WO2020128236A1 - Vehicle tyre comprising a stiffening structure - Google Patents

Vehicle tyre comprising a stiffening structure Download PDF

Info

Publication number
WO2020128236A1
WO2020128236A1 PCT/FR2019/053022 FR2019053022W WO2020128236A1 WO 2020128236 A1 WO2020128236 A1 WO 2020128236A1 FR 2019053022 W FR2019053022 W FR 2019053022W WO 2020128236 A1 WO2020128236 A1 WO 2020128236A1
Authority
WO
WIPO (PCT)
Prior art keywords
equal
reinforcement
crown
tire
layer
Prior art date
Application number
PCT/FR2019/053022
Other languages
French (fr)
Inventor
Frédéric Perrin
Florian LACHAL
Gaël PATAUT
Richard CORNILLE
Olivier REIX
Original Assignee
Compagnie Generale Des Etablissements Michelin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1873322A external-priority patent/FR3090494A3/en
Application filed by Compagnie Generale Des Etablissements Michelin filed Critical Compagnie Generale Des Etablissements Michelin
Priority to US17/416,047 priority Critical patent/US20220134805A1/en
Priority to RU2021114444A priority patent/RU2766023C1/en
Priority to EP19839388.6A priority patent/EP3898278B1/en
Priority to CN201980083066.2A priority patent/CN113226798B/en
Priority to BR112021010935-8A priority patent/BR112021010935A2/en
Publication of WO2020128236A1 publication Critical patent/WO2020128236A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0311Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • B60C9/2006Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords consisting of steel cord plies only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C2009/0071Reinforcements or ply arrangement of pneumatic tyres characterised by special physical properties of the reinforcements
    • B60C2009/0078Modulus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C2009/0071Reinforcements or ply arrangement of pneumatic tyres characterised by special physical properties of the reinforcements
    • B60C2009/0085Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C2009/0071Reinforcements or ply arrangement of pneumatic tyres characterised by special physical properties of the reinforcements
    • B60C2009/0092Twist structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2061Physical properties or dimensions of the belt coating rubber
    • B60C2009/2064Modulus; Hardness; Loss modulus or "tangens delta"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/2077Diameters of the cords; Linear density thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/208Modulus of the cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/209Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/2093Elongation of the reinforcements at break point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/2096Twist structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/08Tyres specially adapted for particular applications for agricultural vehicles

Definitions

  • Vehicle tire comprising a stiffening structure.
  • the present invention relates to a tire for an agricultural vehicle, such as an agricultural tractor or an agro-industrial vehicle, and more particularly relates to its crown reinforcement.
  • a radial tire for a drive wheel of an agricultural tractor is intended to be mounted on a rim whose diameter is generally between 16 inches and 46 inches, or even 54 inches. It is intended to be driven on an agricultural tractor whose power is between 50 CV and more than 250 CV (up to 550 CV) and capable of traveling up to 65 km / h.
  • the minimum recommended inflation pressure corresponding to the indicated load capacity is most often at most equal to 400 kPa, but can drop to 240 kPa, for an IF (Improved Flexion) tire, or even 160 kPa, for a VF (Very High Flexion) tire.
  • a tire for an agricultural vehicle comprises a tread, intended to come into contact with a ground by means of a tread surface, the two axial ends of which are connected by means of two sidewalls with two beads ensuring the mechanical connection between the tire and the rim on which it is intended to be mounted.
  • the circumferential, axial and radial directions designate respectively a direction tangent to the rolling surface and oriented according to the direction of rotation of the tire, a direction parallel to the axis of rotation of the tire and a perpendicular direction. to the axis of rotation of the tire.
  • a radial tire for an agricultural vehicle comprises a reinforcing reinforcement, consisting of a crown reinforcement, radially internal to the tread, and a carcass reinforcement, radially internal to the crown reinforcement.
  • the tread of a tire for an agricultural vehicle generally comprises a plurality of elements in relief, called tread elements, extending radially outward from a bearing surface to the surface of rolling, and most often separated from each other by hollows or grooves.
  • tread elements extending radially outward from a bearing surface to the surface of rolling, and most often separated from each other by hollows or grooves.
  • These elements of sculpture are most often bars generally having an elongated shape generally parallelepiped, comprising at least one rectilinear or curvilinear portion.
  • the carcass reinforcement of a radial tire for an agricultural vehicle comprises at least one carcass layer connecting the two beads together.
  • a carcass layer comprises reinforcements coated with a polymeric material comprising an elastomer, obtained by mixing, or elastomeric mixture.
  • Carcass layer reinforcements most often consist of polymeric textile materials, such as polyester, for example polyethylene terephthalate (PET), an aliphatic polyamide, for example nylon, an aromatic polyamide, for example aramid , or even rayon.
  • PET polyethylene terephthalate
  • the reinforcements of a carcass layer are substantially parallel to each other and form, with the circumferential direction, an angle between 85 ° and 95 °.
  • the crown reinforcement of a radial tire for an agricultural vehicle comprises a superposition of crown layers extending circumferentially, radially outside the carcass reinforcement.
  • Each top layer consists of reinforcements coated with an elastomeric mixture and parallel to each other.
  • the crown layer reinforcements form, with the circumferential direction, an angle at most equal to 10 °, they are said to be circumferential, or substantially circumferential, and provide a hooping function limiting the radial deformations of the tire.
  • the top layer reinforcements form, with the circumferential direction, an angle at least equal to 10 ° and most often at most equal to 40 °, they are called angle reinforcements and have a function of taking up transverse, parallel forces. to the axial direction, applied to the tire.
  • the top layer reinforcements can be made of polymeric textile materials, such as polyester, for example polyethylene terephthalate (PET), an aliphatic polyamide, for example nylon, an aromatic polyamide, for example aramid, or still rayon, or by metallic materials, such as steel.
  • PET polyethylene terephthalate
  • aliphatic polyamide for example nylon
  • aromatic polyamide for example aramid
  • still rayon or by metallic materials, such as steel.
  • a tire for an agricultural vehicle is intended to roll on various types of soil such as the more or less compact earth of the fields, the unpaved paths for access to the fields and the paved surfaces of the roads.
  • soil such as the more or less compact earth of the fields, the unpaved paths for access to the fields and the paved surfaces of the roads.
  • a tire for an agricultural vehicle must present a compromise in performance between, in a non-exhaustive manner, traction in the field on loose ground, resistance to tearing, resistance to wear on the road, resistance to travel, vibrational comfort on the road.
  • An essential problem for the use of a tire in the field is to limit the compaction of the soil by the tire as much as possible, liable to harm crops. This is the reason why, in the agricultural field, tires with low pressure, therefore with strong bending, have been developed.
  • the ETRTO standard thus distinguishes IF (Improved Flexion) tires, with a minimum recommended inflation pressure generally equal to 240 kPa, and VF (Very high Flexion) tires, with a minimum recommended inflation pressure generally equal to 160 kPa.
  • IF Improved Flexion
  • VF Very high Flexion
  • an IF tire has a load capacity increased by 20%
  • a VF tire has a load capacity increased by 40%, for an inflation pressure equal to 160 kPa.
  • crown layers with metal reinforcements in a tire for an agricultural vehicle can lead to a reduction in the endurance of the crown of the tire, due to premature rupture of the metal reinforcements.
  • the inventors then set themselves the objective of increasing the endurance of a crown reinforcement with metal reinforcements to a level at least equivalent to that of a crown reinforcement with textile reinforcements, in particular for a tire for agricultural vehicles operating at low pressure such as an IF tire (Improved Flexion) or a VF tire (Very High Flexion).
  • a tire for an agricultural vehicle comprising a crown reinforcement, radially internal to a tread and radially external to a carcass reinforcement,
  • the crown reinforcement comprising at least two crown layers, each comprising metal reinforcements coated in an elastomeric material, mutually parallel and forming, with a circumferential direction, an angle A at least equal to 10 °,
  • bi-module -all metallic reinforcement of crown layer having an elastic behavior law in extension, called bi-module, comprising a first portion having a first module in extension MG1 at most equal to 30 GPa, and a second portion having a second module in extension MG2 at least equal to 2 times the first module in extension MG1, said behavior law in extension being determined for a metallic reinforcement coated in an elastomeric mixture having a modulus of elasticity in extension at 10% elongation MA10 at least equal to 5 MPa and at most equal to 15 MPa,
  • the inventors propose to use elastic metallic reinforcements whose behavior laws have specific characteristics both in extension and in compression.
  • a bare metal reinforcement that is to say one not coated with an elastomeric material, is characterized mechanically by a curve representing the tensile force (in N), applied to the reinforcement metallic, as a function of its relative elongation (in%), called the force-elongation curve. From this force-elongation curve are deduced the mechanical characteristics in extension of the metal reinforcement, such as the structural elongation As (in%), the total elongation at break At (in%), the force at break Fm (load maximum in N) and the breaking strength Rm (in MPa), these characteristics being measured, for example, according to ISO 6892 of 1984 or ASTM D2969-04 of 2014.
  • the structural elongation As results from the relative positioning of the metallic wires constituting the metallic reinforcement under a low tensile force.
  • the elastic elongation Ae results from the very elasticity of the metal of the metallic wires, constituting the metallic reinforcement, taken individually, the behavior of the metal according to Hooke's law.
  • the plastic elongation Ap results from the plasticity, that is to say from the irreversible deformation of the metal of these metallic wires taken individually, beyond the elastic limit.
  • the constitutive law in extension of a metallic reinforcement is determined for a metallic reinforcement coated in a cooked elastomeric material, corresponding to a metallic reinforcement extracted from the tire, on the basis of the standard ISO 6892 of 1984 as for a bare metal reinforcement.
  • a cooked elastomeric coating material is a rubber-based composition having a modulus of elasticity in secant extension at 10% elongation MA10 at least equal to 5 MPa and at more equal to 15 MPa, for example equal to 6 MPa. This modulus of elasticity in extension is determined from tensile tests carried out in accordance with French standard NF T 46-002 of September 1988.
  • a first rigidity in extension KG1 representing the slope of the secant line passing through l origin of the reference frame, in which the constitutive law is represented, and the transition point between the first and second portions.
  • a second rigidity in extension KG2 can be defined, representing the slope of a straight line passing through two points positioned in a substantially linear part of the second portion.
  • a stress-deformation curve characterizing the behavior in extension of a reinforcement
  • the stress being equal to the ratio between the tensile force applied to the reinforcement and the surface of the section of the reinforcement, and the deformation being the relative elongation of the reinforcement.
  • a first module can be defined in extension MG1, representing the slope of the secant line passing through the origin of the reference frame, in which the law of behavior, and the transition point between the first and second portions.
  • a second module in extension MG2 representing the slope of a straight line passing through two points positioned in a substantially linear part of the second portion.
  • the rigidities in extension KG1 and KG2 are respectively equal to MG1 * S and MG2 * S, S being the area of the section of the reinforcement. It should be noted that the bi-module behavior laws falling within the scope of the invention include a first portion with low module and a second portion with high module.
  • any metallic reinforcement of the top layer has a law of elastic behavior in extension, called bi-module, comprising a first portion having a first module in extension MG1 at more equal to 30 GPa, and a second portion having a second module in MG2 extension at least equal to twice the first module in MG1 extension.
  • a metal reinforcement is characterized mechanically by a curve representing the compression force (in N), applied to the metal reinforcement, as a function of its compression deformation (in%).
  • a compression curve is in particular characterized by a limit point, defined by a critical buckling force Fc and a critical buckling deformation E0, beyond which the reinforcement is subjected to compression buckling, corresponding to a state of mechanical instability characterized by large deformations of the reinforcement with a reduction in the compressive force.
  • the compression behavior law is determined, using a Zwick or Instron type test machine, on a test piece of dimensions 12 mm x 21 mm x 8 mm (width x height x thickness).
  • the test piece is constituted by a reinforcement, placed in its center and coated with a parallelepiped volume of elastomeric mixture defining the volume of the test piece, the axis of the reinforcement being placed according to the height of the test piece.
  • the elastomeric mixture of the test piece has a modulus of elasticity in secant extension at 10% elongation MA10 at least equal to 5 MPa and at most equal to 15 MPa, for example equal to 6 MPa.
  • any metallic reinforcement of the top layer has a compression behavior law, characterized by a critical buckling deformation in compression E0 at least equal to 3%.
  • crown layers of a tire for an agricultural vehicle often have initial curvatures, both in the circumferential direction and in the axial direction, resulting from the movements of the various elastomeric constituents and reinforcements at the during manufacturing, during molding and curing of the tire. These initial deformations are added to the deformations resulting from the tilting of the bars and therefore also contribute to the compression / extension cycles of the metal reinforcements of the crown layers, when the tire is rolling.
  • the linear mass of a metallic reinforcement of crown crown is at least equal to 6 g / m and at most equal to 13 g / m.
  • the linear mass of a metal reinforcement is the metal mass of a reinforcement portion having a unit length of 1 m.
  • the linear mass is correlated to the module in extension of the reinforcement, therefore to its rigidity. Consequently, this range of linear mass values has been considered optimal with respect to the target stiffness of reinforcement.
  • the linear mass of the reinforcements constituting each crown layer is advantageously at least equal to 6 / ng / m and at most equal to 13 / ng / m.
  • any metallic reinforcement of the top layer is a multi-strand cable of lxN structure comprising a single layer of N strands of diameter DT wound in a helix having an angle AT and a radius of RT curvature, each strand comprising an internal layer of M internal wires wound in a helix and an external layer of P external wires wound in a helix around the internal layer. It is a type of metallic reinforcement commonly used in the pneumatic field.
  • Each strand is wound in a helix around the axis of the cable, this helix being characterized by a helix pitch PT, a helix angle AT and a radius of curvature RT.
  • the propeller pitch PT is the distance at the end of which the strand has made a full propeller turn.
  • the helix angle AT of a strand is advantageously at least equal to 20 ° and at most equal to 30 °.
  • This range of values of helix angle AT of a strand conditions the geometry of the cable and, in particular, the curvature of the strands which impacts the level of critical buckling deformation in compression E0 and contributes to obtaining a value at least equal to 3%.
  • the ratio RT / DT between the helix radius of curvature of a strand RT and the diameter of a strand DT is also advantageously at most equal to 5.
  • This maximum value of the RT / DT ratio is a criterion which also contributes to a level of critical buckling deformation in compression E0 at least equal to 3%.
  • the diameter D of a metallic reinforcement of crown crown is still advantageously at least equal to 1.4 mm and at most equal to 3 mm.
  • This range of values of diameter D is compatible with the range of values targeted for the linear reinforcement mass.
  • Such reinforcements are obtained from an assembly of steel wires generally having a diameter at most equal to 0.35 mm, or even at most equal to 0.28 mm.
  • the breaking strength R of a crown layer is at least equal to 500 N / mm and at most equal to 1500 N / mm .
  • the breaking strength R of a crown layer is equal to the unit breaking strength, in N, of a metal reinforcement divided by the pitch, in mm, that is to say the distance between two consecutive reinforcements.
  • the breaking strength R conditions, in particular, the bursting resistance under pressure of the tire, with a given safety factor.
  • the crown reinforcement comprises at least one hooping layer comprising reinforcements coated in an elastomeric material, parallel to each other and forming, with the circumferential direction (XX ' ), an angle B at most equal to 10 °.
  • the function of a hooping layer is to participate in the resumption of mechanical inflation stresses and, also, in improving the endurance of the crown reinforcement by stiffening it when the tire is crushed under a radial load and, in particular, subject to a drift angle around the radial direction.
  • hooping layers known as closed angles, that is to say whose reinforcements form, with the circumferential direction, angles at least equal to 5 ° and at most equal to 10 °
  • the circumferential hooping layers more precisely substantially circumferential, that is to say whose reinforcements form, with the circumferential direction, angles at most equal to 5 ° and which may be harmful.
  • the closed angle hoop layers include reinforcements having free ends at the axial ends of the hoop layers.
  • the circumferential hooping layers comprise reinforcements having no free ends at the axial ends of the hooping layers, because the circumferential hooping layers are most often obtained by the circumferential winding of a reinforcement ply or by the circumferential winding of a reinforcement.
  • the hoop layer reinforcements can be either continuous or split.
  • the hoop layer reinforcements can be either metallic or textile.
  • the crown reinforcement comprises at least one additional crown layer comprising metal reinforcements coated in an elastomeric material, parallel to each other and forming, with the circumferential direction , an angle C at least equal to 60 ° and at most equal to 90 °.
  • This additional crown layer includes metallic reinforcements, which are not necessarily elastic and not necessarily of the type of those of the invention and forming, with respect to the circumferential direction, angles between 60 ° and 90 °. These angles are higher than those formed by the elastic reinforcements of the crown layers according to the invention, generally between 10 ° and 40 °.
  • This additional crown layer radially positioned either inside or outside of the crown layers according to the invention, and most often being decoupled from said layers, that is to say separated from them by a layer in elastomeric mixture, contributes to the stiffening of the crown reinforcement by a hooping effect by triangulation with the other crown layers.
  • the carcass reinforcement comprises at least one carcass layer comprising textile reinforcements coated in an elastomeric material, mutually parallel and forming, with the circumferential direction, an angle D at least equal to 85 ° and at more equal to 95 °. But a lower angle D, typically at least equal to 65 °, is also conceivable.
  • the tread consists of first and second rows of bars extending radially outward from a bearing surface and arranged in chevrons relative to the equatorial plane of the tire.
  • the invention is applicable in particular to a radial tire for the drive wheel of an agricultural tractor, and even more particularly to an IF (Improved Flexion) tire, with a minimum recommended inflation pressure generally equal to 240 kPa, and a VF (Very High Flexion) tire, with a minimum recommended inflation pressure generally equal to 160 kPa. It can even be extended to a tire inflated to a low pressure, as recommended for a VF tire, but having a load capacity greater than that of a VF tire.
  • IF Interimproved Flexion
  • VF Very High Flexion
  • - Figure 7 Front view of a tire for an agricultural vehicle with bar tread.
  • FIG. 1 represents a meridian half-section, in a meridian plane YZ passing through the axis of rotation YY ′ of the tire, of a tire 1 for an agricultural vehicle comprising a crown reinforcement 3 radially internal to a strip of bearing 2 and radially external to a carcass reinforcement 4.
  • the crown reinforcement 3 comprises two crown layers (31, 32), each comprising metal reinforcements coated in an elastomeric material, mutually parallel and forming, with a circumferential direction (XX '), an angle A at least equal to 10 ° (not shown).
  • the crown reinforcement 4 comprises three carcass layers comprising textile reinforcements coated in an elastomeric material, mutually parallel and forming, with the circumferential direction (XX '), an angle D at least equal to 85 ° and at most equal to 95 ° (not shown).
  • Figure 2 is a typical example of a tensile force-relative elongation curve of an elastic metal reinforcement according to the invention, coated with an elastomeric material, representing its elastic behavior in extension.
  • the tensile force F is expressed in N and the elongation A is a relative elongation, expressed in%.
  • the law of behavior in extension, elastic and bi-module comprises a first portion and a second portion. The first portion is delimited by two points, the ordinates of which correspond respectively to a zero tensile force and a tensile force equal to 87 N, the respective abscissae being the corresponding relative elongations (in%).
  • first rigidity in extension KG1 representing the slope of the secant line passing by the origin of the reference mark, in which the constitutive law is represented, and the point of transition between the first and second portions. Knowing that by definition, the rigidity in extension KG1 is equal to the product of the module in extension MG1 by the surface S of the section of the reinforcement, we can easily deduce the module in extension MG1.
  • the second portion is the set of points corresponding to a tensile force greater than 87 N.
  • second rigidity in extension KG2 representing the slope of a straight line passing through two positioned points in a substantially linear part of the second portion.
  • KG2 MG2 * S, so we can deduce the extension module MG2 from it.
  • FIG. 3 represents two tensile stress-elongation curves, the tensile stress F / S, expressed in MPa, being equal to the ratio between the tensile force F, expressed in N, applied to the reinforcement, and the surface S of the section of the reinforcement, expressed in mm 2 , and the elongation A being the relative elongation of the reinforcement, expressed in%.
  • the area S of the reinforcement section is the metal section equal to ML / p, ML being the linear mass of the reinforcement, expressed in g / m, and p being the density of the reinforcement, expressed in g / cm3 (by example the density p of the brass-coated steel is equal to 7.77 g / cm 3 ).
  • FIG. 4 is a typical example of a compression force-compression deformation curve of an elastic metal reinforcement according to the invention, representing its elastic behavior in compression.
  • the compression force F is expressed in N and the compression strain is a relative crushing, expressed in%.
  • This compression behavior law determined on an elastomeric mixture test piece having a modulus of elasticity in secant extension at 10% elongation MA10 equal to 6 MPa, has a maximum corresponding to the appearance of buckling in compression of the reinforcement. This maximum is reached for a maximum compression force Fmax, or critical buckling force, corresponding to a critical buckling deformation E0. Beyond the buckling point, the compressive force applied decreases while the deformation continues to increase. According to the invention, the critical buckling deformation in compression E0 is at least equal to 3%.
  • FIG. 5 represents a multi-strand cable of type E18.23 having a structure 3 * (l + 5) * 0.23, that is to say comprising a single layer of 3 strands, each strand comprising an internal layer of 1 internal wire wound in a helix and an external layer of 5 external wires wound in a helix around the internal layer.
  • Each wire is made of steel and has a unit diameter equal to 0.23 mm.
  • 6 represents a multi-strand cable of type E24.26 having a structure 4 * (l + 5) * 0.26, that is to say comprising a single layer of 4 strands, each strand comprising an internal layer of 1 inner wire wound in a helix and an outer layer of 5 outer wires wound in a helix around the inner layer.
  • Each wire is made of steel and has a unit diameter equal to 0.26 mm.
  • FIG. 7 represents a front view of a tire for an agricultural vehicle comprising a tread with bars.
  • the tire 1 comprises a tread 2, consisting of first and second rows of bars 21 extending radially outward from a bearing surface 22 and arranged in chevrons relative to the equatorial plane of the pneumatic.
  • this type of tread when running, this type of tread generates compression / extension cycles of the metal reinforcements of the crown layers, which elastic reinforcements according to the invention better resist, with a large elongation in extension with low modulus and a high critical buckling deformation.
  • the invention was more particularly implemented for an agricultural tire of size 600 / 70R30 comprising a crown reinforcement with two crown layers with elastic metallic reinforcements of formulas E18.23 or E24.26.
  • Rolling on paved ground, under torque, with a circumferential force F x applied equal to 520 daN, and at a speed V equal to 27 km / h was carried out for each tire, inflated to a pressure P equal to 50 kPa and subjected to a load Z equal to 2600 daN.

Abstract

The subject of the present invention is a tyre (1) for an agricultural vehicle, comprising a crown reinforcement (3), comprising at least two crown layers (31, 32) that each comprise metallic reinforcers coated in an elastomeric material. According to the invention, every metallic reinforcer of a crown layer (31, 32) has a law describing elastic tensile behaviour, known as bi-modulus, comprising a first portion having a first tensile modulus MG1 at most equal to 30 GPa, and a second portion having a second tensile modulus MG2 at least twice the first tensile modulus MG1, and every metallic reinforcer of a crown layer (31, 32) has a law describing compressive behaviour, characterized by a critical compressive buckling deformation E0 at least equal to 3%.

Description

Pneumatique pour véhicule comprenant une structure de rigidification. Vehicle tire comprising a stiffening structure.
[0001] La présente invention a pour objet un pneumatique pour véhicule agricole, tel qu’un tracteur agricole ou un véhicule agro -industriel, et concerne plus particulièrement son armature de sommet. The present invention relates to a tire for an agricultural vehicle, such as an agricultural tractor or an agro-industrial vehicle, and more particularly relates to its crown reinforcement.
[0002] Les spécifications dimensionnelles et les conditions d’usage (charge, vitesse, pression) d’un pneumatique pour véhicule agricole sont définies dans des normes, telles que, par exemple, la norme ETRTO (European Tyre and Rim Technical Organisation). A titre d’exemple, un pneumatique radial pour roue motrice d’un tracteur agricole est destiné à être monté sur une jante dont le diamètre est généralement compris entre 16 pouces et 46 pouces, voire 54 pouces. Il est destiné à rouler sur un tracteur agricole dont la puissance est comprise entre 50 CV et plus de 250 CV (jusqu’à 550 CV) et pouvant rouler jusqu’à 65 km/h. Pour ce type de pneumatique, la pression de gonflage minimale recommandée correspondant à la capacité de charge indiquée est le plus souvent au plus égale à 400 kPa, mais peut descendre jusqu’à 240 kPa, pour un pneumatique IF (Improved Flexion), voire 160 kPa, pour un pneumatique VF (Very High Flexion). [0002] The dimensional specifications and the conditions of use (load, speed, pressure) of a tire for an agricultural vehicle are defined in standards, such as, for example, the ETRTO standard (European Tire and Rim Technical Organization). For example, a radial tire for a drive wheel of an agricultural tractor is intended to be mounted on a rim whose diameter is generally between 16 inches and 46 inches, or even 54 inches. It is intended to be driven on an agricultural tractor whose power is between 50 CV and more than 250 CV (up to 550 CV) and capable of traveling up to 65 km / h. For this type of tire, the minimum recommended inflation pressure corresponding to the indicated load capacity is most often at most equal to 400 kPa, but can drop to 240 kPa, for an IF (Improved Flexion) tire, or even 160 kPa, for a VF (Very High Flexion) tire.
[0003] Comme tout pneumatique, un pneumatique pour véhicule agricole comprend une bande de roulement, destinée à venir en contact avec un sol par l’intermédiaire d’une surface de roulement, dont les deux extrémités axiales sont reliées par l’intermédiaire de deux flancs à deux bourrelets assurant la liaison mécanique entre le pneumatique et la jante sur laquelle il est destiné à être monté. Like any tire, a tire for an agricultural vehicle comprises a tread, intended to come into contact with a ground by means of a tread surface, the two axial ends of which are connected by means of two sidewalls with two beads ensuring the mechanical connection between the tire and the rim on which it is intended to be mounted.
[0004] Dans ce qui suit, les directions circonférentielle, axiale et radiale désignent respectivement une direction tangente à la surface de roulement et orientée selon le sens de rotation du pneumatique, une direction parallèle à l’axe de rotation du pneumatique et une direction perpendiculaire à l’axe de rotation du pneumatique. In what follows, the circumferential, axial and radial directions designate respectively a direction tangent to the rolling surface and oriented according to the direction of rotation of the tire, a direction parallel to the axis of rotation of the tire and a perpendicular direction. to the axis of rotation of the tire.
[0005] Un pneumatique radial pour véhicule agricole comprend une armature de renforcement, constituée d’une armature de sommet, radialement intérieure à la bande de roulement, et d’une armature de carcasse, radialement intérieure à l’armature de sommet. A radial tire for an agricultural vehicle comprises a reinforcing reinforcement, consisting of a crown reinforcement, radially internal to the tread, and a carcass reinforcement, radially internal to the crown reinforcement.
[0006] Fa bande de roulement d’un pneumatique pour véhicule agricole comprend généralement une pluralité d’éléments en relief, appelés éléments de sculpture, s’étendant radialement vers l’extérieur à partir d’une surface portante jusqu’à la surface de roulement, et le plus souvent séparés les uns des autres par des creux ou sillons. Ces éléments de sculpture sont le plus souvent des barrettes ayant généralement une forme allongée globalement parallélépipédique, comprenant au moins une portion rectiligne ou curviligne. [0006] The tread of a tire for an agricultural vehicle generally comprises a plurality of elements in relief, called tread elements, extending radially outward from a bearing surface to the surface of rolling, and most often separated from each other by hollows or grooves. These elements of sculpture are most often bars generally having an elongated shape generally parallelepiped, comprising at least one rectilinear or curvilinear portion.
[0007] L’armature de carcasse d’un pneumatique radial pour véhicule agricole comprend au moins une couche de carcasse reliant les deux bourrelets entre eux. Une couche de carcasse comprend des renforts enrobés par un matériau polymérique comprenant un élastomère, obtenu par mélangeage, ou mélange élastomérique. Les renforts de couche de carcasse sont le plus souvent constitués par des matériaux polymériques textiles, tels qu’un polyester, par exemple un polyéthylène téréphtalate (PET), un polyamide aliphatique, par exemple un nylon, un polyamide aromatique, par exemple l’aramide, ou encore la rayonne. Les renforts d’une couche de carcasse sont sensiblement parallèles entre eux et forment, avec la direction circonférentielle, un angle compris entre 85° et 95°. The carcass reinforcement of a radial tire for an agricultural vehicle comprises at least one carcass layer connecting the two beads together. A carcass layer comprises reinforcements coated with a polymeric material comprising an elastomer, obtained by mixing, or elastomeric mixture. Carcass layer reinforcements most often consist of polymeric textile materials, such as polyester, for example polyethylene terephthalate (PET), an aliphatic polyamide, for example nylon, an aromatic polyamide, for example aramid , or even rayon. The reinforcements of a carcass layer are substantially parallel to each other and form, with the circumferential direction, an angle between 85 ° and 95 °.
[0008] L’armature de sommet d’un pneumatique radial pour véhicule agricole comprend une superposition de couches de sommet s’étendant circonférentiellement, radialement à l’extérieur de l’armature de carcasse. Chaque couche de sommet est constituée de renforts enrobés par un mélange élastomérique et parallèles entre eux. Lorsque les renforts de couche de sommet forment, avec la direction circonférentielle, un angle au plus égal à 10°, ils sont dits circonférentiels, ou sensiblement circonférentiels, et assurent une fonction de frettage limitant les déformations radiales du pneumatique. Lorsque les renforts de couche de sommet forment, avec la direction circonférentielle, un angle au moins égal à 10° et le plus souvent au plus égal à 40°, ils sont appelés renforts à angle et ont une fonction de reprise des efforts transversaux, parallèles à la direction axiale, appliqués au pneumatique. Les renforts de couche de sommet peuvent être constitués par des matériaux polymériques textiles, tels qu’un polyester, par exemple un polyéthylène téréphtalate (PET), un polyamide aliphatique, par exemple un nylon, un polyamide aromatique, par exemple l’aramide, ou encore la rayonne, ou par des matériaux métalliques, tels que l’acier. The crown reinforcement of a radial tire for an agricultural vehicle comprises a superposition of crown layers extending circumferentially, radially outside the carcass reinforcement. Each top layer consists of reinforcements coated with an elastomeric mixture and parallel to each other. When the crown layer reinforcements form, with the circumferential direction, an angle at most equal to 10 °, they are said to be circumferential, or substantially circumferential, and provide a hooping function limiting the radial deformations of the tire. When the top layer reinforcements form, with the circumferential direction, an angle at least equal to 10 ° and most often at most equal to 40 °, they are called angle reinforcements and have a function of taking up transverse, parallel forces. to the axial direction, applied to the tire. The top layer reinforcements can be made of polymeric textile materials, such as polyester, for example polyethylene terephthalate (PET), an aliphatic polyamide, for example nylon, an aromatic polyamide, for example aramid, or still rayon, or by metallic materials, such as steel.
[0009] Un pneumatique pour véhicule agricole est destiné à rouler sur divers types de sols tels que la terre plus ou moins compacte des champs, les chemins non goudronnés d’accès aux champs et les surfaces goudronnées des routes. Compte tenu de la diversité de l’usage, en champ et sur route, un pneumatique pour véhicule agricole doit présenter un compromis de performances entre, de façon non exhaustive, la traction en champ sur sol meuble, la résistance aux arrachements, la résistance à l’usure sur route, la résistance à l’avancement, le confort vibratoire sur route. [0010] Un problème essentiel pour G utilisation d’un pneumatique en champ est de limiter au maximum la compaction du sol par le pneumatique, susceptible de nuire aux cultures. C’est la raison pour laquelle, dans le domaine agricole, des pneumatiques à basse pression, donc à forte flexion, ont été développés. La norme ETRTO distingue ainsi les pneumatiques IF (Improved Flexion), avec une pression de gonflage minimale recommandée généralement égale à 240 kPa, et les pneumatiques VF (Very high Flexion), avec une pression de gonflage minimale recommandée généralement égale à 160 kPa. Selon la norme, par rapport à un pneumatique standard, un pneumatique IF a une capacité de charge augmentée de 20%, et un pneumatique VF a une capacité de charge augmentée de 40%, pour une pression de gonflage égale à 160 kPa. A tire for an agricultural vehicle is intended to roll on various types of soil such as the more or less compact earth of the fields, the unpaved paths for access to the fields and the paved surfaces of the roads. Given the diversity of use, in the field and on the road, a tire for an agricultural vehicle must present a compromise in performance between, in a non-exhaustive manner, traction in the field on loose ground, resistance to tearing, resistance to wear on the road, resistance to travel, vibrational comfort on the road. [0010] An essential problem for the use of a tire in the field is to limit the compaction of the soil by the tire as much as possible, liable to harm crops. This is the reason why, in the agricultural field, tires with low pressure, therefore with strong bending, have been developed. The ETRTO standard thus distinguishes IF (Improved Flexion) tires, with a minimum recommended inflation pressure generally equal to 240 kPa, and VF (Very high Flexion) tires, with a minimum recommended inflation pressure generally equal to 160 kPa. According to the standard, compared to a standard tire, an IF tire has a load capacity increased by 20%, and a VF tire has a load capacity increased by 40%, for an inflation pressure equal to 160 kPa.
[0011] Toutefois l’utilisation de pneumatiques à basse pression a eu un impact négatif sur le comportement en champ. Ainsi la baisse de la pression de gonflage a entraîné une diminution des rigidités transversale et de dérive du pneumatique, d’où une diminution de la poussée transversale du pneumatique, et, par conséquent, une dégradation de son comportement sous sollicitations transversales. Une solution pour rétablir une poussée transversale correcte a été de rigidifïer transversalement l’armature de sommet du pneumatique, en remplaçant les couches de sommet à renforts textiles par des couches de sommet à renforts métalliques. Ainsi, par exemple, une armature de sommet comprenant six couches de sommet à renforts textiles de type rayonne a été remplacée par une armature de sommet comprenant deux couches de sommet à renforts métalliques en acier. Fe document EP 2934917 décrit ainsi un pneumatique IF comprenant une armature de sommet comprenant au moins deux couches de sommet à renforts métalliques, combinée avec une armature de carcasse comprenant au moins deux couches de carcasse à renforts textiles. However, the use of low pressure tires had a negative impact on behavior in the field. Thus, the drop in inflation pressure has resulted in a reduction in transverse stiffness and in tire drift, hence a reduction in the transverse thrust of the tire, and, consequently, in a deterioration of its behavior under transverse stresses. One solution to restore correct transverse thrust has been to transversely stiffen the crown reinforcement of the tire, by replacing the crown layers with textile reinforcements with crown layers with metal reinforcements. Thus, for example, a crown reinforcement comprising six crown layers with textile reinforcements of the rayon type has been replaced by a crown reinforcement comprising two crown layers with metallic steel reinforcements. Document EP 2934917 thus describes an IF tire comprising a crown reinforcement comprising at least two crown layers with metal reinforcements, combined with a carcass reinforcement comprising at least two carcass layers with textile reinforcements.
[0012] Mais l’utilisation de couches de sommet à renforts métalliques, dans un pneumatique pour véhicule agricole, peut entraîner une diminution de l’endurance du sommet du pneumatique, du fait d’une rupture prématurée des renforts métalliques. However, the use of crown layers with metal reinforcements in a tire for an agricultural vehicle can lead to a reduction in the endurance of the crown of the tire, due to premature rupture of the metal reinforcements.
[0013] Fes inventeurs se sont alors donnés pour objectif d’augmenter l’endurance d’une armature de sommet avec des renforts métalliques jusqu’à un niveau au moins équivalent à celle d’une armature de sommet avec des renforts textiles, en particulier pour un pneumatique pour véhicule agricole fonctionnant à basse pression tel qu’un pneumatique IF (Improved Flexion) ou un pneumatique VF (Very High Flexion). [0014] Ce but a été atteint selon l’invention par un pneumatique pour véhicule agricole comprenant une armature de sommet, radialement intérieure à une bande de roulement et radialement extérieure à une armature de carcasse, The inventors then set themselves the objective of increasing the endurance of a crown reinforcement with metal reinforcements to a level at least equivalent to that of a crown reinforcement with textile reinforcements, in particular for a tire for agricultural vehicles operating at low pressure such as an IF tire (Improved Flexion) or a VF tire (Very High Flexion). This object was achieved according to the invention by a tire for an agricultural vehicle comprising a crown reinforcement, radially internal to a tread and radially external to a carcass reinforcement,
-l’armature de sommet comprenant au moins deux couches de sommet, comprenant chacune des renforts métalliques enrobés dans un matériau élastomérique, parallèles entre eux et formant, avec une direction circonférentielle, un angle A au moins égal à 10°, the crown reinforcement comprising at least two crown layers, each comprising metal reinforcements coated in an elastomeric material, mutually parallel and forming, with a circumferential direction, an angle A at least equal to 10 °,
-tout renfort métallique de couche de sommet ayant une loi de comportement élastique en extension, dite bi-module, comprenant une première portion ayant un premier module en extension MG1 au plus égal à 30 GPa, et une deuxième portion ayant un deuxième module en extension MG2 au moins égal à 2 fois le premier module en extension MG1, ladite loi de comportement en extension étant déterminée pour un renfort métallique enrobé dans un mélange élastomérique ayant un module d’élasticité en extension à 10% d’allongement MA10 au moins égal à 5 MPa et au plus égal à 15 MPa, -all metallic reinforcement of crown layer having an elastic behavior law in extension, called bi-module, comprising a first portion having a first module in extension MG1 at most equal to 30 GPa, and a second portion having a second module in extension MG2 at least equal to 2 times the first module in extension MG1, said behavior law in extension being determined for a metallic reinforcement coated in an elastomeric mixture having a modulus of elasticity in extension at 10% elongation MA10 at least equal to 5 MPa and at most equal to 15 MPa,
-et tout renfort métallique de couche de sommet ayant une loi de comportement en -and any metallic reinforcement of crown layer having a law of behavior in
compression, caractérisée par une déformation critique de flambage en compression E0 au moins égal à 3%, ladite loi de comportement en compression étant déterminée sur une éprouvette constituée par un renfort placé en son centre et enrobé par un volume compression, characterized by a critical buckling deformation in compression E0 at least equal to 3%, said law of behavior in compression being determined on a test piece constituted by a reinforcement placed in its center and coated with a volume
parallélépipédique de mélange élastomérique ayant un module d’élasticité en extension à 10% d’allongement MA10 au moins égal à 5 MPa et au plus égal à 15 MPa. parallelepiped of elastomeric mixture having a modulus of elasticity in extension at 10% elongation MA10 at least equal to 5 MPa and at most equal to 15 MPa.
[0015] Pour un pneumatique pour véhicule agricole comprenant une armature de sommet à au moins deux couches de sommet avec des renforts métalliques, les inventeurs proposent d’utiliser des renforts métalliques élastiques dont les lois de comportement ont des caractéristiques spécifiques à la fois en extension et en compression. For a tire for an agricultural vehicle comprising a crown reinforcement with at least two crown layers with metallic reinforcements, the inventors propose to use elastic metallic reinforcements whose behavior laws have specific characteristics both in extension and in compression.
[0016] En ce qui concerne son comportement en extension, un renfort métallique nu, c’est-à- dire non enrobé par un matériau élastomérique, est caractérisé mécaniquement par une courbe représentant la force de traction (en N), appliquée au renfort métallique, en fonction de son allongement relatif (en %), dite courbe force-allongement. De cette courbe force-allongement sont déduites des caractéristiques mécaniques en extension du renfort métallique, telles que l’allongement structural As (en %), l’allongement total à la rupture At (en %), la force à la rupture Fm (charge maximale en N) et la résistance à la rupture Rm (en MPa), ces caractéristiques étant mesurées, par exemple, selon la norme ISO 6892 de 1984 ou la norme ASTM D2969-04 de 2014. [0017] L'allongement total à la rupture At d’un renfort métallique est, par définition, la somme de ses allongements structural, élastique et plastique (At = As + Ae + Ap). L’allongement structural As résulte du positionnement relatif des fils métalliques constitutifs du renfort métallique sous un faible effort de traction. L’allongement élastique Ae résulte de l’élasticité même du métal des fils métalliques, constituant le renfort métallique, pris individuellement, le comportement du métal suivant une loi de Hooke. L’allongement plastique Ap résulte de la plasticité, c’est-à-dire de la déformation irréversible du métal de ces fils métalliques pris individuellement, au-delà de la limite d’élasticité. As regards its behavior in extension, a bare metal reinforcement, that is to say one not coated with an elastomeric material, is characterized mechanically by a curve representing the tensile force (in N), applied to the reinforcement metallic, as a function of its relative elongation (in%), called the force-elongation curve. From this force-elongation curve are deduced the mechanical characteristics in extension of the metal reinforcement, such as the structural elongation As (in%), the total elongation at break At (in%), the force at break Fm (load maximum in N) and the breaking strength Rm (in MPa), these characteristics being measured, for example, according to ISO 6892 of 1984 or ASTM D2969-04 of 2014. The total elongation at break At of a metal reinforcement is, by definition, the sum of its structural, elastic and plastic elongations (At = As + Ae + Ap). The structural elongation As results from the relative positioning of the metallic wires constituting the metallic reinforcement under a low tensile force. The elastic elongation Ae results from the very elasticity of the metal of the metallic wires, constituting the metallic reinforcement, taken individually, the behavior of the metal according to Hooke's law. The plastic elongation Ap results from the plasticity, that is to say from the irreversible deformation of the metal of these metallic wires taken individually, beyond the elastic limit.
[0018] Dans le contexte de l’invention, la loi de comportement en extension d’un renfort métallique est déterminée pour un renfort métallique enrobé dans un matériau élastomérique cuit, correspondant à un renfort métallique extrait du pneumatique, sur la base de la norme ISO 6892 de 1984 comme pour un renfort métallique nu. A titre d’exemple, et de façon non exhaustive, un matériau élastomérique d’enrobage cuit est une composition à base de caoutchouc ayant un module d’élasticité en extension sécant à 10% d’allongement MA10 au moins égal à 5 MPa et au plus égal à 15 MPa, par exemple égal à 6 MPa. Ce module d’élasticité en extension est déterminé à partir d’essais de traction réalisés conformément à la norme française NF T 46-002 de septembre 1988. In the context of the invention, the constitutive law in extension of a metallic reinforcement is determined for a metallic reinforcement coated in a cooked elastomeric material, corresponding to a metallic reinforcement extracted from the tire, on the basis of the standard ISO 6892 of 1984 as for a bare metal reinforcement. By way of example, and in a non-exhaustive manner, a cooked elastomeric coating material is a rubber-based composition having a modulus of elasticity in secant extension at 10% elongation MA10 at least equal to 5 MPa and at more equal to 15 MPa, for example equal to 6 MPa. This modulus of elasticity in extension is determined from tensile tests carried out in accordance with French standard NF T 46-002 of September 1988.
[0019] A partir de la courbe force-allongement, pour une loi de comportement élastique bi- module comprenant une première portion et une deuxième portion, on peut définir une première rigidité en extension KG1, représentant la pente de la droite sécante passant par l’origine du repère, dans lequel est représentée la loi de comportement, et le point de transition entre les première et deuxième portions. De même, on peut définir une deuxième rigidité en extension KG2, représentant la pente d’une droite passant par deux points positionnés dans une partie sensiblement linéaire de la deuxième portion. From the force-elongation curve, for a two-module elastic law of behavior comprising a first portion and a second portion, it is possible to define a first rigidity in extension KG1, representing the slope of the secant line passing through l origin of the reference frame, in which the constitutive law is represented, and the transition point between the first and second portions. Likewise, a second rigidity in extension KG2 can be defined, representing the slope of a straight line passing through two points positioned in a substantially linear part of the second portion.
[0020] A partir de la courbe force-allongement, caractérisant le comportement en extension d’un renfort, on peut définir également une courbe contrainte-déformation, la contrainte étant égale au rapport entre la force de traction appliquée au renfort et la surface de la section du renfort, et la déformation étant l’allongement relatif du renfort. Pour une loi de comportement élastique bi-module comprenant une première portion et une deuxième portion, on peut définir un premier module en extension MG1, représentant la pente de la droite sécante passant par l’origine du repère, dans lequel est représentée la loi de comportement, et le point de transition entre les première et deuxième portions. De même, on peut définir un deuxième module en extension MG2, représentant la pente d’une droite passant par deux points positionnés dans une partie sensiblement linéaire de la deuxième portion. Les rigidités en extension KG1 et KG2 sont respectivement égales à MG1 *S et MG2*S, S étant la surface de la section du renfort. Il est à noter que les lois de comportement bi-module entrant dans le cadre de l’invention comprennent une première portion à faible module et une deuxième portion à module élevé. From the force-elongation curve, characterizing the behavior in extension of a reinforcement, one can also define a stress-deformation curve, the stress being equal to the ratio between the tensile force applied to the reinforcement and the surface of the section of the reinforcement, and the deformation being the relative elongation of the reinforcement. For a two-module elastic behavior law comprising a first portion and a second portion, a first module can be defined in extension MG1, representing the slope of the secant line passing through the origin of the reference frame, in which the law of behavior, and the transition point between the first and second portions. Similarly, we can define a second module in extension MG2, representing the slope of a straight line passing through two points positioned in a substantially linear part of the second portion. The rigidities in extension KG1 and KG2 are respectively equal to MG1 * S and MG2 * S, S being the area of the section of the reinforcement. It should be noted that the bi-module behavior laws falling within the scope of the invention include a first portion with low module and a second portion with high module.
[0021] Selon l’invention, concernant le comportement en extension des renforts métalliques, tout renfort métallique de couche de sommet a une loi de comportement élastique en extension, dite bi-module, comprenant une première portion ayant un premier module en extension MG1 au plus égal à 30 GPa, et une deuxième portion ayant un deuxième module en extension MG2 au moins égal à 2 fois le premier module en extension MG1. According to the invention, concerning the behavior in extension of the metallic reinforcements, any metallic reinforcement of the top layer has a law of elastic behavior in extension, called bi-module, comprising a first portion having a first module in extension MG1 at more equal to 30 GPa, and a second portion having a second module in MG2 extension at least equal to twice the first module in MG1 extension.
[0022] En ce qui concerne le comportement en compression, un renfort métallique est caractérisé mécaniquement par une courbe représentant la force de compression (en N), appliquée au renfort métallique, en fonction de sa déformation en compression (en %). Une telle courbe en compression est en particulier caractérisée par un point limite, défini par une force critique de flambage Fc et une déformation critique de flambage E0, au-delà duquel le renfort est soumis à un flambage en compression, correspondant à un état d’instabilité mécanique caractérisé par de grandes déformations du renfort avec une diminution de l’effort de compression. With regard to the compression behavior, a metal reinforcement is characterized mechanically by a curve representing the compression force (in N), applied to the metal reinforcement, as a function of its compression deformation (in%). Such a compression curve is in particular characterized by a limit point, defined by a critical buckling force Fc and a critical buckling deformation E0, beyond which the reinforcement is subjected to compression buckling, corresponding to a state of mechanical instability characterized by large deformations of the reinforcement with a reduction in the compressive force.
[0023] La loi de comportement en compression est déterminée, à l’aide d’une machine de test de type Zwick ou Instron, sur une éprouvette de dimensions 12 mm x 21 mm x 8 mm (largeur x hauteur x épaisseur). L’éprouvette est constituée par un renfort, placé en son centre et enrobé par un volume parallélépipédique de mélange élastomérique définissant le volume de l’éprouvette, l’axe du renfort étant placé selon la hauteur de l’éprouvette. Dans le contexte de l’invention, le mélange élastomérique de l’éprouvette a un module d’élasticité en extension sécant à 10% d’allongement MA10 au moins égal à 5 MPa et au plus égal à 15 MPa, par exemple égal à 6 MPa. L’éprouvette est comprimée dans le sens de la hauteur à une vitesse de 3 mm / mn jusqu’à une déformation en compression, c’est-à-dire un écrasement de l’éprouvette égale à 10% de sa hauteur initiale, à température ambiante. La force critique de flambage Fc et la déformation critique de flambage E0 correspondante sont atteintes lorsque l’effort appliqué diminue alors que la déformation continue à augmenter. En d’autres termes la force critique de flambage Fc correspond à la force de compression maximale Fmax. [0024] Selon l’invention, concernant le comportement en compression des renforts métalliques, tout renfort métallique de couche de sommet a une loi de comportement en compression, caractérisée par une déformation critique de flambage en compression E0 au moins égal à 3%. The compression behavior law is determined, using a Zwick or Instron type test machine, on a test piece of dimensions 12 mm x 21 mm x 8 mm (width x height x thickness). The test piece is constituted by a reinforcement, placed in its center and coated with a parallelepiped volume of elastomeric mixture defining the volume of the test piece, the axis of the reinforcement being placed according to the height of the test piece. In the context of the invention, the elastomeric mixture of the test piece has a modulus of elasticity in secant extension at 10% elongation MA10 at least equal to 5 MPa and at most equal to 15 MPa, for example equal to 6 MPa. The test piece is compressed in the height direction at a speed of 3 mm / min until a deformation in compression, that is to say a crushing of the test piece equal to 10% of its initial height, ambient temperature. The critical buckling force Fc and the corresponding critical buckling deformation E0 are reached when the applied force decreases while the deformation continues to increase. In other words, the critical buckling force Fc corresponds to the maximum compression force Fmax. According to the invention, concerning the compression behavior of the metallic reinforcements, any metallic reinforcement of the top layer has a compression behavior law, characterized by a critical buckling deformation in compression E0 at least equal to 3%.
[0025] Les inventeurs ont montré que des renforts métalliques dits élastiques, caractérisés par des lois de comportement en extension et en compression telles que précédemment décrites, ont une limite d’endurance en fatigue, lors de cycles répétés alternativement en extension et en compression, supérieure à celle des renforts métalliques usuels. The inventors have shown that so-called elastic metal reinforcements, characterized by behavior laws in extension and in compression as previously described, have a limit of fatigue endurance, during cycles repeated alternately in extension and in compression, higher than that of conventional metal reinforcements.
[0026] En effet, lors du roulage d’un pneumatique pour véhicule agricole comprenant une bande de roulement à barrettes, le basculement des barrettes sous couple (moteur ou freineur) entraîne un basculement des couches de sommet, positionnées radialement à l’intérieur des barrettes. Ce basculement entraîne des courbures alternativement positives et négatives des couches de sommet, et corrélativement des cycles alternativement en compression/extension des renforts métalliques des couches de sommet. In fact, during the rolling of a tire for an agricultural vehicle comprising a tread with bars, the tilting of the bars under torque (motor or brake) causes the crown layers to rock, positioned radially inside the bars. This tilting causes alternately positive and negative curvatures of the crown layers, and correspondingly cycles alternately in compression / extension of the metal reinforcements of the crown layers.
[0027] Il est à noter également que les couches de sommet d’un pneumatique pour véhicule agricole présentent souvent des courbures initiales, à la fois selon la direction circonférentielle et selon la direction axiale, résultant des mouvements des divers constituants élastomériques et des renforts au cours de la fabrication, lors du moulage et de la cuisson du pneumatique. Ces déformations initiales s’ajoutent aux déformations résultant du basculement des barrettes et contribuent donc également aux cycles en compression/extension des renforts métalliques des couches de sommet, lors du roulage du pneumatique. It should also be noted that the crown layers of a tire for an agricultural vehicle often have initial curvatures, both in the circumferential direction and in the axial direction, resulting from the movements of the various elastomeric constituents and reinforcements at the during manufacturing, during molding and curing of the tire. These initial deformations are added to the deformations resulting from the tilting of the bars and therefore also contribute to the compression / extension cycles of the metal reinforcements of the crown layers, when the tire is rolling.
[0028] Ainsi des renforts métalliques élastiques de couches de sommet selon l’invention sont aptes à mieux supporter les cycles en compression/extension précédemment décrits, ce qui entraîne une amélioration de l’endurance de l’armature de sommet du pneumatique, et donc une augmentation de la durée de vie du pneumatique. Thus elastic metal reinforcements of crown layers according to the invention are able to better withstand the compression / extension cycles described above, which leads to an improvement in the endurance of the crown reinforcement of the tire, and therefore an increase in the life of the tire.
[0029] Avantageusement, dans le cas où l’armature de sommet est constituée par deux couches de sommet, la masse linéique d’un renfort métallique de couche de sommet est au moins égale à 6 g/m et au plus égale à 13 g/m. La masse linéique d’un renfort métallique est la masse de métal d’une portion de renfort ayant une longueur unitaire égale à 1 m. La masse linéique est corrélée au module en extension du renfort, donc à sa rigidité. Par conséquent, cette plage de valeurs de masse linéique a été considérée optimale vis-à-vis de la rigidité de renfort visée. De façon plus générale, pour une armature de sommet constituée par 2n couches de sommet, la masse linéique des renforts constitutifs de chaque couche de sommet est avantageusement au moins égale à 6/n g/m et au plus égale à 13/n g/m. Advantageously, in the case where the crown reinforcement consists of two crown layers, the linear mass of a metallic reinforcement of crown crown is at least equal to 6 g / m and at most equal to 13 g / m. The linear mass of a metal reinforcement is the metal mass of a reinforcement portion having a unit length of 1 m. The linear mass is correlated to the module in extension of the reinforcement, therefore to its rigidity. Consequently, this range of linear mass values has been considered optimal with respect to the target stiffness of reinforcement. More generally, for a crown reinforcement constituted by 2n layers crown, the linear mass of the reinforcements constituting each crown layer is advantageously at least equal to 6 / ng / m and at most equal to 13 / ng / m.
[0030] Selon un mode de réalisation préféré des renforts métalliques, tout renfort métallique de couche de sommet est un câble multi-toron de structure lxN comprenant une unique couche de N torons de diamètre DT enroulés en hélice ayant un angle AT et un rayon de courbure RT, chaque toron comprenant une couche interne de M fils internes enroulés en hélice et une couche externe de P fils externes enroulés en hélice autour de la couche interne. C’est un type de renfort métallique couramment utilisé dans le domaine pneumatique. According to a preferred embodiment of the metallic reinforcements, any metallic reinforcement of the top layer is a multi-strand cable of lxN structure comprising a single layer of N strands of diameter DT wound in a helix having an angle AT and a radius of RT curvature, each strand comprising an internal layer of M internal wires wound in a helix and an external layer of P external wires wound in a helix around the internal layer. It is a type of metallic reinforcement commonly used in the pneumatic field.
[0031] Le plus souvent tous les torons ont le même diamètre DT. Chaque toron est enroulé en hélice autour de l’axe du câble, cette hélice étant caractérisée par un pas d’hélice PT, un angle d’hélice AT et un rayon de courbure RT. Le pas d’hélice PT est la distance au bout de laquelle le toron a fait un tour d’hélice complet. Le rayon de courbure RT est calculé selon la relation RT=PT/ (p * Sin (2* AT)). Most often all the strands have the same diameter DT. Each strand is wound in a helix around the axis of the cable, this helix being characterized by a helix pitch PT, a helix angle AT and a radius of curvature RT. The propeller pitch PT is the distance at the end of which the strand has made a full propeller turn. The radius of curvature RT is calculated according to the relation RT = PT / (p * Sin (2 * AT)).
[0032] Dans le cas particulier où les renforts métalliques de couche de sommet sont des câbles multi-torons, l’angle d’hélice AT d’un toron est avantageusement au moins égal à 20° et au plus égal à 30°. Cette plage de valeurs d’angle d’hélice AT d’un toron conditionne la géométrie du câble et, en particulier, la courbure des torons qui impacte le niveau de déformation critique de flambage en compression E0 et contribue à l’obtention d’une valeur au moins égale à 3%. In the particular case where the metallic reinforcements of the top layer are multi-strand cables, the helix angle AT of a strand is advantageously at least equal to 20 ° and at most equal to 30 °. This range of values of helix angle AT of a strand conditions the geometry of the cable and, in particular, the curvature of the strands which impacts the level of critical buckling deformation in compression E0 and contributes to obtaining a value at least equal to 3%.
[0033] Toujours dans le cas particulier où les renforts métalliques de couche de sommet sont des câbles multi-torons, le rapport RT/DT entre le rayon de courbure d’hélice d’un toron RT et le diamètre d’un toron DT est également avantageusement au plus égal à 5. Cette valeur maximale du rapport RT/DT est un critère qui contribue également à un niveau de déformation critique de flambage en compression E0 au moins égal à 3%. Still in the particular case where the metal reinforcements of the top layer are multi-strand cables, the ratio RT / DT between the helix radius of curvature of a strand RT and the diameter of a strand DT is also advantageously at most equal to 5. This maximum value of the RT / DT ratio is a criterion which also contributes to a level of critical buckling deformation in compression E0 at least equal to 3%.
[0034] Dans le cas où l’armature de sommet est constituée par deux couches de sommet et où les renforts métalliques de couche de sommet sont des câbles multi-torons, le diamètre D d’un renfort métallique de couche de sommet est encore avantageusement au moins égal à 1.4 mm et au plus égal à 3 mm. Cette plage de valeurs de diamètre D est compatible avec la plage de valeurs visées pour la masse linéique de renfort. De tels renforts sont obtenus à partir d’assemblage de fils en acier ayant généralement un diamètre au plus égal à 0.35 mm, voire au plus égal à 0.28 mm. [0035] Toujours dans le cas où l’armature de sommet est constituée par deux couches de sommet, la résistance à rupture R d’une couche de sommet est au moins égale à 500 N/mm et au plus égale à 1500 N/mm. La résistance à rupture R d’une couche de sommet est égale à la force à rupture unitaire, en N, d’un renfort métallique divisée par le pas, en mm, c’est-à-dire la distance entre deux renforts consécutifs. La résistance à rupture R conditionne, en particulier, la résistance à l’éclatement sous pression du pneumatique, avec un coefficient de sécurité donné. In the case where the crown reinforcement is constituted by two crown layers and where the metallic reinforcements of crown crown are multi-strand cables, the diameter D of a metallic reinforcement of crown crown is still advantageously at least equal to 1.4 mm and at most equal to 3 mm. This range of values of diameter D is compatible with the range of values targeted for the linear reinforcement mass. Such reinforcements are obtained from an assembly of steel wires generally having a diameter at most equal to 0.35 mm, or even at most equal to 0.28 mm. Still in the case where the crown reinforcement is constituted by two crown layers, the breaking strength R of a crown layer is at least equal to 500 N / mm and at most equal to 1500 N / mm . The breaking strength R of a crown layer is equal to the unit breaking strength, in N, of a metal reinforcement divided by the pitch, in mm, that is to say the distance between two consecutive reinforcements. The breaking strength R conditions, in particular, the bursting resistance under pressure of the tire, with a given safety factor.
[0036] Selon un mode de réalisation avantageux de l’armature de sommet, l’armature de sommet comprend au moins une couche de frettage comprenant des renforts enrobés dans un matériau élastomérique, parallèles entre eux et formant, avec la direction circonférentielle (XX’), un angle B au plus égal à 10°. Une couche de frettage a pour fonction de participer à la reprise des sollicitations mécaniques de gonflage et, également, à l’amélioration de l’endurance de l’armature de sommet par une rigidifïcation de celle-ci, lorsque le pneumatique est écrasé sous une charge radiale et, en particulier, soumis à un angle de dérive autour de la direction radiale. Parmi les couches de frettage, on distingue les couches de frettage dites à angles fermés, c’est-à-dire dont les renforts forment, avec la direction circonférentielle, des angles au moins égaux à 5° et au plus égaux à 10°, et les couches de frettage circonférentielles, plus précisément sensiblement circonférentielles, c’est-à-dire dont les renforts forment, avec la direction circonférentielle, des angles au plus égaux à 5° et pouvant être nuis. Les couches de frettage à angles fermés comprennent des renforts ayant des extrémités libres au niveau des extrémités axiales des couches de frettage. Les couches de frettage circonférentielles comprennent des renforts n’ayant pas d’extrémités libres au niveau des extrémités axiales des couches de frettage, car les couches de frettage circonférentielles sont obtenues le plus souvent par l’enroulement circonférentiel d’une nappe de renforts ou par l’enroulement circonférentiel d’un renfort. Les renforts de couche de frettage peuvent être soit continus, soit fractionnés. Les renforts de couche de frettage peuvent être soit métalliques, soit textiles. According to an advantageous embodiment of the crown reinforcement, the crown reinforcement comprises at least one hooping layer comprising reinforcements coated in an elastomeric material, parallel to each other and forming, with the circumferential direction (XX ' ), an angle B at most equal to 10 °. The function of a hooping layer is to participate in the resumption of mechanical inflation stresses and, also, in improving the endurance of the crown reinforcement by stiffening it when the tire is crushed under a radial load and, in particular, subject to a drift angle around the radial direction. Among the hooping layers, a distinction is made between hooping layers known as closed angles, that is to say whose reinforcements form, with the circumferential direction, angles at least equal to 5 ° and at most equal to 10 °, and the circumferential hooping layers, more precisely substantially circumferential, that is to say whose reinforcements form, with the circumferential direction, angles at most equal to 5 ° and which may be harmful. The closed angle hoop layers include reinforcements having free ends at the axial ends of the hoop layers. The circumferential hooping layers comprise reinforcements having no free ends at the axial ends of the hooping layers, because the circumferential hooping layers are most often obtained by the circumferential winding of a reinforcement ply or by the circumferential winding of a reinforcement. The hoop layer reinforcements can be either continuous or split. The hoop layer reinforcements can be either metallic or textile.
[0037] Selon un autre mode de réalisation avantageux de l’armature de sommet, l’armature de sommet comprend au moins une couche de sommet additionnelle comprenant des renforts métalliques enrobés dans un matériau élastomérique, parallèles entre eux et formant, avec la direction circonférentielle, un angle C au moins égal à 60° et au plus égal à 90°. Cette couche de sommet additionnelle comprend des renforts métalliques, non nécessairement élastiques et non nécessairement du type de ceux de l’invention et formant, par rapport à la direction circonférentielle, des angles compris entre 60° et 90°. Ces angles sont plus élevés que ceux formés par les renforts élastiques des couches de sommet selon l’invention, généralement compris entre 10° et 40°. Cette couche de sommet additionnelle, radialement positionnée soit à l’intérieur soit à l’extérieur des couches de sommet selon l’invention, et étant le plus souvent découplée desdites couches, c’est-à-dire séparée d’elles par une couche en mélange élastomérique, contribue à la rigidifïcation de l’armature de sommet par un effet de frettage par triangulation avec les autres couches de sommet. According to another advantageous embodiment of the crown reinforcement, the crown reinforcement comprises at least one additional crown layer comprising metal reinforcements coated in an elastomeric material, parallel to each other and forming, with the circumferential direction , an angle C at least equal to 60 ° and at most equal to 90 °. This additional crown layer includes metallic reinforcements, which are not necessarily elastic and not necessarily of the type of those of the invention and forming, with respect to the circumferential direction, angles between 60 ° and 90 °. These angles are higher than those formed by the elastic reinforcements of the crown layers according to the invention, generally between 10 ° and 40 °. This additional crown layer, radially positioned either inside or outside of the crown layers according to the invention, and most often being decoupled from said layers, that is to say separated from them by a layer in elastomeric mixture, contributes to the stiffening of the crown reinforcement by a hooping effect by triangulation with the other crown layers.
[0038] Le plus souvent l’armature de carcasse comprend au moins une couche de carcasse comprenant des renforts textiles enrobés dans un matériau élastomérique, parallèles entre eux et formant, avec la direction circonférentielle, un angle D au moins égal à 85° et au plus égal à 95°. Mais un angle D inférieur, typiquement au moins égal à 65°, est également envisageable. Most often the carcass reinforcement comprises at least one carcass layer comprising textile reinforcements coated in an elastomeric material, mutually parallel and forming, with the circumferential direction, an angle D at least equal to 85 ° and at more equal to 95 °. But a lower angle D, typically at least equal to 65 °, is also conceivable.
[0039] Selon un mode de réalisation usuel de la bande de roulement, la bande de roulement est constituée d’une première et d’une seconde rangées de barrettes s’étendant radialement vers l’extérieur à partir d’une surface portante et disposées en chevrons par rapport au plan équatorial du pneumatique. According to a usual embodiment of the tread, the tread consists of first and second rows of bars extending radially outward from a bearing surface and arranged in chevrons relative to the equatorial plane of the tire.
[0040] L’invention est applicable en particulier à un pneumatique radial pour roue motrice d’un tracteur agricole, et encore plus particulièrement à un pneumatique IF (Improved Flexion), avec une pression de gonflage minimale recommandée généralement égale à 240 kPa, et un pneumatique VF (Very High Flexion), avec une pression de gonflage minimale recommandée généralement égale à 160 kPa. Elle peut même être étendue à un pneumatique gonflé à une basse pression, telle que recommandée pour un pneumatique VF, mais ayant une capacité de charge supérieure à celle d’un pneumatique VF. The invention is applicable in particular to a radial tire for the drive wheel of an agricultural tractor, and even more particularly to an IF (Improved Flexion) tire, with a minimum recommended inflation pressure generally equal to 240 kPa, and a VF (Very High Flexion) tire, with a minimum recommended inflation pressure generally equal to 160 kPa. It can even be extended to a tire inflated to a low pressure, as recommended for a VF tire, but having a load capacity greater than that of a VF tire.
[0041] Les caractéristiques de l’invention sont illustrées par les figures 1 à 7 schématiques et non représentées à l’échelle: The characteristics of the invention are illustrated by Figures 1 to 7 schematic and not shown to scale:
-Figure 1 : Demi-coupe méridienne de pneumatique pour véhicule agricole selon l’invention -Figure 1: Half-cut meridian of tire for agricultural vehicle according to the invention
-Figure 2 : Exemple-type de courbe force de traction-allongement type d’un renfort métallique élastique selon l’invention, enrobé par un matériau élastomérique -Figure 2: Typical example of a typical tensile force-elongation curve of an elastic metal reinforcement according to the invention, coated with an elastomeric material
-Figure 3 : Courbes contrainte de traction-allongement pour deux exemples particuliers de renfort métallique élastique selon l’invention (E12.23 et E24.26), enrobé par un matériau élastomérique -Figure 3: Tensile stress-elongation curves for two particular examples of elastic metallic reinforcement according to the invention (E12.23 and E24.26), coated with an elastomeric material
-Figure 4 : Exemple-type de courbe force de compression-déformation en compression d’un renfort métallique élastique selon l’invention, obtenu sur une éprouvette en matériau élastomérique -Figure 4: Typical example of compression force-compression deformation curve of a elastic metal reinforcement according to the invention, obtained on a test piece of elastomeric material
-Figures 5 et 6 : Formules d’assemblage de deux exemples particuliers de renfort métallique élastique selon l’invention (E18.23 et E24.26) -Figures 5 and 6: Formulas for assembling two particular examples of elastic metallic reinforcement according to the invention (E18.23 and E24.26)
-Figure 7 : Vue de face d’un pneumatique pour véhicule agricole avec bande de roulement à barrettes. -Figure 7: Front view of a tire for an agricultural vehicle with bar tread.
[0042] La figure 1 représente une demi-coupe méridienne, dans un plan méridien YZ passant par l’axe de rotation YY’ du pneumatique, d’un pneumatique 1 pour véhicule agricole comprenant une armature de sommet 3 radialement intérieure à une bande de roulement 2 et radialement extérieure à une armature de carcasse 4. L’armature de sommet 3 comprend deux couches de sommet (31, 32), comprenant chacune des renforts métalliques enrobés dans un matériau élastomérique, parallèles entre eux et formant, avec une direction circonférentielle (XX’), un angle A au moins égal à 10° (non représenté). L’armature de sommet 4 comprend trois couches de carcasse comprenant des renforts textiles enrobés dans un matériau élastomérique, parallèles entre eux et formant, avec la direction circonférentielle (XX’), un angle D au moins égal à 85° et au plus égal à 95° (non représenté). FIG. 1 represents a meridian half-section, in a meridian plane YZ passing through the axis of rotation YY ′ of the tire, of a tire 1 for an agricultural vehicle comprising a crown reinforcement 3 radially internal to a strip of bearing 2 and radially external to a carcass reinforcement 4. The crown reinforcement 3 comprises two crown layers (31, 32), each comprising metal reinforcements coated in an elastomeric material, mutually parallel and forming, with a circumferential direction (XX '), an angle A at least equal to 10 ° (not shown). The crown reinforcement 4 comprises three carcass layers comprising textile reinforcements coated in an elastomeric material, mutually parallel and forming, with the circumferential direction (XX '), an angle D at least equal to 85 ° and at most equal to 95 ° (not shown).
[0043] La figure 2 est un exemple-type de courbe force de traction-allongement relatif d’un renfort métallique élastique selon l’invention, enrobé par un matériau élastomérique, représentant son comportement élastique en extension. La force de traction F est exprimée en N et l’allongement A est un allongement relatif, exprimé en %. Selon l’invention, la loi de comportement en extension, élastique et bi-module, comprend une première portion et une deuxième portion. La première portion est délimitée par deux points dont les ordonnées correspondent respectivement à une force de traction nulle et une force de traction égale à 87 N, les abscisses respectives étant les allongements relatifs correspondants (en %). On peut définir une première rigidité en extension KG1, représentant la pente de la droite sécante passant par l’origine du repère, dans lequel est représentée la loi de comportement, et le point de transition entre les première et deuxième portions. Sachant que par définition, la rigidité en extension KG1 est égale au produit du module en extension MG1 par la surface S de la section du renfort, on peut en déduire aisément le module en extension MG1. La deuxième portion est l’ensemble des points correspondant à une force de traction supérieure à 87 N. De même, pour cette deuxième portion, on peut définir une deuxième rigidité en extension KG2, représentant la pente d’une droite passant par deux points positionnés dans une partie sensiblement linéaire de la deuxième portion. Dans l’exemple représenté, les deux points ont pour ordonnées respectives F = 285 N et F = 385 N, ces valeurs de force de traction correspondant à des niveaux de sollicitations mécaniques représentatifs de ceux qui sont appliqués aux renforts métalliques des couches de sommet, au cours du roulage du pneumatique étudié. Comme décrit précédemment KG2 = MG2*S, donc on peut en déduire le module en extension MG2. Figure 2 is a typical example of a tensile force-relative elongation curve of an elastic metal reinforcement according to the invention, coated with an elastomeric material, representing its elastic behavior in extension. The tensile force F is expressed in N and the elongation A is a relative elongation, expressed in%. According to the invention, the law of behavior in extension, elastic and bi-module, comprises a first portion and a second portion. The first portion is delimited by two points, the ordinates of which correspond respectively to a zero tensile force and a tensile force equal to 87 N, the respective abscissae being the corresponding relative elongations (in%). One can define a first rigidity in extension KG1, representing the slope of the secant line passing by the origin of the reference mark, in which the constitutive law is represented, and the point of transition between the first and second portions. Knowing that by definition, the rigidity in extension KG1 is equal to the product of the module in extension MG1 by the surface S of the section of the reinforcement, we can easily deduce the module in extension MG1. The second portion is the set of points corresponding to a tensile force greater than 87 N. Similarly, for this second portion, we can define a second rigidity in extension KG2, representing the slope of a straight line passing through two positioned points in a substantially linear part of the second portion. In the example shown, the two points have for respective ordinates F = 285 N and F = 385 N, these tensile force values corresponding to levels of mechanical stress representative of those which are applied to the metal reinforcements of the crown layers, during the rolling of the tire under study. As described above KG2 = MG2 * S, so we can deduce the extension module MG2 from it.
[0044] La figure 3 représente deux courbes contrainte de traction-allongement, la contrainte de traction F/S, exprimée en MPa, étant égale au rapport entre la force de traction F, exprimée en N, appliquée au renfort, et la surface S de la section du renfort, exprimée en mm2, et l’allongement A étant l’allongement relatif du renfort, exprimée en %. La surface S de la section du renfort est la section de métal égale à ML/p, ML étant la masse linéique du renfort, exprimée en g/m, et p étant la masse volumique constitutive du renfort, exprimée en g/cm3 (par exemple la masse volumique p de l’acier laitonné est égale à 7.77 g/cm3). Ces courbes sont les lois de comportement en extension respectives de deux exemples de renforts élastiques multi-torons E18.23 et E24.26 enrobés par un matériau élastomérique. De ces courbes, on peut déduire directement les premier et deuxième modules en extension MG1 et MG2. Selon l’invention, pour chacune des lois de comportement représentées, le premier module en extension MG1 est au plus égal à 30 GPa, et le deuxième module en extension MG2 est au moins égal à 2 fois le premier module en extension MG1. FIG. 3 represents two tensile stress-elongation curves, the tensile stress F / S, expressed in MPa, being equal to the ratio between the tensile force F, expressed in N, applied to the reinforcement, and the surface S of the section of the reinforcement, expressed in mm 2 , and the elongation A being the relative elongation of the reinforcement, expressed in%. The area S of the reinforcement section is the metal section equal to ML / p, ML being the linear mass of the reinforcement, expressed in g / m, and p being the density of the reinforcement, expressed in g / cm3 (by example the density p of the brass-coated steel is equal to 7.77 g / cm 3 ). These curves are the respective laws of behavior in extension of two examples of elastic multi-strand reinforcements E18.23 and E24.26 coated with an elastomeric material. From these curves, we can directly deduce the first and second modules in extension MG1 and MG2. According to the invention, for each of the behavior laws represented, the first module in extension MG1 is at most equal to 30 GPa, and the second module in extension MG2 is at least equal to 2 times the first module in extension MG1.
[0045] La figure 4 est un exemple-type de courbe force de compression-déformation en compression d’un renfort métallique élastique selon l’invention, représentant son comportement élastique en compression. La force de compression F est exprimée en N et la déformation en compression est un écrasement relatif, exprimé en %. Cette loi de comportement en compression, déterminée sur une éprouvette en mélange élastomérique ayant un module d’élasticité en extension sécant à 10% d’allongement MA10 égal à 6 MPa, présente un maximum correspondant à l’apparition du flambage en compression du renfort. Ce maximum est atteint pour une force de compression maximale Fmax, ou force critique de flambage, correspondant à une déformation critique de flambage E0. Au-delà du point de flambage, la force de compression appliquée diminue alors que la déformation continue à augmenter. Selon l’invention, la déformation critique de flambage en compression E0 est au moins égal à 3%. FIG. 4 is a typical example of a compression force-compression deformation curve of an elastic metal reinforcement according to the invention, representing its elastic behavior in compression. The compression force F is expressed in N and the compression strain is a relative crushing, expressed in%. This compression behavior law, determined on an elastomeric mixture test piece having a modulus of elasticity in secant extension at 10% elongation MA10 equal to 6 MPa, has a maximum corresponding to the appearance of buckling in compression of the reinforcement. This maximum is reached for a maximum compression force Fmax, or critical buckling force, corresponding to a critical buckling deformation E0. Beyond the buckling point, the compressive force applied decreases while the deformation continues to increase. According to the invention, the critical buckling deformation in compression E0 is at least equal to 3%.
[0046] Les figures 5 et 6 présentent deux exemples de structures d’assemblage de renforts élastiques multi-torons, modes de réalisation particuliers de l’invention. La figure 5 représente un câble multi-torons de type E18.23 ayant une structure 3*( l+5)*0.23, c’est-à-dire comprenant une unique couche de 3 torons, chaque toron comprenant une couche interne de 1 fil interne enroulé en hélice et une couche externe de 5 fils externes enroulés en hélice autour de la couche interne. Chaque fil est en acier et a un diamètre unitaire égal à 0.23 mm. La figure 6 représente un câble multi-torons de type E24.26 ayant une structure 4*( l+5)*0.26, c’est-à-dire comprenant une unique couche de 4 torons, chaque toron comprenant une couche interne de 1 fil interne enroulé en hélice et une couche externe de 5 fils externes enroulés en hélice autour de la couche interne. Chaque fil est en acier et a un diamètre unitaire égal à 0.26 mm. Ces câbles sont obtenus par retordage. Figures 5 and 6 show two examples of assembly structures of elastic multi-strand reinforcements, particular embodiments of the invention. FIG. 5 represents a multi-strand cable of type E18.23 having a structure 3 * (l + 5) * 0.23, that is to say comprising a single layer of 3 strands, each strand comprising an internal layer of 1 internal wire wound in a helix and an external layer of 5 external wires wound in a helix around the internal layer. Each wire is made of steel and has a unit diameter equal to 0.23 mm. FIG. 6 represents a multi-strand cable of type E24.26 having a structure 4 * (l + 5) * 0.26, that is to say comprising a single layer of 4 strands, each strand comprising an internal layer of 1 inner wire wound in a helix and an outer layer of 5 outer wires wound in a helix around the inner layer. Each wire is made of steel and has a unit diameter equal to 0.26 mm. These cables are obtained by twisting.
[0047] La figure 7 représente une vue de face d’un pneumatique pour véhicule agricole comprenant une bande de roulement à barrettes. Le pneumatique 1 comprend une bande de roulement 2, constituée d’une première et d’une seconde rangées de barrettes 21 s’étendant radialement vers l’extérieur à partir d’une surface portante 22 et disposées en chevrons par rapport au plan équatorial du pneumatique. Comme décrit précédemment, en roulage, ce type de bande de roulement génère des cycles de compression/extension des renforts métalliques des couches de sommet, auxquels résistent mieux des renforts élastiques selon l’invention, avec un grand allongement en extension à faible module et une déformation critique de flambage élevée. FIG. 7 represents a front view of a tire for an agricultural vehicle comprising a tread with bars. The tire 1 comprises a tread 2, consisting of first and second rows of bars 21 extending radially outward from a bearing surface 22 and arranged in chevrons relative to the equatorial plane of the pneumatic. As described above, when running, this type of tread generates compression / extension cycles of the metal reinforcements of the crown layers, which elastic reinforcements according to the invention better resist, with a large elongation in extension with low modulus and a high critical buckling deformation.
[0048] L’invention a été plus particulièrement mise en œuvre pour un pneumatique agricole de dimension 600/70R30 comprenant une armature de sommet avec deux couches de sommet avec des renforts métalliques élastiques de formules E18.23 ou E24.26. The invention was more particularly implemented for an agricultural tire of size 600 / 70R30 comprising a crown reinforcement with two crown layers with elastic metallic reinforcements of formulas E18.23 or E24.26.
[0049] Les caractéristiques géométriques et mécaniques des deux exemples de renforts métalliques élastiques étudiés sont résumées dans le tableau 1 ci-dessous : The geometric and mechanical characteristics of the two examples of elastic metallic reinforcements studied are summarized in Table 1 below:
Figure imgf000015_0001
Figure imgf000016_0001
Figure imgf000015_0001
Figure imgf000016_0001
Tableau 1 Table 1
[0050] Les inventeurs ont testé l’invention en comparant la durée de vie, du point de vue de l’endurance de l’armature de sommet, d’un pneumatique de dimension 600/70R30, comprenant deux couches de sommet avec des renforts métalliques élastiques selon l’invention, à celle d’un pneumatique de référence, comprenant six couches de sommet avec des renforts textiles. Un roulage sur sol goudronné, sous couple, avec un effort circonférentiel Fx appliqué égal à 520 daN, et à une vitesse V égale à 27 km/h a été effectué pour chaque pneumatique, gonflé à une pression P égale à 50 kPa et soumis à une charge Z égale à 2600 daN. The inventors tested the invention by comparing the life, from the point of view of the endurance of the crown reinforcement, of a tire of size 600 / 70R30, comprising two crown layers with reinforcements elastic metal according to the invention, to that of a reference tire, comprising six crown layers with textile reinforcements. Rolling on paved ground, under torque, with a circumferential force F x applied equal to 520 daN, and at a speed V equal to 27 km / h was carried out for each tire, inflated to a pressure P equal to 50 kPa and subjected to a load Z equal to 2600 daN.

Claims

Revendications Claims
1. Pneumatique (1) pour véhicule agricole, comprenant: 1. Tire (1) for agricultural vehicle, comprising:
-une armature de sommet (3), radialement intérieure à une bande de roulement (2) et radialement extérieure à une armature de carcasse (4), a crown reinforcement (3), radially internal to a tread (2) and radially external to a carcass reinforcement (4),
-l’armature de sommet (3) comprenant au moins deux couches de sommet (31, the crown reinforcement (3) comprising at least two crown layers (31,
32), comprenant chacune des renforts métalliques enrobés dans un matériau élastomérique, parallèles entre eux et formant, avec une direction circonférentielle (XX’), un angle A au moins égal à 10°, 32), each comprising metal reinforcements coated in an elastomeric material, mutually parallel and forming, with a circumferential direction (XX ’), an angle A at least equal to 10 °,
caractérisé en ce que tout renfort métallique de couche de sommet (31, 32) a une loi de comportement élastique en extension, dite bi-module, comprenant une première portion ayant un premier module en extension MG1 au plus égal à 30 GPa, et une deuxième portion ayant un deuxième module en extension MG2 au moins égal à 2 fois le premier module en extension MG1, ladite loi de characterized in that any metallic reinforcement of the crown layer (31, 32) has a law of elastic behavior in extension, called bi-module, comprising a first portion having a first module in extension MG1 at most equal to 30 GPa, and a second portion having a second module in MG2 extension at least equal to 2 times the first module in MG1 extension, said law of
comportement en extension étant déterminée pour un renfort métallique enrobé dans un mélange élastomérique ayant un module d’élasticité en extension à 10% d’allongement MA10 au moins égal à 5 MPa et au plus égal à 15 MPa, et en ce que tout renfort métallique de couche de sommet (31, 32) a une loi de behavior in extension being determined for a metallic reinforcement coated in an elastomeric mixture having a modulus of elasticity in extension at 10% elongation MA10 at least equal to 5 MPa and at most equal to 15 MPa, and in that any metallic reinforcement vertex layer (31, 32) has a law of
comportement en compression, caractérisée par une déformation critique de flambage en compression E0 au moins égal à 3%, ladite loi de comportement en compression étant déterminée sur une éprouvette constituée par un renfort placé en son centre et enrobé par un volume parallélépipédique de mélange élastomérique ayant un module d’élasticité en extension à 10% d’allongement MA10 au moins égal à 5 MPa et au plus égal à 15 MPa. behavior in compression, characterized by a critical buckling deformation in compression E0 at least equal to 3%, said law of behavior in compression being determined on a test piece constituted by a reinforcement placed in its center and coated by a parallelepipedic volume of elastomeric mixture having a modulus of elasticity in extension at 10% elongation MA10 at least equal to 5 MPa and at most equal to 15 MPa.
2. Pneumatique (1) selon la revendication 1, l’armature de sommet (3) étant 2. A tire (1) according to claim 1, the crown reinforcement (3) being
constituée par deux couches de sommet (31, 32) et tout renfort métallique de couche de sommet (31, 32) ayant une masse linéique exprimée en g/m, dans lequel la masse linéique d’un renfort métallique de couche de sommet (31, 32) est au moins égale à 6 g/m et au plus égale à 13 g/m. consisting of two top layers (31, 32) and any metallic top layer reinforcement (31, 32) having a linear mass expressed in g / m, in which the linear mass of a metallic top layer reinforcement (31 , 32) is at least equal to 6 g / m and at most equal to 13 g / m.
3. Pneumatique (1) selon l’une des revendications 1 ou 2, dans lequel tout renfort métallique de couche de sommet (31, 32) est un câble multi-toron de structure lxN comprenant une unique couche de N torons de diamètre DT enroulés en hélice ayant un angle AT et un rayon de courbure RT, chaque toron comprenant une couche interne de M fils internes enroulés en hélice et une couche externe de P fils externes enroulés en hélice autour de la couche interne. 3. A tire (1) according to one of claims 1 or 2, in which any metallic reinforcement of the crown layer (31, 32) is a multi-strand cable of lxN structure comprising a single layer of N strands of DT diameter wound. helically having an angle AT and a radius of curvature RT, each strand comprising a inner layer of M inner wires wound in a helix and an outer layer of P outer wires wound in a helix around the inner layer.
4. Pneumatique (1) selon la revendication 3, dans lequel l’angle d’hélice AT d’un toron est au moins égal à 20° et au plus égal à 30°. 4. A tire (1) according to claim 3, in which the helix angle AT of a strand is at least equal to 20 ° and at most equal to 30 °.
5. Pneumatique (1) selon Tune quelconque des revendications 3 ou 4, l’armature de sommet (3) étant constituée par deux couches de sommet (31, 32) et tout renfort métallique de couche de sommet (31, 32) ayant un diamètre D, dans lequel le diamètre D d’un renfort métallique de couche de sommet (31, 32) est au moins égal à 1.4 mm et au plus égal à 3 mm. 5. A tire (1) according to any one of claims 3 or 4, the crown reinforcement (3) being constituted by two crown layers (31, 32) and any metallic crown layer reinforcement (31, 32) having a diameter D, in which the diameter D of a metallic reinforcement of the top layer (31, 32) is at least equal to 1.4 mm and at most equal to 3 mm.
6. Pneumatique (1) selon Tune quelconque des revendications 1 à 5, l’armature de sommet (3) étant constituée par deux couches de sommet (31, 32) et une couche de sommet (31 , 32) ayant une résistance à rupture R exprimée en N/mm, dans lequel la résistance à rupture R d’une couche de sommet (31, 32) est au moins égale à 500 N/mm et au plus égale à 1500 N/mm. 6. A tire (1) according to any one of claims 1 to 5, the crown reinforcement (3) being constituted by two crown layers (31, 32) and a crown layer (31, 32) having a breaking strength R expressed in N / mm, in which the breaking strength R of a crown layer (31, 32) is at least equal to 500 N / mm and at most equal to 1500 N / mm.
7. Pneumatique (1) selon Tune quelconque des revendications 1 à 6, dans lequel l’armature de sommet (3) comprend au moins une couche de frettage (33) comprenant des renforts enrobés dans un matériau élastomérique, parallèles entre eux et formant, avec la direction circonférentielle (XX’), un angle B au plus égal à 10° . 7. A tire (1) according to any one of claims 1 to 6, in which the crown reinforcement (3) comprises at least one hooping layer (33) comprising reinforcements coated in an elastomeric material, parallel to each other and forming, with the circumferential direction (XX '), an angle B at most equal to 10 °.
8. Pneumatique (1) selon Tune quelconque des revendications 1 à 7, dans lequel l’armature de sommet (3) comprend au moins une couche de sommet additionnelle comprenant des renforts métalliques enrobés dans un matériau élastomérique, parallèles entre eux et formant, avec la direction circonférentielle (XX’), un angle C au moins égal à 60° et au plus égal à 90°. 8. A tire (1) according to any one of claims 1 to 7, in which the crown reinforcement (3) comprises at least one additional crown layer comprising metallic reinforcements coated in an elastomeric material, mutually parallel and forming, with the circumferential direction (XX '), an angle C at least equal to 60 ° and at most equal to 90 °.
9. Pneumatique (1) selon Tune quelconque des revendications 1 à 8, dans lequel l’armature de carcasse (4) comprend au moins une couche de carcasse (41) comprenant des renforts textiles enrobés dans un matériau élastomérique, parallèles entre eux et formant, avec la direction circonférentielle (XX’), un angle D au moins égal à 85° et au plus égal à 95°. 9. A tire (1) according to any one of claims 1 to 8, in which the carcass reinforcement (4) comprises at least one carcass layer (41) comprising textile reinforcements coated in an elastomeric material, mutually parallel and forming , with the circumferential direction (XX '), an angle D at least equal to 85 ° and at most equal to 95 °.
10. Pneumatique (1) selon Tune quelconque des revendications 1 à 9, dans lequel la bande de roulement (2) est constituée d’une première et d’une seconde rangées de barrettes (21) s’étendant radialement vers l’extérieur à partir d’une surface portante (22) et disposées en chevrons par rapport au plan équatorial (XZ) du pneumatique. 10. A tire (1) according to any one of claims 1 to 9, in which the tread (2) consists of first and second rows of bars (21) extending radially outwardly. from a surface bearing (22) and arranged in chevrons relative to the equatorial plane (XZ) of the tire.
PCT/FR2019/053022 2018-12-19 2019-12-11 Vehicle tyre comprising a stiffening structure WO2020128236A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/416,047 US20220134805A1 (en) 2018-12-19 2019-12-11 Vehicle Tire Comprising a Stiffening Structure
RU2021114444A RU2766023C1 (en) 2018-12-19 2019-12-11 Vehicle tire comprising reinforcement structure
EP19839388.6A EP3898278B1 (en) 2018-12-19 2019-12-11 Vehicle tyre comprising a stiffening structure
CN201980083066.2A CN113226798B (en) 2018-12-19 2019-12-11 Vehicle tyre comprising a reinforcing structure
BR112021010935-8A BR112021010935A2 (en) 2018-12-19 2019-12-11 Vehicle tire comprising a stiffening structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1873322 2018-12-19
FR1873322A FR3090494A3 (en) 2018-12-19 2018-12-19 Vehicle tire comprising a stiffening structure.
FR1901038 2019-02-04
FR1901038A FR3090493B1 (en) 2018-12-19 2019-02-04 A tire for a vehicle comprising a stiffening structure.

Publications (1)

Publication Number Publication Date
WO2020128236A1 true WO2020128236A1 (en) 2020-06-25

Family

ID=69182541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/053022 WO2020128236A1 (en) 2018-12-19 2019-12-11 Vehicle tyre comprising a stiffening structure

Country Status (1)

Country Link
WO (1) WO2020128236A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022049345A1 (en) * 2020-09-04 2022-03-10 Compagnie Generale Des Etablissements Michelin Tyre for high-power agricultural vehicle
WO2022049346A1 (en) * 2020-09-04 2022-03-10 Compagnie Generale Des Etablissements Michelin Agricultural vehicle tyre with lightweight crown
WO2022049347A1 (en) * 2020-09-04 2022-03-10 Compagnie Generale Des Etablissements Michelin Large-sized tire for agricultural vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09226318A (en) * 1996-02-23 1997-09-02 Bridgestone Corp Pneumatic radial tire for bad road running
EP2218588A1 (en) * 2009-02-16 2010-08-18 Sumitomo Rubber Industries, Ltd. Motorcycle tire and method for manufacturing the same
EP2641751A1 (en) * 2011-01-25 2013-09-25 Bridgestone Corporation Agricultural tire
EP2934917A1 (en) 2012-12-21 2015-10-28 Bridgestone Americas Tire Operations, LLC Agricultural radial implement tire
US20160152082A1 (en) * 2013-08-01 2016-06-02 Nv Bekaert Sa High elongation steel cord and pneumatic tire comprising said cord

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09226318A (en) * 1996-02-23 1997-09-02 Bridgestone Corp Pneumatic radial tire for bad road running
EP2218588A1 (en) * 2009-02-16 2010-08-18 Sumitomo Rubber Industries, Ltd. Motorcycle tire and method for manufacturing the same
EP2641751A1 (en) * 2011-01-25 2013-09-25 Bridgestone Corporation Agricultural tire
EP2934917A1 (en) 2012-12-21 2015-10-28 Bridgestone Americas Tire Operations, LLC Agricultural radial implement tire
US20160152082A1 (en) * 2013-08-01 2016-06-02 Nv Bekaert Sa High elongation steel cord and pneumatic tire comprising said cord

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022049345A1 (en) * 2020-09-04 2022-03-10 Compagnie Generale Des Etablissements Michelin Tyre for high-power agricultural vehicle
WO2022049346A1 (en) * 2020-09-04 2022-03-10 Compagnie Generale Des Etablissements Michelin Agricultural vehicle tyre with lightweight crown
WO2022049347A1 (en) * 2020-09-04 2022-03-10 Compagnie Generale Des Etablissements Michelin Large-sized tire for agricultural vehicle
FR3113867A1 (en) * 2020-09-04 2022-03-11 Compagnie Generale Des Etablissements Michelin Tire for high power agricultural vehicle
FR3113866A1 (en) * 2020-09-04 2022-03-11 Compagnie Generale Des Etablissements Michelin Large agricultural vehicle tire
FR3113868A1 (en) * 2020-09-04 2022-03-11 Compagnie Generale Des Etablissements Michelin Light Top Agricultural Vehicle Tire
EP4208356A1 (en) * 2020-09-04 2023-07-12 Compagnie Generale Des Etablissements Michelin Large-sized tire for agricultural vehicle

Similar Documents

Publication Publication Date Title
EP3898278B1 (en) Vehicle tyre comprising a stiffening structure
EP1750954B1 (en) Heavy vehicle tyre
EP3046781B1 (en) Tire including a reinforcement for reinforcing a sidewall
FR2857620A1 (en) Pneumatic tire for heavy vehicle has crown block thickness reducing towards edges and tread width greater than 90 per cent of maximum axial tire width
EP3484726B1 (en) Tyre with a reduced-weight bead region
EP3356161A1 (en) Tyre for passenger vehicle
WO2020128236A1 (en) Vehicle tyre comprising a stiffening structure
FR2857621A1 (en) Tire for heavy vehicle has thickness of crown block reducing towards outer shoulder and crown reinforcing layers at least half width of tread
WO2010115891A1 (en) Tyre for heavy vehicles comprising a layer of peripheral reinforcement elements
EP3600917A1 (en) Tyre for passenger vehicle
FR3050962A1 (en) PNEUMATIC WITH BOURRELET'S ZONE IS ALLEGEE
EP3484728B1 (en) Tyre with a reduced-weight bead region
WO2020201028A1 (en) Tire for agricultural vehicle comprising an improved tread
FR3053926A1 (en) PNEUMATIC COMPRISING A CARCASE REINFORCEMENT CONSISTING OF TWO LAYERS
EP3713777B1 (en) Tyre for passenger vehicle
EP3655264B1 (en) Tyre with a reduced-weight bead region
FR3050961A1 (en) PNEUMATIC WITH BOURRELET'S ZONE IS ALLEGEE
CA3163256A1 (en) Optimized architecture of heavy-duty tires of the agricultural or civil engineering type
EP4065385B1 (en) Tyre comprising a tread formed by multiple elastomer blends
EP3823846B1 (en) Tyre having a reduced weight bead region
EP4003758A1 (en) Tyre for a heavy civil-engineering vehicle with a simplified crown reinforcement
CA3157621A1 (en) Tyre comprising a tread formed by multiple elastomer blends
WO2020065176A1 (en) Tyre having a reduced-weight bead region

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19839388

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021010935

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019839388

Country of ref document: EP

Effective date: 20210719

ENP Entry into the national phase

Ref document number: 112021010935

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210604