WO2020128131A1 - Procedimiento para la obtención de membrana de huevo soluble - Google Patents

Procedimiento para la obtención de membrana de huevo soluble Download PDF

Info

Publication number
WO2020128131A1
WO2020128131A1 PCT/ES2019/070862 ES2019070862W WO2020128131A1 WO 2020128131 A1 WO2020128131 A1 WO 2020128131A1 ES 2019070862 W ES2019070862 W ES 2019070862W WO 2020128131 A1 WO2020128131 A1 WO 2020128131A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
product
water
egg
carried out
Prior art date
Application number
PCT/ES2019/070862
Other languages
English (en)
French (fr)
Inventor
Peio Mª LIZARRAGA SENAR
Original Assignee
Torolis Explotaciones S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Torolis Explotaciones S.L. filed Critical Torolis Explotaciones S.L.
Publication of WO2020128131A1 publication Critical patent/WO2020128131A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L15/00Egg products; Preparation or treatment thereof

Definitions

  • the present intervention is related to a procedure for the production of the internal membrane of the soluble micronized egg shell.
  • the present intervention is related to innovations introduced in grinding the internal membrane of the eggshell previously extracted and pasteurized from! product obtained.
  • the invention could be framed in the field of food processing for the extraction of products beneficial to health.
  • the inventors have developed an innovative and unique procedure, which avoids the aforementioned drawbacks and which generally includes micronization up to a size of between 0.5 pm and 100 p of the infernal membrane of the eggshell and a pre-treatment comprising different physicochemical stages, to eliminate the shell, egg ciara and other impurities that the product can drag.
  • a prolonged oxidation process is carried out in water with temperature cycles and retention time, in order to improve the product, preparing it for the subsequent phases, and low-temperature drying is carried out in a fluidized bed system at a lower temperature at 40 ° C, which together allows to increase the solubility of the product in water only through these physicochemical treatments.
  • the field of application of the product obtained by the method of the invention is very wide, from offering the product in ampoules or other devices to be drunk, to food applications as a base or added to beverages, drinkable yogurts, etc. and in cosmetic and dermatological treatment products.
  • the process of the invention allows to obtain a micronized egg membrane in which the qualities and the original composition have not been altered, and therefore the beneficial components for health are maintained.
  • no chemical substance is added for its production, with which a 100% natural product is obtained both in its content, its base and in the manufacturing process.
  • the object of the invention is the development of a technique for obtaining the soluble membrane.
  • the rationale for this technique is based on subjecting the egg membrane to a procedure that includes the following phases
  • the present invention refers to a process for obtaining soluble egg membrane that comprises a step of reducing the particle size of the starting egg membrane by mechanical means to a size of between 0, 5 pm and 100 pm.
  • egg is understood to mean all eggs from laying hens (Gallas gallas domesticas), whether they have undergone an industrial process or have not undergone any prior industrial processing.
  • solubility obtained for egg membrane particles carried out by a different process than that established, below 0.5 pm does not allow the membrane to be solubilized in water and a homogeneous solution is not obtained after stirring, particles remain in suspension. Furthermore, after a period of rest, the solid precipitates. Hey Collagen content of this micronized membrane at sizes less than 0.5 pm also decreases from 34.08% to 8.25%. This is because by decreasing the particle size so much, collagen molecules are also broken down. On the other hand, in larger particles at 100 pm it does not allow the membrane to be solubilized in water and neither is a homogeneous solution achieved after stirring. Therefore, adequate solubility is not achieved outside the indicated range.
  • it further comprises a step prior to size reduction comprising the following sub-stages:
  • step (b) separating the shell and membrane by at least dry screening of the ground product from step (b);
  • step (c) separating the shell and membrane by at least wet sieving of the product obtained from step (c);
  • step (d) introducing the membrane obtained in step (d) into a container with water in an amount of between 10 times and 15 times the volume of the membrane, at a temperature of between 15 ° C and 20 ° C and with stirring for a time between 1.5 h and 2 5 h;
  • step (e) separating the remains of shell, wax and yolk from the membrane obtained in step (e);
  • step (f) centrifuge the product obtained in step (f) and subsequently dry at a temperature between 50 ° C and 60 ° C.
  • step (b) a pre-grinding is carried out, by means of a roller lamination system.
  • the purpose of this system is to break the shell as much as possible without breaking the membrane and to facilitate its separation.
  • the size of the crushed particles will be a! minus 3 mm.
  • the dry sieving of step (c) is carried out by a method selected from among a centrifugal sieve with a 3 mm unit, a vibrating sieve with a 1 mm light and a combination of the above, and where if it is done more than one sieve by dry route, the product obtained prior to each new sieve by dry route is always crushed.
  • a centrifugal sieve with a 3 mm unit a vibrating sieve with a 1 mm light and a combination of the above, and where if it is done more than one sieve by dry route, the product obtained prior to each new sieve by dry route is always crushed.
  • the centrifuge screen Through the centrifuge screen, the particles of higher density and smaller size are segregated.
  • 90% of the shell present in the process is eliminated.
  • the wet screening of step (d) is performed by resonance screening.
  • the resonance screen by a washing tank system with mechanical agitation.
  • residual water from subsequent processes is used, achieving a prewash of the white and other remains of the membrane.
  • the resonance screen has a stainless steel mesh of 0.8 mm of light, and a network of water jets throughout its length in open circuit. In this way the membrane jumps over the screen and the stream of warm water at around 30 ° C facilitates the dragging of small pieces of shell stuck to the membrane.
  • the equipment is 1.5 m long and 0.6 m wide, with this system it is possible to have a shell-free membrane by 96%.
  • step (e) a first cleaning of the membrane is achieved from the clear residues, yolk, and other residues that are found in the membrane.
  • the separation of step (f) comprises aeration by injection of purified air in the form of a microbubble by means of aerators located on a grill bottom and where the volume of the membrane and the water during this aeration must be at least 1/15 of membrane with respect to water.
  • This process also known as softening, allows the membrane elements with a smaller grain size to be separated, separates the remains of white and yolk from the membrane that remain in contact with the membrane, leaving the membrane more complete, thanks to the movement generated by the microbubbles and thus increase the contact surface with more bubbles that continue separating the membrane than with the continuous movement of the membranes are more exposed to the oxygen microbubbles in the air, and a greater opening of the pore of the membrane is achieved and an increase of the specific surface of the membrane obtained; and it is also obtained with a cleaner surface due to the oxidation of the exposed membrane with the O2 of the air of the microbubbles, since it causes a superficial cleaning of the same. In this way, this process serves to prepare the product for subsequent processes.
  • This process produces a deep cleaning and the opening of the pores to favor subsequent drying and grinding processes.
  • floating residues are formed, which are continuously removed and a settling of the heaviest remains, these fall under the grid where the aerators are located and are removed from the circuit.
  • the waste water generated in this process can be reused in the previous process.
  • the container where the process is carried out requires longitudinal walls of 70 ° to facilitate the decanting work and the optimal distribution of the microbubbles that is required for an optimal process.
  • the aeration further comprises two sub-stages
  • the air used for micro-bubbling is generated by a vacuum pump and the air is treated with activated carbon filters.
  • step (g) the drying of step (g) is carried out in a continuous fluidized bed system. In this way the product is in motion while the air circulates.
  • for drying there is a recirculation system controlled by the humidity of the air outlet.
  • any mill designed to reduce particle size can be used in the process of the invention, although preferably the mill used is made up of a static part and a dynamic part, that is, by two grinding chambers.
  • the static part is a peripheral grinding track that connects the power supply to the dynamic part.
  • the particles begin their milling thanks to the impact between a static disk of ribs (peripheral) and the hammers (blades) that they are located in a lower rotating disk of the compartment (horizontal). These hammers at the same time facilitate the passage to the dynamic grinding zone.
  • the movement of the particles is accelerated thanks to the action of the air that is introduced parallel to the feeding of the solid, which in this way the impact allows a greater reduction in the particle size.
  • the solid from the static part enters the dynamic compartment, where it meets a horizontal rotating wheel with shoes or blades. Being horizontal allows a more uniform and symmetrical work compared to the typical vertical wheels used in other grinding systems.
  • the rotary movement of the wheel at high speed allows the classification of the lightest particles that are found forming a dust cloud in the center of the wheel.
  • the separation of the particles is carried out with a stainless cyclone that is basically composed of a vertical cylinder equipped with a tangential inlet, as an acceleration intermediate and a lower cone of product settling with the desired grain size.
  • the method further comprises a heat treatment subsequent to the reduction step for the elimination of pathogens.
  • the heat treatment is a pasteurization of between 3 hours and 8 hours, preferably between 60 and 70 ° C, with the aim of eliminating pathogens such as enterobacteriaceae and reducing mesophilic aerobes with the hygienic-sanitary conditions suitable for be intended for human consumption.
  • Another aspect of the invention is a micronized egg membrane obtained according to the procedure described above. Said membrane is soluble in water and under the conditions required by the market, keeping its properties and benefits intact, and it also avoids carrying out a process of hydroiization of the membrane so that it can be soluble in water.
  • Another aspect of the invention relates to! use of this micronized membrane to obtain collagen and other proteins of interest contained therein, or direct use for food products, nutritional supplements or cosmetic products.
  • the procedure for obtaining a soluble membrane consists of removing the impurities dragged by the membrane at the exit of the industrial process, preparing the product for grinding and pasteurization, to be used in different applications.
  • the product obtained at the outlet reaches a centrifugal screen by means of a mechanical auger system, the resulting product is the membrane with a part of shell adhered egg, this is collected in a hopper and led to a twin rolling system to the rolling system. The outlet from this is led to a vibrating screen.
  • the membrane obtained in this process is 90% shell free. This product is stored at a controlled temperature of 4 ° C, for subsequent processing in a period of time not exceeding 48 hours.
  • the membrane treatment process begins with the loading of the product obtained in the previous phase into a dosing hopper that feeds the resonance screen, which with a sprinkler system irrigates the product as it progresses along the sieve managing to drag the shell in the form of "grits", which has the membrane attached.
  • the product passes from the hopper to a container with mechanical agitation with a large volume of water so that the membrane is released and washed.
  • the resulting product passes through a metallic conveyor belt to the aeration bathtubs, hot phase, for stays for 40 min., And then it is transferred by pump to the next cold bathtub for 2 h. At the end of this process the membrane is ready to dry.
  • Drying begins with the spinning process, the product arrives by pumping the water that is subsequently recovered for the previous cleaning phase.
  • the product goes from! Spinning equipment to the thermal drying process in an oven is fluidized at low temperature, 50-80 ° C, after this drying process, the product reaches a humidity lower than 3%, and the membrane is ready for the grinding process .
  • a cutter with a cutter knife mill is performed and then a separating micronizer mill in stainless steel used for the food industry is used.
  • This grinding system is based on the micronization by impact of the particles on the rotating surfaces, it also has a high rotor speed, which allows reaching the linear speed of up to 120m / s.
  • Example 1 is followed until grinding, where 15 kg of powdered eggshell membrane with a size between 300-600 pm are deposited on which the grinding begins and the product obtained is micronized membrane with a size of between 40 ⁇ 60pm.
  • the final size obtained allows the membrane to be soluble in water and to obtain a product that is of a homogeneous solution after stirring.
  • the amount of fine product! obtained was 1 1, 8 Kg, so in this procedure a yield higher than 90% was obtained again.
  • a small amount of the obtained product 1 g was dissolved 20 ml of demineralized water and obtained by stirring a stable solution. After analyzing the obtained product, the protein content is over 90%, exactly 91, 14%, of which 34.86% is collagen. Regarding the aminogram, the same amino acids that the raw egg membrane presents are obtained, so these results confirm that the natural composition of! product.
  • Example 1 is followed in this process, but grinding uses a tine mill with a speed of 14000 rpm. 5 kg of powdered eggshell membrane with a size between 300-600 pm were deposited in the mill, on which the grinding begins and the product obtained is membrane with a size between 150-200 pm. The final size obtained was not desired as it did not allow the membrane to be solubilized in water and a homogeneous solution was not obtained after stirring.
  • the micronization is carried out in a wet mill to a particle size between 40 nm and 70 nm, by grinding between 10 minutes and 30 minutes at 250 rpm, it is verified that the specific surface of the final product obtained is between 30 m2 / g and 45 m2 / g.
  • the solubility obtained from this material is lower than that obtained by the materials obtained according to Examples 1 to 3, it did not allow the membrane to be solubilized in water and neither was a homogeneous solution obtained after stirring, particles remain in suspension. After a rest period, the solid precipitates.
  • the collagen content decreases from 34.08% to 8.25%. This is because by decreasing the particle size so much, collagen molecules are also broken down.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Meat, Egg Or Seafood Products (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Peptides Or Proteins (AREA)

Abstract

La presente invención se refiere a un procedimiento para obtener membrana de huevo micronizada que es soluble en agua, además de mantener el contenido de proteínas presentes en una membrana de huevo previamente a su procesado. El producto final presenta la ventaja de una mejor solubilidad manteniendo el contenido de proteínas naturalmente presentes y no presenta trazas de productos químicos empleados en otros procesos como la hidrólisis.

Description

Procedimiento para la obtención de membrana de huevo solubie
DESCRIPCION
La presente intervención se relaciona con un procedimiento para la producción de membrana interna de la cáscara de huevo micronizada soluble. La presente intervención se relaciona con innovaciones introducidas en molturados de la membrana interna de la cáscara de huevo previamente extraída y pasteurizado de! producto obtenido.
Por tanto, la invención se podría encuadrar en el campo dei procesado de alimentos para la extracción de productos beneficiosos para la salud.
ESTADO DE LA TÉCNICA
Ya se conoce la producción de membrana de cáscara de huevo mediante la extracción por un sistema mecánico, limpieza, secado y molienda del producto (ES2327087), pero existen ciertos problemas debido a que el producto obtenido debido a su compleja composición no es soluble en agua.
También se conocen diversas técnicas de hidroiización para obtener el producto soluble en agua (ES218158Q), pero sufren ciertas desventajas debido a que se debe emplear en todas ellas tratamientos químicos y temperatura que hacen que los rendimientos obtenidos sean bajos y el producto obtenido es de calidad desigual, empeorándose la composición nutricional y los beneficios.
Hasta el presente existen procedimientos para la membrana hidrolizada cuyos fundamentos están basados en someter a ¡a membrana de huevo en polvo a una extracción sólido-líquido de la proteína presente en la membrana incubándola en una disolución química aplicando temperatura durante un tiempo determinado, con el objetivo de obtener la mayor cantidad de proteína posible en una solución acuosa. Tras la extracción, se ajusta el pH hasta alcanzar el pH neutro (pH 7,00), se centrifuga y se filtra el extracto neutralizado con membranas con tamaño de corte adecuado para que se queden retenidas en la solución la parte proteica es decir las partículas de alto peso molecular, mientras que las partículas de bajo peso molecular atraviesan la membrana. Sin embrago, cuando se somete a la membrana a una extracción proteica mediante tratamiento químico y temperatura se obtiene una solución proteica con muy bajo rendimiento (aproximadamente la mitad) y además se empeora la composición nutricional, decreciendo notablemente ei contenido proteico. Además, ai tener que utilizar durante los procesos algunas disoluciones de productos químicos, la presencia de éstos puede permanecer en el producto final, por io que puede tener repercusiones para la salud del consumidor.
DESCRIPCIÓN PE LA INVENCIÓN
Los inventores han desarrollado un procedimiento innovador y único, que evita ios inconvenientes antes mencionados y que en líneas generales comprende la micronización hasta un tamaño de entre 0,5 pm y 100 p de la membrana inferna de la cáscara de huevo y un pretratamiento que comprende distintas etapas fisicoquímicas, para eliminar la cáscara, ciara de huevo y otras impurezas que pueda arrastrar ei producto. Además, se realiza un proceso de oxidación prolongada en agua con unos ciclos de temperatura y tiempo de retención, con objeto abiandar ei producto, preparándolo para las fases posteriores, y se realiza un secado a baja temperatura en un sistema de lecho fluido a temperatura inferior a 40°C, lo que en conjunto permite aumentar la solubilidad del producto en agua sólo mediante estos tratamientos fisicoquímicos.
Este procedimiento se impíementa en aparatos con un sistema combinado con aire y efecto mecánico que se convierte en una técnica ideal para la molienda de productos duros y sensibles ai calor, en ei que se evita la hidrolización de la membrana para que pueda ser soluble en agua y poder mantener así intactas sus propiedades y beneficios.
Ei campo de aplicación del producto obtenido por el procedimiento de la invención es muy amplio, desde ofrecer el producto en ampollas u otros dispositivos para ser bebido, hasta aplicaciones en alimentación como base o añadido en bebidas, yogures bebibles, etc. y en productos cosméticos y de tratamiento dermatológico. E¡ procedimiento de ¡a invención permite obtener membrana de huevo micronizada en la que no se han alterado las cualidades ni ia composición original, y por tanto ios componentes beneficiosos para la salud se mantienen. Además, no se añade ninguna sustancia química para su producción, con lo que se obtiene un producto 100% natural tanto en su contenido, como en su base y en el proceso de fabricación.
El objeto de la invención es el desarrollo de una técnica para ia obtención de la membrana soluble. El fundamento de esta técnica está basado en someter la membrana de huevo a un procedimiento que comprende las siguientes fases
- Molturado mecánico en ei que se combina un molino mecánico con un clasificador dinámico por aire integrado acoplado a un ciclón que permite ia separación y extracción del material que haya llegado a nivel de tamaño de partícula adecuado para que esa partícula sea soluble sin alterar la composición; y
que además comprende un pretratamiento que comprende las siguientes etapas
- Separación, de ios componentes líquidos
~ Limpieza cáscara por vía seca y vía húmeda
- Limpieza de ciara y otros
- Abíandado
- Secado
Además, comprende un tratamiento térmico posterior a la molienda o molturado.
Por tanto, en un primer aspecto, ia presente invención se refiere a un procedimiento de obtención de membrana de huevo soluble que comprende una etapa de reducción del tamaño de partícula de la membrana de huevo de partida por medios mecánicos a un tamaño de entre 0,5 pm y 100 pm.
En ia presente invención se entiende por“huevo” a todos los huevos procedentes de la puesta de gallinas ( Gallas gallas domesticas) tanto si han sido objeto de un proceso industrial como si no han tenido un procesado industrial previo.
La solubilidad obtenida para partículas de membrana de huevo realizadas por un proceso diferente al establecido, inferiores a 0,5 pm no permite solubiiizar ia membrana en agua y tampoco se consigue una solución homogénea tras ia agitación quedan partículas en suspensión. Además, tras un tiempo de reposo, ei sólido precipita. Ei contenido de colágeno de esta membrana micronizada a tamaños inferiores a 0,5 pm también disminuye de 34,08% a 8,25%. Esto es porque al disminuir tanto el tamaño de partícula, también se rompen las moléculas de colágeno. Por otro lado, en partículas de mayor tamaño a 100 pm no permite solubilizar la membrana en agua y tampoco se consigue una solución homogénea tras la agitación. Por tanto, fuera del rango indicado no se consigue la solubilidad adecuada.
En otra realización preferida del procedimiento, además comprende una etapa previa a la reducción de tamaño que comprende las siguientes subetapas:
a) procesar ai menos un huevo, mediante una fase de ruptura y mezcla de todos ios componentes y centrifugación posterior para la separación de ios componentes líquidos;
b) triturar el producto sólido obtenido en la etapa (a);
c) separar la cáscara y membrana mediante al menos un cribado vía seca del producto triturado de la etapa (b);
d) separar la cáscara y membrana mediante al menos cribado vía húmeda del producto obtenido de la etapa (c);
e) introducir la membrana obtenida en ¡a etapa (d) en un recipiente con agua en una cantidad de entre 10 veces y 15 veces el volumen de membrana, a una temperatura de entre 15 °C y 20 °C y con agitación durante un tiempo de entre 1.5 h y 2 5 h;
f) separar ios restos de cáscara, ciara y yema de ia membrana obtenida en ia etapa (e); y
g) centrifugar el producto obtenido en la etapa (f) y secar posteriormente a una temperatura de entre 50 °C y 60 °C.
En otra realización preferida del procedimiento, en ia etapa (b) se realiza un pretriturado, mediante un sistema de laminado con rodillos. Dicho sistema tiene por objeto de romper al máximo la cáscara sin romper la membrana y facilitar su separación. El tamaño de las partículas trituradas sera de a! menos 3 mm.
En otra realización preferida del procedimiento, la criba por vía seca de ia etapa (c) se realiza mediante un método seleccionado de entre criba centrífuga con una iuz de 3 mm, criba vibrante con una luz de 1 mm y combinación de los anteriores, y donde si se realiza más de una criba por vía seca siempre se realiza un triturado del producto obtenido previamente a cada nueva criba por vía seca. Mediante la criba de centrífuga se segregan las partículas de más densidad y menor tamaño. Medíante la criba vibrante se elimina ei 90% de la cáscara presente en el proceso.
En otra realización preferida del procedimiento, la criba por vía húmeda de la etapa (d) se realiza mediante criba de resonancia. En una realización más preferida la criba de resonancia por un sistema de cuba de lavado con agitación mecánica. En dicha criba por resonancia se utiliza agua residual de procesos posteriores logrando un prelavado de la clara y otros restos de que presenta la membrana. La criba de resonancia tiene una malla de inoxidable de 0.8 mm de luz, y una red chorros de agua en toda su longitud en circuito abierto. De esta forma la membrana salta sobre la criba y el chorro de agua templada a unos 30°C facilita el arrastre de ios pequeños trozos de cáscara pegados en la membrana. El equipo tiene una longitud de 1.5 m de largo y 0.6 m de ancho con este sistema se logra disponer de una membrana libre de cáscara en un 96%.
En la etapa (e) se consigue una primera limpieza de la membrana de los restos clara, yema, y otros restos, que se encuentran en la membrana.
En otra realización preferida del procedimiento, la separación de la etapa (f) comprende una aireación mediante inyección de aire purificado en forma de microburbuja mediante aireadores situados sobre un fondo de parrilla y donde el volumen de la membrana y el agua durante esta aireación debe ser ai menos 1/15 de membrana respecto al agua. Este proceso, también conocido como ablandado, permite separar ¡os elementos de membrana de menor granulometría, separa de la membrana ios restos de clara y yema que quedan en contacto con la membrana, dejando la membrana más entera, gracias al movimiento generado por las propias microburbujas y aumentan así la superficie de contacto con más burbujas que siguen separando la membrana que con el movimiento de las membranas en continuo se exponen más a las microburbujas de oxígeno del aire, y se consigue una mayor apertura del poro de la membrana y un aumento de la superficie específica de la membrana obtenida; y también se obtiene con una superficie más limpia debido a la oxidación de la membrana expuesta con el O2 del aire de las microburbujas, ya que provoca una limpieza superficial de ¡a misma. De esta manera, este proceso sirve para preparar el producto para los procesos posteriores. Este proceso produce una limpieza en profundidad y la apertura de los poros para favorecer ¡os procesos posteriores de secado y de molienda. En esta fase se forman unos residuos flotantes, que son retirados de forma continua y una decantación de ¡os restos más pesados, estos caen bajo ¡a rejilla donde están situado los aireadores y se retiran del circuito. Además, ei agua residual generada en este proceso puede ser reutilizada en el proceso anterior.
El recipiente donde se desarrolla el proceso requiere unas paredes longitudinales de 70° para facilitar la labor de decantación y el reparto óptimo de las microburbujas que se requiere para un proceso óptimo.
En una realización más preferida del procedimiento, ¡a aireación además comprende dos subetapas
(f1) airear en primer lugar con agua a una temperatura de entre 33°C y 45 °C durante un tiempo de retención del producto de entre 35 min y 50 min; y (f2) airear en segundo lugar con agua a una temperatura de entre 1 °C y 15 °C durante un tiempo de retención del producto de entre 105 min y 150 min.
En otra realización preferida del procedimiento, el aire utilizado para el micro burbujeo es generado por una bomba de vacío y el aire es tratado con filtros de carbón activo.
En otra realización preferida del procedimiento, en el secado de la etapa (g) se realiza en un sistema continuo de lecho fluido. De esta forma el producto está en movimiento mientras circula el aire. En una realización más preferida del procedimiento, para ei secado se dispone de un sistema de recircuiación controlado por ¡a humedad de salida del aire.
En otra realización preferida del procedimiento, donde ei tamaño de partícula se reduce entre 40 y 60 pm.
Para la reducción del tamaño de partícula se implementa en aparatos con un sistema combinado con aire y efecto mecánico que se convierte en una técnica ideal para la molienda de productos duros y sensibles al calor. El fundamento de esta técnica está basado en someter la membrana de huevo a un procedimiento mecánico de molturado en el que se combina un molino mecánico con un clasificador dinámico por aire integrado acopiado a un ciclón que permite la separación y extracción del material que haya llegado a nivel de tamaño de partícula adecuado para que esa partícula sea soluble y no se altere la composición.
Cualquier molino diseñado para reducir el tamaño de partícula puede ser empleado en el procedimiento de la invención, aunque preferiblemente el molino empleado está formado por una parte estática y otra dinámica, es decir, por dos cámaras de molienda.
La parte estática se trata de una pista de molienda periférica que conecta ia alimentación con ia parte dinámica, en este compartimento “estático” las partículas inician su molturación gracias al impacto entre un disco estático de nervaduras (periférico) y ios martillos (palas) que se encuentran en un disco de rotación inferior del compartimiento (horizontal). Estos martillos facilitan al mismo tiempo el paso a ia zona dinámica de molturación. El movimiento de las partículas se acelera gracias a ia acción del aire que se introduce en paralelo a ia alimentación dei sólido, que de esta forma el impacto permite una reducción mayor del tamaño de partícula. Por otro lado, en la parte dinámica el sólido proveniente de la parte estática entra ai compartimiento dinámico, donde se encuentra con una rueda horizontal giratoria con zapatas o palas. Ai ser horizontal permite un trabajo más uniforme y simétrico comparado con ias típicas ruedas verticales usadas en otros sistemas de molienda. El movimiento giratorio de la rueda a alta velocidad permite la clasificación de las partículas más ligeras que se encuentran formando una nube de polvo en ei centro de la rueda.
Una vez micronizado ei producto, la separación de ias partículas se realiza con un ciclón inoxidable que esté está compuesto básicamente por un cilindro vertical dotado de una entrada tangencial, como intermedio de aceleración y cono inferior de decantación de producto con la granulometría deseada.
En otra realización preferida del procedimiento, además comprende un tratamiento térmico posterior a la etapa de reducción para la eliminación de patógenos. En una realización más preferida el tratamiento térmico es una pasteurización de entre 3 horas y 8 horas, preferiblemente de entre 60 y 70°C, con el objetivo de la eliminación de agentes patógenos como enterobacterias y reducir los aerobios mesófilos con las condiciones higiénico-sanitarias aptas para ser destinado al consumo humano.
Como antes se ha mencionado, es un proceso en el que no se emplea ni un tratamiento químico, por lo que no se altera la composición del producto inicial. El contenido proteico es similar a! de la membrana de huevo antes del procesado, que está entorno al 90-95% en peso. Además, tampoco se reduce el contenido de aminoácidos, por lo que el producto final mantiene la misma cantidad de colágeno, ácido hialurónico y sulfato de condroitina que son los componentes de membrana de mayor interés, ya que dichos componentes tienen múltiples beneficios para la salud.
Otro aspecto de la invención es una membrana de huevo micronizada obtenida según el procedimiento descrito anteriormente. Dicha membrana es soluble en agua y en las condiciones requeridas por el mercado manteniendo intactas sus propiedades y beneficios, y además se evita realizar un proceso de hidroiización de la membrana para que pueda ser soluble en agua.
Otro aspecto de ¡a invención se refiere a! uso de esta membrana micronizada para obtener colágeno y otras proteínas de interés contenidas en el mismo, o el uso directo para productos alimentarios, complementos nutricionaíes o productos cosméticos.
A lo largo de la descripción y las reivindicaciones ¡a palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para ios expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.
EJEMPLOS
A continuación, se ilustrará la invención mediante unos ensayos realizados por los inventores, que pone de manifiesto la efectividad del procedimiento descrito. El procedimiento de obtención de membrana soluble consiste en la eliminación de las impurezas que arrastra la membrana a la salida del proceso industrial, preparación del producto para la molienda y su pasteurización, para ser usado en diferentes aplicaciones.
A partir de la entrada de la cáscara y membrana se alimenta mediante un sistema neumático al sistema de laminado, el producto obtenido a la salida llega mediante un sistema mecánico de sinfín a una criba centrifuga, el producto resultante es la membrana con una parte de cáscara de huevo adherida, este es recogido en una tolva y conducido a un sistema de laminado gemelo al sistema de laminado. La salida de este se conduce a una criba vibrante. La membrana obtenida en este proceso está libre de cáscara en 90%. Este producto se almacena a temperatura controlada 4 °C, para su posterior procesado en un periodo de tiempo no superior a 48 h.
El proceso de tratamiento de la membrana se inicia con la carga del producto obtenido en la fase anterior en una tolva dosificadora que alimente a la criba de resonancia, que con un sistema de aspersores riegan el producto a medida que va avanzando a lo largo de la criba logrando arrastrar la cáscara en forma de“arenillas“, que lleva pegada la membrana. Tras este proceso de cribado, el producto pasa desde la tolva a un recipiente con agitación mecánica con un importante volumen de agua para que la membrana se suelte y se lave.
Es necesario realizar el lavado en varias fases para logar una optimización de los equipos y de ios consumos de agua. La realización en varias fases y con técnicas diferentes, permite que los equipos sean más pequeños y que ei consumo de agua y energía este optimizado.
Ei producto resultante pasa mediante una cinta de transporte metálica a las bañeras de aireación, fase caliente, para permaneces durante 40 min., y posteriormente se traslada con bomba a ia siguiente bañera fría durante 2 h. Al finalizar este proceso la membrana está preparada paras secarse.
El secado comienza con ei proceso de centrifugado, el producto liega mediante bombeo del agua que posteriormente se recupera para ia fase anterior de limpieza. Ei producto pasa de! equipo de centrifugado al proceso de secado térmico en un horno se lecho fluido a baja temperatura, 50-80°C, tras este proceso de secado, el producto alcanza una humedad inferior ai 3%, y la membrana queda lista para el proceso de molienda. A continuación, se realiza una molienda con molino de cuchillas cúter y posteriormente se utiliza un molino micronizador separador en acero inoxidable usado para la industria de alimentación. Este sistema de molienda se basa en la micronización por impacto de las partículas sobre las superficies giratorias, además dispone de gran velocidad de rotor, que permite alcanzar la velocidad lineal de hasta 120m/s. En el molino se depositaron 5 Kg de membrana de cáscara de huevo en polvo con un tamaño entre 300- 600 pm sobre el que se inicia la molienda y el producto obtenido es membrana micronizada con un tamaño entre 40~60pm. El tamaño final obtenido permite que la membrana sea soluble en agua y obtener así un producto que es de solución homogénea tras la agitación.
Tras la molienda se pasteuriza durante de 6 horas aplicando temperatura de 65-69°C.
En este proceso se obtuvieron 4,7 Kg, con lo que el rendimiento fue superior al 90%.
Una pequeña cantidad del producto obtenido (1 gr) se disolvió mediante agitación en 20 i de agua desmineralizada y se obtuvo una solución estable. Tras analizar esta muestra del producto obtenido, es destacable que el contenido de proteínas (analizado mediante el método Kjeldahl) es superior a 90% (exactamente 90, 18%), de entre las cuales un 34,08% es colágeno (determinado por cuantificación de hidroxiprolina mediante HPLC). Respecto al a inogra a (cromatrograma de aminoácidos primarios y secundarios determinados por HPLC), se obtienen los mismos aminoácidos que están presentes en la membrana sin procesar en proporciones muy similares, tal y como se muestra en la tabla 1 , por lo que estos resultados confirman que en el procedimiento de la invención no se altera la composición del producto, ya que son ios valores que se obtienen al analizar la membrana de la cáscara de huevo.
Tabla 1 : aminograma.
Figure imgf000011_0001
Figure imgf000012_0001
Respecto al otro procedimiento que habitualmente se emplea para procesar la membrana de cáscara de huevo, al aplicar hidrólisis a la membrana y con ello emplear disoluciones de ciertos productos químicos, se obtienen contenidos finales de proteína inferiores al 80%, lo que indica que el contenido final de colágeno y aminoácidos es inferior a los que presenta ia membrana de la cáscara de huevo sin procesar, tal y como muestra la tabla 2.
Tabla 2 Comparativa de los resultados de Proteína y Colágeno
Figure imgf000012_0002
Por tanto, tras ia hidroíización de la membrana se obtiene un producto de peor calidad y que no es 100% natural ya que puede contener trazas de los químicos empleados durante el proceso.
Ejemplo 2
En este proceso se sigue el ejemplo 1 hasta la molienda, donde se depositan 15 Kg de membrana de cáscara de huevo en polvo con un tamaño entre 300-600 pm sobre el que se inicia la molienda y el producto obtenido es membrana micronizada con un tamaño entre 40~60pm. El tamaño final obtenido permite que la membrana sea soluble en agua y obtener un producto que es de solución homogénea tras la agitación.
Tras la molienda se pasteuriza durante de 6 horas aplicando temperatura de 65-69°C.
La cantidad de producto fina! obtenida fue de 1 1 ,8 Kg, por lo que en este procedimiento se volvió a obtener un rendimiento superior ai 90%.
Una pequeña cantidad del producto obtenido 1 gr se disolvió 20 mi de agua desmineralizada y se obtuvo al agitar una solución estable. Tras analizar el producto obtenido, el contenido en proteínas es superior a 90%, exactamente 91 , 14%, de las cuales 34,86% es colágeno. Respecto al aminograma se obtienen los mismos aminoácidos que presenta la membrana de huevo sin procesar, por lo que estos resultados vuelven confirmar que en el procedimiento de la invención no se altera la composición natural de! producto.
Ejemplos
En este proceso se sigue el ejemplo 1 pero en la molienda se utiliza un molino de púas con velocidad a 14000 rpm. En el molino se depositaron 5 kg de membrana de cáscara de huevo en polvo con un tamaño entre 300-600 pm sobre el que se inicia la molienda y el producto obtenido es membrana con un tamaño entre 150-200 pm. El tamaño final obtenido no fue ei deseado ya que no permitió solubilizar ¡a membrana en agua y tampoco se consiguió una solución homogénea tras la agitación.
Ejemplo 4
Si ei micronizado se realiza en un molino en vía húmeda hasta un tamaño de partícula de entre 40 nm y 70 nm, mediante una molienda de entre 10 minutos y 30 minutos a 250rpm, se comprueba que la superficie específica del producto final obtenido es de entre 30 m2/g y 45 m2/g. Sin embargo, la solubilidad obtenida de este material es inferior a la de la obtenida por ios materiales obtenidos según los ejemplos 1 a 3, no permitió solubilizar la membrana en agua y tampoco se consiguió una solución homogénea tras ia agitación quedan partículas en suspensión. Tras un tiempo de reposo, el sólido precipita. Además, el contenido de colágeno disminuye de 34,08% a 8,25%. Esto es porque al disminuir tanto el tamaño de partícula, también se rompen las moléculas de colágeno.

Claims

REIVINDICACIONES
1.- Un procedimiento de obtención de membrana de huevo micronizada soluble que comprende una etapa de reducción del tamaño de partícula de la membrana de huevo de partida por medios mecánicos a un tamaño de entre 0,5 pm y 100 pm.
2.~ El procedimiento según ¡a reivindicación 1 , donde además comprende una etapa previa a la reducción de tamaño que comprende ¡as siguientes subetapas:
a) procesar al menos un huevo, mediante una fase de ruptura y mezcla de todos los componentes y centrifugación posterior para la separación de ¡os componentes líquidos;
b) triturar el producto sólido obtenido en la etapa (a);
c) separar la cáscara y membrana mediante al menos un cribado vía seca de! producto triturado de la etapa (b);
d) separar la cáscara y membrana medíante al menos cribado vía húmeda del producto obtenido de la etapa (c);
e) introducir la membrana obtenida en la etapa (d) en un recipiente con agua en una cantidad de al menos 10 veces y 15 veces el volumen de membrana, a una temperatura de entre 15 °C y 20 °C y con agitación durante un tiempo de entre 1.5 h y 2.5 h;
f) separar los restos de cáscara, clara y yema de la membrana obtenida en la etapa (e); y
g) centrifugar el producto obtenido en la etapa (f) y secar posteriormente a una temperatura de entre 50 °C y 60 °C.
3. El procedimiento según cualquiera de las reivindicaciones 1 o 2, donde en la etapa (b) se realiza un pretriturado, mediante un sistema de laminado con rodillos.
4. El procedimiento según cualquiera de las reivindicaciones 1 a 3, donde la criba por vía seca de la etapa (c) se realiza mediante un método seleccionado de entre criba centrífuga con una luz de 3 mm, criba vibrante con una luz de 1 mm y combinación de los anteriores, y donde si se realiza más de una criba por vía seca siempre se realiza un triturado del producto obtenido previamente a cada nueva criba por vía seca.
5. El procedimiento según cualquiera de las reivindicaciones 1 a 4, donde la criba por vía húmeda de ¡a etapa (d) se realiza mediante criba de resonancia.
6. El procedimiento según la reivindicación 5, donde la criba de resonancia por un sistema de cuba de lavado con agitación mecánica.
7. El procedimiento según cualquiera de las reivindicaciones 1 a 6, donde la separación de la etapa (f) comprende una aireación mediante inyección de aire purificado en forma de microburbuja mediante aireadores situados sobre un fondo de parrilla y donde el volumen de la membrana y el agua durante esta aireación debe ser al menos 1/15 de membrana respecto al agua.
8. El procedimiento según la reivindicación 7, donde la aireación además comprende dos subetapas
(f1) airear en primer lugar con agua a una temperatura de entre 33°C y 45 °C durante un tiempo de retención del producto de entre 35 min y 50 min; y (f2) airear en segundo lugar con agua a una temperatura de entre 1 °C y 15 °C durante un tiempo de retención del producto de entre 105 min y 150 min.
9. El procedimiento según cualquiera de las reivindicaciones 7 u 8, donde el aire utilizado para el micro burbujeo es generado por una bomba de vacio y el aire es tratado con filtros de carbón activo.
10. El procedimiento según cualquiera de las reivindicaciones 1 a 9, donde en el secado de la etapa (g) se realiza en un sistema continuo de lecho fluido.
1 1. El procedimiento según la reivindicación 10, donde para el secado se dispone de un sistema de recirculación controlado por la humedad de salida del aire.
12. El procedimiento según cualquiera de las reivindicaciones 1 a 11 , donde el tamaño de partícula se reduce entre 40 y 80 pm.
13.- E! procedimiento según cualquiera de las reivindicaciones 1 a 12, donde además comprende un tratamiento térmico posterior a la etapa de reducción para la eliminación de patógenos.
14. El procedimiento según ¡a reivindicación 13, donde el tratamiento térmico es una pasteurización de entre 3 horas y 8 horas.
15. Membrana de huevo micronizada obtenida por el procedimiento según cualquiera de las reivindicaciones anteriores.
PCT/ES2019/070862 2018-12-18 2019-12-18 Procedimiento para la obtención de membrana de huevo soluble WO2020128131A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESPCT/ES2018/070811 2018-12-18
PCT/ES2018/070811 WO2020128114A1 (es) 2018-12-18 2018-12-18 Procedimiento para la obtención de membrana de huevo soluble

Publications (1)

Publication Number Publication Date
WO2020128131A1 true WO2020128131A1 (es) 2020-06-25

Family

ID=70154426

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/ES2018/070811 WO2020128114A1 (es) 2018-12-18 2018-12-18 Procedimiento para la obtención de membrana de huevo soluble
PCT/ES2019/070862 WO2020128131A1 (es) 2018-12-18 2019-12-18 Procedimiento para la obtención de membrana de huevo soluble

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070811 WO2020128114A1 (es) 2018-12-18 2018-12-18 Procedimiento para la obtención de membrana de huevo soluble

Country Status (1)

Country Link
WO (2) WO2020128114A1 (es)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2327087A1 (es) * 2007-06-28 2009-10-23 Bdn Ingenieria De Alimentacion, S.L. Metodo para separar la membrana interna de la cascara del huevo.
JP2013216652A (ja) * 2012-03-14 2013-10-24 Yukio Hasebe 卵殻膜含有微粉末、錠剤、卵殻膜含有微粉末の製造方法および錠剤の製造方法
US20140346261A1 (en) * 2013-05-21 2014-11-27 K & S Investments, L.P. Eggshell membrane separation process
US20150150916A1 (en) * 2013-11-29 2015-06-04 The University Of Tokyo Insulin resistance-improving agent containing eggshell membrane component, and composition using the same
CN105685845A (zh) * 2016-01-22 2016-06-22 黑龙江兴和生物科技有限公司 一种禽蛋壳膜分离装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8580315B2 (en) * 2004-03-10 2013-11-12 Esm Technologies, Llc Anti-inflammatory activity of eggshell membrane and processed eggshell membrane preparations
EP3060348B1 (en) * 2013-10-22 2019-01-23 Biovotec AS Method of processing eggshell residues
AU2015340635B2 (en) * 2014-10-28 2021-03-11 Biovotec As Micronized eggshell membrane particles and the use thereof to promote the healing of wounds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2327087A1 (es) * 2007-06-28 2009-10-23 Bdn Ingenieria De Alimentacion, S.L. Metodo para separar la membrana interna de la cascara del huevo.
JP2013216652A (ja) * 2012-03-14 2013-10-24 Yukio Hasebe 卵殻膜含有微粉末、錠剤、卵殻膜含有微粉末の製造方法および錠剤の製造方法
US20140346261A1 (en) * 2013-05-21 2014-11-27 K & S Investments, L.P. Eggshell membrane separation process
US20150150916A1 (en) * 2013-11-29 2015-06-04 The University Of Tokyo Insulin resistance-improving agent containing eggshell membrane component, and composition using the same
CN105685845A (zh) * 2016-01-22 2016-06-22 黑龙江兴和生物科技有限公司 一种禽蛋壳膜分离装置

Also Published As

Publication number Publication date
WO2020128114A1 (es) 2020-06-25

Similar Documents

Publication Publication Date Title
ES2719777T3 (es) Método para tratar residuos de cáscaras huevo
US7954733B2 (en) Eggshell membrane separation method
CN103302080B (zh) 一种蛋壳粉的制备方法及加工设备
KR100335476B1 (ko) 난각과난각막의분리방법및그장치
JP2013544522A5 (es)
WO2013109863A1 (en) Method of instantizing amino acids
CN110868870A (zh) 大米产物及制备它们的系统和方法
JP2018532424A5 (es)
CN102453099B (zh) 一种玉米淀粉的制备方法
WO2020128131A1 (es) Procedimiento para la obtención de membrana de huevo soluble
TW201804913A (zh) 從稻米除去重金屬
ES2370682T3 (es) Aditivos para la deshidratación mejorada del gluten de maíz.
CN103316896B (zh) 一种蛋壳粉的加工方法
US20120101259A1 (en) Counter-current extraction of oil seed protein source
CN106749625A (zh) 血浆蛋白和血红蛋白联产装置
JPH07227551A (ja) 卵殻の処理方法
RU2461205C1 (ru) Способ получения кедрового молока из цельного ореха
JPS60259160A (ja) 卵殻粉の製造方法
KR102077733B1 (ko) 사료 제조 방법 및 이를 실행하는 장치
ES2327087B2 (es) Metodo para separar la membrana interna de la cascara del huevo.
CN106418273A (zh) 一种(鸡蛋)蛋黄粉的生产方法
CN108578435A (zh) 鸡蛋活性提取物
RU2764298C1 (ru) Система и способ переработки ядер из семян конопли
US2009391A (en) Food product
WO2001066270A1 (en) Method and apparatus for processing eggshells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870053

Country of ref document: EP

Kind code of ref document: A1