WO2020129567A1 - 感圧センサ及び電子機器 - Google Patents

感圧センサ及び電子機器 Download PDF

Info

Publication number
WO2020129567A1
WO2020129567A1 PCT/JP2019/046602 JP2019046602W WO2020129567A1 WO 2020129567 A1 WO2020129567 A1 WO 2020129567A1 JP 2019046602 W JP2019046602 W JP 2019046602W WO 2020129567 A1 WO2020129567 A1 WO 2020129567A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pressure
sensor
electrode layer
sensitive sensor
Prior art date
Application number
PCT/JP2019/046602
Other languages
English (en)
French (fr)
Inventor
明 蛭子井
小林 健
義晃 坂倉
はやと 長谷川
真奈美 宮脇
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US17/309,659 priority Critical patent/US11397499B2/en
Publication of WO2020129567A1 publication Critical patent/WO2020129567A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position

Definitions

  • the push-in layer may have a first patterning structure interposed between the first reference electrode layer and the clearance layer.
  • the frame 6, the first pressure-sensitive sensor 20a, the display unit 13, the proximity sensor 19, and the cover member 7 are each configured in layers and are arranged in this order from the bottom in the thickness direction (laminating direction: Z-axis direction). Are stacked and arranged.
  • the frame 6, the first pressure-sensitive sensor 20a, the display unit 13, the proximity sensor 19, and the cover member 7 each have a rectangular shape when viewed from the front side, and have the same area. (See FIG. 3 for the shape of the first pressure-sensitive sensor 20a in plan view). Further, the frame 6, the first pressure-sensitive sensor 20a, the display unit 13, the proximity sensor 19, and the cover member 7 are formed so that both end sides in the width direction are rounded. That is, each of these members extends in the width direction to a position reaching the round portion 9.
  • the orientation of the first pressure-sensitive sensor 20a may be upside down.
  • the second electrode film layer 36 is arranged on the lower surface side of the display unit 13, and the clearance layer 21 is arranged on the upper surface side of the frame 6.
  • the deformation layer 37 is configured to be elastically deformable according to an external force applied by the user.
  • the first electrode film layer 35 (first reference electrode) is pushed into the sensor electrode layer 27 side by the pushing layer 23 according to the external force.
  • the deformable layer 37 elastically deforms, whereby the first reference electrode layer 35 a (ground potential) approaches the sensing unit 29 in the sensor electrode layer 27.
  • the capacitance between the pulse electrode and the sense electrode changes, so that the first pressure-sensitive sensor 20a can detect this change in capacitance as a pressure value.
  • the first support columns 38a are regularly arranged along the width direction (X-axis direction) and the length direction (Y-axis direction) at predetermined intervals.
  • the first support columns 38a are arranged in the same eight rows because the sensing portions 29 are formed in eight rows.
  • the number of the first support columns 38a included in one row is five in 6-1 because the sensing portions 29 in the sensor electrode layer 27 are formed in six columns.
  • the number of the first support columns 38a is 8 rows ⁇ 5 columns, for a total of 40.
  • the second support columns 38b are regularly arranged along the length direction (Y-axis direction) with a predetermined space.
  • the second support columns 38b are arranged in 9 rows by 8+1 because the sensing portions 29 are formed in 8 rows. Since the second support columns 38b are formed long in the width direction (X-axis direction), the number of the second support columns 38b included in one row is one.
  • the total number of the second support columns 38b is 9 rows ⁇ 1 column, which is nine.
  • the second pillar portion 38 is made of, for example, an adhesive having an insulating layer or a double-sided adhesive tape.
  • the adhesive include acrylic adhesives, silicone adhesives, urethane adhesives, and adhesives composed of a combination of two or more thereof.
  • the push-in layer 23 pushes the first electrode film layer 35 (first reference electrode layer 35a) toward the sensor electrode layer 27 according to the external force to deform the deformable layer 37.
  • FIG. 9 is a diagram for explaining the tolerance guarantee, and is a cross-sectional view of the smartphone 100 on the XZ plane.
  • the example shown in FIG. 9 shows that the convex portion 5 is partially formed on the upper surface of the frame 6.
  • the convex portion 5 is displayed larger than it actually is.
  • the two surfaces sandwiching the pressure-sensitive sensor 20 are not perfect flat surfaces, but have tolerances (variations) such as irregularities. Exists. Even if the two surfaces sandwiching the pressure-sensitive sensor 20 are perfect flat surfaces without unevenness, such two surfaces do not become perfectly parallel due to a processing error or the like, and thus the two surfaces do not become parallel to each other. There is a tolerance (variation) in the distance between them. In particular, such a tolerance is likely to occur in the round section 9.
  • the pressure sensor 20 is provided with the push-in layer 23 separately from the clearance layer 21.
  • the push-in layer 23 pushes the first electrode film layer 35 (first reference electrode layer 35a) toward the sensor electrode layer 27 while the clearance layer 21 absorbs the external force and collapses. to continue.
  • the slope of the sensor output value gradually rises, and the slope of the sensor output value takes the maximum value around the displacement of 310 ⁇ m.
  • the slope of the sensor output value gradually decreases, and then becomes approximately 0 at a displacement of about 480 ⁇ m.
  • the sensitivity (SNR: Signal Noise Ratio) at the time of deformation of 5 ⁇ m was 13. Further, in this first embodiment, the tolerance guaranteed width was 270 ⁇ m.
  • the thickness of the push layer 23 is changed from 200 ⁇ m to 100 ⁇ m as compared with the first embodiment.
  • the other points are the same as in the first embodiment.
  • the sensitivity at the time of deformation of 5 ⁇ m was 30, and the guaranteed tolerance range was 140 ⁇ m.
  • FIG. 27 is a diagram illustrating various examples and various comparative examples in the second embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

【課題】良好な公差保証を実現することができる感圧センサ等の技術を提供すること。 【解決手段】本技術に係る感圧センサは、センサ部と、クリアランス層と、押し込み層とを具備する。前記センサ部は、センサ電極層と、第1のリファレンス電極層と、前記センサ電極層及び前記第1のリファレンス電極層の間に介在された第1の変形層とを有する。前記クリアランス層は、前記センサ部の外部で前記第1のリファレンス電極層に対向する。前記押し込み層は、前記第1のリファレンス電極層及び前記クリアランス層の間に介在され、外力に応じて前記第1のリファレンス電極層を前記センサ電極層側に押し込で第1の変形層を変形させる。

Description

感圧センサ及び電子機器
 本技術は、圧力を検出する感圧センサ等の技術に関する。
 例えば、下記特許文献1には、静電容量方式の感圧センサが記載されている。このセンサは、パルス電極及びセンス電極を含むセンサ電極部と、センサ電極部を両側から挟み込む2つのリファレンス電極層と、センサ電極部及びリファレンス電極層の間に配置された変形層とを備えている。
 このセンサのセンシング面に対して圧力が加わると、変形層が変形してセンサ電極部とリファレンス電極層とが近づく。このとき、センサ電極部のパルス電極及びセンス電極の間に形成された電気力線の一部がリファレンス電極層に流れることで、静電容量が変化する。この静電容量の変化に基づいて、感圧センサに加えられた圧力が検出される。
 また、特許文献1に記載の技術では、例えば、外装体やフレームなどの寸法のばらつき(公差)を吸収する等の目的で、センサのセンシング面と外装体の内面との間に、発泡樹脂などにより構成されたさらに別の変形層が配置されている。
国際公開第2018/151268号
 特許文献1に記載の技術では、様々な部品公差やセンサ実装時のバラつき等の公差保証が不十分となる場合がある。
 以上のような事情に鑑み、本技術の目的は、良好な公差保証を実現することができる感圧センサ等の技術を提供することにある。
 本技術に係る感圧センサは、センサ部と、クリアランス層と、押し込み層とを具備する。
 前記センサ部は、センサ電極層と、第1のリファレンス電極層と、前記センサ電極層及び前記第1のリファレンス電極層の間に介在された第1の変形層とを有する。
 前記クリアランス層は、前記センサ部の外部で前記第1のリファレンス電極層に対向する。
 前記押し込み層は、前記第1のリファレンス電極層及び前記クリアランス層の間に介在され、外力に応じて前記第1のリファレンス電極層を前記センサ電極層側に押し込で第1の変形層を変形させる。
 これにより、良好な公差保証を実現することができる。
 上記感圧センサにおいて、前記押し込み層は、前記第1のリファレンス電極層及び前記クリアランス層の間に介在された第1のパターニング構造を有していてもよい。
 上記感圧センサにおいて、前記第1のパターニング構造は、層に水平な方向に配列された複数の第1の柱部を含んでいてもよい。
 上記感圧センサにおいて、前記第1の変形層は、センサ電極層及び第1のリファレンス電極層の間に介在された第2のパターニング構造を有していてもよい。
 上記感圧センサにおいて、前記第2のパターニング構造は、層に水平な方向に配列された複数の第2の柱部を含んでいてもよい。
 上記感圧センサにおいて、前記第1の変形層は、前記複数の第2の柱部が存在しない中空部を含み、前記複数の第1の柱部は、層に垂直な積層方向において、前記中空部に対応する位置に配置されていてもよい。
 上記感圧センサにおいて、前記センサ電極層は、センシング部を含み、前記複数の第1の柱部は、層に垂直な積層方向において、前記センシング部に対応する位置に配置されていてもよい。
 上記感圧センサにおいて、前記クリアランス層は、発泡樹脂を含んでいてもよい。
 上記感圧センサにおいて、前記押し込み層は、前記クリアランス層を構成する材料よりも硬い材料により構成されていてもよい。
 上記感圧センサにおいて、前記センサ部は、前記第1のリファレンス電極層との間で前記センサ電極層を挟み込む位置に配置される第2のリファレンス電極層をさらに有していてもよい。
 上記感圧センサにおいて、前記センサ部は、センサ電極層及び前記第2のリファレンス電極層の間に介在された第2の変形層をさらに有していてもよい。
 上記感圧センサにおいて、前記第1の変形層及び前記第2の変形層は、構造又は材料のうち少なくとも一方が異なっていてもよい。
 上記感圧センサにおいて、前記第1の変形層及び前記第2の変形層のうち、一方がパターニング構造を有していてもよい。
 上記感圧センサにおいて、前記パターニング構造は、層に水平な方向に配列された複数の柱部を含んでいてもよい。
 上記感圧センサにおいて、前記第1の変形層及び前記第2の変形層のうち、他方が発泡樹脂を含んでいてもよい。
 本技術に係る電子機器は、外装体と、外装体を介した外力を検出する感圧センサとを備える。
 前記感圧センサは、センサ部と、クリアランス層と、押し込み層とを有する。
 前記センサ部は、第1のリファレンス電極層と、前記センサ電極層及び前記第1のリファレンス電極層の間に介在された第1の変形層とを有する。
 前記クリアランス層は、前記センサ部の外部で前記第1のリファレンス電極層に対向する。
 前記押し込み層は、前記第1のリファレンス電極層及び前記クリアランス層の間に介在され、外力に応じて前記第1のリファレンス電極層を前記センサ電極層側に押し込で第1の変形層を変形させる。
本技術の一実施形態に係るスマートフォンを示す斜視図である。 図1に示すA-A'間の模式的な断面図である。 スマートフォンに実装される第1の感圧センサを示す図である。 スマートフォンに実装される第2の感圧センサを示す図である。 スマートフォンの電気的な構成を示すブロック図である。 第1の感圧センサを示す模式的な平面図である。 図6に示すB-B'間の断面図であり、第1の感圧センサを示す模式的な側面図である。 第1の感圧センサにおけるフレキシブルプリント基板の配線図である。 公差保証を説明するための図であり、スマートフォンにおけるXZ平面での間の断面図である。 変位に対するセンサ出力値における理想値を示す図である。 変位に対するセンサ出力値の傾きにおける理想値を示す図である。 比較例に係る感圧センサを示す模式的な側面図である。 比較例に係る感圧センサに外力が加えられたときの様子を示す図である。 比較例に係る感圧センサにおける、変位に対するセンサ出力値の波形を示す図である。 比較例に係る感圧センサにおける、変位に対するセンサ出力値の傾きの波形を示す図である。 第1実施形態に係る感圧センサに対して外力が加えられたときの様子を示す図である。 第1実施形態に係る感圧センサにおける、変位に対するセンサ出力値の傾きの波形を示す図である。 各種実施例及び各種比較例を示す図である。 感圧センサによって検出された圧力がどのような処理に使用されるかについての使用例を示す図である。 感圧センサによって検出された圧力がどのような処理に使用されるかについての使用例を示す図である。 第2実施形態に係る感圧センサを示す模式的な側面図である。 比較例に係る感圧センサを示す図である。 比較例に係る他の感圧センサを示す図である。 図22における比較例に係る感圧センサにおける、変位に対する、センサ出力値の傾きの波形を示す図である。 図23に示す比較例に係る感圧センサにおける、変位に対する、センサ出力値の傾きの波形を示す図である。 第2実施形態に係る感圧センサにおける、変位に対する、センサ出力値の傾きの波形を示す図である。 第2実施形態における各種実施例及び各種比較例を示す図である。 第3実施形態に係る感圧センサを示す模式的な側面図である。
 以下、本技術に係る実施形態を、図面を参照しながら説明する。
 ≪第1実施形態≫
 <スマートフォンの全体構成及び各部の構成>
 図1は、本技術の一実施形態に係るスマートフォン100を示す斜視図である。本明細書の説明においては、感圧センサ20を含む電子機器の一例としてスマートフォン100を例に挙げて説明する。
 図1に示すように、本実施形態に係るスマートフォン100は、筐体10(外装体)と、筐体10の正面に設けられた表示部13とを備えている。
 筐体10は、ユーザが片手で保持できる程度の大きさとされている。この筐体10は、厚さ方向(Z軸方向)に薄く、幅方向(X軸方向)に短く、長さ方向(Y軸方向)に長い板状の形状を有している。
 筐体10は、筐体10の正面において、幅方向(X軸方向)の両側の側面と繋がる角部(稜)が、丸みを持って形成されている。この丸みを持って形成された部分を以降ではラウンド部9と呼ぶ。
 筐体10の正面には、表示部13が設けられており、筐体10の正面において表示部13よりも上側の位置には、受話口8が設けられている。また、筐体10の正面において表示部13よりも下側の位置には、押しボタン式の操作部18が設けられている。なお、図示は省略しているが、筐体10には、通話口や、コネクタ等も設けられている。
 筐体10は、例えば、ステンレス鋼などの各種の金属や、ポリカーボネード等の各種の樹脂などにより構成される(筐体10において表示部13に対応しない部分)。
 表示部13は、長さ方向(Y軸方向)で筐体10の正面の一部を残す位置まで広がっており、また、幅方向(X軸方向)でラウンド部9に達する位置まで広がっている。
 図2は、図1に示すA-A'間の模式的な断面図である。また、図3は、スマートフォン100に実装される第1の感圧センサ20aを示す図であり、図4は、スマートフォン100に実装される第2の感圧センサ20bを示す図である。
 図2に示すように、スマートフォン100は、筐体10の正面において、厚さ方向(Z軸方向)で下方(筐体10の内側)から順番に、フレーム6、第1の感圧センサ20a、表示部13、近接センサ19、及びカバー部材7を備えている。また、スマートフォン100は、筐体10における幅方向(X軸方向)の両側の側面部において、第2の感圧センサ20bを備えている。
 なお、本明細書中の説明において、2つの感圧センサ20を区別しない場合には、単に「感圧センサ20」と呼び、これらの2つの感圧センサ20を特に区別する場合に「第1の感圧センサ20a」、「第2の感圧センサ20b」と呼ぶ。
 フレーム6、第1の感圧センサ20a、表示部13、近接センサ19、及びカバー部材7は、それぞれ、層状に構成されており、下方からこの順番に厚さ方向(積層方向:Z軸方向)に積層されて配置されている。
 フレーム6、第1の感圧センサ20a、表示部13、近接センサ19、及びカバー部材7は、それぞれ、正面側から見て矩形の形状を有しており、それぞれ、同様の面積を有している(第1の感圧センサ20aの平面視の形状は、図3参照)。また、フレーム6、第1の感圧センサ20a、表示部13、近接センサ19、及びカバー部材7は、幅方向の両端部側が丸みを持って形成されている。つまり、これらの各部材は、幅方向において、ラウンド部9に達する位置まで広がっている。
 フレーム6は、第1の感圧センサ20aを下方から支持する。フレーム6は、例えば、ステンレス鋼などの各種の金属や、ポリカーボネード等の各種の樹脂などにより構成される。なお、筐体10内部において、フレーム6よりもさらに内側には、CPU(Central Processing Unit)等が実装された各種の配線基板等が配置されている。
 第1の感圧センサ20aは、筐体10の正面において、厚さ方向(Z軸方向)でフレーム6及び表示部13に挟み込まれる位置に配置されている。この第1の感圧センサ20aは、ユーザによりカバー部材7(外装体)の表面に対して外力が加えられたときに、カバー部材7、近接センサ19、及び表示部13を介して加えられる圧力を検出する。この第1の感圧センサ20aの構成については、図6~図8等を参照して、後に詳述する。
 表示部13は、例えば、液晶ディスプレイや、EL(Electro-Luminescence)ディスプレイ等により構成される。
 近接センサ19は、表示部13に対するユーザの指やスタイラスペン等の近接やその位置を検出する。近接センサ19としては、例えば、静電容量方式、抵抗膜方式のセンサが用いられるが、近接センサ19は、どのような方式のセンサが用いられてもよい。
 例えば、近接センサ19は、ユーザの指がカバー部材7に接触したときに、指が接触したことや、接触した位置を検出する。一方で、第1の感圧センサ20aは、カバー部材7に接触した指がさらに押し込まれたときに、その圧力を検出する。
 カバー部材7は、筐体10の正面における表示部13上において、筐体10の一部を構成する部材である。このカバー部材7は、例えば、ガラス材料等により構成されており、表示部13からの光を透過させることが可能とされている。また、このカバー部材7は、外部の衝撃から近接センサ19や表示部13等を保護することが可能とされている。
 第2の感圧センサ20bは、筐体10において、右側の側面部と、左側の側面部とにそれぞれ設けられている。なお、第2の感圧センサ20bは、左側の側面部及び右側の側面部のうちいずれか一方にのみ設けられていてもよい。
 第2の感圧センサ20bは、長さ方向(Y軸方向)に長い形状を有しており、筐体10の幅方向(X軸方向)における側面部の長さと同等か、又は、幅方向の側面部よりも少し短い程度の長さとされている(図4参照)。
 筐体10の幅方向において右側の側面部を構成する側壁部材3及び左側の側面部を構成する側壁部材3には、それぞれ長さ方向(Y軸方向)に沿って第2の感圧センサ20bを収容するための溝4が形成されている。側壁部材3は、溝4によって形成される互いに平行な2つの壁面3a、3bを有している。
 第2の感圧センサ20bは、溝4によって形成される2つの壁面3a、3bに挟み込まれるようにして、溝4の内部に収容されている。この第2の感圧センサ20bは、ユーザにより側壁部材3(外装体)の表面に対して外力が加えられたときに、側壁部材3を介して加えられる圧力を検出する。
 図5は、スマートフォン100の電気的な構成を示すブロック図である。図5に示すように、スマートフォン100は、制御部11、記憶部12、表示部13、通信部14、アンテナ15、スピーカ16、マイクロフォン17、操作部18、近接センサ19、第1の感圧センサ20a及び第2の感圧センサ20bを備えている。
 制御部11は、例えば、CPU等により構成される。制御部11は、記憶部12に記憶された各種のプログラムに基づき種々の演算を実行し、スマートフォン100の各部を統括的に制御する。
 記憶部12は、制御部11の作業領域として用いられる揮発性のメモリと、制御部11の処理に必要な各種のプログラムが記憶される不揮発性のメモリとを含む。上記各種のプログラムは、光ディスク、半導体メモリ等の可搬性の記録媒体から読み取られてもよいし、ネットワーク上のサーバ装置からダウンロードされてもよい。
 表示部13は、制御部11の制御に応じて各種の画像を表示させる。通信部14は、アンテナ15により送受信される電波の周波数変換や、変調及び復調等の処理を実行する。アンテナ15は、通話用の電波や、電子メール、Webデータ等のパケット通信用の電波を送受信する。
 スピーカ16は、デジタル/アナログ変換機や増幅器等を含む。スピーカ16は、制御部11から入力された通話用の音声データに対してデジタル/アナログ変換処理及び増幅処理を実行し、受話口8を介して音声を出力する。
 マイクロフォン17は、アナログ/デジタル変換機等を有する。マイクロフォン17は、ユーザから通話口を介して入力されたアナログ音声データをデジタル音声データへ変換して制御部11へ出力する。制御部11へ出力されたデジタル音声データは、符号化された後、通信部14及びアンテナ15を介して送信される。
 押しボタン式の操作部18は、ユーザからの操作を検出して、制御部11へと出力する。近接センサ19は、ユーザの指等の近接やその位置を検出し、制御部11へと出力する。また、第1の感圧センサ20a及び第2の感圧センサ20bは、ユーザの指等の外部からの圧力又は押圧位置を検出し、制御部11へと出力する。
 <感圧センサ>
 [第1の感圧センサ]
 次に、感圧センサ20の構成の一例について、具体例を挙げて詳細に説明する。図6は、第1の感圧センサ20aを示す模式的な平面図である。なお、図6では、第1の感圧センサ20aにおけるクリアランス層21を省略して図示している。図7は、図6に示すB-B'間の断面図であり、第1の感圧センサ20aを示す模式的な側面図である。
 図6及び図7に示すように、第1の感圧センサ20aは、積層方向(Z軸方向)において、上方(外側)から順番に、クリアランス層21と、押し込み層23と、センサ部26とを備えている。
 センサ部26は、積層方向(Z軸方向)において、上方(外側)から順番に、第1の電極フィルム層35と、変形層37(第1の変形層37)と、センサ電極層27と、固定層45と、第2の電極フィルム層36とを備えている。
 第2の電極フィルム層36の下面(第2のフィルム層36bの下面)には、接着層56が設けられており、第2の電極フィルム層36は、この接着層56によりフレーム6の上面に接着されている。一方、クリアランス層21の上面は、表示部13の下面に接触あるいは接着されている。
 なお、第1の感圧センサ20aの向きは、上下逆であってもよい。この場合、第2の電極フィルム層36が、表示部13の下面側に配置され、クリアランス層21が、フレーム6の上面側に配置される。
 (センサ電極層)
 センサ電極層27は、フレキシブルプリント基板28(Flexible Printed Circuits)の一部により構成されている。センサ電極層27は、可撓性を有しており、基材30と、基材30に設けられたセンシング部29とを有している。基材30は、例えば、ポリエチレンテレフタラート、ポリカーボネード、アクリル樹脂等の高分子樹脂により構成される。センシング部は、例えば、銅薄膜、銀ペースト膜、銀薄膜等の各種の金属膜により構成される。
 センサ電極層27は、厚さが、例えば、30μm~150μm程度とされる。なお、本明細書中において示される寸法などの具体的な数値については、単なる一例に過ぎず、適宜変更することができる。
 図8は、第1の感圧センサ20aにおけるフレキシブルプリント基板28(Flexible Printed Circuits)(以下、FPC基板28)の配線図である。FPC基板28は、主要部となる平面視で矩形のセンサ電極層27と、センサ電極層27から延設された接続部31と、接続部31の先端側に配置された接続端子部32とを有している。
 接続部31は、幅方向(X軸方向)の中央近傍の位置から、長さ方向(Y軸方向)に沿ってセンサ電極層27から延設されている。接続端子部32は、制御部11等が実装された基板に対して電気的に接続される。
 センシング部29は、静電容量式のセンサであり、正方形状の第1のセンシング部29aと、長方形状の第2のセンシング部29bとを含む。第1のセンシング部29aは、センサ電極層27において、幅方向(X軸方向)における両端側を除いた位置において、幅方向(X軸方向)及び長さ方向(Y軸方向)で、所定の間隔を開けて規則的に配列されている。本実施形態においては、第1のセンシング部29aの数は、8行×4列で合計32個とされている。
 第2のセンシング部29bは、第1のセンシング部29aよりも幅が狭くかつ長さが長い長方形とされている。第2のセンシング部29bは、センサ電極層27において、幅方向(X軸方向)における両端側の位置、つまり、ラウンド部9に対応する位置において、長さ方向に沿って所定の間隔を開けて規則的に配列されている。本実施形態においては、第2のセンシング部29bの数は、8行×2列で合計16個とされている。
 センシング部29における全体の数は、8行×6列で合計48個とされている(6列のうち中央4列が第1のセンシング部29a、6列のうち両端の2列が第2のセンシング部29b)。なお、本実施形態において説明する各部材における具体的な数は、単なる一例に過ぎず、適宜変更することができる。
 各センシング部29は、それぞれ、例えば、図示しない櫛歯状のパルス電極と、櫛歯状のセンス電極とを含む。櫛歯状のパルス電極と、櫛歯状のセンス電極とは、櫛歯が互いに向かいように配置されており、また、一方の櫛歯の間に他方の櫛歯が入り込むように配置されている。なお、センシング部29の方式については、特に限定されず、どのような方式が用いられてもよい。
 また、各センシング部29に対しては、それぞれ、センシング電極用の第1の配線33aと、パルス電極用の第2の配線33bとの2本の配線が接続されている。センシング電極用の第1の配線33aは、各列毎に共通の配線とされており、一方で、パルス電極用の第2の配線33bは、それぞれ、各行毎に共通の配線とされている。
 センシング電極用の第1の配線33aは、各列におけるセンシング部29に沿うように長さ方向(Y軸方向)に沿って形成されている。この第2の配線33bは、厚さ方向(積層方向:Z軸方向)においてセンシング部29と同じ高さ位置に配置されている。
 パルス電極用の第2の配線33bは、センシング部29からスルーホール34a(図8右側の拡大図を参照)を介して基材30の裏面側に引き回されている。この第2の配線33bは、基材30の裏面において各行におけるセンシング部29に沿うように幅方向(X軸方向)に沿って形成されている。そして、この第2の配線33bは、センサ電極層27において幅方向中央に設けられたスルーホール34bを介して、センシング部29と同じ高さ位置に戻された後、長さ方向(Y軸方向)に沿って接続部31まで繋がるように形成されている。
 なお、このFPC基板28では、第1の配線33a及び第2の配線33bを配置する高さを異ならせることによって、第1の配線33a及び第2の配線33bが接触しないように構成されている。
 (電極フィルム層)
 図6及び図7の説明に戻る。第1の電極フィルム層35(第1のリファレンス電極層35a)及び第2の電極フィルム層36(第2のリファレンス電極層36a)は、積層方向(Z軸方向)で、センサ電極層27を挟み込む位置に配置されている。
 第1の電極フィルム層35は、可撓性を有しており、第1のフィルム層35bと、第1のフィルム層35bの一方の面側に設けられた第1のリファレンス電極層35aとを有している。第2の電極フィルム層36も、同様に、可撓性を有しており、第2のフィルム層36bと、第2のフィルム層36bの一方の面側に設けられた第2のリファレンス電極層36aとを備えている。第1のリファレンス電極層35a及び第2のリファレンス電極層36aは、いわゆる接地電極であり、グランド電位とされている。
 第1の電極フィルム層35及び第2の電極フィルム層36は、センサ電極層27と同様の面積(XY方向)を有している。また、第1の電極フィルム層35及び第2の電極フィルム層36は、厚さが、例えば、10μm~100μm程度とされる。また、第1のリファレンス電極層35a及び第2のリファレンス電極層36aは、厚さが0.05μm~0.5μm程度とされる。
 第1の電極フィルム層35及び第2の電極フィルム層36とは基本的に同様の構成であるが、積層方向における上下の向きが異なっている。つまり、第1の電極フィルム層35では、第1のリファレンス電極層35aがセンサ電極層27側に向くように、第1のリファレンス電極層35aが第1のフィルム層35bよりも下側に配置されている。一方、第2の電極フィルム層36では、第2のリファレンス電極層36aがセンサ電極層27側に向くように、第2のリファレンス電極層36aが第2のフィルム層36bよりも上側に配置されている。
 第1のフィルム層35b、第2のフィルム層36bの材料としては、例えば、ポリエチレンテレフタラート、ポリカーボネード、アクリル樹脂等の高分子樹脂が用いられる。また、第1のリファレンス電極層35a、第2のリファレンス電極層36aの材料としては、例えば、無機系導電材料や、有機系導電材料、無機系導電材量及び有機系導電材料の両方を含む導電材料等が用いられる。
 無機系導電材料としては、例えば、アルミニウム、銅、銀などの金属や、ステンレス鋼などの合金、酸化亜鉛、酸化インジウムなどの金属酸化物などが挙げられる。また、有機系導電材料としては、カーボンブラック、炭素繊維などの炭素材料や、置換又は無置換のポリアニリン、ポリピロール等の導電性ポリマーなどが挙げられる。なお、材料としては、導電性を有する材料であればどのような材料が用いられてもよい。
 第1のリファレンス電極層35a、第2のリファレンス電極層36aは、例えば、蒸着や、スパッタリング、接着、塗布等の方法によって、第1のフィルム層35b、第2のフィルム層36b上に形成される。なお、第1のフィルム層35b、第2のフィルム層36bは、省略することもでき、この場合、第1のリファレンス電極層35a、第2のリファレンス電極層36aは、ステンレス鋼、アルミニウムなどの金属薄板や、導電繊維、導電不織布などにより構成される。
 (固定層)
 固定層45は、センサ電極層27と、第2の電極フィルム層36(第2のリファレンス電極層36a)との間に介在されている。固定層45は、センサ電極層27と同様の面積(XY方向)を有しており、また、固定層45は、厚さが、例えば、50μm~200μm程度とされる。
 固定層45は、センサ電極層27と、第2のリファレンス電極層36aとの間の積層方向(Z軸方向)での距離(ギャップ)を調整するために設けられている。この固定層45は、ユーザにより外力が加えられたときに、外力による変形層37の変形に比べてほとんど変形しない。
 固定層45は、絶縁層を有する接着剤又は両面接着テープにより構成される。接着剤としては、例えば、アクリル系接着剤、シリコン系接着剤、ウレタン系接着剤、あるいは、これらの2以上の組合せから成る接着剤等が挙げられる。
 (変形層)
 変形層37は、センサ電極層27と、第1の電極フィルム層35(第1のリファレンス電極層35a)との間に介在されている。変形層37は、センサ電極層27と同様の面積(XY方向)を有しており、また、変形層37は、厚さが、例えば、30μm~300μm程度とされる。
 変形層37は、ユーザによる外力に応じて弾性変形可能に構成されている。ユーザにより外力が加えられたとき、外力に応じて第1の電極フィルム層35(第1のリファレンス電極)が押し込み層23によってセンサ電極層27側に押しこまれる。第1の電極フィルム層35が押し込み層23によって押し込まれると、変形層37が弾性変形し、これにより、第1のリファレンス電極層35a(グランド電位)がセンサ電極層27におけるセンシング部29に近づく。このとき、センシング部29において、パルス電極と、センス電極間の静電容量が変化するので、第1の感圧センサ20aは、この静電容量の変化を圧力値として検出することができる。
 変形層37は、第2のパターンニング構造と、第2のパターンニング構造が存在しない中空部39と有している。本実施形態では、第2のパターニング構造は、各層に水平な方向(XY方向)に配列された複数の第2の柱部38によって構成されており、また、中空部39は、第2の柱部38が存在しない箇所とされている。第2のパターニング構造は、行列状、ストライプ状、メッシュ状、放射状、幾何学様状、螺旋状など、様々な構造を採用することができる。なお、変形層37は、典型的には、弾性変形可能であればよく、必ずしも中空部39を有するパターニング構造を有していなくてもよい。
 変形層37における複数の第2の柱部38は、積層方向(Z軸方向)で、センサ電極層27におけるセンシング部29に対応しない位置(押し込み層23における中空部25に対応する位置)に配置されている。逆に、センサ電極層27におけるセンシング部29は、変形層37における第2の柱部38が存在しない位置、つまり、変形層37における中空部39に対応する位置に配置されている。
 第2の柱部38は、幅方向(X軸方向)及び長さ方向(Y軸方向)に短い柱状の複数の第1の支柱38aを含む。また、第2の柱部38は、幅方向(X軸方向)に長く、長さ方向(Y軸方向)に短い柱状の複数の第2の支柱38bを含む。なお、本実施形態では、第2の柱部38の形状が略四角柱形状とされているが、この形状は、円柱形状や、四角柱以外の多角柱形状などとされてもよく、第2の柱部38の形状については特に限定されない。
 第1の支柱38aは、長さ方向(Y軸方向)において、センサ電極層27におけるセンシング部29が形成された位置であり、かつ、幅方向(X軸方向)においてセンシング部29が配置されていない位置に対応する位置に配置されている。一方、第2の支柱38bは、長さ方向(Y軸方向)において、センサ電極層27におけるセンシング部29が形成されていない位置に対応する位置に配置されている。なお、第1の支柱38a及び第2の支柱38bは、長さ方向において、交互に配置される。
 第1の支柱38aは、幅方向(X軸方向)及び長さ方向(Y軸方向)に沿って所定の間隔を開けて規則的に配列されている。第1の支柱38aは、センシング部29が8行で形成されている関係で、同じ8行で配列されている。1行に含まれる第1の支柱38aの数は、センサ電極層27におけるセンシング部29が6列で形成されている関係で、6-1で5つとされている。なお、第1の支柱38aの数は、8行×5列で合計で40個とされている。
 第2の支柱38bは、長さ方向(Y軸方向)に沿って所定の間隔を開けて規則的に配置されている。第2の支柱38bは、センシング部29が8行で形成されている関係で、8+1により9行で配列されている。第2の支柱38bは、幅方向(X軸方向)に長く形成されているので、1行に含まれる第2の支柱38bの数は、1つとされている。なお、第2の支柱38bの数は、9行×1列で合計で9個とされている。
 第2の柱部38は、例えば、絶縁層を有する接着剤又は両面接着テープにより構成される。接着剤としては、例えば、アクリル系接着剤、シリコン系接着剤、ウレタン系接着剤、あるいは、これらの2以上の組合せから成る接着剤等が挙げられる。
 (クリアランス層)
 クリアランス層21は、センサ部26の外部で第1の電極フィルム層35(第1のリファレンス電極層35a)に対向するように配置される。このクリアランス層21は、接着層22を介して押し込み層23上に積層されている。
 クリアランス層21は、センサ電極層27と同様の面積(XY方向)を有しており、また、クリアランス層21は、厚さが、例えば、200μm~800μm程度とされる。なお、クリアランス層21は、押し込み層23における第1の柱部24の上側にのみ設けられていてもよい(この場合、クリアランス層21も柱状にある)。
 クリアランス層21は、弾性変形可能に構成されており、公差保証が可能とされている。クリアランス層21は、スマートフォン100の組み立て時にフレーム6の上面及び表示部13の下面の間に挟まれることによって弾性変形により潰れる。これにより、クリアランス層21は、公差(例えば、フレーム6の上面及び表示部13の間の距離のばらつき)を保証する。なお、公差保証についての詳細は、後に詳述する。また、このクリアランス層21は、ユーザにより外力が加えられたときに、外力に応じて弾性変形しつつ、押し込み層23を第1の電極フィルム層35側(第1の電極リファレンス層)に押し込む。
 クリアランス層21に用いられる材料としては、発泡樹脂、絶縁性エラストマ、(薄い)金属バネ等が挙げられる。発泡樹脂は、いわゆるスポンジであり、発泡樹脂としては、例えば、発泡ポリウレタン、発泡ポリエチレン、発泡ポリオレフィン、スポンジゴム、あるいは、これらのうち少なくとも2つ以上の組合せが挙げられる。絶縁性エラストマとしては、例えば、シリコン系エラストマ、アクリル系エラストマ、ウレタン系エラストマ、スチレン系エラストマ、あるいはこれらの2つ以上の組合せが挙げられる。
 (押し込み層)
 押し込み層23は、センサ部26の外部に配置されており、第1の電極フィルム層35(第1のリファレンス電極層35a)及びクリアランス層21の間に介在されている。押し込み層23は、センサ電極層27と同様の面積(XY方向)を有しており、また、押し込み層23は、厚さが、例えば、50μm~300μm程度とされる。
 この押し込み層23は、ユーザにより外力が加えられたとき、外力に応じて第1の電極フィルム層35(第1のリファレンス電極層35a)をセンサ電極層27側に押し込で変形層37を変形させる。
 押し込み層23は、第1のパターンニング構造と、第1のパターンニング構造が存在しない中空部25と有している。本実施形態では、第1のパターニング構造は、各層に水平な方向(XY方向)に配列された複数の第1の柱部24によって構成されており、また、中空部25は、第1の柱部24が存在しない箇所とされている。なお、第1のパターニング構造は、行列状、ストライプ状、メッシュ状、放射状、幾何学様状、螺旋状など、様々な構造を採用することができる。なお、押し込み層23は、必ずしも中空部25を有するパターニング構造を有していなくてもよい。
 押し込み層23における複数の第1の柱部24は、積層方向(Z軸方向)で、センサ電極層27におけるセンシング部29に対応する位置に配置されている。また、押し込み層23における第1の柱部24は、積層方向で、変形層37における第2の柱部38が存在しない位置、つまり、変形層37における中空部39に対応する位置に配置されている。
 第1の柱部24は、略正四角柱形状の複数の第1のバンプ24aを含む。また、第1の柱部24は、幅方向(X軸方向)に短く、長さ方向(Y軸方向)に長い、略四角柱形状の複数の第2のバンプ24bを含む。なお、本実施形態では、第1の柱部24(第1のバンプ24a及び第2のバンプ24b)の形状が四角柱形状とされているが、この形状は、円柱形状や、四角柱以外の多角柱形状などとされてもよく、第2の柱部38の形状については特に限定されない。
 押し込み層23における第1のバンプ24aは、積層方向(Z軸方向)で、センサ電極層27における第1のセンシング部29aに対応する位置に設けられている(図6における右側の拡大図参照)。また、押し込み層23における第2のバンプ24bは、積層方向(Z軸方向)で、センサ電極層27における第2のセンシング部29bに対応する位置に設けられている(図6における右側の拡大図参照)。
 また、押し込み層23の第1のバンプ24aにおける平面視での形状(正方形)は、センサ電極層27における第1のセンシング部29aの平面視での形状と略同じとされている。また、押し込み層23の第2のバンプ24bにおける平面視での形状(長方形)は、センサ電極層27における第2のセンシング部29bの平面視での形状と略同じとされている(第2のバンプ24bが第2のセンシング部29bよりも少し短いが)。なお、各層における貼合ばらつきによる感度ばらつきの観点から、典型的には、第2のバンプ24bは、第2のセンシング部29bよりも貼りずれのサイズ分大きくされるか、あるいは、小さくされる。
 第1のバンプ24aは、押し込み層23において、幅方向(X軸方向)における両端側を除いた位置において、幅方向及び長さ方向で、所定の間隔を開けて規則的に配列されている。本実施形態においては、第1のバンプ24aの数は、8行×4列で合計32個とされている。
 第2のバンプ24bは、平面視で、第1のバンプ24aよりも幅が狭くかつ長さが長い長方形とされている。第2のバンプ24bは、押し込み層23において、幅方向(X軸方向)における両端側の位置、つまり、ラウンド部9に対応する位置において、長さ方向に沿って所定の間隔を開けて規則的に配列されている。本実施形態においては、第2のバンプ24bの数は、8行×2列で合計16個とされている。
 第1の柱部24(第1のバンプ24a及び第2のバンプ24b)の全体の数は、8行×6列で合計48個とされている(6列のうち中央4列が第1のバンプ24a、6列のうち両端の2列が第2のバンプ24b)。
 第1の柱部24は、例えば、絶縁層を有する接着剤又は両面接着テープにより構成される。接着剤としては、例えば、アクリル系接着剤、シリコン系接着剤、ウレタン系接着剤、あるいは、これらの2以上の組合せから成る接着剤等が挙げられる。なお、押し込み層23を構成する材料は、典型的には、クリアランス層21に用いられる材料よりも硬い材料が用いられる。
 [第2の感圧センサ]
 第2の感圧センサ20bは、第1の感圧センサ20aと基本的に同様の構成である。つまり、第2の感圧センサ20bも、第1の感圧センサ20aと同様に、積層方向(X軸方向)において、外側から順番に、クリアランス層21と、押し込み層23と、センサ部26とを備えている。センサ部26は、外側から順番に、第1の電極フィルム層35と、変形層37と、センサ電極層27と、固定層45と、第2の電極フィルム層36とを備えている。
 第2の感圧センサ20bが第1の感圧センサ20aと異なるのは、感圧センサ20が挟み込まれる対象が違う点、感圧センサ20の向きが異なる点、感圧センサ20の形状が異なる点等であり、それ以外は、共通している。
 具体的には、第1の感圧センサ20aがフレーム6の上面及び表示部13の下面に挟み込まれる位置に配置されているのに対して、第2の感圧センサ20bは、筐体10における側壁部材3に形成された2つの壁面3a、3bに挟み込まれる位置に配置されている。
 また、第1の感圧センサ20aは、筐体10における厚さ方向(Z軸方向)が積層方向とされているのに対して、第1の感圧センサ20aは、筐体10における幅方向(X軸方向)が積層方向とされている。
 ここで、図3には、第1の感圧センサ20aが記載されており、一方、図4には、第2の感圧センサ20bが記載されている。図3及び図4の比較から理解されるように、第2の感圧センサ20bの幅(Z軸方向)は、第1の感圧センサ20aの幅(X軸方向)よりも小さい。このため、第2の感圧センサ20bでは、センサ電極層27におけるセンシング部29、変形層37における第2の柱部38(支柱)、押し込み層23における第1の柱部24(バンプ)等は、例えば、1列で配列される。また、第2の感圧センサ20bでは、第1の感圧センサ20aとは異なり、ラウンド部9が存在しない。
 <公差保証>
 本実施形態においては、良好な公差保証を実現することを目的の一つとしている。この公差保証の考え方について、具体的に説明する。
 図9は、公差保証を説明するための図であり、スマートフォン100におけるXZ平面での間の断面図である。図9に示す例では、フレーム6の上面において、一部に凸部5が出来てしまいっている様子が示されている。なお、図9においては、凸部5を見やすく表示するために、凸部5を実際よりも大きく表示している。
 図9に示すように、感圧センサ20を挟み込む2つの面(ここでの例では、フレーム6の上面及び表示部13の下面)は、完全な平面ではなく、凹凸等の公差(ばらつき)が存在する。また、仮に感圧センサ20を挟み込む2つの面が凹凸のない完全な平面であったとしても、このような2つの面は、加工誤差等が原因で完全な平行とはならず、2つの面の間の距離に公差(ばらつき)が存在する。特に、ラウンド部9においては、このような公差が発生しやすい。
 さらに、別々の電子機器(例えば、同一機種の別々のスマートフォン、機種違いの別々のスマートフォン、並びに、スマートフォン及びタブレットPC等)にそれぞれ感圧センサ20が共通で実装される場合を想定する。この場合、それぞれの電子機器で、感圧センサ20を挟み込む2つの面の距離に公差(ばらつき)が存在する。
 このような公差を保証するために、本実施形態においては、クリアランス層21が設けられている。つまり、感圧センサ20の実装時において、クリアランス層21が凹凸などに応じて優先的に潰れて公差を吸収し、これにより、公差保証が行われる。
 一方、感圧センサ20に対して単純にクリアランス層21を設けただけでは、公差保証が不十分となる場合がある。このため、本実施形態においては、感圧センサ20においてクリアランス層21とは分離して押し込み層23が設けられている。
 [理想的なセンサ出力値]
 次に、理想的なセンサ出力値について説明しつつ、最低検出感度、動作荷重、公差保証幅等について説明する。図10は、変位に対するセンサ出力値における理想値を示す図であり、図11は、変位に対するセンサ出力値の傾きにおける理想値を示す図である。なお、図10及び図11に示されている波形は、感圧センサがスマートフォン100に実装されていない状態でのセンサ出力値を示している。
 図10に示すように、センサ出力値(静電容量の変化量に相当)は、外力に応じて筐体10が変形したときの変位に対して線形となることが理想である。この場合、図11に示すように、センサ出力値の傾きは、外力に応じて筐体10が変形したときの変位に対して一定となる。
 図10及び図11に示す例では、変位が0~200μmの範囲において、変位1μm当たりセンサ出力値が30ずつ変化している。なお、変位が200μm以上の範囲では、センサ出力値は、上限に達して0となっている。
 (最低検出感度)
 まず、最低検出感度について説明する。最低検出感度とは、制御部11(例えば、静電IC:integrated circuit)において検出すべき筐体10の変位における最低限の値であり、任意に設定される値である。例えば、筐体10が少なくとも2.5μm変形したときに、制御部11にこの変形を検出させたい場合、最低検出感度が2.5μmに設定される。一例として例えば、筐体10が2.5μm変形したときに、筐体10が2.5μm変形したことをトリガーとして制御部11に処理を実行させたいような場合、最低検出感度が2.5μmに設定される。あるいは、少し余裕を持って最低検出感度が2.5μm未満に設定される。
 最低検出感度が2.5μmである場合、筐体10が2.5μm変形したときに、制御部11がこの変形を検出可能でなければならない。従って、筐体10が2.5μm変形したときのセンサ出力値の変化は、制御部11が検出可能な最低限度のセンサ出力値以上である必要がある。
 ここでの例では、制御部11が検出可能な最低限度のセンサ出力値が20であるとする。つまり、制御部11は、センサ出力値が20以上変化すればこれを検出することができるが、センサ出力値の変化が20未満である場合には、これを検出することができない。
 この条件で、最低検出感度2.5μmを実現するためには、筐体10が2.5μm変形したときに、センサ出力値の変化が20以上である必要がある。この場合、筐体10の変形(変位)1μm当たりでは、必要なセンサ出力値の変化は8となる。これが、図11における点線により示されている(最低検出感度2.5μm)。
 図11において、センサ出力値の傾きの値(縦軸)が、点線よりも上側に位置していれば、最低検出感度2.5μmを実現することができる。つまり、変位0~200μmでは、変位1μm当たり30のセンサ出力値が出ており、変位1μm当たり8よりも十分に大きいので、最低検出感度2.5μmを十分に実現することができる。
 (動作荷重)
 つぎに、動作荷重について説明する。動作荷重とは、アプリケーションを動作させるため(ある閾値をトリガーとして制御部に処理を行わせるため)に必要な荷重であり、筐体の変形量は、この動作荷重に比例する。例えば、図11におけるセンサ出力値の傾きが1μmあたり30のスマートフォン100と、1μmあたり60のスマートフォン100とが存在し、アプリケーションを動作させるための閾値が30に設定されている場合を想定する。この場合、前者のスマーフォン100については、1μmの変形で、後者のスマートフォン100については、0.5μmの変位でアプリケーションが動作することになる。筐体の変形量は、動作荷重に比例するため、結果として、前者のスマートフォン100は、後者のスマートフォン100に対して2倍の動作荷重が必要となる。つまり、動作荷重の値は、図11におけるセンサ出力値の傾きの値(縦軸)に反比例する値となる。
 ここで、筐体10を変形されるのに必要な外力(荷重)が、変位に拘らず一定であると仮定する。この場合、図10、図11に示す理想的な感圧センサ20では、変位0~200μmの範囲において、ユーザがセンサ出力値を例えば30変化させるためには、どの変位においても同じ外力で筐体10を1μm押し込めばよい。つまり、理想的な感圧センサ20の場合、ユーザが感じる動作荷重は、変位0~200μmの範囲であればどの変位においても同じである。
 動作荷重が、変位ごとにあまり異なるとユーザが違和感を覚えてしまう。例えば、変位100μmのポイントでの動作荷重に対して、変位150μmのポイントでの動作荷重が4倍となる場合、同じセンサ出力値の変化を得るためには、ユーザは動作荷重について4倍の差を感じることになる。
 このため、動作荷重の最大値Maxと、動作荷重の最小値Minの比が定義される。ここで、"動作荷重の最大値Max/動作荷重の最小値Min≦2"とする。つまり、動作荷重の最大値Maxは、動作荷重の最小値Minに対して、2倍以内の値とされる。なお、Max/Min≦2の式における「2」の値は、ユーザが動作荷重に違和感を覚えない範囲で任意に設定することができる(例えば、Max/Min≦1.5、Max/Min≦2.5等)。
 なお、動作荷重の最小値Minは、図11におけるセンサ出力値の傾きの値(縦軸)のうち、最大値に対応する値である(動作荷重は、センサ出力値の傾きの値に対して反比例するため)。また、動作荷重の最大値Maxは、センサ出力値の傾きの値(縦軸)のうち、最大値に対して1/2となる値に対応する値である。なお、図11では、変位0μm~200μmの範囲において、変位とセンサ出力値との関係が線形であるため、Max/Min=1となる。この場合、変位0μm~200μmの範囲であれば、Max/Min≦2を満たすことになる。
 (公差保証幅)
 次に、公差保証幅について説明する。公差保証幅とは、公差を保証することが可能な変位における幅(領域)である。この公差保証幅は、動作荷重の最大値Maxと、動作荷重の最小値Minとの比に基づき定義され、ここでの例では、Max/Min≦2を満たす変位における幅とされる。
 図11に示す例では、変位0μm~200μmの範囲(矢印参照)であれば、Max/Min≦2を満たすので、変位0μm~200μmが公差保証幅となる。公差保証幅は、広い方が良く、公差保証幅は、例えば、125μm以上などとされる。なお、この公差保証幅の値については、任意に設定することができる。
 なお、動作荷重におけるMax/Min≦2の条件(「2」の値)と、公差保証幅の条件とはトレードオフの関係にある。つまり、動作荷重におけるMax/Min≦2の条件が厳しくされて、例えば、Max/Min≦1.5とされた場合、公差保証幅の条件が125μmよりも緩和されて、例えば、100μmなどとされる。逆に、動作荷重におけるMax/Min≦2の条件が緩和されて、例えば、Max/Min≦2.5とされた場合、公差保証幅の条件が125μmよりも厳しくされて、例えば、150μmなどとされる。
 なお、ここでの説明では、最低検出感度2.5μmの条件を最低限満たすという条件の中で、動作荷重におけるMax/Min≦2の条件を固定したときの公差保証幅の条件がどの程度になるかという観点で説明がされている。
 [比較例]
 次に、比較例に係る感圧センサ51について説明する。図12は、比較例に係る感圧センサ51を示す模式的な側面図である。比較例に係る感圧センサ51は、本技術の第1実施形態に係る感圧センサ20とは異なり、押し込み層23が設けられていない。その他の点については、第1実施形態に係る感圧センサ20と同じである。
 図13は、比較例に係る感圧センサ51に外力が加えられたときの様子を示す図である。図14は、比較例に係る感圧センサ51における、変位に対するセンサ出力値の波形を示す図である。図15は、比較例に係る感圧センサ51における、変位に対するセンサ出力値の傾きの波形を示す図である。
 なお、図14及び図15に示されている波形は、比較例に係る感圧センサ51がまだスマートフォン100等の電子機器に実装されていない状態での波形を示している。また、図14及び図15では、比較のために理想的なセンサ出力値についても示されている。
 図14に示すように、比較例に係る感圧センサ51では、変位に対するセンサ出力値が線形になっていない。また、図15に示すように、比較例に係る感圧センサ51では、変位に対するセンサ出力値の傾きが一定となっておらず、ピークを持った山型の形状となっている。
 センサ出力値の傾きの波形について具体的に説明する。まず、比較例に係る感圧センサ51に対して外力が加えられると、クリアランス層21が外力を吸収して潰れつつ、クリアランス層21が徐々に第1の電極フィルム層35(第1のリファレンス電極層35a)をセンサ電極層27側に押し込み始める。これにより静電容量が変化し、センサ出力値の傾きは、変位30μm辺りから徐々に上昇し始める。
 その後も、外力が加えられ続けると、クリアランス層21が第1の電極フィルム層35(第1のリファレンス電極層35a)をセンサ電極層27側に押し込み続ける。このとき、センサ出力値の傾きは急激に上昇し、そして、センサ出力値の傾きは、変位125μm辺りで最大値を取る。その後、センサ出力値の傾きは、急激に減少した後、180μm辺りから一定となり変位360μm辺りで略0となる。
 図15に示すように、比較例では、最低検出感度2.5μmを満たすのは、変位50μm~190μmの範囲である。また、動作荷重について、動作荷重の最大値Max/動作荷重の最小値Min≦2を満たすのは、変位112μm~152μmの範囲である(矢印参照)。従って、比較例では、公差保証幅は、40μm(=152-112)である。
 なお、動作荷重の最小値Minに対応する変位は、センサ出力値の傾きが最大値(90/μm)となる変位125μmのポイントである。また、動作荷重の最大値Maxに対応する変位は、センサ出力値の傾きが最大値の1/2(45/μm)となる変位112μmのポイント及び変位152μmのポイントである。
 ここで、例えば、比較例に係る感圧センサ51が、積層方向で125μm潰れた状態でスマートフォン100に実装されたとする。変位125μmのポイントは、センサ出力値の傾きが最大値となるポイントであり、ユーザが筐体10を1μm押し込むとセンサ出力値が90変化する。また、比較例に係る感圧センサ51が、積層方向で112μm潰れた状態で別のスマートフォン100に実装されたとする。変位112μmのポイントは、センサ出力値の傾きが最大値の1/2となるポイントであり、ユーザが筐体10を1μm押し込むとセンサ出力値が45変化する。
 仮に、センサ出力値が90変化したことをトリガーとして制御部11によって処理が行われるとする。この場合、一方のスマートフォン100では、ユーザが筐体10を1μm押し込めば制御部11による処理が実行されるが、他方のスマートフォン100では、ユーザは、筐体10を2μm押し込まなければ制御部11による処理が実行されない。つまり、センサ出力値の傾きの値が2倍違うと、ユーザが感じる動作荷重が2倍となることになる。
 上述のように比較例では、公差保証幅は、40μmであり、Max/Min≦2の条件で125μm以上の条件を満たしていない。比較例のように第1の電極フィルム層35上に直接的にクリアランス層21が積層されている場合、公差保証幅を広げることが難しいといった問題がある。特に、変形層37が中空部39を含むパターニング構造により構成される場合、公差保証幅を広げることがさらに難しいといった問題がある。つまり、比較例では、様々な部品公差や感圧センサ実装時のバラつき等の公差保証とセンサ感度がトレードオフとなり公差保証が不十分となる場合がある。また、感圧の強さを多段階に切り分ける事、設定した力のバラつきを抑える事など実用面にも問題が生じ、感圧センサを搭載した電子機器の性能が低下する場合がある。
 なお、本発明者らは、比較例のような感圧センサ51をどのような構造とすれば公差保証幅が広げることができるかについて試行錯誤を行った。その結果、本実施形態のように、クリアランス層21と第1の電極フィルム層35(第1のリファレンス電極層35a)との間に押し込み層23を介在させることで、公差保証幅を広げることができるとの実験結果が得られている。
 [第1実施形態における公差保証幅]
 次に、本技術の第1実施形態に係る感圧センサ20の公差保証幅等について説明する。図16は、第1実施形態に係る感圧センサ20に対して外力が加えられたときの様子を示す図である。図17は、第1実施形態に係る感圧センサ20における、変位に対するセンサ出力値の傾きの波形を示す図である。なお、図17に示されているセンサ出力値の傾きの波形は、感圧センサ20がまだスマートフォン100等の電子機器に実装されていない状態でのセンサ出力値を示している。
 図13及び図16を参照して、比較例に係る感圧センサ51に対して外力が加えられたときの動作と、本実施形態に係る感圧センサ20に対して外力が加えられたときの動作とを比較する。
 図13に示すように、比較例に係る感圧センサ51では、外力が加えられたとき、クリアランス層21が第1の電極フィルム層35(第1のリファレンス電極層35a)を変形層37側に押し込んで変形層37を変形させている。つまり、比較例では、クリアランス層21は、公差保証を行う役割と、外力が加えられたときに第1の電極フィルム層35(第1のリファレンス電極層35a)を押し込む役割との2つの役割を担っている。
 一方、図16に示すように、本実施形態に係る感圧センサ20では、外力が加えられたとき、クリアランス層21ではなく、押し込み層23が第1の電極フィルム層35(第1のリファレンス電極層35a)を変形層37側に押し込んで変形層37を変形させている。つまり、第1実施形態では、クリアランス層21が、公差保証を行う役割を担っており、一方で、押し込み層23が、外力が加えられたときに第1の電極フィルム層35(第1のリファレンス電極層35a)を押し込む役割を担っている。つまり、第1実施形態における感圧センサ20では、2つの役割がクリアランス層21及び押し込み層23にそれぞれ分担されている。
 このように、2つの役割がクリアランス層21及び押し込み層23にそれぞれ分担されているため、図17に示すように、本実施形態では、公差保証幅(矢印参照)を広げることができる。
 具体的には、図17に示すように、本実施形態に係る感圧センサ20では、変位に対するセンサ出力値の傾きは、ピークを持った山型の形状となっているものの、比較例(図15参照)と比べて一定に近くなっている。つまり、本実施形態に係る感圧センサ20では、どの変位においても同じセンサ出力値の変化が得られる理想(図11参照)に近づいている。なお、本実施形態に係る感圧センサ20において、(傾きではない)センサ出力値の波形については、図示は省略しているが、図17から、センサ出力値の波形も理想(図10参照)に近づいていること、つまり、線形に近づいていることが分かる。
 センサ出力値の傾きの波形について具体的に説明すると、まず、本実施形態に係る感圧センサ20に対して外力が加えられると、クリアランス層21が外力を吸収して潰れつつ、押し込み層23が第1の電極フィルム層35(第1のリファレンス電極層35a)をセンサ電極層27側に押し込む。これにより、静電容量が変化し、センサ出力値の傾きが徐々に上昇し始める。
 その後も、外力が加えられ続けると、クリアランス層21が外力を吸収して潰れつつ、押し込み層23が第1の電極フィルム層35(第1のリファレンス電極層35a)をセンサ電極層27側に押し込み続ける。このとき、センサ出力値の傾きは、緩やかに上昇し、そして、センサ出力値の傾きは、変位310μm辺りで最大値を取る。その後、センサ出力値の傾きは、緩やかに減少した後、変位480μm辺りで略0となる。
 つまり、本実施形態では、(クリアランス層21から分離された)押し込み層23が、外力による変位に応じてほぼ一定の間隔で第1の電極フィルム層35をセンサ電極側に押し込むため、センサ出力値の傾きの波形が理想に近くなる。
 図17に示すように、本実施形態では、最低検出感度2.5μmを満たすのは、変位70μm~470μmの範囲である。また、動作荷重について、動作荷重の最大値Max/動作荷重の最小値Min≦2を満たすのは、変位160μm~450μmの範囲である(矢印参照)。従って、比較例では、公差保証幅は、290μm(=450-160)である。
 なお、動作荷重の最小値Minに対応する変位は、センサ出力値の傾きが最大値(20/μm)となる変位310μmのポイントである。また、動作荷重の最大値Maxに対応する変位は、センサ出力値の傾きが最大値の1/2(10/μm)となる変位160μmのポイント及び変位450μmのポイントである。
 以上のように、本実施形態では、公差保証幅は、290μmであり、Max/Min≦2の条件で125μm以上の条件を十分に満たしている。
 <各種実施例及び各種比較例>
 次に、各種実施例及び各種比較例について説明する。図18は、各種実施例及び各種比較例を示す図である。
 第1実施例では、クリアランス層21の材料として、ロジャースノイアック社(登録商標)におけるPORON「SS-24P」が用いられた。この「SS-24P」は、スポンジ材で構成されている。「SS-24P」は、厚さが300μmのものが用いられた。
 また、第1実施例では、押し込み層23における第1の柱部24(第1のバンプ24a及び第2のバンプ24b)の材料としては、日栄化工株式会社(登録商標)の「NeoFix」が用いられた。このNeoFixは、ベースフィルムが粘着層で挟み込まれて構成された両面テープである。NeoFixは、厚さが200μmのものが用いられた。
 第1の電極フィルム層35及び第2の電極フィルム層36の材料としては、タツタ電線株式会社(登録商標)の「SF-PC5900-C」が用いられた。このSF-PC5900-Cは、ベースフィルム(第1のフィルム層35b、第2のフィルム層36b)上に銅や銀の金属薄膜(第1のリファレンス電極層35a、第2のリファレンス電極層36a)が積層されて構成されている。「SF-PC5900-C」は、厚さが67μmのものが用いられた。
 変形層37における第2の柱部38(第1の支柱38a及び第2の支柱38b)の材料としては、押し込み層23と同様に、日栄化工株式会社(登録商標)の「NeoFix」が用いられた。NeoFixは、厚さが200μmのものが用いられた。
 この第1実施例では、5μm変形時の感度(SNR:Signal Noise Ratio)が13であった。また、この第1実施例では、公差保証幅が270μmであった。
 第2実施例では、第1実施例と比べて、クリアランス層21の厚さが300μmから500μmに変更されている。その他の点は、第1実施例と同じである。この第2実施例では、5μm変形時の感度が20であり、公差保証幅が150μmであった。
 第3実施例では、第1実施例と比べて、押し込み層23の厚さが200μmから100μmに変更されている。その他の点は、第1実施例と同じである。この第3実施例では、5μm変形時の感度が30であり、公差保証幅が140μmであった。
 第4実施例では、第1実施例と比べて、変形層37の厚さが200μmから100μmに変更されている。その他の点は、第1実施例と同じである。この第4実施例では、5μm変形時の感度が40であり、公差保証幅が140μmであった。
 第5実施例では、第1実施例と比べて、電極フィルム層35、36の材料が「SF-PC5900-C」から中井工業株式会社(登録商標)の「メタライト」に変更されている。このメタライトは、ベースフィルム(第1のフィルム層35b、第2のフィルム層36b)上にアルミニウムの金属薄膜(第1のリファレンス電極層35a、第2のリファレンス電極層36a)が積層されて構成されている。メタライトは、厚さが50μmのものが用いられた。その他の点は、第1実施例と同じである。この第5実施例では、5μm変形時の感度が20であり、公差保証幅が230μmであった。
 第6実施例では、第1実施例と比べて、クリアランス層21の厚さが300μmから500μmに変更されている。また、第6実施例では、第1実施例と比べて、電極フィルム層の材料が「SF-PC5900-C」から「メタライト」に変更されている。このメタライトは、厚さが50μmのものが用いられた。その他の点は、第1実施例と同じである。この第6実施例では、5μm変形時の感度が10であり、公差保証幅が290μmであった。なお、図17に示すセンサ出力値の傾きの波形は、この第6実施例における感圧センサ20のセンサ出力値の傾きを示している。
 第1比較例では、第1実施例と比べて、押し込み層23が省略されている。その他の点は、第1実施例と同じである。この第1比較例では、5μm変形時の感度が60であり、公差保証幅が100μmであった。
 第2比較例では、第1実施例と比べて、クリアランス層21が省略されている。その他の点は、第1実施例と同じである。この第1比較例では、5μm変形時の感度が60であり、公差保証幅が90μmであった。
 <感圧センサ20によって検出された圧力の使用例>
 次に、感圧センサ20によって検出された圧力がスマートフォン100においてどのような処理に使用するかについての使用例について説明する。図19及び図20は、感圧センサ20によって検出された圧力がどのような処理に使用されるかについての使用例を示す図である。なお、図19及び図20では、筐体10の側面に配置された第2の感圧センサ20bによる圧力の使用例が示されている。
 図19を参照して、まず、制御部11は、画面上の右端において、長手方向に沿って一定の間隔で複数のアイコン2を表示させるように表示部13の表示を制御する。ユーザが、筐体10の右側の側面を親指で上下方向にフリック操作すると、第2の感圧センサ20bによって検出された圧力によって、制御部11によりこのフリック操作が検出される。
 制御部11は、フリック操作を検出すると、フリック操作された方向(上方向又は下方向)にアイコン2が移動するように表示部13における表示を制御する。例えば、制御部11は、上方向へのフリック操作を検出した場合、それぞれのアイコン2を上側に移動させ、最も上側に位置するアイコン2が画面外に消え、画面の下側において新たなアイコン2が画面外から現れるように表示を制御する。また、制御部11は、下方向へのフリック操作を検出した場合、それぞれのアイコン2を下側に移動させ、最も下側に位置するアイコン2が画面外に消え、画面の上側において新たなアイコン2が画面外から現れるように表示を制御する。
 次に、図20を参照して、ユーザが、筐体10の右側の側面を親指でプッシュ操作すると、第2の感圧センサ20bによって検出された圧力によって、制御部11によりこのプッシュ操作が検出される。制御部11は、プッシュ操作を検出すると、プッシュ操作された位置に表示されているアイコン2に対応するアプリケーションを起動させる処理を実行する。
 これにより、ユーザは、筐体10の右側の側面に対して、フリック操作及びプッシュ操作を行うことによって、任意のアプリケーションを簡単に選択することができる。
 次に、筐体10の正面側に設けられた第1の感圧センサ20aによって検出された圧力の使用例について説明する。この場合、ユーザが画面をプッシュ操作すると、第1の感圧センサ20aによって検出された圧力によって、制御部11によりこのプッシュ操作が検出される。制御部11は、プッシュ操作を検出すると、その位置にメニューが表示されるように表示部13の表示を制御する。
 ユーザが画面をさらに強くプッシュ操作すると第1の感圧センサ20aによって検出された圧力によって、制御部11によりこの強めのプッシュ操作が検出される。この場合、制御部11は、メニュー内における項目に対応するアプリケーションを起動させる。
 ここで説明した圧力の使用例は、単なる一例に過ぎず、各種の用途に用いることができる。例えば、圧力は、電源のON/OFFや、ボリューム操作、カメラ起動、ユーザによる筐体10の持ち方検出等に用いることができるが、これらに限られない。なお、本技術に係る各実施形態では、公差保証幅が広いので、圧力を多段階に切り分けて(例えば、プッシュ操作、強めのプッシュ操作等)、圧力毎に様々な処理を実行させることも容易である。
 <作用等>
 以上説明したように、本実施形態に係る感圧センサ20は、押し込み層23が、第1の電極フィルム層35(第1のリファレンス電極層35a)と、クリアランス層21の間に介在されている。そして、押し込み層23が、外力に応じて第1の電極フィルム層35(第1のリファレンス電極層35a)をセンサ電極層27側に押し込で変形層37を変形させる。
 このような構成により、クリアランス層21に対して、公差保証を行う役割を担わせ、一方で、押し込み層23に対して、外力が加えられたときに第1の電極フィルム層35(第1のリファレンス電極層35a)を押し込んで変形層37を変形させる役割を担わせることができる。
 これにより、本実施形態では、(クリアランス層21から分離された)押し込み層23が、外力による変位に応じてほぼ一定の間隔で第1の電極フィルム層35(第1のリファレンス電極層35a)をセンサ電極側に押し込むことができる。これにより、センサ出力値の波形を理想(線形)に近づけることができ、さらに、センサ出力値の傾きの波形を理想(線形)に近づけることができる。結果として、本実施形態では、公差保証幅を広げることができ、様々な原因の公差を適切に保証することができる。
 また、本実施形態では、押し込み層23が、層に水平な方向に配列された複数の第1の柱部24(第1のバンプ24a及び第2のバンプ24b)を含む第1のパターニング構造により構成されている。これにより、クリアランス層21を介した外力を第1の柱部24に集中させることができ、従って、押し込み層23により、第1の電極フィルム層35(第1のリファレンス電極層35a)をセンサ電極層27側に適切に押し込むことができる。
 また、本実施形態では、変形層37が、層に水平な方向に配列された複数の第2の柱部38(第1の支柱38a及び第2の支柱38b)を含む第2のパターニング構造により構成されている。これにより、押し込み層23による押し込みに対して適切に変形層37を変形させることができる。
 さらに、本実施形態では、押し込み層23における第1の柱部24(第1のバンプ24a及び第2のバンプ24b)が、層に垂直な積層方向において、変形層37における中空部39に対応する位置に配置される。これにより、押し込み層23により、第1の電極フィルム層35(第1のリファレンス電極層35a)をセンサ電極層27側にさらに適切に押し込むことができる。
 さらに、本実施形態では、押し込み層23における第1の柱部24(第1のバンプ24a及び第2のバンプ24b)が、層に垂直な積層方向において、センサ電極層27におけるセンシング部29に対応する位置に配置される。これにより、感圧センサ20の感度を向上させることができる。
 さらに、クリアランス層21が発泡樹脂を含むことで、クリアランス層21により適切に公差保証を行うことができる。さらに、本実施形態では、押し込み層23が、クリアランス層21を構成する材料よりも硬い材料により構成されるので、クリアランス層21に対して、公差保証を行う役割を適切に担わせ、一方で、押し込み層23に対して、外力が加えられたときに第1の電極フィルム層35(第1のリファレンス電極層35a)を押し込む役割を適切に担わせることができる。
 ≪第2実施形態≫
 <感圧センサ>
 次に、本技術の第2実施形態について説明する。図21は、第2実施形態に係る感圧センサ52を示す模式的な側面図である。
 第2実施形態に係る感圧センサ52では、第1実施形態に係る感圧センサ20において設けられていたクリアランス層21及び押し込み層23が設けられていない。また、第2実施形態に係る感圧センサ20では、第1実施形態に係る感圧センサ20における固定層45が、変形層46とされている。
 第2実施形態の説明では、便宜的に、第1の電極フィルム層35側(第1のリファレンス電極層35a側)の変形層を第1の変形層37(第1実施形態では、単に変形層37と呼んでいた)と呼ぶ。また、第2の電極フィルム層36側(第2のリファレンス電極層36a側)の変形層を第2の変形層46とよぶ。
 図21に示すように、感圧センサ52は、積層方向(Z軸方向)において、上方(外側)から順番に、第1の電極フィルム層35と、第1の変形層37と、センサ電極層27と、第2の変形層46と、第2の電極フィルム層36とを備えている。この感圧センサ52は、例えば、感圧センサ52を挟み込む2つの面(例えば、フレーム6の上面及び表示部13の下面等)に対して接着層(例えば、両面接着テープ)を介して接着される。
 センサ電極層27、第1の電極フィルム層35及び第2の電極フィルム層36については、上述の第1実施形態と同様である。
 第1の変形層37は、センサ電極層27と、第1の電極フィルム層35との間に介在されている。また、第2の変形層46は、センサ電極層27と、第2の電極フィルム層36との間に介在されている。
 この第1の変形層37と第2の変形層46とは、構造又は材料のうち少なくとも一方が異なっている。図21に示す例では、構造及び材料の両方が異なっている場合の一例が示されている。
 具体的には、図21に示す例では、第1の変形層37は、中空部を含むパターニング構造を有している。パターニング構造は、層に水平な方向に配列された複数の第2の柱部38(第1の支柱38a及び第2の支柱38b)を含む。
 第2の柱部38の材料としては、上述のように、例えば、絶縁層を有する接着剤又は両面接着テープ等が用いられる。この第1の変形層37の厚さは、感度向上の観点から、典型的には、500μm以下、300μm以下、200μm以下などとされる。
 一方、第2の変形層46は、パターニング構造ではなく、センサ電極層27と、第2の電極フィルム層36との間を埋め尽くす埋め尽くし構造により形成されている。この第2の変形層46は、接着層47、48を介して、センサ電極層27の下面及び第2の電極フィルム層36の上面に接着されている。第2の変形層46の材料としては、発泡樹脂、絶縁性エラストマ、(薄い)金属バネ等が挙げられる(上述のクリアランス層21と同じ材料)。この第2の変形層46の厚さは、感度向上の観点から、典型的には、500μm以下、300μm以下、200μm以下などとされる。
 ここでの説明では、第1の変形層37及び第2の変形層46において、構造及び材料の両方が異なる場合について説明したが、典型的には、構造又は材料のうち少なくとも一方が異なっていればよい。
 つまり、材料が同一であっても、第1の変形層37及び第2の変形層46の構造が異なっていればよい。例えば、第1の変形層37及び第2の変形層46の構造が異なる例としては、一方がパターニング構造とされ他方が埋め尽くし構造とされる例(図21)や、一方がパターニング構造とされ、他方が違うパターニング構造される例などが挙げられる。
 なお、パターニング構造としては、上述のように、行列状、ストライプ状、メッシュ状、放射状、幾何学様状、螺旋状等が挙げられる。なお、第1の変形層37及び第2の変形層46の構造は、異なっていればよく、典型的には、どのような構造であっても構わない。
 また、構造が同一であっても、第1の変形層37及び第2の変形層46の材料が異なっていればよい。例えば、両者が同じ埋め尽くし構造の場合、一方の材料として発泡樹脂が用いられ、他方の材料として絶縁性エラストマが選択される例などが挙げられる。また、両者が同じパターニング構造である場合、一方の材料として両面接着テープが用いられ、他方の材料としてこの両面接着テープとは異なる接着剤が用いられる例などが挙げられる。なお、材料は、異なっていればよく、典型的には、どのような材料が用いられても構わない。
 また、第1の変形層37又は第2の変形層46のうち少なくとも一方が、構造又は材料が異なる2層以上により構成されていてもよい。この場合、全体での変形層の数は、3層以上となる。
 <比較例との比較>
 次に、比較例について説明する。図22は、比較例に係る感圧センサ53を示す図である。図23は、比較例に係る他の感圧センサ54を示す図である。
 図22における比較例に係る感圧センサ53は、図21に示す第2実施形態に係る感圧センサ52と比べて、第2の変形層46が固定層45に変更されている。その他の点については、図21に示す例と同じである。
 また、図23における比較例に係る感圧センサ54は、図21に示す第2実施形態に係る感圧センサ52と比べて、第2の変形層46が固定層45に変更されており、また、第1の変形層37が発泡樹脂による埋め尽くし構造に変更されている。その他の点については、図21に示す例と同じである。
 図24は、図22における比較例に係る感圧センサ53における、変位に対する、センサ出力値の傾きの波形を示す図である。図22に示す比較例の場合、最低検出感度2.5μmを満たすのは、変位160μm~280μmの範囲である。また、動作荷重について、動作荷重の最大値Max/動作荷重の最小値Min≦2を満たすのは、変位191μm~259μmの範囲である(矢印参照)。従って、この比較例では、公差保証幅は、68μm(=191-259)である。
 なお、動作荷重の最小値Minに対応する変位は、センサ出力値の傾きが最大値(25.9/μm)となる変位225μmのポイントである。また、動作荷重の最大値Maxに対応する変位は、センサ出力値の傾きが最大値の1/2(12.45/μm)となる変位191μmのポイント及び変位259μmのポイントである。
 図25は、図23に示す比較例に係る感圧センサ54における、変位に対する、センサ出力値の傾きの波形を示す図である。図23に示す比較例の場合、最低検出感度2.5μmを満たすのは、変位150μm~295μmの範囲である。また、動作荷重について、動作荷重の最大値Max/動作荷重の最小値Min≦2を満たすのは、変位175μm~275μmの範囲である(矢印参照)。従って、この比較例では、公差保証幅は、100μm(=275-175)である。
 なお、動作荷重の最小値Minに対応する変位は、センサ出力値の傾きが最大値(24.7/μm)となる変位245μmのポイントである。また、動作荷重の最大値Maxに対応する変位は、センサ出力値の傾きが最大値の1/2(12.35/μm)となる変位175μmのポイント及び変位275μmのポイントである。
 次に、図21に示す第2実施形態に係る感圧センサ51におけるセンサ出力値の傾きの波形について説明する。図26は、図21に示す感圧センサ51における、変位に対する、センサ出力値の傾きの波形を示す図である。
 図21に示す実施形態の場合、最低検出感度2.5μmを満たすのは、変位60μm~380μmの範囲である。また、動作荷重について、動作荷重の最大値Max/動作荷重の最小値Min≦2を満たすのは、変位80μm~330μmの範囲である(矢印参照)。従って、この実施形態では、公差保証幅は、250μm(=330-250)である。
 なお、動作荷重の最小値Minに対応する変位は、センサ出力値の傾きが最大値(22/μm)となる変位225μmのポイントである。また、動作荷重の最大値Maxに対応する変位は、センサ出力値の傾きが最大値の1/2(11/μm)となる変位80μmのポイント及び変位330μmのポイントである。
 この図26に示す波形は、図24に示す波形と、図25に示す波形との合成のような波形となっている。これは、図21に示す実施形態の場合、公差保証について、第1の変形層37が、図22に示す比較例における変形層37(例えば、両面接着テープのパターニング構造)の役割を担い、第2の変形層46が図23に示す比較例における変形層37(例えば、発泡樹脂)の役割を担うためである。
 つまり、第2実施形態では、センサ出力値の傾きが最大値となるポイント(変位)の位置が異なる2つの変形層37、46を用いることによって、公差保証幅を広げている。なお、2つの変形層37、46について、構造又は材料のうち少なくとも一方が異なっていれば、これらの変形層37、46は、基本的に、センサ出力値の傾きが最大値となるポイント(変位)の位置が異なることになる。
 図26に示すように、第2実施形態においても第1実施形態と同様に、変位に対するセンサ出力の傾きは、ピークを持った山型の形状となっているものの、比較例(図24、図25参照)と比べて一定に近くなっている。つまり、第2実施形態においても第1実施形態と同様に、どの変位においても同じセンサ出力値の変化が得られる理想(図11参照)に近づいている。なお、第2実施形態において、(傾きではない)センサ出力値の波形については、図示は省略しているが、図26から、センサ出力値の波形も理想(図10参照)に近づいていること、つまり、線形に近づいていることが分かる。
 また、第2実施形態においても第1実施形態と同様に、公差保証幅が広く、ここでの例では、公差保証幅は、250μmであり、Max/Min≦2の条件で125μm以上の条件を十分に満たしている。
 <各種実施例及び各種比較例>
 次に、第2実施形態における各種実施例及び各種比較例について説明する。図27は、第2実施形態における各種実施例及び各種比較例を示す図である。
 第7実施例では、第1の電極フィルム層35及び第2の電極フィルム層36の材料として、タツタ電線株式会社(登録商標)の「SF-PC5900-C」が用いられた。「SF-PC5900-C」は、厚さが67μmのものが用いられた。
 また、第7実施例では、第1の変形層37が第2の柱部38を含むパターニング構造により構成され、第2の柱部38の材料として、日栄化工株式会社(登録商標)の「NeoFix」が用いられた。NeoFixは、厚さが100μmのものが用いられた。
 また、第7実施例では、第2の変形層46が埋め尽くし構造により構成され、第2の変形層46の材料としてロジャースノイアック社(登録商標)におけるPORON「SS-24P」が用いられた。この「SS-24P」は、厚さが300μmのものが用いられた。
 第7実施例では、5μm変形時の感度が15であり、公差保証幅が270μmであった。
 第8実施例では、第7実施例と比べて、第2の変形層46の厚さが300μmから500μmに変更されている。その他の点は、第7実施例と同じである。この第8実施例では、5μm変形時の感度が10であり、公差保証幅が250μmであった。なお、図26に示す波形は、この第8実施例に対応している。
 第9実施例では、第7実施例と比べて、第1の変形層37の厚さが100μmから200μmに変更されている。その他の点は、第7実施例と同じである。この第9実施例では、5μm変形時の感度が10であり、公差保証幅が200μmであった。
 第3比較例では、第7実施例と比べて、第2の変形層46がなく、固定層45とされている。この固定層45は、厚さ100μmのNeoFixで埋め尽くされて構成されている。その他の点は、第7実施例と同じである。この第3比較例では、5μm変形時の感度が15であり、公差保証幅が100μmであった。
 第4比較例では、第7実施例と比べて、第2の変形層46がなく、固定層45とされている。この固定層45は、厚さ100μmのNeoFixで埋め尽くされて構成されている。また、第4比較例では、第7実施例と比べて、第1の変形層37がパターニング構造ではなく、「SF-PC5900-C」による埋め尽くし構造とされている。また、第4比較例では、第7実施例と比べて、第1の変形層37の厚さが、100μmから300μmに変更されている。その他の点は、第7実施例と同じである。この第4比較例では、5μm変形時の感度が15であり、公差保証幅が120μmであった。
 <作用等>
 以上説明したように、第2実施形態に係る感圧センサ52では、第1の変形層37及び第2の変形層46において、構造又は材料のうち少なくとも一方が異なっている。これにより、第2実施形態では、センサ出力値の傾きが最大値となるポイント(変位)の位置が異なる2つの変形層37、46が用いられることになる。そして、センサ出力値の傾きの波形は、2つの変形層37、46それぞれの波形の合成のような波形となる。
 これにより、センサ出力値の波形を理想(線形)に近づけることができ、センサ出力値の傾きの波形を理想(線形)に近づけることができる。結果として、本実施形態では、公差保証幅を広げることができ、様々な原因の公差を適切に保証することができる。
 さらに、第1の変形層37及び前記第2の変形層46のうち、一方がパターニング構造により構成され、他方が発泡樹脂により構成されることで、さらに適切に公差保証幅を広げることができる。
 ≪第3実施形態≫
 次に、本技術の第3実施形態について説明する。図28は、第3実施形態に係る感圧センサ55を示す模式的な側面図である。
 第3実施形態に係る感圧センサ55は、第1実施形態に係る感圧センサ20と比べると、固定層45が第2の変形層46に変更されている点で第1実施形態と異なっている。また、第3実施形態に係る感圧センサ55は、第2実施形態に係る感圧センサ52と比べると、クリアランス層21及び押し込み層23が付加されている点で、第2実施形態と異なっている。なお、その他の点については、第1実施形態及び第2実施形態と同様であるため、詳細については省略する。
 この第3実施形態に係る感圧センサ20は、押し込み層23によって公差保証幅を広げ、かつ、構造又は材料が異なる第1の変形層37及び第2の変形層46によって公差保証幅を広げることができるので、2つの効果でさらに公差保証幅を広げることができる。
 この第3実施形態では、上述の第1実施形態において説明された事項及び第2実施形態で説明された事項の全てを適用することができる。
 ≪各種変形例≫
 以上の説明では、感圧センサ20を含む電子機器の一例として、スマートフォン100を例に挙げて説明した。一方、電子機器は、スマートフォン100に限られない。電子機器の他の例としては、例えば、タブレットPC(PC:personal computer)、携帯ゲーム機、携帯音楽プレイヤー、ウェアラブル装置、バーチャルリアリティ装置等が挙げられる。なお、感圧センサ20は、圧力を検出する目的であれば、どのような種類の電子機器にも適用可能である。
 また、一見して電子機器に含まれないような物であっても、感圧センサ20が(内部に)実装されることで電子工学を利用した機器として認められるので、このような物であっても電子機器と見做される。例えば、家具や建築部材等は一見して電子機器には含まれないが、感圧センサ20が(内部に)実装されることで電子工学を利用した機器として認められるので、感圧センサ20を含む家具や建築部材などは電子機器と見做される(つまり、感圧センサ20を含む物であれば、どのような物であっても電子機器と見做される)。
 本技術は、以下の構成をとることもできる。
(1)センサ電極層と、第1のリファレンス電極層と、前記センサ電極層及び前記第1のリファレンス電極層の間に介在された第1の変形層とを有するセンサ部と
 前記センサ部の外部で前記第1のリファレンス電極層に対向するクリアランス層と、
 前記第1のリファレンス電極層及び前記クリアランス層の間に介在され、外力に応じて前記第1のリファレンス電極層を前記センサ電極層側に押し込で第1の変形層を変形させる押し込み層と
 を具備する感圧センサ。
(2) 上記(1)に記載の感圧センサであって、
 前記押し込み層は、前記第1のリファレンス電極層及び前記クリアランス層の間に介在された第1のパターニング構造を有する
 感圧センサ。
(3) 上記(2)に記載の感圧センサであって、
 前記第1のパターニング構造は、層に水平な方向に配列された複数の第1の柱部を含む
 感圧センサ。
(4) 上記(3)に記載の感圧センサであって、
 前記第1の変形層は、センサ電極層及び第1のリファレンス電極層の間に介在された第2のパターニング構造を有する
(5) 上記(4)に記載の感圧センサであって、
 前記第2のパターニング構造は、層に水平な方向に配列された複数の第2の柱部を含む
 感圧センサ。
(6) 上記(5)に記載の感圧センサであって、
 前記第1の変形層は、前記複数の第2の柱部が存在しない中空部を含み、
 前記複数の第1の柱部は、層に垂直な積層方向において、前記中空部に対応する位置に配置される
 感圧センサ。
(7) 上記(3)~(6)のうちいずれか1つに記載の感圧センサであって、
 前記センサ電極層は、センシング部を含み、
 前記複数の第1の柱部は、層に垂直な積層方向において、前記センシング部に対応する位置に配置される
 感圧センサ。
(8) 上記(1)~(7)のうちいずれか1つに記載の感圧センサであって、
 前記クリアランス層は、発泡樹脂を含む
 感圧センサ。
(9) 上記(1)~(8)のうちいずれか1つに記載の感圧センサであって、
 前記押し込み層は、前記クリアランス層を構成する材料よりも硬い材料により構成される
 感圧センサ。
(10) 上記(1)~(9)のうちいずれか1つに記載の感圧センサであって、
 前記センサ部は、前記第1のリファレンス電極層との間で前記センサ電極層を挟み込む位置に配置される第2のリファレンス電極層をさらに有する
 感圧センサ。
(11) 上記(10)に記載の感圧センサであって、
 前記センサ部は、センサ電極層及び前記第2のリファレンス電極層の間に介在された第2の変形層をさらに有する
 感圧センサ。
(12) 上記(11)に記載の感圧センサであって、
 前記第1の変形層及び前記第2の変形層は、構造又は材料のうち少なくとも一方が異なる
 感圧センサ。
(13) 上記(12)に記載の感圧センサであって、
 前記第1の変形層及び前記第2の変形層のうち、一方がパターニング構造を有する
 感圧センサ。
(14) 上記(13)に記載の感圧センサであって、
 前記パターニング構造は、層に水平な方向に配列された複数の柱部を含む
 感圧センサ。
(15) 上記(13)又は(14)に記載の感圧センサであって、
 前記第1の変形層及び前記第2の変形層のうち、他方が発泡樹脂を含む
 感圧センサ。
(16) 外装体と、外装体を介した外力を検出する感圧センサとを備えた電子機器であって、
 前記感圧センサは、
 センサ電極層と、第1のリファレンス電極層と、前記センサ電極層及び前記第1のリファレンス電極層の間に介在された第1の変形層とを有するセンサ部と、
 前記センサ部の外部で前記第1のリファレンス電極層に対向するクリアランス層と、
 前記第1のリファレンス電極層及び前記クリアランス層の間に介在され、外力に応じて前記第1のリファレンス電極層を前記センサ電極層側に押し込で第1の変形層を変形させる押し込み層とを有する
 電子機器。
 10…筐体
 20(20a、20b)、52、55…感圧センサ
 21…クリアランス層
 23…押し込み層
 26…センサ部
 27…センサ電極層
 35…第1の電極フィルム層
 36…第2の電極フィルム層
 37…変形層(第1の変形層)
 46…第2の変形層
 100…スマートフォン

Claims (16)

  1.  センサ電極層と、第1のリファレンス電極層と、前記センサ電極層及び前記第1のリファレンス電極層の間に介在された第1の変形層とを有するセンサ部と
     前記センサ部の外部で前記第1のリファレンス電極層に対向するクリアランス層と、
     前記第1のリファレンス電極層及び前記クリアランス層の間に介在され、外力に応じて前記第1のリファレンス電極層を前記センサ電極層側に押し込で第1の変形層を変形させる押し込み層と
     を具備する感圧センサ。
  2.  請求項1に記載の感圧センサであって、
     前記押し込み層は、前記第1のリファレンス電極層及び前記クリアランス層の間に介在された第1のパターニング構造を有する
     感圧センサ。
  3.  請求項2に記載の感圧センサであって、
     前記第1のパターニング構造は、層に水平な方向に配列された複数の第1の柱部を含む
     感圧センサ。
  4.  請求項3に記載の感圧センサであって、
     前記第1の変形層は、センサ電極層及び第1のリファレンス電極層の間に介在された第2のパターニング構造を有する
  5.  請求項4に記載の感圧センサであって、
     前記第2のパターニング構造は、層に水平な方向に配列された複数の第2の柱部を含む
     感圧センサ。
  6.  請求項5に記載の感圧センサであって、
     前記第1の変形層は、前記複数の第2の柱部が存在しない中空部を含み、
     前記複数の第1の柱部は、層に垂直な積層方向において、前記中空部に対応する位置に配置される
     感圧センサ。
  7.  請求項3に記載の感圧センサであって、
     前記センサ電極層は、センシング部を含み、
     前記複数の第1の柱部は、層に垂直な積層方向において、前記センシング部に対応する位置に配置される
     感圧センサ。
  8.  請求項1に記載の感圧センサであって、
     前記クリアランス層は、発泡樹脂を含む
     感圧センサ。
  9.  請求項1に記載の感圧センサであって、
     前記押し込み層は、前記クリアランス層を構成する材料よりも硬い材料により構成される
     感圧センサ。
  10.  請求項1に記載の感圧センサであって、
     前記センサ部は、前記第1のリファレンス電極層との間で前記センサ電極層を挟み込む位置に配置される第2のリファレンス電極層をさらに有する
     感圧センサ。
  11.  請求項10に記載の感圧センサであって、
     前記センサ部は、センサ電極層及び前記第2のリファレンス電極層の間に介在された第2の変形層をさらに有する
     感圧センサ。
  12.  請求項11に記載の感圧センサであって、
     前記第1の変形層及び前記第2の変形層は、構造又は材料のうち少なくとも一方が異なる
     感圧センサ。
  13.  請求項12に記載の感圧センサであって、
     前記第1の変形層及び前記第2の変形層のうち、一方がパターニング構造を有する
     感圧センサ。
  14.  請求項13に記載の感圧センサであって、
     前記パターニング構造は、層に水平な方向に配列された複数の柱部を含む
     感圧センサ。
  15.  請求項13に記載の感圧センサであって、
     前記第1の変形層及び前記第2の変形層のうち、他方が発泡樹脂を含む
     感圧センサ。
  16.  外装体と、外装体を介した外力を検出する感圧センサとを備えた電子機器であって、
     前記感圧センサは、
     センサ電極層と、第1のリファレンス電極層と、前記センサ電極層及び前記第1のリファレンス電極層の間に介在された第1の変形層とを有するセンサ部と、
     前記センサ部の外部で前記第1のリファレンス電極層に対向するクリアランス層と、
     前記第1のリファレンス電極層及び前記クリアランス層の間に介在され、外力に応じて前記第1のリファレンス電極層を前記センサ電極層側に押し込で第1の変形層を変形させる押し込み層とを有する
     電子機器。
PCT/JP2019/046602 2018-12-21 2019-11-28 感圧センサ及び電子機器 WO2020129567A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/309,659 US11397499B2 (en) 2018-12-21 2019-11-28 Pressure-sensitive sensor and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018240191 2018-12-21
JP2018-240191 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020129567A1 true WO2020129567A1 (ja) 2020-06-25

Family

ID=71100256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046602 WO2020129567A1 (ja) 2018-12-21 2019-11-28 感圧センサ及び電子機器

Country Status (2)

Country Link
US (1) US11397499B2 (ja)
WO (1) WO2020129567A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11511440B2 (en) * 2018-11-16 2022-11-29 Hewlett-Packard Development Company, L.P. Object detection to activiate pressure sensors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004117042A (ja) * 2002-09-24 2004-04-15 Nitta Ind Corp センサシート
JP2005164448A (ja) * 2003-12-04 2005-06-23 Xiroku:Kk 静電結合を用いる圧力検出装置
JP2015105945A (ja) * 2013-12-03 2015-06-08 株式会社フジクラ 入力装置
US20170177114A1 (en) * 2014-08-07 2017-06-22 3M Innovative Properties Company Force-sensing capacitor elements, deformable membranes and electronic devices fabricated therefrom
WO2018173366A1 (ja) * 2017-03-21 2018-09-27 住友理工株式会社 センサ装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6527343B2 (ja) * 2014-08-01 2019-06-05 株式会社 ハイディープHiDeep Inc. タッチ入力装置
CN110291373B (zh) 2017-02-17 2021-06-29 索尼公司 传感器、输入装置以及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004117042A (ja) * 2002-09-24 2004-04-15 Nitta Ind Corp センサシート
JP2005164448A (ja) * 2003-12-04 2005-06-23 Xiroku:Kk 静電結合を用いる圧力検出装置
JP2015105945A (ja) * 2013-12-03 2015-06-08 株式会社フジクラ 入力装置
US20170177114A1 (en) * 2014-08-07 2017-06-22 3M Innovative Properties Company Force-sensing capacitor elements, deformable membranes and electronic devices fabricated therefrom
WO2018173366A1 (ja) * 2017-03-21 2018-09-27 住友理工株式会社 センサ装置

Also Published As

Publication number Publication date
US11397499B2 (en) 2022-07-26
US20220027017A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
JP6177857B2 (ja) 圧力検出モジュール及びこれを含むスマートフォン
JP5722954B2 (ja) 押圧検出機能付タッチパネル
US7538760B2 (en) Force imaging input device and system
JP7322944B2 (ja) センサ、入力装置、ロボットおよび電子機器
JP6652063B2 (ja) 入力装置、キーボードおよび電子機器
WO2016075900A1 (ja) 入力装置、センサ、キーボードおよび電子機器
WO2020129567A1 (ja) 感圧センサ及び電子機器
JP7298843B2 (ja) センサ、入力装置および電子機器
JP6950700B2 (ja) センシング装置および電子機器
KR101838570B1 (ko) 전극시트 및 터치 입력 장치
KR101865304B1 (ko) 터치 입력 장치
KR101864386B1 (ko) 터치 입력 장치에서의 전화 연결 방법
WO2018159769A1 (ja) センサ、入力装置および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP