WO2020127643A1 - Synchronisation d'un moteur à combustion interne - Google Patents

Synchronisation d'un moteur à combustion interne Download PDF

Info

Publication number
WO2020127643A1
WO2020127643A1 PCT/EP2019/086179 EP2019086179W WO2020127643A1 WO 2020127643 A1 WO2020127643 A1 WO 2020127643A1 EP 2019086179 W EP2019086179 W EP 2019086179W WO 2020127643 A1 WO2020127643 A1 WO 2020127643A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
current source
source type
signal
sensors
Prior art date
Application number
PCT/EP2019/086179
Other languages
English (en)
Inventor
Jacques Rocher
Yannick Leroy
Benjamin MARCONATO
Original Assignee
Continental Automotive France
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive France, Continental Automotive Gmbh filed Critical Continental Automotive France
Priority to CN201980084365.8A priority Critical patent/CN113227717B/zh
Priority to US17/416,046 priority patent/US11879404B2/en
Publication of WO2020127643A1 publication Critical patent/WO2020127643A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/06Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of circuit-makers or -breakers, or pick-up devices adapted to sense particular points of the timing cycle
    • F02P7/067Electromagnetic pick-up devices, e.g. providing induced current in a coil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24476Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2454Encoders incorporating incremental and absolute signals
    • G01D5/2455Encoders incorporating incremental and absolute signals with incremental and absolute tracks on the same encoder
    • G01D5/2457Incremental encoders having reference marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/042Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12
    • G01M15/046Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12 by monitoring revolutions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for

Definitions

  • the present invention relates generally to the techniques of synchronization of an internal combustion engine. It relates more particularly to a device and a method for determining the state of rotation of at least one camshaft of a heat engine.
  • control of the performance of an internal combustion engine as well as the control of the emission of pollutants are important parameters for motor vehicle manufacturers. To do this, it is for example necessary to know with relative precision the position of the pistons in their respective cylinders during an engine cycle.
  • the document FR 2441829 discloses means for detecting information on the position of the cylinders by locating on a target integral with a crankshaft zones linked to angular positions corresponding to a determined phase of the stroke of different pistons.
  • the integral target consists of a disc having locating elements arranged along its periphery.
  • a sensor generally in a fixed position, then detects these locating elements and generates a signal composed of electrical pulses making it possible to locate the passage, for example at a top dead center (TDC), of a reference piston during a phase of admission.
  • TDC top dead center
  • an internal combustion engine comprises at least two camshafts, with for example, a first camshaft linked to the exhaust and a second shaft with cams linked to admission.
  • variable distribution allowing an improvement in the synchronization of the opening or of the closing the intake or exhaust valves during an engine cycle.
  • FIG. 1 illustrates a voltage source type sensor 2, typical of the prior art, coupled for example to a motor control computer 4.
  • the sensor 2 is for example a sensor dedicated to the detection of the positioning of a camshaft of an internal combustion engine.
  • Such a sensor 2 generally comprises three pins with a first sensor pin 2_1 coupled for example to a first computer pin 4_1 dedicated for example to the emission of an activation signal from sensor 2, a second sensor pin 2_2 coupled to a second computer pin 4_2 dedicated to receiving a signal representative of the position of the camshaft, and finally a third sensor pin 2_3 coupled to a third computer pin which is generally coupled to an electrical ground of the vehicle.
  • Figure 2 shows a current source type sensor 6 presented for example in patent application FR1756119.
  • This sensor 6 operates and is coupled to the engine control computer 4 with only two pins.
  • a first sensor pin 6_1 is coupled to the first computer pin 4_1
  • a second sensor pin 6_2 is coupled to the second computer pin 4_2.
  • a pin is released at the level of the engine control computer 4 allowing a gain in wiring density but also in connection technology.
  • the current source type sensor 6 delivers information in the form of a rectangular “current” type signal. So for a current sensor two current levels are possible and representative of the presence or absence of a target tooth in front of the sensor 6.
  • patent application FR1756119 proposes to couple at least two sensors 6 of the current source type in parallel; such coupling is possible using a “shunt” current measurement device.
  • a “shunt” current measurement device For example, it is possible to couple on only two cables at least two sensors 6 of the current source type.
  • the current levels representative of the presence or absence of teeth in front of the sensors 6 of the current source type are sometimes confused and it is complex to determine the passage of a tooth in front of a sensor. In addition, it is also complex to determine the source of the change in current level detected.
  • the invention proposes a device and a method for synchronizing an internal combustion engine making it possible to partially or totally remedy the technical shortcoming of the cited prior art.
  • a first aspect of the invention relates to a sensor delivering detection information in the form of a variation of a current using an intermediate signal, comprising a sensitive part adapted to detect the passage of a moving target, an electronic module capable of controlling and shaping signals coming from the sensitive part, an on-board intelligence module adapted to, among other things, receive information from another sensor through the intermediate signal.
  • the on-board intelligence module is adapted to respectively modify a first low level and a first high level of the intermediate signal into a second low level and into a second high level as a function of a first signal.
  • a set of at least two current source type sensors electrically coupled in parallel through a communication bus, the communication bus being adapted to transmit a first signal, the first signal being the sum of a first intermediate signal generated by the current source type sensor and a second intermediate signal generated by the current source type sensor.
  • the two sensors are coupled to an electronic computer.
  • a method for determining the state of rotation of at least one rotating shaft of an internal combustion engine using at least two current source type sensors; the process having the following steps:
  • a first step e1 consisting in activating at least two sensors (of the current source type once the electric power supply of said sensors of the current source type has been supplied
  • a second step e2 consisting of the detection of teeth by the current source type sensor and, in the case where the passage of a target tooth is detected, the generation on an intermediate signal of a niche representative of said passage of the tooth in front of the current source type sensor ,
  • a third step e3 consisting, on the one hand, in measuring, by an on-board intelligence module, a first signal passing over a communication bus, the first signal being the sum of a first intermediate signal generated by the sensor , and a second intermediate signal generated by the sensor, and secondly, the analysis of said first signal so that, if a first of the two sensors which generates a first high level on its intermediate signal and measures a value of first signal corresponding to a first critical value then in this case passing to a fourth step e4, otherwise if necessary passing to a fifth step e5,
  • the fourth step e4 consisting in, for the current source type sensor having first had a first high level on its intermediate signal and detected on the first signal a value corresponding to the first critical value, the modification of a share of its first low level in a second low level and on the other hand its first high level in a second high level before going to the fifth step e5,
  • the fifth step e5 consisting of standard operation of the current source type sensors.
  • the first low level has a value of 7mA
  • the first high level has a value of 14mA.
  • the first critical value has a value of 21mA.
  • the second low level has a value of 10mA, and the second high level has a value of 20mA.
  • the engine is running.
  • FIG. 1 represents a schematic view of a computer coupled to a voltage source type sensor.
  • FIG. 2 represents a schematic view of a computer coupled to a current source type sensor.
  • FIG. 3 represents a schematic view of a sensor according to the invention.
  • FIG. 4 represents an algorigram according to the method of the invention.
  • An internal combustion engine has a determined number of pistons movable in combustion chambers.
  • the energy developed in the combustion chambers by the combustion of a fuel within them is transmitted by the pistons to the same engine shaft also called crankshaft or sometimes in the rest of the description by the English word "crank” ( synonym of crankshaft in French) or the abbreviation CRK.
  • crankshaft also called crankshaft or sometimes in the rest of the description by the English word "crank” ( synonym of crankshaft in French) or the abbreviation CRK.
  • the fuel intake and the exhaust of the combustion gases are most often carried out using valves controlled by at least one camshaft cooperating with the crankshaft or sometimes in the rest of the description by the abbreviation CAM.
  • a first target secured to the crankshaft is generally used to determine an angular position corresponding to a determined phase. of the stroke of the different pistons.
  • the first target is produced using a disc having locating elements arranged along its periphery, such as, for example, teeth.
  • a reference point for example a top dead center of a piston which is also of reference, it is generally used a mechanical aberration, that is to say one (or more) missing tooth (s) ) on the periphery of the first target.
  • the first target may include a variable number of teeth depending on the desired precision.
  • a first sensor is used to detect the passage of the teeth in front of a sensitive part of said first sensor.
  • the first sensor used by example a hall effect technology and generates a voltage spike when passing a tooth from the first target.
  • the first sensor can be a current source type sensor making it possible to significantly reduce the density of electrical wiring between said first sensor and the computer in charge of engine management.
  • the method of the invention will be presented in the case of an internal combustion engine with two camshafts.
  • a first camshaft mounted on an intake controls the opening and closing of the intake valves.
  • the number of intake valves controlled may vary depending on the type of internal combustion engine.
  • a second camshaft is mounted on the exhaust. This second camshaft is suitable for controlling exhaust valves.
  • the number of exhaust valves ordered may vary.
  • the first camshaft is coupled to a second target which is integral with the first camshaft.
  • the second camshaft has a third target integral with the second camshaft.
  • the second target is for example a disc having a determined number of teeth on its periphery.
  • the third target integral with the second camshaft is also a disc having a determined number of teeth on its periphery.
  • the second target and the third target are driven via a 1/2 ratio reducer from the crankshaft.
  • the second target and the third target make one turn for two turns of the first target.
  • the second target and the third target are identical and each have two teeth.
  • the two teeth of the same target have different profiles, for example two different lengths.
  • a second sensor and a third sensor are advantageously used.
  • the second sensor is mounted fixed facing the second target and the third sensor is mounted fixed facing the third target.
  • the second sensor and the third sensor are current generator type sensors.
  • they are preferably coupled together in parallel.
  • the gain in density of wiring between the second sensor, the third sensor and the computer in charge of engine management is improved.
  • FIG 3 is illustrated a sensor 20 of current source type and a sensor 20 'of current source type according to the present invention; the latter being identical, it will only be presented in the following description of the elements of the sensor 20 of the current source type.
  • the senor 20 of the current source type comprises a sensitive part 22 adapted to detect the passage of teeth of a target, an electronic module 24 capable of controlling and shaping signals coming from the sensitive part 22, a module d 'embedded intelligence 26 adapted for, among other things, receiving information from the other sensor 20' of the current source type and for processing and generating information intended for said other sensor 20 'of the current source type.
  • the transfer of information inside the sensors 20, 20 ′ of the current source type as well as outside between the sensors 20, 20 ′ of the current source type and also to the electronic computer 4 are in one example of realization carried out using communication bus 30.
  • the communication bus 30 is only partially represented.
  • the on-board intelligence module 26 is further adapted to perform an analysis of a first signal passing over a communication bus 30.
  • the senor 20 of the current source type and the sensor 20 'of the current source type generate respectively on outputs to the communication bus 30 a first intermediate signal and a second intermediate signal which form the first signal.
  • the first signal is composed of current variations representative of the passage of the teeth in front of the sensitive part 22 or 22 '.
  • the first intermediate signal and the second intermediate signal have a first low level with a value of 7mA and a first high level with a value of 14mA.
  • the first signal can therefore present to it in the present case, by the parallel connection of the sensors 20, 20 ′ of the current source type, a first value of 14mA, a second value of 21mA and finally a third value of 28mA.
  • the on-board intelligence module 26 is adapted to analyze and determine the current level of the first signal passing over the communication bus 30 and according to a determined strategy is adapted to change the first low level to a second low level and change the first high level to a second high level of the current source type sensor 20.
  • a determined strategy is adapted to change the first low level to a second low level and change the first high level to a second high level of the current source type sensor 20.
  • the invention it is now possible to modify the first low level and the first high level of one of the two sensors 20, 20 ′ of the current source type in order to avoid the presence of ambiguity concerning the current levels. generated by the two sensors 20, 20 ′ of the current source type passing over the communication bus 30, such as for example a current level of 21 mA.
  • the current thresholds of a sensor 20, 20 ′ are, for example a first low level presenting a value of 7mA and a first high level presenting a value of 14mA, a second low level presenting a value of 10mA and a second high level with a value of 20mA.
  • the invention further provides a method capable of modifying the current thresholds of a sensor 20 or of a sensor 20 ′ of the current source type.
  • FIG. 4 illustrates the method according to the present invention.
  • the method according to the invention has a first step e1, consisting in activating at least two sensors 20, 20 ′ of current source type once the power supply to said sensors 20, 20 ′ of current source type has been carried out.
  • the method of the invention then provides for the transition to a second step e2.
  • the second step e2 consists of the detection of teeth in front of the sensor 20, 20 ′ of the current source type and, in the case where the passage of a tooth from a target is detected, the generation of a representative niche said passage of the tooth in front of the sensitive part of said sensor 20, 20 ′ of the current source type.
  • the sensor 20 of the current source type is the first sensor to generate a slot on the communication bus 30 between the two sensors and the electronic computer 4 . It is understood by niche the passage from a first low level to a first high level.
  • the method of the invention then provides for the transition to a third step e3 consisting in the measurement and analysis by the on-board intelligence module 26 of the first signal passing over the communication bus 30.
  • the on-board intelligence module 26 during this third step e3 deduces a value of 21mA, corresponding to 7mA, that is to say the first low level for the sensor 20 ′ of current source type plus 14mA, this is that is to say the first high level for the sensor 20 of the current source type.
  • the method of the invention proposes, in the case where the value of the signal passing over the communication bus 30 is 21 mA, to pass to a fourth step e4 if not the case the method proposes the transition to a fifth step e5 corresponding to a normal operation of the current source type sensors 20, 20 ′.
  • the fourth step e4 consists in modifying the low and high levels of the sensor applying a first high level on the communication bus 30. In this case it is the sensor 20 of the current source type.
  • the method according to the present invention proposes the modification of the first low level to a second low level and the modification of the first high level to a second high level before passing to the fifth step e5 corresponding to normal operation.
  • sensors 20, 20 'of current source type In an exemplary embodiment, the second low level has a value of 10mA and the second high level has a value of 20mA. The method then provides for the transition to the fifth step e5.

Abstract

Capteur (20, 20') de type source de courant qui est adapté pour délivrer une information de détection sous la forme d'un signal intermédiaire en appliquant sélectivement un courant de niveau bas ou de niveau haut à un bus de communication (30) en fonction du passage d'une cible mobile, le capteur comprenant une partie sensible (22, 22') adaptée pour détecter le passage d'une de la cible mobile, un module électronique (24, 24') apte à commander et mettre en forme des signaux provenant de la partie sensible (22, 22'), un module d'intelligence embarquée (26, 26') adapté pour, entre autre, recevoir des informations d'un autre capteur (20, 20') à travers un premier signal présent au bus de communication (30), le premier signal étant la somme du signal intermédiaire susmentionné généré par le capteur (20, 20') et d'un autre signal intermédiaire généré par l'autre capteur (20', 20), dans lequel le module d'intelligence embarquée (26, 26') est adapté pour modifier respectivement un premier niveau bas et un premier niveau haut du signal intermédiaire en un second niveau bas et en un second niveau haut en fonction d'un du premier signal.

Description

Description
Synchronisation d’un moteur à combustion interne
La présente invention se rapporte de manière générale aux techniques de synchronisation d’un moteur à combustion interne. Elle concerne plus particulièrement un dispositif et un procédé de détermination de l’état de rotation d’au moins un arbre à cames, d’un moteur thermique.
Le contrôle des performances d’un moteur à combustion interne ainsi que le contrôle de l’émission des polluants sont des paramètres importants pour les constructeurs de véhicules automobiles. Pour ce faire, il est par exemple nécessaire de connaître avec une relative grande précision la position des pistons dans leur cylindre respectif lors d’un cycle moteur.
Le document FR 2441829 divulgue des moyens pour détecter une information sur la position des cylindres en repérant sur une cible solidaire d’un vilebrequin des zones liées à des positions angulaires correspondantes à une phase déterminée de la course de différents pistons. La cible solidaire consiste en un disque présentant des éléments de repérage disposés le long de sa périphérie. Un capteur, généralement en position fixe, détecte alors ces éléments de repérage et génère un signal composé d’impulsions électriques permettant de repérer le passage, par exemple à un point mort haut (PMH), d'un piston référence durant une phase d’admission.
Toutefois, ces seuls éléments de repérage sont insuffisants pour connaître avec précision le positionnement des cylindres pendant le cycle moteur. En effet, pour un moteur à combustion interne à quatre temps, le vilebrequin exécute deux tours, soit 720° d'angle, avant qu'un piston donné se retrouve dans sa position initiale. Il en résulte qu'à partir de la seule observation de la rotation de la cible solidaire du vilebrequin, il est impossible de fournir une information sur chaque cylindre sans une indétermination de deux temps moteur dans le cycle; le repérage de la position du point mort haut recouvrant aussi bien une phase d’admission qu’une phase d’échappement.
La détermination précise de la position de chaque cylindre durant un cycle moteur ne pouvant pas être déduite de la seule observation de la cible solidaire du vilebrequin, la recherche d'informations complémentaires est donc nécessaire pour savoir si le cylindre est dans la première ou dans la seconde moitié du cycle moteur, c'est-à-dire la phase d’admission puis de compression durant le premier tour de la cible solidaire du vilebrequin, ou la phase de détente puis d’échappement lors du second tour de ladite cible.
Afin d'obtenir de telles informations complémentaires, il est connu de l’homme de l’art d'utiliser un disque (ou cible) monté solidaire sur un arbre à cames ou bien sur tout autre arbre qui est entraîné par l'intermédiaire d'un réducteur de rapport 1/2 à partir du vilebrequin. La combinaison des signaux provenant du capteur vilebrequin et du capteur arbre à cames permet au système de détecter précisément par exemple un point mort haut en phase d’admission d'un cylindre de référence.
Dans un souci de contrôle optimal de la combustion, il est de plus en plus fréquent qu’un moteur à combustion interne comporte au moins deux arbres à cames, avec par exemple, un premier arbre à cames lié à l’échappement et un second arbre à cames lié à l’admission.
En outre, toujours dans un même souci d’amélioration des performances du moteur à combustion interne, il est aussi de plus en plus fréquent d’utiliser une technologie dite à distribution variable, permettant une amélioration de la synchronisation de l’ouverture ou de la fermeture des soupapes d’admission ou d’échappement lors d’un cycle moteur. Ainsi, il y a de plus en plus de capteurs utilisés pour arriver à déterminer la position des pistons lors d’un cycle moteur.
La figure 1 illustre un capteur 2 de type source de tension, typique de l’art antérieur, couplé par exemple à un calculateur 4 de contrôle moteur. Le capteur 2 est par exemple un capteur dédié à la détection du positionnement d’un arbre à cames d’un moteur à combustion interne. Un tel capteur 2 comporte généralement trois broches avec une première broche 2_1 de capteur couplée par exemple à une première broche 4_1 de calculateur dédiée par exemple à l’émission d’un signal d’activation du capteur 2, une deuxième broche 2_2 de capteur couplée à une deuxième broche 4_2 de calculateur dédiée à la réception d’un signal représentatif de la position de l’arbre à cames, et enfin une troisième broche 2_3 de capteur couplée à une troisième broche 4_3 de calculateur qui est généralement couplée à une masse électrique du véhicule.
La Figure 2 montre un capteur 6 de type source de courant présenté par exemple dans la demande de brevet FR1756119. Ce capteur 6 fonctionne et est couplé au calculateur 4 de contrôle moteur avec seulement deux broches. Par exemple, une première broche 6_1 de capteur est couplée à la première broche 4_1 de calculateur, une deuxième broche 6_2 de capteur est couplée à la deuxième broche 4_2 de calculateur. Ainsi, pour des performances identiques à celles d’un capteur 2 de type source de tension une broche est libérée au niveau du calculateur 4 de contrôle moteur permettant un gain en densité de câblage mais aussi en connectique.
Le capteur 6 de type source de courant délivre une information sous la forme d’un signal rectangulaire de type « courant ». Ainsi, pour un capteur en courant deux niveaux de courant sont possibles et représentatifs de la présence ou de l’absence d’une dent de la cible devant le capteur 6.
Afin de diminuer encore plus la densité de câblage, la demande de brevet FR1756119 propose de coupler en parallèle au moins deux capteurs 6 de type source de courant ; un tel couplage est possible à l’aide d’un dispositif de mesure de courant dit « shunt ». Ainsi, par exemple il est possible de coupler sur seulement deux câbles au moins deux capteurs 6 de type source de courant.
Cependant, avec un tel montage, les niveaux de courant représentatifs de la présence ou de l’absence de dents devant les capteurs 6 de type source de courant sont parfois confondus et il est complexe de déterminer le passage d’une dent devant un capteur. En outre, il est également complexe de déterminer la provenance du changement de niveau de courant détecté.
L’invention propose un dispositif et un procédé de synchronisation d’un moteur à combustion interne permettant de remédier partiellement ou totalement au manque technique de l’art antérieur cité.
A cet effet, un premier aspect de l’invention porte sur un capteur délivrant une information de détection sous la forme d’une variation d’un courant à l’aide d’un signal intermédiaire, comprenant une partie sensible adaptée pour détecter le passage d’une cible mobile, un module électronique apte à commander et mettre en forme des signaux provenant de la partie sensible, un module d’intelligence embarquée adapté pour, entre autre, recevoir des informations d’un autre capteur à travers le signal intermédiaire. Le module d’intelligence embarquée est adapté pour modifier respectivement un premier niveau bas et un premier niveau haut du signal intermédiaire en un second niveau bas et en un second niveau haut en fonction d’un premier signal.
Dans un deuxième aspect, il est proposé en outre, un ensemble d’au moins deux capteurs de type source de courant couplés électriquement en parallèle à travers un bus de communication, le bus de communication étant adapté pour faire transiter un premier signal, le premier signal étant la somme d’un premier signal intermédiaire généré par le capteur de type source de courant et d’un second signal intermédiaire généré par le capteur de type source de courant.
Par exemple, les deux capteurs sont couplés à un calculateur électronique.
Dans un troisième aspect, il est proposé en outre, un procédé de détermination de l’état de rotation d’au moins un arbre tournant d’un moteur à combustion interne à l’aide d’au moins deux capteurs de type source de courant ; le procédé présentant les étapes suivantes :
a. une première étape e1 , consistant à activer au moins deux capteurs (de type source de courant un fois une mise sous alimention en énergie électrique desdits capteurs de type source de courant effectuée, b. une deuxième étape e2, consistant en la détection de dents par le capteur de type source de courant et, dans le cas où le passage d’une dent d’une cible est détecté, la génération sur un signal intermédiaire d’un créneau représentatif dudit passage de la dent devant le capteur de type source de courant,
c. une troisième étape e3, consistant, d’une part, en la mesure par un module d’intelligence embarquée d’un premier signal transitant sur un bus de communication, le premier signal étant la somme d’un premier signal intermédiaire généré par le capteur, et d’un second signal intermédiaire généré par le capteur, et d’autre part, l’analyse dudit premier signal de sorte que, si un premier des deux capteurs qui génère un premier niveau haut sur son signal intermédiaire et mesure une valeur de premier signal correspondant à une première valeur critique alors dans ce cas le passage à une quatrième étape e4, sinon le cas échéant le passage à une cinquième étape e5,
d. la quatrième étape e4, consistant en, pour le capteur de type source de courant ayant le premier eu un premier niveau haut sur son signal intermédiaire et détecté sur le premier signal une valeur correspondante à la première valeur critique, la modification d’une part de son premier niveau bas en un second niveau bas et d’autre part de son premier niveau haut en un second niveau haut avant le passage à la cinquième étape e5,
e. la cinquième étape e5, consistant en un fonctionnement standard des capteur de type source de courant.
Par exemple, le premier niveau bas présente une valeur de 7mA, le premier niveau haut présente une valeur de 14mA.
Il est aussi proposé par exemple que la première valeur critique présente une valeur de 21mA. Avantageusement, par exemple le second niveau bas présente une valeur de 10mA, et le second niveau haut présente une valeur de 20mA.
Enfin, par exemple, le moteur est tournant.
D’autres caractéristiques et avantages de l’invention apparaîtront encore à la lecture de la description qui va suivre. Celle-ci est purement illustrative et doit être lue en regard des dessins annexés sur lesquels:
La figure 1 représente une vue schématique d’un calculateur couplé à un capteur de type source de tension.
La figure 2 représente une vue schématique d’un calculateur couplé à un capteur de type source de courant.
La figure 3 représente une vue schématique d’un capteur selon l’invention.
La figure 4 représente un algorigramme selon le procédé de l’invention.
Un moteur à combustion interne comporte un nombre déterminé de pistons mobiles dans des chambres de combustion. L'énergie développée dans les chambres de combustion par la combustion d'un carburant au sein de ces dernières est transmise par les pistons à un même arbre moteur appelé aussi vilebrequin ou parfois dans la suite de la description par le mot Anglais « crank » (synonyme de vilebrequin en Français) ou l’abréviation CRK. L'admission de carburant et l'échappement des gaz de combustion sont le plus souvent réalisés à l'aide de soupapes commandées par au moins un arbre à cames coopérant avec le vilebrequin ou parfois dans la suite de la description par l’abréviation CAM.
Pour connaître la position des pistons dans les cylindres lors du fonctionnement du moteur à combustion interne, c'est-à-dire durant un cycle moteur, une première cible solidaire du vilebrequin, est généralement utilisée pour déterminer une position angulaire correspondante à une phase déterminée de la course des différents pistons. La première cible est réalisée à l’aide d’un disque présentant des éléments de repérage disposés le long de sa périphérie, comme par exemple des dents. Afin de connaître un point de référence, par exemple un point mort haut d’un piston lui aussi de référence, il est généralement utilisé une aberration mécanique, c'est-à-dire une (ou plusieurs) dent(s) manquante(s) sur la périphérie de la première cible. Bien entendu, la première cible peut comporter un nombre variable de dents en fonction de la précision souhaitée. Comme mentionné plus haut, pour détecter le mouvement de la première cible lors d’un cycle moteur, il est utilisé un premier capteur pour détecter le passage des dents devant une partie sensible dudit premier capteur. Le premier capteur utilise par exemple une technologie à effet hall et génère un pic de tension lors du passage d’une dent de la première cible.
Dans une variante de réalisation, le premier capteur peut être un capteur de type source de courant permettant de diminuer sensiblement la densité d’un câblage électrique entre ledit premier capteur et le calculateur en charge de la gestion du moteur.
Le procédé de l’invention sera présenté dans le cas d’un moteur à combustion interne avec deux arbres à cames. Un premier arbre à cames monté sur une admission commande l’ouverture et la fermeture des soupapes d’admission. Le nombre de soupapes d’admission commandées pourra varier en fonction du type de moteur à combustion interne. Un second arbre à cames est lui monté à l’échappement. Ce second arbre à cames est adapté pour commander des soupapes d’échappement. Bien entendu, le nombre de soupapes d’échappement commandées pourra varier.
Le premier arbre à cames est couplé à une deuxième cible qui est solidaire du premier arbre à cames. De même, le second arbre à cames comporte une troisième cible solidaire du second arbre à cames.
La deuxième cible est par exemple un disque présentant un nombre déterminé de dents sur sa périphérie. La troisième cible solidaire du second arbre à cames est également un disque présentant un nombre déterminé de dents sur sa périphérie. Généralement, comme le sait l’homme de l’art, la deuxième cible et la troisième cible sont entraînées par l'intermédiaire d'un réducteur de rapport 1/2 à partir du vilebrequin. Ainsi, la deuxième cible et la troisième cible réalisent un tour pour deux tours de première cible. Dans la suite de l’exemple de réalisation de l’invention, la deuxième cible et la troisième cible sont identiques et présentent chacune deux dents. Les deux dents d’une même cible présentent des profils différents par exemple deux longueurs différentes.
Pour déduire le positionnement des pistons dans les cylindres lors d’un cycle moteur, il est avantageusement utilisé un deuxième capteur et un troisième capteur. Par exemple, le deuxième capteur est monté fixe face à la deuxième cible et le troisième capteur est monté fixe face à la troisième cible.
Dans un mode de réalisation préféré de l’invention, le deuxième capteur et le troisième capteur sont des capteurs de type générateur de courant. De surcroît, ils sont préférentiellement couplés entre eux en parallèle. Ainsi, grâce à ce couplage et à la technologie de type source de courant des deux capteurs, le gain en densité de câblage entre le deuxième capteur, le troisième capteur et le calculateur en charge de la gestion du moteur est amélioré.
Sur la Figure 3 est illustré un capteur 20 de type source de courant et un capteur 20’ de type source de courant selon la présente invention ; ces derniers étant identiques il ne sera dans la suite de la description que présenté les éléments du capteur 20 de type source de courant.
Ainsi, le capteur 20 de type source de courant comporte une partie sensible 22 adaptée pour détecter le passage de dents d’une cible, un module électronique 24 apte à commander et mettre en forme des signaux provenant de la partie sensible 22, un module d’intelligence embarquée 26 adaptée pour entre autre recevoir des informations de l’autre capteur 20’ de type source de courant et pour traiter et générer des informations à destination dudit autre capteur 20’ de type source de courant. Le transfert des informations à l’intérieur des capteur 20, 20’ de type source de courant ainsi qu’à l’extérieur entre les capteurs 20, 20’ de type source de courant et aussi vers le calculateur 4 électronique sont dans un exemple de réalisation effectués à l’aide de bus de communication 30. Par souci de simplification des figures le bus de communication 30 n’est représenté que partiellement.
Le module d’intelligence embarquée 26 est en outre, adapté pour réaliser une analyse d’un premier signal transitant sur un bus de communication 30.
Comme le sait l’homme de l’art et aussi comme mentionné dans le texte de la description, le capteur 20 de type source de courant et le capteur 20’ de type source de courant génèrent respectivement sur des sorties vers le bus de communication 30 un premier signal intermédiaire et un second signal intermédiaire qui forment le premier signal.
Le premier signal est composé de variations de courant représentatives du passage des dents devant la partie sensible 22 ou 22’. De façon générale, le premier signal intermédiaire et le second signal intermédiaire présentent un premier niveau bas d’une valeur de 7mA et un premier niveau haut d’une valeur de 14mA. Le premier signal lui peut donc présenter dans le cas d’espèce de par la connexion en parallèle des capteurs 20, 20’ de type source de courant, une première valeur de 14mA, une deuxième valeur de 21mA et enfin une troisième valeur de 28mA. Ainsi, par exemple, dans le cas où le capteur 20 génère un premier niveau bas de 7mA et le capteur 20’ génère un premier niveau haut de 14mA, il apparaît une ambiguïté sur la provenance dudit premier niveau haut et dudit premier niveau bas (capteur 20 ou capteur 20’). Dans un mode de réalisation de l’invention, le module d’intelligence embarquée 26 est adapté pour analyser et déterminer le niveau de courant du premier signal transitant sur le bus de communication 30 et en fonction d’une stratégie déterminée est adapté pour changer le premier niveau bas en un second niveau bas et changer le premier niveau haut en un second niveau haut du capteur 20 de type source de courant. Bien entendu, en fonction de la stratégie déterminée il sera possible de faire commuter les niveaux de courant du capteur 20’ de type source de courant.
Grâce à l’invention, il est maintenant possible de modifier le premier niveau bas et le premier niveau haut d’un des deux capteurs 20, 20’ de type source de courant afin d’éviter la présence d’ambiguïté concernant les niveaux de courant générés par les deux capteurs 20, 20’ de type source de courant transitant sur le bus de communication 30, comme par exemple un niveau de courant de 21 mA.
Les seuils de courant d’un capteur 20, 20’ sont, par exemple un premier niveau bas présentant une valeur de 7mA et un premier niveau haut présentant une valeur de 14mA, un second niveau bas présentant une valeur de 10mA et un second niveau haut présentant une valeur de 20mA.
L’invention propose en outre, un procédé apte à modifier des seuils de courant d’un capteur 20 ou d’un capteur 20’ de type source de courant. La figure 4 illustre le procédé selon la présente invention.
Le procédé selon l’invention présente une première étape e1 , consistant à activer au moins deux capteurs 20, 20’ de type source de courant une fois la mise sous alimention en énergie électrique desdits capteurs 20, 20’ de type source de courant effectuée. Le procédé de l’invention prévoit ensuite le passage à une deuxième étape e2. L’homme de l’art comprendra qu’à travers l’expression activation d’un capteur, il est implicitement inclus une phase d’initialisation et également d’autres étapes logicielles et/ou matérielles afin de rendre opérationnel lesdits capteurs.
La deuxième étape e2, consiste, en la détection de dents devant le capteur 20, 20’ de type source de courant et, dans le cas où le passage d’une dent d’une cible est détecté, la génération d’un créneau représentatif dudit passage de la dent devant la partie sensible dudit capteur 20, 20’ de type source de courant. Dans la suite de la description et dans cet exemple de réalisation du procédé de l’invention, le capteur 20 de type source de courant est le premier capteur à générer un créneau sur le bus de communication 30 entre les deux capteurs et le calculateur 4 électronique. Il est entendu par créneau le passage d’un premier niveau bas à un premier niveau haut. Le procédé de l’invention prévoit ensuite le passage à une troisième étape e3 consistant en la mesure et l’analyse par le module d’intelligence embarquée 26 du premier signal transitant sur le bus de communication 30. Ainsi, astucieusement, comme les capteurs 20, 20’ de type source de courant sont couplés en parallèle sur le bus de communication 30, il est possible de déduire l’état du signal généré par l’autre capteur 20, 20’de type source de courant. Il est émis comme hypothèse que le capteur 20’ de type source de courant génère à cet instant sur le bus de communication 30 un signal d’une valeur de 7mA correspondant au premier niveau bas pour ledit capteur. Ainsi, le module d’intelligence embarquée 26 durant cette troisième étape e3 déduit une valeur de 21mA, correspondant à 7mA c'est-à-dire le premier niveau bas pour le capteur 20’ de type source de courant plus 14mA, c'est-à-dire le premier niveau haut pour le capteur 20 de type source de courant.
Le procédé de l’invention propose dans le cas où la valeur du signal transitant sur le bus de communication 30 est de 21 mA de passer à une quatrième étape e4 sinon le cas échant le procédé propose le passage à un cinquième étape e5 correspondant à un fonctionnement normal des capteurs 20, 20’ de type source de courant.
La quatrième étape e4, consiste en la modification des niveaux bas et haut du capteur appliquant sur le bus de communication 30 un premier niveau haut. Dans le cas d’espèce il s’agit du capteur 20 de type source de courant. Ainsi, durant la quatrième étape e4 le procédé selon la présente invention propose la modification du premier niveau bas en un second niveau bas et la modification du premier niveau haut en un second niveau haut avant le passage à la cinquième étape e5 correspondant à un fonctionnement normal des capteurs 20, 20’ de type source de courant. Dans un exemple de réalisation, le second niveau bas présente une valeur de 10mA et le second niveau haut présente une valeur de 20mA. Le procédé prévoit ensuite le passage à la cinquième étape e5.
Astucieusement, grâce au procédé de l’invention, il est possible de modifier au moins un niveau bas et un niveau haut de courant d’un capteur de type source de courant afin d’éviter durant le fonctionnement du moteur à combustion interne et donc durant le fonctionnement des capteurs 20, 20’ des conflits de mesures engendrant des erreurs d’estimations de positions du moteur à combustion interne.
Grâce à l’invention, il est possible maintenant de coupler deux capteurs de type source de courant en parallèle tout en modifiant logiciellement des niveaux de courant d’au moins un des deux capteurs afin de faciliter le traitement des informations provenant desdits capteurs de type source de courant.

Claims

Revendications
[Revendication 1] Capteur (20, 20’) délivrant une information de détection sous la forme d’une variation d’un courant à l’aide d’un signal intermédiaire, comprenant une partie sensible (22, 22’) adaptée pour détecter le passage d’une cible mobile, un module électronique (24, 24’) apte à commander et mettre en forme des signaux provenant de la partie sensible (22, 22’), un module d’intelligence embarquée (26, 26’) adapté pour, entre autre, recevoir des informations d’un autre capteur (20, 20’) à travers le signal intermédiaire, caractérisé en ce que le module d’intelligence embarquée (26, 26’) est adapté pour modifier respectivement un premier niveau bas et un premier niveau haut du signal intermédiaire en un second niveau bas et en un second niveau haut en fonction d’un premier signal.
[Revendication 2] Ensemble d’au moins deux capteurs (20, 20’) de type source de courant selon la revendication 1 , caractérisé en ce que les deux capteurs (20, 20’) de type source de courant sont couplés électriquement en parallèle à travers un bus de communication (30), le bus de communication (30) étant adapté pour faire transiter un premier signal, le premier signal étant la somme d’un premier signal intermédiaire généré par le capteur (20) de type source de courant et d’un second signal intermédiaire généré par le capteur (20’) de type source de courant.
[Revendication 3] Ensemble d’au moins deux capteurs (20, 20’) de type source de courant selon la revendication précédente, caractérisé en ce que les deux capteurs (20, 20’) sont couplés à un calculateur électronique (4).
[Revendication 4] Procédé de détermination de l’état de rotation d’au moins un arbre tournant d’un moteur à combustion interne à l’aide d’au moins deux capteurs (20, 20’) de type source de courant selon les revendications précédentes, le procédé présentant les étapes suivantes :
a. une première étape e1 , consistant à activer au moins deux capteurs (20, 20’) de type source de courant un fois une mise sous alimention en énergie électrique desdits capteurs (20, 20’) de type source de courant effectuée,
b. une deuxième étape e2, consistant en la détection de dents par le capteur (20, 20’) de type source de courant et, dans le cas où le passage d’une dent d’une cible est détecté, la génération sur un signal intermédiaire d’un créneau représentatif dudit passage de la dent devant le capteur (20, 20’) de type source de courant,
c. une troisième étape e3, consistant, d’une part, en la mesure par un module d’intelligence embarquée (26, 26’) d’un premier signal transitant sur un bus de communication (30), le premier signal étant la somme d’un premier signal intermédiaire généré par le capteur (20), et d’un second signal intermédiaire généré par le capteur (20’), et d’autre part, l’analyse dudit premier signal de sorte que, si un premier des deux capteurs (20, 20’) qui génère un premier niveau haut sur son signal intermédiaire et mesure une valeur de premier signal correspondant à une première valeur critique alors dans ce cas le passage à une quatrième étape e4, sinon le cas échéant le passage à une cinquième étape e5,
d. la quatrième étape e4, consistant en, pour le capteur (20, 20’) de type source de courant ayant le premier eu un premier niveau haut sur son signal intermédiaire et détecté sur le premier signal une valeur correspondante à la première valeur critique, la modification d’une part de son premier niveau bas en un second niveau bas et d’autre part de son premier niveau haut en un second niveau haut avant le passage à la cinquième étape e5,
e. la cinquième étape e5, consistant en un fonctionnement standard des capteur (20, 20’) de type source de courant.
[Revendication 5] Procédé de détermination de l’état de rotation d’au moins un arbre tournant d’un moteur à combustion interne selon la revendication précédente dans lequel le premier niveau bas présente une valeur de 7mA, le premier niveau haut présente une valeur de 14mA.
[Revendication 6] Procédé de détermination de l’état de rotation d’au moins un arbre tournant d’un moteur à combustion interne selon l’une quelconque des revendications 4 ou 5 dans lequel la première valeur critique présente une valeur de 21mA.
[Revendication 7] Procédé de détermination de l’état de rotation d’au moins un arbre tournant d’un moteur à combustion interne selon l’une quelconque des revendications 4 à 6 dans lequel le second niveau bas présente une valeur de 10mA, et le second niveau haut présente une valeur de 20mA. [Revendication 8] Procédé de détermination de l’état de rotation d’au moins un arbre tournant d’un moteur à combustion interne selon l’une quelconque des revendications 4 à 7 dans lequel le moteur est tournant.
PCT/EP2019/086179 2018-12-19 2019-12-19 Synchronisation d'un moteur à combustion interne WO2020127643A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980084365.8A CN113227717B (zh) 2018-12-19 2019-12-19 内燃发动机的同步
US17/416,046 US11879404B2 (en) 2018-12-19 2019-12-19 Device and method for determining the state of rotation of a camshaft of an engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1873314 2018-12-19
FR1873314A FR3090858B1 (fr) 2018-12-19 2018-12-19 Synchronisation d’un moteur à combustion interne

Publications (1)

Publication Number Publication Date
WO2020127643A1 true WO2020127643A1 (fr) 2020-06-25

Family

ID=66676696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/086179 WO2020127643A1 (fr) 2018-12-19 2019-12-19 Synchronisation d'un moteur à combustion interne

Country Status (4)

Country Link
US (1) US11879404B2 (fr)
CN (1) CN113227717B (fr)
FR (1) FR3090858B1 (fr)
WO (1) WO2020127643A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2396559A1 (fr) * 1977-07-04 1979-02-02 Hochiki Co Systeme bifilaire de detection d'incendie et de reception ayant un certain nombre de detecteurs d'incendie connectes en parallele
FR2441829A1 (fr) 1978-11-15 1980-06-13 Bosch Gmbh Robert Installation permettant d'obtenir un signal de sortie caracteristique de l'evolution du deplacement du vilebrequin d'un moteur a combustion interne a quatre temps et a plusieurs cylindres
US20070229306A1 (en) * 2003-09-15 2007-10-04 Jens Otterbach Sensor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6341253B1 (en) 1999-09-24 2002-01-22 Denso Corporation Engine control apparatus with cylinder discrimination function
JP4475704B2 (ja) * 1999-09-24 2010-06-09 株式会社デンソー エンジン制御装置
US7000598B2 (en) 2004-05-27 2006-02-21 General Electric Company Bumpless crankshift position sensing
DE102004029065A1 (de) 2004-06-16 2006-01-26 Siemens Ag Kurbelwellensynchrone ERfassung analoger Signale
FR2901573A1 (fr) * 2006-10-18 2007-11-30 Siemens Vdo Automotive Sas Dispositif d'acquisition de signaux d'etat pour le controle de la synchronisation d'un moteur a combustion interne
WO2011090426A1 (fr) 2010-01-20 2011-07-28 Sem Aktiebolag Dispositif et procédé pour analyser la performance d'un moteur
FR2999042B1 (fr) 2012-11-30 2016-10-21 Continental Automotive France Procede de traitement d'un signal fourni par un capteur bidirectionnel et dispositif correspondant
FR2999041B1 (fr) * 2012-11-30 2016-10-21 Continental Automotive France Procede de traitement d'un signal fourni par un capteur bidirectionnel et dispositif correspondant
FR3029283B1 (fr) * 2014-11-28 2016-12-23 Continental Automotive France Capteur d'arbre a came ou de vilebrequin pour vehicule automobile et procede de diagnostic d'un tel capteur
FR3035157B1 (fr) * 2015-04-16 2017-04-21 Continental Automotive France Procede et dispositif de detection de rotation inverse d'un moteur a combustion interne
KR101806642B1 (ko) * 2015-12-16 2018-01-10 현대자동차주식회사 엔진 동기화 장치 및 그 제어 방법
US10782366B2 (en) * 2017-10-11 2020-09-22 Allegro Microsystems, Llc Multi-channel sensor output signal protocols

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2396559A1 (fr) * 1977-07-04 1979-02-02 Hochiki Co Systeme bifilaire de detection d'incendie et de reception ayant un certain nombre de detecteurs d'incendie connectes en parallele
FR2441829A1 (fr) 1978-11-15 1980-06-13 Bosch Gmbh Robert Installation permettant d'obtenir un signal de sortie caracteristique de l'evolution du deplacement du vilebrequin d'un moteur a combustion interne a quatre temps et a plusieurs cylindres
US20070229306A1 (en) * 2003-09-15 2007-10-04 Jens Otterbach Sensor

Also Published As

Publication number Publication date
FR3090858A1 (fr) 2020-06-26
US11879404B2 (en) 2024-01-23
CN113227717A (zh) 2021-08-06
CN113227717B (zh) 2023-10-27
US20220049664A1 (en) 2022-02-17
FR3090858B1 (fr) 2020-11-27

Similar Documents

Publication Publication Date Title
EP0576334B1 (fr) Procédé de repérage cylindres pour le pilotage d'un système d'injection électronique d'un moteur à combustion interne
WO2016165829A1 (fr) Procede et dispositif de detection de rotation inverse d'un moteur a combustion interne
EP0826099A1 (fr) Procede de reconnaissance de la phase des cylindres d'un moteur multicylindres a combustion interne a cycle a quatre temps
EP2232035B1 (fr) Procede pour produire un signal de synchronisation du cycle de fonctionnement d'un moteur a combustion interne
FR3088718A1 (fr) Cible reversible pour moteur a 3, 4 ou 6 cylindres
WO2020127643A1 (fr) Synchronisation d'un moteur à combustion interne
WO2020245080A1 (fr) Validation d'un signal issu d'un capteur de vilebrequin
WO2020084055A1 (fr) Procédé de synchronisation d'un moteur à combustion
WO2006084660A1 (fr) Procede pour controler le demarrage d’un moteur a combustion interne
WO2020127776A1 (fr) Synchronisation d'un moteur à combustion interne
WO2020099471A1 (fr) Procédé de synchronisation d'un moteur à combustion interne
FR3059717A1 (fr) Procede de synchronisation d'un moteur a combustion interne
EP1711705B1 (fr) Dispositif pour determiner la position d'un moteur a combustion interne
FR2843614A1 (fr) Procede et dispositif pour ameliorer le redemarrage du moteur, par detection d'une position relative d'un organe mobile
EP0029374A1 (fr) Générateur de signal de correction d'angle d'avance à l'allumage sous l'action de cliquetis
WO2021165181A1 (fr) Roue dentee pour arbre a cames et procede de synchronisation mettant en œuvre une telle roue
WO2019243266A1 (fr) Roue dentée d'arbre à cames pour moteur à trois ou quatre cylindres
EP2480776A1 (fr) Procédé de prédiction du régime de rotation d'un vilebrequin de moteur en phase de fin de rotation et application du procédé a la prédiction du cylindre d'arrêt
WO2022013046A1 (fr) Capteur magnétique d'arbre d'entraînement pour véhicule
WO2022253614A1 (fr) Dispositif de diagnostic pour capteur d'arbre d'entrainement de vehicule
WO1997047869A1 (fr) Procede pour produire un signal de synchronisation permettant le pilotage d'un systeme d'injection electronique d'un moteur a combustion interne
FR3113301A1 (fr) Capteur magnétique d’arbre d’entraînement pour véhicule
EP0761953B1 (fr) Dispositif de détection du cycle de fonctionnement d'un moteur à combustion interne à plusieurs cylindres
WO2021191147A1 (fr) Procede et dispositif de controle moteur avec signal vilebrequin reconstitue
FR2925592A3 (fr) Dispositif pour produire un signal de synchronisation du cycle de fonctionnement d'un moteur a combustion interne

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19824320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19824320

Country of ref document: EP

Kind code of ref document: A1