WO2020125695A1 - 电芯及电池 - Google Patents

电芯及电池 Download PDF

Info

Publication number
WO2020125695A1
WO2020125695A1 PCT/CN2019/126423 CN2019126423W WO2020125695A1 WO 2020125695 A1 WO2020125695 A1 WO 2020125695A1 CN 2019126423 W CN2019126423 W CN 2019126423W WO 2020125695 A1 WO2020125695 A1 WO 2020125695A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing section
sealing
cavity
equal
length
Prior art date
Application number
PCT/CN2019/126423
Other languages
English (en)
French (fr)
Inventor
王烽
陈宇
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Publication of WO2020125695A1 publication Critical patent/WO2020125695A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/045Cells or batteries with folded plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0459Cells or batteries with folded separator between plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure

Definitions

  • This application relates to the technical field of electrochemical devices, in particular, to a battery cell and a battery.
  • Lithium-ion batteries have been widely used in various digital products, power tools, drones, energy storage systems, and automotive power systems because of their advantages of high energy density, long cycle life, and high cost performance.
  • the packaging reliability of soft-packed lithium-ion batteries has always been paid attention by researchers. Especially the soft-packed lithium-ion batteries used in energy storage systems have stricter requirements on the long-term reliability of the package.
  • the currently widely used heads (such as flat heads or oblique heads) and their packaging technologies encapsulate lithium-ion batteries.
  • the resulting lithium-ion battery has a lower encapsulation strength and a lower lifetime (generally less than three Years), unable to meet the long-term reliability requirements of lithium-ion batteries for packaging, limiting the application of lithium-ion batteries in the field of long-term energy storage and areas with high requirements for safety and reliability.
  • the packaging process is a key process in the production of soft-packed lithium-ion batteries, especially the side sealing and vacuum packaging processes, which are critical to the safety and reliability of the battery. Therefore, it is necessary to develop a packaging technology that can meet the long-term reliability requirements of packaging.
  • one aspect of the present application is to propose a battery cell that has the advantages of good safety and high packaging strength.
  • a battery cell according to an embodiment of the present application includes a battery cell body and a packaging bag accommodating the battery cell body, the packaging bag includes a packaging portion, wherein the packaging portion includes a sealing area, and the sealing area is provided with There is a cavity.
  • the cavity inside the sealing region of the packaging part can be eliminated
  • the thermal stress brought by the temperature gradient eliminates the mechanical stress caused by the right angle of the head on the packaging bag, and eliminates the mechanical stress caused by the cell body, thereby improving the morphology of the spilled area of the packaging part
  • the structural defect greatly improves the packaging strength of the packaging part of the battery cell, thereby improving the packaging reliability and safety of the battery cell.
  • the battery cell includes a first shell and a second shell, the first shell includes a first bonding layer, the second shell includes a second bonding layer, and the first bonding The layer is combined with the second bonding layer to form the sealing area and the containing space for accommodating the cell body, and at least a portion of the first bonding layer has a gap between the second bonding layer to form the Cavity.
  • the sealing area includes a first sealing segment; a second sealing segment connected to the first sealing segment, the cavity is disposed in the second sealing segment; and a third sealing segment, It is connected to the accommodating space, and the third sealing section is provided between the cell body and the second sealing section.
  • the length of the first sealing section is L1
  • the length of the second sealing section is L2
  • L1/L2 is greater than or equal to 1:10, and Less than or equal to 100:1
  • the length of the cavity is L3, L2/L3 is greater than 2:1
  • the length of the third sealing section is L4, L2/L4 is greater than 2:1.
  • the thickness of the first sealing section is T1
  • the maximum thickness of the second sealing section is T2
  • T1/T2 is less than 1:1
  • the maximum thickness of the cavity is T3, T2/T3 Is greater than 1:1
  • the minimum thickness of the third sealing section is T4, and T1/T4 is less than 10:1.
  • the longitudinal cross-sectional area of the first sealing section is K
  • the sum of the longitudinal cross-sectional areas of the second sealing section and the third sealing section is N
  • N/K is greater than or equal to 0.05, and less than or equal to 10
  • the longitudinal cross-sectional area of the cavity is M
  • M/N is greater than 0, and less than or equal to 0.6.
  • the thickness of the first sealing section gradually increases in a direction close to the receiving space.
  • the first sealing segment is bent at least once to form at least one flange, and the at least one flange has a projection area on the second sealing segment.
  • the sealing area includes: a first sealing section and a glue overflow area.
  • a glue spill area is provided between the cell body and the first sealing section, and the cavity is provided in the glue spill area.
  • the overflow area includes a second sealing section, a third sealing section, a fourth sealing section, and a fifth sealing section.
  • the second sealing section is connected to the first sealing section
  • the third sealing section is connected to the second sealing section
  • the second sealing section is disposed between the first sealing section and the third sealing section .
  • the fourth sealing section is connected to the third sealing section.
  • a fifth sealing section is connected to the accommodation space, and the fourth sealing section is provided between the third sealing section and the fifth sealing section.
  • the cavity is provided in the second sealing section and the fourth sealing section.
  • the length of the first sealing section is L1
  • the length of the second sealing section is L2
  • L1/L2 is greater than or equal to 1:1, and Less than or equal to 10:1
  • the length of the third sealing section is L3, L1/L3 is greater than 0
  • the length of the fourth sealing section is L4, L3/L4 is greater than or equal to 1:1, and less than or equal to 5:1
  • the length of the cavity in the second sealing section is L5, L2/L5 is greater than 2:1
  • the length of the cavity in the fourth sealing section is L6, L4/L6 is greater than 2:1
  • the length of the fifth sealing section is L7, and L3/L7 is greater than zero.
  • the thickness of the first sealing section is T1
  • the thickness of the third sealing section is T3
  • the thickness of the fifth sealing section is T5, when the first sealing section, the third sealing section and When the thickness of the fifth sealing section is uniform
  • T3/T1 is 1.1 or more and 1.5 or less
  • T5/T3 is 1.0 or more and 1.5 or less.
  • the thickness of at least one of the first sealing section and the third sealing section gradually increases in a direction close to the receiving space.
  • the cavity is continuous or discontinuous.
  • the tensile curve of the sealing area has at least two peaks.
  • Another aspect of the present application is to propose a battery including a battery cell, the battery cell including a battery cell body and a packaging bag accommodating the battery cell body, the packaging bag including a packaging part, wherein the packaging part It includes a sealing area, and a cavity is provided in the sealing area.
  • FIG. 1 shows a schematic structural diagram of a battery cell according to an embodiment of the present application, wherein the cavity at the position of E is discontinuous;
  • FIG. 2 shows a partially enlarged schematic view at A in FIG. 1;
  • FIG. 3 shows a cross-sectional view along the line B-B in FIG. 1;
  • FIG. 4 shows a cross-sectional view taken along line C-C or C′-C′ in FIG. 1;
  • FIG. 5 shows a partially enlarged schematic view at F in FIG. 4
  • FIG. 6 shows a partial cross-sectional view of a package portion of a battery cell according to another embodiment of the present application.
  • FIG. 7 shows a partial cross-sectional view of a package portion of a battery cell according to another embodiment of the present application.
  • FIG. 8 shows a schematic structural diagram of a battery cell according to another embodiment of the present application.
  • FIG. 9 shows a cross-sectional view along the G-G section line in FIG. 8.
  • FIG. 10 is a partial cross-sectional view of a package portion of a battery cell according to another embodiment of the present application.
  • FIG. 11 shows a partial cross-sectional view of the package portion of the battery cell according to an embodiment of the present application after hemming once;
  • FIG. 12 shows a partial cross-sectional view of the package portion of the battery cell according to another embodiment of the present application after the second hemming
  • FIG. 13 shows a partial cross-sectional view of the package portion of the battery cell according to another embodiment of the present application after secondary hemming
  • FIG. 14 shows a tensile curve of the packaging part in the first embodiment of the present application
  • FIG. 15 shows a tensile curve of the packaging part in the second embodiment of the present application.
  • FIG. 16 shows the tensile curve of the packaging part of the third embodiment of the present application.
  • FIG. 17 shows the tensile curve of the package part in the fourth embodiment of the present application.
  • Packaging bag 120 packaging part 121,
  • Accommodation space 124 Accommodation space 124.
  • the battery cell 100 according to an embodiment of the present application will be described in detail below with reference to FIGS. 1 to 17.
  • a battery cell 100 includes a battery cell body 110 and a packaging bag 120 that houses the battery cell body 110.
  • the cell body 110 includes a tab 111, and the tab 111 passes through the packaging bag 120.
  • the packaging bag 120 may include a packaging portion 121, and the packaging portion 121 includes a sealing area, and a cavity 1219 is provided in the sealing area. It can be understood that the packaging bag 120 may be constructed by a packaging process, and the packaging part 121 may be processed by a heat sealing process.
  • the present application improves the flow state of the fusion state of the bonding layer (such as polypropylene (PP)) of the packaging part 121 of the battery cell 100 during packaging, so that there is a cavity 1219 inside the sealing region of the packaging part 121, which can eliminate the temperature gradient band
  • the thermal stress that comes out eliminates the mechanical stress on the packaging bag 120 caused by the right angle of the head, and eliminates the mechanical stress on the cell body 110, thereby improving the morphology of the spilled area of the encapsulation 121 and the structure of the spilled area
  • the defect greatly improves the packaging strength of the packaging part 121 of the battery cell 100, and further improves the packaging reliability and safety of the battery cell 100.
  • the encapsulation strength of the encapsulation part 121 prepared by the technical scheme of the present application is improved by at least 35%, which can improve the battery core 100 well
  • the long-term reliability of the package can further improve the package reliability and safety of the battery 100.
  • the obtained tensile curve has multiple peaks, and when the tensile test is performed on the package part prepared by the existing head and its packaging technology, the The obtained tension curve only shows a sharp peak, which also shows that by providing a cavity 1219 inside the sealing area, the packaging strength of the packaging portion 121 of the battery cell 100 can be greatly improved, thereby improving the battery 100 Packaging reliability and safety.
  • the battery cell 100 may include a first casing 122 and a second casing 123, the first casing 122 includes a first bonding layer 1221, and the second casing 123 includes a first Two bonding layers 1231, the first bonding layer 1221 and the second bonding layer 1231 are combined to form a sealing area and a receiving space 124 for accommodating the cell body 110, and there is a gap between at least part of the first bonding layer 1221 and the second bonding layer 1231 To form a cavity 1219.
  • the structural stability of the packaging portion 121 can be improved, which facilitates the packaging of the battery cell 100, and also facilitates the combination between the first bonding layer 1221 and the second bonding layer 1231 to construct a cavity 1219 Sealed area.
  • the first housing 122 may further include a first metal layer 1222 and a first protective layer 1223.
  • the first metal layer 1222 is disposed on the first protective layer 1223 and the first Between the bonding layers 1221.
  • the second casing 123 may also include a second metal layer 1232 and a second protective layer 1233, and the second metal layer 1232 is disposed between the second protective layer 1233 and the second bonding layer 1231.
  • the material of the first protective layer 1223 and/or the second protective layer 1233 may be polyamide (PA), polyethylene terephthalate (PET) or a combination thereof, etc.
  • the first metal layer 1222 and/or The material of the second metal layer 1232 may be aluminum
  • the material of the first bonding layer 1221 and/or the second bonding layer 1231 may be polypropylene (PP), polyethylene (PE), polyethylene naphthalate (PEN) ) Or a combination thereof.
  • the sealing area may include a first sealing section 1212, a second sealing section 1215 and a third sealing section 1216.
  • the second sealing section 1215 is provided between the first sealing section 1212 and the third sealing section 1216
  • the third sealing section 1216 is provided between the cell body 110 and the second sealing section 1215
  • the third sealing section 1216 is The accommodating space 124 is connected, and the cavity 1219 is disposed in the second sealing section 1215.
  • the sealing area may be formed by hot pressing the first bonding layer 1221 and the second bonding layer 1231 by the head of the present application. After the first bonding layer 1221 and the second bonding layer 1231 are melted by heat, they are compressed It can flow to a range where the pressure is smaller to form a rubber overflow area, and the rubber overflow area includes the second sealing section 1215.
  • the length of the first sealing section 1212 is L1, that is, from the outermost side of the packaging portion 121 of the battery cell 100
  • the length from the end surface to the position where the protrusion of the packaging part 121 appears, the length of the second sealing section 1215 is L2, that is, the length from the position where the protrusion appears to the position where the protrusion disappears, L1/L2 is greater than Equal to 1:10 and less than or equal to 100:1. In some embodiments, L1/L2 is greater than or equal to 1:2 and less than or equal to 50:1. In some embodiments, L1/L2 is greater than or equal to 2:1 and less than or equal to 4:1.
  • the length of the cavity 1219 is L3, and L2/L3 is greater than 2:1, that is, L2/L3>2. In some embodiments, L2/L3 is greater than or equal to 4:1 and less than or equal to 15:1.
  • the length of the third sealing section 1216 is L4, that is, the length from the position where the protrusion disappears to the boundary of the accommodating space 124 near the third sealing section 1216, L2/L4 is greater than 2:1, that is, L2/L4>2. In some embodiments, L2/L4 is greater than or equal to 4:1 and less than or equal to 7:1.
  • the two boundary lines of the third sealing section 1216 (that is, the position where the protrusion disappears and the boundary of the accommodating space 124 close to the third sealing section 1216) can be clearly seen from the surface appearance of the package portion 121 of the battery cell 100 It can be seen, or that the boundary line can be left on the encapsulation portion 121 on the side close to the accommodation space 124 through the head of the present application.
  • part of the cavity 1219 when there is a problem with the control of the packaging process, part of the cavity 1219 will be filled with the molten state formed after the first bonding layer 1221 and the second bonding layer 1231 are heated. At this time, the cavity 1219 will be discontinuous.
  • the state can be shown as E in Figure 1.
  • the thickness of the first sealing section 1212 is T1, and the thickness of the second sealing section 1215 varies unevenly , Its maximum thickness is T2, T1/T2 is less than 1:1, that is, T1/T2 ⁇ 1. In some embodiments, T1/T2 is greater than or equal to 1:2 and less than or equal to 1:4.
  • the maximum thickness of the cavity 1219 is T3, and T2/T3 is greater than 1:1, that is, T2/T3>1. When the thickness of the cavity 1219 is small, T2/T3 may tend to infinity. In some embodiments, T2/T3 is greater than or equal to 8:1 and less than or equal to 30:1.
  • the minimum thickness of the third sealing section 1216 is T4, and T1/T4 is less than 10:1, that is, T1/T4 ⁇ 10. In some embodiments, T1/T4 is greater than or equal to 1:3 and less than or equal to 2:1.
  • the cross-sectional area (ie, longitudinal cross-sectional area) of the first sealing section 1212 is K, and the second sealing section 1215 and the third sealing section
  • the total cross-sectional area of 1216 is N (excluding the cross-sectional area of cavity 1219), and N/K is greater than or equal to 0.05 and less than or equal to 10. In some embodiments, N/K is greater than or equal to 0.05 and less than or equal to 6. In some embodiments, N/K is greater than or equal to 0.05 and less than or equal to 3.
  • the cross-sectional area of the cavity 1219 is M, and M/N is greater than 0 and less than or equal to 0.6.
  • M/N is greater than or equal to 0.01 and less than or equal to 0.4. In some embodiments, M/N is greater than or equal to 0.01 and less than or equal to 0.25. It should be noted that each cross-sectional area is measured by the following method: cut off the cross-sectional line CC or C′-C′ in FIG. 1 to obtain the cross-sectional shape of the package part 121, and then use Keyence 5000 (VHX-5000 ) The area measurement function of the microscope measures N, M and K.
  • the thickness of the first sealing section 1212 gradually increases in a direction close to the receiving space 124.
  • the first sealing section 1212 may include a first portion having a uniform thickness and a second portion having a varying thickness, and the thickness of the first portion gradually increases in a direction close to the receiving space 124.
  • the length of the first part is L1a
  • the length of the second part is L1b
  • the first sealing section 1212 is more resistant to process fluctuations; when the length of the first part is longer (that is, L1a is larger), the first sealing section 1212 The stronger the ability to resist wear.
  • L1a/L1b is greater than or equal to 0.5 and less than or equal to 2.
  • the sealing area may include a first sealing section 1212 and a glue overflow area.
  • the glue spill area is provided between the cell body 110 and the first sealing section 1212, and a plurality of cavities 1219 are provided in the glue spill area to further improve the packaging reliability and safety of the packaging portion 121 of the battery core 100 .
  • the sealing region can be formed by hot pressing the first bonding layer 1221 and the second bonding layer 1231 by the head. After the first bonding layer 1221 and the second bonding layer 1231 are melted by heat, they can Flow in a range with a relatively low pressure to form a rubber overflow area.
  • the rubber overflow area may include a combination of a plurality of the above second sealing sections 1215 and third sealing sections 1216, and may be two, three, or more than three. Application is not limited to this.
  • the glue spill area may include a second sealing section 1215, a third sealing section 1216, a fourth sealing section 1217, and a fifth sealing section 1218.
  • the second sealing section 1215 is disposed between the first sealing section 1212 and the third sealing section 1216, and the second sealing section 1215 is connected to the first sealing section 1212 and the third sealing section 1216, respectively.
  • the fourth sealing section 1217 is disposed between the third sealing section 1216 and the fifth sealing section 1218, and the fourth sealing section 1217 is connected to the third sealing section 1216 and the fifth sealing section 1218, respectively, and the fifth sealing section 1218 is connected to the accommodation space 124 is connected, and a cavity 1219 is provided in the second sealing section 1215 and the fourth sealing section 1217.
  • the length of the first sealing section 1212 is L1 in a direction close to the receiving space 124, that is, from the outermost end surface of the packaging portion 121 of the battery cell 100 to the packaging portion 121
  • the length between the position where the first protrusion appears, the length of the second sealing section 1215 is L2, that is, the length between the appearance and the disappearance of the first protrusion, L1/L2 is greater than or equal to 1:1, and less than or equal to 10: 1, that is, 1 ⁇ L1/L2 ⁇ 10.
  • L1/L2 is greater than or equal to 2:1 and less than or equal to 6:1.
  • L1/L2 is greater than or equal to 2:1 and less than or equal to 4:1.
  • the length of the third sealing section 1216 is L3, that is, the length from the position where the first protrusion disappears to the position where the second protrusion appears, L1/L3 is greater than 0, that is, L1/L3>0. In some embodiments, L1/L3 is greater than or equal to 2:1 and less than or equal to 10:1. In some embodiments, L1/L3 is greater than or equal to 2:1 and less than or equal to 4:1.
  • the length of the fourth sealing section 1217 is L4, that is, the length from the position where the second protrusion appears to the position where the second protrusion disappears, L3/L4 is greater than or equal to 1:1, and less than or equal to 5:1 , That is 1 ⁇ L3/L4 ⁇ 5. In some embodiments, L3/L4 is greater than or equal to 1:1 and less than or equal to 3:1.
  • the length of the cavity 1219 in the second sealing section 1215 is L5, and L2/L5 is greater than 2:1, that is, L2/L5>2. In some embodiments, L2/L5 is greater than or equal to 4:1 and less than or equal to 10:1.
  • the length of the cavity 1219 in the fourth sealing section 1217 is L6, and L4/L6 is greater than 2:1, that is, L4/L6>2. In some embodiments, L4/L6 is greater than or equal to 4:1 and less than or equal to 10:1.
  • the length of the fifth sealing section 1218 is L7, that is, the length from the position where the second protrusion disappears to the boundary of the accommodating space 124 near the fifth sealing section 1218, L3/L7 is greater than 0, that is, L3/L7>0 . In some embodiments, L3/L7 is greater than or equal to 2:1 and less than or equal to 20:1. In some embodiments, L3/L7 is greater than or equal to 5:1 and less than or equal to 10:1.
  • the two boundary lines of the third sealing section (that is, the position where the protrusion disappears and the boundary between the accommodating space 124 and the third sealing section) can be clearly seen from the surface appearance of the packaging portion 121 of the cell 100
  • the boundary line may be left on the packaging portion 121 at both ends close to the accommodating space 124 by the head of the present application.
  • the thickness of the first sealing section 1212 is T1
  • the thickness of the third sealing section 1216 is T3
  • the thickness of the fifth sealing section 1218 is T5
  • T3/T1 is greater than 1.
  • T3/T1 is greater than or equal to 1.1 and less than or equal to 1.5.
  • T5/T3 is equal to or greater than 1.0. In some embodiments, T5/T3 is greater than or equal to 1.0 and less than or equal to 1.5.
  • the thickness of at least one of the first sealing section 1212 and the third sealing section 1216 gradually increases along the second direction. It can be understood that the thickness of at least part of the first sealing section 1212 is changed along the extending direction close to the receiving space 124, and the thickness of at least part of the third sealing section 1216 is changed.
  • the first sealing section 1212 may include the first part and the second part (as shown in FIG. 7). The thickness of the first part does not change, and the thickness of the second part changes gradually. In the direction of the second sealing section 1215, the thickness of the second portion gradually increases.
  • the third sealing section 1216 may also include the first part and the second part (as shown in FIG. 7). The thickness of the first part does not change, and the thickness of the second part changes gradually, that is, along the In the direction close to the fourth sealing section 1217, the thickness of the second portion gradually increases.
  • the inclination angle of the second portion of the first sealing section 1212 is set to ⁇ , and the first sealing section 1212
  • the length is L1
  • the maximum thickness of the first sealing section 1212 is max(T1)
  • the second part inclination angle of the third sealing section 1216 is ⁇
  • the length of the third sealing section 1216 is L3
  • the maximum thickness of the third sealing section 1216 is max(T3)
  • the minimum thickness of the third sealing section 1216 Is min(T3)
  • max(T3) min(T3)+L3 ⁇ tan ⁇ , 0° ⁇ 2°.
  • the cavity 1219 of the fourth sealing section 1217 may directly communicate with the accommodating space 124, that is, the overflow area may not include the fifth sealing section 1218, or the fifth sealing section 1218
  • the length is very small. In this case, the above-mentioned proportional relationships can also be applied here.
  • the cavity 1219 may be continuous or discontinuous, as shown at A in FIG. 1, and the cavity 1219 is continuous at this time; or as shown at E in FIG. 1, this The time cavity 1219 may be discontinuous.
  • the first sealing section 1212 is bent at least once to form at least one flange 1213, and the at least one flange 1213 has a projected area on the second sealing section 1215.
  • the projection area is an orthographic projection of the at least one flange 1213 on the plane where the second sealing section 1215 is located, and at least part of the projection area overlaps the second sealing section 1215.
  • the first sealing section 1212 is bent once toward the cell body 110 to form a primary flange.
  • the first sealing section 1212 is bent twice to form two flanges.
  • the tensile curve of the sealing area has at least two peaks. It should be noted that the tensile force curve can be measured by the following method: Taking FIG. 1 as an example, the sealing area in FIG.
  • spline 1 is cut and cut along the cross-sectional line CC or C′-C′ (can be cut by scissors, blade , Knife mold, etc.) into a spline with a width of 8mm (width refers to the distance between the two ends of the spline in the direction perpendicular to the cross-sectional line CC or C′-C′), and the spline is clamped in the universal material testing machine (Shenzhen Sansi Vertical and horizontal Technology Co., Ltd., model UTM6101) is stretched at a speed of 30 mm/min to obtain a tensile stress-strain curve, that is, a tensile curve.
  • the universal material testing machine Shenzhen Sansi Vertical and horizontal Technology Co., Ltd., model UTM6101
  • the present application also discloses a battery including the battery cell 100 in any of the above cases.
  • the battery cell 100 according to an embodiment of the present application will be described in detail below with reference to some specific embodiments. It should be understood that the following description is only an exemplary description, rather than a specific limitation on the present application.
  • the packaging bag 120 is an aluminum-plastic film.
  • the packaging bag 120 is used to receive the battery cell 100.
  • One side of the packaging part 121 in the packaging bag 120 is cut along the section line CC or CC shown in FIG. After opening, a cross-sectional view as shown in FIG. 6 is obtained.
  • the length L1 of the first sealing section 1212 is 5 mm
  • the length L2 of the second sealing section 1215 is 3 mm
  • the maximum length L3 of the cavity 1219 is 0.35 mm
  • the length L4 of the third sealing section 1216 is 2 mm.
  • the thickness T1 of the first sealing section 1212 is 0.25 mm
  • the maximum thickness T2 of the second sealing section 1215 is 0.50 mm
  • the maximum thickness T3 of the cavity 1219 is 0.25 mm
  • the minimum thickness T4 of the third sealing section 1216 is 0.30 mm.
  • the longitudinal cross-sectional area M of the cavity 1219 is 0.028 mm 2
  • the sum of the longitudinal cross-sectional areas N of the second sealing section 1215 and the third sealing section 1216 is 0.334 mm 2
  • the longitudinal cross-sectional area K of the first sealing section 1212 is 0.54 mm 2
  • One side sealing part 121 of the packaging bag 120 obtained in Example 1 was cut and cut into splines with a width of 8 mm, and a tensile test was performed in a universal material testing machine to obtain a tensile curve as shown in FIG. 14. It can be seen from Figure 14 that there are two peaks in the tension curve, the first peak has a tensile force of 41N, and the second peak has a tensile force of 68N. When the spline is stretched, the aluminum-plastic film breaks, but the first The sealing region formed by the bonding layer 1221 and the second bonding layer 1231 is not pulled apart.
  • the packaging bag 120 is an aluminum-plastic film.
  • the packaging bag 120 is used to receive the battery cell 100. After one side of the packaging part 121 in the packaging bag 120 is cut along the section line CC or CC shown in FIG. Sectional view shown in 4.
  • the length L1 of the first sealing section 1212 is 3 mm
  • the length L2 of the second sealing section 1215 is 1 mm
  • the maximum length L3 of the cavity 1219 is 0.018 mm
  • the length L4 of the third sealing section 1216 is 0.3 mm .
  • the thickness T1 of the first sealing section 1212 is 0.18 mm
  • the maximum thickness T2 of the second sealing section 1215 is 0.33 mm
  • the thickness of the cavity 1219 is very small
  • the minimum thickness T4 of the third sealing section 1216 is 0.22 mm.
  • the longitudinal cross-sectional area M of the cavity 1219 is 0.007 mm 2
  • the sum of the longitudinal cross-sectional areas N of the second sealing section 1215 and the third sealing section 1216 is 0.289 mm 2
  • the longitudinal cross-sectional area K of the first sealing section 1212 is 0.24 mm 2
  • M:N 0.024
  • N:K 1.2.
  • One side sealing part 121 of the packaging bag 120 obtained in Example 2 was cut and cut into splines with a width of 8 mm, and a tensile test was performed in a universal material testing machine to obtain a tensile curve as shown in FIG. 15. It can be seen from Figure 15 that there are also two peaks in the tensile curve, the tensile force of the first peak is 37N, and the tensile force of the second peak is 52N. When the spline is stretched, the aluminum-plastic film ruptures slightly. However, the sealing area formed by the first bonding layer 1221 and the second bonding layer 1231 is not pulled apart.
  • the length L1 of the first sealing section 1212 is 4.5 mm
  • the length L2 of the second sealing section 1215 is 3.3 mm
  • the maximum length L3 of the cavity 1219 is 1.4 mm
  • the length L4 of the three sealing section 1216 is 0.22 mm.
  • the thickness T1 of the first sealing section 1212 is 0.15 mm
  • the maximum thickness T2 of the second sealing section 1215 is 0.39 mm
  • the maximum thickness T3 of the cavity 1219 is 0.29 mm
  • the minimum thickness T4 of the third sealing section 1216 is 0.31 mm.
  • a second longitudinal seal segment cross-sectional area of the sum of the third seal segment N 1215 and 1216 is 0.431mm 2
  • the sectional area of the first longitudinal sealing section K 1212 is 0.045mm 2
  • One side of the packaging part 121 of the packaging bag 120 obtained in Example 3 was cut and cut into splines with a width of 8 mm, and a tensile test was performed in a universal material testing machine to obtain a tensile curve as shown in FIG. 16. It can be seen from FIG. 16 that the tensile force of the first peak is 24N and the tensile force of the second peak is 68N. When the spline is stretched, the aluminum-plastic film breaks, but the first bonding layer 1221 and the second bonding layer 1231 The resulting sealing area is not pulled apart.
  • the packaging bag 120 is an aluminum-plastic film.
  • the packaging bag 120 is used to receive the battery cell 100.
  • the first sealing section 1212 includes a first portion of constant thickness and a second portion of varying thickness.
  • the length L1a of the first portion is 3 mm, and the thickness T1a of the first portion is 0.23 mm.
  • the length L1b of the second part is 3 mm, and the minimum thickness min (T1b) of the second part is 0.23 mm.
  • the length L2 of the second sealing section 1215 is 3.5 mm, and the maximum thickness T2 of the second sealing section 1215 is 0.42 mm.
  • the length L3 of the cavity 1219 is 1.2 mm, and the maximum thickness T3 of the cavity 1219 is 0.05 mm.
  • the length L4 of the third sealing section 1216 is 2 mm, and the minimum thickness T4 of the third sealing section 1216 is 0.30 mm.
  • One side sealing part 121 of the packaging bag 120 obtained in Example 4 was cut and cut into splines with a width of 8 mm, and a tensile test was performed in a universal material testing machine to obtain a tensile curve as shown in FIG. 17. It can be seen from Fig. 17 that there are two characteristic peaks in the tensile curve.
  • the tensile strength of the first peak is 50.9N, corresponding to the strength of the third sealing section 1216; the tensile strength of the second peak is 75.8N, corresponding to The strength of the second sealing section 1215.
  • the second sealing section 1215 is first pulled apart, and then the sealing area formed by the first bonding layer 1221 and the second bonding layer 1231 is broken but not pulled apart.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请公开了一种电芯及其电池,该电芯包括电芯本体和容纳电芯本体的封装袋,封装袋包括封装部,封装部包括密封区域,密封区域内设有空腔。根据本申请的电芯,通过在密封区域的内部设置空腔,能够消除温度梯度带来的热应力,消除封头直角对包装袋造成的机械应力,消除电芯本体造成的机械应力,由此可以改善封装部的溢胶区域的形貌,改善溢胶区域的结构缺陷,从而大幅度提高电芯的封装部的封装强度,改善电芯的可靠性和安全性问题。

Description

电芯及电池 技术领域
本申请涉及电化学装置技术领域,具体而言,尤其涉及一种电芯及电池。
背景技术
锂离子电池因其具有高能量密度、长循环寿命、高性能价格比等优点,已被广泛应用于各种数码产品、电动工具、无人机、储能系统以及汽车动力系统中。
由于作为包装材料的铝塑复合膜本身特性,软包锂离子电池的封装可靠性一直受到各研究者的重视。特别是运用于储能系统的软包锂离子电池,对封装的长期可靠性具有更加严苛的要求。目前广泛采用的封头(如平封头或斜封头)及其封装技术对锂离子电池进行封装,所得到的锂离子电池的封装部的封装强度较低,其寿命较低(一般小于三年),无法满足锂离子电池对封装长期可靠性的要求,限制了锂离子电池在长期储能领域和对安全可靠性有较高要求的领域的应用。而封装工序是软包锂离子电池生产制造过程中的关键工序,尤其是侧封和真空封装工序,对电池的安全性和可靠性至关重要。因此需要开发一种能够满足封装长期可靠性要求的封装技术。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一个方面在于提出一种电芯,所述电芯具有安全性好、封装强度大的优点。
根据本申请实施例的电芯,包括电芯本体和容纳所述电芯本体的封装袋,所述封装袋包括封装部,其特征在于,所述封装部包括密封区域,所述密封区域内设有空腔。
根据本申请实施例的电芯,通过改善电芯的封装部在封装时结合层(如聚丙烯(PP))熔融态的流动状态,使得在封装部的密封区域的内部具有空腔,能够消除温度梯度带来的热应力,消除封头直角对包装袋造成的机械应力,消除电芯本体造成的机械应力,由此可以改善封装部的溢胶区域的形貌,可以改善该溢胶区域的结构缺陷,大幅度提高电芯的封装部的封装强度,进而提高电芯的封装可靠性和安全性问题。
在一些实施例中,所述电芯包括第一壳体和第二壳体,所述第一壳体包括第一结合 层,所述第二壳体包括第二结合层,所述第一结合层与所述第二结合层相结合形成所述密封区域和容纳所述电芯本体的容纳空间,所述第一结合层的至少部分与所述第二结合层之间具有间隙以形成所述空腔。
在一些实施例中,所述密封区域包括第一密封段;第二密封段,与所述第一密封段连接,所述空腔设置在所述第二密封段内;及第三密封段,与所述容纳空间连接,且所述第三密封段设置在所述电芯本体与所述第二密封段之间。
在一些实施例中,在沿着靠近所述容纳空间的方向上,所述第一密封段的长度为L1,所述第二密封段的长度为L2,L1/L2大于等于1:10,且小于等于100:1;所述空腔的长度为L3,L2/L3大于2:1;及所述第三密封段的长度为L4,L2/L4大于2:1。
在一些实施例中,所述第一密封段的厚度为T1,所述第二密封段的最大厚度为T2,T1/T2小于1:1;所述空腔的最大厚度为T3,T2/T3大于1:1;以及所述第三密封段的最小厚度为T4,T1/T4小于10:1。
在一些实施例中,所述第一密封段的纵截面积为K,所述第二密封段和所述第三密封段的纵截面积总和为N,N/K大于等于0.05,且小于等于10;及所述空腔的纵截面积为M,M/N大于0,且小于等于0.6。
在一些实施例中,在沿着靠近所述容纳空间的方向上,所述第一密封段的厚度逐渐增大。
在一些实施例中,对所述第一密封段进行至少一次弯折以形成至少一个折边,所述至少一个折边在所述第二密封段上具有投影区域。
在一些实施例中,所述密封区域包括:第一密封段和溢胶区域。溢胶区域设置在所述电芯本体与所述第一密封段之间,所述空腔设置在所述溢胶区域内。
在一些实施例中,所述溢胶区域包括第二密封段、第三密封段、第四密封段和第五密封段。第二密封段与所述第一密封段连接,第三密封段与所述第二密封段连接,且所述第二密封段设置在所述第一密封段与所述第三密封段之间。第四密封段与所述第三密封段连接。第五密封段与所述容纳空间连接,且所述第四密封段设置在所述第三密封段与所述第五密封段之间。所述第二密封段和所述第四密封段内设置有所述空腔。
在一些实施例中,在沿着所述容纳空间的延伸方向上,所述第一密封段的长度为L1,所述第二密封段的长度为L2,L1/L2大于等于1:1,且小于等于10:1;所述第三密封段的长度为L3,L1/L3大于0;所述第四密封段的长度为L4,L3/L4大于等于1:1,且小于等于5:1;所述第二密封段内的所述空腔的长度为L5,L2/L5大于2:1;所述第四密封段内的所述空腔的长度为L6,L4/L6大于2:1;以及所述第五密封段的长度为L7,L3/L7 大于0。
在一些实施例中,所述第一密封段的厚度为T1,所述第三密封段的厚度为T3,所述第五密封段的厚度为T5,当第一密封段、第三密封段和第五密封段的厚度均匀时,T3/T1大于等于1.1,且小于等于1.5,T5/T3大于等于1.0,且小于等于1.5。
在一些实施例中,在沿着靠近所述容纳空间的方向上,所述第一密封段和所述第三密封段中的至少一个的厚度逐渐增大。
在一些实施例中,所述空腔是连续的或不连续的。
在一些实施例中,所述密封区域的拉力曲线具有至少两个波峰。
本申请的另外一方面在于提出了一种电池,包括电芯,所述电芯包括电芯本体和容纳所述电芯本体的封装袋,所述封装袋包括封装部,其中,所述封装部包括密封区域,所述密封区域内设有空腔。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本申请一实施例的电芯的结构示意图,其中在E的位置处的空腔是不连续的;
图2示出了图1中A处的局部放大示意图;
图3示出了图1中沿B-B剖面线的剖面图;
图4示出了图1中沿C-C或C′-C′剖面线剖面图;
图5示出了图4中F处的局部放大示意图;
图6示出了根据本申请另一实施例的电芯的封装部的局部剖面图;
图7示出了根据本申请另一实施例的电芯的封装部的局部剖面图;
图8示出了根据本申请另一实施例的电芯的结构示意图;
图9示出了图8中沿G-G剖面线的剖面图;
图10示出了是根据本申请另一实施例的电芯的封装部的局部剖面图;
图11示出了对本申请一实施例的电芯的封装部进行一次折边后的局部剖面图;
图12示出了对本申请另一实施例的电芯的封装部进行二次折边后的局部剖面图;
图13示出了对本申请另一实施例的电芯的封装部进行二次折边后的局部剖面图;
图14示出了本申请实施例一的封装部的拉力曲线;
图15示出了本申请实施例二的封装部的拉力曲线;
图16示出了本申请实施例三的封装部的拉力曲线;
图17示出了本申请实施例四的封装部的拉力曲线。
附图标记:
电芯100,
电芯本体110,极耳111,
封装袋120,封装部121,
第一密封段1212,折边1213,
第二密封段1215,第三密封段1216,第四密封段1217,第五密封段1218,
空腔1219,
第一壳体122,第一结合层1221,第一金属层1222,第一保护层1223,
第二壳体123,第二结合层1231,第二金属层1232,第二保护层1233,
容纳空间124。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
下面参考图1-图17具体描述根据本申请实施例的电芯100。
如图1所示,根据本申请实施例的电芯100,包括电芯本体110和容纳电芯本体110的封装袋120。电芯本体110包括极耳111,极耳111从该封装袋120穿出。
具体而言,如图1至图3所示,封装袋120可以包括封装部121,封装部121包括密封区域,密封区域内设有空腔1219。可以理解的是,封装袋120可以通过封装工艺构造出该封装部121,封装部121可以通过热封工艺加工而成。本申请通过改善电芯100的封装部121在封装时结合层(如聚丙烯(PP))熔融态的流动状态,使得在封装部121的密封区域的内部具有空腔1219,能够消除温度梯度带来的热应力,消除封头直角对包装袋120造成的机械应力,消除电芯本体110造成的机械应力,由此可以改善封装部121的溢胶区域的形貌,可以改善溢胶区域的结构缺陷,大幅度提高电芯100的封装部121的封装强度,进而提高电芯100的封装可靠性和安全性问题。与现有封头及其封装技术制备得到的封装部的封装强度相比,采用本申请的技术方案制备得到的封装部121的封装强度提高了至少35%以上,可很好的提高电芯100的封装长期可靠性,进而 能够很好的改善电芯100的封装可靠性和安全性。
另外,在对具有空腔1219结构的封装部121进行拉力测试时,其所得到的拉力曲线具有多个峰值,而对现有封头及其封装技术制备得到的封装部进行拉力测试时,所得到的拉力曲线仅呈现一个较尖锐的峰值,由此亦可说明,通过在密封区域的内部设置空腔1219确实可以大幅度提升电芯100的封装部121的封装强度,进而改善电芯100的封装可靠性和安全性。
根据本申请的一些实施例,如图3所示,电芯100可以包括第一壳体122和第二壳体123,第一壳体122包括第一结合层1221,第二壳体123包括第二结合层1231,第一结合层1221与第二结合层1231相结合形成密封区域和容纳电芯本体110的容纳空间124,第一结合层1221的至少部分与第二结合层1231之间具有间隙以形成空腔1219。通过此设置方式,可以提升封装部121的结构稳定性,便于电芯100的封装,同时也有利于通过第一结合层1221和第二结合层1231之间相结合以构造出具有空腔1219的密封区域。
在一些实施例中,如图4和图5所示,第一壳体122还可以包括第一金属层1222和第一保护层1223,第一金属层1222设置在第一保护层1223和第一结合层1221之间。同样的,第二壳体123也可以包括第二金属层1232和第二保护层1233,第二金属层1232设置在第二保护层1233和第二结合层1231之间。其中,第一保护层1223和/或第二保护层1233的材质可以是聚酰胺(PA)、聚对苯二甲酸乙二醇酯(PET)或其组合等,第一金属层1222和/或第二金属层1232的材质可以是铝,第一结合层1221和/或第二结合层1231的材质可以是聚丙烯(PP)、聚乙烯(PE)、聚萘二甲酸乙二醇酯(PEN)或其组合等。
根据本申请的一些实施例,如图4和图6所示,密封区域可以包括第一密封段1212、第二密封段1215和第三密封段1216。其中,第二密封段1215设置在第一密封段1212与第三密封段1216之间,第三密封段1216设置在电芯本体110与第二密封段1215之间,且第三密封段1216与容纳空间124连接,空腔1219设置在第二密封段1215内。可以理解的是,密封区域可以通过本申请的封头对第一结合层1221和第二结合层1231进行热压而形成,第一结合层1221和第二结合层1231在受热熔化后,受压时可向压力较小的范围流动以形成溢胶区域,该溢胶区域包括第二密封段1215。
在一些实施例中,如图4和图6所示,在沿着靠近容纳空间124的第一方向上,第一密封段1212的长度为L1,即从电芯100的封装部121的最外侧端面到该封装部121凸起出现的位置之间的长度,第二密封段1215的长度为L2,即从该凸起出现的位置到 该凸起消失的位置之间的长度,L1/L2大于等于1:10,且小于等于100:1。在一些实施例中,L1/L2大于等于1:2,且小于等于50:1。在一些实施例中,L1/L2大于等于2:1,且小于等于4:1。空腔1219的长度为L3,L2/L3大于2:1,即L2/L3>2。在一些实施例中,L2/L3大于等于4:1,且小于等于15:1。第三密封段1216的长度为L4,即从该凸起消失的位置到容纳空间124靠近第三密封段1216的边界之间的长度,L2/L4大于2:1,即L2/L4>2。在一些实施例中,L2/L4大于等于4:1,且小于等于7:1。需要说明的是,第三密封段1216的两条边界线(即该凸起消失的位置和容纳空间124靠近第三密封段1216的边界)可以从电芯100的封装部121的表面外观上清晰的看到,或者说该边界线可以通过本申请的封头在靠近容纳空间124的一侧在该封装部121上留下的。
在一些实施例中,当封装工序控制出现问题时,会导致部分的空腔1219被第一结合层1221和第二结合层1231受热后形成的熔融态填充,此时空腔1219会呈现不连续的状态,可如图1的E处所示。
在一些实施例中,如图4和图6所示,在沿着与第一方向大致垂直的第二方向上,第一密封段1212的厚度为T1,第二密封段1215的厚度变化不均匀,其最大厚度为T2,T1/T2小于1:1,即T1/T2<1。在一些实施例中,T1/T2大于等于1:2,且小于等于1:4。空腔1219的最大厚度为T3,T2/T3大于1:1,即T2/T3>1,当空腔1219的厚度很小时,T2/T3可趋向于无穷大。在一些实施例中,T2/T3大于等于8:1,且小于等于30:1。第三密封段1216的最小厚度为T4,T1/T4小于10:1,即T1/T4<10。在一些实施例中,T1/T4大于等于1:3,且小于等于2:1。
在一些实施例中,如图4和图6所示,在沿着第二方向上,第一密封段1212的截面积(即纵截面积)为K,第二密封段1215和第三密封段1216的截面积总和为N(不包含空腔1219的截面积),N/K大于等于0.05,且小于等于10。在一些实施例中,N/K大于等于0.05,且小于等于6。在一些实施例中,N/K大于等于0.05,且小于等于3。空腔1219的截面积为M,M/N大于0,且小于等于0.6。在一些实施例中,M/N大于等于0.01,且小于等于0.4。在一些实施例中,M/N大于等于0.01,且小于等于0.25。需要说明的是,各截面积采用如下方法进行测量:将图1沿着剖面线C-C或C′-C′剖开,得到封装部121的剖面形貌,再采用基恩仕5000(VHX-5000)显微镜的面积测量功能对N、M和K进行测量。
如图7所示,在一些实施例中,在沿着靠近容纳空间124的方向上,第一密封段1212的厚度逐渐增大。第一密封段1212可以包括厚度均匀的第一部分和厚度变化的第二部分,在沿着靠近容纳空间124的方向上,第一部分的厚度逐渐增大。第一部分的长度为 L1a,第二部分的长度为L1b,L1a/L1b大于等于0,当L1a的长度为0时(即第一密封段1212的厚度整体上呈渐增式变化),此时L1a/L1b=0;当L1b的长度为0时(即第一密封段1212的厚度整体上没有变化),此时L1a/L1b为无穷大。当第二部分的长度越长时(即L1b越大),该第一密封段1212抵抗工序波动的能力越强;当第一部分的长度越长时(即L1a越大),该第一密封段1212抗磨损的能力越强。在一些实施例中L1a/L1b大于等于0.5,且小于等于2。
根据本申请的一些实施例,如图8和图9所示,密封区域可以包括第一密封段1212和溢胶区域。其中,溢胶区域设置在所述电芯本体110与第一密封段1212之间,多个空腔1219设置在溢胶区域内以进一步提高电芯100的封装部121的封装可靠性和安全性。可以理解的是,密封区域可以通过封头对第一结合层1221和第二结合层1231进行热压而形成,第一结合层1221和第二结合层1231在受热熔化后,受压时可向压力较小的范围流动以形成溢胶区域,该溢胶区域可以包括多个上述第二密封段1215与第三密封段1216之间的组合,可以为两个、三个或三个以上,本申请不以此为限。
在一些实施例中,具体的,溢胶区域可以包括第二密封段1215、第三密封段1216、第四密封段1217和第五密封段1218。其中,第二密封段1215设置在第一密封段1212与第三密封段1216之间,且第二密封段1215分别与第一密封段1212和第三密封段1216连接。第四密封段1217设置在第三密封段1216与第五密封段1218之间,且第四密封段1217分别与第三密封段1216和第五密封段1218连接,第五密封段1218与容纳空间124连接,第二密封段1215和第四密封段1217内设置有空腔1219。
如图9所示,在一些实施例中,在沿着靠近容纳空间124的方向上,第一密封段1212的长度为L1,即从电芯100的封装部121的最外侧端面到该封装部121首次凸起出现的位置之间的长度,第二密封段1215的长度为L2,即该首次凸起从出现到消失之间的长度,L1/L2大于等于1:1,且小于等于10:1,即1≤L1/L2≤10。在一些实施例中,L1/L2大于等于2:1,且小于等于6:1。在一些实施例中,L1/L2大于等于2:1,且小于等于4:1。第三密封段1216的长度为L3,即从该首次凸起消失的位置到第二次凸起出现的位置之间的长度,L1/L3大于0,即L1/L3>0。在一些实施例中,L1/L3大于等于2:1,且小于等于10:1。在一些实施例中,L1/L3大于等于2:1,且小于等于4:1。
第四密封段1217的长度为L4,即从第二次凸起出现的位置到该第二次凸起消失的位置之间的长度,L3/L4大于等于1:1,且小于等于5:1,即1≤L3/L4≤5。在一些实施例中,L3/L4大于等于1:1,且小于等于3:1。第二密封段1215内的空腔1219的长度为L5,L2/L5大于2:1,即L2/L5>2。在一些实施例中,L2/L5大于等于4:1,且小于等于10:1。 第四密封段1217内的所述空腔1219的长度为L6,L4/L6大于2:1,即L4/L6>2。在一些实施例中,L4/L6大于等于4:1,且小于等于10:1。第五密封段1218的长度为L7,即从该第二次凸起消失的位置到容纳空间124靠近第五密封段1218的边界之间的长度,L3/L7大于0,即L3/L7>0。在一些实施例中,L3/L7大于等于2:1,且小于等于20:1。在一些实施例中,L3/L7大于等于5:1,且小于等于10:1。需要说明的是,第三密封段的两条边界线(即该凸起消失的位置和容纳空间124靠近第三密封段的边界)可以从电芯100的封装部121的表面外观上清晰的看到,或者说该边界线可以通过本申请的封头在靠近容纳空间124一侧的两端在该封装部121上留下的。
如图9所示,在一些实施例中,在沿着第二方向上,第一密封段1212的厚度为T1,第三密封段1216的厚度为T3,第五密封段1218的厚度为T5,当第一密封段1212和第三密封段1216的厚度均匀(即不变化)时,T3/T1大于1。在一些实施例中,T3/T1大于等于1.1,且小于等于1.5。另外,当第三密封段1216和第五密封段1218的厚度均匀(即不变化)时,T5/T3大于等于1.0。在一些实施例中,T5/T3大于等于1.0,且小于等于1.5。
在一些实施例中,在沿着第二方向上,第一密封段1212和第三密封段1216中的至少一个的厚度逐渐增大。可以理解的是,在沿着靠近容纳空间124的延伸方向上,第一密封段1212的至少部分的厚度是变化的,第三密封段1216的至少部分的厚度是变化的。例如,第一密封段1212可以包括上述的第一部分和第二部分(可如图7所示),第一部分的厚度不变化,第二部分的厚度呈渐增式变化,即在沿着靠近第二密封段1215的方向上,第二部分的厚度逐渐增大。同样的,第三密封段1216也可以包括上述的第一部分和第二部分(可如图7所示),第一部分的厚度不变化,第二部分的厚度呈渐增式变化,即在沿着靠近第四密封段1217的方向上,第二部分的厚度逐渐增大。
当第一密封段1212的厚度和第三密封段1216的厚度变化时,在沿着靠近容纳空间124的方向上,设第一密封段1212的第二部分倾斜角为α,第一密封段1212的长度为L1,第一密封段1212的最大厚度为max(T1),第一密封段1212的最小厚度为min(T1),则max(T1)=min(T1)+L1·tanα,0°≤α≤2°。同理,设第三密封段1216的第二部分倾斜角为β,第三密封段1216的长度为L3,第三密封段1216的最大厚度为max(T3),第三密封段1216的最小厚度为min(T3),则max(T3)=min(T3)+L3·tanβ,0°≤β≤2°。在一些实施例中,第一密封段1212的最大厚度与第三密封段1216的最小厚度可以相等,即max(T1)=min(T3)。
在一些实施例中,如图10所示,第四密封段1217的空腔1219可以与容纳空间124 直接连通,即该溢胶区域可以不包括第五密封段1218,或者说第五密封段1218的长度很小。此时,上述的各比例关系也同样可以适用于此。
在一些实施例中,空腔1219可以是连续的或不连续的,可如图1中的A处所示,此时空腔1219是连续的;也可如图1中的E处所示,此时空腔1219可以是不连续的。
如图11-图13所示,在一些实施例中,对第一密封段1212进行至少一次弯折以形成至少一个折边1213,至少一个折边1213在第二密封段1215上具有投影区域。可以理解的是,该投影区域为该至少一个折边1213在第二密封段1215所在平面上的正投影,该投影区域的至少部分与第二密封段1215重叠。具体的,如图11所示,对第一密封段1212向着电芯本体110的方向进行一次弯折以形成一次折边。如图12和图13所示,对第一密封段1212进行两次弯折以形成两次折边。
在一些实施例中,如图14至图17所示,密封区域的拉力曲线具有至少两个波峰。需要说明的是,拉力曲线可通过如下的方法测得:以图1为例,将图1中的密封区域沿着剖面线C-C或者C′-C′剪开并裁切(可通过剪刀、刀片、刀模等)成具有8mm宽度的样条(宽度是指样条在与剖面线C-C或者C′-C′垂直的方向上两端的距离),将样条夹在万能材料试验机(深圳三思纵横科技股份有限公司,型号UTM6101)的夹具上,以30mm/min的速度进行拉伸,得到拉伸应力-应变曲线,即拉力曲线。
此外,本申请还公开了一种电池,该电池包括上述任一种情况的电芯100。
下面参照一些具体实施例详细描述根据本申请实施例的电芯100。应该理解的是,下述的描述仅是示例性说明,而不是对本申请的具体限制。
实施例1
在该实施例中,封装袋120为铝塑膜,该封装袋120用于收容电芯100,将该封装袋120中的一侧封装部121按如图1所示的剖面线C-C或C-C剖开后,得到如图6所示的剖面图。其中,第一密封段1212的长度L1为5mm,第二密封段1215长度L2为3mm,空腔1219的最大长度L3为0.35mm,第三密封段1216的长度L4为2mm。第一密封段1212的厚度T1为0.25mm,第二密封段1215的最大厚度T2为0.50mm,空腔1219的最大厚度T3为0.25mm,第三密封段1216的最小厚度T4为0.30mm。
空腔1219的纵截面积M为0.028mm 2,第二密封段1215和第三密封段1216的纵截面积总和N为0.334mm 2,第一密封段1212的纵截面积K为0.54mm 2,其中M/N=0.08,N/K=0.62。
将实施例1所得到的封装袋120的一侧封装部121剪开并裁切成具有8mm宽度的样条,在万能材料试验机进行拉力测试,得到如图14所示的拉力曲线。从图14可以看出, 在该拉力曲线中存在两个峰值,第一峰值的拉力为41N,第二峰值的拉力为68N,该样条在拉伸时,铝塑膜出现破裂,但第一结合层1221与第二结合层1231所形成的密封区域未被拉开。
实施例2
封装袋120为铝塑膜,该封装袋120用于收容电芯100,将该封装袋120中的一侧封装部121按如图1所示的剖面线C-C或C-C剖开后,得到如图4所示的剖面图。在该实施例中,第一密封段1212的长度L1为3mm,第二密封段1215的长度L2为1mm,空腔1219的最大长度L3为0.018mm,第三密封段1216的长度L4为0.3mm。第一密封段1212的厚度T1为0.18mm,第二密封段1215的最大厚度T2为0.33mm,空腔1219的厚度很小,第三密封段1216的最小厚度T4为0.22mm。
空腔1219的纵截面积M为0.007mm 2,第二密封段1215和第三密封段1216的纵截面积总和N为0.289mm 2,第一密封段1212的纵截面积K为0.24mm 2,M:N=0.024,N:K=1.2。
将实施例2所得到的封装袋120的一侧封装部121剪开并裁切成具有8mm宽度的样条,在万能材料试验机进行拉力测试,得到如图15所示的拉力曲线。从图15可以看出,在该拉力曲线中也存在两个峰值,第一峰值的拉力为37N,第二峰值的拉力为52N,该样条在拉伸时,铝塑膜出现小幅度破裂,但第一结合层1221与第二结合层1231所形成的密封区域未被拉开。
实施例3
与实施例2不同的是,在该实施例中,第一密封段1212的长度L1为4.5mm,第二密封段1215的长度L2为3.3mm,空腔1219的最大长度L3为1.4mm,第三密封段1216的长度L4为0.22mm。第一密封段1212的厚度T1为0.15mm,第二密封段1215的最大厚度T2为0.39mm,空腔1219的最大厚度T3为0.29mm,第三密封段1216的最小厚度T4为0.31mm。
空腔1219的纵截面积M为0.119mm 2,第二密封段1215和第三密封段1216的纵截面积总和N为0.431mm 2,第一密封段1212的纵截面积K为0.045mm 2,M:N=0.28,N:K=9.6。
将实施例3所得到的封装袋120的一侧封装部121剪开并裁切成具有8mm宽度的样条,在万能材料试验机进行拉力测试,得到如图16所示的拉力曲线。从图16可以看出, 第一峰值的拉力为24N,第二峰值的拉力为68N,该样条在拉伸时,铝塑膜出现破裂,但第一结合层1221与第二结合层1231所形成的密封区域未被拉开。
实施例4
封装袋120为铝塑膜,该封装袋120用于收容电芯100,将该封装袋120中的一侧封装部121按如图1所示的剖面线C-C或C-C剖开后,得到如图7所示的剖面图。在该实施例中,第一密封段1212包括厚度不变的第一部分和厚度变化的第二部分,第一部分的长度L1a为3mm,第一部分的厚度T1a为0.23mm。第二部分的长度L1b为3mm,第二部分的最小厚度min(T1b)为0.23mm。在沿着靠近容纳空间124的方向上,第二部分的倾斜角α为1°,则第二部分的最大厚度max(T1b)=min(T1b)+L1b·tanα=0.28mm。
第二密封段1215的长度L2为3.5mm,第二密封段1215的最大厚度T2为0.42mm。空腔1219的长度L3为1.2mm,空腔1219的最大厚度T3为0.05mm。第三密封段1216的长度L4为2mm,第三密封段1216的最小厚度T4为0.30mm。
将实施例4所得到的封装袋120的一侧封装部121剪开并裁切成具有8mm宽度的样条,在万能材料试验机进行拉力测试,得到如图17所示的拉力曲线。从图17可以看出,该拉力曲线存在两个特征峰,第一个峰值的拉力强度为50.9N,对应的是第三密封段1216的强度;第二个峰值的拉力强度为75.8N,对应第二密封段1215的强度,该样条在拉伸时第二密封段1215首先被拉开,随后第一结合层1221与第二结合层1231所形成的密封区域破裂但未被拉开。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。在本申请的描述中,“多个”的含义是两个或两个以上。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱 离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (15)

  1. 一种电芯,包括电芯本体和容纳所述电芯本体的封装袋,所述封装袋包括封装部,其特征在于,所述封装部包括密封区域,所述密封区域内设有空腔。
  2. 根据权利要求1所述的电芯,其特征在于,所述电芯包括第一壳体和第二壳体,所述第一壳体包括第一结合层,所述第二壳体包括第二结合层,所述第一结合层与所述第二结合层相结合形成所述密封区域和容纳所述电芯本体的容纳空间,所述第一结合层的至少部分与所述第二结合层之间具有间隙以形成所述空腔。
  3. 根据权利要求2所述的电芯,其特征在于,所述密封区域包括:
    第一密封段;
    第二密封段,与所述第一密封段连接,所述空腔设置在所述第二密封段内;及
    第三密封段,与所述容纳空间连接,且所述第三密封段设置在所述电芯本体与所述第二密封段之间。
  4. 根据权利要求3所述的电芯,其特征在于,在沿着靠近所述容纳空间的方向上,所述第一密封段的长度为L1,所述第二密封段的长度为L2,L1/L2大于等于1:10,且小于等于100:1;
    所述空腔的长度为L3,L2/L3大于2:1;及
    所述第三密封段的长度为L4,L2/L4大于2:1。
  5. 根据权利要求3所述的电芯,其特征在于,所述第一密封段的厚度为T1,所述第二密封段的最大厚度为T2,T1/T2小于1:1;
    所述空腔的最大厚度为T3,T2/T3大于1:1;及
    所述第三密封段的最小厚度为T4,T1/T4小于10:1。
  6. 根据权利要求3所述的电芯,其特征在于,所述第一密封段的纵截面积为K,所述第二密封段和所述第三密封段的纵截面积总和为N,N/K大于等于0.05,且小于等于10;及
    所述空腔的纵截面积为M,M/N大于0,且小于等于0.6。
  7. 根据权利要求3所述的电芯,其特征在于,在沿着靠近所述容纳空间的方向上,所述第一密封段的厚度逐渐增大。
  8. 根据权利要求3所述的电芯,其特征在于,对所述第一密封段进行至少一次弯折以形成至少一个折边,所述至少一个折边在所述第二密封段上具有投影区域。
  9. 根据权利要求2所述的电芯,其特征在于,所述密封区域包括:
    第一密封段;和
    溢胶区域,设置在所述电芯本体与所述第一密封段之间,所述空腔设置在所述溢胶区域内。
  10. 根据权利要求9所述的电芯,其特征在于,所述溢胶区域包括:
    第二密封段,与所述第一密封段连接;
    第三密封段,与所述第二密封段连接,且所述第二密封段设置在所述第一密封段与所述第三密封段之间;
    第四密封段,与所述第三密封段连接;及
    第五密封段,与所述容纳空间连接,且所述第四密封段设置在所述第三密封段与所述第五密封段之间;
    其中,所述第二密封段和所述第四密封段内设置有所述空腔。
  11. 根据权利要求10所述的电芯,其特征在于,在沿着靠近所述容纳空间的方向上,所述第一密封段的长度为L1,所述第二密封段的长度为L2,L1/L2大于等于1:1,且小于等于10:1;
    所述第三密封段的长度为L3,L1/L3大于0;
    所述第四密封段的长度为L4,L3/L4大于等于1:1,且小于等于5:1;
    所述第二密封段内的所述空腔的长度为L5,L2/L5大于2:1;
    所述第四密封段内的所述空腔的长度为L6,L4/L6大于2:1;及
    所述第五密封段的长度为L7,L3/L7大于0。
  12. 根据权利要求10所述的电芯,其特征在于,所述第一密封段的厚度为T1,所述第三密封段的厚度为T3,所述第五密封段的厚度为T5,当第一密封段、第三密封段和第五密封段的厚度均匀时,T3/T1大于等于1.1,且小于等于1.5,T5/T3大于等于1.0,且小于等于1.5。
  13. 根据权利要求10所述的电芯,其特征在于,在沿着靠近所述容纳空间的方向上,所述第一密封段和所述第三密封段中的至少一个的厚度逐渐增大。
  14. 根据权利要求1所述的电芯,其特征在于,所述空腔是连续的或不连续的。
  15. 一种电池,包括电芯,所述电芯包括电芯本体和容纳所述电芯本体的封装袋,所述封装袋包括封装部,其中,所述封装部包括密封区域,所述密封区域内设有空腔。
PCT/CN2019/126423 2018-12-18 2019-12-18 电芯及电池 WO2020125695A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811547623.5 2018-12-18
CN201811547623.5A CN111341945B (zh) 2018-12-18 2018-12-18 电芯及电池
US16/431,568 2019-06-04
US16/431,568 US11355776B2 (en) 2018-12-18 2019-06-04 Cell and battery

Publications (1)

Publication Number Publication Date
WO2020125695A1 true WO2020125695A1 (zh) 2020-06-25

Family

ID=71071913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126423 WO2020125695A1 (zh) 2018-12-18 2019-12-18 电芯及电池

Country Status (3)

Country Link
US (1) US11355776B2 (zh)
CN (1) CN111341945B (zh)
WO (1) WO2020125695A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240021849A (ko) * 2021-06-15 2024-02-19 에노빅스 코오퍼레이션 전기화학 배터리 인클로저의 보호를 제공하기 위한 스페이서 및 이를 위한 시스템 및 방법
CN114597414A (zh) * 2022-03-21 2022-06-07 珠海冠宇电池股份有限公司 一种电池及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110223448A1 (en) * 2010-03-11 2011-09-15 Jun-Sik Kim Rechargeable battery
JP4830267B2 (ja) * 2004-05-21 2011-12-07 トヨタ自動車株式会社 ラミネート電池
US20150037663A1 (en) * 2013-07-30 2015-02-05 Lg Chem, Ltd. Battery cell having double sealing structure
CN106062992A (zh) * 2014-02-27 2016-10-26 株式会社Lg化学 具有带密封线的外部边缘密封部分的电池以及用于制造所述电池的电池密封设备
CN106058083A (zh) * 2016-08-19 2016-10-26 宁德时代新能源科技股份有限公司 软包电池外壳及软包电池
CN107546342A (zh) * 2016-06-29 2018-01-05 太阳诱电株式会社 单体蓄电池、封装膜和蓄电组件

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3695435B2 (ja) * 2002-09-03 2005-09-14 日産自動車株式会社 ラミネート外装扁平型電池
JP5463212B2 (ja) * 2010-06-10 2014-04-09 日立マクセル株式会社 ラミネート形電池およびその製造方法
JP2012003919A (ja) * 2010-06-16 2012-01-05 Hitachi Maxell Energy Ltd ラミネート形電池およびその製造方法
KR20130085719A (ko) 2012-01-20 2013-07-30 에스케이이노베이션 주식회사 파우치형 전지의 실링 장치 및 실링 방법
KR101620666B1 (ko) * 2013-05-02 2016-05-12 주식회사 엘지화학 안전 벤트를 갖는 파우치형 이차전지
JP2017228381A (ja) * 2016-06-21 2017-12-28 Necエナジーデバイス株式会社 電池及び電池の製造方法
KR20180001190A (ko) * 2016-06-27 2018-01-04 주식회사 엘지화학 이차전지 및 그의 제조방법
KR102278442B1 (ko) 2016-09-21 2021-07-16 삼성에스디아이 주식회사 리튬 이차 전지
KR20180054297A (ko) * 2016-11-15 2018-05-24 주식회사 엘지화학 밀봉성이 향상된 파우치 외장재 및 이를 포함하는 전지
US20190067653A1 (en) * 2017-08-23 2019-02-28 Parker-Hannifin Corporation Chamber seal for a power cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830267B2 (ja) * 2004-05-21 2011-12-07 トヨタ自動車株式会社 ラミネート電池
US20110223448A1 (en) * 2010-03-11 2011-09-15 Jun-Sik Kim Rechargeable battery
US20150037663A1 (en) * 2013-07-30 2015-02-05 Lg Chem, Ltd. Battery cell having double sealing structure
CN106062992A (zh) * 2014-02-27 2016-10-26 株式会社Lg化学 具有带密封线的外部边缘密封部分的电池以及用于制造所述电池的电池密封设备
CN107546342A (zh) * 2016-06-29 2018-01-05 太阳诱电株式会社 单体蓄电池、封装膜和蓄电组件
CN106058083A (zh) * 2016-08-19 2016-10-26 宁德时代新能源科技股份有限公司 软包电池外壳及软包电池

Also Published As

Publication number Publication date
CN111341945B (zh) 2022-01-25
CN111341945A (zh) 2020-06-26
US11355776B2 (en) 2022-06-07
US20200194817A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
WO2020125696A1 (zh) 电芯及电池
JP6183919B2 (ja) フィルム外装電池
WO2020125695A1 (zh) 电芯及电池
CN106252578B (zh) 极耳封装结构及软包电池
WO2021003781A1 (zh) 二次电池
WO2022199435A1 (zh) 卷芯和软包电池
WO2022206383A1 (zh) 一种电池
CN109860713A (zh) 电芯、电化学装置及其制造方法
WO2019230743A1 (ja) 電池、ヒートシール装置、及び電池の製造方法
WO2019230742A1 (ja) 電池
US20190074550A1 (en) Electrode assembly for secondary battery and method for producing electrode assembly for secondary battery
CN103354278B (zh) 一种聚合物锂离子电池铝塑膜和封装方法
CN212366144U (zh) 一种极耳胶及含有该极耳胶的极耳
WO2020233275A1 (zh) 二次电池
CN112864472A (zh) 软包动力电芯顶封封头结构
CN218919071U (zh) 一种电池
CN215816256U (zh) 一种极耳及软包电池
JP2020050439A (ja) 蓄電デバイス
CN107742679A (zh) 一种铝塑壳包装的锂电池
CN213520128U (zh) 软包电池、电池模组及电池包
CN110048034A (zh) 软包电芯铝塑膜防热辐射封装方法及封装结构
CN220873703U (zh) 一种铝塑膜封边结构和锂离子电池
CN216928870U (zh) 一种电池极耳结构及软包扣式电池
JP2020053178A (ja) 弁装置付き包装体及び蓄電デバイス
CN220527042U (zh) 一种铝塑膜和电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897975

Country of ref document: EP

Kind code of ref document: A1