WO2020129270A1 - Resin composition and resin molded component - Google Patents

Resin composition and resin molded component Download PDF

Info

Publication number
WO2020129270A1
WO2020129270A1 PCT/JP2019/009528 JP2019009528W WO2020129270A1 WO 2020129270 A1 WO2020129270 A1 WO 2020129270A1 JP 2019009528 W JP2019009528 W JP 2019009528W WO 2020129270 A1 WO2020129270 A1 WO 2020129270A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
conductive filler
resin
parts
weight
Prior art date
Application number
PCT/JP2019/009528
Other languages
French (fr)
Japanese (ja)
Inventor
和義 西川
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2020129270A1 publication Critical patent/WO2020129270A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials

Definitions

  • the present invention relates to a resin composition and a resin molded part.
  • CFRTP thermoplastic carbon fiber reinforced resin
  • Patent Document 1 discloses "a carbon fiber reinforced plastic material characterized in that carbon fibers and nanofillers are dispersed in the carbon fiber reinforced plastic material in a non-oriented manner".
  • Patent Document 2 discloses that 1 to 30 parts by weight of (A) carbon fiber, (100 parts by weight of (A) carbon fiber, (B) ceramic filler and (C) thermoplastic resin in total, ( B) 1 to 40 parts by weight of a ceramic filler and (C) 30 to 98 parts by weight of a thermoplastic resin, and (A) a carbon fiber having a weight average fiber length of 300 to 3000 ⁇ m. Disclosure.
  • One aspect of the present invention is to provide a resin composition having a sufficient heat transfer function.
  • the “heat conduction function” here is appropriately set according to the application of the resin composition, and is not limited to a specific numerical value.
  • a resin composition according to an aspect of the present invention is a resin composition containing a thermoplastic resin, carbon fibers and an insulating thermally conductive filler;
  • the heat conductive fillers are distributed in the thermoplastic resin in a mesh shape.
  • a resin composition according to another aspect of the present invention is a resin composition containing a thermoplastic resin, carbon fibers, and an insulating thermally conductive filler; In the defibrated state, isotropically dispersed; in the vicinity of the carbon fibers, the insulating heat conductive filler is aggregated.
  • a resin composition having a sufficient heat conduction function is provided.
  • (A) is a schematic diagram explaining the structure of the resin composition which concerns on 1 aspect of this invention.
  • (B) is an enlarged view of the region A shown in (a).
  • FIG. 1A is a schematic diagram illustrating the structure of the resin composition according to one aspect.
  • the thermoplastic resin 3 serves as a matrix, and the carbon fibers 1 and the insulating heat conductive filler 2 are contained therein.
  • FIG. 1B is an enlarged view of the region A in FIG. 1A, and shows that the insulating heat conductive filler 2 is localized in the vicinity of the carbon fiber 1. That is, in FIG. 1A, insulative thermally conductive fillers 2 are aggregated in a black region having a rectangular outline representing the carbon fiber 1.
  • the carbon fiber 1 is isotropically distributed in the thermoplastic resin 3 in a defibrated state.
  • the insulating heat conductive filler 2 is aggregated and distributed in the vicinity of the carbon fiber 1.
  • the insulating heat conductive filler 2 in the resin composition 10 is distributed in a mesh shape. That is, a network in which the insulating heat conductive fillers 2 are in contact with each other is formed. It is possible to pass an electric current or conduct heat through the network of the insulating heat conductive filler 2, and as a result, the resin composition 10 obtains a heat conducting function.
  • the resin composition 10 can localize the insulating heat conductive filler 2 in a mesh shape, it is not necessary to increase the insulating heat conductive filler 2 in order to impart the heat conducting function. Therefore, the resin composition 10 can obtain the heat conduction function while maintaining the lightweight property.
  • the distribution of the carbon fibers 1 and the insulating heat conductive filler 2 in the resin composition 10 is included in the category of the present invention can be clearly determined by, for example, a known image processing technique. Furthermore, the above-mentioned discrimination can be made more reliable by the physical properties of the resin composition 10. For example, “the thermal conductivity of the resin composition 10 measured by the disc heat flow meter method is 2 W/m ⁇ K or more” means “the carbon fiber 1 and the insulating thermal conductivity in the resin composition 10”. The distribution of the functional filler 2 is included in the category of the present invention”.
  • the carbon fibers and the insulating heat conductive filler are aggregated by the interaction based on the affinity.
  • the insulating heat conductive filler is locally distributed in the vicinity of the carbon fiber.
  • thermoplastic resin examples include olefin resins, amide resins, ester resins, ether resins, nitrile resins, methacrylate resins, vinyl resins. Examples thereof include resins, cellulose resins, fluorine resins and imide resins. These resins may contain only one kind, may contain two kinds or more, and may be a copolymer of these resins.
  • olefin resins examples include high density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, polypropylene (isotactic polypropylene, syndiotactic polypropylene, etc.).
  • amide resin examples include nylon 6, nylon 66, nylon 46, nylon 11, nylon 12, nylon 610, nylon 612, nylon MXD6, nylon 6T, and copolymers thereof.
  • ester resins include polylactic acid, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polyethylene isophthalate, polyarylate, polybutylene naphthalate, liquid crystal polyester, and copolymers thereof.
  • ether resins include polyacetal, polyphenylene oxide, polyphenylene sulfide, polysulfone, and polyether ether ketone.
  • nitrile resins examples include polyacrylonitrile and polymethacrylonitrile.
  • methacrylate resins examples include polymethylmethacrylate and polyethylmethacrylate.
  • vinyl resins examples include vinyl acetate, polyvinyl alcohol, polyvinylidene chloride, and polyvinyl chloride.
  • cellulose resins examples include cellulose acetate and cellulose acetate butyrate.
  • fluororesins examples include polyvinylidene fluoride, polyvinyl fluoride, and polychlorotrifluoroethylene.
  • imide resins examples include aromatic polyimide and polyacetal.
  • thermoplastic resin When a thermoplastic resin is used for automobile parts, a crystalline thermoplastic resin having excellent chemical resistance and oil resistance is preferable.
  • crystalline resins such as high density polyethylene, polypropylene, polybutylene terephthalate, polyethylene terephthalate, polyacetal, polyphenylene sulfide, and polyether ether ketone can be preferably used.
  • Carbon fiber As the carbon fibers contained in the resin composition according to one embodiment of the present invention, known ones such as pitch-based, rayon-based, and PAN-based carbon fibers can be used.
  • the carbon fiber has a function of increasing the rigidity of the resin composition and a function of becoming a scaffold for forming a network of insulating heat conductive fillers.
  • the carbon fiber recycled material is obtained by separating the matrix resin from the carbon fiber reinforced plastic (CFRP) by, for example, a thermal decomposition method, a chemical dissolution method, a supercritical fluid method or the like.
  • the length of carbon fiber is not particularly limited. In order to disperse the carbon fibers in the thermoplastic resin, the length is preferably 30 mm or less. Further, the length is preferably 0.1 mm or more from the viewpoint of becoming a scaffold for forming the network of the insulating heat conductive filler.
  • the length of the carbon fibers may have a distribution, and in this case, the carbon fibers having a length not included in the preferable range described above may be included. In one example, the ratio of the carbon fibers having a length included in the above-described preferable range is 50% or more of the entire carbon fibers based on the number of carbon fibers.
  • the content of carbon fiber is preferably 5 parts by weight to 70 parts by weight, more preferably 10 parts by weight to 45 parts by weight.
  • this numerical range is preferable as described in [Summary].
  • the carbon fiber preferably has an uneven surface. Since such a carbon fiber has a large specific surface area, it has a greater interaction with the insulating heat conductive filler due to its affinity. As a result, the insulating heat conductive filler is likely to aggregate near the carbon fibers.
  • the carbon fiber may be surface-treated with a sizing agent (maleic anhydride-modified polypropylene, etc.). By performing such a surface treatment, it is possible to improve the interaction due to the affinity between the carbon fiber and the insulating thermally conductive filler, or to improve the adhesion between the carbon fiber and the thermoplastic resin. ..
  • a sizing agent maleic anhydride-modified polypropylene, etc.
  • Insulating thermally conductive filler examples include aluminum oxide (alumina), magnesium oxide, magnesium carbonate, boron nitride, silicon nitride, and aluminum nitride.
  • aluminum oxide alumina
  • magnesium oxide magnesium oxide
  • magnesium carbonate boron nitride
  • silicon nitride silicon nitride
  • aluminum nitride aluminum oxide
  • These insulating thermally conductive fillers may contain only one type, or may contain two or more types.
  • the thermal conductivity of the insulating thermally conductive filler measured by the laser flash method is preferably 10 W/m ⁇ K or more, more preferably 20 W/m ⁇ K or more.
  • the reason why this numerical range is preferable is as described in [Summary].
  • the content of the insulating heat conductive filler is preferably 10 parts by weight to 200 parts by weight, and 30 parts by weight to 70 parts by weight. Parts are more preferred. The reason why this numerical range is preferable is as described in [Summary].
  • the resin composition according to an embodiment of the present invention in order to localize the insulating heat conductive filler in the vicinity of the carbon fiber, percolation threshold value (filler particles are connected to each other, the filler concentration to express heat conductivity) ) Tends to be low. That is, the resin composition according to the embodiment of the present invention can suppress the content of the filler to be smaller than that of a general filler composite resin.
  • the insulating thermally conductive filler may be subjected to a surface treatment as long as the effect of the present invention is not impaired.
  • the resin composition may contain a dispersant as long as the effect of the present invention is not impaired.
  • Silane coupling treatment is an example of the surface treatment applied to the insulating heat conductive filler.
  • dispersant contained in the resin composition examples include styrene/maleic anhydride copolymer, polyacrylate, carboxymethyl cellulose, olefin/maleic anhydride copolymer, polystyrene sulfonate, acrylamide/acrylic acid copolymer.
  • alginate polyvinyl alcohol, polyoxyethylene alkyl ether, polyalkylene polyamine, polyacrylamide, polyoxypropylene/polyoxyethylene block, polymer starch, polyethyleneimine, aminoalkyl (meth)acrylate copolymer, polyvinylimidazoline,
  • Satkin Sun One example is Satkin Sun.
  • the resin composition according to one embodiment of the present invention may contain other additives such as a thermoplastic resin, carbon fiber, and an insulating heat conductive filler, as long as the effects of the present invention are not impaired.
  • additives include dispersants, antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, lubricants, crystal nucleus materials, plasticizers, dyes and pigments.
  • the thermal conductivity of the resin composition according to the embodiment of the present invention measured by a disc heat flow meter method is preferably 2 W/m ⁇ K or more, more preferably 3 W/m ⁇ K or more, 5 W/m ⁇ K or more is particularly preferable.
  • Density of the resin composition according to an embodiment of the present invention is preferably less than 2.68 g / cm 3, less than 2.60 g / cm 3 is more preferable.
  • the tensile strength of the resin composition according to one embodiment of the present invention measured according to ISO527-1 and ISO527-2 is preferably 150 MPa or more, more preferably 200 MPa or more.
  • the upper limit of the tensile strength is not particularly limited, but may be 500 MPa or less, for example. It can be said that the resin composition having a tensile strength of 150 MPa or more has sufficient strength when substituting resin parts for metal parts (such as parts made of aluminum die cast (tensile strength: 310 MPa)). That is, if the resin composition has a tensile strength of 150 MPa or more, it is possible to suppress a defect due to insufficient strength.
  • thermoplastic resin according to one embodiment of the present invention can be processed into a resin molded part by a known processing technique.
  • processing techniques include injection molding, press molding, blow molding, and extrusion molding.
  • the resin composition according to one embodiment of the present invention can be produced under the production conditions in which carbon fibers are isotropically dispersed in a disentangled state.
  • the specific surface area of the carbon fibers becomes large.
  • the interaction based on the affinity between the carbon fiber and the insulating thermally conductive filler easily occurs, and as a result, the insulating thermally conductive filler aggregates in the vicinity of the carbon fiber. To do. In this way, a resin composition in which the insulating thermally conductive filler is distributed in a mesh in the thermoplastic resin is manufactured.
  • Kneading under shearing conditions is an example of manufacturing conditions in which carbon fibers are isotropically dispersed in a defibrated state.
  • a high shearing machine having an internal feedback type screw can be preferably used, but the kneading is not limited to this.
  • the production conditions can be such that the carbon fibers are isotropically dispersed in the defibrated state.
  • the molten resin composition flows while repeating the following 1 and 2. 1. Extruded on the front of the cylinder. 2. Return to the rear of the cylinder through a passage provided in the axial direction of the screw.
  • a strong shear flow field and extension field are generated inside the molten resin composition.
  • the action of the shear flow field and the extension field promotes defibration of the carbon fibers, and the defibrated carbon fibers are isotropically dispersed.
  • manufacturing conditions are (i) the type of thermoplastic resin used, (ii) carbon fiber blending The amount can be appropriately set depending on the amount, (iii) the type and blending amount of the electrically insulating thermally conductive filler.
  • the rotation speed of the screw can be 1,200 rpm, and the residence time can be 60 seconds.
  • the screw rotation speed is too high (for example, more than 1,500 rpm) or the residence time is too long (for example, more than 180 seconds), shear deterioration of the thermoplastic resin and carbon fiber is likely to occur. As a result, the mechanical properties of the resin composition tend to deteriorate.
  • the screw rotation speed is too low (for example, less than 800 rpm) or the residence time is too short (for example, less than 30 seconds), the fibrillation and dispersion of the carbon fibers and the insulating heat conductive filler Insufficient dispersion.
  • the kneading degree can be adjusted by combining a screw and an appropriate kneading disc.
  • the shearing action exerted between the disc surfaces of the kneading disc and the distributive mixing action caused by the turning back effect of the discontinuous disc cause the disentangled carbon fibers to be isotropically dispersed.
  • a resin composition according to an aspect of the present invention is a resin composition containing a thermoplastic resin, carbon fibers, and an insulating heat conductive filler; and the insulating heat conductive filler is the thermoplastic resin. It is distributed like a mesh in the resin.
  • a resin composition according to another aspect of the present invention is a resin composition containing a thermoplastic resin, carbon fibers, and an insulating thermally conductive filler; In the defibrated state, isotropically dispersed; in the vicinity of the carbon fibers, the insulating heat conductive filler is aggregated.
  • the insulating thermally conductive filler is distributed in a thermoplastic resin in a mesh shape. That is, it has a shape in which a network of insulating heat conductive filler is developed in the resin matrix. Electric current can be passed and heat can be conducted through this network of insulating heat conductive fillers. As a result, the resin composition has a heat conduction function.
  • the insulating thermally conductive filler is distributed in a mesh means that there is a linear region and a branch point in the distribution of the insulating thermally conductive filler in the thermoplastic resin, and the branch point In, it means that two or more linear regions intersect. Whether or not the insulating heat conductive filler is distributed in a mesh is determined by, for example, capturing an electron microscope image (SEM image or the like) from the resin composition sample and using a known image processing software (ImageJ or the like). It can be determined if used.
  • the insulating thermally conductive filler is aggregated in the vicinity of the carbon fiber means that the distribution of the insulating thermally conductive filler in the resin composition is localized in the vicinity of the carbon fiber. .. Whether the distribution of the insulative thermally conductive filler in the resin composition is biased to the vicinity of the carbon fibers is determined by, for example, “near the carbon fibers” in an electron microscope image (SEM image or the like) taken from a sample of the resin composition. The “region” and the “resin matrix region” are compared, and whether the amount of the insulating heat conductive filler contained in the former is three times or more that of the insulating heat conductive filler contained in the latter. Can be determined. Known image processing software (such as ImageJ) can be used for such determination.
  • the carbon fibers are defibrated means that the carbon fibers exist without aggregating into a bundle. Whether or not the carbon fibers are defibrated can be determined, for example, by morphological observation based on an electron microscope image (SEM image or the like).
  • “Isotropically dispersed” means that the distribution of carbon fibers has no orientation (or orientation is small). In the carbon fiber that isotropically dispersed in the resin composition, the major axis direction of the carbon fiber is oriented in a random direction. Whether or not the carbon fibers are isotropically dispersed can be determined, for example, by measuring the local thermal conductivity in the sample. For local measurement of thermal conductivity in the sample, for example, a fiber orientation evaluation system TEFOD (manufactured by Bethel Co., Ltd.) can be used. Alternatively, whether or not the carbon fibers are isotropically dispersed can be determined by morphological observation using an electron microscope image (SEM image or the like).
  • the thermal conductivity of the resin composition measured by the disc heat flow meter method is 2 W/m ⁇ K or more.
  • the thermal conductivity of the resin composition is more preferably 3 W/m ⁇ K or higher, and particularly preferably 5 W/m ⁇ K or higher.
  • the upper limit of the thermal conductivity of the resin composition is not particularly limited, but can be, for example, 20 W/m ⁇ K or less.
  • the thermal conductivity of the insulating thermally conductive filler measured by the laser flash method is 10 W/m ⁇ K or more. More preferably, the heat conductivity of the insulating heat conductive filler is 20 W/m ⁇ K or more.
  • the upper limit of the thermal conductivity of the insulating thermally conductive filler is not particularly limited, but may be 10,000 W/m ⁇ K or less, for example.
  • the resin composition having the above structure has a sufficient heat conduction function when it is applied to in-vehicle power modules, motor peripheral parts, electronic devices, etc.
  • the content of the carbon fiber is 5 parts by weight to 70 parts by weight. More preferably, the content of carbon fiber is 10 to 45 parts by weight.
  • the carbon fiber content By setting the carbon fiber content within the above range, a network of insulating heat conductive fillers is easily formed, and a sufficient heat conductive function can be obtained.
  • the content of the carbon fibers is less than 5 parts by weight, the formation of the network of the insulating heat conductive filler tends to be poor.
  • the insulating heat conductive filler is scattered on the surface of the carbon fibers, and the network of the insulating heat conductive filler tends to be cut.
  • the carbon fiber content is less than 5 parts by weight, the strength of the resin composition tends to be insufficient.
  • the content of the carbon fibers is more than 70 parts by weight, it tends to be difficult to disperse the carbon fibers isotropically during the production of the resin composition, and the melt viscosity is further increased to obtain a good molded product. It tends to be difficult.
  • the content of the insulating heat conductive filler is 10 parts by weight to 200 parts by weight. More preferably, the content of the insulating heat conductive filler is 30 parts by weight to 70 parts by weight.
  • the content of the insulating heat conductive filler By setting the content of the insulating heat conductive filler within the above range, a network of the insulating heat conductive filler is easily formed and a sufficient heat transfer function can be obtained. On the contrary, when the content of the insulating heat conductive filler is less than 10 parts by weight, the network of the insulating heat conductive filler is hard to be formed, and the heat transfer function tends to be poor. When the content of the insulating heat conductive filler is more than 200 parts by weight, the insulating heat conductive filler is not well dispersed during the production of the resin composition, and the resin composition tends to be brittle.
  • the content of the insulating heat conductive filler is, for example, 80 parts by weight, 90 parts by weight, 100 parts by weight, 110 parts by weight, 120 parts by weight, 130 parts by weight, 140 parts by weight, 150 parts by weight, 160 parts by weight. Parts, 170 parts by weight, 180 parts by weight, 190 parts by weight.
  • the resin composition has a density of less than 2.68 g/cm 3 . More preferably, the density of the resin composition is less than 2.60 g/cm 3 .
  • the lower limit of the density of the resin composition is not particularly limited, but can be, for example, 0.90 g/cm 3 or more.
  • the resin composition having the above structure is lighter in weight than a metal material. Therefore, it is suitable as a material that substitutes for metal.
  • a resin molded part including the resin composition according to one embodiment of the present invention is also included in the scope of the present invention.
  • a resin molded product is used, for example, as a component constituting an in-vehicle power module, a motor peripheral component, an electronic device (sensor, switch, DC converter, etc.).
  • Examples 1 to 5 Comparative Examples 1 and 2
  • Aluminum nitride (heat conductivity: about 170 W/m ⁇ K) was used as the insulating heat conductive filler. The change in the physical properties of the resin composition was examined while changing the content of the filler.
  • Example 1 Polyphenylene sulfide (PPS resin) was used as the thermoplastic resin, PAN carbon fiber was used as the carbon fiber, and aluminum nitride (particulate) was used as the insulating thermally conductive filler.
  • PPS resin Polyphenylene sulfide
  • PAN carbon fiber was used as the carbon fiber
  • aluminum nitride was used as the insulating thermally conductive filler.
  • Pre-kneading step 100 parts by weight of PPS resin, 25 parts by weight of PAN carbon fiber and 50 parts by weight of aluminum nitride were pre-kneaded to prepare a masterbatch.
  • a general twin-screw extruder was used for pre-kneading, and PPS resin was supplied from a hopper, and PAN carbon fiber and aluminum nitride were supplied from a side feeder.
  • the kneading temperature was 300° C., and the screw rotation speed was 200 rpm.
  • the pelletized masterbatch obtained in the preliminary kneading step was put into a high shearing machine having an internal feedback screw and kneaded.
  • the kneading temperature was 320° C.
  • the screw rotation speed was 1,200 rpm
  • the residence time was 60 seconds.
  • Examples 2 to 5 Samples for measuring thermal conductivity in accordance with the disc heat flow meter method were prepared in the same manner as in Example 1 while changing the amount of aluminum compounded. The manufacturing conditions were appropriately adjusted depending on the material and the blending amount. Table 1 shows the physical properties of the resin composition produced.
  • Example 11 to 15, Comparative Examples 5 and 6 Aluminum oxide (heat conductivity: about 30 W/m ⁇ K) was used as the insulating heat conductive filler. The change in the physical properties of the resin composition was examined while changing the content of the filler. The method for producing the resin composition was in accordance with Example 1, and was appropriately adjusted according to the material and the amount of the compound. Table 3 shows the physical properties of the resin composition produced.
  • Example 7 In the production method of Example 1, a resin composition was produced without including carbon fiber, and was set as Comparative Example 7. In addition, in the manufacturing method of Example 1, a resin composition was prepared without including an insulating thermally conductive filler, and was set as Comparative Example 8. Table 4 shows the physical properties of the resin composition produced.
  • Examples 16 to 19, Comparative Examples 9 and 10 Aluminum nitride (heat conductivity: about 170 W/m ⁇ K) was used as the insulating heat conductive filler. Changes in the physical properties of the resin composition were examined while changing the content of carbon fibers. The method for producing the resin composition was in accordance with Example 1, and was appropriately adjusted according to the material and the amount of the compound. Table 5 shows the physical properties of the resin composition produced.
  • the resin composition according to one embodiment of the present invention can be used for, for example, automobile parts.

Abstract

A resin composition imparted with a sufficient heat conducting function is provided. This resin composition (10) contains a thermoplastic resin (3), carbon fibers (1) and an insulating, thermally conductive filler (2). The insulating thermally conductive filler (2) is distributed in a mesh pattern in the thermoplastic resin (3).

Description

樹脂組成物および樹脂成形部品Resin composition and resin molded parts
 本発明は、樹脂組成物および樹脂成形部品に関する。 The present invention relates to a resin composition and a resin molded part.
 近年、自動車の燃費を改善したり、自動車を電動化したりするために、自動車部品を軽量化する技術が注目を集めている。このような技術の一つとして、樹脂製部品による金属製部品の代替が検討されている。樹脂の中でも特に注目を集めているのが、金属に近い強度を有する一方で金属よりも軽量である、熱可塑性炭素繊維強化樹脂(CFRTP)である。具体的な例を挙げると、CFRTPは、アルミニウム合金に近い強度を有しながら、アルミニウムよりも密度が小さい(アルミニウムの密度が2.7g/cmであるのに対し、CFRTPの密度は1.0~1.5g/cmである)。さらに、CFRTPは、一般的なプラスチックと同様に射出成形が可能であるから、複雑な立体形状の部品を作製できるという利点も有している。 2. Description of the Related Art In recent years, a technique for reducing the weight of automobile parts has attracted attention in order to improve the fuel efficiency of automobiles and electrify automobiles. As one of such technologies, replacement of metal parts with resin parts is being considered. Among the resins, the thermoplastic carbon fiber reinforced resin (CFRTP), which has strength similar to that of metal but is lighter than metal, is particularly attracting attention. As a specific example, CFRTP has a strength close to that of an aluminum alloy, but has a smaller density than aluminum (the density of aluminum is 2.7 g/cm 3 , whereas the density of CFRTP is 1. 0 to 1.5 g/cm 3. ) Further, since CFRTP can be injection-molded like general plastics, it also has an advantage that parts having a complicated three-dimensional shape can be manufactured.
 ところで、CFRTPに各種のフィラーを添加して、機能を向上させたり、さらなる機能を付与したりすることも検討されている。例えば特許文献1は、「炭素繊維とナノフィラーとが、前記炭素繊維強化プラスチック材料に無配向に分散していることを特徴とする炭素繊維強化プラスチック材料」を開示している。 By the way, it is also considered to add various fillers to CFRTP to improve its function or to add further function. For example, Patent Document 1 discloses "a carbon fiber reinforced plastic material characterized in that carbon fibers and nanofillers are dispersed in the carbon fiber reinforced plastic material in a non-oriented manner".
 また、自動車部品への応用を例にとると、電装部品から発生する熱を放散させるための熱伝導機能をCFRTPに付与することが検討されている。しかし、一般的なCFRTPの熱伝導率は1W/m・Kであり、不充分な熱伝導機能しか有していない。そのため、CFRTPに熱伝導性フィラーを添加して熱伝導機能を高める手法が採られている。この点に関して、特許文献2は、「(A)炭素繊維、(B)セラミックス系フィラーおよび(C)熱可塑性樹脂の合計100重量部に対して、(A)炭素繊維1~30重量部、(B)セラミックス系フィラー1~40重量部および(C)熱可塑性樹脂30~98重量部を含み、(A)炭素繊維の重量平均繊維長が300~3000μmである繊維強化熱可塑性樹脂成形品」を開示している。 In addition, taking the application to automobile parts as an example, it is considered to add a heat conduction function to CFRTP to dissipate the heat generated from electrical components. However, the thermal conductivity of general CFRTP is 1 W/m·K, and it has an insufficient thermal conductivity function. Therefore, a method has been adopted in which a heat conductive filler is added to CFRTP to enhance the heat conductive function. In this regard, Patent Document 2 discloses that 1 to 30 parts by weight of (A) carbon fiber, (100 parts by weight of (A) carbon fiber, (B) ceramic filler and (C) thermoplastic resin in total, ( B) 1 to 40 parts by weight of a ceramic filler and (C) 30 to 98 parts by weight of a thermoplastic resin, and (A) a carbon fiber having a weight average fiber length of 300 to 3000 μm. Disclosure.
日本国特許第6143107号明細書Japanese Patent No. 6143107 日本国公開特許公報「特開2016-190922号」Japanese Patent Laid-Open Publication "JP-A-2016-190922"
 一般的に、CFRTPに熱伝導機能を付与するためには、フィラーの含有量を増やす必要がある。すると、フィラーは通常比重の高い材料であるから、CFRTP自体の比重も大きくなってしまう。つまり、フィラーの含有量を増やす手法を採用すると、CFRTPに熱伝導機能を付与する代わりに、CFRTPの長所である軽量性が損なわれてしまう傾向にある。 Generally, it is necessary to increase the filler content in order to give CFRTP a heat conduction function. Then, since the filler is usually a material having a high specific gravity, the specific gravity of CFRTP itself also increases. That is, if a method of increasing the content of the filler is adopted, the lightweight property, which is an advantage of CFRTP, tends to be impaired, instead of giving a heat conduction function to CFRTP.
 本発明の一態様は、充分な熱伝導機能が付与された樹脂組成物を提供することを課題とする。なお、ここでいう「熱伝導機能」とは、樹脂組成物の用途に応じて適宜設定されるものであり、具体的な数値に拘束されるものではない。 One aspect of the present invention is to provide a resin composition having a sufficient heat transfer function. The “heat conduction function” here is appropriately set according to the application of the resin composition, and is not limited to a specific numerical value.
 前記の課題を解決するために、本発明の一態様に係る樹脂組成物は、熱可塑性樹脂、炭素繊維および絶縁性の熱伝導性フィラーを含んでいる樹脂組成物であって;前記絶縁性の熱伝導性フィラーは、前記熱可塑性樹脂中において網目状に分布している。 In order to solve the above-mentioned problems, a resin composition according to an aspect of the present invention is a resin composition containing a thermoplastic resin, carbon fibers and an insulating thermally conductive filler; The heat conductive fillers are distributed in the thermoplastic resin in a mesh shape.
 また、本発明の他の態様に係る樹脂組成物は、熱可塑性樹脂、炭素繊維および絶縁性の熱伝導性フィラーを含んでいる樹脂組成物であって;前記炭素繊維は、前記熱可塑性樹脂中において解繊された状態で等方的に分散しており;前記炭素繊維の近傍に、前記絶縁性の熱伝導性フィラーが凝集している。 Further, a resin composition according to another aspect of the present invention is a resin composition containing a thermoplastic resin, carbon fibers, and an insulating thermally conductive filler; In the defibrated state, isotropically dispersed; in the vicinity of the carbon fibers, the insulating heat conductive filler is aggregated.
 本発明の一態様によれば、充分な熱伝導機能が付与された樹脂組成物が提供される。 According to one aspect of the present invention, a resin composition having a sufficient heat conduction function is provided.
(a)は、本発明の一態様に係る樹脂組成物の構造を説明する模式図である。(b)は、(a)に示されている領域Aを拡大した図である。(A) is a schematic diagram explaining the structure of the resin composition which concerns on 1 aspect of this invention. (B) is an enlarged view of the region A shown in (a).
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を説明する。しかし、本発明はこれらの実施の形態に限定されない。本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。 Hereinafter, an embodiment according to one aspect of the present invention (hereinafter, also referred to as “this embodiment”) will be described. However, the present invention is not limited to these embodiments. Unless otherwise specified in this specification, “A to B” representing a numerical range means “A or more and B or less”.
 §1適用例
 図1に基づいて、本発明の一態様に係る樹脂組成物の概要を説明する。図1の(a)は、一態様に係る樹脂組成物の構造を説明する模式図である。樹脂組成物10においては、熱可塑性樹脂3がマトリクスとなり、その中に炭素繊維1および絶縁性の熱伝導性フィラー2が含まれている。
§1 Application example The outline of the resin composition according to one embodiment of the present invention will be described with reference to FIG. FIG. 1A is a schematic diagram illustrating the structure of the resin composition according to one aspect. In the resin composition 10, the thermoplastic resin 3 serves as a matrix, and the carbon fibers 1 and the insulating heat conductive filler 2 are contained therein.
 ここで、絶縁性の熱伝導性フィラー2は、炭素繊維1の近傍に凝集している。このことは、図1の(b)により、さらに明確に示されている。図1の(b)は、図1の(a)における領域Aの拡大図であり、炭素繊維1の近傍に絶縁性の熱伝導性フィラー2が局在している様子が示されている。つまり、図1の(a)において、炭素繊維1を表す長方形の輪郭となっている黒い領域には、絶縁性の熱伝導性フィラー2が凝集している。 Here, the insulating heat conductive filler 2 is aggregated in the vicinity of the carbon fiber 1. This is shown more clearly by FIG. 1(b). FIG. 1B is an enlarged view of the region A in FIG. 1A, and shows that the insulating heat conductive filler 2 is localized in the vicinity of the carbon fiber 1. That is, in FIG. 1A, insulative thermally conductive fillers 2 are aggregated in a black region having a rectangular outline representing the carbon fiber 1.
 炭素繊維1は、熱可塑性樹脂3の中で、解繊された状態で等方的に分布している。絶縁性の熱伝導性フィラー2は、前述した通り、炭素繊維1の近傍に凝集して分布している。その結果、樹脂組成物10における絶縁性の熱伝導性フィラー2は、網目状に分布することになる。つまり、絶縁性の熱伝導性フィラー2同士が互いに接触しているネットワークが形成される。この絶縁性の熱伝導性フィラー2のネットワークを通じて、電流を流したり、熱を伝導させたりすることが可能となり、結果として樹脂組成物10は熱伝導機能を得る。 The carbon fiber 1 is isotropically distributed in the thermoplastic resin 3 in a defibrated state. As described above, the insulating heat conductive filler 2 is aggregated and distributed in the vicinity of the carbon fiber 1. As a result, the insulating heat conductive filler 2 in the resin composition 10 is distributed in a mesh shape. That is, a network in which the insulating heat conductive fillers 2 are in contact with each other is formed. It is possible to pass an electric current or conduct heat through the network of the insulating heat conductive filler 2, and as a result, the resin composition 10 obtains a heat conducting function.
 樹脂組成物10は、絶縁性の熱伝導性フィラー2を網目状に局在させることができるので、熱伝導機能を付与するために絶縁性の熱伝導性フィラー2を増加させる必要がない。したがって樹脂組成物10は、軽量性を保ったまま、熱伝導機能を獲得することができる。 Since the resin composition 10 can localize the insulating heat conductive filler 2 in a mesh shape, it is not necessary to increase the insulating heat conductive filler 2 in order to impart the heat conducting function. Therefore, the resin composition 10 can obtain the heat conduction function while maintaining the lightweight property.
 ここで、樹脂組成物10中における炭素繊維1および絶縁性の熱伝導性フィラー2の分布が本発明の範疇に含まれるか否かは、例えば公知の画像処理技術により明確に判別できる。さらに、樹脂組成物10の物性によって、前記の判別をより確実にすることができる。例えば、「円板熱流計法によって測定される樹脂組成物10の熱伝導率が、2W/m・K以上である」ことは、「樹脂組成物10中における炭素繊維1および絶縁性の熱伝導性フィラー2の分布が本発明の範疇に含まれる」ことの判断材料となりうる。 Here, whether or not the distribution of the carbon fibers 1 and the insulating heat conductive filler 2 in the resin composition 10 is included in the category of the present invention can be clearly determined by, for example, a known image processing technique. Furthermore, the above-mentioned discrimination can be made more reliable by the physical properties of the resin composition 10. For example, “the thermal conductivity of the resin composition 10 measured by the disc heat flow meter method is 2 W/m·K or more” means “the carbon fiber 1 and the insulating thermal conductivity in the resin composition 10”. The distribution of the functional filler 2 is included in the category of the present invention".
 ところで、炭素繊維に沿って熱伝導性物質を分布させる方法としては、熱伝導性物質で被覆された炭素繊維を材料に用いることも考えられる。しかし、この方法では本発明の効果を得られないと考えられる。これは、材料段階の炭素繊維は、通常、未解繊の束状として存在しているからである。未解繊の炭素繊維の表面を被覆したとしても、この炭素繊維を解繊すると、被覆されていない表面が多く残ってしまう。 By the way, as a method of distributing the heat conductive substance along the carbon fiber, it is possible to use carbon fiber coated with the heat conductive substance as the material. However, it is considered that the effect of the present invention cannot be obtained by this method. This is because the carbon fibers at the material stage usually exist as undisentangled bundles. Even if the surface of undisentangled carbon fiber is coated, when this carbon fiber is disentangled, many uncoated surfaces remain.
 これに対して、本発明の一態様に係る樹脂組成物においては、炭素繊維と絶縁性の熱伝導性フィラーとが親和性に基づく相互作用によって集合する。その結果、炭素繊維の近傍に絶縁性の熱伝導性フィラーが局在的に分布する構造を取ることができる。 On the other hand, in the resin composition according to one aspect of the present invention, the carbon fibers and the insulating heat conductive filler are aggregated by the interaction based on the affinity. As a result, it is possible to have a structure in which the insulating heat conductive filler is locally distributed in the vicinity of the carbon fiber.
 §2構成例
 [熱可塑性樹脂]
 本発明の一実施形態に係る樹脂組成物に含まれている熱可塑性樹脂の例としては、オレフィン系樹脂、アミド系樹脂、エステル系樹脂、エーテル系樹脂、ニトリル系樹脂、メタクリレート系樹脂、ビニル系樹脂、セルロース系樹脂、フッ素系樹脂、イミド系樹脂が挙げられる。これらの樹脂は、1種類のみが含まれていてもよいし、2種類以上が含まれていてもよいし、これら樹脂の共重合体であってもよい。
§2 Configuration example [Thermoplastic resin]
Examples of the thermoplastic resin contained in the resin composition according to the embodiment of the present invention include olefin resins, amide resins, ester resins, ether resins, nitrile resins, methacrylate resins, vinyl resins. Examples thereof include resins, cellulose resins, fluorine resins and imide resins. These resins may contain only one kind, may contain two kinds or more, and may be a copolymer of these resins.
 オレフィン系樹脂の例としては、高密度ポリエチレン、低密度ポリエチレン、超高分子量ポリエチレン、ポリプロピレン(アイソタクチックポリプロピレン、シンジオタクチックポリプロピレンなど)が挙げられる。 Examples of olefin resins include high density polyethylene, low density polyethylene, ultra high molecular weight polyethylene, polypropylene (isotactic polypropylene, syndiotactic polypropylene, etc.).
 アミド系樹脂の例としては、ナイロン6、ナイロン66、ナイロン46、ナイロン11、ナイロン12、ナイロン610、ナイロン612、ナイロンMXD6、ナイロン6T、およびこれらの共重合体が挙げられる。 Examples of the amide resin include nylon 6, nylon 66, nylon 46, nylon 11, nylon 12, nylon 610, nylon 612, nylon MXD6, nylon 6T, and copolymers thereof.
 エステル系樹脂の例としては、ポリ乳酸、ポリカーボネート、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリアリレート、ポリブチレンナフタレート、液晶ポリエステル、およびそれらの共重合体が挙げられる。 Examples of ester resins include polylactic acid, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, polyethylene isophthalate, polyarylate, polybutylene naphthalate, liquid crystal polyester, and copolymers thereof.
 エーテル系樹脂の例としては、ポリアセタール、ポリフェニレンオキシド、ポリフェニレンサルファイド、ポリサルフォン、ポリエーテルエーテルケトンが挙げられる。 Examples of ether resins include polyacetal, polyphenylene oxide, polyphenylene sulfide, polysulfone, and polyether ether ketone.
 ニトリル系樹脂の例としては、ポリアクリロニトリル、ポリメタクリロニトリルが挙げられる。 Examples of nitrile resins include polyacrylonitrile and polymethacrylonitrile.
 メタクリレート系樹脂の例としては、ポリメタクリル酸メチル、ポリメタクリル酸エチルが挙げられる。 Examples of methacrylate resins include polymethylmethacrylate and polyethylmethacrylate.
 ビニル系樹脂の例としては、酢酸ビニル、ポリビニルアルコール、ポリ塩化ビニリデン、ポリ塩化ビニルが挙げられる。 Examples of vinyl resins include vinyl acetate, polyvinyl alcohol, polyvinylidene chloride, and polyvinyl chloride.
 セルロース系樹脂の例としては、酢酸セルロース、酢酸酪酸セルロースが挙げられる。 Examples of cellulose resins include cellulose acetate and cellulose acetate butyrate.
 フッ素系樹脂の例としては、ポリビニリデンフロライド、ポリフッ化ビニル、ポリクロロトリフルオロエチレンが挙げられる。 Examples of fluororesins include polyvinylidene fluoride, polyvinyl fluoride, and polychlorotrifluoroethylene.
 イミド系樹脂の例としては、芳香族ポリイミド、ポリアセタールが挙げられる。 Examples of imide resins include aromatic polyimide and polyacetal.
 熱可塑性樹脂を自動車部品に用いる場合は、耐薬品性および耐油性に優れる、結晶性の熱可塑性樹脂が好ましい。本発明の一実施形態においては、高密度ポリエチレン、ポリプロピレン、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリアセタール、ポリフェニレンサルファイド、ポリエーテルエーテルケトンなどの結晶性樹脂が好適に用いることができる。 When a thermoplastic resin is used for automobile parts, a crystalline thermoplastic resin having excellent chemical resistance and oil resistance is preferable. In one embodiment of the present invention, crystalline resins such as high density polyethylene, polypropylene, polybutylene terephthalate, polyethylene terephthalate, polyacetal, polyphenylene sulfide, and polyether ether ketone can be preferably used.
 [炭素繊維]
 本発明の一実施形態に係る樹脂組成物に含まれている炭素繊維は、ピッチ系、レーヨン系、PAN系など、公知のものを用いることができる。炭素繊維は、樹脂組成物の剛性を高める機能と、絶縁性の熱伝導性フィラーのネットワーク形成の足場となる機能とを有している。
[Carbon fiber]
As the carbon fibers contained in the resin composition according to one embodiment of the present invention, known ones such as pitch-based, rayon-based, and PAN-based carbon fibers can be used. The carbon fiber has a function of increasing the rigidity of the resin composition and a function of becoming a scaffold for forming a network of insulating heat conductive fillers.
 炭素繊維は、バージン材を使用してもよいし、再生材を使用してもよい。炭素繊維再生材は、例えば、熱分解法、化学溶解法、超臨界流体法などによって、炭素繊維強化プラスチック(CFRP)からマトリックス樹脂を分離することによって得られる。 For carbon fiber, virgin material or recycled material may be used. The carbon fiber recycled material is obtained by separating the matrix resin from the carbon fiber reinforced plastic (CFRP) by, for example, a thermal decomposition method, a chemical dissolution method, a supercritical fluid method or the like.
 炭素繊維の長さは、特に制限されない。熱可塑性樹脂中に炭素繊維を分散させるためには、長さが30mm以下であることが好ましい。また、絶縁性の熱伝導性フィラーのネットワーク形成の足場となる観点からは、長さが0.1mm以上であることが好ましい。なお、炭素繊維の長さには分布があってもよく、この場合、前述の好ましい範囲に含まれない長さの炭素繊維が含まれていてもよい。一例において、前述の好ましい範囲に含まれる長さの炭素繊維の割合は、本数を基準として、炭素繊維全体の50%以上である。  The length of carbon fiber is not particularly limited. In order to disperse the carbon fibers in the thermoplastic resin, the length is preferably 30 mm or less. Further, the length is preferably 0.1 mm or more from the viewpoint of becoming a scaffold for forming the network of the insulating heat conductive filler. The length of the carbon fibers may have a distribution, and in this case, the carbon fibers having a length not included in the preferable range described above may be included. In one example, the ratio of the carbon fibers having a length included in the above-described preferable range is 50% or more of the entire carbon fibers based on the number of carbon fibers.
 本発明の一実施形態に係る樹脂組成物において、熱可塑性樹脂を100重量部とすると、炭素繊維の含有量は5重量部~70重量部が好ましく、10重量部~45重量部がより好ましい。この数値範囲が好適な理由は、〔まとめ〕に記載の通りである。 In the resin composition according to one embodiment of the present invention, when the thermoplastic resin is 100 parts by weight, the content of carbon fiber is preferably 5 parts by weight to 70 parts by weight, more preferably 10 parts by weight to 45 parts by weight. The reason why this numerical range is preferable is as described in [Summary].
 炭素繊維は、表面に凹凸形状を有するものが好ましい。このような炭素繊維は、比表面積が大きくなるため、絶縁性の熱伝導性フィラーとの親和性による相互作用がより大きくなる。その結果、炭素繊維の近傍に絶縁性の熱伝導性フィラーが凝集しやすくなる。 The carbon fiber preferably has an uneven surface. Since such a carbon fiber has a large specific surface area, it has a greater interaction with the insulating heat conductive filler due to its affinity. As a result, the insulating heat conductive filler is likely to aggregate near the carbon fibers.
 炭素繊維は、サイジング剤(無水マレイン酸変性ポリプロピレンなど)による表面処理を施されたものであってもよい。このような表面処理を施すことにより、炭素繊維と絶縁性の熱伝導性フィラーとの親和性による相互作用を向上させたり、炭素繊維と熱可塑性樹脂との密着性を向上させたりすることができる。 The carbon fiber may be surface-treated with a sizing agent (maleic anhydride-modified polypropylene, etc.). By performing such a surface treatment, it is possible to improve the interaction due to the affinity between the carbon fiber and the insulating thermally conductive filler, or to improve the adhesion between the carbon fiber and the thermoplastic resin. ..
 [絶縁性の熱伝導性フィラー]
 本発明の一実施形態に係る樹脂組成物に含まれている絶縁性の熱伝導性フィラーの例としては、酸化アルミニウム(アルミナ)、酸化マグネシウム、炭酸マグネシウム、窒化ホウ素、窒化ケイ素、窒化アルミニウムが挙げられる。これらの絶縁性の熱伝導性フィラーは、1種類のみが含まれていてもよいし、2種類以上が含まれていてもよい。
[Insulating thermally conductive filler]
Examples of the insulating thermally conductive filler contained in the resin composition according to the embodiment of the present invention include aluminum oxide (alumina), magnesium oxide, magnesium carbonate, boron nitride, silicon nitride, and aluminum nitride. To be These insulating thermally conductive fillers may contain only one type, or may contain two or more types.
 レーザーフラッシュ法によって測定した絶縁性の熱伝導性フィラーの熱伝導率は、10W/m・K以上が好ましく、20W/m・K以上がより好ましい。この数値範囲が好ましい理由は、〔まとめ〕に記載の通りである。 The thermal conductivity of the insulating thermally conductive filler measured by the laser flash method is preferably 10 W/m·K or more, more preferably 20 W/m·K or more. The reason why this numerical range is preferable is as described in [Summary].
 本発明の一実施形態に係る樹脂組成物において、熱可塑性樹脂を100重量部とすると、絶縁性の熱伝導性フィラーの含有量は10重量部~200重量部が好ましく、30重量部~70重量部がより好ましい。この数値範囲が好適な理由は、〔まとめ〕に記載の通りである。 In the resin composition according to one embodiment of the present invention, when the thermoplastic resin is 100 parts by weight, the content of the insulating heat conductive filler is preferably 10 parts by weight to 200 parts by weight, and 30 parts by weight to 70 parts by weight. Parts are more preferred. The reason why this numerical range is preferable is as described in [Summary].
 本発明の一実施形態に係る樹脂組成物においては、炭素繊維の近傍に絶縁性の熱伝導性フィラーを局在させるため、パーコレーション閾値(フィラー粒子同士が繋がって、熱伝導性を発現するフィラー濃度)が低くなる傾向にある。つまり、本発明の一実施形態に係る樹脂組成物は、一般的なフィラー複合樹脂よりも、フィラーの含有量を少なく抑えることができる。 In the resin composition according to an embodiment of the present invention, in order to localize the insulating heat conductive filler in the vicinity of the carbon fiber, percolation threshold value (filler particles are connected to each other, the filler concentration to express heat conductivity) ) Tends to be low. That is, the resin composition according to the embodiment of the present invention can suppress the content of the filler to be smaller than that of a general filler composite resin.
 本発明の効果を損なわない範囲で、絶縁性の熱伝導性フィラーに表面処理を施してもよい。あるいは、本発明の効果を損なわない範囲で、樹脂組成物に分散剤を含有させてもよい。このような構成を採用することにより、炭素繊維と絶縁性の熱伝導性フィラーとの親和性による相互作用を向上させたり、絶縁性の熱伝導性フィラーの分散性を向上させたりすることができる。 The insulating thermally conductive filler may be subjected to a surface treatment as long as the effect of the present invention is not impaired. Alternatively, the resin composition may contain a dispersant as long as the effect of the present invention is not impaired. By adopting such a configuration, it is possible to improve the interaction due to the affinity between the carbon fiber and the insulating heat conductive filler, and to improve the dispersibility of the insulating heat conductive filler. ..
 絶縁性の熱伝導性フィラーに施す表面処理の例としては、シランカップリング処理が挙げられる。 Silane coupling treatment is an example of the surface treatment applied to the insulating heat conductive filler.
 樹脂組成物に含有させる分散剤の例としては、スチレン・無水マレイン酸共重合物、ポリアクリル酸塩、カルボキシメチルセルロース、オレフィン・無水マレイン酸共重合物、ポリスチレンスルホン酸塩、アクリルアミド・アクリル酸共重合物、アルギン酸塩、ポリビニルアルコール、ポリオキシエチレンアルキルエーテル、ポリアルキレンポリアミン、ポリアクリルアミド、ポリオキシプロピレン・ポリオキシエチレンブロック体、ポリマーでんぷん、ポリエチレンイミン、アミノアルキル(メタ)アクリレート共重合物、ポリビニルイミダゾリン、サトキンサンが挙げられる。 Examples of the dispersant contained in the resin composition include styrene/maleic anhydride copolymer, polyacrylate, carboxymethyl cellulose, olefin/maleic anhydride copolymer, polystyrene sulfonate, acrylamide/acrylic acid copolymer. Substance, alginate, polyvinyl alcohol, polyoxyethylene alkyl ether, polyalkylene polyamine, polyacrylamide, polyoxypropylene/polyoxyethylene block, polymer starch, polyethyleneimine, aminoalkyl (meth)acrylate copolymer, polyvinylimidazoline, One example is Satkin Sun.
 [その他の添加剤]
 本発明の一実施形態に係る樹脂組成物は、本発明の効果を損なわない範囲で、熱可塑性樹脂、炭素繊維、絶縁性の熱伝導性フィラーの他の添加剤を含んでいてもよい。このような添加剤の例としては、分散剤、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、滑剤、結晶核材、可塑剤、染料、顔料が挙げられる。
[Other additives]
The resin composition according to one embodiment of the present invention may contain other additives such as a thermoplastic resin, carbon fiber, and an insulating heat conductive filler, as long as the effects of the present invention are not impaired. Examples of such additives include dispersants, antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, lubricants, crystal nucleus materials, plasticizers, dyes and pigments.
 [樹脂組成物]
 本発明の一実施形態に係る樹脂組成物の、円板熱流計法(ASTM E1530)によって測定される熱伝導率は、2W/m・K以上が好ましく、3W/m・K以上がより好ましく、5W/m・K以上が特に好ましい。
[Resin composition]
The thermal conductivity of the resin composition according to the embodiment of the present invention measured by a disc heat flow meter method (ASTM E1530) is preferably 2 W/m·K or more, more preferably 3 W/m·K or more, 5 W/m·K or more is particularly preferable.
 本発明の一実施形態に係る樹脂組成物の密度は、2.68g/cm未満が好ましく、2.60g/cm未満がより好ましい。 Density of the resin composition according to an embodiment of the present invention is preferably less than 2.68 g / cm 3, less than 2.60 g / cm 3 is more preferable.
 以上の数値範囲が好ましい理由は、〔まとめ〕に記載の通りである。 The reason why the above numerical range is preferable is as described in [Summary].
 また、本発明の一実施形態に係る樹脂組成物の、ISO527-1およびISO527-2に基づいて測定される引張強度は、150MPa以上が好ましく、200MPa以上がより好ましい。引張強度の上限は特に制限されないが、例えば、500MPa以下とすることができる。引張強度が150MPa以上である樹脂組成物は、金属部品(アルミダイカスト(引張強度:310MPa)製の部品など)を樹脂部品で代替するに際に問題のない強度を有していると言える。つまり、樹脂組成物が150MPa以上の引張強度を有しているならば、強度の不足に起因する不具合を抑制することができる。 Further, the tensile strength of the resin composition according to one embodiment of the present invention measured according to ISO527-1 and ISO527-2 is preferably 150 MPa or more, more preferably 200 MPa or more. The upper limit of the tensile strength is not particularly limited, but may be 500 MPa or less, for example. It can be said that the resin composition having a tensile strength of 150 MPa or more has sufficient strength when substituting resin parts for metal parts (such as parts made of aluminum die cast (tensile strength: 310 MPa)). That is, if the resin composition has a tensile strength of 150 MPa or more, it is possible to suppress a defect due to insufficient strength.
 本発明の一実施形態に係る熱可塑性樹脂は、公知の加工技術によって、樹脂成形部品に加工することができる。このような加工技術の例としては、射出成形、プレス成形、ブロー成形、押出成形が挙げられる。 The thermoplastic resin according to one embodiment of the present invention can be processed into a resin molded part by a known processing technique. Examples of such processing techniques include injection molding, press molding, blow molding, and extrusion molding.
 §3製造例
 本発明の一実施形態に係る樹脂組成物は、炭素繊維が解繊された状態で等方的に分散されるような製造条件とすれば、製造することができる。炭素繊維が解繊された状態で等方的に分散していると、炭素繊維の比表面積が大きくなる。すると、溶融状態の熱可塑性樹脂中において、炭素繊維と絶縁性の熱伝導性フィラーとの親和力に基づく相互作用が発生しやすくなり、結果として炭素繊維の近傍に絶縁性の熱伝導性フィラーが凝集する。このようにして、熱可塑性樹脂中において絶縁性の熱伝導性フィラーが網目状に分布している樹脂組成物が製造される。
§3 Production Example The resin composition according to one embodiment of the present invention can be produced under the production conditions in which carbon fibers are isotropically dispersed in a disentangled state. When the carbon fibers are isotropically dispersed in a disentangled state, the specific surface area of the carbon fibers becomes large. Then, in the molten thermoplastic resin, the interaction based on the affinity between the carbon fiber and the insulating thermally conductive filler easily occurs, and as a result, the insulating thermally conductive filler aggregates in the vicinity of the carbon fiber. To do. In this way, a resin composition in which the insulating thermally conductive filler is distributed in a mesh in the thermoplastic resin is manufactured.
 炭素繊維が解繊された状態で等方的に分散される製造条件の例としては、剪断条件下での混練が挙げられる。剪断条件下での混練には、内部帰還型スクリューを有する高剪断加工機が好適に使用できるが、これに限定されるわけではない。例えば、通常の二軸押出機を用いても、炭素繊維が解繊された状態で等方的に分散される製造条件とすることができる。 Kneading under shearing conditions is an example of manufacturing conditions in which carbon fibers are isotropically dispersed in a defibrated state. For kneading under shearing conditions, a high shearing machine having an internal feedback type screw can be preferably used, but the kneading is not limited to this. For example, even if a normal twin-screw extruder is used, the production conditions can be such that the carbon fibers are isotropically dispersed in the defibrated state.
 内部帰還形スクリューの回転によって、溶融樹脂組成物は、以下の1、2を繰り返しながら流動する。
1.シリンダーの前部に押し出される。
2.スクリューの軸方向に設けられた通路を通ってシリンダーの後部に戻る。
By the rotation of the internal feedback type screw, the molten resin composition flows while repeating the following 1 and 2.
1. Extruded on the front of the cylinder.
2. Return to the rear of the cylinder through a passage provided in the axial direction of the screw.
 溶融樹脂組成物がこのように流動することによって、溶融樹脂組成物の内部に強い剪断流動場および伸長場が発生する。この剪断流動場および伸長場の働きによって、炭素繊維の解繊が促進され、さらに解繊された炭素繊維が等方的に分散するようになる。 Due to such flow of the molten resin composition, a strong shear flow field and extension field are generated inside the molten resin composition. The action of the shear flow field and the extension field promotes defibration of the carbon fibers, and the defibrated carbon fibers are isotropically dispersed.
 内部帰還型スクリューを有する高剪断加工機を使用する製造方法の場合、製造条件(スクリューの回転数、滞留時間など)は、(i)使用する熱可塑性樹脂の種類、(ii)炭素繊維の配合量、(iii)絶縁性の熱伝導性フィラーの種類および配合量に応じて、適宜設定することができる。 In the case of a manufacturing method using a high shearing machine with an internal feedback screw, manufacturing conditions (screw rotation speed, residence time, etc.) are (i) the type of thermoplastic resin used, (ii) carbon fiber blending The amount can be appropriately set depending on the amount, (iii) the type and blending amount of the electrically insulating thermally conductive filler.
 例えば、後述する実施例1に記載の樹脂組成物(ポリフェニレンサルファイド樹脂、炭素繊維、および窒化アルミニウムフィラーからなる)では、スクリューの回転数を1,200rpm、滞留時間を60秒間とすることができる。 For example, in the resin composition described in Example 1 (which is composed of polyphenylene sulfide resin, carbon fiber, and aluminum nitride filler) described later, the rotation speed of the screw can be 1,200 rpm, and the residence time can be 60 seconds.
 スクリューの回転数が大きすぎたり(例えば、1,500rpm超)、滞留時間が長すぎたり(例えば、180秒間超)すると、熱可塑性樹脂および炭素繊維の剪断劣化が生じやすくなる。その結果、樹脂組成物の機械的物性が低下する傾向にある。逆に、スクリューの回転数が少なすぎたり(例えば、800rpm未満)、滞留時間が短すぎたり(例えば、30秒間未満)すると、炭素繊維の解繊および分散、ならびに絶縁性の熱伝導性フィラーの分散が不充分となる。 If the screw rotation speed is too high (for example, more than 1,500 rpm) or the residence time is too long (for example, more than 180 seconds), shear deterioration of the thermoplastic resin and carbon fiber is likely to occur. As a result, the mechanical properties of the resin composition tend to deteriorate. On the contrary, if the screw rotation speed is too low (for example, less than 800 rpm) or the residence time is too short (for example, less than 30 seconds), the fibrillation and dispersion of the carbon fibers and the insulating heat conductive filler Insufficient dispersion.
 二軸押出機を使用する製造方法の場合は、スクリューと適切なニーディングディスクとを組み合わせることにより、混練度を調節することができる。ニーディングディスクのディスク面相互の間で働く剪断作用と、不連続なディスクによる切り返し効果に起因する分配混合作用によって、解繊された炭素繊維が等方的に分散するようになる。 In the case of a manufacturing method using a twin-screw extruder, the kneading degree can be adjusted by combining a screw and an appropriate kneading disc. The shearing action exerted between the disc surfaces of the kneading disc and the distributive mixing action caused by the turning back effect of the discontinuous disc cause the disentangled carbon fibers to be isotropically dispersed.
 〔まとめ〕
 本発明の一態様に係る樹脂組成物は、熱可塑性樹脂、炭素繊維および絶縁性の熱伝導性フィラーを含んでいる樹脂組成物であって;前記絶縁性の熱伝導性フィラーは、前記熱可塑性樹脂中において網目状に分布している。
[Summary]
A resin composition according to an aspect of the present invention is a resin composition containing a thermoplastic resin, carbon fibers, and an insulating heat conductive filler; and the insulating heat conductive filler is the thermoplastic resin. It is distributed like a mesh in the resin.
 また、本発明の他の態様に係る樹脂組成物は、熱可塑性樹脂、炭素繊維および絶縁性の熱伝導性フィラーを含んでいる樹脂組成物であって;前記炭素繊維は、前記熱可塑性樹脂中において解繊された状態で等方的に分散しており;前記炭素繊維の近傍に、前記絶縁性の熱伝導性フィラーが凝集している。 Further, a resin composition according to another aspect of the present invention is a resin composition containing a thermoplastic resin, carbon fibers, and an insulating thermally conductive filler; In the defibrated state, isotropically dispersed; in the vicinity of the carbon fibers, the insulating heat conductive filler is aggregated.
 前記の構成を有する樹脂組成物は、熱可塑性樹脂中に網目状に絶縁性の熱伝導性フィラーが分布している。つまり、樹脂マトリクス中に絶縁性の熱伝導性フィラーのネットワークが発達した形状となっている。この絶縁性の熱伝導性フィラーのネットワークを通じて、電流を流したり、熱を伝導させたりすることができる。その結果、樹脂組成物に熱伝導機能が与えられる。 In the resin composition having the above structure, the insulating thermally conductive filler is distributed in a thermoplastic resin in a mesh shape. That is, it has a shape in which a network of insulating heat conductive filler is developed in the resin matrix. Electric current can be passed and heat can be conducted through this network of insulating heat conductive fillers. As a result, the resin composition has a heat conduction function.
 「絶縁性の熱伝導性フィラーが網目状に分布している」とは、熱可塑性樹脂中における絶縁性の熱伝導性フィラーの分布に線状領域および分岐点が存在しており、当該分岐点において2つ以上の線状領域が交差していることを意味する。絶縁性の熱伝導性フィラーが網目状に分布しているか否かは、例えば、樹脂組成物のサンプルから電子顕微鏡像(SEM画像など)を撮像し、公知の画像処理ソフト(Image Jなど)を利用すれば判別することができる。 "The insulating thermally conductive filler is distributed in a mesh" means that there is a linear region and a branch point in the distribution of the insulating thermally conductive filler in the thermoplastic resin, and the branch point In, it means that two or more linear regions intersect. Whether or not the insulating heat conductive filler is distributed in a mesh is determined by, for example, capturing an electron microscope image (SEM image or the like) from the resin composition sample and using a known image processing software (ImageJ or the like). It can be determined if used.
 「炭素繊維の近傍に絶縁性の熱伝導性フィラーが凝集している」とは、樹脂組成物中の絶縁性の熱伝導性フィラーの分布が炭素繊維近傍に局在していることを意味する。樹脂組成物中の絶縁性の熱伝導性フィラーの分布が炭素繊維近傍に偏っているか否かは、例えば、樹脂組成物のサンプルから撮像した電子顕微鏡像(SEM画像など)における「炭素繊維の近傍領域」と「樹脂マトリクス領域」とを比較して、前者に含まれる絶縁性の熱伝導性フィラーの量が、後者に含まれる絶縁性の熱伝導性フィラーの3倍以上であるか否かによって判定することができる。このような判定には、公知の画像処理ソフト(Image Jなど)を利用することができる。 "The insulating thermally conductive filler is aggregated in the vicinity of the carbon fiber" means that the distribution of the insulating thermally conductive filler in the resin composition is localized in the vicinity of the carbon fiber. .. Whether the distribution of the insulative thermally conductive filler in the resin composition is biased to the vicinity of the carbon fibers is determined by, for example, “near the carbon fibers” in an electron microscope image (SEM image or the like) taken from a sample of the resin composition. The “region” and the “resin matrix region” are compared, and whether the amount of the insulating heat conductive filler contained in the former is three times or more that of the insulating heat conductive filler contained in the latter. Can be determined. Known image processing software (such as ImageJ) can be used for such determination.
 「炭素繊維が解繊されている」とは、炭素繊維同士が凝集して束になることなく存在していることを意味する。炭素繊維が解繊されているか否かは、例えば、電子顕微鏡像(SEM画像など)による形態観察から判断することができる。 “The carbon fibers are defibrated” means that the carbon fibers exist without aggregating into a bundle. Whether or not the carbon fibers are defibrated can be determined, for example, by morphological observation based on an electron microscope image (SEM image or the like).
 「等方的に分散している」とは、炭素繊維の分布に配向性がない(または配向性が小さい)ことを意味する。樹脂組成物中において等方的に分散している炭素繊維は、当該炭素繊維の長軸方向がランダムな方向を向いている。炭素繊維が等方的に分散しているか否かは、例えば、サンプル中の局所的な熱伝導率の測定によって判断することができる。サンプル中の局所的な熱伝導率の測定には、例えば、繊維配向評価システムTEFOD(株式会社ベテル製)を用いることができる。あるいは、電子顕微鏡像(SEM画像など)による形態観察によって、炭素繊維が等方的に分散しているか否かを判断することもできる。 “Isotropically dispersed” means that the distribution of carbon fibers has no orientation (or orientation is small). In the carbon fiber that isotropically dispersed in the resin composition, the major axis direction of the carbon fiber is oriented in a random direction. Whether or not the carbon fibers are isotropically dispersed can be determined, for example, by measuring the local thermal conductivity in the sample. For local measurement of thermal conductivity in the sample, for example, a fiber orientation evaluation system TEFOD (manufactured by Bethel Co., Ltd.) can be used. Alternatively, whether or not the carbon fibers are isotropically dispersed can be determined by morphological observation using an electron microscope image (SEM image or the like).
 一実施形態において、円板熱流計法(ASTM E1530)によって測定される前記樹脂組成物の熱伝導率は、2W/m・K以上である。樹脂組成物の熱伝導率は、より好ましくは3W/m・K以上であり、特に好ましくは5W/m・K以上である。樹脂組成物の熱伝導率の上限は特に制限されないが、例えば、20W/m・K以下とすることができる。 In one embodiment, the thermal conductivity of the resin composition measured by the disc heat flow meter method (ASTM E1530) is 2 W/m·K or more. The thermal conductivity of the resin composition is more preferably 3 W/m·K or higher, and particularly preferably 5 W/m·K or higher. The upper limit of the thermal conductivity of the resin composition is not particularly limited, but can be, for example, 20 W/m·K or less.
 一実施形態において、レーザーフラッシュ法によって測定される前記絶縁性の熱伝導性フィラーの熱伝導率は、10W/m・K以上である。より好ましくは、絶縁性の熱伝導性フィラーの熱伝導率は20W/m・K以上である。前記絶縁性の熱伝導性フィラーの熱伝導率の上限は特に制限されないが、例えば、10,000W/m・K以下とすることができる。 In one embodiment, the thermal conductivity of the insulating thermally conductive filler measured by the laser flash method is 10 W/m·K or more. More preferably, the heat conductivity of the insulating heat conductive filler is 20 W/m·K or more. The upper limit of the thermal conductivity of the insulating thermally conductive filler is not particularly limited, but may be 10,000 W/m·K or less, for example.
 前記の構成を有する樹脂組成物は、車載用パワーモジュール、モータ周辺部品、電子機器などへの応用を考慮した場合、充分な熱伝導機能を有していると言える。 It can be said that the resin composition having the above structure has a sufficient heat conduction function when it is applied to in-vehicle power modules, motor peripheral parts, electronic devices, etc.
 一実施形態において、前記熱可塑性樹脂を100重量部とすると、前記炭素繊維の含有量は5重量部~70重量部である。より好ましくは、炭素繊維の含有量は、10重量部~45重量部である。 In one embodiment, when the thermoplastic resin is 100 parts by weight, the content of the carbon fiber is 5 parts by weight to 70 parts by weight. More preferably, the content of carbon fiber is 10 to 45 parts by weight.
 炭素繊維の含有量を前記の範囲とすることにより、絶縁性の熱伝導性フィラーのネットワークが形成されやすくなり、充分な熱伝導機能を得ることができる。逆に、炭素繊維の含有量が5重量部未満であると、絶縁性の熱伝導性フィラーのネットワークの形成が不良となる傾向にある。また、炭素繊維の含有量が70重量部超であると、絶縁性の熱伝導性フィラーが炭素繊維表面に散在してしまい、絶縁性の熱伝導性フィラーのネットワークが切断される傾向にある。 By setting the carbon fiber content within the above range, a network of insulating heat conductive fillers is easily formed, and a sufficient heat conductive function can be obtained. On the contrary, when the content of the carbon fibers is less than 5 parts by weight, the formation of the network of the insulating heat conductive filler tends to be poor. When the content of the carbon fibers is more than 70 parts by weight, the insulating heat conductive filler is scattered on the surface of the carbon fibers, and the network of the insulating heat conductive filler tends to be cut.
 絶縁性の熱伝導性フィラーのネットワークとは別の観点に関して、炭素繊維の含有量が5重量部未満であると、樹脂組成物の強度が不足する傾向にある。同様に、炭素繊維の含有量が70重量部超であると、樹脂組成物の製造時に炭素繊維を等方的に分散させにくい傾向にあり、さらに溶融粘度が上昇して良好な成形品が得にくい傾向にある。 Regarding the viewpoint different from the network of the insulating heat conductive filler, if the carbon fiber content is less than 5 parts by weight, the strength of the resin composition tends to be insufficient. Similarly, if the content of the carbon fibers is more than 70 parts by weight, it tends to be difficult to disperse the carbon fibers isotropically during the production of the resin composition, and the melt viscosity is further increased to obtain a good molded product. It tends to be difficult.
 一実施形態において、前記熱可塑性樹脂を100重量部とすると、前記絶縁性の熱伝導性フィラーの含有量は10重量部~200重量部である。より好ましくは、絶縁性の熱伝導性フィラーの含有量は、30重量部~70重量部である。 In one embodiment, when the thermoplastic resin is 100 parts by weight, the content of the insulating heat conductive filler is 10 parts by weight to 200 parts by weight. More preferably, the content of the insulating heat conductive filler is 30 parts by weight to 70 parts by weight.
 絶縁性の熱伝導性フィラーの含有量を前記の範囲とすることにより、絶縁性の熱伝導性フィラーのネットワークが形成されやすくなり、充分な熱伝導機能を得ることができる。逆に、絶縁性の熱伝導性フィラーの含有量が10重量部未満であると、絶縁性の熱伝導性フィラーのネットワークが形成されにくくなり、熱伝導機能に劣る傾向にある。また、絶縁性の熱伝導性フィラーの含有量が200重量部超であると、樹脂組成物の製造時に絶縁性の熱伝導性フィラーが上手く分散せず、樹脂組成物が脆くなる傾向にある。 By setting the content of the insulating heat conductive filler within the above range, a network of the insulating heat conductive filler is easily formed and a sufficient heat transfer function can be obtained. On the contrary, when the content of the insulating heat conductive filler is less than 10 parts by weight, the network of the insulating heat conductive filler is hard to be formed, and the heat transfer function tends to be poor. When the content of the insulating heat conductive filler is more than 200 parts by weight, the insulating heat conductive filler is not well dispersed during the production of the resin composition, and the resin composition tends to be brittle.
 ところで、絶縁性の熱伝導性フィラーの添加量が増えると、樹脂組成物の比重が増加するので、当該樹脂組成物を用いた成形品が重くなる。このような観点から、絶縁性の熱伝導性フィラーの種類に応じて、当該絶縁性の熱伝導性フィラーの含有量を適宜調節することが好ましい。絶縁性の熱伝導性フィラーの含有量の上限は、例えば、80重量部、90重量部、100重量部、110重量部、120重量部、130重量部、140重量部、150重量部、160重量部、170重量部、180重量部、190重量部であってもよい。 By the way, when the amount of the insulating heat conductive filler added increases, the specific gravity of the resin composition increases, so that the molded product using the resin composition becomes heavy. From such a viewpoint, it is preferable to appropriately adjust the content of the insulating heat conductive filler according to the type of the insulating heat conductive filler. The upper limit of the content of the insulating heat conductive filler is, for example, 80 parts by weight, 90 parts by weight, 100 parts by weight, 110 parts by weight, 120 parts by weight, 130 parts by weight, 140 parts by weight, 150 parts by weight, 160 parts by weight. Parts, 170 parts by weight, 180 parts by weight, 190 parts by weight.
 一実施形態において、前記樹脂組成物の密度は、2.68g/cm未満である。より好ましくは、樹脂組成物の密度は2.60g/cm未満である。樹脂組成物の密度の下限は特に制限されないが、例えば、0.90g/cm以上とすることができる。 In one embodiment, the resin composition has a density of less than 2.68 g/cm 3 . More preferably, the density of the resin composition is less than 2.60 g/cm 3 . The lower limit of the density of the resin composition is not particularly limited, but can be, for example, 0.90 g/cm 3 or more.
 前記の構成を有する樹脂組成物は、金属材と比較して軽量である。そのため、金属の代替となる材料として好適である。 The resin composition having the above structure is lighter in weight than a metal material. Therefore, it is suitable as a material that substitutes for metal.
 本発明の一実施形態に係る樹脂組成物を含んでいる樹脂成形部品もまた、本発明の範囲に包含される。このような樹脂成形品は、例えば、車載用パワーモジュール、モータ周辺部品、電子機器(センサ、スイッチ、DCコンバータなど)などを構成する部品として使用される。 A resin molded part including the resin composition according to one embodiment of the present invention is also included in the scope of the present invention. Such a resin molded product is used, for example, as a component constituting an in-vehicle power module, a motor peripheral component, an electronic device (sensor, switch, DC converter, etc.).
 前記各項目で記載した内容は、他の項目においても適宜援用できる。本発明は前述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。したがって、異なる実施形態にそれぞれ開示されている技術的手段を適宜組み合わせて得られる実施形態についても、本発明の技術的範囲に含まれる。 The contents described in each item above can be applied to other items as appropriate. The present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the claims. Therefore, embodiments obtained by appropriately combining the technical means disclosed in the different embodiments are also included in the technical scope of the present invention.
 本明細書中に記載された学術文献および特許文献のすべてが、本明細書中において参考文献として援用される。 All academic and patent documents mentioned in this specification are incorporated herein by reference.
 以下、実施例により本発明をさらに詳細に説明するが、本発明は下記実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
 [物性の測定方法]
 (1)熱伝導率
 円板熱流計法(ASTM E1530)に準拠して計測を行った。測定機器には、DTC-300(TA Instruments)を使用した。
[Measurement method of physical properties]
(1) Thermal conductivity Measurement was performed according to the disk heat flow meter method (ASTM E1530). DTC-300 (TA Instruments) was used as the measuring instrument.
 (2)密度
 JIS K 7161-2に規定される試験片の寸法体積および実測重量に基づいて、密度を算出した。
(2) Density The density was calculated based on the dimensional volume and measured weight of the test piece specified in JIS K 7161-2.
 〔実施例1~5、比較例1、2〕
 絶縁性の熱伝導性フィラーとして、窒化アルミニウム(熱伝導率:約170W/m・K)を用いた。フィラーの含有量を変化させながら、樹脂組成物の物性の変化を検討した。
[Examples 1 to 5, Comparative Examples 1 and 2]
Aluminum nitride (heat conductivity: about 170 W/m·K) was used as the insulating heat conductive filler. The change in the physical properties of the resin composition was examined while changing the content of the filler.
 [実施例1]
 熱可塑性樹脂としてポリフェニレンサルファイド(PPS樹脂)、炭素繊維としてPAN炭素繊維、絶縁性の熱伝導性フィラーとして窒化アルミニウム(粒子状)を用いた。
[Example 1]
Polyphenylene sulfide (PPS resin) was used as the thermoplastic resin, PAN carbon fiber was used as the carbon fiber, and aluminum nitride (particulate) was used as the insulating thermally conductive filler.
 1.予備混練工程
 PPS樹脂100重量部、PAN炭素繊維25重量部、窒化アルミニウム50重量部を予備混練して、マスターバッチを作製した。予備混練には一般的な二軸押出機を使用し、PPS樹脂をホッパーから、PAN炭素繊維および窒化アルミニウムをサイドフィーダーから供給した。混練温度は300℃、スクリューの回転数は200rpmであった。
1. Pre-kneading step 100 parts by weight of PPS resin, 25 parts by weight of PAN carbon fiber and 50 parts by weight of aluminum nitride were pre-kneaded to prepare a masterbatch. A general twin-screw extruder was used for pre-kneading, and PPS resin was supplied from a hopper, and PAN carbon fiber and aluminum nitride were supplied from a side feeder. The kneading temperature was 300° C., and the screw rotation speed was 200 rpm.
 2.本混練工程
 予備混練工程で得られたペレット状のマスターバッチを、内部帰還形スクリューを有する高剪断加工機に投入し、混練した。混練温度は320℃、スクリューの回転数は1,200rpm、滞留時間は60秒間であった。
2. Main Kneading Step The pelletized masterbatch obtained in the preliminary kneading step was put into a high shearing machine having an internal feedback screw and kneaded. The kneading temperature was 320° C., the screw rotation speed was 1,200 rpm, and the residence time was 60 seconds.
 3.射出成形工程
 本混練工程で得られた樹脂組成物のペレットを射出成形して、円板熱流計法(ASTM E1530)に準拠する熱伝導率計測用のサンプルを作製した。作製された樹脂組成物の物性を表1に示す。
3. Injection Molding Step The pellets of the resin composition obtained in this kneading step were injection molded to prepare a sample for measuring thermal conductivity in accordance with the disc heat flow meter method (ASTM E1530). Table 1 shows the physical properties of the resin composition produced.
 [実施例2~5、比較例1、2]
 アルミニウムの配合量を変化させながら、実施例1と同様にして円板熱流計法に準拠する熱伝導率計測用のサンプルを作製した。なお、製造条件は、材料および配合量に応じて適宜調節した。作製された樹脂組成物の物性を表1に示す。
[Examples 2 to 5, Comparative Examples 1 and 2]
Samples for measuring thermal conductivity in accordance with the disc heat flow meter method were prepared in the same manner as in Example 1 while changing the amount of aluminum compounded. The manufacturing conditions were appropriately adjusted depending on the material and the blending amount. Table 1 shows the physical properties of the resin composition produced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (結果)
 実施例1~5で作製された樹脂組成物はいずれも、密度および熱伝導率が好ましい範囲に収まった。特に、実施例1、2、4で作製された樹脂組成物は、これらの物性のバランスが良く、特に好ましい機能を有していると言える。一方、比較例1、2で作製された樹脂組成物は、熱伝導率の値が劣っていた。比較例1の場合は、絶縁性の熱伝導性フィラーの量が少なすぎて、絶縁性の熱伝導性フィラーのネットワークの形成が阻害されたと考えられる。比較例2の場合は、絶縁性の熱伝導性フィラーの量が多過ぎて混練が困難となり、結果として樹脂組成物の物性も悪化したと考えられる。
(result)
All of the resin compositions prepared in Examples 1 to 5 had the density and the thermal conductivity within the preferable ranges. In particular, it can be said that the resin compositions produced in Examples 1, 2, and 4 have a good balance of these physical properties and have a particularly preferable function. On the other hand, the resin compositions prepared in Comparative Examples 1 and 2 were inferior in thermal conductivity. In the case of Comparative Example 1, it is considered that the amount of the insulating thermally conductive filler was too small and the formation of the network of the insulating thermally conductive filler was hindered. In the case of Comparative Example 2, it is considered that the amount of the insulating thermally conductive filler was too large and kneading became difficult, and as a result, the physical properties of the resin composition were deteriorated.
 〔実施例6~10、比較例3、4〕
 絶縁性の熱伝導性フィラーとして、窒化ホウ素(熱伝導率:約60W/m・K)を用いた。フィラーの含有量を変化させながら、樹脂組成物の物性の変化を検討した。樹脂組成物の製造方法は実施例1に準じ、材料および配合量に応じて適宜調節した。作製された樹脂組成物の物性を表2に示す。
[Examples 6 to 10, Comparative Examples 3 and 4]
Boron nitride (heat conductivity: about 60 W/m·K) was used as the insulating heat conductive filler. The change in the physical properties of the resin composition was examined while changing the content of the filler. The method for producing the resin composition was in accordance with Example 1, and was appropriately adjusted according to the material and the amount of the compound. Table 2 shows the physical properties of the resin composition produced.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (結果)
 実施例6~10で作製された樹脂組成物はいずれも、密度および熱伝導率が好ましい範囲に収まった。特に、実施例6、7、9で作製された樹脂組成物は、これらの物性のバランスが良く、特に好ましい機能を有していると言える。一方、比較例3、4で作製された樹脂組成物は、熱伝導率の値が劣っていた。比較例3の場合は、絶縁性の熱伝導性フィラーの量が少なすぎて、絶縁性の熱伝導性フィラーのネットワークの形成が阻害されたと考えられる。比較例4の場合は、絶縁性の熱伝導性フィラーの量が多過ぎて混練が困難となり、結果として樹脂組成物の物性も悪化したと考えられる。
(result)
All of the resin compositions prepared in Examples 6 to 10 had the density and the thermal conductivity within the preferable ranges. In particular, it can be said that the resin compositions produced in Examples 6, 7, and 9 have a good balance of these physical properties and have a particularly preferable function. On the other hand, the resin compositions prepared in Comparative Examples 3 and 4 had poor thermal conductivity values. In the case of Comparative Example 3, it is considered that the amount of the insulating heat conductive filler was too small and the formation of the network of the insulating heat conductive filler was hindered. In the case of Comparative Example 4, it is considered that the amount of the insulating thermally conductive filler was too large and kneading became difficult, resulting in deterioration of the physical properties of the resin composition.
 〔実施例11~15、比較例5、6〕
 絶縁性の熱伝導性フィラーとして、酸化アルミニウム(熱伝導率:約30W/m・K)を用いた。フィラーの含有量を変化させながら、樹脂組成物の物性の変化を検討した。樹脂組成物の製造方法は実施例1に準じ、材料および配合量に応じて適宜調節した。作製された樹脂組成物の物性を表3に示す。
[Examples 11 to 15, Comparative Examples 5 and 6]
Aluminum oxide (heat conductivity: about 30 W/m·K) was used as the insulating heat conductive filler. The change in the physical properties of the resin composition was examined while changing the content of the filler. The method for producing the resin composition was in accordance with Example 1, and was appropriately adjusted according to the material and the amount of the compound. Table 3 shows the physical properties of the resin composition produced.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (結果)
 実施例11~14で作製された樹脂組成物はいずれも、密度および熱伝導率が好ましい範囲に収まった。また、実施例15で作製された樹脂組成物は、熱伝導率が特に好ましい範囲に収まった。特に、実施例11、12、14で作製された樹脂組成物は、これらの物性のバランスが良く、特に好ましい機能を有していると言える。一方、比較例5、6で作製された樹脂組成物は、熱伝導率の値が劣っていた。比較例5の場合は、絶縁性の熱伝導性フィラーの量が少なすぎて、絶縁性の熱伝導性フィラーのネットワークの形成が阻害されたと考えられる。比較例6の場合は、絶縁性の熱伝導性フィラーの量が多過ぎて混練が困難となり、結果として樹脂組成物の物性も悪化したと考えられる。
(result)
All the resin compositions prepared in Examples 11 to 14 had the density and the thermal conductivity within the preferable ranges. Moreover, the thermal conductivity of the resin composition produced in Example 15 was within a particularly preferable range. In particular, it can be said that the resin compositions produced in Examples 11, 12, and 14 have a good balance of these physical properties and have a particularly preferable function. On the other hand, the resin compositions produced in Comparative Examples 5 and 6 were inferior in the value of thermal conductivity. In the case of Comparative Example 5, it is considered that the amount of the insulating heat conductive filler was too small and the formation of the network of the insulating heat conductive filler was hindered. In the case of Comparative Example 6, it is considered that the amount of the insulating heat conductive filler was too large and kneading became difficult, and as a result, the physical properties of the resin composition were deteriorated.
 〔比較例7、8〕
 実施例1の製造方法において、炭素繊維を含めずに樹脂組成物を作製し、比較例7とした。また、実施例1の製造方法において、絶縁性の熱伝導性フィラーを含めずに樹脂組成物を作製し、比較例8とした。作製された樹脂組成物の物性を表4に示す。
[Comparative Examples 7 and 8]
In the production method of Example 1, a resin composition was produced without including carbon fiber, and was set as Comparative Example 7. In addition, in the manufacturing method of Example 1, a resin composition was prepared without including an insulating thermally conductive filler, and was set as Comparative Example 8. Table 4 shows the physical properties of the resin composition produced.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (結果)
 比較例7で作製された樹脂組成物は、足場となる炭素繊維が含まれていないため、絶縁性の熱伝導性フィラーのネットワークが形成されなかった。それゆえ、熱伝導機能が劣っていた。比較例8で作製された樹脂組成物は、絶縁性の熱伝導性フィラーが含まれていないため、通常のCFRTPと同等の熱伝導率しか示さなかった。
(result)
Since the resin composition produced in Comparative Example 7 did not contain carbon fibers as a scaffold, a network of insulating heat conductive filler was not formed. Therefore, the heat transfer function was inferior. The resin composition produced in Comparative Example 8 did not contain an insulating thermally conductive filler, and thus exhibited only a thermal conductivity equivalent to that of ordinary CFRTP.
 〔実施例16~19、比較例9、10〕
 絶縁性の熱伝導性フィラーとして、窒化アルミニウム(熱伝導率:約170W/m・K)を用いた。炭素繊維の含有量を変化させながら、樹脂組成物の物性の変化を検討した。樹脂組成物の製造方法は実施例1に準じ、材料および配合量に応じて適宜調節した。作製された樹脂組成物の物性を表5に示す。
[Examples 16 to 19, Comparative Examples 9 and 10]
Aluminum nitride (heat conductivity: about 170 W/m·K) was used as the insulating heat conductive filler. Changes in the physical properties of the resin composition were examined while changing the content of carbon fibers. The method for producing the resin composition was in accordance with Example 1, and was appropriately adjusted according to the material and the amount of the compound. Table 5 shows the physical properties of the resin composition produced.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (結果)
 実施例16~19で作製された樹脂組成物はいずれも、密度および熱伝導率が好ましい範囲に収まった。特に、実施例16、19で作製された樹脂組成物は、これらの物性のバランスが良く、特に好ましい機能を有していると言える。一方、比較例9、10で作製された樹脂組成物は、熱伝導率の値が劣っていた。比較例9の場合は、炭素繊維の量が少なすぎて、絶縁性の熱伝導性フィラーのネットワークの形成が阻害されたと考えられる。比較例10の場合は、炭素繊維の量が多過ぎて混練が困難となり、結果として樹脂組成物の物性も悪化したと考えられる。
(result)
All of the resin compositions prepared in Examples 16 to 19 had the density and the thermal conductivity within the preferable ranges. In particular, it can be said that the resin compositions produced in Examples 16 and 19 have a good balance of these physical properties and have a particularly preferable function. On the other hand, the resin compositions prepared in Comparative Examples 9 and 10 had poor thermal conductivity values. In the case of Comparative Example 9, it is considered that the amount of the carbon fibers was too small and the formation of the network of the insulating heat conductive filler was inhibited. In the case of Comparative Example 10, it is considered that the amount of carbon fibers was too large and kneading became difficult, and as a result, the physical properties of the resin composition deteriorated.
 本発明の一実施形態に係る樹脂組成物は、例えば、自動車部品に利用することができる。 The resin composition according to one embodiment of the present invention can be used for, for example, automobile parts.
  1 炭素繊維
  2 絶縁性の熱伝導性フィラー
  3 熱可塑性樹脂
 10 樹脂組成物
1 Carbon Fiber 2 Insulating Thermally Conductive Filler 3 Thermoplastic Resin 10 Resin Composition

Claims (8)

  1.  熱可塑性樹脂、炭素繊維および絶縁性の熱伝導性フィラーを含んでいる樹脂組成物であって、
     前記絶縁性の熱伝導性フィラーは、前記熱可塑性樹脂中において網目状に分布している、樹脂組成物。
    A resin composition comprising a thermoplastic resin, carbon fiber and an insulating thermally conductive filler,
    The resin composition in which the insulating thermally conductive filler is distributed in a mesh in the thermoplastic resin.
  2.  熱可塑性樹脂、炭素繊維および絶縁性の熱伝導性フィラーを含んでいる樹脂組成物であって、
     前記炭素繊維は、前記熱可塑性樹脂中において解繊された状態で等方的に分散しており、
     前記炭素繊維の近傍に、前記絶縁性の熱伝導性フィラーが凝集している、樹脂組成物。
    A resin composition comprising a thermoplastic resin, carbon fiber and an insulating thermally conductive filler,
    The carbon fibers are isotropically dispersed in the thermoplastic resin in a defibrated state,
    A resin composition in which the insulating thermally conductive filler is aggregated in the vicinity of the carbon fiber.
  3.  円板熱流計法によって測定される熱伝導率が2W/m・K以上である、請求項1または2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, which has a thermal conductivity of 2 W/mK or more as measured by a disc heat flow meter method.
  4.  前記絶縁性の熱伝導性フィラーは、レーザーフラッシュ法によって測定される熱伝導率が10W/m・K以上である、請求項1~3のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the insulating thermally conductive filler has a thermal conductivity of 10 W/mK or more as measured by a laser flash method.
  5.  前記熱可塑性樹脂を100重量部とすると、前記炭素繊維の含有量は5重量部~70重量部である、請求項1~4のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the content of the carbon fiber is 5 to 70 parts by weight, when the thermoplastic resin is 100 parts by weight.
  6.  前記熱可塑性樹脂を100重量部とすると、前記絶縁性の熱伝導性フィラーの含有量は10重量部~200重量部である、請求項1~5のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, wherein, when 100 parts by weight of the thermoplastic resin is used, the content of the insulating heat conductive filler is 10 parts by weight to 200 parts by weight.
  7.  密度が2.68g/cm未満である、請求項1~6のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 6, which has a density of less than 2.68 g/cm 3 .
  8.  請求項1~7のいずれか1項に記載の樹脂組成物を含んでいる、樹脂成形部品。 A resin molded part containing the resin composition according to any one of claims 1 to 7.
PCT/JP2019/009528 2018-12-18 2019-03-08 Resin composition and resin molded component WO2020129270A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-236616 2018-12-18
JP2018236616A JP2020097685A (en) 2018-12-18 2018-12-18 Resin composition and resin molded article

Publications (1)

Publication Number Publication Date
WO2020129270A1 true WO2020129270A1 (en) 2020-06-25

Family

ID=71100751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009528 WO2020129270A1 (en) 2018-12-18 2019-03-08 Resin composition and resin molded component

Country Status (2)

Country Link
JP (1) JP2020097685A (en)
WO (1) WO2020129270A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846508A (en) * 1981-09-14 1983-03-18 日本石油化学株式会社 Conductive material and method of producing same
JPH09234734A (en) * 1995-12-28 1997-09-09 Toray Ind Inc Carbon fiber reinforced thermoplastic resin pellet and its production
JP2008166641A (en) * 2007-01-04 2008-07-17 Oita Univ Expanded carbon fiber composite material for electromagnetic shield with thermal conductivity and electric conductivity, and manufacturing method thereof
JP2011216437A (en) * 2010-04-02 2011-10-27 Idemitsu Kosan Co Ltd Casing for led-lighting system, and the led-lighting system
JP2015183100A (en) * 2014-03-25 2015-10-22 トヨタ自動車株式会社 Method of manufacturing heat conductive material
JP2016190922A (en) * 2015-03-31 2016-11-10 東レ株式会社 Carbon fiber-reinforced thermoplastic resin molding and carbon fiber-reinforced thermoplastic resin molding material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846508A (en) * 1981-09-14 1983-03-18 日本石油化学株式会社 Conductive material and method of producing same
JPH09234734A (en) * 1995-12-28 1997-09-09 Toray Ind Inc Carbon fiber reinforced thermoplastic resin pellet and its production
JP2008166641A (en) * 2007-01-04 2008-07-17 Oita Univ Expanded carbon fiber composite material for electromagnetic shield with thermal conductivity and electric conductivity, and manufacturing method thereof
JP2011216437A (en) * 2010-04-02 2011-10-27 Idemitsu Kosan Co Ltd Casing for led-lighting system, and the led-lighting system
JP2015183100A (en) * 2014-03-25 2015-10-22 トヨタ自動車株式会社 Method of manufacturing heat conductive material
JP2016190922A (en) * 2015-03-31 2016-11-10 東レ株式会社 Carbon fiber-reinforced thermoplastic resin molding and carbon fiber-reinforced thermoplastic resin molding material

Also Published As

Publication number Publication date
JP2020097685A (en) 2020-06-25

Similar Documents

Publication Publication Date Title
Krause et al. Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites
JP5221876B2 (en) Conductive masterbatch and resin composition containing the same
US8048341B2 (en) Nanocarbon-reinforced polymer composite and method of making
CN104327288A (en) Heat-processable thermally conductive polymer composition
CN107099077B (en) Method for preparing conductive resin composition
CN104981503A (en) Thermally conductive plastic compositions, extrusion apparatus and methods for making thermally conductive plastics
JP2007204674A (en) Composition for blow-molding
KR20120095530A (en) Polymer/conductive filler composite with high electrical conductivity and the preparation method thereof
WO2013111862A1 (en) Method for producing master batch for conductive resin, and master batch
CN104136504A (en) Production method for conductive resin composition, and conductive resin composition
JP2006097006A (en) Method for producing electrically conductive resin composition and application thereof
JP2009167270A (en) Dry mixture and method of producing the same
Doagou-Rad et al. Influence of processing conditions on the mechanical behavior of MWCNT reinforced thermoplastic nanocomposites
JP2015105380A (en) Polyester composition
TW201924913A (en) Electrically conductive resin composition and method of preparing the same
JP3252190B2 (en) Resin composition for sliding members
JP2012087199A (en) Composite filler, method for production thereof, and composite filler-blended resin composition
WO2020129270A1 (en) Resin composition and resin molded component
JP4107575B2 (en) Method for producing conductive resin composition and method for producing resin molded body
JP2016017086A (en) Electrically insulating thermally conductive resin composition and method for producing the same
JP2007016221A (en) Resin material for molding and molded product
WO2020129269A1 (en) Resin composition and resin molded article
KR20140080115A (en) Electrically conductive thermoplastic resin composition with excellent thermal conductivity and reduced anisotropy in thermal conductivity
Ali et al. Toughness of HDPE/CaCO3 microcomposites prepared from masterbatch by melt blend method
JP5786817B2 (en) Thermally conductive resin composition for extrusion molding and thermal conductive resin extrusion molded article using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19900095

Country of ref document: EP

Kind code of ref document: A1