JP4107575B2 - Method for producing conductive resin composition and method for producing resin molded body - Google Patents

Method for producing conductive resin composition and method for producing resin molded body Download PDF

Info

Publication number
JP4107575B2
JP4107575B2 JP2002311481A JP2002311481A JP4107575B2 JP 4107575 B2 JP4107575 B2 JP 4107575B2 JP 2002311481 A JP2002311481 A JP 2002311481A JP 2002311481 A JP2002311481 A JP 2002311481A JP 4107575 B2 JP4107575 B2 JP 4107575B2
Authority
JP
Japan
Prior art keywords
conductive particles
resin
conductive
resin composition
elastomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002311481A
Other languages
Japanese (ja)
Other versions
JP2004146258A (en
Inventor
徹男 三谷
好次 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002311481A priority Critical patent/JP4107575B2/en
Publication of JP2004146258A publication Critical patent/JP2004146258A/en
Application granted granted Critical
Publication of JP4107575B2 publication Critical patent/JP4107575B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、リサイクルが可能であり、射出成形可能な高い流動性を維持しつつ、優れた導電性及び耐久性を有する導電性樹脂組成物及びこれを成形してなる樹脂成形体に関する。
【0002】
【従来の技術】
固体高分子型燃料電池(PEFC)は、イオン交換膜、白金触媒担持のガス拡散電極及びセパレータからなる単位セルで構成されており、中でもセパレータは、単位セルに供給される水素及び酸素(空気)の分離境界膜の機能と集電の機能を果たす重要な構成部材である。
セパレータには、導電性、耐久性及び機械的強度などが要求される。従来、この種のセパレータは、不飽和ポリエステル等の熱硬化性樹脂に炭素粉末を添加した混練物を成形する方法などにより製造されている。しかし、前記方法で得られるセパレータは、十分な導電性及び耐久性を有するものではなく、再溶融できないためにリサイクル性に乏しいという欠点があった。また、殆どのセパレータは、圧縮成形して製造されるために生産性の向上が困難であった。
【0003】
そこで、ポリフェニレンスルフィド系樹脂等の熱可塑性樹脂に炭素粉末を添加し、溶融混練した混練物を成形したセパレータが提案されている(例えば、特許文献1参照)。前記セパレータは、炭素粉末を多量に添加することにより導電性は改善されるものの、流動性が低いために射出成形することができない。
また、熱可塑性エラストマーに炭素粉末を添加し、溶融混練した混練物を射出成形したセパレータが提案されている(例えば特許文献2参照)。しかし、前記セパレータは、導電性及び流動性は優れているものの、十分な耐久性を得ることができない。また、セパレータ自体の弾性が低いためにクリープ変形が発生し、ガス漏れが生じる恐れがある。
【0004】
【特許文献1】
特開2001−126744号公報(第4〜10頁)
【特許文献2】
特開2001−313045号公報(第3〜8頁)
【0005】
【発明が解決しようとする課題】
従って、本発明の目的は、リサイクルが可能であり、射出成形可能な高い流動性を維持しつつ、優れた導電性及び耐久性を有する導電性樹脂組成物及びこれを成形してなる燃料電池用セパレータに好適な樹脂成形体を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、鋭意研究を重ねた結果、上記の課題を解決することができた。
即ち、本発明は、導電性粒子及び繊維材料を配合した熱可塑性樹脂40〜60体積%と、導電性粒子を配合した熱可塑性エラストマー40〜60体積%とを混練した導電性樹脂組成物である。
【0007】
【発明の実施の形態】
実施の形態1.
本発明の実施の形態による導電性樹脂組成物は、導電性粒子及び繊維材料を配合した熱可塑性樹脂と、導電性粒子を配合した熱可塑性エラストマーとを特定の割合で混練した導電性樹脂組成物である。以下に、実施の形態1を説明する。
【0008】
本実施の形態では、導電性粒子として、黒鉛、カーボンブラック、ケッチェンブラック、アセチレンブラック、窒化チタンや炭化タングステン等の無機フィラーなどが挙げられ、これらを単独で又は二種以上を組み合わせて用いることができる。これらの中でも、特に黒鉛が好ましい。黒鉛は、天然に産出したものであっても人工的に製造したものであってもよく、球状、針状などの如何なる形状であってもよい。無機フィラーを用いる場合には、カップリング剤によって処理することが望ましく、カップリング剤処理は溶融混練前であっても、溶融混練と同時であってもよい。カップリング剤としては、例えば、アルミニウム系カップリング剤が挙げられる。
導電性粒子の平均粒子径は好ましくは100μm以下であり、この範囲内であれば、成形したセパレータの表面粗度を小さくすることができる。また、平均粒子径の異なる二種以上の導電性粒子の混合物を用いることにより、組成物の流動性を向上させることができる。平均粒子径の異なる二種以上の導電性粒子を用いる場合には、最小の平均粒子径を有する導電性粒子とそれ以外の導電性粒子との平均粒子径比は好ましくは2〜10、より好ましくは4〜7であり、この範囲内であれば、組成物の流動性をより向上させることができる。
【0009】
熱可塑性エラストマーへの導電性粒子の配合量は、好ましくは40〜70体積%、より好ましくは55〜65体積%である。この範囲内であれば、射出成形可能な流動性を維持しつつ、導電性を向上させることができる。
【0010】
本実施の形態では、繊維材料として、カーボン繊維、セラミック繊維、ガラス繊維、鉄やアルミ等の金属繊維などが挙げられ、これらを単独で又は二種以上を組み合わせて用いることができる。これらの中でも、特にカーボン繊維が好ましく、例えば、セルロース系カーボン繊維、PAN系カーボン繊維、ピッチ系カーボン繊維が挙げられる。また、上記の繊維材料の他に、カーボンウィスカやカーボンナノチューブなどを併用することもできる。
繊維材料の平均繊維径は、0.005〜20μmが好ましく、アスペクト比は10以上が好ましい。
【0011】
熱可塑性樹脂への導電性粒子及び繊維材料の配合量は、好ましくは30〜50体積%、より好ましくは40〜50体積%であり、導電性粒子と繊維材料との割合は、75/100〜150/100(体積比)が好ましい。この範囲内であれば、高い導電性及び流動性を維持しつつ、耐久性を向上させることができる。
【0012】
熱可塑性樹脂としては、80〜90℃の熱水環境下にさらされても劣化し難いもの、即ち、分子中に加水分解し易いエステル結合の少ないものを用いることが望ましい。好ましい熱可塑性樹脂としては、ビニル系熱可塑性樹脂、ポリエーテル系熱可塑性樹脂及びこれらの混合物を挙げることができる。ビニル系熱可塑性樹脂としては、例えば、ポリプロピレン樹脂、ポリフッ化ビニリデン樹脂などが挙げられる。ポリエーテル系熱可塑性樹脂としては、例えば、変性ポリフェニレンエーテル樹脂などが挙げられる。
前記の好ましい熱可塑性樹脂を用いることにより、流動性及び導電性を維持しながら、優れた耐久性を導電性樹脂組成物に付与することができる。
熱可塑性エラストマーとしては、80〜90℃の熱水環境下にさらされても劣化し難いもの、即ち、分子中に加水分解し易いエステル結合の少ないものを用いることが望ましい。好ましい熱可塑性エラストマーとしては、ビニル系エラストマー、ポリオレフィン系エラストマー、ポリスチレン系エラストマー、ポリ塩化ビニル系エラストマー及びこれらの混合物を挙げることができる。
前記の好ましい熱可塑性エラストマーを用いることにより、耐久性を維持しながら、優れた流動性及び導電性を導電性樹脂組成物に付与することができる。
【0013】
上記のような導電性粒子及び繊維材料を配合した熱可塑性樹脂と、導電性粒子を配合した熱可塑性エラストマーとの混練割合は、導電性粒子及び繊維材料を配合した熱可塑性樹脂40〜60体積%、及び導電性粒子を配合した熱可塑性エラストマー40〜60体積%が適当である。この範囲内であれば、前記熱可塑性樹脂及び熱可塑性エラストマーが三次元網目状に分散し、射出成形可能な高い流動性を維持しつつ、優れた導電性と耐久性を達成することができる。
【0014】
更に、本実施の形態では、上記の組成物の他に、必要に応じて、カップリング剤、離型剤、滑剤、可塑剤、安定剤などを配合してもよい。
【0015】
次に、本実施の形態による導電性樹脂組成物の製造方法を説明する。本発明の導電性樹脂組成物を製造する方法は、導電性粒子と繊維材料とを配合した熱可塑性樹脂及び導電性粒子を配合した熱可塑性エラストマーそれぞれを、ミキシングロール、バンバリーミキサ、押出型混練機、高速二軸連続混練機等の混練装置により予め溶融混練した後、これらを併せて前記混練装置により更に溶融混練する方法などが挙げられる。前記方法により調製する場合、使用する樹脂やエラストマーの種類により異なるが、溶融混練時間は、2分〜20分が好ましい。
【0016】
実施の形態2.
上記実施の形態1において調製された導電性樹脂組成物を成形してなる樹脂成形体について、以下に説明する。上記導電性樹脂組成物を成形してなる樹脂成形体は、例えば、燃料電池用セパレータ、特に固体高分子型燃料電池用セパレータとして用いることができる。
【0017】
本実施の形態では、樹脂成形体は、生産効率の観点から射出成形により成形することが好ましいが、圧縮成形、トランスファ成形等により成形してもよい。使用する樹脂やエラストマーの種類、配合等により異なるが、射出成形の条件としては、最大射出圧力120〜180MPa、射出時間5〜20秒、シリンダ温度200〜300℃、金型温度50〜100℃、冷却時間5〜80秒が好ましい。
【0018】
【実施例】
以下に実施例を示し、本発明をさらに詳しく説明するが、本発明は実施例に制限されるものではない。
【0019】
表1(実施例1〜6及び比較例1〜3)に示す配合割合で、ニーダーヘッドを設置したラボプラストミル混練機(東洋精機製)により230〜290℃で溶融混練し、導電性粒子と繊維材料とを配合した熱可塑性樹脂及び導電性粒子を配合した熱可塑性エラストマーをそれぞれ調製した。ただし、実施例6においては、熱可塑性エラストマーを溶融混練する際、1重量%のアルミニウム系カップリング剤(味の素株式会社、プレンアクトAL−M)を添加した。
次いで、得られた熱可塑性樹脂配合物と熱可塑性エラストマー配合物とを、表1に示す混練割合で、前記ラボプラストミル(東洋精機製)により230〜290℃で溶融混練し、導電性樹脂組成物を得た。
得られた導電性樹脂組成物を射出成形機により、大きさ100mm×100mm、厚さ2mmの板状樹脂成形体に成形した。得られた樹脂成形体を用いて、以下に示す方法により射出成形性、導電性及び耐久性の評価を行った。結果を表1に示す。
【0020】
<射出成形性>
成形した樹脂成形体を目視により以下の基準で評価した。
○:良好
×:不良
【0021】
<導電性>
樹脂成形体の表面をサンドペーパー(#1000)で磨き、抵抗率計(三菱化学製、LeostaHP MCP−T410)を用いて、4探針法で樹脂成形体の体積抵抗率を測定した。
【0022】
<耐久性>
樹脂成形体を90℃の熱水に2000時間浸漬した。浸漬前後の樹脂成形体の重量及び体積抵抗率を測定し、重量変化及び体積抵抗率変化を算出した。以下の基準により樹脂成形体の耐久性を評価した。
(重量変化)
○:1%未満である
×:1%以上である
(体積抵抗率変化)
○:10%未満である
×:10%以上である
【0023】
【表1】

Figure 0004107575
PP:ポリプロピレン樹脂(出光石油化学株式会社製、J−6083HP)
PVDF:ポリフッ化ビニリデン樹脂(呉羽化学工業株式会社製、KFポリマー)
mPPE:変成ポリフェニレンエーテル樹脂(三菱エンジニアリングプラスチック株式会社製、AH40)
PBT:ポリブチレンテレフタレート樹脂(三菱エンジニアリングプラスチック株式会社製、5010R7)
オレフィン系:オレフィン系エラストマー(三井化学株式会社、ミラストマー5030)
スチレン系:スチレン系エラストマー(三菱化学株式会社製、ラバロンSJ9400B)
大:平均粒子径10.5μmの黒鉛粉末(昭和電工株式会社製、UFG−30、最大粒子径約30μm)
小:平均粒子径3μmの黒鉛粉末(昭和電工株式会社製、UFG−5、最大粒子径約5μm)
WC:平均粒子径1.2μmの炭化タングステン(日本新金属株式会社製、WC−10)
カーボン繊維:ピッチ系カーボン繊維(株式会社ドナック製、ドナカーボS、繊維径18μm、平均アスペクト比27)
【0024】
表1から明らかなように、本発明の導電性樹脂組成物は、良好な射出成形性を維持しつつ、これを成形してなる成形体は、28〜58mΩ・cmという高い導電性を示し、また、燃料電池用セパレータに要求される90℃の熱水環境において優れた耐久性を示した。
【0025】
【発明の効果】
以上説明したように、本発明によれば、導電性粒子及び繊維材料を配合した熱可塑性樹脂と、導電性粒子を配合した熱可塑性エラストマーとを特定の割合で混練した導電性樹脂組成物により、射出成形可能な高い流動性を維持しつつ、体積抵抗率60mΩ・cm以下という優れた導電性を達成することができ、耐久性が向上した。また、熱硬化性樹脂を使用せずに、熱可塑性樹脂及び熱可塑性エラストマーを用いたので、リサイクルが可能であり、環境問題の観点からも大変優れている。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive resin composition having excellent conductivity and durability while maintaining high fluidity that can be recycled and injection molded, and a resin molded body formed by molding the same.
[0002]
[Prior art]
A polymer electrolyte fuel cell (PEFC) is composed of a unit cell comprising an ion exchange membrane, a platinum catalyst-supported gas diffusion electrode, and a separator. Among them, the separator is supplied with hydrogen and oxygen (air) supplied to the unit cell. It is an important component that fulfills the functions of the separation boundary film and the current collecting function.
The separator is required to have conductivity, durability, mechanical strength, and the like. Conventionally, this type of separator is manufactured by a method of molding a kneaded material obtained by adding carbon powder to a thermosetting resin such as unsaturated polyester. However, the separator obtained by the above method does not have sufficient conductivity and durability, and has a drawback of poor recyclability because it cannot be remelted. In addition, since most separators are manufactured by compression molding, it is difficult to improve productivity.
[0003]
Thus, a separator has been proposed in which a carbon powder is added to a thermoplastic resin such as a polyphenylene sulfide-based resin, and a kneaded product obtained by melt-kneading is formed (see, for example, Patent Document 1). Although the conductivity is improved by adding a large amount of carbon powder, the separator cannot be injection-molded due to low fluidity.
In addition, a separator has been proposed in which a carbon powder is added to a thermoplastic elastomer and a kneaded product obtained by melt-kneading is injection molded (see, for example, Patent Document 2). However, although the separator is excellent in conductivity and fluidity, sufficient durability cannot be obtained. Further, since the elasticity of the separator itself is low, creep deformation may occur and gas leakage may occur.
[0004]
[Patent Document 1]
JP 2001-126744 A (pages 4 to 10)
[Patent Document 2]
JP 2001-313045 (pages 3-8)
[0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is a conductive resin composition having excellent conductivity and durability while maintaining high fluidity that can be recycled and injection-molded, and a fuel cell formed by molding the same. It is providing the resin molding suitable for a separator.
[0006]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have been able to solve the above problems.
That is, the present invention is a conductive resin composition obtained by kneading 40 to 60% by volume of a thermoplastic resin containing conductive particles and a fiber material and 40 to 60% by volume of a thermoplastic elastomer containing conductive particles. .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
The conductive resin composition according to the embodiment of the present invention is a conductive resin composition in which a thermoplastic resin containing conductive particles and a fiber material and a thermoplastic elastomer containing conductive particles are kneaded at a specific ratio. It is. The first embodiment will be described below.
[0008]
In this embodiment, examples of the conductive particles include graphite, carbon black, ketjen black, acetylene black, inorganic fillers such as titanium nitride and tungsten carbide, and these may be used alone or in combination of two or more. Can do. Among these, graphite is particularly preferable. Graphite may be naturally produced or artificially produced, and may have any shape such as a spherical shape or a needle shape. When an inorganic filler is used, it is desirable to treat with a coupling agent, and the coupling agent treatment may be before melt kneading or at the same time as melt kneading. Examples of the coupling agent include an aluminum-based coupling agent.
The average particle diameter of the conductive particles is preferably 100 μm or less, and within this range, the surface roughness of the molded separator can be reduced. Moreover, the fluidity | liquidity of a composition can be improved by using the mixture of 2 or more types of electroconductive particle from which average particle diameters differ. When two or more kinds of conductive particles having different average particle sizes are used, the average particle size ratio between the conductive particles having the minimum average particle size and the other conductive particles is preferably 2 to 10, more preferably Is 4-7, and if it exists in this range, the fluidity | liquidity of a composition can be improved more.
[0009]
The blending amount of the conductive particles in the thermoplastic elastomer is preferably 40 to 70% by volume, more preferably 55 to 65% by volume. Within this range, the conductivity can be improved while maintaining fluidity capable of injection molding.
[0010]
In the present embodiment, examples of the fiber material include carbon fibers, ceramic fibers, glass fibers, metal fibers such as iron and aluminum, and these can be used alone or in combination of two or more. Among these, carbon fibers are particularly preferable, and examples thereof include cellulose-based carbon fibers, PAN-based carbon fibers, and pitch-based carbon fibers. In addition to the above fiber material, carbon whisker, carbon nanotube, or the like can be used in combination.
The average fiber diameter of the fiber material is preferably 0.005 to 20 μm, and the aspect ratio is preferably 10 or more.
[0011]
The blending amount of the conductive particles and the fiber material to the thermoplastic resin is preferably 30 to 50% by volume, more preferably 40 to 50% by volume, and the ratio of the conductive particles to the fiber material is 75/100 to 150/100 (volume ratio) is preferable. Within this range, durability can be improved while maintaining high conductivity and fluidity.
[0012]
As the thermoplastic resin, it is desirable to use a thermoplastic resin that does not easily deteriorate even when exposed to a hot water environment of 80 to 90 ° C., that is, a resin that has less ester bonds that are easily hydrolyzed in the molecule. Preferred thermoplastic resins include vinyl-based thermoplastic resins, polyether-based thermoplastic resins, and mixtures thereof. Examples of the vinyl-based thermoplastic resin include polypropylene resin and polyvinylidene fluoride resin. Examples of the polyether-based thermoplastic resin include a modified polyphenylene ether resin.
By using the preferable thermoplastic resin, excellent durability can be imparted to the conductive resin composition while maintaining fluidity and conductivity.
As the thermoplastic elastomer, it is desirable to use a thermoplastic elastomer that does not easily deteriorate even when exposed to a hot water environment of 80 to 90 ° C., that is, has a low ester bond that is easily hydrolyzed in the molecule. Preferred thermoplastic elastomers include vinyl elastomers, polyolefin elastomers, polystyrene elastomers, polyvinyl chloride elastomers and mixtures thereof.
By using the preferable thermoplastic elastomer, excellent fluidity and conductivity can be imparted to the conductive resin composition while maintaining durability.
[0013]
The kneading ratio of the thermoplastic resin containing the conductive particles and the fiber material as described above and the thermoplastic elastomer containing the conductive particles is 40 to 60% by volume of the thermoplastic resin containing the conductive particles and the fiber material. And 40 to 60% by volume of a thermoplastic elastomer containing conductive particles is suitable. Within this range, the thermoplastic resin and the thermoplastic elastomer are dispersed in a three-dimensional network, and excellent conductivity and durability can be achieved while maintaining high fluidity capable of injection molding.
[0014]
Furthermore, in this embodiment, in addition to the above composition, a coupling agent, a release agent, a lubricant, a plasticizer, a stabilizer, and the like may be blended as necessary.
[0015]
Next, the manufacturing method of the conductive resin composition by this Embodiment is demonstrated. The method for producing the conductive resin composition of the present invention comprises mixing a thermoplastic resin containing conductive particles and a fiber material and a thermoplastic elastomer containing conductive particles into a mixing roll, a Banbury mixer, and an extrusion kneader. And a method of melt-kneading in advance using a kneading apparatus such as a high-speed biaxial continuous kneader and then further melt-kneading the above-described kneading apparatus. When preparing by the said method, although it changes with kinds of resin and elastomer to be used, melt-kneading time has preferable 2 minutes-20 minutes.
[0016]
Embodiment 2. FIG.
The resin molded body formed by molding the conductive resin composition prepared in Embodiment 1 will be described below. The resin molded body formed by molding the conductive resin composition can be used, for example, as a fuel cell separator, particularly as a polymer electrolyte fuel cell separator.
[0017]
In the present embodiment, the resin molded body is preferably molded by injection molding from the viewpoint of production efficiency, but may be molded by compression molding, transfer molding, or the like. Depending on the type of resin and elastomer used, blending, etc., the injection molding conditions are: maximum injection pressure 120-180 MPa, injection time 5-20 seconds, cylinder temperature 200-300 ° C., mold temperature 50-100 ° C., A cooling time of 5 to 80 seconds is preferred.
[0018]
【Example】
The present invention will be described in more detail with reference to examples below, but the present invention is not limited to the examples.
[0019]
The mixture ratio shown in Table 1 (Examples 1 to 6 and Comparative Examples 1 to 3) was melt kneaded at 230 to 290 ° C. with a lab plast mill kneader (manufactured by Toyo Seiki Co., Ltd.) equipped with a kneader head, and conductive particles and A thermoplastic resin blended with a fiber material and a thermoplastic elastomer blended with conductive particles were prepared. However, in Example 6, when the thermoplastic elastomer was melt-kneaded, 1% by weight of an aluminum coupling agent (Ajinomoto Co., Inc., Prenact AL-M) was added.
Next, the obtained thermoplastic resin blend and thermoplastic elastomer blend were melt-kneaded at 230-290 ° C. by the Laboplast mill (manufactured by Toyo Seiki Co., Ltd.) at the kneading ratio shown in Table 1, and the conductive resin composition I got a thing.
The obtained conductive resin composition was molded into a plate-shaped resin molded body having a size of 100 mm × 100 mm and a thickness of 2 mm by an injection molding machine. Using the obtained resin molded body, the injection moldability, conductivity and durability were evaluated by the following methods. The results are shown in Table 1.
[0020]
<Injection moldability>
The molded resin molding was visually evaluated according to the following criteria.
○: Good ×: Bad [0021]
<Conductivity>
The surface of the resin molding was polished with sandpaper (# 1000), and the volume resistivity of the resin molding was measured by a four-probe method using a resistivity meter (Leosta HP MCP-T410, manufactured by Mitsubishi Chemical).
[0022]
<Durability>
The resin molding was immersed in hot water at 90 ° C. for 2000 hours. The weight and volume resistivity of the resin molded body before and after immersion were measured, and the change in weight and the change in volume resistivity were calculated. The durability of the resin molding was evaluated according to the following criteria.
(Weight change)
○: Less than 1% ×: More than 1% (volume resistivity change)
○: Less than 10% ×: 10% or more
[Table 1]
Figure 0004107575
PP: Polypropylene resin (made by Idemitsu Petrochemical Co., Ltd., J-6083HP)
PVDF: polyvinylidene fluoride resin (manufactured by Kureha Chemical Co., Ltd., KF polymer)
mPPE: Modified polyphenylene ether resin (AH40, manufactured by Mitsubishi Engineering Plastics)
PBT: Polybutylene terephthalate resin (Mitsubishi Engineering Plastics, 5010R7)
Olefin-based: Olefin-based elastomer (Mitsui Chemicals, Miralastomer 5030)
Styrene: Styrene elastomer (Mitsubishi Chemical Corporation, Lavalon SJ9400B)
Large: Graphite powder with an average particle size of 10.5 μm (manufactured by Showa Denko KK, UFG-30, maximum particle size of about 30 μm)
Small: Graphite powder with an average particle size of 3 μm (manufactured by Showa Denko KK, UFG-5, maximum particle size of about 5 μm)
WC: Tungsten carbide having an average particle size of 1.2 μm (manufactured by Nippon Shin Metal Co., Ltd., WC-10)
Carbon fiber: Pitch-based carbon fiber (Donac Co., Ltd., Dona Carbo S, fiber diameter 18 μm, average aspect ratio 27)
[0024]
As is apparent from Table 1, the conductive resin composition of the present invention maintains a good injection moldability, and a molded product obtained by molding this exhibits a high conductivity of 28 to 58 mΩ · cm, Moreover, the durability which was excellent in the 90 degreeC hot water environment requested | required of the separator for fuel cells was shown.
[0025]
【The invention's effect】
As described above, according to the present invention, the conductive resin composition obtained by kneading the thermoplastic resin blended with the conductive particles and the fiber material and the thermoplastic elastomer blended with the conductive particles at a specific ratio, While maintaining high fluidity capable of injection molding, excellent electrical conductivity of volume resistivity of 60 mΩ · cm or less could be achieved, and durability was improved. In addition, since a thermoplastic resin and a thermoplastic elastomer are used without using a thermosetting resin, they can be recycled and are excellent from the viewpoint of environmental problems.

Claims (5)

ビニル系熱可塑性樹脂、ポリエーテル系熱可塑性樹脂又はこれらの混合物である熱可塑性樹脂に導電性粒子及び繊維材料を配合したもの40〜60体積%と、ビニル系エラストマー、ポリオレフィン系エラストマー、ポリスチレン系エラストマー、ポリ塩化ビニル系エラストマー又はこれらの混合物である熱可塑性エラストマーに導電性粒子を配合したもの40〜60体積%とを混練することを特徴とする導電性樹脂組成物の製造方法 Vinyl-based thermoplastic resin, polyether-based thermoplastic resin, or a 40 to 60% by volume obtained by blending a thermoplastic resin to conductive particles and fibrous material is a mixture thereof, vinyl elastomers, polyolefin elastomers, polystyrene-based elastomer A method for producing a conductive resin composition comprising kneading 40 to 60% by volume of a conductive elastomer blended with a thermoplastic elastomer which is a polyvinyl chloride elastomer or a mixture thereof . 前記熱可塑性樹脂には、30〜50体積%の導電性粒子及び繊維材料を配合し、熱可塑性エラストマーには、40〜70体積%の導電性粒子を配合することを特徴とする請求項1に記載の導電性樹脂組成物の製造方法The thermoplastic resin, blended with 30 to 50 volume% of conductive particles and fiber material, the thermoplastic elastomer to claim 1, characterized in that blending 40 to 70 volume% of conductive particles The manufacturing method of the electroconductive resin composition of description. 前記導電性粒子が、平均粒子径の異なる二種以上の導電性粒子の混合物であることを特徴とする請求項1に記載の導電性樹脂組成物の製造方法The method for producing a conductive resin composition according to claim 1, wherein the conductive particles are a mixture of two or more types of conductive particles having different average particle diameters. 最小の平均粒子径を有する導電性粒子とそれ以外の導電性粒子との平均粒子径比が、2〜10であることを特徴とする請求項に記載の導電性樹脂組成物の製造方法The method for producing a conductive resin composition according to claim 3 , wherein an average particle size ratio between the conductive particles having the minimum average particle size and the other conductive particles is 2 to 10. ビニル系熱可塑性樹脂、ポリエーテル系熱可塑性樹脂又はこれらの混合物である熱可塑性樹脂に導電性粒子及び繊維材料を配合したもの40〜60体積%と、ビニル系エラストマー、ポリオレフィン系エラストマー、ポリスチレン系エラストマー、ポリ塩化ビニル系エラストマー又はこれらの混合物である熱可塑性エラストマーに導電性粒子を配合したもの40〜60体積%とを混練した導電性樹脂組成物を射出成形することを特徴とする樹脂成形体の製造方法 Vinyl-based thermoplastic resin, polyether-based thermoplastic resin, or a 40 to 60% by volume obtained by blending a thermoplastic resin to conductive particles and fibrous material is a mixture thereof, vinyl elastomers, polyolefin elastomers, polystyrene-based elastomer A resin molded article characterized by injection-molding a conductive resin composition obtained by kneading 40 to 60% by volume of a polyvinyl chloride elastomer or a thermoplastic elastomer which is a mixture of these with conductive particles . Manufacturing method .
JP2002311481A 2002-10-25 2002-10-25 Method for producing conductive resin composition and method for producing resin molded body Expired - Fee Related JP4107575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002311481A JP4107575B2 (en) 2002-10-25 2002-10-25 Method for producing conductive resin composition and method for producing resin molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002311481A JP4107575B2 (en) 2002-10-25 2002-10-25 Method for producing conductive resin composition and method for producing resin molded body

Publications (2)

Publication Number Publication Date
JP2004146258A JP2004146258A (en) 2004-05-20
JP4107575B2 true JP4107575B2 (en) 2008-06-25

Family

ID=32456687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002311481A Expired - Fee Related JP4107575B2 (en) 2002-10-25 2002-10-25 Method for producing conductive resin composition and method for producing resin molded body

Country Status (1)

Country Link
JP (1) JP4107575B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5025079B2 (en) * 2003-12-05 2012-09-12 昭和電工株式会社 Conductive resin composition and molded body thereof
TW200519150A (en) * 2003-12-05 2005-06-16 Showa Denko Kk Conductive resin composition and molded product thereof
JP4937529B2 (en) * 2004-05-27 2012-05-23 昭和電工株式会社 Conductive resin composition for fuel cell separator and fuel cell separator
KR100819478B1 (en) * 2004-05-27 2008-04-07 쇼와 덴코 가부시키가이샤 Conductive resin composition for fuel cell separator and fuel cell separator
TW200613414A (en) * 2004-05-27 2006-05-01 Showa Denko Kk Conductive resin composition for fuel cell separator and fuel cell separator
US7611643B2 (en) 2004-05-27 2009-11-03 Showa Denko K.K. Electrically conducting resin composition for fuel cell separator and fuel cell separator
JP2006073334A (en) * 2004-09-01 2006-03-16 Mitsubishi Corp Separator for fuel cell
WO2006095821A1 (en) * 2005-03-10 2006-09-14 Bridgestone Corporation Thermoplastic resin composition and thermoplastic resin molded article
JP4975262B2 (en) * 2005-03-22 2012-07-11 三菱樹脂株式会社 Fuel cell separator and method for producing the same
EP2000509B1 (en) * 2006-03-30 2014-07-09 Asahi Kasei Chemicals Corporation Resin composition and molded product thereof

Also Published As

Publication number Publication date
JP2004146258A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
Boyaci San et al. A review of thermoplastic composites for bipolar plate applications
KR100798121B1 (en) Electroconductive resin composition and molded product thereof
US8252483B2 (en) Fuel cell separator having a corrugated electrically conducting flow path
JP4107575B2 (en) Method for producing conductive resin composition and method for producing resin molded body
JPWO2002093670A1 (en) Separator for polymer electrolyte fuel cell and method for producing the same
JP2002025571A (en) Fuel cell separator, its manufacturing method, and solid high polymer molecule fuel cell
JP2016041806A (en) Resin composition, method for producing resin composition, powdery mixture, bipolar plate for redox flow cell, and separator for fuel cell
TW200522425A (en) Separator for fuel cell and its manufacturing method
KR100834057B1 (en) Material for preparing fuel cell separator, fuel cell separator and fuel cell
CN111823573A (en) Preparation method of 3D printing part with high interfacial heat conductivity
JP2005264059A (en) Method for producing composite resin composition, composite resin composition and composite resin molding
JP5013670B2 (en) Fuel cell separator and method for producing the same
US20080075953A1 (en) Electrically Conductive Composites with Resin and Vgcf, Production Process, and Use Thereof
JP5025079B2 (en) Conductive resin composition and molded body thereof
Wang Conductive thermoplastic composite blends for flow field plates for use in polymer electrolyte membrane fuel cells (PEMFC)
JP4780257B2 (en) Fuel cell separator and manufacturing method thereof
JP2006164816A (en) Sheet manufactured by papermaking method and separator for fuel cell
JP5465091B2 (en) Manufacturing method of fuel cell separator and fuel cell separator
KR20070084217A (en) Sheet made by papermaking process, multilayer sheet and separator for fuel cell
JP2001089668A (en) Conductive thermoplastic elastomer composition and conductive member formed therefrom
JP5919004B2 (en) Polyphenylene sulfide-based resin composition and molded products based on the resin composition
JP2003257446A (en) Composite material for molding fuel cell separator, manufacturing method therefor, and fuel cell separator by use of composite material
WO2006095821A1 (en) Thermoplastic resin composition and thermoplastic resin molded article
CN1957495A (en) Electrically conducting resin composition for fuel cell separator and fuel cell separator
JP4802368B2 (en) Method for producing highly conductive molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080328

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees