WO2020129318A1 - 摺動部材 - Google Patents

摺動部材 Download PDF

Info

Publication number
WO2020129318A1
WO2020129318A1 PCT/JP2019/033902 JP2019033902W WO2020129318A1 WO 2020129318 A1 WO2020129318 A1 WO 2020129318A1 JP 2019033902 W JP2019033902 W JP 2019033902W WO 2020129318 A1 WO2020129318 A1 WO 2020129318A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
molybdenum disulfide
barium sulfate
average particle
coating
Prior art date
Application number
PCT/JP2019/033902
Other languages
English (en)
French (fr)
Inventor
慎司 松本
Original Assignee
大豊工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大豊工業株式会社 filed Critical 大豊工業株式会社
Publication of WO2020129318A1 publication Critical patent/WO2020129318A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/02Crankshaft bearings

Definitions

  • the present invention relates to a sliding member having a resin coating layer.
  • Patent Document 1 A sliding bearing is known in which a resin binder contains adjusted particles and a plate-like solid lubricant (see Patent Document 1).
  • Patent Document 1 describes that the adjustment particles prevent the cracks and the plate-like solid lubricant improves the seizure resistance.
  • Patent Document 1 there is a problem that the surface irregularities are likely to be large, which increases the frictional resistance at the initial stage of friction with the mating material (at the time of contact). Since the binder shrinks during curing of the binder, the part where the adjusting particles and the plate-like solid lubricant are present near the surface constitutes the convex part, and the part where the adjusting particles and the plate-like solid lubricant are not present constitutes the concave part. Because it will be.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a technique capable of reducing the size of surface irregularities.
  • the sliding member of the present invention is a sliding member comprising a base layer and a resin coating layer formed on the base layer, the resin coating layer is a polyamide-imide resin as a binder. , Barium sulfate particles, molybdenum disulfide particles, and unavoidable impurities, and is composed of a plurality of overcoated coating layers, and the outermost layer of the plurality of coating layers has a thickness of 3 ⁇ m or less. Is composed of.
  • the layer direction of the layered molybdenum disulfide particles can be changed to the coating direction (of the sliding surface). Orientation). That is, the thickness direction of the molybdenum disulfide particles can be oriented in the direction orthogonal to the coating direction, that is, the contraction direction of the binder during curing.
  • the thickness of the molybdenum disulfide particles in the shrinking direction of the binder can be suppressed, and the unevenness between the portion where the molybdenum disulfide particles are present and the portion where the molybdenum disulfide particles are not present can be reduced.
  • the average particle size of the barium sulfate particles may be smaller than the average particle size of the molybdenum disulfide particles.
  • FIG. 2A and 2B are schematic cross-sectional views of the overlay. It is a schematic diagram of a reciprocating sliding test. It is a map of the elements transferred to the mating material.
  • 5A to 5C are graphs of transfer amount.
  • 6A to 6C are graphs of the coefficient of friction.
  • 7A to 7C are graphs of the frictional resistance reduction rate.
  • 8A to 8C are graphs of Rpk(0.08).
  • 9A to 9C are graphs of Ra(0.8).
  • 10A to 10C are graphs of the orientation rate.
  • 11A and 11B are graphs of seizure surface pressure.
  • FIG. 1 is a perspective view of a sliding member 1 according to an embodiment of the present invention.
  • the sliding member 1 includes a back metal 10, a lining 11, and an overlay 12.
  • the sliding member 1 is a half-divided metal member obtained by dividing a hollow cylinder into two equal parts in the diametrical direction, and has a semicircular arc-shaped cross section.
  • the sliding bearing A is formed by combining the two sliding members 1 into a cylindrical shape.
  • the slide bearing A bears a cylindrical mating member 2 (engine crankshaft) in a hollow portion formed inside.
  • the outer diameter of the mating member 2 is slightly smaller than the inner diameter of the slide bearing A.
  • Lubricating oil engine oil
  • the sliding member 1 has a structure in which a back metal 10, a lining 11, and an overlay 12 are sequentially stacked in the order of increasing distance from the center of curvature. Therefore, the back metal 10 constitutes the outermost layer of the sliding member 1, and the overlay 12 constitutes the innermost layer of the sliding member 1.
  • the back metal 10, the lining 11, and the overlay 12 each have a constant thickness in the circumferential direction.
  • the back metal 10 has a thickness of 1.1 mm to 1.3 mm
  • the lining 11 has a thickness of 0.2 mm to 0.4 mm.
  • the back metal 10 is made of steel, for example.
  • the lining 11 is made of, for example, an Al alloy or a Cu alloy.
  • the back metal 10 may be omitted.
  • the thickness of the overlay 12 is 6 ⁇ m.
  • the thickness of the overlay 12 may be 2 to 15 ⁇ m, preferably 3 to 9 ⁇ m.
  • the inner side means the side of the center of curvature of the sliding member 1
  • the outer side means the side opposite to the center of curvature of the sliding member 1.
  • the inner surface of the overlay 12 constitutes the sliding surface of the mating member 2.
  • FIG. 2A is a schematic sectional view of the overlay 12.
  • the overlay 12 is a layer laminated on the inner surface of the lining 11 and constitutes the resin coating layer of the present invention.
  • the overlay 12 includes a binder resin 12a (gray), molybdenum disulfide particles 12b (black circles), barium sulfate particles 12c (white circles), and inevitable impurities.
  • the binder resin 12a is a polyamide-imide resin.
  • the volume fraction of the total volume of the molybdenum disulfide particles 12b in the overlay 12 is 30% by volume, and the volume fraction of the total volume of the barium sulfate particles 12c is 15% by volume.
  • the molybdenum disulfide particles 12b have a total volume of 0.5 times the total volume of the barium sulfate particles 12c.
  • the total volume of the binder resin 12a, the molybdenum disulfide particles 12b, and the total volume of the barium sulfate particles 12c are the masses of the binder resin 12a, the molybdenum disulfide particles 12b, and the barium sulfate particles 12c measured before mixing, and their specific gravities. It is calculated based on
  • the molybdenum disulfide particles 12b have an average particle size of 1.4 ⁇ m, and the barium sulfate particles 12c have an average particle size of 0.6 ⁇ m.
  • the molybdenum disulfide particles 12b have an average particle diameter of 2.33 times the average particle diameter of the barium sulfate particles 12c, and the average particle diameters of the molybdenum disulfide particles 12b and the molybdenum disulfide particles 12b are according to MT3300II of Microtrac Bell. It was measured.
  • the molybdenum disulfide particles 12b are layered particles, and the barium sulfate particles 12c are agglomerated particles.
  • the overlay 12 is composed of two coating layers (the outermost layer L1 and the inner layer L2) that are overcoated, and the thicknesses of the outermost layer L1 and the inner layer L2 are each 3 ⁇ m.
  • Rpk, Ra are the surface roughness of JIS B0671-2002 and JIS B0601-2001, respectively, and the surface roughness of the surface (sliding surface) of the overlay 12.
  • Rpk(0.08) was 0.162 ⁇ m
  • Ra(0.8) was 0.151 ⁇ m. ..
  • Rpk and Ra were measured by a surf coder SE-3400 manufactured by Kosaka Research Institute.
  • the ⁇ 002 ⁇ 004 ⁇ 008 ⁇ orientation ratio of molybdenum disulfide in the overlay 12 of the present embodiment was 87%. Moreover, the orientation rate of ⁇ 002 ⁇ 004 ⁇ 006 ⁇ 008 ⁇ of molybdenum disulfide in the overlay 12 of the present embodiment was 89.9%.
  • the orientation ratio is the sum of the intensities of diffracted electron beams of X-rays generated on the crystal plane of ⁇ 002 ⁇ 004 ⁇ 008 ⁇ or ⁇ 002 ⁇ 004 ⁇ 006 ⁇ 008 ⁇ of molybdenum disulfide, It is the ratio divided by the total of the intensities of the diffracted electron beams generated on all the crystal planes.
  • the orientation ratio is an index showing how much the crystal planes of ⁇ 002 ⁇ 004 ⁇ 008 ⁇ or ⁇ 002 ⁇ 004 ⁇ 006 ⁇ 008 ⁇ are orientated in a direction orthogonal to the surface of the overlay 12. is there.
  • the intensity of the diffracted electron beam was measured by SmartLab manufactured by Rigaku Corporation. The higher the orientation rate, the higher the parallelism of the molybdenum disulfide particles 12b to the sliding surface in the layer direction.
  • the film thickness of the outermost layer L1 of the multiple coating layers By setting the film thickness of the outermost layer L1 of the multiple coating layers to be 3 ⁇ m, the shrinkage amount of the binder resin 12a during curing of the outermost layer L1 can be suppressed. Therefore, it is possible to reduce unevenness between the portion where the molybdenum disulfide particles 12b are present and the portion where the molybdenum disulfide particles 12b are not present. Further, by setting the thickness of the outermost layer to be 2 times or less the average particle diameter of the molybdenum disulfide particles 12b, that is, 4 ⁇ m or less (desirably 1 to 2.5 ⁇ m), the layer direction of the layered molybdenum disulfide particles 12b is set. It can be oriented in the coating direction (direction of the sliding surface).
  • the thickness direction of the molybdenum disulfide particles 12b can be oriented in the direction orthogonal to the coating direction, that is, the contraction direction of the binder during curing. As a result, the thickness of the molybdenum disulfide particles 12b in the shrinking direction of the binder can be suppressed, and the unevenness between the portion where the molybdenum disulfide particles 12b exist and the portion where the molybdenum disulfide particles 12b do not exist can be reduced. It was
  • the overlay 12 is formed of a single coating layer, as shown in FIG. 2B, the rotational freedom of the molybdenum disulfide particles 12b during coating is increased, and the layer direction of the molybdenum disulfide particles 12b is perpendicular to the sliding surface. Can be oriented in a direction close to. As a result, the height of the unevenness increases due to the difference in the amount of contraction between the molybdenum disulfide particles 12b and the binder resin 12a in the direction orthogonal to the sliding surface.
  • FIG. 3 is a schematic diagram of the ball-on-plate testing machine 100.
  • the sample S was reciprocally moved with the overlay 12 of the sample S being in contact with the ball 110 formed of the same kind of material as the mating material (SUJ2 of JIS4805).
  • the one-way distance of reciprocating movement was set to 20 mm, and the reciprocal sliding test was continued up to 50 reciprocations.
  • a static load was applied to the ball 110 so that a vertical load of 9.8 N from the ball 110 was applied to the sample S. Further, the contact point between the sample S and the ball 110 was immersed in engine oil (not shown, for example, 0W-20) at 140°C. A load sensor (not shown) is connected to the ball 110, and the frictional force acting on the ball 110 in the sliding direction was measured by a load sensor (not shown). Then, the friction coefficient was measured by dividing the frictional force by the vertical load.
  • the friction coefficient at the first reciprocation was 0.092, and the friction coefficient at the 50th reciprocation was 0.044, which was good.
  • the reduction rate of the friction coefficient obtained by subtracting the final friction coefficient at the 50th reciprocation from the initial friction coefficient at the 1st reciprocation was divided by the initial friction coefficient, and the frictional resistance reduction rate was as good as 47.513%.
  • the outermost surface layer L1 has a small Rpk and has a smooth sliding surface, it is considered that good friction coefficient and friction resistance reduction rate were obtained.
  • each element transferred to the part of the ball 110 where the sample S slid was quantitatively analyzed.
  • the amount of element (transfer amount) was measured by JXA-8100 manufactured by JEOL Ltd.
  • FIG. 4 is a photograph showing the result of quantitative analysis in the analysis range on the ball 110 on which the sample S slides.
  • the lighter the shade of gray the greater the amount of each element present on the surface of the ball 110.
  • three analysis ranges were analyzed so as to be continuous in the vertical direction on the paper surface. As shown in FIG. 4, it can be confirmed that Ba derived from the barium sulfate particles 12c contained in the sample S has transferred to the surface of the ball 110.
  • Ba is a component that is not included in either the ball 110 or the lubricating oil
  • the transfer amount, the friction coefficient, and the friction resistance reduction rate were measured.
  • the material of the mating material 2 was SUJ2 of JIS4805.
  • ⁇ A linear scratch was previously formed on the sliding member 1 in the circumferential direction.
  • the scratch is a portion where the surface of the sliding member 1 is recessed, but the surface of the sliding member 1 rises in a ridge shape on both sides in the width direction of the scratch along the scratch, so that a pair of convex portions are formed. It is formed. Scratches were formed so that the average of the width (the length from the end of the hem of one protrusion to the end of the hem of the other protrusion) and the height of the pair of protrusions was 500 ⁇ m and 40 ⁇ m, respectively. In this convex portion, frictional heat between the ball 110 and the sample S is concentrated and generated, so that the seizure surface pressure is reduced.
  • the relative speed between the sliding member 1 and the mating member 2 was set to 20 m/s, and 140° C. engine oil (not shown, for example, 0W-20) was supplied between the sliding member 1 and the mating member 2.
  • the supply amount of engine oil was set to 1 L/min.
  • a static load is applied to the sliding member 1 so that a vertical load in the diametrical direction is applied to the sliding member 1, and the vertical load is increased by 3 kN every 3 minutes.
  • the seizure surface pressure was derived from the vertical load when seizure finally occurred. As a result, a favorable seizure surface pressure of 86 MPa was obtained. It was determined that seizure had occurred when the frictional force acting on the mating member 2 was 10 N or more.
  • the mating material can be coated with the barium sulfate particles 12c. Further, it was also confirmed that at the location where the barium sulfate particles 12c were transferred, the components of the lubricating oil were also easily transferred to the mating material. Therefore, even if a convex portion is formed in the vicinity of a scratch formed by a foreign substance, it is possible to reduce the possibility that seizure will occur due to coating with the transfer component. As a result, a good seizure surface pressure was obtained.
  • the sliding member 1 is (a) a half-divided substrate forming step, (b) a coating pretreatment step, (c) a first coating step, (d) a second coating step, (e) a drying step, and (f) a firing step. It formed by performing and in order.
  • the manufacturing method of the sliding member 1 is not limited to the above steps.
  • the half-divided base material forming step is a step of forming a base material in which the back metal 10 and the lining 11 are joined into a half-divided shape.
  • the base material in which the backing metal 10 and the lining 11 are joined may be formed by sintering the material of the lining 11 on a plate material corresponding to the backing metal 10.
  • a plate material corresponding to the back metal 10 and the lining 11 may be bonded by rolling to form a base material in which the back metal 10 and the lining 11 are bonded.
  • the base material in which the backing metal 10 and the lining 11 are joined may be processed into a half shape by performing mechanical processing such as pressing or cutting.
  • the coating pretreatment step is a surface treatment for improving the adhesion of the overlay 12 (resin coating layer) to the surface of the lining 11.
  • surface roughening treatment such as sandblasting may be performed, or chemical treatment such as etching or chemical conversion treatment may be performed.
  • the pretreatment process for coating is preferably performed after degreasing the oil content of the half-divided base material with a cleaning agent.
  • the first coating step is a step of coating the inner layer L2 of the overlay 12 on the lining 11.
  • a coating liquid is prepared by mixing the polyamideimide binder resin with the molybdenum disulfide particles 12b and the barium sulfate particles 12c. Further, in order to enhance the dispersibility of the molybdenum disulfide particles 12b and the barium sulfate particles 12c and to adjust the viscosity of the coating liquid, a solvent such as N-methyl-2-pyrrolidone or xylene is used if necessary. Good.
  • the volume ratio of the total volume of the molybdenum disulfide particles 12b in the overlay 12 is 30% by volume, and the volume ratio of the total volume of the barium sulfate particles 12c is 15% by volume. Mix with the coating solution. Further, molybdenum disulfide particles 12b having an average particle diameter of 1.4 ⁇ m and barium sulfate particles 12c having an average particle diameter of 0.6 ⁇ m are mixed with the coating liquid.
  • the first coating step is performed by attaching the coating liquid to a cylindrical coating roll having a diameter smaller than the inner diameter of the lining 11 and rotating the coating roll on the inner surface of the lining 11.
  • the coating liquid is applied to the inner surface of the lining 11 by a thickness such that the film thickness after the (g) baking step described later is 3 ⁇ m. It may be applied on top.
  • the drying step is a step of drying the outermost layer L1 and the inner layer L2.
  • the outermost layer L1 and the inner layer L2 are dried at 40 to 120° C. for 5 to 60 minutes.
  • Table 1 is a table showing the results of various measurements performed on Samples 1 to 9. The method of measuring various measured values of Sample 1 to Sample 9 is the same as the method of measuring various measured values in the first embodiment.
  • Samples 1 to 9 are samples S covered with overlays 12 having different combinations of average particle sizes of molybdenum disulfide particles 12b and barium sulfate particles 12c.
  • Sample 5 is the same as in the first embodiment.
  • Samples 1 to 4 and 6 to 9 are the same as those in the first embodiment, except for the combination of the average particle diameters of the molybdenum disulfide particles 12b and the barium sulfate particles 12c.
  • the overlay 12 is formed by the two layers of the outermost layer L1 and the inner layer L2 each having a thickness of 3 ⁇ m.
  • the volume fraction of the molybdenum disulfide particles 12b in the overlay 12 was 30% by volume, and the volume fraction of the barium sulfate particles 12c was 15% by volume. ing.
  • FIGS. 5A to 5C are graphs showing the relationship between the average particle size and the transfer amount of molybdenum disulfide particles 12b and barium sulfate particles 12c.
  • the transfer amount is the amount of Ba transferred from the samples 1 to 9 to the ball 110 after the reciprocal sliding test.
  • the vertical axis in FIGS. 5A to 5C represents the transfer amount.
  • the horizontal axis of FIG. 5A shows the average particle diameter of the barium sulfate particles 12c
  • the horizontal axis of FIG. 5B shows the average particle diameter of the molybdenum disulfide particles 12b.
  • the horizontal axis of FIG. 5C shows the average particle size ratio.
  • the correlation between the average particle size of molybdenum disulfide particles 12b and barium sulfate particles 12c and the transfer amount is weak.
  • FIG. 5C there is a correlation between the average particle size ratio and the amount of transfer that can be expressed by a function that is convex upward. As shown in gray in FIG. 5C, it was found that a good transfer amount can be obtained by setting the average particle size ratio to 1.0 to 2.8. Further, as shown in Table 1, it was found that a good seizure surface pressure was obtained when the transfer amount was large.
  • FIGS. 6A to 6C are graphs showing the relationship between the average particle size of molybdenum disulfide particles 12b, the average particle size of barium sulfate particles 12c, and the friction coefficient.
  • the vertical axis in FIGS. 6A to 6C represents the coefficient of friction.
  • 7A to 7C are graphs showing the relationship between the average particle size of molybdenum disulfide particles 12b, the average particle size of barium sulfate particles 12c, and the frictional resistance reduction rate.
  • the vertical axis of FIGS. 6A to 6C represents the frictional resistance reduction rate.
  • the horizontal axes of FIGS. 6A and 7A represent the average particle diameter of the barium sulfate particles 12c
  • the horizontal axes of FIGS. 6B and 7B represent the average particle diameter of the molybdenum disulfide particles 12b
  • the horizontal axes of FIGS. 6C and 7C are the horizontal axes.
  • the average particle size ratio
  • FIG. 6C there is a correlation between the average particle size ratio and the friction coefficient that can be expressed by a function that is convex downward.
  • FIG. 7C there is a correlation between the average particle diameter ratio and the frictional resistance reduction rate that can be expressed by a function that is convex upward.
  • gray in FIGS. 6C and 7C it was found that by setting the average particle size ratio to 1.7 to 2.8, a good friction coefficient and a good friction resistance reduction rate can be obtained.
  • FIGS. 5C, 6C, and 7C it was found that when the amount of transferred Ba was large, the coefficient of friction and the reduction rate of frictional resistance were good.
  • FIGS. 8A to 8C are graphs showing the relationship between the average particle size of molybdenum disulfide particles 12b, the average particle size of barium sulfate particles 12c, and Rpk (0.08).
  • the vertical axis of FIGS. 8A to 8C represents Rpk (0.08).
  • 9A to 9C are graphs showing the relationship between the average particle size of molybdenum disulfide particles 12b, the average particle size of barium sulfate particles 12c, and Ra (0.8).
  • the vertical axis of FIGS. 9A to 9C represents Ra (0.8).
  • the horizontal axes of FIGS. 8A and 9A represent the average particle diameter of the barium sulfate particles 12c
  • the horizontal axes of FIGS. 8B and 9B represent the average particle diameter of the molybdenum disulfide particles 12b
  • the horizontal axes of FIGS. 8C and 9C are the horizontal axes.
  • the average particle size ratio is
  • FIGS. 8A and 9A there is a correlation between the average particle diameter of the barium sulfate particles 12c and Rpk(0.08), Ra(0.8) that can be expressed by a function convex downward.
  • Rpk As shown in gray in FIGS. 8A and 8A, it was found that good Rpk can be obtained by setting the average particle diameter of the barium sulfate particles 12c to 0.3 to 0.7 ⁇ m.
  • FIGS. 10A to 10C are graphs showing the relationship between the average particle size of molybdenum disulfide particles 12b, the average particle size of barium sulfate particles 12c, and the orientation rate.
  • the vertical axis in FIGS. 10A to 10C represents the orientation rate.
  • the orientation ratio is an index indicating the degree of parallelism with respect to the sliding surface of the molybdenum disulfide particles 12b in the layer direction.
  • the horizontal axis of FIG. 10A shows the average particle size of the barium sulfate particles 12c
  • the horizontal axis of FIG. 10B shows the average particle size of the molybdenum disulfide particles 12b
  • the horizontal axis of FIG. 10C shows the average particle size ratio.
  • the orientation rate increases as the average particle size of the molybdenum disulfide particles 12b increases.
  • the orientation rate increases as the average particle size of the barium sulfate particles 12c decreases. It is considered that the smaller the average particle diameter of the barium sulfate particles 12c is, the less the possibility that the barium sulfate particles 12c prevent the molybdenum disulfide particles 12b from being oriented so that the layer direction is parallel to the sliding surface.
  • FIG. 10C there is a strong first-order correlation between the average particle size ratio and the orientation rate.
  • Table 2 is a table showing the results of measuring the seizure surface pressure of Samples 11 to 20.
  • the measuring method of each seizure surface pressure of Samples 11 to 20 is the same as the measuring method of various measured values in the first embodiment. However, a seizure surface pressure (a seizure surface pressure with scratches) that was tested using the sliding member 1 with scratches similar to the first embodiment and a sliding member 1 without scratches were used. Both of the seizure surface pressures tested were measured.
  • FIGS. 11A and 11B are graphs showing the relationship between the content of barium sulfate particles 12c of molybdenum disulfide particles 12b and the seizure surface pressure.
  • the vertical axis in FIGS. 11A and 11B represents the seizure surface pressure.
  • the horizontal axis of FIG. 11A shows the content ratio of the barium sulfate particles 12c of the molybdenum disulfide particles 12b
  • the horizontal axis of FIG. 11B shows the content of the molybdenum disulfide particles 12b.
  • the content ratio is a ratio obtained by dividing the content of barium sulfate particles 12c by the molybdenum disulfide particles 12b.
  • FIG. 11A there is a correlation between the content ratio and the seizure surface pressure, which can be expressed by a convex function.
  • gray in FIG. 11A it was found that by setting the content ratio to 0.35 to 0.8, good seizure surface pressure can be obtained. That is, it was found that good seizure surface pressure was obtained by setting the total volume of the barium sulfate particles 12c to 0.35 times or more and 0.8 times or less of the total volume of the molybdenum disulfide particles 12b. This is considered to be because the barium sulfate particles contained in the resin coating layer were easily transferred to the mating material by setting the content ratio to 0.35 to 0.8.
  • the sliding member 1 constituting the sliding bearing A for bearing the crankshaft of the engine is exemplified, but the sliding member 1 of the present invention may form the sliding bearing A for other uses.
  • the sliding member 1 of the present invention may form a radial bearing such as a gear bush for a transmission or a piston pin bush/boss bush.
  • the sliding member of the present invention may be a thrust bearing, various washers, or a swash plate for a car air conditioner compressor.
  • the number of coating layers may be three or more.
  • SYMBOLS 1 Sliding member, 2... Counterpart material, 10... Backing metal, 11... Lining, 12... Overlay, 12a... Binder resin, 12b... Molybdenum disulfide particles, 12c... Barium sulfate particles, 100... Ball on plate tester, 110 ... Ball, A... Bearing, L1... Outermost layer, L2... Inner layer, S... Sample

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ocean & Marine Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Lubricants (AREA)

Abstract

【課題】表面の凹凸の大きさを低減できる技術を提供する。 【解決手段】本発明の摺動部材は、基層と、前記基層上に形成された樹脂被覆層とを備える摺動部材であって、前記樹脂被覆層は、バインダーとしてのポリアミドイミド樹脂と、硫酸バリウム粒子と、二硫化モリブデン粒子と、不可避不純物と、からなり、重ね塗りされた複数の塗布層によって構成され、複数の塗布層のうちの最表層の膜厚が4μm以下となる。

Description

摺動部材
 本発明は、樹脂被覆層を有する摺動部材に関する。
 樹脂バインダー中に調整粒子と板状固体潤滑剤を含有させたすべり軸受が知られている(特許文献1、参照。)。特許文献1において、調整粒子によってクラックをせき止めるとともに、板状固体潤滑剤によって耐焼付き性を向上させることが記載されている。
特開2013-72535号公報
 しかしながら、特許文献1において、表面の凹凸が大きくなりやすく、それにより相手材との摩擦初期(接触時)における摩擦抵抗が大きくなるという問題があった。バインダーの硬化時においてバインダーが収縮するため、表面付近に調整粒子と板状固体潤滑剤が存在する部位が凸部を構成し、調整粒子と板状固体潤滑剤が存在しない部位が凹部を構成することとなるからである。
 本発明は、前記課題にかんがみてなされたもので、表面の凹凸の大きさを低減できる技術を提供することを目的とする。
 前記の目的を達成するため、本発明の摺動部材は、基層と、基層上に形成された樹脂被覆層とを備える摺動部材であって、樹脂被覆層は、バインダーとしてのポリアミドイミド樹脂と、硫酸バリウム粒子と、二硫化モリブデン粒子と、不可避不純物と、からなるとともに、重ね塗りされた複数の塗布層によって構成され、複数の塗布層のうちの最表層の膜厚が3μm以下となるように構成される。
 重ね塗りされた複数の塗布層のうちの最表層の膜厚を4μm以下(望ましくは1~2.5μm)とすることにより、層状の二硫化モリブデン粒子の層方向を塗布方向(摺動面の方向)に配向させることができる。つまり、二硫化モリブデン粒子の厚み方向を、塗布方向の直交方向、すなわち硬化時のバインダーの収縮方向に配向させることができる。結果として、バインダーの収縮方向における二硫化モリブデン粒子の厚みを抑制することができ、二硫化モリブデン粒子が存在する部位と、二硫化モリブデン粒子が存在しない部位との間の凹凸を低減できる。
 また、硫酸バリウム粒子の平均粒径は、二硫化モリブデン粒子の平均粒径よりも小さくてもよい。硫酸バリウム粒子の平均粒径を小さくしておくことにより、配向性を制御できない塊状の硫酸バリウム粒子を使用しても、硫酸バリウム粒子に起因する凹凸の量を低減できる。
本発明の実施形態にかかる摺動部材の斜視図である。 図2A,図2Bはオーバーレイの断面模式図である。 往復摺動試験の模式図である。 相手材に移着した元素のマップである。 図5A~図5Cは移着量のグラフである。 図6A~図6Cは摩擦係数のグラフである。 図7A~図7Cは摩擦抵抗低減率のグラフである。 図8A~図8CはRpk(0.08)のグラフである。 図9A~図9CはRa(0.8)のグラフである。 図10A~図10Cは配向率のグラフである。 図11A,図11Bは焼付き面圧のグラフである。
 ここでは、下記の順序に従って本発明の実施の形態について説明する。
(1) 摺動部材の構成:
(2)摺動部材の製造方法:
(3)実験結果:
(4)他の実施形態:
 (1)摺動部材の構成:
 図1は、本発明の一実施形態にかかる摺動部材1の斜視図である。摺動部材1は、裏金10とライニング11とオーバーレイ12とを含む。摺動部材1は、中空状の円筒を直径方向に2等分した半割形状の金属部材であり、断面が半円弧状となっている。2個の摺動部材1を円筒状になるように組み合わせることにより、すべり軸受Aが形成される。すべり軸受Aは内部に形成される中空部分にて円柱状の相手材2(エンジンのクランクシャフト)を軸受けする。相手材2の外径はすべり軸受Aの内径よりもわずかに小さく形成されている。相手材2の外周面と、すべり軸受Aの内周面との間に形成される隙間に潤滑油(エンジンオイル)が供給される。その際に、すべり軸受Aの内周面上を相手材2の外周面が摺動する。
 摺動部材1は、曲率中心から遠い順に、裏金10とライニング11とオーバーレイ12とが順に積層された構造を有する。従って、裏金10が摺動部材1の最外層を構成し、オーバーレイ12が摺動部材1の最内層を構成する。裏金10とライニング11とオーバーレイ12とは、それぞれ円周方向において一定の厚みを有している。例えば、裏金10の厚みは1.1mm~1.3mmとされ、ライニング11の厚みは0.2mm~0.4mmとされる。例えば、裏金10は例えば鋼によって形成される。ライニング11は、例えばAl合金やCu合金によって形成される。裏金10は省略されてもよい。
 オーバーレイ12の厚みは、6μmとなっている。なお、オーバーレイ12の厚みは、2~15μmであってもよく、3~9μmが望ましい。以下、内側とは摺動部材1の曲率中心側を意味し、外側とは摺動部材1の曲率中心と反対側を意味することとする。オーバーレイ12の内側の表面は、相手材2の摺動面を構成する。
 図2Aは、オーバーレイ12の断面模式図である。オーバーレイ12は、ライニング11の内側の表面上に積層された層であり、本発明の樹脂被覆層を構成する。オーバーレイ12は、バインダー樹脂12a(グレー)と二硫化モリブデン粒子12b(黒丸)と硫酸バリウム粒子12c(白丸)と不可避不純物とからなる。バインダー樹脂12aは、ポリアミドイミド樹脂である。
 本実施形態において、オーバーレイ12における二硫化モリブデン粒子12bの総体積の体積分率は30体積%であり、硫酸バリウム粒子12cの総体積の体積分率は15体積%である。二硫化モリブデン粒子12bは、硫酸バリウム粒子12cの総体積の0.5倍の総体積を有する。バインダー樹脂12aと二硫化モリブデン粒子12bの総体積と硫酸バリウム粒子12cの総体積とは、混合する前に計測したバインダー樹脂12aと二硫化モリブデン粒子12bと硫酸バリウム粒子12cの質量と、これらの比重とに基づいて算出したものである。
 二硫化モリブデン粒子12bの平均粒径は1.4μmであり、硫酸バリウム粒子12cの平均粒径は0.6μmである。二硫化モリブデン粒子12bは、硫酸バリウム粒子12cの平均粒径の2.33倍の平均粒径を有する硫酸バリウム粒子12cと二硫化モリブデン粒子12bの平均粒子径は、マイクロトラック・ベル社のMT3300IIによって計測したものである。以下、二硫化モリブデン粒子12bの平均粒径を硫酸バリウム粒子12cの平均粒径で除算した値を平均粒径比と表記する。二硫化モリブデン粒子12bは層状の粒子であり、硫酸バリウム粒子12cは塊状の粒子である。オーバーレイ12は、重ね塗りされた2層の塗布層(最表層L1,内層L2)によって構成され、最表層L1,内層L2の膜厚はそれぞれ3μmとなっている。
 以上説明した本実施形態のオーバーレイ12を平板上に被覆した試料を作成し、RpkとRaと配向率と移着量と摩擦係数と摩擦抵抗低減率と焼付き面圧とを計測した。
 RpkとRaとは、それぞれJIS B0671-2002とJIS B0601-2001の表面粗さであり、オーバーレイ12の表面(摺動面)の表面粗さである。カットオフ値λcを0.08mmとした場合のRpk(0.08)は0.162μmであり、カットオフ値λcを0.8mmとした場合のRa(0.8)は0.151μmであった。RpkとRaは、小坂研究所社のサーフコーダSE-3400によって計測した。カットオフ値λcを0.08mmとすることにより、ライニング11表面に形成した約0.08mm周期の溝のうねりの影響を除去した粗さを示すRpk(0.08)を得ることができる。 
 本実施形態のオーバーレイ12における二硫化モリブデンの{002}{004}{008}の配向率は87%であった。また、本実施形態のオーバーレイ12における二硫化モリブデンの{002}{004}{006}{008}の配向率は89.9%であった。配向率とは、二硫化モリブデンの{002}{004}{008}または{002}{004}{006}{008}の結晶面にて生じたX線の回折電子ビームの強度の合計を、すべての結晶面にて生じた回折電子ビームの強度の合計で除算した割合である。配向率は、オーバーレイ12の表面の直交方向において{002}{004}{008}または{002}{004}{006}{008}の結晶面がどの程度偏って配向しているかを示す指標である。回折電子ビームの強度は、リガク社のSmartLabによって計測した。配向率が高いほど、二硫化モリブデン粒子12bの層方向の摺動面に対する平行度が高くなる。
 重ね塗りされた複数の塗布層のうちの最表層L1の膜厚を3μmとすることにより、最表層L1の硬化時におけるバインダー樹脂12aの収縮量を抑制することができる。従って、二硫化モリブデン粒子12bが存在する部位と、二硫化モリブデン粒子12bが存在しない部位との間の凹凸を低減できる。さらに、最表層の膜厚を二硫化モリブデン粒子12bの平均粒径の2倍以下、すなわち4μm以下(望ましくは1~2.5μm)とすることにより、層状の二硫化モリブデン粒子12bの層方向を塗布方向(摺動面の方向)に配向させることができる。
 つまり、二硫化モリブデン粒子12bの厚み方向を、塗布方向の直交方向、すなわち硬化時のバインダーの収縮方向に配向させることができる。結果として、バインダーの収縮方向における二硫化モリブデン粒子12bの厚みを抑制することができ、二硫化モリブデン粒子12bが存在する部位と、二硫化モリブデン粒子12bが存在しない部位との間の凹凸を低減できた。
 仮に、図2Bのように、オーバーレイ12を単一の塗布層によって形成すると、塗布時における二硫化モリブデン粒子12bの回転自由度が増し、二硫化モリブデン粒子12bの層方向が摺動面の直交方向に近い方向に配向し得ることとなる。これにより、摺動面の直交方向において二硫化モリブデン粒子12bとバインダー樹脂12aとの間の収縮量の差により凹凸の高さが増大してしまう。
 また、硫酸バリウム粒子12cの平均粒径を小さくしておくことにより、図2Aのように配向性を制御できない塊状または球状の硫酸バリウム粒子12cを使用した場合でも、硫酸バリウム粒子12cに起因する凹凸の量を低減できる。その結果、最表層L1の表面のRpkを低減できた。
 上述した試料に対してボールオンプレート試験機によって往復摺動試験を行うことにより、移着量と摩擦係数と摩擦抵抗低減率とを計測した。図3は、ボールオンプレート試験機100の模式図である。ボールオンプレート試験機100によって、相手材の同種の材料(JIS4805のSUJ2)で形成されたボール110に試料Sのオーバーレイ12が接した状態で、試料Sを往復移動させた。往復移動の片道距離を20mmとし、50往復まで往復摺動試験を継続した。
 また、試料Sに対してボール110から9.8Nの垂直荷重が作用するようにボール110に静荷重を作用させた。さらに、試料Sとボール110の接触点を140℃のエンジンオイル(不図示、例えば0W-20)に浸漬させた。ボール110には図示しない荷重センサが連結されており、摺動方向においてボール110に作用する摩擦力を荷重センサ(不図示)にて計測した。そして、摩擦力を垂直荷重で除算することにより摩擦係数を計測した。
 1往復目における摩擦係数は0.092であり、50往復目における摩擦係数は0.044と良好であった。また、1往復目における初期摩擦係数から50往復目における最終摩擦係数を減算した摩擦係数の減少量を、初期摩擦係数で除算した摩擦抵抗低減率は47.513%と良好であった。上述したように、最表層L1の表面のRpkが小さく滑らかな摺動面を有するため、良好な摩擦係数や摩擦抵抗低減率が得られたものと考えられる。
 50往復まで往復摺動試験を行った後、ボール110のうち試料Sが摺動した部位(100×100μmの分析範囲)に移着した各元素を定量分析した。なお、元素の量(移着量)は、日本電子社のJXA-8100によって計測した。
 図4は、試料Sが摺動したボール110上の分析範囲における定量分析の結果を示す写真である。同図において、グレーの濃淡が明るいほど、ボール110の表面に存在する各元素の量が大きいことを示す。試料Sが摺動したボール110上の部位において、紙面上下方向に連続するように3個の分析範囲を分析した。図4に示すように、試料Sに含まれる硫酸バリウム粒子12c由来のBaがボール110の表面に移着したことが確認できる。
 ここで、Baは、ボール110と潤滑油のいずれにも含まれない成分であるため、試料Sのオーバーレイ12に含まれる硫酸バリウム粒子12cの一部がボール110の表面に移着したと判断できる。同様に、硫酸バリウムを構成するOとSもボール110の表面に移着したことが確認できる。また、試料Sおよび潤滑油に含まれる二硫化モリブデンを構成するMoもボール110の表面に移着したことが確認できる。さらに、潤滑油のみに含まれるCa,Znもボール110の表面に移着したことが確認できる。ボール110の表面における移着成分(Ba,S,O,Mo,Ca,Zn)の総質量濃度が7.3質量%に達していることが分かった。これらの移着成分は、摩擦抵抗の低減や耐焼付き性の向上に寄与する成分である。移着成分の総質量の大半が硫酸バリウムの質量であると見なすことができる。
 上述した摺動部材1を形成し、図1のように実際の使用環境を模した軸受摺動試験を行うことにより、移着量と摩擦係数と摩擦抵抗低減率とを計測した。軸受摺動試験において、相手材2の材料をJIS4805のSUJ2とした。
 摺動部材1には予め周方向において直線状の傷を形成した。傷は、摺動部材1の表面が凹んでいる部位であるが、当該傷に沿って当該傷の幅方向の両側にて摺動部材1の表面が畝状に盛り上がることにより一対の凸部が形成される。この一対の凸部の幅(一方の凸部の裾の端から他方の凸部の裾の端までの長さ)と高さの平均がそれぞれ500μm,40μmとなるように傷を形成した。この凸部において、ボール110と試料Sの間の摩擦熱が集中して発生するため、焼付き面圧を低下させることとなる。
 摺動部材1と相手材2との間の相対速度を20m/sとし、摺動部材1と相手材2の間に140℃のエンジンオイル(不図示、例えば0W-20)を供給した。エンジンオイルの供給量を1L/minとした。また、摺動部材1に対して相手材2から直径方向の垂直荷重が作用するように相手材2に静荷重を作用させ、当該垂直荷重が3minごとに3kNずつ増加するようにした。そして、最終的に焼付きが生じた際の垂直荷重から焼付き面圧を導出した。その結果、86MPaと良好な焼付き面圧が得られた。相手材2に作用する摩擦力が10N以上となったことをもって、焼付きが生じたと判定した。
 以上のように、硫酸バリウム粒子12cを相手材2に移着させることにより、相手材を硫酸バリウム粒子12cによってコーティングすることができる。さらに、硫酸バリウム粒子12cが移着した箇所においては、相手材に潤滑油の成分も移着しやすくなることも確認できた。そのため、異物によって形成された傷の付近に凸部が形成されたとしても、移着成分がコーティングすることにより焼付きが発生する可能性を低減できる。その結果、良好な焼付き面圧が得られた。
 (2)摺動部材の製造方法:
 摺動部材1を(a)半割基材形成工程と(b)塗布前処理工程と(c)第1塗布工程と(d)第2塗布工程と(e)乾燥工程と(f)焼成工程とを順に行うことによって形成した。ただし、摺動部材1の製造方法は前記の工程に限定されるものではない。
 (a)半割基材形成工程
 半割基材形成工程は、裏金10とライニング11とが接合した基材を半割状に形成する工程である。例えば、裏金10に相当する板材上においてライニング11の材料を焼結することにより、裏金10とライニング11とが接合した基材が形成されてもよい。また、裏金10とライニング11に相当する板材を圧延によって接合することにより、裏金10とライニング11とが接合した基材が形成されてもよい。さらに、プレス加工や切削加工等の機械加工を行うことにより、裏金10とライニング11とが接合した基材を半割状に加工してもよい。
 (b)塗布前処理工程
 塗布前処理工程は、ライニング11の表面に対するオーバーレイ12(樹脂被覆層)の密着性を向上させるための表面処理である。例えば、塗布前処理工程として、サンドブラスト等の粗面化処理を行ってもよいし、エッチングや化成処理などの化学処理を行ってもよい。なお、塗布前処理工程は、半割基材の油分を洗浄剤で脱脂した後に行うことが好ましい。
 (c)第1塗布工程
 第1塗布工程は、ライニング11にオーバーレイ12の内層L2を塗布する工程である。第1塗布工程を行うにあたり、ポリアミドイミドのバインダー樹脂に二硫化モリブデン粒子12bと硫酸バリウム粒子12cとを混合した塗布液を調製する。また、二硫化モリブデン粒子12bと硫酸バリウム粒子12cの分散性を高めたり、塗布液の粘度を調整したりするために、必要に応じてN-メチル-2-ピロリドンやキシレン等の溶剤を用いてもよい。
 オーバーレイ12における二硫化モリブデン粒子12bの総体積の体積比が30体積%となり、硫酸バリウム粒子12cの総体積の体積比が15体積%となるように、二硫化モリブデン粒子12bと硫酸バリウム粒子12cの塗布液に混合する。また、平均粒径が1.4μmの二硫化モリブデン粒子12bと平均粒径が0.6μmの硫酸バリウム粒子12cを塗布液に混合する。
 第1塗布工程は、ライニング11の内径よりも小径の円柱状の塗布ロールに塗布液を付着させ、ライニング11の内側表面上において塗布ロールを回転させることにより行う。塗布ロールとライニング11の内側表面との間のロールギャップや塗布液の粘度を調整することにより、後述する(g)焼成工程後における膜厚が3μmとなる厚みだけ塗布液をライニング11の内側表面上に塗布してもよい。
 (d)第2塗布工程
 その後、第2塗布工程において、第1塗布工程と同様に塗布液の塗布を行う。なお、第1塗布工程と第2塗布工程との間に後述する乾燥工程を行ってもよい。
 (e)乾燥工程
 乾燥工程は、最表層L1と内層L2とを乾燥させる工程である。例えば、40~120℃で5~60分にわたって最表層L1と内層L2とを乾燥させる。
 (f)焼成工程
 さらに例えば150~300℃で30~60分にわたって最表層L1と内層L2とを焼成(硬化)させた。
 以上の工程により摺動部材1が完成する。
 (3)実験結果:
 表1は、試料1~試料9について各種計測を行った結果を示す表である。試料1~試料9についての各種計測値の計測方法は、第1実施形態における各種計測値の計測方法と同じである。
Figure JPOXMLDOC01-appb-T000001
 試料1~試料9は、二硫化モリブデン粒子12bと硫酸バリウム粒子12cの平均粒径の組み合わせを異ならせたオーバーレイ12によって被覆された試料Sである。試料5は前記第1実施形態と同じである。また、二硫化モリブデン粒子12bと硫酸バリウム粒子12cの平均粒径の組み合わせ以外の構成に関して、試料1~4,6~9は前記第1実施形態と同じである。
 そのため、試料1~試料9のいずれにおいても、それぞれ厚さが3μmの最表層L1と内層L2の2層によってオーバーレイ12が形成されている。また、試料1~試料9のいずれにおいても、オーバーレイ12における二硫化モリブデン粒子12bの総体積の体積分率が30体積%となり、硫酸バリウム粒子12cの総体積の体積分率が15体積%となっている。
 図5A~図5Cは、二硫化モリブデン粒子12bと硫酸バリウム粒子12cの平均粒径と移着量との関係を示すグラフである。移着量とは、往復摺動試験を行った後に試料1~試料9からボール110に移着していたBaの量である。図5A~図5Cの縦軸は移着量を示す。図5Aの横軸は硫酸バリウム粒子12cの平均粒径を示し、図5Bの横軸は二硫化モリブデン粒子12bの平均粒径を示す。図5Cの横軸は平均粒径比を示す。
 図5A,図5Bに示すように、二硫化モリブデン粒子12bと硫酸バリウム粒子12cの平均粒径と移着量との間の相関は弱い。一方、図5Cに示すように、平均粒径比と移着量との間には、上に凸となる関数で表現可能な相関が見られる。図5Cにてグレーで示すように、平均粒径比を1.0~2.8とすることにより、良好な移着量が得られることが分かった。さらに、表1に示すように、移着量が大きくなると良好な焼付き面圧が得られることが分かった。
 図6A~図6Cは、二硫化モリブデン粒子12bの平均粒径と硫酸バリウム粒子12cの平均粒径と摩擦係数との関係を示すグラフである。図6A~図6Cの縦軸は摩擦係数を示す。図7A~図7Cは、二硫化モリブデン粒子12bの平均粒径と硫酸バリウム粒子12cの平均粒径と摩擦抵抗低減率との関係を示すグラフである。図6A~図6Cの縦軸は摩擦抵抗低減率を示す。図6A,図7Aの横軸は硫酸バリウム粒子12cの平均粒径を示し、図6B,図7Bの横軸は二硫化モリブデン粒子12bの平均粒径を示し、図6C,図7Cの横軸は平均粒径比を示す。
 図6Aに示すように、硫酸バリウム粒子12cの平均粒径と摩擦係数との間には下に凸となる関数で表現可能な相関が見られる。また、図7Aに示すように、硫酸バリウム粒子12cの平均粒径と摩擦抵抗低減率との間には上に凸となる関数で表現可能な相関が見られる。図6A,図7Aにてグレーで示すように、硫酸バリウム粒子12cの平均粒径を0.3~0.7μmとすることにより、良好な摩擦係数と摩擦抵抗低減率とが得られることが分かった。
 図6Cに示すように、平均粒径比と摩擦係数との間には下に凸となる関数で表現可能な相関が見られる。また、図7Cに示すように、平均粒径比と摩擦抵抗低減率との間には上に凸となる関数で表現可能な相関が見られる。図6C,図7Cにてグレーで示すように、平均粒径比を1.7~2.8とすることにより、良好な摩擦係数と摩擦抵抗低減率が得られることが分かった。また、図5C,図6C,図7Cに示されるように、Baの移着量が多くなる場合に、摩擦係数や摩擦抵抗低減率が良好となることが分かった。
 図8A~図8Cは、二硫化モリブデン粒子12bの平均粒径と硫酸バリウム粒子12cの平均粒径とRpk(0.08)との関係を示すグラフである。図8A~図8Cの縦軸はRpk(0.08)を示す。図9A~図9Cは、二硫化モリブデン粒子12bの平均粒径と硫酸バリウム粒子12cの平均粒径とRa(0.8)との関係を示すグラフである。図9A~図9Cの縦軸はRa(0.8)を示す。図8A,図9Aの横軸は硫酸バリウム粒子12cの平均粒径を示し、図8B,図9Bの横軸は二硫化モリブデン粒子12bの平均粒径を示し、図8C,図9Cの横軸は平均粒径比を示す。
 図8A,図9Aに示すように、硫酸バリウム粒子12cの平均粒径とRpk(0.08),Ra(0.8)との間には下に凸となる関数で表現可能な相関が見られる。図8A,図8Aにてグレーで示すように、硫酸バリウム粒子12cの平均粒径を0.3~0.7μmとすることにより、良好なRpkが得られることが分かった。
 図9Bに示すように、二硫化モリブデン粒子12bの平均粒径とRa(0.8)との間には下に凸となる関数で表現可能な相関が見られる。図9Bにてグレーで示すように、硫酸バリウム粒子12cの平均粒径を1.2~1.6μmとすることにより、良好なRa(0.8)が得られることが分かった。
 また、図8Cに示すように、平均粒径比とRpk(0.08)との間には下に凸となる関数で表現可能な相関が見られる。図8Cにてグレーで示すように、平均粒径比を1.7~2.8とすることにより、良好なRpk(0.08)が得られることが分かった。また、良好なRpk(0.08),Ra(0.8)となる二硫化モリブデン粒子12bの平均粒径と硫酸バリウム粒子12cの平均粒径とを採用することにより、摩擦係数や摩擦抵抗低減率が良好となることが分かった。
 図10A~図10Cは、二硫化モリブデン粒子12bの平均粒径と硫酸バリウム粒子12cの平均粒径と配向率との関係を示すグラフである。図10A~図10Cの縦軸は配向率を示す。配向率とは、二硫化モリブデン粒子12bの層方向の摺動面に対する平行度の強さを示す指標である。図10Aの横軸は硫酸バリウム粒子12cの平均粒径を示し、図10Bの横軸は二硫化モリブデン粒子12bの平均粒径を示し、図10Cの横軸は平均粒径比を示す。
 図10Bに示すように、二硫化モリブデン粒子12bの平均粒径が大きくなるほど配向率が大きくなることが分かった。二硫化モリブデン粒子12bの平均粒径が大きくなるほど、塗布時における二硫化モリブデン粒子12bの回転自由度が低減し、層方向が摺動面と平行となるように二硫化モリブデン粒子12bが配向しやすくなるからであると考えられる。
 図10Aに示すように、硫酸バリウム粒子12cの平均粒径が小さくなるほど配向率が大きくなることが分かった。硫酸バリウム粒子12cの平均粒径が小さくなるほど、層方向が摺動面と平行となるように二硫化モリブデン粒子12bが配向することを硫酸バリウム粒子12cが妨げる可能性を低減できるからであると考えられる。図10Cに示すように、平均粒径比と配向率との間には強い一次の相関が見られる。
Figure JPOXMLDOC01-appb-T000002
 表2は、試料11~試料20について焼付き面圧の計測を行った結果を示す表である。試料11~試料20についての各焼付き面圧の計測方法は、第1実施形態における各種計測値の計測方法と同じである。ただし、第1実施形態と同様の傷を付けた摺動部材1を使用して試験を行った焼付き面圧(傷あり焼付き面圧)と、傷を付けていない摺動部材1を使用して試験を行った焼付き面圧の双方を計測した。
 図11A,図11Bは、二硫化モリブデン粒子12bの硫酸バリウム粒子12cの含有量と焼付き面圧との関係を示すグラフである。図11A,図11Bの縦軸は焼付き面圧を示す。図11Aの横軸は二硫化モリブデン粒子12bの硫酸バリウム粒子12cの含有量比を示し、図11Bの横軸は二硫化モリブデン粒子12bの含有量を示す。含有量比は、硫酸バリウム粒子12cの含有量を二硫化モリブデン粒子12bで除算した比である。
 図11Aに示すように、含有量比と焼付き面圧との間には上に凸となる関数で表現可能な相関が見られる。図11Aにてグレーで示すように、含有量比を0.35~0.8とすることにより、良好な焼付き面圧が得られることが分かった。すなわち、硫酸バリウム粒子12cの総体積を、二硫化モリブデン粒子12bの総体積の0.35倍以上かつ0.8倍以下とすることにより、良好な焼付き面圧が得られることが分かった。これは、含有量比を0.35~0.8とすることにより、樹脂被覆層に含まれていた硫酸バリウム粒子が相手材に移着しやすくなったからであると考えられる。
 図11Bに示すように、二硫化モリブデン粒子12bの含有量と傷ありの焼付き面圧との間には上に凸となる関数で表現可能な相関が見られる。しかし、傷なしの焼付き面圧は、二硫化モリブデン粒子12bの含有量が大きくなるほど増大する。これにより、相手材に移着して焼付きの防止に大きく寄与しているのは、二硫化モリブデン粒子12bではなく硫酸バリウム粒子12cであることが裏付けられる。
 (4)他の実施形態:
 前記実施形態においては、エンジンのクランクシャフトを軸受けするすべり軸受Aを構成する摺動部材1を例示したが、本発明の摺動部材1によって他の用途のすべり軸受Aを形成してもよい。例えば、本発明の摺動部材1によってトランスミッション用のギヤブシュやピストンピンブシュ・ボスブシュ等のラジアル軸受を形成してもよい。さらに、本発明の摺動部材は、スラスト軸受であってもよく、各種ワッシャであってもよいし、カーエアコンコンプレッサ用の斜板であってもよい。また、塗布層の層数は3層以上であってもよい。
1…摺動部材,2…相手材,10…裏金,11…ライニング,12…オーバーレイ,12a…バインダー樹脂,12b…二硫化モリブデン粒子,12c…硫酸バリウム粒子,100…ボールオンプレート試験機,110…ボール,A…軸受,L1…最表層,L2…内層,S…試料

Claims (1)

  1.  基層と、前記基層上に形成された樹脂被覆層とを備える摺動部材であって、
     前記樹脂被覆層は、
      バインダーとしてのポリアミドイミド樹脂と、
      硫酸バリウム粒子と、
      二硫化モリブデン粒子と、
      不可避不純物と、からなり、
      重ね塗りされた複数の塗布層によって構成され、複数の塗布層のうちの最表層の膜厚が4μm以下となる、
    摺動部材。
PCT/JP2019/033902 2018-12-17 2019-08-29 摺動部材 WO2020129318A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018235148A JP7171409B2 (ja) 2018-12-17 2018-12-17 摺動部材
JP2018-235148 2018-12-17

Publications (1)

Publication Number Publication Date
WO2020129318A1 true WO2020129318A1 (ja) 2020-06-25

Family

ID=71102797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033902 WO2020129318A1 (ja) 2018-12-17 2019-08-29 摺動部材

Country Status (2)

Country Link
JP (1) JP7171409B2 (ja)
WO (1) WO2020129318A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024204591A1 (ja) * 2023-03-31 2024-10-03 東洋鋼鈑株式会社 樹脂被覆金属板および樹脂被覆金属板の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039186A (ja) * 2000-07-27 2002-02-06 Taiho Kogyo Co Ltd すべり軸受
WO2011111668A1 (ja) * 2010-03-09 2011-09-15 大豊工業株式会社 摺動部材
WO2013039177A1 (ja) * 2011-09-13 2013-03-21 大豊工業株式会社 しゅう動部材及びしゅう動材料組成物
WO2013047800A1 (ja) * 2011-09-28 2013-04-04 大豊工業株式会社 しゅう動部材及びしゅう動材料組成物
JP2014031871A (ja) * 2012-08-06 2014-02-20 Daido Metal Co Ltd すべり軸受
JP2017031987A (ja) * 2015-07-29 2017-02-09 大豊工業株式会社 摺動部材および斜板式コンプレッサ
WO2017094810A1 (ja) * 2015-12-02 2017-06-08 大豊工業株式会社 摺動部材および斜板式コンプレッサ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039186A (ja) * 2000-07-27 2002-02-06 Taiho Kogyo Co Ltd すべり軸受
WO2011111668A1 (ja) * 2010-03-09 2011-09-15 大豊工業株式会社 摺動部材
WO2013039177A1 (ja) * 2011-09-13 2013-03-21 大豊工業株式会社 しゅう動部材及びしゅう動材料組成物
WO2013047800A1 (ja) * 2011-09-28 2013-04-04 大豊工業株式会社 しゅう動部材及びしゅう動材料組成物
JP2014031871A (ja) * 2012-08-06 2014-02-20 Daido Metal Co Ltd すべり軸受
JP2017031987A (ja) * 2015-07-29 2017-02-09 大豊工業株式会社 摺動部材および斜板式コンプレッサ
WO2017094810A1 (ja) * 2015-12-02 2017-06-08 大豊工業株式会社 摺動部材および斜板式コンプレッサ

Also Published As

Publication number Publication date
JP7171409B2 (ja) 2022-11-15
JP2020097948A (ja) 2020-06-25

Similar Documents

Publication Publication Date Title
JP6122488B2 (ja) 摺動部材
JP5926277B2 (ja) 耐摩耗性の鉛フリー合金摺動エレメントおよびその製造方法
WO2013191172A1 (ja) 半割軸受
WO2020129318A1 (ja) 摺動部材
WO2020129317A1 (ja) 摺動部材
WO2020129319A1 (ja) 摺動部材
WO2020129316A1 (ja) 摺動部材
CN113167326B (zh) 滑动构件
WO2018092857A1 (ja) 樹脂組成物および摺動部材
WO2022215637A1 (ja) 摺動部材および摺動体
US11946507B2 (en) Metal-plastic plain-bearing composite material and plain bearing element produced therefrom
JP7475309B2 (ja) シフトフォーク用ブシュに用いられる摺動部材、シフトフォーク用ブシュ、シフトフォーク用ブシュに用いられる摺動部材の製造方法およびシフトフォーク用ブシュの製造方法
JP2020172997A (ja) 摺動部材
WO2017094810A1 (ja) 摺動部材および斜板式コンプレッサ
US20240175467A1 (en) Sliding member and slide bearing
US20240101730A1 (en) Sliding member and sliding body
CN118110735A (zh) 滑动构件以及滑动轴承
JP2024078404A (ja) 摺動部材およびすべり軸受
JP2007010059A (ja) 摺動部材
JP2019011493A (ja) 摺動部材およびすべり軸受
JP2024054795A (ja) 軸受およびコンプレッサ
JP2020169653A (ja) 摺動部材およびすべり軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898296

Country of ref document: EP

Kind code of ref document: A1