavelength of visible light or shorter is processed so that the irradiation surface has a long beam, and a basic laser beam is applied to a portion having a low energy density in the first laser beam.
  • a technique of irradiating a second laser beam formed of waves is known (for example, refer to Patent Document 1).
  • a gas laser, a solid-state laser, and a metal laser are used as the laser.
  • the energy density is complemented by arranging the second laser beam so as to surround and cover the outer circumference of the beam on the irradiation surface of the first laser beam.
  • a region where the second laser beam is superposed is calculated from the distribution of the energy density of the first laser beam, and the energy density in the entire superposed region is averaged.
  • the reflected light from the front surface of the substrate and the reflected light from the rear surface of the substrate at a predetermined incident angle of the laser beam are used. , Are designed so as to form a uniform laser beam without interference.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a laser annealing method and a laser annealing apparatus that can form a crystallized silicon film in a region having a required area at low cost.
  • an aspect of the present invention is to relatively move a substrate to be processed having an amorphous silicon film formed on its surface with respect to a beam spot of a laser beam.
  • the second laser beam spot formed by the second laser light in the wavelength range absorbed by the melted silicon is irradiated to a region adjacent to the first laser beam spot.
  • the wavelength range of the first laser light is near ultraviolet to visible light
  • the wavelength range of the second laser light is visible light or more.
  • each of the first laser light and the second laser light is emitted from a semiconductor laser.
  • the power density of the first laser light is preferably lower than the power density of the second laser light.
  • the first laser beam spot is arranged at the same position or downstream of the second laser beam spot in the carrying direction of the substrate to be processed.
  • the first laser beam spot is arranged so as to pass through a part of the modified region, and the second laser beam spot is formed so as to pass over the entire surface of the modified region. Is preferred.
  • the plurality of second laser beam spots are formed so as to extend from the first laser beam spot.
  • the second laser beam spot is arranged so as to extend from the first laser beam spot toward an obliquely upstream side in the transport direction of the substrate to be processed.
  • the amorphous silicon film is set so as to move relative to a beam spot of a laser beam on a substrate on which the amorphous silicon film is formed.
  • a laser annealing apparatus for irradiating the laser beam with the beam spot to modify the crystallized silicon film, the first light source oscillating a first laser beam in a wavelength range absorbed by the amorphous silicon film.
  • a first light source unit that oscillates a second laser beam in a wavelength range that is absorbed by the melted silicon, and irradiates a first laser beam spot of the first laser beam to the amorphous state.
  • the silicon film is melted, and the silicon melted by the first laser light is irradiated with a second laser beam spot of the second laser light in an area adjacent to the first laser beam spot.
  • the wavelength range of the first laser light is near ultraviolet to visible light
  • the wavelength range of the second laser light is visible light or more.
  • each of the first laser light and the second laser light is emitted from a semiconductor laser.
  • the power density of the first laser light is set lower than the power density of the second laser light.
  • the first laser beam spot is located at the same position or downstream of the second laser beam spot in the carrying direction of the substrate to be processed.
  • the first laser beam spot is arranged so as to pass through a part of the modified region, and the second laser beam spot is formed so as to pass over the entire surface of the modified region. It is preferable.
  • the plurality of second laser beam spots are formed so as to extend from the first laser beam spot.
  • the second laser beam spot is arranged so as to extend from the first laser beam spot toward an obliquely upstream side in the transport direction of the substrate to be processed.
  • the present invention it is possible to realize a laser annealing method and a laser annealing apparatus capable of forming a crystallized silicon film in a region having a required area at low cost.
  • FIG. 1 is a flowchart showing a laser annealing method according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of a laser annealing apparatus used in the laser annealing method according to the embodiment of the present invention.
  • FIG. 3 is an explanatory view schematically showing an arrangement example of micromirrors in the laser annealing apparatus used in the laser annealing method according to the embodiment of the present invention.
  • FIG. 4 is an explanatory diagram showing a beam spot (indicated by diagonal hatching) when the first irradiation for forming the seed crystal region in the amorphous silicon film is performed in the laser annealing method according to the embodiment of the present invention. is there.
  • FIG. 1 is a flowchart showing a laser annealing method according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of a laser annealing apparatus used in the laser annealing method according to the embodiment of the present invention.
  • FIG. 5 shows a beam spot (indicated by hatching in a grid pattern) when the first irradiation and the second irradiation are performed simultaneously in the laser annealing method according to the embodiment of the present invention, and the seed crystal region is used as a starting point.
  • FIG. 9 is an explanatory view showing a state in which a pseudo single crystal silicon film has started to be formed.
  • FIG. 6 is an explanatory diagram showing a beam spot (indicated by diagonal hatching) when the first irradiation is stopped and only the second irradiation is performed in the laser annealing method according to the embodiment of the present invention.
  • FIG. 7 is an explanatory diagram showing a state in which a pseudo single crystal silicon film is grown in a wide region in the laser annealing method according to the embodiment of the present invention.
  • FIG. 8 is an explanatory diagram showing an imaging optical system in an MLA laser annealing apparatus as another laser annealing apparatus used in the laser annealing method according to the embodiment of the present invention.
  • FIG. 9 is a plan view showing a mask in an MLA laser annealing apparatus as another laser annealing apparatus used in the laser annealing method according to the embodiment of the present invention.
  • the substrate 1 to be processed includes a glass substrate 2, a plurality of gate wirings 3 arranged on the surface of the glass substrate 2, a glass substrate 2 and a gate insulation formed on the gate wiring 3.
  • the film 4 and the amorphous silicon film 5 deposited on the entire surface of the gate insulating film 4 are provided.
  • the substrate 1 to be processed finally becomes a TFT substrate in which a thin film transistor (TFT) or the like is built.
  • TFT thin film transistor
  • the laser annealing apparatus 10 includes a base 11, a first laser light source unit 12A, a second laser light source unit 12B, a laser beam irradiation unit 13, and a control unit 14.
  • the laser beam irradiation unit 13 does not move during the annealing process, but the substrate 1 to be processed is moved.
  • the base 11 is provided with a substrate transfer means (not shown).
  • the substrate 1 to be processed is placed on the base 11 and is transported in the transport direction (scanning direction) T by a substrate transport means (not shown).
  • the transport direction T shown in FIGS. 4 to 7 may be the longitudinal direction of the gate wiring 3 or a direction orthogonal to the longitudinal direction.
  • the first laser light source unit 12A emits a first semiconductor laser 25 that oscillates a first laser beam and a light beam that emits a laser beam LB toward the laser beam irradiation unit 13. And a section 26.
  • the first semiconductor laser 25 uses, as the first laser light, one that oscillates continuous-wave laser light (CW laser light) having a wavelength range of 400 to 500 nm, such as purple, blue, green blue, blue green, and green.
  • the first laser light in such a wavelength range can be absorbed by the amorphous silicon forming the amorphous silicon film 5 to melt the amorphous silicon.
  • the laser beam irradiation unit 13 selectively reflects the first laser light to irradiate the first laser beam spot LBS1 (first irradiation) on the surface of the amorphous silicon film 5, as shown in FIG. It has become.
  • the output of the first semiconductor laser 25 is, for example, about several watts because it irradiates only the portion corresponding to the DMD spot region.
  • the second laser light source unit 12B emits a second semiconductor laser 15 that oscillates a second laser beam and a laser beam LB that directs the second laser beam to the laser beam irradiation unit 13. And a section 17.
  • the second semiconductor laser 15 oscillates, as the second laser light, continuous wave laser light (CW laser light) having a wavelength range of visible light or more, for example, near infrared light.
  • CW laser light continuous wave laser light
  • the second laser light in this wavelength range is absorbed by the silicon melted by the first irradiation with the first laser beam spot LBS1 and is amorphous in a region adjacent to the region irradiated with the first laser beam spot LBS1.
  • the silicon film 5 is melted in the transport direction T and in a direction orthogonal to the transport direction T.
  • This second laser light is selectively reflected by the laser beam irradiation unit 13, and as shown in FIG. 5, the first laser beam spot LBS1 and the second laser beam adjacent thereto are formed on the surface of the amorphous silicon film 5.
  • Both spots LBS2 are irradiated (second irradiation).
  • the second laser beam spots LBS2 are, for example, formed in a pair so as to have a substantially V shape.
  • Each second laser beam spot LBS2 is formed so as to extend from the first laser beam spot LBS1 shown in a small circle shape.
  • the second laser beam spot LBS2 is arranged so as to extend from the first laser beam spot LBS1 toward an obliquely upstream side in the transport direction T of the substrate to be processed.
  • the output of the second semiconductor laser 15 is, for example, about 50 W because it is applied only to the part corresponding to the spot area of the DMD.
  • the first laser light source unit 12A and the second laser light source unit 12B emit the first laser light and the second laser light toward the laser beam irradiation unit 13.
  • the laser beam irradiation unit 13 receives the laser beams of the first laser beam and the second laser beam by a digital micromirror device 18 described later, and selectively forms a first laser beam spot LBS1 on the surface of the substrate 1 to be processed.
  • the second laser beam spot LBS2 is irradiated.
  • the laser beam irradiation unit 13 is arranged above the base 11 by a support frame or the like (not shown).
  • the laser beam irradiation unit 13 includes a digital micromirror device (DMD: Digital Micromirror Device, registered trademark of Texas Instruments) 18, a damper (absorber) 19, a microlens array 20, and a projection. And a lens 21.
  • DMD Digital Micromirror Device, registered trademark of Texas Instruments
  • a digital micromirror device (hereinafter referred to as DMD) 18 includes a drive substrate (CMOS substrate) 22 and a large number of micromirrors (thin film mirrors) 23 (23A to 23F: A to F).
  • the columns are respectively labeled with 1 to 6).
  • the number of micromirrors 23 will be described as 36, but the actual number is more than the number of pixels for high-definition television.
  • the micromirror 23 is formed in a square shape having a side length of, for example, about ten and several ⁇ m. A large number of pixel regions are arranged in a matrix on the drive substrate 22, and a CMOS SRAM cell is formed in each pixel region.
  • the micro mirror 23 is arranged on the drive substrate 22 so as to correspond to each CMOS SRAM cell.
  • the micro mirror 23 is provided by the MEMS (Micro Electro Mechanical Systems) technology.
  • Each micro mirror 23 is provided so as to be movable to two positions. Specifically, for example, it is configured to be rotationally moved to two positions forming an angle of +10 degrees and an angle of ⁇ 10 degrees with respect to the substrate surface.
  • the micro mirror 23 is driven so as to be displaced to the above two positions in accordance with the output data from the CMOS SRAM cell side.
  • the first laser beam spots LBS1 from the first laser light source unit 12A and the second laser light source unit 12B side are simultaneously or in any one of the plurality of micro mirrors 23 forming the array. Then it is incident.
  • the respective micro mirrors 23 (23A to 23F) are set so as to reflect a part of the laser light of the laser beam LB in two directions by selectively moving to the above two positions. ..
  • One of these two directions is a direction in which a part of the laser light of the laser beam LB is directed to the damper 19, and the other of the two directions is a part of the laser beam LB. This is the direction in which light is directed to the surface of the substrate 1 to be processed.
  • a pair of micromirrors 23A3 and 23A4 is used to create the first laser beam spot LBS1, and 23D1, 23C2, 23B3, 23B4, 23C5 and 23D6 arranged in a substantially V shape are the second laser beam spots. Used to create LBS2.
  • the damper 19 is arranged at a position for receiving the laser beam reflected by the micro mirror 23 in the off state when the micro mirror 23 is in the off state (for example, the angle with respect to the drive substrate 22 is ⁇ 10 degrees, non-irradiation state). Has been done.
  • the microlens array 20 focuses each laser beam reflected by the micromirror 23 in the on state (for example, the angle with respect to the drive substrate 22 is +10 degrees, the irradiation state) toward the projection lens 21.
  • the projection lens 21 is set so as to image the introduced laser beam on the surface of the substrate 1 to be processed as a part of the first laser beam spot LBS1 or the second laser beam spot LBS2.
  • the control unit 14 controls the substrate transfer means (not shown) provided on the base 11, the first laser light source unit 12A, the second laser light source unit 12B, and the DMD 18.
  • control unit 14 is set to drive and control the substrate transfer means (not shown) to move the substrate 1 to be processed in the transfer direction T at a predetermined speed.
  • control unit 14 drives and controls the first laser light source unit 12A, the second laser light source unit 12B, and the laser beam irradiation unit 13 to perform the first irradiation and the first irradiation on the substrate 1 to be processed. It is set to perform two irradiations.
  • the first laser light is emitted from the first laser light source unit 12A, and the laser beam reflected by the micromirrors 23A3 and 23A4 is applied to the surface of the amorphous silicon film 5 of the substrate 1 to be processed by the first laser beam. Irradiate as spot LBS1.
  • the second laser light is emitted from the second laser light source unit 12B, and the laser beam reflected by the micromirrors 23D1, 23C2, 23B3, 23B4, 23C5, 23D6 is an amorphous silicon film on the substrate 1 to be processed.
  • the surface of No. 5 is irradiated with the second laser beam spot LBS2.
  • the second laser light is also applied to the first laser beam spot LBS1.
  • the control unit 14 causes the laser light source unit 12 to continuously emit the CW laser light as the second laser light in the second irradiation.
  • the laser light source unit 12 is turned off, or all the micromirrors 23 (23A to 23F) in the DMD 18 are turned off so that the laser beam LB is reflected toward the damper 19. Is set to state.
  • the first irradiation and the second irradiation selectively turn on/off the micromirrors 23 (23A to 23F), so that the micromirrors 23A3 and 23A4 are arranged in a substantially V-shape.
  • a group of mirrors 23D1, 23C2, 23B3, 23B4, 23C5, 23D6 can also be selected.
  • the control unit 14 controls to start the first irradiation at the most downstream portion in the transport direction of the reforming area where the reforming is performed. Further, the control unit 14 is set to start the second irradiation at the same time as the start of the above-mentioned first irradiation or after a predetermined time from the first irradiation. In the present embodiment, the control unit 14 outputs a drive signal to the DMD 18 when the amorphous silicon film 5 moves to a predetermined position based on position information data of a substrate position detection sensor (not shown). It is set. The DMD 18 to which the drive signal is input is controlled to turn on a predetermined micromirror 23.
  • the laser beam LB composed of the laser light emitted from the first laser light source unit 12A or the second laser light source unit 12B is reflected by the predetermined micromirrors 23 to be processed. It is incident on the surface of the substrate 1.
  • the laser beams reflected from the respective micro mirrors 23 are first irradiated onto a predetermined position of the amorphous silicon film 5 to irradiate a first laser beam spot LBS1.
  • a seed crystal region 5A made of microcrystalline silicon can be formed as shown in FIG.
  • the control unit 14 controls the first laser light source unit 12A, the second laser light source unit 12B, and the laser beam irradiation unit when the amorphous silicon film 5 slightly moves based on the position information. It is set so that the first irradiation and the second irradiation are performed at the same time by controlling the driving of No. 13.
  • control unit 14 irradiates the second laser beam spot LBS2 composed of the second laser light with the seed crystal region 5A as a starting point in a state where the first irradiation is stopped. It is set to perform two irradiations.
  • the control unit 14 is set to stop the second irradiation when the locus of the second laser beam spot LBS2 passes through the entire surface of the modified region.
  • the second irradiation sets conditions such that the amorphous silicon film 5 becomes a pseudo single crystal (hereinafter also referred to as lateral crystal) silicon film 5B as a crystallized silicon film. ing.
  • the pseudo single crystal silicon film 5B constitutes a modified region.
  • the substrate 1 to be processed used in the laser annealing method according to the present embodiment, the laser annealing apparatus 10 and the operation and operation thereof have been described above.
  • the laser annealing method using these will be described below.
  • the surface of the amorphous silicon film 5 is irradiated with the first laser beam spot LBS1 of the first laser light in the wavelength range absorbed by the amorphous silicon to remove the amorphous silicon.
  • the second irradiation for irradiating the region adjacent to the first laser beam spot LBS1 with the second laser beam spot LBS2 of the second laser light in the region is performed, and the modified region is continuous with the seed crystal region 5A from the seed crystal region 5A as a starting point.
  • the laser annealing method according to the present embodiment is used in a method for manufacturing a thin film transistor, and is composed of steps S4 to S7 described below.
  • a substrate 1 to be processed in which a gate wiring 3, a gate insulating film 4 and an amorphous silicon film 5 are formed on a glass substrate 2 is prepared (step S1).
  • step S2 the substrate 1 to be processed is washed (step S2). Since the cleaned amorphous silicon film 5 of the substrate 1 to be processed contains hydrogen, the dehydrogenation process is performed, for example, at about 450° C. for several hours (step S3).
  • the substrate 1 to be processed is set on the base 11 of the laser annealing apparatus 10 and is moved along the transport direction T at a predetermined scan speed.
  • step S4 first irradiation for forming a seed crystal is performed (step S4).
  • the control unit 14 outputs a drive signal to the DMD 18 when the region to be modified reaches a predetermined position based on the position information of the amorphous silicon film 5. Based on the drive signal, the DMD 18 turns on only the preset pair of micromirrors 23A3 and 23A4.
  • FIG. 4 shows a state in which the laser beam LB emitted from the first laser light source unit 12A is reflected by the on-states 23A3 and 23A4 and only the first laser beam spot LBS1 is irradiated on the amorphous silicon film 5. .. Although the irradiation region of the second laser beam spot LBS2 is shown in FIG. 4, the second laser beam is not actually irradiated to the amorphous silicon film 5. The area irradiated with the first laser beam spot LBS1 is melted by the first laser light (wavelength range 400 to 500 nm).
  • the melted silicon is cooled and becomes the seed crystal region 5A made of microcrystalline silicon.
  • step S5 second irradiation is simultaneously performed (step S5).
  • the micromirrors 23D1, 23C2, 23B3, 23B4, 23C5, 23D6 are turned on, and the second laser beam (wavelength range 800 nm or more) is irradiated as the second laser beam spot LBS2.
  • the second laser light is also applied to the region of the first laser beam spot LBS1 via the micro mirrors 23A3 and 23A4.
  • the first laser light is applied to the region of the second laser beam spot LBS2 via the micro mirrors 23D1, 23C2, 23B3, 23B4, 23C5, 23D6. Therefore, in FIG. 5, the first laser beam spot LBS1 and the second laser beam spot LBS2 are indicated by the same lattice-shaped hatching.
  • the pseudo single crystal silicon is formed in the transport direction T and in a direction orthogonal to the transport direction T so as to be continuous with the seed crystal region 5A as a starting point.
  • the film 5B grows widely and becomes a modified region.
  • step S6 only the second irradiation is performed with the first irradiation stopped (step S6).
  • the region of the first laser beam spot LBS1 is also irradiated with the second laser light. Therefore, in FIG. 6, the first laser beam spot LBS1 uses the same hatching as the second laser beam spot LBS2.
  • the second irradiation is stopped and the laser annealing process ends (step S7).
  • the pseudo single crystal silicon film 5B starts from the seed crystal region 5A and is transferred in the transport direction T.
  • Grain boundaries 5GB as shown in FIG. 7 are formed in the pseudo single crystal silicon film 5B.
  • the grain boundaries 5GB extend in the width direction (direction orthogonal to the transport direction T) from the seed crystal region 5A, and then regularly extend in parallel along the transport direction T.
  • the substrate 1 to be processed is moved along the transport direction T, but it may be opposite to the transport direction T.
  • the present embodiment it is possible to perform the first irradiation by using the inexpensive first semiconductor laser 25 having a low power density.
  • the second semiconductor laser 15 that oscillates near-infrared light, which could not be conventionally used for annealing the amorphous silicon film 5. Therefore, in the laser annealing method and the laser annealing apparatus according to the present embodiment, the equipment cost can be significantly reduced.
  • the DMD 18 as the spatial light modulator, it is possible to easily create a laser beam only by turning on/off the micromirror 23. ..
  • the laser annealing apparatus 10 it becomes easy to arbitrarily form the shapes of the first laser beam spot LBS1 and the second laser beam spot LBS2 emitted by the first irradiation and the second irradiation, The size of the region to be laser-annealed can be easily followed.
  • the weight of the apparatus can be reduced, the substrate 1 to be processed is fixed, and the first laser light source unit 12A.
  • the second laser light source unit 12B and the laser beam irradiation unit 13 may be moved. Therefore, it is possible to suppress an increase in the footprint of the device.
  • FIG. 8 shows an imaging optical system of an MLA laser annealing apparatus that can be used in the laser annealing method according to the embodiment of the present invention.
  • FIG. 9 shows a mask 28 used in the image forming optical system of this MLA laser annealing apparatus.
  • This MLA laser annealing device also includes a first laser light source unit 12A and a second laser light source unit 12B, similar to the laser annealing device 10 according to the above embodiment.
  • a first irradiation opening 28S1 for forming a first laser beam spot LBS1 and a second irradiation opening 28S1 for forming a second laser beam spot LBS2 are formed in a mask 28, a first irradiation opening 28S1 for forming a first laser beam spot LBS1 and a second irradiation opening 28S1 for forming a second laser beam spot LBS2 are formed.
  • the irradiation opening 28S2 is formed.
  • the first irradiation opening 28S1 is used to form the seed crystal region 5A
  • the second irradiation opening 28S2 is used to form the pseudo single crystal silicon film 5B.
  • the second irradiation is stopped during the first irradiation for forming the seed crystal region 5A.
  • the first irradiation and the second irradiation are simultaneously mixed. You may go in the state.
  • the first irradiation is stopped and only the second irradiation is performed.
  • both irradiations may be performed without stopping the first irradiation. It is possible.
  • the second laser beam spot LBS2 has a substantially V shape, but the shape is not limited to such a shape.
  • the first laser beam spot LBS1 is preferably arranged on the downstream side of the second laser beam spot LBS2 in the transport direction T of the substrate to be processed 1.
  • the amorphous silicon film is irradiated by the second laser beam spot LBS2. This is not the case as long as No. 5 melts at a high speed.
  • the shapes of the first laser beam spot LBS1 and the second laser beam spot LBS2 are arranged so that the first laser beam spot LBS1 passes through a part of the modified region, and the second laser beam spot LBS2 is formed in the modified region.
  • Various shapes can be used as long as they can be formed so as to pass through the entire surface of the.
  • the spatial light modulator includes a liquid crystal cell having an optical shutter function, a grating light valve (GLV: Grating Light Valve, a registered trademark of Silicon Light Machines, Inc.), and a thin film. It is also possible to use a micro mirror array (TMA: Thin-film Micro mirror Array) or the like. Further, although the spatial light modulator is used in the above embodiment, the first laser beam spot LBS1 may be simply formed by using a condenser lens, or the cylindrical lens is arranged so as to have a V-shape. It is also possible to form the second laser beam spot LBS2.
  • GLV Grating Light Valve
  • TMA Thin-film Micro mirror Array
  • the pseudo single crystal silicon film 5B is formed as the crystallized silicon film, but it is of course possible to grow the polycrystalline silicon film from the seed crystal region. Also in this case, it is possible to form a high-quality polycrystalline silicon film starting from the seed crystal region.
  • LB laser beam T transport direction 1 substrate to be processed 2 glass substrate 3 gate wiring 4 gate insulating film 5 amorphous silicon film 5A seed crystal region 5B pseudo single crystal silicon film (modified region: crystallized silicon film) 5 GB grain boundary 10 laser annealing device 11 base 12A first laser light source unit 12B second laser light source unit 13 laser beam irradiation unit 14 control unit 15 second semiconductor laser 17 light emitting unit 18 digital micromirror device (DMD, spatial light modulation device) vessel) 19 Damper 20 Microlens Array 21 Projection Lens 22 Drive Substrate 23 Micromirror 25 First Semiconductor Laser 26 Light Emitting Section 27 Mirror 28 Mask
  • DMD digital micromirror device

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

A laser annealing method comprises: a seed crystal region formation step for performing first irradiation by irradiating the surface of an amorphous silicon film with a first laser beam spot formed by a first laser beam in a wavelength range that is absorbed by amorphous silicon and melting the amorphous silicon to form a seed crystal region; and a modified region formation step for performing second irradiation by irradiating a region adjacent to the first laser beam spot with a second laser beam spot formed by a second laser beam in a wavelength range that is absorbed by the molten silicon after the silicon in the seed crystal region has been melted by performing the first irradiation, and growing crystallized silicon in a modified region continuous with the seed crystal region starting from the seed crystal region.

Description

レーザアニール方法およびレーザアニール装置Laser annealing method and laser annealing apparatus
 本発明は、レーザアニール方法およびレーザアニール装置に関する。 The present invention relates to a laser annealing method and a laser annealing apparatus.
 近年、非晶質シリコン膜に連続発振レーザ光を照射することにより、非晶質シリコン膜内に形成される結晶の粒径が大きくなって疑似単結晶シリコン膜が形成されることが知られている。この疑似単結晶シリコン膜を薄膜トランジスタ(TFT)のチャネル層に適用することにより、チャネル層の移動度を大きくすることが可能となる。 In recent years, it has been known that by irradiating an amorphous silicon film with continuous wave laser light, the grain size of crystals formed in the amorphous silicon film is increased and a pseudo single crystal silicon film is formed. There is. By applying this pseudo single crystal silicon film to the channel layer of a thin film transistor (TFT), the mobility of the channel layer can be increased.
 従来の連続発振レーザ光によるレーザアニール方法では、アニールされる非晶質シリコン膜への吸収がある波長で単一波長のレーザを使用してレーザアニール処理を行っていた。特に、非晶質シリコン膜に対して吸収率の高いレーザ波長は紫外になるため、半導体レーザでは波長域が400~450nm程度のものが必要である。しかし、半導体レーザの出力は、数W程度であり、広い領域にレーザアニール処理を行うためには、複数の半導体レーザをまとめて出力を得るような構造が提案されていた。そのため、従来の連続発振レーザ光によるレーザアニール方法では、レーザアニール処理の効率が悪く、また高コストとなる問題があった。 In the conventional laser annealing method using continuous wave laser light, the laser annealing process was performed using a single wavelength laser having a wavelength that is absorbed by the amorphous silicon film to be annealed. In particular, since a laser wavelength having a high absorptivity with respect to an amorphous silicon film is ultraviolet, a semiconductor laser needs to have a wavelength range of about 400 to 450 nm. However, the output of the semiconductor laser is about several W, and in order to perform the laser annealing process on a wide area, a structure has been proposed in which a plurality of semiconductor lasers are collectively output. Therefore, the conventional laser annealing method using continuous wave laser light has problems that the efficiency of the laser annealing process is low and the cost is high.
 この他の従来のレーザアニール方法としては、可視光線以下の波長の第1のレーザビームを照射面で長いビームになるように加工し、この第1のレーザビームにおいてエネルギー密度の低い部分に、基本波でなる第2のレーザビームを照射する技術が知られている(例えば、特許文献1参照)。この従来のレーザアニール方法では、レーザとしては、気体レーザ、固体レーザ、および金属レーザを用いる。 As another conventional laser annealing method, a first laser beam having a wavelength of visible light or shorter is processed so that the irradiation surface has a long beam, and a basic laser beam is applied to a portion having a low energy density in the first laser beam. A technique of irradiating a second laser beam formed of waves is known (for example, refer to Patent Document 1). In this conventional laser annealing method, a gas laser, a solid-state laser, and a metal laser are used as the laser.
 特許文献1に開示されたレーザアニール方法では、第1のレーザビームの照射面でのビームの外周を取り囲んで覆うように第2のレーザビームを配置してエネルギー密度を補完している。第1のレーザビームのエネルギー密度の分布から第2のレーザビームを重ね合わせる領域を算出して、重ね合わせた領域全体におけるエネルギー密度を平均化している。特許文献1に開示されたレーザアニール方法では、エネルギー密度の平均化を行うために、レーザビームの所定の入射角度のときに、基板の表面での反射光と、基板の裏面からの反射光と、が干渉せずに一様なレーザビームとなるように工夫されている。 In the laser annealing method disclosed in Patent Document 1, the energy density is complemented by arranging the second laser beam so as to surround and cover the outer circumference of the beam on the irradiation surface of the first laser beam. A region where the second laser beam is superposed is calculated from the distribution of the energy density of the first laser beam, and the energy density in the entire superposed region is averaged. In the laser annealing method disclosed in Patent Document 1, in order to average the energy density, the reflected light from the front surface of the substrate and the reflected light from the rear surface of the substrate at a predetermined incident angle of the laser beam are used. , Are designed so as to form a uniform laser beam without interference.
特開2010-283073号公報JP, 2010-283073, A
 しかし、特許文献1に開示されたレーザアニール方法では、レーザビームのエネルギー密度の平均化を達成しても、被処理膜である非晶質シリコン膜で吸収されない波長のレーザビームが照射された領域では、結晶化することができず、仮に結晶化することができたとしても結晶成長が不規則となる虞がある。また、特許文献1に開示されたレーザアニール方法では、気体レーザや固体レーザを用いるため、設備コストならびに維持コストが高くなるという問題がある。 However, in the laser annealing method disclosed in Patent Document 1, a region irradiated with a laser beam having a wavelength that is not absorbed by the amorphous silicon film that is the film to be processed even if the energy density of the laser beam is averaged. Then, the crystallization cannot be performed, and even if the crystallization is possible, the crystal growth may be irregular. Further, in the laser annealing method disclosed in Patent Document 1, since a gas laser or a solid laser is used, there is a problem that equipment cost and maintenance cost increase.
 本発明は、上記の課題に鑑みてなされたものであって、低コストで、結晶化シリコン膜を必要な面積の領域に形成することができるレーザアニール方法およびレーザアニール装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a laser annealing method and a laser annealing apparatus that can form a crystallized silicon film in a region having a required area at low cost. And
 上述した課題を解決し、目的を達成するために、本発明の態様は、レーザビームのビームスポットに対して、非晶質シリコン膜が表面に成膜された被処理基板を相対的に移動させ、前記非晶質シリコン膜を前記ビームスポットで照射して結晶化シリコン膜に改質させるレーザアニール方法であって、前記非晶質シリコン膜の表面に、非晶質シリコンに吸収される波長域の第1レーザ光でなる第1レーザビームスポットを照射して、非晶質シリコンを溶融させる第1照射を行って種結晶領域を形成する種結晶領域形成工程と、前記種結晶領域に前記第1照射を行ってシリコンを溶融させた状態で、溶融されたシリコンに吸収される波長域の第2レーザ光でなる第2レーザビームスポットを、前記第1レーザビームスポットと隣接する領域に照射する第2照射を行い、前記種結晶領域を起点として当該種結晶領域と連続する改質領域の結晶化シリコンを成長させる改質領域形成工程と、を備えることを特徴とする。 In order to solve the above-mentioned problems and to achieve the object, an aspect of the present invention is to relatively move a substrate to be processed having an amorphous silicon film formed on its surface with respect to a beam spot of a laser beam. A laser annealing method for irradiating the amorphous silicon film with the beam spot to modify it into a crystallized silicon film, wherein a wavelength range absorbed by the amorphous silicon is formed on the surface of the amorphous silicon film. A first laser beam spot of a first laser beam to melt the amorphous silicon to form a seed crystal region, and a seed crystal region forming step of forming a seed crystal region; In a state where the silicon is melted by performing one irradiation, the second laser beam spot formed by the second laser light in the wavelength range absorbed by the melted silicon is irradiated to a region adjacent to the first laser beam spot. A modified region forming step of performing second irradiation and growing crystallized silicon in a modified region continuous with the seed crystal region starting from the seed crystal region.
 上記態様としては、前記第1レーザ光の波長域は、近紫外から可視光であり、前記第2レーザ光の波長域は、可視光以上であることが好ましい。 In the above aspect, it is preferable that the wavelength range of the first laser light is near ultraviolet to visible light, and the wavelength range of the second laser light is visible light or more.
 上記態様としては、前記第1レーザ光および前記第2レーザ光は、それぞれ半導体レーザから発振されることが好ましい。 In the above aspect, it is preferable that each of the first laser light and the second laser light is emitted from a semiconductor laser.
 上記態様としては、前記第1レーザ光のパワー密度は、前記第2レーザ光のパワー密度よりも低いことが好ましい。 In the above aspect, the power density of the first laser light is preferably lower than the power density of the second laser light.
 上記態様としては、前記第1レーザビームスポットは、前記第2レーザビームスポットよりも、前記被処理基板の搬送方向の同じ位置か下流側に配置することが好ましい。 In the above aspect, it is preferable that the first laser beam spot is arranged at the same position or downstream of the second laser beam spot in the carrying direction of the substrate to be processed.
 上記態様としては、前記第1レーザビームスポットを、前記改質領域の一部を通過するように配置し、前記第2レーザビームスポットを、前記改質領域の全面を通過するように形成することが好ましい。 In the above aspect, the first laser beam spot is arranged so as to pass through a part of the modified region, and the second laser beam spot is formed so as to pass over the entire surface of the modified region. Is preferred.
 上記態様としては、複数の前記第2レーザビームスポットが、前記第1レーザビームスポットから延びるように形成することが好ましい。 In the above aspect, it is preferable that the plurality of second laser beam spots are formed so as to extend from the first laser beam spot.
 上記態様としては、前記第2レーザビームスポットは、前記第1レーザビームスポットから前記被処理基板の搬送方向の斜め上流側へ向けて延びるように配置されていることが好ましい。 In the above aspect, it is preferable that the second laser beam spot is arranged so as to extend from the first laser beam spot toward an obliquely upstream side in the transport direction of the substrate to be processed.
 本発明の他の態様としては、レーザビームのビームスポットに対して、非晶質シリコン膜が表面に成膜された被処理基板を相対的に移動するように設定され、前記非晶質シリコン膜を前記ビームスポットで前記レーザビームを照射して結晶化シリコン膜に改質させるレーザアニール装置であって、前記非晶質シリコン膜に吸収される波長域の第1レーザ光を発振する第1光源部と、溶融されたシリコンに吸収される波長域の第2レーザ光を発振する第1光源部と、を備え、前記第1レーザ光でなる第1レーザビームスポットを照射して前記非晶質シリコン膜を溶融させ、前記第1レーザ光により溶融されたシリコンに前記第2レーザ光でなる第2レーザビームスポットを前記第1レーザビームスポットと隣接する領域に照射することを特徴とする。 According to another aspect of the present invention, the amorphous silicon film is set so as to move relative to a beam spot of a laser beam on a substrate on which the amorphous silicon film is formed. Is a laser annealing apparatus for irradiating the laser beam with the beam spot to modify the crystallized silicon film, the first light source oscillating a first laser beam in a wavelength range absorbed by the amorphous silicon film. And a first light source unit that oscillates a second laser beam in a wavelength range that is absorbed by the melted silicon, and irradiates a first laser beam spot of the first laser beam to the amorphous state. The silicon film is melted, and the silicon melted by the first laser light is irradiated with a second laser beam spot of the second laser light in an area adjacent to the first laser beam spot.
 上記態様としては、前記第1レーザ光の波長域は、近紫外から可視光であり、前記第2レーザ光の波長域は、可視光以上であることが好ましい。 In the above aspect, it is preferable that the wavelength range of the first laser light is near ultraviolet to visible light, and the wavelength range of the second laser light is visible light or more.
 上記態様としては、前記第1レーザ光および前記第2レーザ光は、それぞれ半導体レーザから発振されることが好ましい。 In the above aspect, it is preferable that each of the first laser light and the second laser light is emitted from a semiconductor laser.
 上記態様としては、前記第1レーザ光のパワー密度は、前記第2レーザ光のパワー密度よりも低く設定されていることが好ましい。 In the above aspect, it is preferable that the power density of the first laser light is set lower than the power density of the second laser light.
 上記態様としては、前記第1レーザビームスポットは、前記第2レーザビームスポットよりも、前記被処理基板の搬送方向の同じ位置か下流側に配置されていることが好ましい。 In the above aspect, it is preferable that the first laser beam spot is located at the same position or downstream of the second laser beam spot in the carrying direction of the substrate to be processed.
 上記態様としては、前記第1レーザビームスポットは、改質領域の一部を通過するように配置され、前記第2レーザビームスポットは、前記改質領域の全面を通過するように形成されていることが好ましい。 In the above aspect, the first laser beam spot is arranged so as to pass through a part of the modified region, and the second laser beam spot is formed so as to pass over the entire surface of the modified region. It is preferable.
 上記態様としては、複数の前記第2レーザビームスポットが前記第1レーザビームスポットから延びるように形成されることが好ましい。 In the above aspect, it is preferable that the plurality of second laser beam spots are formed so as to extend from the first laser beam spot.
 上記態様としては、前記第2レーザビームスポットは、前記第1レーザビームスポットから前記被処理基板の搬送方向の斜め上流側へ向けて延びるように配置されていることが好ましい。 In the above aspect, it is preferable that the second laser beam spot is arranged so as to extend from the first laser beam spot toward an obliquely upstream side in the transport direction of the substrate to be processed.
 本発明によれば、低コストで、結晶化シリコン膜を必要な面積の領域に形成することができるレーザアニール方法およびレーザアニール装置を実現できる。 According to the present invention, it is possible to realize a laser annealing method and a laser annealing apparatus capable of forming a crystallized silicon film in a region having a required area at low cost.
図1は、本発明の実施の形態に係るレーザアニール方法を示すフローチャートである。FIG. 1 is a flowchart showing a laser annealing method according to an embodiment of the present invention. 図2は、本発明の実施の形態に係るレーザアニール方法に用いるレーザアニール装置の概略構成図である。FIG. 2 is a schematic configuration diagram of a laser annealing apparatus used in the laser annealing method according to the embodiment of the present invention. 図3は、本発明の実施の形態に係るレーザアニール方法に用いるレーザアニール装置におけるマイクロミラーの配置例を模式的に示す説明図である。FIG. 3 is an explanatory view schematically showing an arrangement example of micromirrors in the laser annealing apparatus used in the laser annealing method according to the embodiment of the present invention. 図4は、本発明の実施の形態に係るレーザアニール方法において、非晶質シリコン膜に種結晶領域を形成する第1照射を行ったときのビームスポット(斜めハッチングで示す)を示す説明図である。FIG. 4 is an explanatory diagram showing a beam spot (indicated by diagonal hatching) when the first irradiation for forming the seed crystal region in the amorphous silicon film is performed in the laser annealing method according to the embodiment of the present invention. is there. 図5は、本発明の実施の形態に係るレーザアニール方法において、第1照射と第2照射とを同時に行ったときのビームスポット(格子状のハッチングで示す)を示し、種結晶領域を起点にして疑似単結晶シリコン膜を形成し始めた状態を示す説明図である。FIG. 5 shows a beam spot (indicated by hatching in a grid pattern) when the first irradiation and the second irradiation are performed simultaneously in the laser annealing method according to the embodiment of the present invention, and the seed crystal region is used as a starting point. FIG. 9 is an explanatory view showing a state in which a pseudo single crystal silicon film has started to be formed. 図6は、本発明の実施の形態に係るレーザアニール方法において、第1照射を停止して第2照射のみを行っているときのビームスポット(斜めハッチングで示す)を示す説明図である。FIG. 6 is an explanatory diagram showing a beam spot (indicated by diagonal hatching) when the first irradiation is stopped and only the second irradiation is performed in the laser annealing method according to the embodiment of the present invention. 図7は、本発明の実施の形態に係るレーザアニール方法において、広い領域に疑似単結晶シリコン膜を成長させた状態を示す説明図である。FIG. 7 is an explanatory diagram showing a state in which a pseudo single crystal silicon film is grown in a wide region in the laser annealing method according to the embodiment of the present invention. 図8は、本発明の実施の形態に係るレーザアニール方法に用いる他のレーザアニール装置としてのMLAレーザアニール装置における結像光学系を示す説明図である。FIG. 8 is an explanatory diagram showing an imaging optical system in an MLA laser annealing apparatus as another laser annealing apparatus used in the laser annealing method according to the embodiment of the present invention. 図9は、本発明の実施の形態に係るレーザアニール方法に用いる他のレーザアニール装置としてのMLAレーザアニール装置におけるマスクを示す平面説明図である。FIG. 9 is a plan view showing a mask in an MLA laser annealing apparatus as another laser annealing apparatus used in the laser annealing method according to the embodiment of the present invention.
 以下に、本発明の実施の形態に係るレーザアニール方法およびレーザアニール装置の詳細を図面に基づいて説明する。但し、図面は模式的なものであり、各部材の数、各部材の寸法、寸法の比率、形状などは現実のものと異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率や形状が異なる部分が含まれている。 The details of the laser annealing method and the laser annealing apparatus according to the embodiment of the present invention will be described below with reference to the drawings. However, it should be noted that the drawings are schematic, and the number of each member, the size of each member, the ratio of sizes, the shape, and the like are different from the actual ones. In addition, the drawings include portions having different dimensional relationships, ratios, and shapes.
[実施の形態](被処理基板)
 レーザアニール方法は、図2に示すような、レーザアニール装置10を用いて被処理基板1に対してレーザアニール処理を行う。図2に示すように、被処理基板1は、ガラス基板2と、このガラス基板2の表面に配置された複数のゲート配線3と、ガラス基板2およびゲート配線3の上に形成されたゲート絶縁膜4と、このゲート絶縁膜4の上に全面に堆積された非晶質シリコン膜5と、を備える。なお、この被処理基板1は、最終的に薄膜トランジスタ(TFT)などが作り込まれたTFT基板となる。
[Embodiment] (Substrate to be processed)
In the laser annealing method, a laser annealing apparatus 10 as shown in FIG. 2 is used to perform laser annealing processing on the substrate 1 to be processed. As shown in FIG. 2, the substrate 1 to be processed includes a glass substrate 2, a plurality of gate wirings 3 arranged on the surface of the glass substrate 2, a glass substrate 2 and a gate insulation formed on the gate wiring 3. The film 4 and the amorphous silicon film 5 deposited on the entire surface of the gate insulating film 4 are provided. The substrate 1 to be processed finally becomes a TFT substrate in which a thin film transistor (TFT) or the like is built.
(レーザアニール装置の概略構成)
 以下、本実施の形態に係るレーザアニール方法の説明に先駆けて、本実施の形態に係るレーザアニール装置10の概略構成を説明する。図2に示すように、レーザアニール装置10は、基台11と、第1レーザ光源部12Aと、第2レーザ光源部12Bと、レーザビーム照射部13と、制御部14と、を備える。
(Schematic configuration of laser annealing device)
Prior to the description of the laser annealing method according to this embodiment, the schematic configuration of the laser annealing apparatus 10 according to this embodiment will be described below. As shown in FIG. 2, the laser annealing apparatus 10 includes a base 11, a first laser light source unit 12A, a second laser light source unit 12B, a laser beam irradiation unit 13, and a control unit 14.
 本実施の形態では、アニール処理時にはレーザビーム照射部13は移動せず、被処理基板1を移動させるようになっている。基台11は、図示しない基板搬送手段を備えている。このレーザアニール装置10においては、被処理基板1を基台11の上に配置した状態で、図示しない基板搬送手段によって、搬送方向(スキャン方向)Tに向けて搬送する。
本実施の形態においては、図4から図7に示す搬送方向Tは、ゲート配線3の長手方向でもよいし、長手方向に直交する方向であってもよい。
In the present embodiment, the laser beam irradiation unit 13 does not move during the annealing process, but the substrate 1 to be processed is moved. The base 11 is provided with a substrate transfer means (not shown). In the laser annealing apparatus 10, the substrate 1 to be processed is placed on the base 11 and is transported in the transport direction (scanning direction) T by a substrate transport means (not shown).
In the present embodiment, the transport direction T shown in FIGS. 4 to 7 may be the longitudinal direction of the gate wiring 3 or a direction orthogonal to the longitudinal direction.
 図2に示すように、第1レーザ光源部12Aは、第1レーザ光を発振する第1半導体レーザ25と、第1レーザ光をレーザビーム照射部13へ向けてレーザビームLBを出射する光出射部26と、を備える。 As shown in FIG. 2, the first laser light source unit 12A emits a first semiconductor laser 25 that oscillates a first laser beam and a light beam that emits a laser beam LB toward the laser beam irradiation unit 13. And a section 26.
 第1半導体レーザ25は、第1レーザ光として、波長域が400~500nmの紫、青、緑青、青緑、緑などの色の連続発振レーザ光(CWレーザ光)を発振するものを用いる。このような波長域の第1レーザ光は、非晶質シリコン膜5を構成する非晶質シリコンに吸収されてこの非晶質シリコンを溶融させることができる。レーザビーム照射部13は、第1レーザ光を選択的に反射して、図4に示すように、非晶質シリコン膜5の表面に第1レーザビームスポットLBS1を照射(第1照射)するようになっている。なお、第1半導体レーザ25の出力は、DMDのスポット領域にあたる部分にのみ照射するので、例えば数W程度でよい。 The first semiconductor laser 25 uses, as the first laser light, one that oscillates continuous-wave laser light (CW laser light) having a wavelength range of 400 to 500 nm, such as purple, blue, green blue, blue green, and green. The first laser light in such a wavelength range can be absorbed by the amorphous silicon forming the amorphous silicon film 5 to melt the amorphous silicon. The laser beam irradiation unit 13 selectively reflects the first laser light to irradiate the first laser beam spot LBS1 (first irradiation) on the surface of the amorphous silicon film 5, as shown in FIG. It has become. The output of the first semiconductor laser 25 is, for example, about several watts because it irradiates only the portion corresponding to the DMD spot region.
 図2に示すように、第2レーザ光源部12Bは、第2レーザ光を発振する第2半導体レーザ15と、第2レーザ光をレーザビーム照射部13へ向けてレーザビームLBを出射する光出射部17と、を備える。 As shown in FIG. 2, the second laser light source unit 12B emits a second semiconductor laser 15 that oscillates a second laser beam and a laser beam LB that directs the second laser beam to the laser beam irradiation unit 13. And a section 17.
 第2半導体レーザ15は、第2レーザ光として、波長域が可視光以上の例えば、近赤外光の連続発振レーザ光(CWレーザ光)を発振する。この波長域の第2レーザ光は、上記の第1レーザビームスポットLBS1による第1照射により溶融したシリコンに吸収されて、第1レーザビームスポットLBS1で照射された領域に隣接する領域の非晶質シリコン膜5を搬送方向Tおよび搬送方向Tに直交する方向に向けて溶融させる。 The second semiconductor laser 15 oscillates, as the second laser light, continuous wave laser light (CW laser light) having a wavelength range of visible light or more, for example, near infrared light. The second laser light in this wavelength range is absorbed by the silicon melted by the first irradiation with the first laser beam spot LBS1 and is amorphous in a region adjacent to the region irradiated with the first laser beam spot LBS1. The silicon film 5 is melted in the transport direction T and in a direction orthogonal to the transport direction T.
 この第2レーザ光は、レーザビーム照射部13で選択的に反射され、図5に示すように、非晶質シリコン膜5の表面に第1レーザビームスポットLBS1とこれに隣接する第2レーザビームスポットLBS2の両方に照射(第2照射)するようになっている。図4に示すように、第2レーザビームスポットLBS2は、例えば、略V字形状となるように一対で構成されている。それぞれの第2レーザビームスポットLBS2は、小円状に示した第1レーザビームスポットLBS1から延びるように形成されている。なお、この第2レーザビームスポットLBS2は、第1レーザビームスポットLBS1から被処理基板の搬送方向Tの斜め上流側へ向けて延びるように配置されている。なお、第2半導体レーザ15の出力は、DMDのスポット領域にあたる部分にのみ照射するので、例えば50W程度となる。 This second laser light is selectively reflected by the laser beam irradiation unit 13, and as shown in FIG. 5, the first laser beam spot LBS1 and the second laser beam adjacent thereto are formed on the surface of the amorphous silicon film 5. Both spots LBS2 are irradiated (second irradiation). As shown in FIG. 4, the second laser beam spots LBS2 are, for example, formed in a pair so as to have a substantially V shape. Each second laser beam spot LBS2 is formed so as to extend from the first laser beam spot LBS1 shown in a small circle shape. The second laser beam spot LBS2 is arranged so as to extend from the first laser beam spot LBS1 toward an obliquely upstream side in the transport direction T of the substrate to be processed. The output of the second semiconductor laser 15 is, for example, about 50 W because it is applied only to the part corresponding to the spot area of the DMD.
 上述のように、第1レーザ光源部12Aと第2レーザ光源部12Bでは、レーザビーム照射部13へ向けて第1レーザ光および第2レーザ光を出射する。レーザビーム照射部13は、後述するデジタルマイクロミラーデバイス18にてこれら第1レーザ光および第2レーザ光のレーザビームを受けて、選択的に被処理基板1の表面へ第1レーザビームスポットLBS1と第2レーザビームスポットLBS2とを照射する。 As described above, the first laser light source unit 12A and the second laser light source unit 12B emit the first laser light and the second laser light toward the laser beam irradiation unit 13. The laser beam irradiation unit 13 receives the laser beams of the first laser beam and the second laser beam by a digital micromirror device 18 described later, and selectively forms a first laser beam spot LBS1 on the surface of the substrate 1 to be processed. The second laser beam spot LBS2 is irradiated.
 図2に示すように、レーザビーム照射部13は、図示しない支持フレームなどにより、基台11の上方に配置されている。レーザビーム照射部13は、空間光変調器としてのデジタルマイクロミラーデバイス(DMD:Digital Micro-mirror Device, Texas Instruments 社の登録商標)18と、ダンパ(アブソーバ)19と、マイクロレンズアレイ20と、投影レンズ21と、を備える。 As shown in FIG. 2, the laser beam irradiation unit 13 is arranged above the base 11 by a support frame or the like (not shown). The laser beam irradiation unit 13 includes a digital micromirror device (DMD: Digital Micromirror Device, registered trademark of Texas Instruments) 18, a damper (absorber) 19, a microlens array 20, and a projection. And a lens 21.
 図2および図3に示すように、デジタルマイクロミラーデバイス(以下、DMDという)18は、駆動基板(CMOS基板)22と、多数のマイクロミラー(薄膜ミラー)23(23A~23F:A~Fの列にそれぞれ1~6の符号を付す)と、を備えている。本実施の形態では、説明の便宜上、マイクロミラー23の数を36として説明するが、実際の数はハイビジョンの画素数以上である。マイクロミラー23は、一辺の長さが例えば、十数μm程度の正方形状に形成されている。駆動基板22には、多数のピクセル領域がマトリクス状に配置され、個々のピクセル領域にはCMOS SRAMセルが構成されている。 As shown in FIGS. 2 and 3, a digital micromirror device (hereinafter referred to as DMD) 18 includes a drive substrate (CMOS substrate) 22 and a large number of micromirrors (thin film mirrors) 23 (23A to 23F: A to F). The columns are respectively labeled with 1 to 6). In the present embodiment, for convenience of description, the number of micromirrors 23 will be described as 36, but the actual number is more than the number of pixels for high-definition television. The micromirror 23 is formed in a square shape having a side length of, for example, about ten and several μm. A large number of pixel regions are arranged in a matrix on the drive substrate 22, and a CMOS SRAM cell is formed in each pixel region.
 マイクロミラー23は、駆動基板22の上にそれぞれのCMOS SRAMセルに対応して配置されている。マイクロミラー23は、MEMS(Micro Electro Mechanical Systems)技術により設けられている。それぞれのマイクロミラー23は、2つの位置に移動可能に設けられている。具体的には、基板面に対して例えば、+10度の角度と-10度の角度をなす2つの位置に回転移動するようになっている。マイクロミラー23は、CMOS SRAMセル側からの出力データに対応して、上記2つの位置に変位するように駆動される。 The micro mirror 23 is arranged on the drive substrate 22 so as to correspond to each CMOS SRAM cell. The micro mirror 23 is provided by the MEMS (Micro Electro Mechanical Systems) technology. Each micro mirror 23 is provided so as to be movable to two positions. Specifically, for example, it is configured to be rotationally moved to two positions forming an angle of +10 degrees and an angle of −10 degrees with respect to the substrate surface. The micro mirror 23 is driven so as to be displaced to the above two positions in accordance with the output data from the CMOS SRAM cell side.
 図3に示すように、アレイを構成する多数のマイクロミラー23には、第1レーザ光源部12Aおよび第2レーザ光源部12B側からの第1レーザビームスポットLBS1が、同時にまたはいずれか一方が一括して入射するようになっている。そして、それぞれのマイクロミラー23(23A~23F)は、上記の2つの位置に選択的に移動することにより、レーザビームLBの一部のレーザ光を2つの方向に反射するように設定されている。
これら2つの方向のうちの一方の方向は、レーザビームLBの一部のレーザ光をダンパ19に向かわせる方向であり、2つの方向のうちの他方の方向は、レーザビームLBの一部のレーザ光を被処理基板1の表面に向かわせる方向である。
As shown in FIG. 3, the first laser beam spots LBS1 from the first laser light source unit 12A and the second laser light source unit 12B side are simultaneously or in any one of the plurality of micro mirrors 23 forming the array. Then it is incident. The respective micro mirrors 23 (23A to 23F) are set so as to reflect a part of the laser light of the laser beam LB in two directions by selectively moving to the above two positions. ..
One of these two directions is a direction in which a part of the laser light of the laser beam LB is directed to the damper 19, and the other of the two directions is a part of the laser beam LB. This is the direction in which light is directed to the surface of the substrate 1 to be processed.
 図3においては、一対のマイクロミラー23A3,23A4が第1レーザビームスポットLBS1を作成するために用いられ、略V字状に並ぶ23D1,23C2,23B3,23B4,23C5,23D6が第2レーザビームスポットLBS2を作成するために用いられる。 In FIG. 3, a pair of micromirrors 23A3 and 23A4 is used to create the first laser beam spot LBS1, and 23D1, 23C2, 23B3, 23B4, 23C5 and 23D6 arranged in a substantially V shape are the second laser beam spots. Used to create LBS2.
 ダンパ19は、マイクロミラー23がオフ状態(例えば、駆動基板22に対する角度が-10度の状態、非照射状態)のときに、オフ状態のマイクロミラー23で反射されたレーザ光を受け入れる位置に配置されている。 The damper 19 is arranged at a position for receiving the laser beam reflected by the micro mirror 23 in the off state when the micro mirror 23 is in the off state (for example, the angle with respect to the drive substrate 22 is −10 degrees, non-irradiation state). Has been done.
 マイクロレンズアレイ20は、オン状態(例えば、駆動基板22に対する角度が+10度の状態、照射状態)のマイクロミラー23で反射されたそれぞれのレーザビームを投影レンズ21に向けて集光する。投影レンズ21は、導入されたレーザビームを被処理基板1の表面に、第1レーザビームスポットLBS1や第2レーザビームスポットLBS2の一部として結像させるように設定されている。 The microlens array 20 focuses each laser beam reflected by the micromirror 23 in the on state (for example, the angle with respect to the drive substrate 22 is +10 degrees, the irradiation state) toward the projection lens 21. The projection lens 21 is set so as to image the introduced laser beam on the surface of the substrate 1 to be processed as a part of the first laser beam spot LBS1 or the second laser beam spot LBS2.
 制御部14は、基台11に設けられた図示しない基板搬送手段と、第1レーザ光源部12Aと、第2レーザ光源部12Bと、DMD18と、の制御を行う。 The control unit 14 controls the substrate transfer means (not shown) provided on the base 11, the first laser light source unit 12A, the second laser light source unit 12B, and the DMD 18.
 まず、制御部14は、図示しない基板搬送手段を駆動制御して被処理基板1を搬送方向Tへ向けて所定の速度で移動させるように設定されている。 First, the control unit 14 is set to drive and control the substrate transfer means (not shown) to move the substrate 1 to be processed in the transfer direction T at a predetermined speed.
 また、制御部14は、第1レーザ光源部12Aと、第2レーザ光源部12Bと、レーザビーム照射部13と、を駆動制御して、被処理基板1に対して上記の第1照射および第2照射とを行わせるように設定されている。 In addition, the control unit 14 drives and controls the first laser light source unit 12A, the second laser light source unit 12B, and the laser beam irradiation unit 13 to perform the first irradiation and the first irradiation on the substrate 1 to be processed. It is set to perform two irradiations.
 第1照射は、第1レーザ光源部12Aから第1レーザ光を出射させて、マイクロミラー23A3,23A4で反射したレーザビームを被処理基板1の非晶質シリコン膜5の表面に第1レーザビームスポットLBS1として照射する。 In the first irradiation, the first laser light is emitted from the first laser light source unit 12A, and the laser beam reflected by the micromirrors 23A3 and 23A4 is applied to the surface of the amorphous silicon film 5 of the substrate 1 to be processed by the first laser beam. Irradiate as spot LBS1.
 第2照射は、第2レーザ光源部12Bから第2レーザ光を出射させて、マイクロミラー23D1,23C2,23B3,23B4,23C5,23D6で反射したレーザビームを被処理基板1の非晶質シリコン膜5の表面に第2レーザビームスポットLBS2として照射する。なお、本実施の形態では、第2レーザ光を第1レーザビームスポットLBS1にも照射する。 In the second irradiation, the second laser light is emitted from the second laser light source unit 12B, and the laser beam reflected by the micromirrors 23D1, 23C2, 23B3, 23B4, 23C5, 23D6 is an amorphous silicon film on the substrate 1 to be processed. The surface of No. 5 is irradiated with the second laser beam spot LBS2. In the present embodiment, the second laser light is also applied to the first laser beam spot LBS1.
 制御部14は、第2照射において、レーザ光源部12から第2レーザ光としてのCWレーザ光を連続して出射させる。第1照射および第2照射を行わないときは、レーザ光源部12をオフにするか、またはDMD18における全てのマイクロミラー23(23A~23F)を、レーザビームLBをダンパ19に向けて反射させるオフ状態にするように設定されている。また、第1照射および第2照射は、マイクロミラー23(23A~23F)を選択的にオン・オフすることにより、マイクロミラー23A3,23A4の対と、略V状をなすように配列されたマイクロミラー23D1,23C2,23B3,23B4,23C5,23D6の群と、を選択することもできる。 The control unit 14 causes the laser light source unit 12 to continuously emit the CW laser light as the second laser light in the second irradiation. When the first irradiation and the second irradiation are not performed, the laser light source unit 12 is turned off, or all the micromirrors 23 (23A to 23F) in the DMD 18 are turned off so that the laser beam LB is reflected toward the damper 19. Is set to state. The first irradiation and the second irradiation selectively turn on/off the micromirrors 23 (23A to 23F), so that the micromirrors 23A3 and 23A4 are arranged in a substantially V-shape. A group of mirrors 23D1, 23C2, 23B3, 23B4, 23C5, 23D6 can also be selected.
 制御部14は、改質を行う改質領域の搬送方向の最下流部で第1照射を開始するように制御する。また、制御部14は、上記の第1照射が開始と同時または第1照射の所定時間後に第2照射を開始するように設定されている。本実施の形態において、制御部14は、図示しない基板位置検出センサの位置情報データに基づいて、非晶質シリコン膜5が所定の位置に移動したときに、DMD18へ駆動信号を出力するように設定されている。上記駆動信号が入力されたDMD18は、所定のマイクロミラー23をオン状態にするように制御される。 The control unit 14 controls to start the first irradiation at the most downstream portion in the transport direction of the reforming area where the reforming is performed. Further, the control unit 14 is set to start the second irradiation at the same time as the start of the above-mentioned first irradiation or after a predetermined time from the first irradiation. In the present embodiment, the control unit 14 outputs a drive signal to the DMD 18 when the amorphous silicon film 5 moves to a predetermined position based on position information data of a substrate position detection sensor (not shown). It is set. The DMD 18 to which the drive signal is input is controlled to turn on a predetermined micromirror 23.
 上記の複数のマイクロミラー23がオン状態になると、第1レーザ光源部12Aまたは第2レーザ光源部12Bから出射されたレーザ光でなるレーザビームLBは、所定のマイクロミラー23で反射されて被処理基板1の表面に入射する。 When the plurality of micromirrors 23 are turned on, the laser beam LB composed of the laser light emitted from the first laser light source unit 12A or the second laser light source unit 12B is reflected by the predetermined micromirrors 23 to be processed. It is incident on the surface of the substrate 1.
 図4に示すように、それぞれのマイクロミラー23から反射されたレーザビームは、非晶質シリコン膜5の所定位置に第1照射を行って第1レーザビームスポットLBS1を照射する。第1照射が行われた非晶質シリコン膜5では、図5に示すように、微結晶シリコンでなる種結晶領域5Aが形成できる。 As shown in FIG. 4, the laser beams reflected from the respective micro mirrors 23 are first irradiated onto a predetermined position of the amorphous silicon film 5 to irradiate a first laser beam spot LBS1. In the first-irradiated amorphous silicon film 5, a seed crystal region 5A made of microcrystalline silicon can be formed as shown in FIG.
 制御部14は、図5に示すように、上記位置情報に基づいて非晶質シリコン膜5が僅かに移動した時点で、第1レーザ光源部12A、第2レーザ光源部12Bおよびレーザビーム照射部13を駆動制御して、第1照射および第2照射を同時に行うように設定されている。 As shown in FIG. 5, the control unit 14 controls the first laser light source unit 12A, the second laser light source unit 12B, and the laser beam irradiation unit when the amorphous silicon film 5 slightly moves based on the position information. It is set so that the first irradiation and the second irradiation are performed at the same time by controlling the driving of No. 13.
 その後、図6に示すように、制御部14は、第1照射を停止させた状態で、上記の種結晶領域5Aを起点として、第2レーザ光でなる第2レーザビームスポットLBS2を照射する第2照射を行うように設定されている。 Thereafter, as shown in FIG. 6, the control unit 14 irradiates the second laser beam spot LBS2 composed of the second laser light with the seed crystal region 5A as a starting point in a state where the first irradiation is stopped. It is set to perform two irradiations.
 制御部14は、第2レーザビームスポットLBS2の軌跡が改質領域の全面を通過したときに第2照射を停止するように設定されている。 The control unit 14 is set to stop the second irradiation when the locus of the second laser beam spot LBS2 passes through the entire surface of the modified region.
 図6および図7に示すように、この第2照射によって、非晶質シリコン膜5が結晶化シリコン膜としての疑似単結晶(以下、ラテラル結晶ともいう)シリコン膜5Bになるように条件設定されている。なお、この疑似単結晶シリコン膜5Bは、改質領域を構成する。 As shown in FIGS. 6 and 7, the second irradiation sets conditions such that the amorphous silicon film 5 becomes a pseudo single crystal (hereinafter also referred to as lateral crystal) silicon film 5B as a crystallized silicon film. ing. The pseudo single crystal silicon film 5B constitutes a modified region.
 以上、本実施の形態に係るレーザアニール方法で用いる被処理基板1、レーザアニール装置10およびその作用・動作について説明したが、以下に、これらを用いたレーザアニール方法について説明する。 The substrate 1 to be processed used in the laser annealing method according to the present embodiment, the laser annealing apparatus 10 and the operation and operation thereof have been described above. The laser annealing method using these will be described below.
(レーザアニール方法)
 本発明のレーザアニール方法では、非晶質シリコン膜5の表面に、非晶質シリコンに吸収される波長域の第1レーザ光の第1レーザビームスポットLBS1を照射して、非晶質シリコンを溶融させる第1照射を行って種結晶領域5Aを形成する種結晶領域形成工程と、種結晶領域5Aに第1照射を行ってシリコンを溶融させた状態で、溶融されたシリコンに吸収される波長域の第2レーザ光の第2レーザビームスポットLBS2を、第1レーザビームスポットLBS1と隣接する領域に照射する第2照射を行い、種結晶領域5Aを起点として種結晶領域5Aと連なる改質領域の結晶化シリコン(疑似単結晶シリコン)を成長させる改質領域形成工程と、を備える。
(Laser annealing method)
According to the laser annealing method of the present invention, the surface of the amorphous silicon film 5 is irradiated with the first laser beam spot LBS1 of the first laser light in the wavelength range absorbed by the amorphous silicon to remove the amorphous silicon. A seed crystal region forming step of forming a seed crystal region 5A by performing a first irradiation for melting, and a wavelength absorbed by the melted silicon in a state where the first irradiation is performed on the seed crystal region 5A to melt the silicon. The second irradiation for irradiating the region adjacent to the first laser beam spot LBS1 with the second laser beam spot LBS2 of the second laser light in the region is performed, and the modified region is continuous with the seed crystal region 5A from the seed crystal region 5A as a starting point. A modified region forming step of growing crystallized silicon (pseudo single crystal silicon).
 以下、本実施の形態に係るレーザアニール方法を、図1のフローチャートに基づいて説明する。なお、本実施の形態に係るレーザアニール方法は、薄膜トランジスタの製造方法に用いられるものであり、以下に説明するステップS4~7で構成されている。 Hereinafter, the laser annealing method according to the present embodiment will be described based on the flowchart of FIG. The laser annealing method according to the present embodiment is used in a method for manufacturing a thin film transistor, and is composed of steps S4 to S7 described below.
 まず、図1に示すような、ガラス基板2の上にゲート配線3、ゲート絶縁膜4および非晶質シリコン膜5が形成された被処理基板1を用意する(ステップS1)。 First, as shown in FIG. 1, a substrate 1 to be processed in which a gate wiring 3, a gate insulating film 4 and an amorphous silicon film 5 are formed on a glass substrate 2 is prepared (step S1).
 次に、被処理基板1を洗浄する(ステップS2)。洗浄した被処理基板1の非晶質シリコン膜5は、水素を含んでいるため、例えば、約450℃で数時間程度の脱水素処理を行う(ステップS3)。 Next, the substrate 1 to be processed is washed (step S2). Since the cleaned amorphous silicon film 5 of the substrate 1 to be processed contains hydrogen, the dehydrogenation process is performed, for example, at about 450° C. for several hours (step S3).
 図2に示すように、被処理基板1をレーザアニール装置10の基台11の上にセットして、搬送方向Tに沿って所定のスキャン速度で走行させる。 As shown in FIG. 2, the substrate 1 to be processed is set on the base 11 of the laser annealing apparatus 10 and is moved along the transport direction T at a predetermined scan speed.
 次に、種結晶領域形成工程として、種結晶を形成する第1照射を行う(ステップS4)。このステップS4において、制御部14は、非晶質シリコン膜5の位置情報に基づいて改質を予定する領域が所定の位置に到達したときに、DMD18へ駆動信号を出力する。
駆動信号に基づいて、DMD18は、予め設定した対のマイクロミラー23A3,23A4のみをオン状態にする。
Next, as a seed crystal region forming step, first irradiation for forming a seed crystal is performed (step S4). In step S4, the control unit 14 outputs a drive signal to the DMD 18 when the region to be modified reaches a predetermined position based on the position information of the amorphous silicon film 5.
Based on the drive signal, the DMD 18 turns on only the preset pair of micromirrors 23A3 and 23A4.
 図4は、第1レーザ光源部12Aから出射されたレーザビームLBが、オン状態の23A3,23A4で反射され、第1レーザビームスポットLBS1のみが非晶質シリコン膜5に照射された状態を示す。なお、図4において、第2レーザビームスポットLBS2の照射領域を示すが、実際には第2レーザ光は非晶質シリコン膜5に照射されていない。この第1レーザビームスポットLBS1が照射された領域は、第1レーザ光(波長域400~500nm)により溶融される。 FIG. 4 shows a state in which the laser beam LB emitted from the first laser light source unit 12A is reflected by the on-states 23A3 and 23A4 and only the first laser beam spot LBS1 is irradiated on the amorphous silicon film 5. .. Although the irradiation region of the second laser beam spot LBS2 is shown in FIG. 4, the second laser beam is not actually irradiated to the amorphous silicon film 5. The area irradiated with the first laser beam spot LBS1 is melted by the first laser light (wavelength range 400 to 500 nm).
 その後、被処理基板1が搬送方向Tへ極僅か移動すると、溶融されていたシリコンは冷却されて微結晶シリコンでなる種結晶領域5Aとなる。 After that, when the substrate 1 to be processed moves extremely slightly in the transport direction T, the melted silicon is cooled and becomes the seed crystal region 5A made of microcrystalline silicon.
 次に、図5に示すように、種結晶領域5Aに第1レーザビームスポットLBS1が照射しているときに、第2照射を同時に行う(ステップS5)。第2照射は、マイクロミラー23D1,23C2,23B3,23B4,23C5,23D6をオン状態にして第2レーザ光(波長域800nm以上)を第2レーザビームスポットLBS2として照射する。
なお、このとき、第2レーザ光は、第1レーザビームスポットLBS1の領域にもマイクロミラー23A3,23A4を介して照射される。また、第1レーザ光は、第2レーザビームスポットLBS2の領域にマイクロミラー23D1,23C2,23B3,23B4,23C5,23D6を介して照射される。このため、図5では、第1レーザビームスポットLBS1と第2レーザビームスポットLBS2を同じ格子状のハッチングで示す。
Next, as shown in FIG. 5, while the seed crystal region 5A is being irradiated with the first laser beam spot LBS1, second irradiation is simultaneously performed (step S5). In the second irradiation, the micromirrors 23D1, 23C2, 23B3, 23B4, 23C5, 23D6 are turned on, and the second laser beam (wavelength range 800 nm or more) is irradiated as the second laser beam spot LBS2.
At this time, the second laser light is also applied to the region of the first laser beam spot LBS1 via the micro mirrors 23A3 and 23A4. Further, the first laser light is applied to the region of the second laser beam spot LBS2 via the micro mirrors 23D1, 23C2, 23B3, 23B4, 23C5, 23D6. Therefore, in FIG. 5, the first laser beam spot LBS1 and the second laser beam spot LBS2 are indicated by the same lattice-shaped hatching.
 ステップS5を行った結果、図6に示すように、種結晶領域5Aを起点として、この種結晶領域5Aに連続するように、搬送方向Tおよび搬送方向Tと直交する方向にも疑似単結晶シリコン膜5Bが幅広く成長して改質領域となる。 As a result of performing step S5, as shown in FIG. 6, the pseudo single crystal silicon is formed in the transport direction T and in a direction orthogonal to the transport direction T so as to be continuous with the seed crystal region 5A as a starting point. The film 5B grows widely and becomes a modified region.
 次に、図6に示すように、第1照射を停止させた状態で、第2照射のみを行う(ステップS6)。なお、図6に示すように、この第2照射では、第1レーザビームスポットLBS1の領域にも第2レーザ光が照射される。このため、図6において第1レーザビームスポットLBS1は、第2レーザビームスポットLBS2と同様のハッチングを用いる。そして、所定の領域に亘って疑似単結晶(ラテラル結晶)シリコン膜5Bを形成した後は、第2照射を停止してレーザアニール処理が終了する(ステップS7)。 Next, as shown in FIG. 6, only the second irradiation is performed with the first irradiation stopped (step S6). In addition, as shown in FIG. 6, in the second irradiation, the region of the first laser beam spot LBS1 is also irradiated with the second laser light. Therefore, in FIG. 6, the first laser beam spot LBS1 uses the same hatching as the second laser beam spot LBS2. Then, after the pseudo single crystal (lateral crystal) silicon film 5B is formed over the predetermined region, the second irradiation is stopped and the laser annealing process ends (step S7).
 本実施の形態に係るレーザアニール方法では、種結晶領域5Aを形成する領域は面積の小さい領域であるにも拘わらず、疑似単結晶シリコン膜5Bを、種結晶領域5Aを起点として、搬送方向Tならびに搬送方向Tと直交する方向にも幅広く成長させることができる。疑似単結晶シリコン膜5Bには、図7に示すような粒界5GBが形成される。この粒界5GBは、種結晶領域5Aから幅方向(搬送方向Tに直交する方向)に拡がった後、搬送方向Tに沿って平行に規則正しく延びている。なお、図4から図7に示すように、本実施の形態においては、被処理基板1を搬送方向Tに沿って移動させたが、この搬送方向Tと逆向きとしてもよい。 In the laser annealing method according to the present embodiment, although the region where the seed crystal region 5A is formed has a small area, the pseudo single crystal silicon film 5B starts from the seed crystal region 5A and is transferred in the transport direction T. In addition, it is possible to grow widely in a direction orthogonal to the transport direction T. Grain boundaries 5GB as shown in FIG. 7 are formed in the pseudo single crystal silicon film 5B. The grain boundaries 5GB extend in the width direction (direction orthogonal to the transport direction T) from the seed crystal region 5A, and then regularly extend in parallel along the transport direction T. In addition, as shown in FIGS. 4 to 7, in the present embodiment, the substrate 1 to be processed is moved along the transport direction T, but it may be opposite to the transport direction T.
 本実施の形態では、パワー密度が低く安価な第1半導体レーザ25を用いて第1照射を行うことができる。加えて、本実施の形態によれば、従来、非晶質シリコン膜5のアニールに用いることができなかった近赤外光を発振する第2半導体レーザ15をも用いることが可能となる。したがって、本実施の形態に係るレーザアニール方法およびレーザアニール装置では、設備コストを大幅に低減させることが可能となる。 In the present embodiment, it is possible to perform the first irradiation by using the inexpensive first semiconductor laser 25 having a low power density. In addition, according to the present embodiment, it is possible to use the second semiconductor laser 15 that oscillates near-infrared light, which could not be conventionally used for annealing the amorphous silicon film 5. Therefore, in the laser annealing method and the laser annealing apparatus according to the present embodiment, the equipment cost can be significantly reduced.
 本実施の形態に係るレーザアニール方法およびレーザアニール装置10では、空間光変調器としてDMD18を用いることにより、マイクロミラー23のオン・オフ動作だけで、レーザビームを簡単に作成することが可能となる。 In the laser annealing method and the laser annealing apparatus 10 according to the present embodiment, by using the DMD 18 as the spatial light modulator, it is possible to easily create a laser beam only by turning on/off the micromirror 23. ..
 また、本実施の形態に係るレーザアニール装置10では、第1照射や第2照射で出射する第1レーザビームスポットLBS1や第2レーザビームスポットLBS2の形状を任意に形成することが容易になり、レーザアニール処理を行う領域の大きさに容易に追従できる。 Further, in the laser annealing apparatus 10 according to the present embodiment, it becomes easy to arbitrarily form the shapes of the first laser beam spot LBS1 and the second laser beam spot LBS2 emitted by the first irradiation and the second irradiation, The size of the region to be laser-annealed can be easily followed.
 本実施の形態では、第1レーザ光源部12A、第2レーザ光源部12Bが半導体レーザを用いるため、装置の軽量化を図ることができ、被処理基板1を固定し、第1レーザ光源部12A、第2レーザ光源部12B、およびレーザビーム照射部13を移動させる構成としてもよい。このため、装置のフットプリントの増加を抑制できる。 In the present embodiment, since the first laser light source unit 12A and the second laser light source unit 12B use the semiconductor laser, the weight of the apparatus can be reduced, the substrate 1 to be processed is fixed, and the first laser light source unit 12A. The second laser light source unit 12B and the laser beam irradiation unit 13 may be moved. Therefore, it is possible to suppress an increase in the footprint of the device.
(レーザアニール方法に用いる他のレーザアニール装置)
 図8は、本発明の実施の形態に係るレーザアニール方法に用いることができるMLAレーザアニール装置の結像光学系を示す。図9は、このMLAレーザアニール装置の結像光学系に用いるマスク28を示す。このMLAレーザアニール装置においても、上記実施の形態に係るレーザアニール装置10と同様に第1レーザ光源部12Aと第2レーザ光源部12Bを備える。
(Other laser annealing devices used for laser annealing method)
FIG. 8 shows an imaging optical system of an MLA laser annealing apparatus that can be used in the laser annealing method according to the embodiment of the present invention. FIG. 9 shows a mask 28 used in the image forming optical system of this MLA laser annealing apparatus. This MLA laser annealing device also includes a first laser light source unit 12A and a second laser light source unit 12B, similar to the laser annealing device 10 according to the above embodiment.
 このMLAレーザアニール装置においては、図9に示すように、マスク28において、第1レーザビームスポットLBS1を形成する第1照射用開口部28S1と、第2レーザビームスポットLBS2を形成するための第2照射用開口部28S2と、が形成されている。第1照射用開口部28S1は、種結晶領域5Aを形成するために用いられ、第2照射用開口部28S2は、疑似単結晶シリコン膜5Bを形成するために用いる。 In this MLA laser annealing apparatus, as shown in FIG. 9, in a mask 28, a first irradiation opening 28S1 for forming a first laser beam spot LBS1 and a second irradiation opening 28S1 for forming a second laser beam spot LBS2 are formed. The irradiation opening 28S2 is formed. The first irradiation opening 28S1 is used to form the seed crystal region 5A, and the second irradiation opening 28S2 is used to form the pseudo single crystal silicon film 5B.
[その他の実施の形態]
 以上、実施の形態について説明したが、この実施の形態の開示の一部をなす論述および図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。
[Other Embodiments]
Although the embodiments have been described above, it should not be understood that the description and drawings forming part of the disclosure of the embodiments limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
 上記の実施の形態では、図4に示したように、種結晶領域5Aを形成する第1照射の際に、第2照射を停止した状態としたが、第1照射と第2照射を同時に混合した状態で行ってもよい。また、図6に示すように、種結晶領域5Aを形成した後は、第1照射を停止して第2照射のみを行ったが、第1照射を停止させずに両方の照射を行うことも可能である。 In the above-described embodiment, as shown in FIG. 4, the second irradiation is stopped during the first irradiation for forming the seed crystal region 5A. However, the first irradiation and the second irradiation are simultaneously mixed. You may go in the state. Further, as shown in FIG. 6, after the seed crystal region 5A is formed, the first irradiation is stopped and only the second irradiation is performed. However, both irradiations may be performed without stopping the first irradiation. It is possible.
 上記の実施の形態では、図4から図7に示すように、第2レーザビームスポットLBS2を略V字形状としたが、このような形状に限定されるものではない。第1レーザビームスポットLBS1は、第2レーザビームスポットLBS2よりも、被処理基板1の搬送方向Tの下流側に配置することが好ましいが、第2レーザビームスポットLBS2の照射により非晶質シリコン膜5が速い速度で溶融する条件であればこの限りではない。また、第1レーザビームスポットLBS1および第2レーザビームスポットLBS2の形状は、第1レーザビームスポットLBS1が改質領域の一部を通過するように配置し、第2レーザビームスポットLBS2が改質領域の全面を通過するように形成することができる範囲であれば、各種の形状のものを用いることができる。 In the above embodiment, as shown in FIGS. 4 to 7, the second laser beam spot LBS2 has a substantially V shape, but the shape is not limited to such a shape. The first laser beam spot LBS1 is preferably arranged on the downstream side of the second laser beam spot LBS2 in the transport direction T of the substrate to be processed 1. However, the amorphous silicon film is irradiated by the second laser beam spot LBS2. This is not the case as long as No. 5 melts at a high speed. Further, the shapes of the first laser beam spot LBS1 and the second laser beam spot LBS2 are arranged so that the first laser beam spot LBS1 passes through a part of the modified region, and the second laser beam spot LBS2 is formed in the modified region. Various shapes can be used as long as they can be formed so as to pass through the entire surface of the.
 上記の実施の形態では、DMD18を用いたが、空間光変調器としては、光シャッタ機能を有する液晶セル、グレーティングライトバルブ(GLV:Grating Light Valve、シリコン・ライト・マシンズ社の登録商標)、薄膜マイクロミラーアレイ(TMA:Thin-film Micro mirror Array)などを用いることも可能である。また、上記の実施の形態では、空間光変調器を用いたが、単に集光レンズを用いて第1レーザビームスポットLBS1を作ってもよいし、シリンドリカルレンズをV字型になるように配置して第2レーザビームスポットLBS2を形成することも可能である。 Although the DMD 18 is used in the above embodiment, the spatial light modulator includes a liquid crystal cell having an optical shutter function, a grating light valve (GLV: Grating Light Valve, a registered trademark of Silicon Light Machines, Inc.), and a thin film. It is also possible to use a micro mirror array (TMA: Thin-film Micro mirror Array) or the like. Further, although the spatial light modulator is used in the above embodiment, the first laser beam spot LBS1 may be simply formed by using a condenser lens, or the cylindrical lens is arranged so as to have a V-shape. It is also possible to form the second laser beam spot LBS2.
 上記の実施の形態では、結晶化シリコン膜として、疑似単結晶シリコン膜5Bを形成したが、種結晶領域から多結晶シリコン膜を成長させる構成としても勿論よい。この場合も、種結晶領域を起点として、良質な多結晶シリコン膜を形成することが可能となる。 In the above embodiment, the pseudo single crystal silicon film 5B is formed as the crystallized silicon film, but it is of course possible to grow the polycrystalline silicon film from the seed crystal region. Also in this case, it is possible to form a high-quality polycrystalline silicon film starting from the seed crystal region.
 LB レーザビーム
 T 搬送方向
 1 被処理基板
 2 ガラス基板
 3 ゲート配線
 4 ゲート絶縁膜
 5 非晶質シリコン膜
 5A 種結晶領域
 5B 疑似単結晶シリコン膜(改質領域:結晶化シリコン膜)
 5GB 粒界
 10 レーザアニール装置
 11 基台
 12A 第1レーザ光源部
 12B 第2レーザ光源部
 13 レーザビーム照射部
 14 制御部
 15 第2半導体レーザ
 17 光出射部
 18 デジタルマイクロミラーデバイス(DMD、空間光変調器)
 19 ダンパ
 20 マイクロレンズアレイ
 21 投影レンズ
 22 駆動基板
 23 マイクロミラー
 25 第1半導体レーザ
 26 光出射部
 27ミラー
 28 マスク
 
LB laser beam T transport direction 1 substrate to be processed 2 glass substrate 3 gate wiring 4 gate insulating film 5 amorphous silicon film 5A seed crystal region 5B pseudo single crystal silicon film (modified region: crystallized silicon film)
5 GB grain boundary 10 laser annealing device 11 base 12A first laser light source unit 12B second laser light source unit 13 laser beam irradiation unit 14 control unit 15 second semiconductor laser 17 light emitting unit 18 digital micromirror device (DMD, spatial light modulation device) vessel)
19 Damper 20 Microlens Array 21 Projection Lens 22 Drive Substrate 23 Micromirror 25 First Semiconductor Laser 26 Light Emitting Section 27 Mirror 28 Mask

Claims (16)

  1.  レーザビームのビームスポットに対して、非晶質シリコン膜が表面に成膜された被処理基板を相対的に移動させ、前記非晶質シリコン膜を前記ビームスポットで照射して結晶化シリコン膜に改質させるレーザアニール方法であって、
     前記非晶質シリコン膜の表面に、非晶質シリコンに吸収される波長域の第1レーザ光でなる第1レーザビームスポットを照射して、非晶質シリコンを溶融させる第1照射を行って種結晶領域を形成する種結晶領域形成工程と、
     前記種結晶領域に前記第1照射を行ってシリコンを溶融させた状態で、溶融されたシリコンに吸収される波長域の第2レーザ光でなる第2レーザビームスポットを、前記第1レーザビームスポットと隣接する領域に照射する第2照射を行い、前記種結晶領域を起点として当該種結晶領域と連続する改質領域の結晶化シリコンを成長させる改質領域形成工程と、
     を備えるレーザアニール方法。
    The substrate to be processed having the amorphous silicon film formed thereon is moved relative to the beam spot of the laser beam, and the amorphous silicon film is irradiated with the beam spot to form a crystallized silicon film. A laser annealing method for modifying,
    The surface of the amorphous silicon film is irradiated with a first laser beam spot of a first laser beam in a wavelength range absorbed by the amorphous silicon to perform a first irradiation for melting the amorphous silicon. A seed crystal region forming step of forming a seed crystal region,
    The second laser beam spot formed by the second laser light in the wavelength range absorbed by the melted silicon is changed to the first laser beam spot in the state where the first irradiation is performed on the seed crystal region to melt the silicon. A modified region forming step of performing second irradiation for irradiating a region adjacent to the seed crystal region, and growing crystallized silicon in a modified region continuous with the seed crystal region as a starting point;
    A laser annealing method comprising:
  2.  前記第1レーザ光の波長域は、近紫外から可視光であり、
     前記第2レーザ光の波長域は、可視光以上である
     請求項1に記載のレーザアニール方法。
    The wavelength range of the first laser light is from near ultraviolet to visible light,
    The laser annealing method according to claim 1, wherein a wavelength range of the second laser light is at least visible light.
  3.  前記第1レーザ光および前記第2レーザ光は、それぞれ半導体レーザから発振される
     請求項1または請求項2に記載のレーザアニール方法。
    The laser annealing method according to claim 1, wherein the first laser light and the second laser light are each oscillated from a semiconductor laser.
  4.  前記第1レーザ光のパワー密度は、前記第2レーザ光のパワー密度よりも低い
     請求項1から請求項3のいずれか一項に記載のレーザアニール方法。
    The laser annealing method according to any one of claims 1 to 3, wherein the power density of the first laser light is lower than the power density of the second laser light.
  5.  前記第1レーザビームスポットは、前記第2レーザビームスポットよりも、前記被処理基板の搬送方向の同じ位置か下流側に配置する
     請求項1から請求項4のいずれか一項に記載のレーザアニール方法。
    The laser annealing according to any one of claims 1 to 4, wherein the first laser beam spot is arranged at the same position or a downstream side in the transport direction of the substrate to be processed as compared with the second laser beam spot. Method.
  6.  前記第1レーザビームスポットを、前記改質領域の一部を通過するように配置し、
     前記第2レーザビームスポットを、前記改質領域の全面を通過するように形成する
     請求項1から請求項5のいずれか一項に記載のレーザアニール方法。
    The first laser beam spot is arranged so as to pass through a part of the modified region,
    The laser annealing method according to any one of claims 1 to 5, wherein the second laser beam spot is formed so as to pass through the entire surface of the modified region.
  7.  複数の前記第2レーザビームスポットが、前記第1レーザビームスポットから延びるように形成する
     請求項5または請求項6に記載のレーザアニール方法。
    The laser annealing method according to claim 5, wherein the plurality of second laser beam spots are formed so as to extend from the first laser beam spot.
  8.  前記第2レーザビームスポットは、前記第1レーザビームスポットから前記被処理基板の搬送方向の斜め上流側へ向けて延びるように配置されている
     請求項5から請求項7のいずれか一項に記載のレーザアニール方法。
    The said 2nd laser beam spot is arrange|positioned so that it may extend toward the diagonally upstream side of the conveyance direction of the said to-be-processed substrate from the said 1st laser beam spot. Laser annealing method.
  9.  レーザビームのビームスポットに対して、非晶質シリコン膜が表面に成膜された被処理基板を相対的に移動するように設定され、前記非晶質シリコン膜を前記ビームスポットで前記レーザビームを照射して結晶化シリコン膜に改質させるレーザアニール装置であって、
     前記非晶質シリコン膜に吸収される波長域の第1レーザ光を発振する第1光源部と、
     溶融されたシリコンに吸収される波長域の第2レーザ光を発振する第1光源部と、
     を備え、
     前記第1レーザ光でなる第1レーザビームスポットを照射して前記非晶質シリコン膜を溶融させ、前記第1レーザ光により溶融されたシリコンに前記第2レーザ光でなる第2レーザビームスポットを、前記第1レーザビームスポットと隣接する領域に照射する
     レーザアニール装置。
    The amorphous silicon film is set to move relative to the beam spot of the laser beam on the substrate to be processed, and the amorphous silicon film is irradiated with the laser beam at the beam spot. A laser annealing apparatus for irradiating and modifying a crystallized silicon film,
    A first light source unit that oscillates a first laser beam in a wavelength range absorbed by the amorphous silicon film;
    A first light source section that oscillates a second laser beam in a wavelength range that is absorbed by the melted silicon;
    Equipped with
    The amorphous silicon film is melted by irradiating a first laser beam spot made of the first laser beam, and a second laser beam spot made of the second laser beam is formed on the silicon melted by the first laser beam. A laser annealing device for irradiating a region adjacent to the first laser beam spot.
  10.  前記第1レーザ光の波長域は、近紫外から可視光であり、
     前記第2レーザ光の波長域は、可視光以上である
     請求項9に記載のレーザアニール装置。
    The wavelength range of the first laser light is from near ultraviolet to visible light,
    The laser annealing apparatus according to claim 9, wherein the wavelength range of the second laser light is visible light or more.
  11.  前記第1レーザ光および前記第2レーザ光は、それぞれ半導体レーザから発振される
     請求項9または請求項10に記載のレーザアニール装置。
    The laser annealing device according to claim 9 or 10, wherein the first laser light and the second laser light are emitted from a semiconductor laser, respectively.
  12.  前記第1レーザ光のパワー密度は、前記第2レーザ光のパワー密度よりも低く設定されている
     請求項9から請求項11のいずれか一項に記載のレーザアニール装置。
    The laser annealing apparatus according to any one of claims 9 to 11, wherein the power density of the first laser light is set lower than the power density of the second laser light.
  13.  前記第1レーザビームスポットは、前記第2レーザビームスポットよりも、前記被処理基板の搬送方向の同じ位置か下流側に配置されている
     請求項9から請求項12のいずれか一項に記載のレーザアニール装置。
    The said 1st laser beam spot is arrange|positioned rather than the said 2nd laser beam spot at the same position in the conveyance direction of the said to-be-processed substrate, or a downstream side. Laser annealing equipment.
  14.  前記第1レーザビームスポットは、改質領域の一部を通過するように配置され、
     前記第2レーザビームスポットは、前記改質領域の全面を通過するように形成されている
     請求項9から請求項13のいずれか一項に記載のレーザアニール装置。
    The first laser beam spot is arranged so as to pass through a part of the modified region,
    The laser annealing apparatus according to any one of claims 9 to 13, wherein the second laser beam spot is formed so as to pass through the entire surface of the modified region.
  15.  複数の前記第2レーザビームスポットが前記第1レーザビームスポットから延びるように形成される
     請求項13または請求項14に記載のレーザアニール装置。
    The laser annealing apparatus according to claim 13 or 14, wherein a plurality of the second laser beam spots are formed so as to extend from the first laser beam spot.
  16.  前記第2レーザビームスポットは、前記第1レーザビームスポットから前記被処理基板の搬送方向の斜め上流側へ向けて延びるように配置されている 請求項13から請求項15のいずれか一項に記載のレーザアニール装置。
     
    The said 2nd laser beam spot is arrange|positioned so that it may extend toward the diagonally upstream side of the conveyance direction of the said to-be-processed substrate from the said 1st laser beam spot. Laser annealing equipment.
PCT/JP2019/047137 2018-12-19 2019-12-03 Laser annealing method and laser annealing apparatus WO2020129601A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-237457 2018-12-19
JP2018237457A JP2020098895A (en) 2018-12-19 2018-12-19 Laser annealing method and laser annealing device

Publications (1)

Publication Number Publication Date
WO2020129601A1 true WO2020129601A1 (en) 2020-06-25

Family

ID=71101556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047137 WO2020129601A1 (en) 2018-12-19 2019-12-03 Laser annealing method and laser annealing apparatus

Country Status (3)

Country Link
JP (1) JP2020098895A (en)
TW (1) TW202032631A (en)
WO (1) WO2020129601A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112435920A (en) * 2020-11-05 2021-03-02 北京华卓精科科技股份有限公司 Long wavelength laser annealing method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057105A (en) * 2000-08-14 2002-02-22 Nec Corp Method and device for manufacturing semiconductor thin film, and matrix circuit-driving device
JP2003100628A (en) * 2001-09-19 2003-04-04 Sharp Corp Forming method of semiconductor film and semiconductor device as well as display device manufactured by employing the same
JP2008085236A (en) * 2006-09-29 2008-04-10 Hitachi Computer Peripherals Co Ltd Dual-wavelength laser annealing apparatus
JP2017017292A (en) * 2015-07-06 2017-01-19 国立大学法人島根大学 Crystallization method, patterning method, and thin film transistor manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057105A (en) * 2000-08-14 2002-02-22 Nec Corp Method and device for manufacturing semiconductor thin film, and matrix circuit-driving device
JP2003100628A (en) * 2001-09-19 2003-04-04 Sharp Corp Forming method of semiconductor film and semiconductor device as well as display device manufactured by employing the same
JP2008085236A (en) * 2006-09-29 2008-04-10 Hitachi Computer Peripherals Co Ltd Dual-wavelength laser annealing apparatus
JP2017017292A (en) * 2015-07-06 2017-01-19 国立大学法人島根大学 Crystallization method, patterning method, and thin film transistor manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112435920A (en) * 2020-11-05 2021-03-02 北京华卓精科科技股份有限公司 Long wavelength laser annealing method and device
CN112435920B (en) * 2020-11-05 2024-02-23 北京华卓精科科技股份有限公司 Long wavelength laser annealing method and device

Also Published As

Publication number Publication date
TW202032631A (en) 2020-09-01
JP2020098895A (en) 2020-06-25

Similar Documents

Publication Publication Date Title
US7364952B2 (en) Systems and methods for processing thin films
US20090218577A1 (en) High throughput crystallization of thin films
EP1354341A1 (en) Method for single-scan, continuous motion sequential lateral solidification
MX2012006043A (en) Systems and methods for non-periodic pulse sequential lateral solidification.
US20050287773A1 (en) Laser beam projection mask, and laser beam machining method and laser beam machine using same
JP2011109073A (en) Laser mask, and sequential lateral solidification method using the same
JP2004119971A (en) Laser processing method and laser processing device
WO2020129601A1 (en) Laser annealing method and laser annealing apparatus
JP2007096244A (en) Projection mask, laser machining method, laser machining device, and thin-film transistor element
US7476475B2 (en) Mask for sequential lateral solidification and method of performing sequential lateral solidification using the same
WO2020158464A1 (en) Laser annealing method and laser annealing apparatus
US10896817B2 (en) Laser irradiation apparatus, thin film transistor, and method of manufacturing thin film transistor
WO2020129600A1 (en) Laser anneal method and method for manufacturing thin-film transistor
WO2020129562A1 (en) Laser annealing apparatus
JP2002057105A (en) Method and device for manufacturing semiconductor thin film, and matrix circuit-driving device
JP2008147429A (en) Laser annealer and laser anneal method
KR102285121B1 (en) Amorphous semiconductor crystallization apparatus using laser and control method thereof
JP2007221062A (en) Method and apparatus for manufacturing semiconductor device
TWI556284B (en) Systems and methods for non-periodic pulse sequential lateral solidification
WO2021039310A1 (en) Laser annealing device and laser annealing method
JP2007207896A (en) Laser beam projection mask, laser processing method using same, laser processing apparatus
JP2008218493A (en) Method of manufacturing semiconductor film, and semiconductor film manufacturing apparatus
JP2007067020A (en) Projection mask, laser-machining method, laser machining apparatus, and thin-film transistor element
JP4377442B2 (en) Semiconductor thin film forming method, semiconductor thin film forming apparatus, crystallization method and crystallization apparatus
JP2019062067A (en) Method for manufacturing organic semiconductor, and light-irradiation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898907

Country of ref document: EP

Kind code of ref document: A1