WO2020125422A1 - 一种信道状态信息csi上报的配置方法和通信装置 - Google Patents

一种信道状态信息csi上报的配置方法和通信装置 Download PDF

Info

Publication number
WO2020125422A1
WO2020125422A1 PCT/CN2019/123159 CN2019123159W WO2020125422A1 WO 2020125422 A1 WO2020125422 A1 WO 2020125422A1 CN 2019123159 W CN2019123159 W CN 2019123159W WO 2020125422 A1 WO2020125422 A1 WO 2020125422A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
csi
terminal device
configuration information
network device
Prior art date
Application number
PCT/CN2019/123159
Other languages
English (en)
French (fr)
Inventor
金黄平
施弘哲
种稚萌
尹海帆
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19899970.8A priority Critical patent/EP3886485A4/en
Publication of WO2020125422A1 publication Critical patent/WO2020125422A1/zh
Priority to US17/352,108 priority patent/US20210314122A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]

Definitions

  • the present application relates to the field of wireless communication, and more specifically, to a configuration method and a communication device for reporting CSI of channel state information.
  • massive multiple-input multiple-input massive MIMO
  • network equipment can reduce interference between multiple users and interference between multiple signal streams of the same user through precoding. It is beneficial to improve signal quality, realize space division multiplexing, and improve spectrum utilization.
  • the terminal device may determine the precoding matrix based on downlink channel measurement, for example, and hopes that through feedback, the network device obtains a precoding matrix that is the same as or similar to the precoding matrix determined by the terminal device. Specifically, the terminal device needs to perform channel estimation and measurement on the pilot of each subband, and then search for a precoding matrix indicator (PMI) component that requires subband feedback for each subband.
  • PMI precoding matrix indicator
  • SVD singular value decomposition
  • the present application provides a configuration method and a communication device for reporting channel state information CSI in order to reduce feedback overhead.
  • a method for configuring channel state information CSI reporting is provided.
  • the method may be executed by a terminal device, or may be executed by a chip configured in the terminal device.
  • the method includes: the terminal device receives configuration information reported by the CSI, and the configuration information reported by the CSI is associated with the configuration information of the first reference signal and the configuration information of the second reference signal, and the second reference signal is used for uplink channel measurement.
  • the first reference signal is used for downlink channel measurement;
  • the terminal device Based on the first reference signal and the second reference signal, the terminal device performs channel measurement and feeds back CSI.
  • a method for configuring channel state information CSI reporting is provided.
  • the method may be executed by a network device, or may be executed by a chip configured in the network device.
  • the method includes: a network device configuring a CSI reporting configuration, the CSI reporting configuration is associated with configuration information of a first reference signal and configuration information of a second reference signal, the second reference signal is used for uplink channel measurement, and the first reference The signal is used for downlink channel measurement;
  • the network device sends the configuration information reported by the CSI.
  • the network device can determine the reciprocity information (such as angle and Delay), precoding the downlink reference signal, so that the terminal device performs downlink channel measurement according to the precoded reference signal. Since the network device pre-codes the reference signal based on the reciprocity angle and delay of the uplink and downlink channels, the information of the downlink channel detected by the terminal device is information that does not have reciprocity. Therefore, the terminal device may not need to feed back information with reciprocity (such as angle and delay), which greatly reduces the feedback overhead of the terminal device.
  • the reciprocity information such as angle and Delay
  • a method for configuring channel state information CSI reporting is provided.
  • the method may be executed by a terminal device, or may be executed by a chip configured in the terminal device.
  • the method includes: a terminal device receives configuration information reported by CSI, the configuration information reported by CSI is associated with configuration information of a first reference signal, and the configuration information of the first reference signal is associated with a second reference signal, and the second reference signal Used for uplink channel measurement, the first reference signal is used for downlink channel measurement;
  • the terminal device Based on the first reference signal and the second reference signal, the terminal device performs channel measurement and feeds back CSI.
  • a method for configuring channel state information CSI reporting is provided.
  • the method may be executed by a network device, or may be executed by a chip configured in the network device.
  • the method includes: a network device configuring a CSI reporting configuration, the CSI reporting configuration is associated with configuration information of a first reference signal, the configuration information of the first reference signal is associated with a second reference signal, and the second reference signal is used for an uplink channel Measurement, the first reference signal is used for downlink channel measurement;
  • the network device sends the configuration information reported by the CSI.
  • the network device can refer to the downlink reference based on the reciprocity information (such as angle and delay) determined by the uplink channel measurement.
  • the signal is pre-encoded, so that the terminal device performs downlink channel measurement according to the pre-encoded reference signal. Since the network device pre-codes the reference signal based on the reciprocity angle and delay of the uplink and downlink channels, the information of the downlink channel detected by the terminal device is information that does not have reciprocity. Therefore, the terminal device may not need to feed back information with reciprocity (such as angle and delay), which greatly reduces the feedback overhead of the terminal device.
  • the reciprocity of the uplink and downlink channels the measurement process of the downlink channel by the terminal device is simplified, and the calculation complexity of the terminal device during the channel measurement process is reduced.
  • the configuration information of the first reference signal is: CSI resource configuration CSI resource setting, the first reference signal resource set, and the first reference signal resource At least one of the above, wherein the CSI resource setting includes at least one first reference signal resource set, and the first reference signal resource set includes at least one first reference signal resource.
  • the configuration information of the first reference signal is associated with the second reference signal, including: the configuration information of the first reference signal is associated with the identification ID of the second reference signal .
  • the configuration information of the first reference signal is associated with the identity (ID) of the second reference signal, for example, the ID of the associated second reference signal is configured in the configuration information of the first reference signal.
  • a method for transmitting channel state information CSI is provided.
  • the method may be executed by a terminal device, or may be executed by a chip configured in the terminal device.
  • the method includes: the terminal device sends a second reference signal for uplink channel measurement;
  • the terminal device receives a first reference signal, the first reference signal is a reference signal obtained by the network device based on channel information processing, and the channel information is obtained by the network device performing uplink channel measurement based on the second reference signal.
  • the terminal device performs downlink channel measurement according to the first reference signal to obtain the channel state of the downlink channel; the terminal device sends CSI according to the channel state of the downlink channel.
  • a method for receiving channel state information CSI is provided.
  • the method may be executed by a network device, or may be executed by a chip configured in the network device.
  • the method includes: the network device receives a second reference signal for uplink channel measurement;
  • the network device sends a first reference signal, where the first reference signal is a reference signal obtained by the network device based on channel information processing, and the channel information is that the network device performs uplink channel measurement based on the second reference signal Obtained; the network device receives CSI, and the CSI is determined by the terminal device performing downlink channel measurement according to the first reference signal.
  • the first reference signal is a reference signal obtained by the network device based on channel information processing, and the channel information is that the network device performs uplink channel measurement based on the second reference signal Obtained
  • the network device receives CSI, and the CSI is determined by the terminal device performing downlink channel measurement according to the first reference signal.
  • the network device may precode the downlink reference signal based on the reciprocity information (such as angle and delay) determined by the uplink channel measurement, so that the terminal device performs the downlink channel according to the precoded reference signal measuring. Since the network device pre-codes the reference signal based on the reciprocity angle and delay of the uplink and downlink channels, the information of the downlink channel detected by the terminal device is information that does not have reciprocity. Therefore, the terminal device may not need to feed back information with reciprocity (such as angle and delay), which greatly reduces the feedback overhead of the terminal device. In addition, by utilizing the reciprocity of the uplink and downlink channels, the measurement process of the downlink channel by the terminal device is simplified, and the calculation complexity of the terminal device during the channel measurement process is reduced.
  • the reciprocity information such as angle and delay
  • the channel information includes angle information or delay information.
  • the terminal device performing channel measurement and feeding back CSI includes: Sending configuration information of the second reference signal to send the second reference signal; the terminal device receives the first reference signal based on the configuration information of the first reference signal, the first reference signal is a network device Based on a reference signal obtained by information processing, the information is obtained by the network device performing uplink channel measurement based on the second reference signal; the terminal device performs channel measurement based on the first reference signal and feeds back CSI.
  • the measurement process of the downlink channel by the terminal device is simplified, and the calculation complexity of the terminal device during the channel measurement process is reduced.
  • the precoding matrix of the first reference signal is calculated based on the second reference signal.
  • the network device obtains reciprocal channel characteristics, such as angle and delay, based on the upstream channel measurement.
  • the reciprocal characteristics are obtained by weighting on the downlink reference signal (for example, denoted as the first reference signal). Hair. Since the network device pre-codes the reference signal based on the reciprocal angle and delay of the uplink and downlink channels, the terminal device is invisible and has the characteristic of reciprocity, which simplifies the measurement process of the downlink channel by the terminal device.
  • the second reference signal is periodic
  • the first reference signal is any one of the following: periodic, aperiodic, and semi-persistent.
  • the second reference signal is semi-persistent
  • the first reference signal is aperiodic or semi-persistent
  • the second reference signal is aperiodic and the first reference signal is aperiodic.
  • the first reference signal and the second reference signal are both semi-persistent, and the terminal device receives the first signaling sent by the network device , The first signaling is used to activate the first reference signal and the second reference signal; or, the terminal device receives second signaling sent by the network device, and the second signaling is used to Deactivate the first reference signal and the second reference signal.
  • the first reference signal and the second reference signal when signaling is required to activate the first reference signal and the second reference signal, the first reference signal and the second reference signal can be activated through one signaling, or, when signaling is required to deactivate the first reference signal and When the second reference signal is used, the first reference signal and the second reference signal can be activated or deactivated through one signaling, thereby saving signaling overhead.
  • the CSI report, the first reference signal, and the second reference signal are all aperiodic, and the terminal device receives the Third signaling, the third signaling is used to notify the terminal device to report the CSI, the network device will send the first reference signal, and the terminal device sends the second reference signal.
  • the first reference signal and the second reference signal when signaling is required to activate the first reference signal, the second reference signal, and CSI reporting, can be activated through one signaling, or, when signaling is required to deactivate the first When a reference signal, a second reference signal, and CSI are reported, the first reference signal and the second reference signal can be activated or deactivated through one signaling, thereby saving signaling overhead.
  • the terminal device sends the second reference signal before receiving the first reference signal, or the terminal device sends the second reference signal while receiving the first reference signal The second reference signal.
  • the terminal device receives the first reference signal and the terminal device sends the second reference signal a predetermined time interval, the predetermined time period is determined by the network device
  • the computing power is determined or preset.
  • the predetermined duration is set to be different.
  • the configuration information reported by the CSI includes codebook configuration information, and the codebook configuration information is used to indicate the feedback mode of the CSI of the terminal device.
  • the first reference signal is a channel state information reference signal (channel state information reference (CSI-RS), or the second reference signal is any of the following One type: sounding reference signal (SRS), Doppler tracking reference signal (DT-RS), phase-tracking reference signal (PT-RS).
  • CSI-RS channel state information reference
  • SRS sounding reference signal
  • DT-RS Doppler tracking reference signal
  • PT-RS phase-tracking reference signal
  • a communication device including various modules or units for performing the method in any possible implementation manner of the first aspect, the third aspect, or the fifth aspect.
  • a communication device including a processor.
  • the processor is coupled to the memory, and can be used to execute instructions in the memory to implement the method in any possible implementation manner of the foregoing first aspect, third aspect, or fifth aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver or an input/output interface.
  • the communication device is a chip configured in the terminal device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device including various modules or units for performing the method in any possible implementation manner of the second aspect, the fourth aspect, or the sixth aspect.
  • a communication device including a processor.
  • the processor is coupled to the memory, and can be used to execute instructions in the memory to implement the method in any possible implementation manner of the second aspect, the fourth aspect, or the sixth aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication device is a network device.
  • the communication interface may be a transceiver or an input/output interface.
  • the communication device is a chip configured in a network device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is used to receive a signal through the input circuit and transmit a signal through the output circuit so that the processor performs the first aspect, the third aspect, or the fifth aspect and the first aspect, the third aspect, Or the method in any possible implementation manner of the fifth aspect.
  • the processor may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to a receiver
  • the signal output by the output circuit may be, for example but not limited to, output to and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit at different times, respectively.
  • the embodiments of the present application do not limit the specific implementation manner of the processor and various circuits.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is used to receive a signal through the input circuit and transmit a signal through the output circuit so that the processor performs the second aspect, the fourth aspect, or the sixth aspect and the second aspect, the fourth aspect, Or the method in any possible implementation manner of the sixth aspect.
  • the processor may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to a receiver
  • the signal output by the output circuit may be, for example but not limited to, output to and transmitted by the transmitter
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit at different times, respectively.
  • the embodiments of the present application do not limit the specific implementation manner of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and may receive signals through the receiver and transmit signals through the transmitter to perform the first aspect, the third aspect, or the fifth aspect and the first aspect, the third aspect, or The method in any possible implementation manner of the fifth aspect.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor are provided separately.
  • the memory may be non-transitory (non-transitory) memory, such as read-only memory (read only memory (ROM), which may be integrated with the processor on the same chip, or may be set in different On the chip, the embodiments of the present application do not limit the type of memory and the manner of setting the memory and the processor.
  • ROM read only memory
  • sending configuration information for indicating CSI reporting may be a process of outputting the information from the processor
  • receiving capability information may be a process of receiving input capability information by the processor.
  • the data output by the processor may be output to the transmitter, and the input data received by the processor may come from the receiver.
  • the transmitter and the receiver may be collectively referred to as a transceiver.
  • the processing device in the thirteenth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software
  • the processor may be a general-purpose processor, implemented by reading software codes stored in a memory, the memory may be integrated in the processor, or may be located outside the processor and exist independently.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through the receiver and transmit signals through the transmitter to perform the second aspect, the fourth aspect, or the sixth aspect and the second aspect, the fourth aspect, or The method in any possible implementation manner of the sixth aspect.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor are provided separately.
  • the memory may be non-transitory (non-transitory) memory, such as read-only memory (read only memory (ROM), which may be integrated with the processor on the same chip, or may be set in different On the chip, the embodiments of the present application do not limit the type of memory and the manner of setting the memory and the processor.
  • ROM read only memory
  • sending configuration information reported by the CSI may be a process of outputting the information from the processor
  • receiving capability information may be a process of receiving input capability information by the processor.
  • the data output by the processor may be output to the transmitter, and the input data received by the processor may come from the receiver.
  • the transmitter and the receiver may be collectively referred to as a transceiver.
  • the processing device in the above fourteenth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software
  • the processor may be a general-purpose processor, implemented by reading software codes stored in a memory, the memory may be integrated in the processor, or may be located outside the processor and exist independently.
  • a computer program product includes: a computer program (also referred to as code or instructions), which, when the computer program is executed, causes a computer to perform the first aspect,
  • a computer program also referred to as code or instructions
  • the method in any possible implementation manner of the third aspect or the fifth aspect and the first aspect, the third aspect, or the fifth aspect.
  • a computer program product includes: a computer program (also referred to as code or instructions) that, when the computer program is executed, causes the computer to perform the second aspect above, The method in any possible implementation manner of the fourth aspect or the sixth aspect and the second aspect, the fourth aspect, or the sixth aspect.
  • a computer-readable medium that stores a computer program (also may be referred to as code or instructions) that when executed on a computer, causes the computer to perform the first aspect,
  • a computer program also may be referred to as code or instructions
  • the method in any possible implementation manner of the third aspect or the fifth aspect and the first aspect, the third aspect, or the fifth aspect.
  • An eighteenth aspect provides a computer-readable medium that stores a computer program (also may be referred to as code or instructions) that when executed on a computer, causes the computer to perform the second aspect above, The method in any possible implementation manner of the fourth aspect or the sixth aspect and the second aspect, the fourth aspect, or the sixth aspect.
  • a computer program also may be referred to as code or instructions
  • a communication system including the aforementioned network device and terminal device.
  • FIG. 1 is a schematic diagram of a communication system applicable to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a timing behavior of a network device configuring CSI-RS information to be transmitted;
  • FIG. 3 is a schematic interaction diagram of a configuration method for reporting channel state information provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a configuration method suitable for reporting channel state information according to an embodiment of the present application
  • FIG. 5 is another schematic diagram of a configuration method suitable for reporting channel state information according to an embodiment of the present application.
  • FIG. 6 is a schematic interaction diagram of sending channel state information provided by an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD time division duplex
  • UMTS universal mobile communication system
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • 5G fifth generation
  • NR new radio
  • FIG. 1 is a schematic diagram of a communication system 100 suitable for the method of the embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG. 1; the communication system 100 may also include at least one terminal device, such as the terminal device 120 shown in FIG. 1.
  • the network device 110 and the terminal device 120 can communicate through a wireless link.
  • Each communication device, such as the network device 110 or the terminal device 120 may be configured with multiple antennas.
  • the configured multiple antennas may include at least one transmit antenna for transmitting signals and at least one receive antenna for receiving signals. Therefore, the communication devices in the communication system 100, such as the network device 110 and the terminal device 120, can communicate through multi-antenna technology.
  • the network device in the communication system may be any device with a wireless transceiver function or a chip that can be installed in the device.
  • the device includes but is not limited to: evolved Node B (evolved Node B, eNB), wireless Network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., Home evolved Node B, or Home Node B, HNB), baseband unit (BBU), access point (AP), wireless relay node, wireless backhaul node in a wireless fidelity (WIFI) system , Transmission point (transmission point, TP) or sending and receiving point (transmission and reception point, TRP), etc., can also be NR, such as gNB in 5G system, or, transmission point (TRP or TP), base station in 5G system
  • One or a group of antenna panels may be a network node that constitutes a gNB
  • gNB may include a centralized unit (CU) and DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (RRC), packet data convergence layer protocol (packet data convergence protocol, PDCP) layer functions, DU implements wireless chain Road control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence layer protocol
  • DU implements wireless chain Road control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network devices in the access network RAN, and can also be divided into network devices in the core network CN, which is not limited herein.
  • terminal equipment in the communication system may also be referred to as user equipment (UE), access terminal, subscriber unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user Terminal, terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, and an augmented reality (augmented reality, AR) terminal Wireless terminals in equipment, industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical (remote medical), wireless terminals in smart grid (smart grid), transportation safety ( Wireless terminals in transportation, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of the present application do not limit the application scenarios.
  • FIG. 1 is only a simplified schematic diagram for ease of understanding and examples.
  • the communication system 100 may also include other network devices or other terminal devices, which are not shown in FIG. 1.
  • the processing procedure of the downlink signal at the physical layer before sending may be performed by a network device, or may be performed by a chip configured in the network device. For ease of explanation, they are collectively referred to as network devices below.
  • Network devices can process codewords on physical channels.
  • the codeword may be coded bits that have been coded (eg, including channel coding).
  • the codeword is scrambling to generate scrambling bits.
  • the scrambled bits undergo modulation mapping to obtain modulation symbols.
  • the modulation symbols are mapped to multiple layers (layers) through layer mapping, or transmission layers.
  • the modulation symbols after layer mapping are pre-coded to obtain pre-coded signals.
  • the pre-encoded signal is mapped to multiple REs after being mapped to resource elements (RE). These REs are then orthogonally multiplexed (orthogonal frequency division multiplexing, OFDM) modulated and transmitted through the antenna port.
  • OFDM orthogonally multiplexed
  • the network device may first perform uplink channel measurement based on the uplink reference signal to obtain channel information, such as angle information and delay information, and process the channel information to obtain a downlink signal, for example, based on The channel information pre-codes the downlink signal to obtain a pre-coded reference signal.
  • channel information such as angle information and delay information
  • Channel reciprocity In time division duplex (time division duplexing, TDD) mode, the uplink and downlink channels transmit signals on different time domain resources on the same frequency domain resources. Within a relatively short time (eg, the coherence time of channel propagation), it can be considered that the channel fading experienced by the signals on the upstream and downstream channels is the same. This is the reciprocity of the upstream and downstream channels.
  • the network device Based on the reciprocity of the uplink and downlink channels, the network device can measure the uplink channel based on the uplink reference signal, such as sounding reference signal (SRS), and can estimate the downlink channel based on the uplink channel, which can be determined for downlink transmission Precoding matrix.
  • SRS sounding reference signal
  • the uplink and downlink channels in frequency division duplex (FDD) mode have partial reciprocity, for example, angle reciprocity and delay reciprocity.
  • delay and angle are in FDD
  • the uplink and downlink channels in the mode have reciprocity. Therefore, angle and delay can also be called reciprocity parameters.
  • the angle may refer to the angle of arrival (AOA) of the signal reaching the receiving antenna via the wireless channel, or the angle of departure (AOD) of the signal transmitted through the transmitting antenna.
  • the angle It may refer to the angle of arrival of the uplink signal to the network device, or it may refer to the angle of departure of the network device to transmit the downlink signal.
  • each angle can be characterized by an angle vector.
  • Time delay can refer to the transmission time of a wireless signal on different transmission paths, determined by distance and speed, and has no relationship with the frequency domain of the wireless signal.
  • each delay may be characterized by a delay vector.
  • one or more angle vectors may be loaded on the downlink reference signal, or it may be understood that the downlink reference signal is pre-coded based on the one or more angle vectors.
  • One or more delay vectors may also be loaded on the downlink reference signal, and it may also be understood that the downlink reference signal is pre-coded based on the one or more delay vectors.
  • Reference signal reference signal
  • the reference signal may also be called a pilot, reference sequence, etc.
  • the reference signal may be a reference signal used for channel measurement.
  • the reference signal may be a channel state information reference signal (CSI-RS) used for downlink channel measurement, or may be an SRS or DT-RS used for uplink channel measurement.
  • CSI-RS channel state information reference signal
  • the reference signal resource can be used to configure the transmission properties of the reference signal, for example, the location of the time-frequency resource, port mapping relationship, power factor, and scrambling code. For details, reference may be made to the prior art.
  • the transmitting end device may send a reference signal based on the reference signal resource, and the receiving end device may receive the reference signal based on the reference signal resource.
  • One reference signal resource may include one or more resource blocks (resource blocks (RB)).
  • the reference signal resources may include CSI-RS resources (CSI-RS resources) and SRS resources (SRS resources).
  • each reference signal resource may correspond to an identifier of a reference signal resource, for example, CSI-RS resource identifier (CSI-RS resource indicator, CRI), SRS resource index (SRS resource index, SRI) .
  • the network device may send a CSI resource configuration (CSI resource setting) to the terminal device through an RRC message, and each CSI resource setting may include S (S ⁇ 1, and S is an integer) CSI-RS resources CSI-RS resources, each CSI-RS resource can include K (K ⁇ 1, and K is an integer) non-zero power (NZP) CSI-RS resources (NZP CSI-RS resources), optionally, may also include zero power (zero power) CSI-RS resources.
  • the terminal device may receive the CSI-RS on the K NZP CSI-RS resources indicated by the network device.
  • the network device may further indicate, through DCI, J NZP CSI-RS resources currently available (K ⁇ J ⁇ 1, and J is an integer) NZP CSI-RS resources.
  • Time domain behavior parameters In the reference signal resource configuration and CSI report configuration (CSI report setting), different time domain behavior parameters can be used to indicate different time domain behaviors. Among them, the time domain behavior parameter of the reference signal resource configuration can be used to indicate the time domain behavior of the terminal device receiving the reference signal; the time domain behavior parameter of the CSI report configuration can be used to indicate the time domain behavior of the terminal device reporting CSI.
  • time domain behavior may include periodic, semi-persistent, and aperiodic, for example.
  • CSI-RS takes CSI-RS as an example to briefly describe these three time-domain behaviors.
  • the time domain behavior of CSI-RS is periodic, which means that the CSI-RS is sent periodically. Specifically, after the network device configures periodic CSI-RS information through RRC, after the configuration signaling takes effect, the network device will periodically send it to the terminal device. Send CSI-RS.
  • the time domain behavior of CSI-RS is aperiodic, which means that the CSI-RS is sent acyclically. Specifically, after the network device configures the information of the aperiodic CSI-RS through RRC, the CSI-RS is not sent immediately. When the network device sends When aperiodic CSI-RS, it will first send signaling (such as specific DCI signaling) to notify the terminal device, and the network device will send aperiodic CSI-RS.
  • the time-domain behavior of CSI-RS is semi-persistent, which means that the CSI-RS is sent semi-persistently. Specifically, after the network device configures the semi-persistent CSI-RS information through RRC, the CSI-RS is not sent immediately. When the network device sends In the case of non-persistent CSI-RS, signaling (such as specific MAC-CE signaling) will be sent to notify the terminal device first. After activation signaling takes effect, the network device will send semi-persistent CSI-RS. Once the network device triggers the semi-persistent CSI-RS transmission, it will periodically send the CSI-RS unless the network device sends deactivated signaling.
  • signaling such as specific MAC-CE signaling
  • FIG. 2 shows a schematic diagram of the timing behavior of the network device configuration (for example, the base station configures through RRC) to be transmitted CSI-RS.
  • CSI-RS sent periodically means that the time domain behavior of the CSI-RS is periodic;
  • CSI-RS sent acyclically means that the time domain behavior of the CSI-RS is aperiodic;
  • semi-persistently transmitted CSI-RS means that the time domain behavior of the CSI-RS is semi-persistent.
  • the time-domain duration of different timing behaviors can be defined as: duration of CSI-RS periodically transmitted>duration of CSI-RS semi-continuously transmitted>CSI of acyclically transmitted -Duration of RS.
  • SRS is similar to CSI-RS.
  • the configuration of SRS is configured by the network device through RRC.
  • the SRS sent by the terminal device is sent by the network device to instruct the terminal device to send the signal.
  • P CSI-RS
  • AP CSI-RS
  • SP CSI-RS are used to denote periodically transmitted CSI-RS (that is, the time domain behavior of CSI-RS is periodic), and acyclically transmitted.
  • CSI-RS that is, the time-domain behavior of CSI-RS is aperiodic
  • CSI-RS that is semi-persistently transmitted that is, the time-domain behavior of CSI-RS is semi-persistent
  • PSRS PSRS
  • APSRS SPSRS respectively Represents periodically sent SRS (that is, SRS time-domain behavior is periodic), aperiodic sent SRS (that is, SRS time-domain behavior is non-periodic), semi-persistently transmitted SRS (that is, SRS time-domain behavior is semi-persistent Sex).
  • Use PCSI reporting, APCSI reporting, and SPCSI reporting to indicate periodic reporting of CSI (that is, the time domain behavior of CSI reporting is periodic), acyclic reporting of CSI (that is, the time domain behavior of CSI reporting is aperiodic), and semi-persistent Report CSI (that is, the time domain behavior reported by CSI is semi-persistent).
  • the upstream and downstream channels do not have complete reciprocity, and the upstream channel information cannot be used for accurate downstream precoding.
  • the uplink and downlink physical channels themselves have partial reciprocity, such as angle reciprocity and delay reciprocity.
  • a typical codebook such as beam selects the codebook, and uses a discrete Fourier transform (DFT) beam to characterize the channel, which has low accuracy and poor multi-user MIMO transmission performance; the beam superimposes the codebook and uses multiple DFT vectors
  • DFT discrete Fourier transform
  • the precoding vector obtained by superposition represents the channel, which has higher precision and higher multiuser MIMO transmission performance; however, each subband needs to feed back multiple superposition coefficients, and the feedback overhead is very large.
  • this application proposes a method to introduce the idea that some channel characteristics in FDD have reciprocity into CSI feedback, thereby reducing the complexity of the terminal device and reducing the feedback overhead.
  • “for indicating” may include both for direct indication and for indirect indication.
  • the indication information may directly indicate A or indirectly indicate A, but does not mean that the indication information must carry A.
  • the network device may configure reference signal resources for transmitting reference signals through high-level signaling in advance, and indicate the reference signal resources to the terminal device through indication information, such as downlink control information (DCI).
  • DCI downlink control information
  • pre-acquisition may include signaling instructions or pre-defined by the network device, for example, protocol definition.
  • pre-defined can be achieved by pre-storing corresponding codes, tables or other methods that can be used to indicate relevant information in the device (for example, including terminal devices and network devices), and this application does not do for its specific implementation limited.
  • the one or more memories may be set separately, or may be integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partly set separately and partly integrated in a decoder, processor, or communication device.
  • the type of memory may be any form of storage medium, which is not limited in this application.
  • the “protocol” involved in the embodiments of the present application may refer to a standard protocol in the communication field, and may include, for example, the LTE protocol, the NR protocol, and related protocols applied in future communication systems, which are not limited in this application.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • the character “/” generally indicates that the related object is a "or” relationship.
  • At least one of the following” or a similar expression refers to any combination of these items, including any combination of a single item or a plurality of items.
  • at least one of a, b, and c may represent: a, or, b, or, c, or, a and b, or, a and c, or, b and c, or, a , B and c, where a, b, c can be a single or multiple.
  • the method provided by the embodiments of the present application may be applied to a system that communicates through multi-antenna technology, for example, the communication system 100 shown in FIG. 1.
  • the communication system may include at least one network device and at least one terminal device.
  • Multi-antenna technology can communicate between network equipment and terminal equipment.
  • the embodiments shown below do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the present application, as long as the program that records the code of the method provided in the embodiments of the present application can be executed to
  • the method provided in the embodiment of the application may be used for communication.
  • the execution body of the method provided in the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • the interaction method between the network device and the terminal device is taken as an example to describe in detail the configuration method for reporting channel state information provided by the embodiments of the present application.
  • FIG. 3 is a schematic interaction diagram illustrating the configuration method for reporting channel state information provided by an embodiment of the present application from the perspective of device interaction. As shown in FIG. 3, the method 300 may include steps 310 to 340. The steps of the method 300 are described in detail below.
  • the terminal device receives the configuration information reported by the CSI.
  • the network device sends the configuration information reported by the CSI.
  • the configuration information reported by CSI means configuration information related to CSI, for example, it may be called CSI reporting setting. In the following embodiments, for simplicity, it is represented by CSI reporting setting.
  • the first reference signal is used for downlink channel measurement.
  • the first reference signal may be, for example, CSI-RS.
  • the downlink reference signal is used to represent the first reference signal.
  • the second reference signal is used for uplink channel measurement.
  • the second reference signal may be, for example, an SRS.
  • the uplink reference signal is used to represent the second reference signal.
  • CSI reporting is related to the configuration information of the downlink reference signal and the configuration information of the uplink reference signal; or, CSI reporting is related to the configuration information of the downlink reference signal, and the configuration information of the downlink reference signal is related to the configuration information of the uplink reference signal .
  • CSI reporting relates to the configuration information of the downlink reference signal and the configuration information of the uplink reference signal.
  • the network device may send the resource configuration information of the reference signal to the terminal device in advance through high-level signaling, such as the CSI resource configuration information listed above.
  • the terminal device may determine the reference signal resource according to the resource configuration information of the reference signal sent by the network device. Therefore, the terminal device can receive the reference signal based on the reference signal resource.
  • the above reference signal is SRS and the downlink reference signal is CSI-RS as an example.
  • the network device can configure SRS to associate with CSI reporting setting.
  • the network device configuration SRS resource can be associated with CSI reporting setting.
  • SRS resource setting and CSI resource setting are associated in a CSI reporting setting.
  • the network device can configure the associated SRS resource and CSI-RS resource settings through CSI reporting.
  • the CSI reporting setting may include the SRS resource setting instructions and the CSI-RS resource setting instructions.
  • the SRS resource configured in the same CSI reporting setting and the CSI-RS resource setting are associated by default.
  • the SRS resource configured in a CSI reporting setting is related to the CSI resource setting.
  • the form of the indication of SRS resource setting may be SRS resource index (SRS), and the form of the indication of CSI-RS resource setting may be CSI-RS resource identifier (CSI-RS resource indicator, CRI).
  • SRS SRS resource index
  • CRI CSI-RS resource indicator
  • the specific resource configuration of the SRS corresponding to the SRS resource index and the specific resource configuration of the CSI-RS corresponding to the CSI-RS resource identifier can be delivered through RRC signaling.
  • the configuration information reported by CSI can be associated with the configuration information of the uplink reference signal, and the network device can precode the downlink reference signal based on the reciprocal angle and delay of the uplink and downlink channels , Making terminal equipment invisible features with reciprocity (such as angle and delay), so that the terminal equipment only needs to detect the information without reciprocity, thus greatly reducing the feedback overhead of the terminal equipment.
  • the configuration information of the downlink reference signal is related to the configuration information of the uplink reference signal.
  • the following reference signal is CSI-RS and the uplink reference signal is SRS as an example.
  • the network device can configure SRS to be associated with CSI-RS related configuration information.
  • the network device configuration SRS is associated with any of the following: CSI resource setting , CSI resource, CSI-RS resource.
  • the associated SRS may be a proprietary SRS or an existing SRS used for uplink channel measurement, which is not limited in this application.
  • CSI resource setting includes at least one CSI resource set, and CSI resource includes at least one CSI-RS resource.
  • the information associated with CSI reporting includes CSI resource settings, which are used for channel interference measurement, such as with or without noise.
  • CSI resource settings which are used for channel interference measurement, such as with or without noise.
  • the network device may configure the associated SRS through CSI resource setting.
  • the SRS indication may be included in the CSI resource setting.
  • the network device configures the identity (ID) of the associated SRS in the CSI resource setting.
  • the network device may configure the associated SRS through CSI resource.
  • the CSI resource may contain an indication of SRS.
  • the network device configures the ID of the associated SRS in the CSI resource.
  • the network device may configure the associated SRS through CSI-RS resource.
  • the CSI-RS resource may contain an indication of SRS.
  • the network device configures the ID of the associated SRS in the CSI-RS resource.
  • the configuration information of the downlink reference signal is correlated with the configuration information of the uplink reference signal.
  • the network device can precode the downlink reference signal based on the reciprocal angle and delay of the uplink and downlink channels, so that the terminal device is invisible
  • the characteristics of reciprocity such as angle and delay, so that the terminal device only needs to detect the information that does not have reciprocity, so the feedback overhead of the terminal device is greatly reduced.
  • the time-domain behavior of the downlink reference signal and the uplink reference signal may be the same or different.
  • the uplink reference signal is SRS and the downlink reference signal is CSI-RS, which will be described in conjunction with Table 1.
  • PRSS supports PCSI-RS, SPCSI-RS, APCSI-RS, in other words, when the time domain behavior of SRS is periodic, regardless of the time domain behavior of CSI-RS periodic/aperiodic/semi-persistent Can support CSI reporting.
  • CSI reporting may be supported, and the time domain behavior reported by the CSI may be periodic or aperiodic or semi-persistent.
  • SP SRS supports SP CSI-RS and AP CSI-RS.
  • CSI reporting can be supported.
  • the time domain behavior of the SRS is semi-persistent and the time domain behavior of the CSI-RS is semi-persistent
  • CSI reporting may be supported, and the time domain behavior reported by the CSI may be aperiodic or semi-persistent.
  • AP SRS supports AP CSI-RS.
  • CSI reporting can be supported.
  • the time domain behaviors of both SRS and CSI-RS are aperiodic
  • CSI reporting may be supported, and the time domain behaviors reported by the CSI are aperiodic.
  • the time domain duration corresponding to the time domain behavior of the downlink reference signal is not higher than the time domain duration corresponding to the time domain behavior of the uplink reference signal, in other words, the time domain duration corresponding to the time domain behavior of the downlink reference signal The degree is lower than or equal to the time-domain duration corresponding to the time-domain behavior of the uplink reference signal.
  • the following reference signal is CSI-RS and the uplink reference signal is SRS as an example.
  • the time domain behavior of SRS is periodic, and the time domain behavior of CSI-RS may be any one of the following: periodic, aperiodic, and non-persistent.
  • the time domain behavior of SRS is semi-persistent, and the time domain behavior of CSI-RS is aperiodic or non-persistent.
  • the time domain behavior of SRS is aperiodic, and the time domain behavior of CSI-RS is aperiodic.
  • the time domain duration corresponding to the time domain behavior reported by CSI is not higher than the time domain duration corresponding to the time domain behavior of the downlink reference signal, in other words, the time domain duration corresponding to the time domain behavior reported by CSI is low Is equal to or equal to the time-domain duration corresponding to the time-domain behavior of the downlink reference signal.
  • the following reference signal is CSI-RS as an example.
  • the time domain behavior of the CSI-RS is periodic, and the time domain behavior reported by the CSI may be any one of the following: periodic, aperiodic, and non-persistent.
  • the time domain behavior of the CSI-RS is semi-persistent, and the time domain behavior reported by the CSI is aperiodic or non-persistent.
  • the time domain behavior of CSI-RS is aperiodic, and the time domain behavior reported by CSI is aperiodic.
  • the time domain duration corresponding to the time domain behavior of the downlink reference signal is not higher than the time domain duration corresponding to the time domain behavior of the uplink reference signal, and the time domain reported by CSI
  • the time domain duration corresponding to the behavior is not higher than the time domain duration corresponding to the time domain behavior of the downlink reference signal.
  • the time domain duration corresponding to the time domain behavior of the downlink reference signal is lower than or equal to the time domain duration corresponding to the time domain behavior of the uplink reference signal
  • the time domain duration corresponding to the time domain behavior reported by CSI is lower than or equal to Equal to the time-domain duration corresponding to the time-domain behavior of the downlink reference signal.
  • the time-domain behavior of the downlink reference signal and the uplink reference signal may be the same or different, which is not limited in this embodiment of the present application.
  • the following description uses the following reference signal as CSI-RS and uplink reference signal as SRS.
  • Case 1 SRS and CSI-RS behave in the same time domain.
  • the time domain behavior of the SRS and CSI-RS configured by the network device is periodic.
  • the terminal device periodically sends the SRS, and the network device periodically sends the CSI-RS.
  • the time domain behavior reported by CSI can be configured to be periodic, in other words, the terminal device can periodically report CSI; or the time domain behavior reported by CSI can be configured to be aperiodic, in other words, the terminal device can be acyclic CSI can be reported in a persistent manner; or the time domain behavior of CSI reporting can be configured to be semi-persistent. In other words, the terminal device can continuously report CSI.
  • the time domain behavior of the SRS and CSI-RS of the network device configuration is aperiodic, in other words, the terminal device sends the SRS aperiodically, and the network device sends the CSI-RS aperiodicly.
  • the time domain behavior reported by the CSI can be configured to be non-periodic, in other words, the terminal device can report the CSI non-periodicly.
  • the time domain behavior of the SRS and CSI-RS of the network device configuration are both semi-persistent.
  • the terminal device sends the SRS semi-persistently
  • the network device sends the CSI-RS semi-persistently.
  • the time domain behavior reported by CSI can be configured to be aperiodic, in other words, the terminal device can report CSI acyclically; or the time domain behavior reported by CSI can be configured to be semi-persistent, in other words, the terminal device can Report CSI continuously.
  • the network device configures the SRS time domain behavior to be periodic, and configures the CSI-RS time domain behavior to be aperiodic or semi-persistent.
  • the terminal device periodically sends the SRS, and the network device acyclically or semi-persistently sends the CSI-RS.
  • the time domain behavior of the SRS is periodic and the time domain behavior of the CSI-RS is aperiodic
  • the time domain behavior reported by the CSI can be configured to be aperiodic.
  • the terminal device can report the CSI acyclically.
  • the time domain behavior reported by CSI can be configured to be non-periodic or semi-persistent.
  • the terminal device can be non-periodic Or semi-continuously report CSI.
  • the time domain behavior of the SRS configured by the network device is semi-persistent, and the time domain behavior of the CSI-RS is configured to be aperiodic.
  • the terminal device periodically sends SRS, and the network device semi-persistently sends CSI-RS.
  • the time domain behavior reported by the CSI can be configured to be non-periodic, in other words, the terminal device can report the CSI non-periodicly.
  • the terminal device performs channel measurement based on the uplink reference signal and the downlink reference signal.
  • the terminal device performs channel measurement based on the downlink reference signal and feeds back CSI.
  • the downlink reference signal is a reference signal obtained by processing channel information obtained by performing uplink channel measurement based on the uplink reference signal.
  • the network device obtains channel information measured according to the uplink channel, and the channel information includes, for example, angle information, or delay information, or angle and delay information, and processes the channel information to obtain the downlink reference signal.
  • the downlink reference signal is a reference signal obtained by processing information obtained by performing uplink channel measurement based on the uplink reference signal.
  • the precoding matrix (precoding matrix) of the downlink reference signal is calculated based on the uplink reference signal .
  • the network device obtains reciprocal channel characteristics, such as angle and delay, and the reciprocal characteristics are delivered through the weights on the downlink reference signal. Because the network device pre-codes the reference signal based on the reciprocal angle and delay of the uplink and downlink channels, the terminal device cannot see the characteristics of reciprocity, and the terminal device feeds back the information of the downlink channel that does not have reciprocity.
  • the network device estimates the uplink channel matrix according to the received uplink reference signal, such as SRS, and determines A (A ⁇ 1, and A is an integer) angles.
  • the network device bases the downlink reference signal on the A angles, such as CSI-RS, perform precoding to obtain a precoding reference signal.
  • the network device estimates the uplink channel matrix according to the received uplink reference signal, such as SRS, and B (B ⁇ 1, and B is an integer) delays, and the network device bases the downlink reference signals on the B delays.
  • Such as CSI-RS perform precoding to obtain a precoding reference signal.
  • the network device estimates the uplink channel matrix according to the received uplink reference signal, such as SRS, and determines A angles and B delays. Based on the A angles and B delays, the network device evaluates the downlink reference signals. , Such as CSI-RS, perform precoding to obtain a precoding reference signal.
  • the network device loads reciprocal information, such as angle and delay, onto the downlink reference signal, and accordingly, the terminal device performs CSI measurement after receiving the downlink reference signal, for example, the terminal device is performing
  • the channel signals on each subband are directly superimposed first, and then the quantized feedback is performed based on the superimposed channel signals.
  • the report quality (report quality) associated with the CSI setting only contains a precoding matrix indicator (precoding matrix indicator, PMI).
  • the network device performs uplink channel measurement based on the uplink reference signal.
  • the uplink reference signal may be an existing uplink reference signal or an associated uplink reference signal, which is not limited in this embodiment of the present application.
  • the specific method for the network device to perform uplink channel measurement according to the uplink reference signal can refer to the prior art. For brevity, a detailed description of the specific method is omitted here.
  • the method 300 includes S330 and S340.
  • the terminal device sends an uplink reference signal. Accordingly, the network device receives the uplink reference signal.
  • the terminal device receives a downlink reference signal, which is a reference signal obtained by processing information obtained by performing uplink channel measurement based on the uplink reference signal.
  • the network device sends a downlink reference signal.
  • the trigger state configured by the network device is associated with the CSI report ID, downlink reference signal ID (such as CSI-RS ID) or downlink reference signal set (such as CSI-RS set ID), and uplink reference signal ID (Eg SRS ID) or upstream reference signal set ID (eg SRS set ID).
  • CSI-RS ID downlink reference signal ID
  • CSI-RS set ID downlink reference signal set
  • uplink reference signal ID Eg SRS ID
  • upstream reference signal set ID eg SRS set ID
  • the time-domain behavior of the downlink reference signal and the uplink reference signal are both non-periodic, and the network device can activate the downlink reference signal and the uplink reference signal through one signaling.
  • the terminal device learns through the signaling that the network device will deliver the downlink reference signal, and the terminal device will send the uplink reference signal. This signaling can be delivered through DCI.
  • the time domain behavior of CSI reporting, downlink reference signals, and uplink reference signals are all non-periodic, and the network device can activate CSI reporting, downlink reference signals, and uplink reference signals through one signaling.
  • the terminal device learns through the signaling that the network device will deliver the downlink reference signal, and the terminal device will send the uplink reference signal and CSI.
  • the signaling can be delivered through DCI.
  • the time-domain behavior of the downlink reference signal and the uplink reference signal are both semi-persistent, and the network device may activate the semi-persistent downlink reference signal and the semi-persistent uplink reference signal through one signaling.
  • the terminal device learns through the signaling that the network device will deliver the downlink reference signal, and the terminal device will send the uplink reference signal.
  • the signaling can be delivered through RRC or MAC-CE.
  • the time-domain behavior of the downlink reference signal and the uplink reference signal are both semi-persistent, and the network device may activate the semi-persistent downlink reference signal and the semi-persistent uplink reference signal through one signaling.
  • the terminal device learns through the signaling that the network device stops sending downlink reference signals within the time unit, and the terminal device stops sending uplink reference signals.
  • the signaling can be delivered through RRC or MAC-CE.
  • the time domain behavior of the downlink reference signal, the uplink reference signal, and the CSI report are all semi-persistent, and the network device can activate the semi-persistent downlink reference signal, uplink reference signal, and CSI through one signaling Report.
  • the terminal device learns through the signaling that the network device will deliver the downlink reference signal, and the terminal device will send the uplink reference signal and CSI.
  • the signaling can be delivered through RRC or MAC-CE.
  • the time domain behavior of the downlink reference signal, the uplink reference signal, and the CSI report are all semi-persistent, and the network device may deactivate the semi-persistent downlink reference signal, uplink reference signal, and CSI reported.
  • the terminal device learns through the signaling that the network device stops sending downlink reference signals within the time unit, and the terminal device stops sending uplink reference signals and CSI.
  • the signaling can be delivered through RRC or MAC-CE.
  • the time when the network device sends the downlink reference signal, the time when the terminal device sends the uplink reference signal, and the time when the terminal device reports CSI can meet certain conditions, and the following description will be made in conjunction with several possible implementation manners.
  • the time domain behavior of CSI reporting is aperiodic, and the time domain behavior of both the downlink reference signal and the uplink reference signal are not aperiodic.
  • the network device can trigger the terminal device to report CSI through signaling (such as DCI) .
  • the minimum time interval between the DCI sent by the network device to the terminal device to report the CSI can use the value predefined by the protocol, such as the Z value defined by the existing protocol.
  • the Z value represents the shortest time interval between the DCI sent by the network device to the terminal device to report CSI.
  • the time domain behavior reported by the CSI is aperiodic
  • the time domain behavior of the downlink reference signal is aperiodic
  • the time domain behavior of the uplink reference signal is periodic or semi-persistent.
  • a signaling (for example, DCI) triggers the terminal device to report CSI, and notifies the terminal device that the network device will deliver the downlink reference signal through the signaling.
  • the minimum time interval between the DCI sent by the network device to the terminal device for reporting CSI, and the minimum time interval for the network device to send the downlink reference signal to the terminal device to report CSI can all use the value predefined by the protocol. For example, Z and Z', where Z indicates that the network device sends DCI to the terminal device to report CSI, and Z'indicates the shortest time interval between the network device sending a downlink reference signal to the terminal device to report CSI.
  • the time domain behavior of CSI reporting, downlink reference signals, and uplink reference signals are all non-periodic, and the network device may trigger the terminal device to send the uplink reference signal and report the CSI through a signaling (such as DCI) And notify the terminal equipment through this signaling that the network equipment will deliver the downlink reference signal.
  • the upstream reference signal is SRS
  • the downlink reference signal is CSI-RS as an example.
  • the network device sends DCI
  • the terminal device reports CSI
  • the network device sends a downlink reference signal
  • the terminal device sends an uplink reference. The timing relationship between signals.
  • T1 represents the time interval between the DCI sent by the network device and the SRS sent by the terminal device
  • T2 represents the time interval between the SRS sent by the terminal device and the CSI-RS sent by the network device
  • T3 represents the DCI sent by the network device to the terminal
  • the minimum value of T1 can reuse the existing protocol results: the low frequency uses the data preparation time N2, and the high frequency uses N2+42 symbols.
  • the minimum value of T2 may depend on the computing power of the network device; or, preset T2, for example, as specified in the protocol; or, T2 is a fixed value, and different subcarrier spacing (SCS), T2 values may be different .
  • the minimum value of T3 may be T1+T2+Z', where Z'represents the shortest time interval between the CSI-RS sent by the network device and the CSI reported by the terminal device.
  • the value of T2 may be set based on whether a reciprocity-based feedback mode is configured.
  • T2 the time interval between the terminal device sending SRS and the network device sending CSI-RS
  • the network device performs uplink channel measurement based on the original or pre-received uplink reference signal, and combines the terminal device feedback information based on the downlink pilot in the same time unit with the uplink reference signal to perform channel combining, and Reconstruct the downlink channel.
  • T2 (the time interval between the terminal device sending the SRS and the network device sending the CSI-RS) is greater than or equal to zero.
  • the terminal device may directly superimpose the channel coefficients on the channels on the receiving channel that does not have the capability of the transmitting channel, and quantize the feedback superimposing coefficient.
  • the network device may configure a dedicated codebook, and the terminal device feeds back CSI according to the dedicated codebook.
  • the network device sends a reference signal for downlink channel measurement to the terminal device, for example, CSI-RS.
  • the terminal device may perform CSI measurement according to the received CSI-RS, and feed back the CSI of the downlink channel to the network device.
  • the CSI may include, for example, PMI, rank indication (RI), channel quality indication (CQI), and so on.
  • the codebook on which the terminal device feeds back the PMI may include a type one (type I) and a type two (type II) code book.
  • type one is beam selection
  • type two is linear combination of beams.
  • the terminal device feedback PMI may perform feedback based on the proprietary codebook.
  • the CSI measurement based on the reciprocity feedback indicates that the network device first loads the information with reciprocity (such as angle and delay) onto the downlink reference signal, and the terminal device only needs to measure the information without reciprocity when measuring The only way.
  • the terminal device when performing CSI measurement feedback, the terminal device first superimposes the channel signals on each subband, and then performs quantization feedback based on the superimposed channel signals.
  • the report content associated with CSI reporting only contains PMI.
  • the terminal device may quantize each element of the ideal precoding matrix of each subband, and feed back the quantized value to the network device through PMI.
  • the network device may determine the precoding matrix of each subband based on the PMI sent by the terminal device and the reciprocity information measured by the upstream channel.
  • the terminal device directly superimposes channel coefficients on channels on the receiving channel that does not have the capability of transmitting channels, and quantizes the feedback superimposition coefficient.
  • uplink reference signal SRS and the downlink reference signal CSI-RS listed above are all exemplary illustrations for ease of understanding, and the present application is not limited thereto, and any uplink reference signal and downlink reference signal may be applied to the present application Examples.
  • the network device may measure based on the uplink channel
  • the determined reciprocity information (such as angle and delay) pre-codes the downlink reference signal, so that the terminal device performs downlink channel measurement according to the pre-coded reference signal. Since the network device pre-codes the reference signal based on the reciprocity angle and delay of the uplink and downlink channels, the information of the downlink channel detected by the terminal device is information that does not have reciprocity.
  • the terminal device may not need to feed back the above-mentioned angle vector and delay vector, and the weighting coefficient corresponding to each angle delay pair is fed back, which greatly reduces the feedback overhead of the terminal device.
  • the terminal device may not need to feed back the above-mentioned angle vector and delay vector, and the weighting coefficient corresponding to each angle delay pair is fed back, which greatly reduces the feedback overhead of the terminal device.
  • the terminal device may not need to feed back the above-mentioned angle vector and delay vector, and the weighting coefficient corresponding to each angle delay pair is fed back, which greatly reduces the feedback overhead of the terminal device.
  • the terminal device may not need to feed back the above-mentioned angle vector and delay vector, and the weighting coefficient corresponding to each angle delay pair is fed back, which greatly reduces the feedback overhead of the terminal device.
  • the above describes the configuration method of the CSI report provided by the embodiment of the present application from the perspective of configuration information.
  • the following describes the method 400 for sending CSI provided by the embodiment of the present application from the perspective of a reference signal with reference to FIG. 6.
  • the method 400 includes steps 410 to 440.
  • the terminal device sends an uplink reference signal. Accordingly, the network device receives the uplink reference signal.
  • the angle and delay of the uplink and downlink channels are reciprocal. Therefore, after receiving the uplink reference signal, the network device can perform uplink measurement according to the uplink reference signal, and measure the uplink channel. Characteristics with reciprocity (such as angle and delay) are loaded into the downlink reference signal. For example, the network device estimates the uplink channel matrix according to the received uplink reference signal, such as SRS, and determines A (A ⁇ 1, and A is an integer) angles. The network device bases the downlink reference signal on the A angles, such as CSI-RS, perform precoding to obtain a precoding reference signal.
  • the network device estimates the uplink channel matrix according to the received uplink reference signal, such as SRS, and determines A (A ⁇ 1, and A is an integer) angles.
  • the network device bases the downlink reference signal on the A angles, such as CSI-RS, perform precoding to obtain a precoding reference signal.
  • the network device estimates the uplink channel matrix according to the received uplink reference signal, such as SRS, and B (B ⁇ 1, and B is an integer) delays, and the network device bases the downlink reference signals on the B delays.
  • the network device estimates the uplink channel matrix according to the received uplink reference signal, such as SRS, and determines A angles and B delays. Based on the A angles and B delays, the network device evaluates the downlink reference signals.
  • Such as CSI-RS perform precoding to obtain a precoding reference signal.
  • the terminal device receives the downlink reference signal.
  • the network device sends a downlink reference signal.
  • the downlink reference signal is a reference signal obtained by processing information obtained by performing uplink channel measurement based on the uplink reference signal.
  • the uplink reference signal may be a reference signal previously received by the network device, or may also be an existing reference signal, which is not limited in this embodiment of the present application.
  • the uplink reference signal is a reference signal previously received by the network device, such as the uplink reference signal in S410
  • the downlink reference signal received by the terminal device is a reference signal processed based on the uplink reference signal, and the network device may The information measured by the reference signal and the terminal device reconstruct the downlink channel based on the supplementary information fed back by the downlink reference signal, so that the precoding matrix suitable for the downlink channel can be further determined.
  • the downlink reference signal received by the terminal device is a reference signal processed based on the uplink reference signal, and the network device has reciprocity based on the information fed back by the terminal device based on the downlink reference signal Information (such as angle and delay) to reconstruct the downlink channel, so that the precoding matrix suitable for the downlink channel can be further determined, where the angle and delay are based on the uplink reference signal sent by the terminal device Measured.
  • the downlink reference signal Information such as angle and delay
  • the terminal device performs downlink channel measurement according to the downlink reference signal to obtain the channel status of the downlink channel.
  • the terminal device performs channel measurement based on the downlink reference signal and feeds back CSI.
  • the downlink reference signal is a reference signal obtained by processing channel information obtained by performing uplink channel measurement based on the uplink reference signal.
  • the downlink reference signal is a reference signal obtained by processing information obtained by performing uplink channel measurement based on the uplink reference signal.
  • the precoding matrix of the downlink reference signal is calculated based on the uplink reference signal.
  • the network device Based on the upstream channel measurement, the network device obtains reciprocal channel characteristics, such as angle and delay, and the reciprocal characteristics are delivered through the weights on the downlink reference signal.
  • the network device pre-codes the reference signal based on the reciprocal angle and delay of the uplink and downlink channels, the terminal device cannot see the characteristics of reciprocity, and the terminal device feeds back the information of the downlink channel that does not have reciprocity, thus It can reduce the complexity of terminal equipment and reduce feedback overhead.
  • the terminal device when performing measurement feedback, the terminal device first directly superimposes the channel signals on each subband, and then performs quantization feedback based on the superimposed channel signals.
  • the reported content associated with CSI reporting only contains PMI.
  • the terminal device directly superimposes channel coefficients on channels on the receiving channel that does not have the capability of transmitting channels, and quantizes the feedback superimposition coefficient.
  • the terminal device sends CSI according to the channel state of the downlink channel.
  • the terminal device may send the CSI based on the pre-configured CSI reporting setting.
  • the CSI reporting setting has been described in detail in the method 300, which is concise here and will not be repeated here.
  • uplink reference signal SRS and the downlink reference signal CSI-RS listed above are all exemplary illustrations for ease of understanding, and the present application is not limited thereto, and any uplink reference signal and downlink reference signal may be applied to the present application Examples.
  • the network device may pre-code the downlink reference signal based on the reciprocity information (such as angle and delay) determined by the uplink channel measurement, so that the terminal device performs the pre-coding reference signal Downstream channel measurement. Since the network device pre-codes the reference signal based on the reciprocity angle and delay of the uplink and downlink channels, the information of the downlink channel detected by the terminal device is information that does not have reciprocity. Therefore, the terminal device may not need to feed back the above-mentioned angle vector and delay vector, and the weighting coefficient corresponding to each angle delay pair is fed back, which greatly reduces the feedback overhead of the terminal device. In addition, by utilizing the reciprocity of the uplink and downlink channels, the measurement process of the downlink channel by the terminal device is simplified, and the calculation complexity of the terminal device during the channel measurement process is reduced.
  • the reciprocity information such as angle and delay
  • the network device may precode the reference signal based on the angle of reciprocity, or may perform precoding based on the delay reference signal with reciprocity, or based on the angle and reciprocity.
  • the delay pre-codes the reference signal, which is not limited in this embodiment of the present application.
  • the size of the sequence number of each process does not mean the order of execution, and the execution order of each process should be determined by its function and inherent logic, and should not constitute any implementation process of the embodiments of the present application. limited.
  • the communication device 1000 may include a transceiver unit 1100 and a processing unit 1200.
  • the communication device 1000 may correspond to the terminal device in the foregoing method embodiment, for example, it may be a terminal device, or a chip configured in the terminal device.
  • the communication device 1000 may correspond to the terminal device in the method 300 or the method 400 according to an embodiment of the present application.
  • the communication device 1000 may include the method 300 in FIG. 3 or the method 400 in FIG. 6.
  • the unit of the method performed by the terminal device.
  • each unit in the communication device 1000 and the other operations or functions described above are for implementing the corresponding flow of the method 300 in FIG. 3 or the method 400 in FIG. 6, respectively.
  • the transceiver unit 1100 and the processing unit 1200 may be used to:
  • the transceiver unit 1100 is configured to receive configuration information reported by the CSI, where the configuration information reported by the CSI is related to the configuration information of the first reference signal and the configuration information of the second reference signal, the second reference signal is used for uplink channel measurement, and the first reference The signal is used for downlink channel measurement; the processing unit 1200 is used for: performing channel measurement based on the first reference signal and the second reference signal and feeding back CSI.
  • the transceiver unit 1100 and the processing unit 1200 may be used to:
  • the transceiver unit 1100 is configured to receive configuration information reported by the CSI, the configuration information reported by the CSI is associated with the configuration information of the first reference signal, the configuration information of the first reference signal is associated with the second reference signal, and the second reference signal is used for the uplink channel For measurement, the first reference signal is used for downlink channel measurement; the processing unit 1200 is used for performing channel measurement based on the first reference signal and the second reference signal and feeding back CSI.
  • the configuration information of the first reference signal is at least one of CSI resource configuration CSI resource setting, first reference signal resource set, and first reference signal resource, where CSI resource setting At least one first reference signal resource set is included, and the first reference signal resource set includes at least one first reference signal resource.
  • the configuration information of the first reference signal is associated with the second reference signal, including: the configuration information of the first reference signal is associated with the identification ID of the second reference signal.
  • the transceiver unit 1100 and the processing unit 1200 may be used to:
  • the transceiver unit 1100 is used to: send a second reference signal for uplink channel measurement; the transceiver unit 1100 is also used to: receive a first reference signal, the first reference signal is a reference signal obtained by the network device based on channel information processing, the channel information is The network device performs uplink channel measurement based on the second reference signal; the processing unit 1200 is configured to: perform downlink channel measurement according to the first reference signal to obtain the channel status of the downlink channel; the transceiver unit 1100 is configured to: transmit according to the channel status of the downlink channel CSI.
  • the channel information includes angle information or delay information.
  • the transceiving unit 1100 is used to: send a second reference signal based on the configuration information of the second reference signal; the transceiving unit 1100 is also used to receive the first reference signal based on the configuration information of the first reference signal,
  • a reference signal is a reference signal obtained by the network device based on channel information processing, and the channel information is obtained by the network device performing uplink channel measurement based on the second reference signal;
  • the processing unit 1200 is specifically configured to: perform channel measurement based on the first reference signal and feed back CSI .
  • the precoding matrix of the first reference signal is calculated by the network device based on the second reference signal.
  • the second reference signal is periodic
  • the first reference signal is any one of the following: periodic, aperiodic, and semi-persistent.
  • the second reference signal is semi-persistent and the first reference signal is aperiodic or semi-persistent.
  • the second reference signal is aperiodic and the first reference signal is aperiodic.
  • the first reference signal and the second reference signal are semi-persistent
  • the transceiver unit 1100 is used to: receive the first signaling sent by the network device, the first signaling is used to activate the first reference signal and the second reference signal; or, the transceiver unit 1100 is used to: receive the second signaling sent by the network device , The second signaling is used to deactivate the first reference signal and the second reference signal.
  • the CSI report, the first reference signal, and the second reference signal are all aperiodic
  • the transceiver unit 1100 is used to receive third signaling sent by the network device, and the third signaling is used to notify: the transceiver unit 1100 reports CSI, the network device will send the first reference signal, and the transceiver unit 1100 sends the second reference signal.
  • the transceiver unit 1100 sends the second reference signal before receiving the first reference signal, or the transceiver unit 1100 sends the second reference signal while receiving the first reference signal.
  • the distance between the transceiver unit 1100 receiving the first reference signal and the transceiver unit 1100 sending the second reference signal is a predetermined period of time, which is determined by the computing power of the network device or is preset.
  • the set predetermined duration is different.
  • the configuration information reported by the CSI includes codebook configuration information, and the codebook configuration information is used to indicate the feedback mode of the CSI of the terminal device.
  • the first reference signal is CSI-RS
  • the second reference signal is any one of the following: sounding reference signal SRS, Doppler tracking reference signal DT-RS, and phase tracking reference signal PT-RS.
  • the transceiver unit 1100 in the communication device 1000 may correspond to the transceiver 2020 in the terminal device 2000 shown in FIG. 8, and the processing unit 1200 in the communication device 1000 may This corresponds to the processor 2010 in the terminal device 2000 shown in FIG. 8.
  • the transceiver unit 1100 in the communication device 1000 may be an input/output interface.
  • the communication device 1000 may correspond to the network device in the foregoing method embodiment, for example, it may be a network device, or a chip configured in the network device.
  • the communication apparatus 1000 may correspond to the network device in the method 300 or the method 400 according to an embodiment of the present application.
  • the communication apparatus 1000 may include the method 300 in FIG. 3 or the method 400 in FIG. 6.
  • each unit in the communication device 1000 and the other operations or functions described above are for implementing the corresponding flow of the method 300 in FIG. 3 or the method 400 in FIG. 6, respectively.
  • the transceiver unit 1100 and the processing unit 1200 may be used to:
  • the processing unit 1200 is configured to: configure the CSI reporting configuration, the CSI reporting configuration is associated with the configuration information of the first reference signal and the configuration information of the second reference signal, the second reference signal is used for uplink channel measurement, and the first reference signal is used for downlink channel measurement ;
  • the transceiver unit 1100 is used to: send configuration information reported by the CSI.
  • the transceiver unit 1100 and the processing unit 1200 may be used to:
  • the processing unit 1200 is configured to: configure the CSI reporting configuration, the CSI reporting configuration is associated with the configuration information of the first reference signal, the configuration information of the first reference signal is associated with the second reference signal, the second reference signal is used for uplink channel measurement, and the first reference signal Used for downlink channel measurement; the transceiver unit 1100 is used to: send configuration information reported by CSI.
  • the configuration information of the first reference signal is: at least one of CSI resource configuration CSI resource setting, first reference signal resource set, and first reference signal resource, where CSI resource setting includes at least one first reference signal Resource set, the first reference signal resource set includes at least one first reference signal resource.
  • the configuration information of the first reference signal is associated with the second reference signal, including: the configuration information of the first reference signal is associated with the identification ID of the second reference signal.
  • the transceiver unit 1100 and the processing unit 1200 may be used to:
  • the transceiver unit 1100 is used to: receive a second reference signal; the transceiver unit 1100 is also used to: send a first reference signal, the first reference signal is a reference signal processed by the processing unit 1200 based on channel information, and the channel information is the processing unit 1200 It is obtained by performing uplink channel measurement based on the second reference signal; the transceiver unit 1100 is configured to receive CSI, which is determined by the terminal device performing downlink channel measurement according to the first reference signal.
  • the channel information includes angle information or delay information.
  • the transceiving unit 1100 is used to: send a second reference signal based on the configuration information of the second reference signal; the transceiving unit 1100 is also used to receive the first reference signal based on the configuration information of the first reference signal,
  • a reference signal is a reference signal obtained by the network device based on channel information processing, and the channel information is obtained by the network device performing uplink channel measurement based on the second reference signal;
  • the processing unit 1200 is specifically configured to: perform channel measurement based on the first reference signal and feed back CSI .
  • the precoding matrix of the first reference signal is calculated by the network device based on the second reference signal.
  • the second reference signal is periodic
  • the first reference signal is any one of the following: periodic, aperiodic, and semi-persistent.
  • the second reference signal is semi-persistent and the first reference signal is aperiodic or semi-persistent.
  • the second reference signal is aperiodic and the first reference signal is aperiodic.
  • the first reference signal and the second reference signal are semi-persistent
  • the transceiver unit 1100 is used to: receive the first signaling sent by the network device, the first signaling is used to activate the first reference signal and the second reference signal; or, the transceiver unit 1100 is used to: receive the second signaling sent by the network device , The second signaling is used to deactivate the first reference signal and the second reference signal.
  • the CSI report, the first reference signal, and the second reference signal are all aperiodic
  • the transceiver unit 1100 is used to receive third signaling sent by the network device, and the third signaling is used to notify: the transceiver unit 1100 reports CSI, the network device will send the first reference signal, and the transceiver unit 1100 sends the second reference signal.
  • the transceiver unit 1100 sends the second reference signal before receiving the first reference signal, or the transceiver unit 1100 sends the second reference signal while receiving the first reference signal.
  • the distance between the transceiver unit 1100 receiving the first reference signal and the transceiver unit 1100 sending the second reference signal is a predetermined period of time, which is determined by the computing power of the network device or is preset.
  • the set predetermined duration is different.
  • the configuration information reported by the CSI includes codebook configuration information, and the codebook configuration information is used to indicate the feedback mode of the CSI of the terminal device.
  • the first reference signal is CSI-RS
  • the second reference signal is any one of the following: sounding reference signal SRS, Doppler tracking reference signal DT-RS, and phase tracking reference signal PT-RS.
  • the communication unit in the communication device 1000 may correspond to the transceiver 3200 in the network device 3000 shown in FIG. 9, and the processing unit 1200 in the communication device 1000 may This corresponds to the processor 3100 in the network device 3000 shown in FIG. 9.
  • the transceiver unit 1100 in the communication device 1000 may be an input/output interface.
  • FIG. 8 is a schematic structural diagram of a terminal device 2000 provided by an embodiment of the present application.
  • the terminal device 2000 can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the above method embodiments.
  • the terminal device 2000 includes a processor 2010 and a transceiver 2020.
  • the terminal device 2000 further includes a memory 2030.
  • the processor 2010, the transceiver 2002 and the memory 2030 can communicate with each other through an internal connection path to transfer control or data signals.
  • the memory 2030 is used to store a computer program, and the processor 2010 is used to call from the memory 2030 and Run the computer program to control the transceiver 2020 to send and receive signals.
  • the terminal device 2000 may further include an antenna 2040 for sending uplink data or uplink control signaling output by the transceiver 2020 through a wireless signal.
  • the processor 2010 and the memory 2030 may be combined into a processing device.
  • the processor 2010 is used to execute the program code stored in the memory 2030 to implement the above-mentioned functions.
  • the memory 2030 may also be integrated in the processor 2010 or independent of the processor 2010.
  • the processor 2010 may correspond to the processing unit in FIG. 7.
  • the above-mentioned transceiver 2020 may correspond to the communication unit in FIG. 7 and may also be referred to as a transceiver unit.
  • the transceiver 2020 may include a receiver (or receiver, receiving circuit) and a transmitter (or transmitter, transmitting circuit). Among them, the receiver is used to receive signals, and the transmitter is used to transmit signals.
  • the terminal device 2000 shown in FIG. 8 can implement various processes involving the terminal device in the method embodiment shown in FIG. 3 or FIG. 6.
  • the operations or functions of each module in the terminal device 2000 are respectively to implement the corresponding processes in the above method embodiments.
  • the above-mentioned processor 2010 may be used to perform the actions described in the foregoing method embodiments that are internally implemented by the terminal device, and the transceiver 2020 may be used to perform the operations described in the foregoing method embodiments by the terminal device to or from the network device. action.
  • the transceiver 2020 may be used to perform the operations described in the foregoing method embodiments by the terminal device to or from the network device. action.
  • the terminal device 2000 may further include a power supply 2050, which is used to provide power to various devices or circuits in the terminal device.
  • a power supply 2050 which is used to provide power to various devices or circuits in the terminal device.
  • the terminal device 2000 may further include one or more of an input unit 2060, a display unit 2070, an audio circuit 2080, a camera 2090, a sensor 2100, etc.
  • the audio circuit It may also include a speaker 2082, a microphone 2084, and so on.
  • FIG. 9 is a schematic structural diagram of a network device provided by an embodiment of the present application, for example, may be a schematic structural diagram of a base station.
  • the base station 3000 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the above method embodiments.
  • the base station 3000 may include one or more radio frequency units, such as a remote radio unit (RRU) 3100 and one or more baseband units (BBU) (also called a distributed unit (DU) )) 3200.
  • RRU 3100 may be referred to as a transceiver unit, which corresponds to the communication unit 1200 in FIG. 7.
  • the transceiver unit 3100 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 3101 and a radio frequency unit 3102.
  • the transceiving unit 3100 may include a receiving unit and a transmitting unit.
  • the receiving unit may correspond to a receiver (or receiver, receiving circuit), and the transmitting unit may correspond to a transmitter (or transmitter, transmitting circuit).
  • the RRU 3100 part is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals, for example, for sending configuration information reported by the CSI to the terminal device.
  • the BBU 3200 part is mainly used for baseband processing and controlling the base station.
  • the RRU 3100 and the BBU 3200 may be physically arranged together, or may be physically separated, that is, distributed base stations.
  • the BBU 3200 is the control center of the base station, and may also be referred to as a processing unit, which may correspond to the processing unit 1100 in FIG. 7 and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and so on.
  • the BBU processing unit
  • the BBU may be used to control the base station to perform the operation flow on the network device in the foregoing method embodiments, for example, generating configuration information reported by the CSI.
  • the BBU 3200 may be composed of one or more boards, and multiple boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or may support different access standards respectively. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 3200 also includes a memory 3201 and a processor 3202.
  • the memory 3201 is used to store necessary instructions and data.
  • the processor 3202 is used to control the base station to perform necessary actions, for example, to control the base station to perform the operation flow of the network device in the foregoing method embodiment.
  • the memory 3201 and the processor 3202 may serve one or more single boards. In other words, the memory and processor can be set separately on each board. It is also possible that multiple boards share the same memory and processor. In addition, each board can also be equipped with necessary circuits.
  • the base station 3000 shown in FIG. 9 can implement various processes involving the network device in the method embodiment of FIG. 3 or FIG. 6.
  • the operations or functions of each module in the base station 3000 are to implement the corresponding processes in the above method embodiments.
  • the above-mentioned BBU 3200 can be used to perform the actions described in the foregoing method embodiments that are internally implemented by the network device, and the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • the RRU 3100 can be used to perform the actions described in the previous method embodiments that the network device sends to or receives from the terminal device.
  • An embodiment of the present application further provides a processing device, including a processor and an interface; the processor is used to perform the communication method in any of the foregoing method embodiments.
  • the above processing device may be a chip.
  • the processing device may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system chip (SoC), or It is a central processor (CPU), it can also be a network processor (NP), it can also be a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller) , MCU), can also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system chip
  • CPU central processor
  • NP network processor
  • DSP digital signal processor
  • microcontroller micro controller
  • MCU microcontroller
  • PLD programmable logic device
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware processor, or may be executed and completed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium in the art, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, and registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. In order to avoid repetition, they are not described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware decoding processor, or may be executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the art, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, and registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electronically Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory may be a random access memory (random access memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous RAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • double SDRAM double SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM synchronous connection dynamic random access memory
  • direct RAMbus RAM direct RAMbus RAM
  • the present application further provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on the computer, the computer is caused to execute the operations shown in FIGS. 3 to 6 The method of any one of the embodiments is shown.
  • the present application also provides a computer-readable medium that stores program code, and when the program code is run on a computer, the computer is caused to execute the operations shown in FIGS. 3 to 6. The method of any one of the embodiments is shown.
  • the present application further provides a system, which includes the foregoing one or more terminal devices and one or more network devices.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, a high-density digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, or a magnetic tape
  • an optical medium for example, a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disk
  • the network device in each of the above device embodiments corresponds exactly to the network device or terminal device in the terminal device and method embodiments, and the corresponding steps are performed by corresponding modules or units, for example, the communication unit (transceiver) performs the receiving or The steps of sending, other than sending and receiving, can be executed by the processing unit (processor).
  • the function of the specific unit can refer to the corresponding method embodiment. There may be one or more processors.
  • a component may be, but not limited to, a process running on a processor, a processor, an object, an executable file, an execution thread, a program, or a computer.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in a process or thread of execution, and a component may be located on one computer or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component can pass through the local, for example, according to a signal with one or more data packets (for example, data from two components that interact with another component in a local system, a distributed system, or a network, such as the Internet that interacts with other systems through a signal) Or remote process to communicate.
  • a signal with one or more data packets (for example, data from two components that interact with another component in a local system, a distributed system, or a network, such as the Internet that interacts with other systems through a signal) Or remote process to communicate.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信道状态信息CSI上报的配置方法和通信装置。该方法包括:终端设备接收CSI上报的配置信息,该CSI上报的配置信息关联第一参考信号的配置信息和第二参考信号的配置信息,其中,第二参考信号用于上行信道测量,第一参考信号用于下行信道测量;基于第一参考信号和第二参考信号,终端设备进行信道测量并反馈CSI。通过利用上下行信道互易性,终端设备可以不必反馈具有互易性的信息,如角度和时延,减小了终端设备的反馈开销。

Description

一种信道状态信息CSI上报的配置方法和通信装置
本申请要求于2018年12月21日提交中国专利局、申请号为201811571623.9、申请名称为“一种信道状态信息CSI上报的配置方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,并且更具体地,涉及一种信道状态信息CSI上报的配置方法和通信装置。
背景技术
在大规模多输入多输出(massive multiple-input multiple-output,Massive MIMO)技术中,网络设备可通过预编码减小多用户之间的干扰以及同一用户的多个信号流之间的干扰,有利于提高信号质量,实现空分复用,提高频谱利用率。
终端设备例如可以基于下行信道测量来确定预编码矩阵,并希望通过反馈,使得网络设备获得与终端设备确定的预编码矩阵相同或相近的预编码矩阵。具体地,终端设备需要对每个子带的导频进行信道估计及测量,继而搜索对每个子带搜索需要子带反馈的预编码矩阵指示(precoding matrix indicator,PMI)分量,尤其地,对于一些高精度码本,如类型II(type II)码本,需要每个子带进行一次奇异值分解(singular value decomposition,SVD)分解。
然而,这种反馈方式带来了较大的反馈开销。
发明内容
本申请提供一种信道状态信息CSI上报的配置方法和通信装置,以期降低反馈开销。
第一方面,提供了一种信道状态信息CSI上报的配置方法,该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片执行。
该方法包括:终端设备接收CSI上报的配置信息,所述CSI上报的配置信息关联第一参考信号的配置信息和第二参考信号的配置信息,所述第二参考信号用于上行信道测量,所述第一参考信号用于下行信道测量;
基于所述第一参考信号和所述第二参考信号,所述终端设备进行信道测量并反馈CSI。
第二方面,提供了一种信道状态信息CSI上报的配置方法,该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片执行。
该方法包括:网络设备配置CSI上报配置,所述CSI上报配置关联第一参考信号的配置信息和第二参考信号的配置信息,所述第二参考信号用于上行信道测量,所述第一参考信号用于下行信道测量;
所述网络设备发送所述CSI上报的配置信息。
基于上述技术方案,通过将CSI上报的配置信息(例如可以是CSI reporting setting)与上行参考信号的配置信息关联起来,网络设备可以基于上行信道测量所确定的具有互易性的信息(如角度和时延),对下行参考信号进行预编码,使得终端设备根据预编码后的参考信号进行下行信道测量。由于网络设备基于上下行信道可互易的角度和时延对参考信号进行了预编码,使得终端设备检测到的下行信道的信息是不具有互易性的信息。因此,终端设备可以不必反馈具有互易性的信息(如角度和时延),大大减小了终端设备的反馈开销。此外,通过利用上下行信道的互易性,将终端设备对下行信道的测量过程简化,降低了终端设备在信道测量过程中的计算复杂度。
第三方面,提供了一种信道状态信息CSI上报的配置方法,该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片执行。
该方法包括:终端设备接收CSI上报的配置信息,所述CSI上报的配置信息关联第一参考信号的配置信息,所述第一参考信号的配置信息关联第二参考信号,所述第二参考信号用于上行信道测量,所述第一参考信号用于下行信道测量;
基于所述第一参考信号和所述第二参考信号,所述终端设备进行信道测量并反馈CSI。
第四方面,提供了一种信道状态信息CSI上报的配置方法,该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片执行。
该方法包括:网络设备配置CSI上报配置,所述CSI上报配置关联第一参考信号的配置信息,所述第一参考信号的配置信息关联第二参考信号,所述第二参考信号用于上行信道测量,所述第一参考信号用于下行信道测量;
所述网络设备发送所述CSI上报的配置信息。
基于上述技术方案,通过将上行参考信号的配置信息与上行参考信号的配置信息关联起来,网络设备可以基于上行信道测量所确定的具有互易性的信息(如角度和时延),对下行参考信号进行预编码,使得终端设备根据预编码后的参考信号进行下行信道测量。由于网络设备基于上下行信道可互易的角度和时延对参考信号进行了预编码,使得终端设备检测到的下行信道的信息是不具有互易性的信息。因此,终端设备可以不必反馈具有互易性的信息(如角度和时延),大大减小了终端设备的反馈开销。此外,通过利用上下行信道的互易性,将终端设备对下行信道的测量过程简化,降低了终端设备在信道测量过程中的计算复杂度。
结合第三方面或第四方面,在某些实现方式中,所述第一参考信号的配置信息为:CSI资源配置CSI resource setting、所述第一参考信号资源集、所述第一参考信号资源中的至少一种,其中,所述CSI resource setting包括至少一个所述第一参考信号资源集,所述第一参考信号资源集包括至少一个所述第一参考信号资源。
结合第三方面或第四方面,在某些实现方式中,所述第一参考信号的配置信息关联第二参考信号,包括:所述第一参考信号的配置信息关联第二参考信号的标识ID。
基于上述技术方案,第一参考信号的配置信息关联第二参考信号的标识(identity,ID),例如,在第一参考信号的配置信息中配置关联的第二参考信号的ID。
第五方面,提供了一种发送信道状态信息CSI的方法,该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片执行。
该方法包括:终端设备发送用于上行信道测量的第二参考信号;
所述终端设备接收第一参考信号,所述第一参考信号是网络设备基于信道信息处理得到的参考信号,所述信道信息是所述网络设备基于所述第二参考信号进行上行信道测量得到的;所述终端设备根据所述第一参考信号进行下行信道测量,获得所述下行信道的信道状态;所述终端设备根据所述下行信道的信道状态发送CSI。
第六方面,提供了一种接收信道状态信息CSI的方法,该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片执行。
该方法包括:网络设备接收用于上行信道测量的第二参考信号;
所述网络设备发送第一参考信号,所述第一参考信号是所述网络设备基于信道信息处理得到的参考信号,所述信道信息是所述网络设备基于所述第二参考信号进行上行信道测量得到的;所述网络设备接收CSI,所述CSI是所述终端设备根据所述第一参考信号进行下行信道测量确定的。
基于上述技术方案,网络设备可以基于上行信道测量所确定的具有互易性的信息(如角度和时延),对下行参考信号进行预编码,使得终端设备根据预编码后的参考信号进行下行信道测量。由于网络设备基于上下行信道可互易的角度和时延对参考信号进行了预编码,使得终端设备检测到的下行信道的信息是不具有互易性的信息。因此,终端设备可以不必反馈具有互易性的信息(如角度和时延),大大减小了终端设备的反馈开销。此外,通过利用上下行信道的互易性,将终端设备对下行信道的测量过程简化,降低了终端设备在信道测量过程中的计算复杂度。
结合第五方面或第六方面,在某些实现方式中,所述信道信息包括角度信息或时延信息。
结合第一方面至第六方面,某些实现方式中,所述基于所述第一参考信号和所述第二参考信号,所述终端设备进行信道测量并反馈CSI,包括:所述终端设备基于所述第二参考信号的配置信息,发送所述第二参考信号;所述终端设备基于所述第一参考信号的配置信息,接收所述第一参考信号,所述第一参考信号是网络设备基于信息处理得到的参考信号,所述信息是所述网络设备基于所述第二参考信号进行上行信道测量得到的;所述终端设备基于所述第一参考信号进行信道测量并反馈CSI。
基于上述技术方案,通过利用上下行信道的互易性,将终端设备对下行信道的测量过程简化,降低了终端设备在信道测量过程中的计算复杂度。
结合第一方面至第六方面,某些实现方式中,所述第一参考信号的预编码矩阵是基于所述第二参考信号计算得到的。
基于上述技术特征,网络设备基于上行信道测量得到具有互易性的信道特征,例如角度和时延,具有互易性的特征通过下行参考信号(例如记作第一参考信号)上的权值下发。由于网络设备基于上下行信道可互易的角度和时延对参考信号进行了预编码,使得终端设备不可见具有互易性的特征,简化了终端设备对下行信道的测量过程。
结合第一方面至第六方面,某些实现方式中,所述第二参考信号是周期性,所述第一参考信号是以下任意一项:周期性、非周期性、半持续性。
结合第一方面至第六方面,某些实现方式中,所述第二参考信号是半持续性,所述第一参考信号是非周期性或半持续性。
结合第一方面至第六方面,某些实现方式中,所述第二参考信号是非周期性,所述第 一参考信号是非周期性。
结合第一方面至第六方面,某些实现方式中,所述第一参考信号和所述第二参考信号均是半持续性的,所述终端设备接收所述网络设备发送的第一信令,所述第一信令用于激活所述第一参考信号和所述第二参考信号;或者,所述终端设备接收所述网络设备发送的第二信令,所述第二信令用于去激活所述第一参考信号和所述第二参考信号。
基于上述技术方案,当需要信令激活第一参考信号和第二参考信号时,可以通过一个信令激活第一参考信号和第二参考信号,或者,当需要信令去激活第一参考信号和第二参考信号时,可以通过一个信令激活或者去激活第一参考信号和第二参考信号,从而可以节省信令开销。
结合第一方面至第六方面,某些实现方式中,所述CSI上报、所述第一参考信号、所述第二参考信号均是非周期性的,所述终端设备接收所述网络设备发送的第三信令,所述第三信令用于通知:所述终端设备上报所述CSI、所述网络设备将发送所述第一参考信号、所述终端设备发送所述第二参考信号。
基于上述技术方案,当需要信令激活第一参考信号、第二参考信号、以及CSI上报时,可以通过一个信令激活第一参考信号和第二参考信号,或者,当需要信令去激活第一参考信号、第二参考信号、以及CSI上报时,可以通过一个信令激活或者去激活第一参考信号和第二参考信号,从而可以节省信令开销。
结合第一方面至第六方面,某些实现方式中,所述终端设备在接收第一参考信号之前发送所述第二参考信号,或所述终端设备在接收第一参考信号的同时发送所述第二参考信号。
结合第一方面至第六方面,某些实现方式中,所述终端设备接收第一参考信号和所述终端设备发送第二参考信号之间相距预定时长,所述预定时长是由所述网络设备计算能力确定的,或者是预先设置的。
结合第一方面至第六方面,某些实现方式中,对于不同的子载波间隔,设置的所述预定时长不同。
结合第一方面至第六方面,某些实现方式中,所述CSI上报的配置信息中包括码本配置信息,所述码本配置信息用于指示所述终端设备所述CSI的反馈模式。
结合第一方面至第六方面,某些实现方式中,所述第一参考信号为信道状态信息参考信号(channel state information reference signal,CSI-RS),或,所述第二参考信号为以下任意一种:探测参考信号(sounding reference signal,SRS)、多普勒跟踪参考信号(doppler tracking reference signal,DT-RS)、相位追踪参考信号(phase-tracking reference signal,PT-RS)。
应理解,上述仅是示例性说明,任何下行参考信号或上行参考信号均可以用于本申请。
第七方面,提供了一种通信装置,包括用于执行第一方面、第三方面、或第五方面中任一种可能实现方式中的方法的各个模块或单元。
第八方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面、第三方面、或第五方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片。当该通信装置为配置于终端设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第九方面,提供了一种通信装置,包括用于执行第二方面、第四方面、或第六方面中任一种可能实现方式中的方法的各个模块或单元。
第十方面,提供了一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面、第四方面、或第六方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片。当该通信装置为配置于网络设备中的芯片时,所述通信接口可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第十一方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面、第三方面、或第五方面以及第一方面、第三方面、或第五方面任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十二方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第二方面、第四方面、或第六方面以及第二方面、第四方面、或第六方面任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十三方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器 中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面、第三方面、或第五方面以及第一方面、第三方面、或第五方面任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送用于指示CSI上报的配置信息可以为从处理器输出该信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理器输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第十三方面中的处理装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十四方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第二方面、第四方面、或第六方面以及第二方面、第四方面、或第六方面任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送CSI上报的配置信息可以为从处理器输出该信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理器输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第十四方面中的处理装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十五方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面、第三方面、或第五方面以及第一方面、第三方面、或第五方面中任一种可能实现方式中的方法。
第十六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第二方面、第四方面、或第六方面以及第二方面、第四方面、或第六方面中任一种可能实现方式中的方法。
第十七方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面、第三方面、或第五方面以及第一方面、第三方面、或第五方面中任一种可能实现方式中的方法。
第十八方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第二方面、第四方面、或第六方面以及第二方面、第四方面、或第六方面中任一种可能实现方式中的方法。
第十九方面,提供了一种通信系统,包括前述的网络设备和终端设备。
附图说明
图1是适用于本申请实施例的通信系统的示意性;
图2是网络设备配置待传输CSI-RS信息的时序行为示意图;
图3是本申请实施例提供的信道状态信息上报的配置方法的示意性交互图;
图4是适用于本申请实施例的信道状态信息上报的配置方法的一示意图;
图5是适用于本申请实施例的信道状态信息上报的配置方法的又一示意图;
图6是本申请实施例提供的发送信道状态信息的示意性交互图;
图7是本申请实施例提供的通信装置的示意性框图;
图8是本申请实施例提供的终端设备的结构示意图;
图9是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(NR)等。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1是适用于本申请实施例的方法的通信系统100的示意图。如图1所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备110与终端设备120可通过无线链路通信。各通信设备,如网络设备110或终端设备120,均可以配置多个天线。对于该通信系统100中的每一个通信设备而言,所配置的多个天线可 以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。因此,该通信系统100中的各通信设备之间,如网络设备110与终端设备120之间,可通过多天线技术通信。
应理解,该通信系统中的网络设备可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,Home evolved Node B,或Home Node B,HNB)、基带单元(baseband Unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为NR,如5G系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
还应理解,该通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
还应理解,图1仅为便于理解而示例的简化示意图,该通信系统100中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
为了便于理解本申请实施例,下面简单说明下行信号在发送之前在物理层的处理过程。应理解,下文所描述的对下行信号的处理过程可以由网络设备执行,也可以由配置于网络设备中的芯片执行。为方便说明,下文统称为网络设备。
网络设备在物理信道可对码字(code word)进行处理。其中,码字可以为经过编码(例如包括信道编码)的编码比特。码字经过加扰(scrambling),生成加扰比特。加扰比特 经过调制映射(modulation mapping),得到调制符号。调制符号经过层映射(layer mapping),被映射到多个层(layer),或者称,传输层。经过层映射后的调制符号经过预编码(precoding),得到预编码后的信号。预编码后的信号经过资源元素(resource element,RE)映射后,被映射到多个RE上。这些RE随后经过正交复用(orthogonal frequency division multiplexing,OFDM)调制后通过天线端口(antenna port)发射出去。
应理解,上文所描述的对下行信号的处理过程仅为示例性描述,不应对本申请构成任何限定。
还应理解,在本申请实施例中,网络设备可以先基于上行参考信号进行上行信道测量,得到信道信息,例如角度信息和时延信息,并对该信道信息进行处理以得到下行信号,例如基于该信道信息对下行信号进行预编码以得到预编码参考信号。下文实施例中具体介绍。
在介绍本申请实施例之前,首先对本申请中涉及的几个名词作简单说明。
1、信道互易性:在时分双工(time division duplexing,TDD)模式下,上下行信道在相同的频域资源上不同的时域资源上传输信号。在相对较短的时间(如,信道传播的相干时间)之内,可以认为上、下行信道上的信号所经历的信道衰落是相同的。这就是上下行信道的互易性。基于上下行信道的互易性,网络设备可以根据上行参考信号,如探测参考信号(sounding reference signal,SRS),测量上行信道,并可以根据上行信道来估计下行信道,从而可以确定用于下行传输的预编码矩阵。
在频分双工(frequency division duplexing,FDD)模式下的上下行信道具有部分的互易性,例如,角度的互易性和时延的互易性,换句话说,时延和角度在FDD模式下的上下行信道具有互易性。因此,角度和时延也可以称为互易性参数。角度可以是指信号经由无线信道到达接收天线的到达角(angle of arrival,AOA),也可以是指通过发射天线发射信号的离开角(angle of departure,AOD)在本申请实施例中,该角度可以是指上行信号到达网络设备的到达角,也可以是指网络设备发射下行信号的离开角。在本申请实施例中,每个角度可以通过一个角度向量来表征。时延可以是指无线信号在不同传输路径上的传输时间,由距离和速度决定,与无线信号的频域没有关系。在本申请实施例中,每个时延可通过一个时延向量来表征。
在本申请实施例中,可以将一个或多个角度向量加载到下行参考信号上,也可以理解为,基于一个或多个角度向量对下行参考信号进行预编码。也可以将一个或多个时延向量加载到下行参考信号上,也可以理解为,基于一个或多个时延向量对下行参考信号进行预编码。
2、参考信号(reference signal,RS)与参考信号资源:参考信号也可以称为导频(pilot)、参考序列等。在本申请实施例中,参考信号可以是用于信道测量的参考信号。例如,该参考信号可以是用于下行信道测量的信道状态信息参考信号(channel state information reference signal,CSI-RS),也可以是用于上行信道测量的SRS或DT-RS。应理解,上文列举的参考信号仅为示例,不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他参考信号以实现相同或相似功能的可能。
参考信号资源可用于配置参考信号的传输属性,例如,时频资源位置、端口映射关系、功率因子以及扰码等,具体可参考现有技术。发送端设备可基于参考信号资源发送参考信 号,接收端设备可基于参考信号资源接收参考信号。一个参考信号资源可以包括一个或多个资源块(resource block,RB)。参考信号资源可以包括CSI-RS资源(CSI-RS resource)、SRS资源(SRS resource)。为了区分不同的参考信号资源,每个参考信号资源可对应于一个参考信号资源的标识,例如,CSI-RS资源标识(CSI-RS resource indicator,CRI)、SRS资源索引(SRS resource index,SRI)。
应理解,上文中列举的参考信号以及相应的参考信号资源仅为示例性说明,不应对本申请构成任何限定,本申请并不排除在未来的协议中定义其他参考信号来实现相同或相似功能的可能。
在一种可能的设计中,网络设备可通过RRC消息向终端设备发送CSI资源配置(CSI resource setting),每个CSI resource setting可以包括S(S≥1,且S为整数)个CSI-RS资源集(CSI-RS resource sets),每个CSI-RS resource set可包括K(K≥1,且K为整数)个非零功率(non-zero power,NZP)CSI-RS资源(NZP CSI-RS resources),可选的,还可以包括零功率(zero power)CSI-RS资源。终端设备可以在网络设备所指示的K个NZP CSI-RS resources上接收CSI-RS。
应理解,上文列举的网络设备向终端设备指示参考信号资源的具体方法仅为示例,不应对本申请构成任何限定,本申请并不排除在未来的协议中采用其他的信令或方式指示参考信号资源的可能。例如,网络设备可进一步通过DCI指示K个NZP CSI-RS resources中当前可使用的J(K≥J≥1,且J为整数)个NZP CSI-RS resources。
3、时域行为(time domain behavior)参数:在参考信号资源配置以及CSI上报配置(CSI report setting)中,可以通过不同的时域行为参数来指示不同的时域行为。其中,参考信号资源配置的时域行为参数可用于指示终端设备接收参考信号的时域行为;CSI上报配置的时域行为参数可用于指示终端设备上报CSI的时域行为。
作为示例而非限定,时域行为例如可以包括周期性(periodic)、半持续性(semi-persistent)和非周期性(aperiodic)。下面以CSI-RS为例简述这三种时域行为。
CSI-RS的时域行为为周期性,表示周期发送CSI-RS,具体地,通常网络设备通过RRC配置周期CSI-RS的信息后,配置信令生效后,网络设备便会周期的给终端设备发送CSI-RS。CSI-RS的时域行为为非周期性,表示非周期发送CSI-RS,具体地,通常网络设备通过RRC配置非周期CSI-RS的信息后,不会立即发送CSI-RS,当网络设备发送非周期的CSI-RS时,会先发送信令(如特定的DCI信令)通知终端设备,网络设备将会发送非周期的CSI-RS。CSI-RS的时域行为为半持续性,表示半持续发送CSI-RS,具体地,通常网络设备通过RRC配置半持续CSI-RS的信息后,不会立即发送CSI-RS,当网络设备发送非持续的CSI-RS时,会先发送信令(如特定的MAC-CE信令)通知终端设备,激活信令生效后,网络设备将会发送半持续的CSI-RS。其中,网络设备一旦触发半持续CSI-RS的发送,便会周期的发送CSI-RS,除非网络设备下发去激活的信令。
图2示出了网络设备配置(例如基站通过RRC配置)待传输CSI-RS的时序行为示意图。其中,周期发送的CSI-RS,即表示该CSI-RS的时域行为为周期性;非周期发送的CSI-RS,即表示该CSI-RS的时域行为为非周期性;半持续发送的CSI-RS,即表示该CSI-RS的时域行为为半持续性。从图2可知,对于CSI-RS来说,可定义不同时序行为的时域持续程度为:周期发送的CSI-RS的持续时间>半持续发送的CSI-RS的持续时间>非周期发 送的CSI-RS的持续时间。换句话说,对于CSI-RS来说,周期发送的CSI-RS对应的时域持续程度>半持续发送的CSI-RS对应的时域持续程度>非周期发送的CSI-RS对应的时域持续程度。
SRS与CSI-RS类似,SRS的配置是网络设备通过RRC配置的,终端设备发送SRS是网络设备下发信令指示终端设备进行发送的。
在下文实施例中,为简洁,用P CSI-RS、AP CSI-RS、SP CSI-RS分别表示周期发送的CSI-RS(即CSI-RS的时域行为为周期性)、非周期发送的CSI-RS(即CSI-RS的时域行为为非周期性)、半持续发送的CSI-RS(即CSI-RS的时域行为为半持续性),用P SRS、AP SRS、SP SRS分别表示周期发送的SRS(即SRS的时域行为为周期性)、非周期发送的SRS(即SRS的时域行为为非周期性)、半持续发送的SRS(即SRS的时域行为为半持续性)。用P CSI上报、AP CSI上报、SP CSI上报分别表示周期上报CSI(即CSI上报的时域行为为周期性)、非周期上报CSI(即CSI上报的时域行为为非周期性)、半持续上报CSI(即CSI上报的时域行为为半持续性)。
应理解,上述时域持续程度仅为便于区分不同的时域行为而命名,不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他名称来表示相同或相似含义的可能。
在FDD系统中,由于上下行频带的间隔远大于相干带宽,因此上下行信道不具有完整的互易性,无法用上行信道信息来做准确的下行预编码。但是FDD系统中,上下行物理信道本身具有部分的互易性,例如角度的互易性和时延的互易性。
现有的码本都是没利用到FDD的部分互易性。典型的码本如beam选择码本,利用一个离散傅里叶变换(discrete fourier transform,DFT)beam表征信道,精度较低,多用户MIMO传输性能较差;beam叠加码本,利用多个DFT向量叠加获得预编码向量表征信道,精度较高,多用户MIMO传输性能较高;但是每个子带需要反馈多个叠加系数,反馈开销很大。
有鉴于此,本申请提出一种方法,通过将FDD中部分信道特征具有互易性的思想引入到CSI反馈中,进而降低终端设备复杂度,降低反馈开销。
为了便于理解本申请实施例,作出以下几点说明。
第一,在本申请实施例中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定携带有A。例如,网络设备可以预先通过高层信令配置用于传输参考信号的参考信号资源,并通过指示信息,如下行控制信息(downlink control information,DCI),将参考信号资源指示给终端设备。
第二,本申请对很多特性(例如CSI、角度、时延等)所列出的定义仅用于以举例方式来解释该特性的功能,其详细内容可以参考现有技术。
第三,在下文示出的实施例中第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的参考信号等。
第四,在下文示出的实施例中,“预先获取”可包括由网络设备信令指示或者预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
第五,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第六,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
第七,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b和c中的至少一项(个),可以表示:a,或,b,或,c,或,a和b,或,a和c,或,b和c,或,a、b和c,其中a,b,c可以是单个,也可以是多个。
下面将结合附图详细说明本申请实施例提供的方法。
应理解,本申请实施例提供的方法可以应用于通过多天线技术通信的系统,例如,图1中所示的通信系统100。该通信系统可以包括至少一个网络设备和至少一个终端设备。网络设备和终端设备之间可通过多天线技术通信。
还应理解,下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
以下,不失一般性,以网络设备与终端设备之间的交互为例详细说明本申请实施例提供的信道状态信息上报的配置方法。
图3是从设备交互的角度示出的本申请实施例提供的信道状态信息上报的配置方法的示意性交互图。如图3所示,该方法300可以包括步骤310至步骤340。下面详细说明方法300中的各步骤。
在S310中,终端设备接收CSI上报的配置信息。相应地,网络设备发送CSI上报的配置信息。
CSI上报的配置信息,即表示与CSI相关的配置信息,例如,可以称为CSI reporting setting,在下文实施例中,为简洁,用CSI reporting setting表示。第一参考信号用于下行信道测量,第一参考信号例如可以是CSI-RS,在下文实施例中,为简洁,用下行参考信号表示第一参考信号。第二参考信号用于上行信道测量,第二参考信号例如可以是SRS,在下文实施例中,为简洁,用上行参考信号表示第二参考信号。
在本申请中,CSI reporting setting关联下行参考信号的配置信息和上行参考信号的配置信息;或者,CSI reporting setting关联下行参考信号的配置信息,且下行参考信号的配置信息关联上行参考信号的配置信息。下面介绍这两种关联方式。
方式1
CSI reporting setting关联下行参考信号的配置信息和上行参考信号的配置信息。
网络设备可预先通过高层信令向终端设备发送参考信号的资源配置信息,如上文所列 举的CSI资源配置信息。终端设备可以根据网络设备发送的参考信号的资源配置信息确定参考信号资源。因此,终端设备可以基于参考信号资源接收参考信号。
以上行参考信号为SRS,下行参考信号为CSI-RS为例,网络设备可以配置SRS关联到CSI reporting setting中,例如,网络设备配置SRS resource setting关联到CSI reporting setting。如图4所示,SRS resource setting和CSI resource setting关联在一个CSI reporting setting中。
一种可能的实现方式,网络设备可以通过CSI reporting setting来配置关联的SRS resource setting和CSI-RS resource setting。具体地,CSI reporting setting中可以包含SRS resource setting的指示和CSI-RS resource setting的指示。被配置在同一个CSI reporting setting的SRS resource setting和CSI-RS resource setting之间默认是关联的,换句话说,被配置在一个CSI reporting setting中的SRS resource setting和CSI resource setting具有关联关系。其中,SRS resource setting的指示的形式可以是SRS资源索引(SRS resource index,SRI),CSI-RS resource setting的指示的形式可以是CSI-RS资源标识(CSI-RS resource indicator,CRI)。SRS资源索引对应的SRS的具体资源配置、以及CSI-RS资源标识对应的CSI-RS的具体资源配置可以通过RRC信令进行下发。
通过方式1,将CSI上报的配置信息(例如可以是CSI reporting setting)与上行参考信号的配置信息关联起来,网络设备可以基于上下行信道可互易的角度和时延对下行参考信号进行预编码,使得终端设备不可见具有互易性的特征(如角度和时延),从而终端设备检测时只需检测不具有互易性的信息,因此大大减小了终端设备的反馈开销。
方式2
下行参考信号的配置信息关联上行参考信号的配置信息。
以下行参考信号为CSI-RS,上行参考信号为SRS为例,网络设备可以配置SRS关联到与CSI-RS相关的配置信息中,例如,网络设备配置SRS关联到以下任意一项:CSI resource setting、CSI resource set、CSI-RS resource。其中,关联的SRS可以是专有的SRS,也可以是现有用于上行信道测量的SRS,对此,本申请不作限定。其中,CSI resource setting包括至少一个CSI resource set,CSI resource set包括至少一个CSI-RS resource。
CSI reporting setting关联的信息包括CSI resource setting,用于信道干扰测量,如携带(with)或不携带(without)噪声。通过将CSI resource setting与SRS关联起来,可以使得SRS与CSI reporting setting也具有关联关系。
一种可能的实现方式,网络设备可以通过CSI resource setting来配置关联的SRS。具体地,CSI resource setting中可以包含SRS的指示。例如,网络设备在CSI resource setting中配置关联的SRS的标识(identity,ID)。
又一种可能的实现方式,网络设备可以通过CSI resource set来配置关联的SRS。具体地,CSI resource set中可以包含SRS的指示。例如,网络设备在CSI resource set中配置关联的SRS的ID。
又一种可能的实现方式,网络设备可以通过CSI-RS resource来配置关联的SRS。具体地,CSI-RS resource中可以包含SRS的指示。例如,网络设备在CSI-RS resource中配置关联的SRS的ID。
通过方式2,将下行参考信号的配置信息与上行参考信号的配置信息关联起来,网络 设备可以基于上下行信道可互易的角度和时延对下行参考信号进行预编码,使得终端设备不可见具有互易性的特征(如角度和时延),从而终端设备检测时只需检测不具有互易性的信息,因此大大减小了终端设备的反馈开销。
上述两种方式仅是示例性说明,本申请并未限定于此,任何可以使得上行参考信号的配置信息与CSI上报相关的信息关联起来的方式都落入本申请的保护范围。
可选地,下行参考信号和上行参考信号的时域行为可以相同,也可以不同。下面以上行参考信号为SRS,下行参考信号为CSI-RS为例,结合表1进行说明。
表1
  P SRS SP SRS AP SRS
P CSI-RS P/SP/AP CSI上报 不支持 不支持
SP CSI-RS SP/AP CSI上报 SP/AP CSI上报 不支持
AP CSI-RS AP CSI上报 AP CSI上报 AP CSI上报
由上表1可以看出,
P SRS支持P CSI-RS、SP CSI-RS、AP CSI-RS,换句话说,当SRS的时域行为为周期性时,不管CSI-RS的时域行为周期性/非周期性/半持续性,都可以支持CSI上报。例如,当SRS和CSI-RS的时域行为均为周期性时,可以支持CSI上报,该CSI上报的时域行为可以为周期性或非周期性或半持续性。
SP SRS支持SP CSI-RS、AP CSI-RS,换句话说,当SRS的时域行为为半持续性时,CSI-RS的时域行为非周期性或半持续性时,可以支持CSI上报。例如,当SRS的时域行为为半持续性,CSI-RS的时域行为半持续性时,可以支持CSI上报,该CSI上报的时域行为可以为非周期性或半持续性。
AP SRS支持AP CSI-RS,换句话说,当SRS的时域行为为非周期性时,CSI-RS的时域行为非周期性时,可以支持CSI上报。例如,当SRS和CSI-RS的时域行为均为非周期性时,可以支持CSI上报,该CSI上报的时域行为为非周期性。
可选地,下行参考信号的时域行为对应的时域持续程度不高于上行参考信号的时域行为对应的时域持续程度,换句话说,下行参考信号的时域行为对应的时域持续程度低于或等于上行参考信号的时域行为对应的时域持续程度。
以下行参考信号为CSI-RS,上行参考信号为SRS为例。一种可能的实现方式,SRS的时域行为为周期性,CSI-RS的时域行为可以为以下任意一项:周期性、非周期性、非持续性。又一种可能的实现方式,SRS的时域行为为半持续性,CSI-RS的时域行为为非周期性或非持续性。又一种可能的实现方式,SRS的时域行为为非周期性,CSI-RS的时域行为为非周期性。
可选地,CSI上报的时域行为对应的时域持续程度不高于下行参考信号的时域行为对应的时域持续程度,换句话说,CSI上报的时域行为对应的时域持续程度低于或等于下行参考信号的时域行为对应的时域持续程度。
以下行参考信号为CSI-RS为例。一种可能的实现方式,CSI-RS的时域行为为周期性,CSI上报的时域行为可以为以下任意一项:周期性、非周期性、非持续性。又一种可能的实现方式,CSI-RS的时域行为为半持续性,CSI上报的时域行为为非周期性或非持续性。 又一种可能的实现方式,CSI-RS的时域行为为非周期性,CSI上报的时域行为为非周期性。
由上可知,在本申请实施例中,可选地,下行参考信号的时域行为对应的时域持续程度不高于上行参考信号的时域行为对应的时域持续程度,CSI上报的时域行为对应的时域持续程度不高于下行参考信号的时域行为对应的时域持续程度。换句话说,下行参考信号的时域行为对应的时域持续程度低于或等于上行参考信号的时域行为对应的时域持续程度,CSI上报的时域行为对应的时域持续程度低于或等于下行参考信号的时域行为对应的时域持续程度。
下行参考信号和上行参考信号的时域行为可以相同,也可以不同,对此,本申请实施例不作限定。下面以下行参考信号为CSI-RS,上行参考信号为SRS为例进行说明。
情况1:SRS和CSI-RS时域行为相同。
一种可能的实现方式,网络设备配置SRS和CSI-RS的时域行为均为周期性,换句话说,终端设备周期性发送SRS,网络设备周期性发送CSI-RS。此时,可以配置CSI上报的时域行为为周期性,换句话说,终端设备可以周期性上报CSI;或者可以配置CSI上报的时域行为为非周期性,换句话说,终端设备可以非周期性上报CSI;或者可以配置CSI上报的时域行为为半持续性,换句话说,终端设备可以持续性上报CSI。
又一种可能的实现方式,网络设备配置SRS和CSI-RS的时域行为均为非周期性,换句话说,终端设备非周期性发送SRS,网络设备非周期性发送CSI-RS。此时,可以配置CSI上报的时域行为为非周期性,换句话说,终端设备可以非周期性上报CSI。
又一种可能的实现方式,网络设备配置SRS和CSI-RS的时域行为均为半持续性,换句话说,终端设备半持续性发送SRS,网络设备半持续性发送CSI-RS。此时,可以配置CSI上报的时域行为为非周期性,换句话说,终端设备可以非周期性上报CSI;或者可以配置CSI上报的时域行为为半持续性,换句话说,终端设备可以持续性上报CSI。
情况2:SRS和CSI-RS的时域行为不同。
一种可能的实现方式,网络设备配置SRS的时域行为为周期性,配置CSI-RS的时域行为为非周期性或半持续性。换句话说,终端设备周期性发送SRS,网络设备非周期性或半持续性发送CSI-RS。当SRS的时域行为为周期性,CSI-RS的时域行为为非周期性时,可以配置CSI上报的时域行为为非周期性,换句话说,终端设备可以非周期性上报CSI。当SRS的时域行为为周期性,CSI-RS的时域行为为半持续性时,可以配置CSI上报的时域行为为非周期性或半持续性,换句话说,终端设备可以非周期性或半持续性上报CSI。
又一种可能的实现方式,网络设备配置SRS的时域行为为半持续性,配置CSI-RS的时域行为为非周期性。换句话说,终端设备周期性发送SRS,网络设备半持续性发送CSI-RS。此时,可以配置CSI上报的时域行为为非周期性,换句话说,终端设备可以非周期性上报CSI。
上述仅是为便于理解作的示例性说明,本申请并未限定于此。
在S320中,终端设备基于上行参考信号和下行参考信号,进行信道测量。
终端设备基于下行参考信号进行信道测量并反馈CSI,该下行参考信号是基于上行参考信号进行上行信道测量得到的信道信息进行处理得到的参考信号。换句话说,网络设备根据上行信道测量得到的信道信息,该信道信息例如包括角度信息、或者时延信息、或者角度和时延信息,并对该信道信息进行处理得到该下行参考信号。
其中,下行参考信号是基于上行参考信号进行上行信道测量得到的信息进行处理得到的参考信号,一种可能的实现方式,下行参考信号的预编码矩阵(precoding matrix)是基于上行参考信号计算得到的。网络设备基于上行信道测量得到具有互易性的信道特征,例如角度和时延,具有互易性的特征通过下行参考信号上的权值下发。由于网络设备基于上下行信道可互易的角度和时延对参考信号进行了预编码,使得终端设备不可见具有互易性的特征,终端设备反馈不具有互易性的下行信道的信息。
应理解,网络设备将上行信道测量所得的具有互易性的特性(例如角度和时延)加载到下行参考信号的具体方法,本申请实施例不作限定。例如,网络设备根据接收到的上行参考信号,如SRS,估计得到上行信道矩阵,并确定A(A≥1,且A为整数)个角度,网络设备基于该A个角度对下行参考信号,如CSI-RS,进行预编码,以得到预编码参考信号。又如,网络设备根据接收到的上行参考信号,如SRS,估计得到上行信道矩阵,并B(B≥1,且B为整数)个时延,网络设备基于该B个时延对下行参考信号,如CSI-RS,进行预编码,以得到预编码参考信号。又如,网络设备根据接收到的上行参考信号,如SRS,估计得到上行信道矩阵,并确定A个角度和B个时延,网络设备基于该A个角度和B个时延,对下行参考信号,如CSI-RS,进行预编码,以得到预编码参考信号。
可选地,网络设备将具有互易性的信息,例如角度和时延,加载到下行参考信号上,相应地,终端设备接收到该下行参考信号后,进行CSI测量,例如,终端设备在进行CSI测量反馈时,先将每个子带上的信道信号进行直接叠加,再基于叠加后的信道信号进行量化反馈。或者,可选地,CSI reporting setting关联的上报内容(report quality)仅包含预编码矩阵指示(precoding matrix indicator,PMI)。
网络设备基于上行参考信号进行上行信道测量。该上行参考信号可以是现有的上行参考信号,也可以是关联的上行参考信号,对此,本申请实施例不作限定。此外,网络设备根据上行参考信号进行上行信道测量的具体方法可以参考现有技术,为了简洁,这里省略对该具体方法的详细说明。
在S320之前,可选地,方法300包括S330、S340。
在S330中,终端设备发送上行参考信号。相应地,网络设备接收上行参考信号。
在S340中,终端设备接收下行参考信号,该下行参考信号是基于上行参考信号进行上行信道测量得到的信息进行处理得到的参考信号。相应地,网络设备发送下行参考信号。
当参考信号的时域行为为非周期性或半持续性时,需要信令触发。可选地,网络设备配置的触发状态(trigger state)关联到CSI上报ID、下行参考信号ID(如CSI-RS ID)或者下行参考信号set ID(如CSI-RS set ID)、上行参考信号ID(如SRS ID)或者上行参考信号set ID(如SRS set ID)。下面通过几种可能的实现方式进行说明。
一种可能的实现方式,下行参考信号和上行参考信号的时域行为均为非周期性,网络设备可以通过一个信令激活下行参考信号和上行参考信号。相应地,终端设备通过该信令获知网络设备将会下发下行参考信号,且终端设备将发送上行参考信号。该信令可以通过DCI下发.
又一种可能的实现方式,CSI上报、下行参考信号、以及上行参考信号的时域行为均为非周期性,网络设备可以通过一个信令激活CSI上报、下行参考信号、以及上行参考信号。相应地,终端设备通过该信令获知网络设备将会下发下行参考信号,且终端设备将发 送上行参考信号和CSI。该信令可以通过DCI下发。
又一种可能的实现方式,下行参考信号和上行参考信号的时域行为均为半持续,网络设备可以通过一个信令激活半持续性的下行参考信号和半持续性的上行参考信号。相应地,终端设备通过该信令获知网络设备将会下发下行参考信号,且终端设备将发送上行参考信号。该信令可以通过RRC或者MAC-CE下发。
又一种可能的实现方式,下行参考信号和上行参考信号的时域行为均为半持续,网络设备可以通过一个信令去激活半持续性的下行参考信号和半持续性的上行参考信号。相应地,终端设备通过该信令获知在该时间单元内,网络设备停止下发下行参考信号,且终端设备将停止发送上行参考信号。该信令可以通过RRC或者MAC-CE下发。
又一种可能的实现方式,下行参考信号、上行参考信号、以及CSI上报的时域行为均为半持续,网络设备可以通过一个信令激活半持续性的下行参考信号、上行参考信号、以及CSI上报。相应地,终端设备通过该信令获知网络设备将会下发下行参考信号,且终端设备将发送上行参考信号和CSI。该信令可以通过RRC或者MAC-CE下发。
又一种可能的实现方式,下行参考信号、上行参考信号、以及CSI上报的时域行为均为半持续,网络设备可以通过一个信令去激活半持续性的下行参考信号、上行参考信号、以及CSI上报。相应地,终端设备通过该信令获知在该时间单元内,网络设备停止下发下行参考信号,且终端设备将停止发送上行参考信号和CSI。该信令可以通过RRC或者MAC-CE下发。
可选地,网络设备发送下行参考信号的时刻、终端设备发送上行参考信号的时刻、以及终端设备上报CSI的时刻,可以满足一定的条件,下面结合几种可能的实现方式进行说明。
一种可能的实现方式,CSI上报的时域行为为非周期性,下行参考信号和上行参考信号的时域行为均不是非周期性,网络设备可以通过信令(例如DCI)触发终端设备上报CSI。网络设备发送DCI到终端设备上报CSI之间的最短时间间隔可以使用协议预先定义的值,如现有协议定义的Z值。Z值表示网络设备发送DCI到终端设备上报CSI之间的最短时间间隔。
又一种可能的实现方式,CSI上报的时域行为为非周期性,下行参考信号的时域行为为非周期性,上行参考信号的时域行为为周期性或半持续性,网络设备可以通过一个信令(例如DCI)触发终端设备上报CSI,并通过该信令通知终端设备网络设备将下发下行参考信号。网络设备发送DCI到终端设备上报CSI之间的最短时间间隔,以及,网络设备发送下行参考信号到终端设备上报CSI之间的最短时间间隔,均可以使用协议预先定义的值。例如,Z和Z’,其中Z表示网络设备发送DCI到终端设备上报CSI,Z’表示网络设备发送下行参考信号到终端设备上报CSI之间的最短时间间隔。
又一种可能的实现方式,CSI上报、下行参考信号、以及上行参考信号的时域行为均为非周期性,网络设备可以通过一个信令(例如DCI)触发终端设备发送上行参考信号和上报CSI,并通过该信令通知终端设备网络设备将下发下行参考信号。在该实现方式下,以上行参考信号为SRS,下行参考信号为CSI-RS为例,结合图5说明网络设备发送DCI、终端设备上报CSI、网络设备发送下行参考信号、以及终端设备发送上行参考信号,之间的时序关系。
如图5所示,T1表示网络设备发送DCI与终端设备发送SRS之间的时间间隔,T2表示终端设备发送SRS与网络设备发送CSI-RS之间的时间间隔,T3表示网络设备发送DCI与终端设备上报CSI之间的时间间隔。可选地,T1的最小值可以重用现有协议结果:低频采用数据准备时间N2,高频采用N2+42个符号。可选地,T2的最小值可以取决于网络设备计算能力;或者,预先设置T2,例如协议预先规定的;或者,T2是固定值,不同子载波间隔(subcarrier spacing,SCS),T2值可以不同。可选地,T3的最小值可以为T1+T2+Z’,其中Z’表示网络设备发送CSI-RS到终端设备上报CSI之间的最短时间间隔。
可选地,当终端设备的接收通道数少于发送通道数时,可以基于是否配置了基于互易性的反馈模式来设置T2的值。
例如,一种可能的实现方式,如果配置了除互易性反馈以外的模式,按照特定码本进行CSI反馈,此时T2(终端设备发送SRS与网络设备发送CSI-RS之间的时间间隔)固定为0。例如,网络设备基于原有的或者预先收到的上行参考信号进行上行信道测量,并结合终端设备基于与该上行参考信号处于同一个时间单元的下行导频反馈的信息,来进行信道合并,进而重构下行信道。
又一种可能的实现方式,如果配置了基于互易性的反馈模式,T2(终端设备发送SRS与网络设备发送CSI-RS之间的时间间隔)大于或等于0。此时,终端设备可以对不具有发送通道能力的接收通道上的信道,进行信道系数直接叠加,量化反馈叠加系数。
可选地,在本申请实施例中,网络设备可以配置专有码本,终端设备按照该专用码本反馈CSI。
以下行传输为例,在下行传输中,网络设备向终端设备发送用于下行信道测量的参考信号,例如,CSI-RS。终端设备可以根据接收到的CSI-RS,进行CSI测量,并向网络设备反馈下行信道的CSI。其中,该CSI可以包括例如PMI、秩指示(rank indication,RI)和信道质量指示(channel quality indicator,CQI)等。
终端设备反馈PMI所基于的码本可以包括类型一(type I)和类型二(type II)码本。其中,类型一的思想是波束选择,类型二的思想是波束线性组合。在本申请实施例中,当网络设备配置了基于互易性反馈的CSI测量的专有码本时,终端设备反馈PMI可以基于该专有码本进行反馈。其中,基于互易性反馈的CSI测量表示,网络设备先将具有互易性的信息(如角度和时延)加载到下行参考信号上,终端设备测量时只需测量不具有互易性的信息即可的方式。
一种可能的实现方式,终端设备在进行CSI测量反馈时,先将每个子带上的信道信号进行叠加,再基于叠加后的信道信号进行量化反馈。
又一种可能的实现方式,CSI reporting setting关联的上报内容只包含PMI。
例如,终端设备可以对每个子带的理想预编码矩阵的各元素进行量化,并将量化值通过PMI反馈给网络设备。网络设备可以基于终端设备发送的PMI以及上行信道测量的具有互易性的信息确定各子带的预编码矩阵。
可选地,如果配置了基于互易性的反馈模式,终端设备对不具有发送通道能力的接收通道上的信道,进行信道系数直接叠加,量化反馈叠加系数。
应理解,上文列举的上行参考信号SRS、下行参考信号CSI-RS均为便于理解作的示 例性说明,本申请并未限定于此,任何上行参考信号和下行参考信号均可以应用于本申请实施例。
在本申请实施例中,通过将CSI上报的配置信息与上行参考信号的配置信息关联起来,或者,将下行参考信号的配置信息与上行参考信号的配置信息关联起来,网络设备可以基于上行信道测量所确定的具有互易性的信息(如角度和时延),对下行参考信号进行预编码,使得终端设备根据预编码后的参考信号进行下行信道测量。由于网络设备基于上下行信道可互易的角度和时延对参考信号进行了预编码,使得终端设备检测到的下行信道的信息是不具有互易性的信息。因此,终端设备可以不必反馈如上述角度向量和时延向量,反馈与各角度时延对对应的加权系数,大大减小了终端设备的反馈开销。此外,通过利用上下行信道的互易性,将终端设备对下行信道的测量过程简化,降低了终端设备在信道测量过程中的计算复杂度。
以上从配置信息的角度介绍了本申请实施例提供的CSI上报的配置方法,下面从参考信号角度,结合图6介绍本申请实施例提供的发送CSI的方法400。方法400包括步骤410至步骤440。
在S410中,终端设备发送上行参考信号。相应地,网络设备接收上行参考信号。
由于在一些模式下,例如FDD模式下,上下行信道的角度和时延可互易,因此网络设备接收到上行参考信号后,可以根据该上行参考信号进行上行测量,并将上行信道测量所得的具有互易性的特性(例如角度和时延)加载到下行参考信号。例如,网络设备根据接收到的上行参考信号,如SRS,估计得到上行信道矩阵,并确定A(A≥1,且A为整数)个角度,网络设备基于该A个角度对下行参考信号,如CSI-RS,进行预编码,以得到预编码参考信号。又如,网络设备根据接收到的上行参考信号,如SRS,估计得到上行信道矩阵,并B(B≥1,且B为整数)个时延,网络设备基于该B个时延对下行参考信号,如CSI-RS,进行预编码,以得到预编码参考信号。又如,网络设备根据接收到的上行参考信号,如SRS,估计得到上行信道矩阵,并确定A个角度和B个时延,网络设备基于该A个角度和B个时延,对下行参考信号,如CSI-RS,进行预编码,以得到预编码参考信号。
在S420中,终端设备接收下行参考信号。相应地,网络设备发送下行参考信号。
该下行参考信号是基于上行参考信号进行上行信道测量得到的信息进行处理得到的参考信号。该上行参考信号可以是网络设备预先接收到的参考信号,或者,也可以是现有的参考信号,对此,本申请实施例不作限定。
当上行参考信号为网络设备预先接收到的参考信号时,例如S410中的上行参考信号,终端设备接收到的下行参考信号是基于该上行参考信号处理过的参考信号,网络设备可以根据通过该上行参考信号测得的信息和终端设备基于下行参考信号反馈的补充信息来重构下行信道,从而可进一步确定与下行信道相适配的预编码矩阵。
当上行参考信号为现有的参考信号时,终端设备接收到的下行参考信号是基于该上行参考信号处理过的参考信号,网络设备根据通过终端设备基于下行参考信号反馈的信息以及具有互易性的信息(例如角度和时延)来重构下行信道,从而可进一步确定与下行信道相适配的预编码矩阵,其中,该角度和时延是网络设备基于终端设备发送的上行参考信号进行信道测量得到的。
在S430中,终端设备根据下行参考信号进行下行信道测量,获得下行信道的信道状态。
终端设备基于下行参考信号进行信道测量并反馈CSI,该下行参考信号是基于上行参考信号进行上行信道测量得到的信道信息进行处理得到的参考信号。其中,下行参考信号是基于上行参考信号进行上行信道测量得到的信息进行处理得到的参考信号,一种可能的实现方式,下行参考信号的预编码矩阵是基于上行参考信号计算得到的。网络设备基于上行信道测量得到具有互易性的信道特征,例如角度和时延,具有互易性的特征通过下行参考信号上的权值下发。由于网络设备基于上下行信道可互易的角度和时延对参考信号进行了预编码,使得终端设备不可见具有互易性的特征,终端设备反馈不具有互易性的下行信道的信息,从而可以降低终端设备的复杂度,降低反馈开销。
可选地,终端设备在进行测量反馈时,先将每个子带上的信道信号进行直接叠加,再基于叠加后的信道信号进行量化反馈。或者,可选地,CSI reporting setting关联的上报内容仅包含PMI。
可选地,如果配置了基于互易性的反馈模式,终端设备对不具有发送通道能力的接收通道上的信道,进行信道系数直接叠加,量化反馈叠加系数。
在S440中,终端设备根据下行信道的信道状态发送CSI。
终端设备可以基于预先配置的CSI reporting setting发送CSI,关于CSI reporting setting在方法300中已详细介绍,此处为简洁,不再赘述。
应理解,上文列举的上行参考信号SRS、下行参考信号CSI-RS均为便于理解作的示例性说明,本申请并未限定于此,任何上行参考信号和下行参考信号均可以应用于本申请实施例。
在本申请实施例中,网络设备可以基于上行信道测量所确定的具有互易性的信息(如角度和时延),对下行参考信号进行预编码,使得终端设备根据预编码后的参考信号进行下行信道测量。由于网络设备基于上下行信道可互易的角度和时延对参考信号进行了预编码,使得终端设备检测到的下行信道的信息是不具有互易性的信息。因此,终端设备可以不必反馈如上述角度向量和时延向量,反馈与各角度时延对对应的加权系数,大大减小了终端设备的反馈开销。此外,通过利用上下行信道的互易性,将终端设备对下行信道的测量过程简化,降低了终端设备在信道测量过程中的计算复杂度。
上文方法实施例中,网络设备可以基于具有互易性的角度对参考信号进行预编码,也可以基于具有互易性的时延参考信号进行预编码,也可以基于具有互易性的角度和时延对参考信号进行预编码,对此,本申请实施例不作限定。
应理解,以上列举的参考信号的类型仅为示例性说明,而不应对本申请构成任何限定,本申请也并不排除采用其他的参考信号以实现相同或相似功能的可能。
还应理解,上述实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图3至图6详细说明了本申请实施例提供的方法。以下,结合图7至图9详细说明本申请实施例提供的通信装置。
图7是本申请实施例提供的通信装置的示意性框图。如图所示,该通信装置1000可 以包括收发单元1100和处理单元1200。
在一种可能的设计中,该通信装置1000可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的芯片。
具体地,该通信装置1000可对应于根据本申请实施例的方法300或方法400中的终端设备,该通信装置1000可以包括用于执行图3中的方法300或图6中的方法400中的终端设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作或功能分别为了实现图3中的方法300或图6中的方法400的相应流程。
在一种实现方式中,收发单元1100和处理单元1200可分别用于:
收发单元1100用于:接收CSI上报的配置信息,该CSI上报的配置信息关联第一参考信号的配置信息和第二参考信号的配置信息,该第二参考信号用于上行信道测量,第一参考信号用于下行信道测量;处理单元1200用于:基于第一参考信号和第二参考信号,进行信道测量并反馈CSI。
在又一种实现方式中,收发单元1100和处理单元1200可分别用于:
收发单元1100用于:接收CSI上报的配置信息,该CSI上报的配置信息关联第一参考信号的配置信息,该第一参考信号的配置信息关联第二参考信号,第二参考信号用于上行信道测量,第一参考信号用于下行信道测量;处理单元1200用于:基于第一参考信号和第二参考信号,进行信道测量并反馈CSI。
可选地,上述两种实现方式中,第一参考信号的配置信息为:CSI资源配置CSI resource setting、第一参考信号资源集、第一参考信号资源中的至少一种,其中,CSI resource setting包括至少一个第一参考信号资源集,第一参考信号资源集包括至少一个第一参考信号资源。
可选地,第一参考信号的配置信息关联第二参考信号,包括:第一参考信号的配置信息关联第二参考信号的标识ID。
在又一种实现方式中,收发单元1100和处理单元1200可分别用于:
收发单元1100用于:发送用于上行信道测量的第二参考信号;收发单元1100还用于:接收第一参考信号,第一参考信号是网络设备基于信道信息处理得到的参考信号,信道信息是网络设备基于第二参考信号进行上行信道测量得到的;处理单元1200用于:根据第一参考信号进行下行信道测量,获得下行信道的信道状态;收发单元1100用于:根据下行信道的信道状态发送CSI。
可选地,信道信息包括角度信息或时延信息。
在上述任一种可能的实现方式中:
可选地,收发单元1100用于:基于第二参考信号的配置信息,发送第二参考信号;收发单元1100还用于:基于所述第一参考信号的配置信息,接收第一参考信号,第一参考信号是网络设备基于信道信息处理得到的参考信号,信道信息是网络设备基于第二参考信号进行上行信道测量得到的;处理单元1200具体用于:基于第一参考信号进行信道测量并反馈CSI。
可选地,第一参考信号的预编码矩阵是网络设备基于第二参考信号计算得到的。
可选地,第二参考信号是周期性,第一参考信号是以下任意一项:周期性、非周期性、半持续性。
可选地,第二参考信号是半持续性,第一参考信号是非周期性或半持续性。
可选地,第二参考信号是非周期性,第一参考信号是非周期性。
可选地,第一参考信号和第二参考信号是半持续性的,
收发单元1100用于:接收网络设备发送的第一信令,第一信令用于激活第一参考信号和第二参考信号;或者,收发单元1100用于:接收网络设备发送的第二信令,第二信令用于去激活第一参考信号和第二参考信号。
可选地,CSI上报、第一参考信号、第二参考信号均是非周期性的,
收发单元1100用于:接收网络设备发送的第三信令,第三信令用于通知:收发单元1100上报CSI、网络设备将发送第一参考信号、收发单元1100发送第二参考信号。
可选地,收发单元1100在接收第一参考信号之前发送第二参考信号,或收发单元1100在接收第一参考信号的同时发送第二参考信号。
可选地,收发单元1100接收第一参考信号和收发单元1100发送第二参考信号之间相距预定时长,预定时长是由网络设备计算能力确定的,或者是预先设置的。
可选地,对于不同的子载波间隔,设置的预定时长不同。
可选地,CSI上报的配置信息中包括码本配置信息,码本配置信息用于指示终端设备CSI的反馈模式。
可选地,第一参考信号为CSI-RS,或,第二参考信号为以下任意一种:探测参考信号SRS、多普勒跟踪参考信号DT-RS、相位追踪参考信号PT-RS。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置1000为终端设备时,该通信装置1000中的收发单元1100可对应于图8中示出的终端设备2000中的收发器2020,该通信装置1000中的处理单元1200可对应于图8中示出的终端设备2000中的处理器2010。
还应理解,该通信装置1000为配置于终端设备中的芯片时,该通信装置1000中的收发单元1100可以为输入/输出接口。
在另一种可能的设计中,该通信装置1000可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的芯片。
具体地,该通信装置1000可对应于根据本申请实施例的方法300或方法400中的网络设备,该通信装置1000可以包括用于执行图3中的方法300或图6中的方法400中的网络设备执行的方法的单元。并且,该通信装置1000中的各单元和上述其他操作或功能分别为了实现图3中的方法300或图6中的方法400的相应流程。
在一种实现方式中,收发单元1100和处理单元1200可分别用于:
处理单元1200用于:配置CSI上报配置,CSI上报配置关联第一参考信号的配置信息和第二参考信号的配置信息,第二参考信号用于上行信道测量,第一参考信号用于下行信道测量;收发单元1100用于:发送CSI上报的配置信息。
在又一种实现方式中,收发单元1100和处理单元1200可分别用于:
处理单元1200用于:配置CSI上报配置,CSI上报配置关联第一参考信号的配置信息,第一参考信号的配置信息关联第二参考信号,第二参考信号用于上行信道测量,第一参考信号用于下行信道测量;收发单元1100用于:发送CSI上报的配置信息。
可选地,第一参考信号的配置信息为:CSI资源配置CSI resource setting、第一参考信号资源集、第一参考信号资源中的至少一种,其中,CSI resource setting包括至少一个第一参考信号资源集,第一参考信号资源集包括至少一个第一参考信号资源。
可选地,第一参考信号的配置信息关联第二参考信号,包括:第一参考信号的配置信息关联第二参考信号的标识ID。
在又一种实现方式中,收发单元1100和处理单元1200可分别用于:
收发单元1100用于:接收第二参考信号;收发单元1100还用于:发送第一参考信号,所述第一参考信号是处理单元1200基于信道信息处理得到的参考信号,信道信息是处理单元1200基于第二参考信号进行上行信道测量得到的;收发单元1100用于:接收CSI,CSI是终端设备根据第一参考信号进行下行信道测量确定的。
可选地,信道信息包括角度信息或时延信息。
在上述任一种可能的实现方式中:
可选地,收发单元1100用于:基于第二参考信号的配置信息,发送第二参考信号;收发单元1100还用于:基于所述第一参考信号的配置信息,接收第一参考信号,第一参考信号是网络设备基于信道信息处理得到的参考信号,信道信息是网络设备基于第二参考信号进行上行信道测量得到的;处理单元1200具体用于:基于第一参考信号进行信道测量并反馈CSI。
可选地,第一参考信号的预编码矩阵是网络设备基于第二参考信号计算得到的。
可选地,第二参考信号是周期性,第一参考信号是以下任意一项:周期性、非周期性、半持续性。
可选地,第二参考信号是半持续性,第一参考信号是非周期性或半持续性。
可选地,第二参考信号是非周期性,第一参考信号是非周期性。
可选地,第一参考信号和第二参考信号是半持续性的,
收发单元1100用于:接收网络设备发送的第一信令,第一信令用于激活第一参考信号和第二参考信号;或者,收发单元1100用于:接收网络设备发送的第二信令,第二信令用于去激活第一参考信号和第二参考信号。
可选地,CSI上报、第一参考信号、第二参考信号均是非周期性的,
收发单元1100用于:接收网络设备发送的第三信令,第三信令用于通知:收发单元1100上报CSI、网络设备将发送第一参考信号、收发单元1100发送第二参考信号。
可选地,收发单元1100在接收第一参考信号之前发送第二参考信号,或收发单元1100在接收第一参考信号的同时发送第二参考信号。
可选地,收发单元1100接收第一参考信号和收发单元1100发送第二参考信号之间相距预定时长,预定时长是由网络设备计算能力确定的,或者是预先设置的。
可选地,对于不同的子载波间隔,设置的预定时长不同。
可选地,CSI上报的配置信息中包括码本配置信息,码本配置信息用于指示终端设备CSI的反馈模式。
可选地,第一参考信号为CSI-RS,或,第二参考信号为以下任意一种:探测参考信号SRS、多普勒跟踪参考信号DT-RS、相位追踪参考信号PT-RS。
还应理解,该通信装置1000为网络设备时,该通信装置1000中的通信单元为可对应 于图9中示出的网络设备3000中的收发器3200,该通信装置1000中的处理单元1200可对应于图9中示出的网络设备3000中的处理器3100。
还应理解,该通信装置1000为配置于网络设备中的芯片时,该通信装置1000中的收发单元1100可以为输入/输出接口。
图8是本申请实施例提供的终端设备2000的结构示意图。该终端设备2000可应用于如图1所示的系统中,执行上述方法实施例中终端设备的功能。如图所示,该终端设备2000包括处理器2010和收发器2020。可选地,该终端设备2000还包括存储器2030。其中,处理器2010、收发器2002和存储器2030之间可以通过内部连接通路互相通信,传递控制或数据信号,该存储器2030用于存储计算机程序,该处理器2010用于从该存储器2030中调用并运行该计算机程序,以控制该收发器2020收发信号。可选地,终端设备2000还可以包括天线2040,用于将收发器2020输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器2010可以和存储器2030可以合成一个处理装置,处理器2010用于执行存储器2030中存储的程序代码来实现上述功能。具体实现时,该存储器2030也可以集成在处理器2010中,或者独立于处理器2010。该处理器2010可以与图7中的处理单元对应。
上述收发器2020可以与图7中的通信单元对应,也可以称为收发单元。收发器2020可以包括接收器(或称接收机、接收电路)和发射器(或称发射机、发射电路)。其中,接收器用于接收信号,发射器用于发射信号。
应理解,图8所示的终端设备2000能够实现图3或图6所示方法实施例中涉及终端设备的各个过程。终端设备2000中的各个模块的操作或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述处理器2010可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器2020可以用于执行前面方法实施例中描述的终端设备向网络设备发送或从网络设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备2000还可以包括电源2050,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备2000还可以包括输入单元2060、显示单元2070、音频电路2080、摄像头2090和传感器2100等中的一个或多个,所述音频电路还可以包括扬声器2082、麦克风2084等。
图9是本申请实施例提供的网络设备的结构示意图,例如可以为基站的结构示意图。该基站3000可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。如图所示,该基站3000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)3100和一个或多个基带单元(BBU)(也可称为分布式单元(DU))3200。所述RRU 3100可以称为收发单元,与图7中的通信单元1200对应。可选地,该收发单元3100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线3101和射频单元3102。可选地,收发单元3100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。 所述RRU 3100部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送CSI上报的配置信息。所述BBU 3200部分主要用于进行基带处理,对基站进行控制等。所述RRU 3100与BBU 3200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 3200为基站的控制中心,也可以称为处理单元,可以与图7中的处理单元1100对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成CSI上报的配置信息等。
在一个示例中,所述BBU 3200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 3200还包括存储器3201和处理器3202。所述存储器3201用以存储必要的指令和数据。所述处理器3202用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器3201和处理器3202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图9所示的基站3000能够实现图3或图6的方法实施例中涉及网络设备的各个过程。基站3000中的各个模块的操作或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详细描述。
上述BBU 3200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作,而RRU 3100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例中的通信的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集 成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图3至图6所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图3至图6所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例 如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程或执行线程中,部件可位于一个计算机上或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的 介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (59)

  1. 一种信道状态信息CSI上报的配置方法,其特征在于,包括:
    终端设备接收CSI上报的配置信息,所述CSI上报的配置信息关联第一参考信号的配置信息和第二参考信号的配置信息,所述第二参考信号用于上行信道测量,所述第一参考信号用于下行信道测量;
    基于所述第一参考信号和所述第二参考信号,所述终端设备进行信道测量并反馈CSI。
  2. 一种信道状态信息CSI上报的配置方法,其特征在于,包括:
    终端设备接收CSI上报的配置信息,所述CSI上报的配置信息关联第一参考信号的配置信息,所述第一参考信号的配置信息关联第二参考信号,所述第二参考信号用于上行信道测量,所述第一参考信号用于下行信道测量;
    基于所述第一参考信号和所述第二参考信号,所述终端设备进行信道测量并反馈CSI。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第一参考信号的配置信息为:CSI资源配置CSI resource setting、所述第一参考信号资源集、所述第一参考信号资源中的至少一种,
    其中,所述CSI resource setting包括至少一个所述第一参考信号资源集,所述第一参考信号资源集包括至少一个所述第一参考信号资源。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一参考信号的配置信息关联第二参考信号,包括:
    所述第一参考信号的配置信息关联第二参考信号的标识ID。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述基于所述第一参考信号和所述第二参考信号,所述终端设备进行信道测量并反馈CSI,包括:
    所述终端设备基于所述第二参考信号的配置信息,发送所述第二参考信号;
    所述终端设备基于所述第一参考信号的配置信息,接收所述第一参考信号,所述第一参考信号是网络设备基于信道信息处理得到的参考信号,所述信道信息是所述网络设备基于所述第二参考信号进行上行信道测量得到的;
    所述终端设备基于所述第一参考信号进行信道测量并反馈CSI。
  6. 一种发送信道状态信息CSI的方法,其特征在于,包括:
    终端设备发送用于上行信道测量的第二参考信号;
    所述终端设备接收第一参考信号,所述第一参考信号是网络设备基于信道信息处理得到的参考信号,所述信道信息是所述网络设备基于所述第二参考信号进行上行信道测量得到的;
    所述终端设备根据所述第一参考信号进行下行信道测量,获得所述下行信道的信道状态;
    所述终端设备根据所述下行信道的信道状态发送CSI。
  7. 根据权利要求6所述的方法,其特征在于,所述信道信息包括角度信息或时延信息。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,
    所述第一参考信号的预编码矩阵是所述网络设备基于所述第二参考信号计算得到的。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第二参考信号是周期性,所述第一参考信号是以下任意一项:周期性、非周期性、半持续性。
  10. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第二参考信号是半持续性,所述第一参考信号是非周期性或半持续性。
  11. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第二参考信号是非周期性,所述第一参考信号是非周期性。
  12. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一参考信号和所述第二参考信号是半持续性的,
    所述方法还包括:
    所述终端设备接收所述网络设备发送的第一信令,所述第一信令用于激活所述第一参考信号和所述第二参考信号;或者,
    所述终端设备接收所述网络设备发送的第二信令,所述第二信令用于去激活所述第一参考信号和所述第二参考信号。
  13. 根据权利要求1至8中任一项所述的方法,其特征在于,所述CSI上报、所述第一参考信号、所述第二参考信号均是非周期性的,
    所述终端设备接收所述网络设备发送的第三信令,所述第三信令用于通知:所述终端设备上报所述CSI、所述网络设备发送所述第一参考信号、所述终端设备发送所述第二参考信号。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备在接收第一参考信号之前发送所述第二参考信号,或所述终端设备在接收第一参考信号的同时发送所述第二参考信号。
  15. 根据权利要求14所述的方法,其特征在于,
    所述终端设备接收第一参考信号和所述终端设备发送第二参考信号之间相距预定时长,所述预定时长是由所述网络设备计算预编码矩阵的能力确定的,或者是预先设置的。
  16. 根据权利要求15所述的方法,其特征在于,对于不同的子载波间隔,设置的所述预定时长不同。
  17. 根据权利要求1至16中任一项所述的方法,其特征在于,所述CSI上报的配置信息中包括码本配置信息,所述码本配置信息用于指示所述终端设备所述CSI的反馈模式。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,
    所述第一参考信号为信道状态信息参考信号CSI-RS,或,
    所述第二参考信号为以下任意一种:探测参考信号SRS、多普勒跟踪参考信号DT-RS、相位追踪参考信号PT-RS。
  19. 一种通信装置,其特征在于,包括:处理单元和收发单元,
    所述收发单元用于,接收CSI上报的配置信息,所述CSI上报的配置信息关联第一参考信号的配置信息和第二参考信号的配置信息,所述第二参考信号用于上行信道测量,所述第一参考信号用于下行信道测量;
    所述处理单元用于,基于所述第一参考信号和所述第二参考信号,进行信道测量并反 馈CSI。
  20. 一种通信装置,其特征在于,包括:处理单元和收发单元,
    所述收发单元用于,接收CSI上报的配置信息,所述CSI上报的配置信息关联第一参考信号的配置信息,所述第一参考信号的配置信息关联第二参考信号,所述第二参考信号用于上行信道测量,所述第一参考信号用于下行信道测量;
    所述处理单元用于,基于所述第一参考信号和所述第二参考信号,进行信道测量并反馈CSI。
  21. 根据权利要求19或20所述的通信装置,其特征在于,
    所述第一参考信号的配置信息为:CSI资源配置CSI resource setting、所述第一参考信号资源集、所述第一参考信号资源中的至少一种,
    其中,所述CSI resource setting包括至少一个所述第一参考信号资源集,所述第一参考信号资源集包括至少一个所述第一参考信号资源。
  22. 根据权利要求20或21所述的通信装置,其特征在于,所述第一参考信号的配置信息关联第二参考信号,包括:
    所述第一参考信号的配置信息关联第二参考信号的标识ID。
  23. 根据权利要求19至22中任一项所述的通信装置,其特征在于,
    所述收发单元还用于,基于所述第二参考信号的配置信息,发送所述第二参考信号;
    所述收发单元还用于,基于所述第一参考信号的配置信息,接收所述第一参考信号,所述第一参考信号是网络设备基于信道信息处理得到的参考信号,所述信道信息是所述网络设备基于所述第二参考信号进行上行信道测量得到的;
    所述通信装置基于所述第一参考信号进行信道测量并反馈CSI。
  24. 一种通信装置,其特征在于,包括:处理单元和收发单元,
    所述收发单元用于,发送用于上行信道测量的第二参考信号;
    所述收发单元还用于,接收第一参考信号,所述第一参考信号是网络设备基于信道信息处理得到的参考信号,所述信道信息是所述网络设备基于所述第二参考信号进行上行信道测量得到的;
    所述处理单元用于,根据所述第一参考信号进行下行信道测量,获得所述下行信道的信道状态;
    所述收发单元还用于,根据所述下行信道的信道状态发送CSI。
  25. 根据权利要求24所述的通信装置,其特征在于,所述信道信息包括角度信息或时延信息。
  26. 根据权利要求19至25中任一项所述的通信装置,其特征在于,
    所述第一参考信号的预编码矩阵是所述网络设备基于所述第二参考信号计算得到的。
  27. 根据权利要求19至26中任一项所述的通信装置,其特征在于,所述第二参考信号是周期性,所述第一参考信号是以下任意一项:周期性、非周期性、半持续性。
  28. 根据权利要求19至26中任一项所述的通信装置,其特征在于,所述第二参考信号是半持续性,所述第一参考信号是非周期性或半持续性。
  29. 根据权利要求19至26中任一项所述的通信装置,其特征在于,所述第二参考信号是非周期性,所述第一参考信号是非周期性。
  30. 根据权利要求19至26中任一项所述的通信装置,其特征在于,所述第一参考信号和所述第二参考信号是半持续性的,
    所述收发单元还用于:
    接收所述网络设备发送的第一信令,所述第一信令用于激活所述第一参考信号和所述第二参考信号;或者,
    接收所述网络设备发送的第二信令,所述第二信令用于去激活所述第一参考信号和所述第二参考信号。
  31. 根据权利要求19至26中任一项所述的通信装置,其特征在于,所述CSI上报、所述第一参考信号、所述第二参考信号均是非周期性的,
    所述收发单元还用于,接收所述网络设备发送的第三信令,所述第三信令用于通知:所述通信装置上报所述CSI、所述网络设备发送所述第一参考信号、所述通信装置发送所述第二参考信号。
  32. 根据权利要求19至31中任一项所述的通信装置,其特征在于,
    所述收发单元在接收第一参考信号之前发送所述第二参考信号,或所述收发单元在接收第一参考信号的同时发送所述第二参考信号。
  33. 根据权利要求32所述的通信装置,其特征在于,
    所述收发单元接收第一参考信号和所述收发单元发送第二参考信号之间相距预定时长,所述预定时长是由所述网络设备计算预编码矩阵的能力确定的,或者是预先设置的。
  34. 根据权利要求33所述的通信装置,其特征在于,对于不同的子载波间隔,设置的所述预定时长不同。
  35. 根据权利要求19至34中任一项所述的通信装置,其特征在于,所述CSI上报的配置信息中包括码本配置信息,所述码本配置信息用于指示所述通信装置所述CSI的反馈模式。
  36. 根据权利要求19至35中任一项所述的通信装置,其特征在于,
    所述第一参考信号为信道状态信息参考信号CSI-RS,或,
    所述第二参考信号为以下任意一种:探测参考信号SRS、多普勒跟踪参考信号DT-RS、相位追踪参考信号PT-RS。
  37. 一种终端设备,其特征在于,包括:收发器和处理器,
    所述收发器用于,接收CSI上报的配置信息,所述CSI上报的配置信息关联第一参考信号的配置信息和第二参考信号的配置信息,所述第二参考信号用于上行信道测量,所述第一参考信号用于下行信道测量;
    所述处理器用于,基于所述第一参考信号和所述第二参考信号,进行信道测量并反馈CSI。
  38. 一种终端设备,其特征在于,包括:处理器和收发器,
    所述收发器用于,接收CSI上报的配置信息,所述CSI上报的配置信息关联第一参考信号的配置信息,所述第一参考信号的配置信息关联第二参考信号,所述第二参考信号用于上行信道测量,所述第一参考信号用于下行信道测量;
    所述处理器用于,基于所述第一参考信号和所述第二参考信号,进行信道测量并反馈CSI。
  39. 根据权利要求37或38所述的终端设备,其特征在于,
    所述第一参考信号的配置信息为:CSI资源配置CSI resource setting、所述第一参考信号资源集、所述第一参考信号资源中的至少一种,
    其中,所述CSI resource setting包括至少一个所述第一参考信号资源集,所述第一参考信号资源集包括至少一个所述第一参考信号资源。
  40. 根据权利要求38或39所述的终端设备,其特征在于,所述第一参考信号的配置信息关联第二参考信号,包括:
    所述第一参考信号的配置信息关联第二参考信号的标识ID。
  41. 根据权利要求37至40中任一项所述的终端设备,其特征在于,
    所述收发器还用于,基于所述第二参考信号的配置信息,发送所述第二参考信号;
    所述收发器还用于,基于所述第一参考信号的配置信息,接收所述第一参考信号,所述第一参考信号是网络设备基于信道信息处理得到的参考信号,所述信道信息是所述网络设备基于所述第二参考信号进行上行信道测量得到的;
    所述终端设备基于所述第一参考信号进行信道测量并反馈CSI。
  42. 一种终端设备,其特征在于,包括:处理器和收发器,
    所述收发器用于,发送用于上行信道测量的第二参考信号;
    所述收发器还用于,接收第一参考信号,所述第一参考信号是网络设备基于信道信息处理得到的参考信号,所述信道信息是所述网络设备基于所述第二参考信号进行上行信道测量得到的;
    所述处理器用于,根据所述第一参考信号进行下行信道测量,获得所述下行信道的信道状态;
    所述收发器还用于,根据所述下行信道的信道状态发送CSI。
  43. 根据权利要求42所述的终端设备,其特征在于,所述信道信息包括角度信息或时延信息。
  44. 根据权利要求37至43中任一项所述的终端设备,其特征在于,
    所述第一参考信号的预编码矩阵是所述网络设备基于所述第二参考信号计算得到的。
  45. 根据权利要求37至44中任一项所述的终端设备,其特征在于,所述第二参考信号是周期性,所述第一参考信号是以下任意一项:周期性、非周期性、半持续性。
  46. 根据权利要求37至44中任一项所述的终端设备,其特征在于,所述第二参考信号是半持续性,所述第一参考信号是非周期性或半持续性。
  47. 根据权利要求37至44中任一项所述的终端设备,其特征在于,所述第二参考信号是非周期性,所述第一参考信号是非周期性。
  48. 根据权利要求37至44中任一项所述的终端设备,其特征在于,所述第一参考信号和所述第二参考信号是半持续性的,
    所述收发器还用于:
    接收所述网络设备发送的第一信令,所述第一信令用于激活所述第一参考信号和所述第二参考信号;或者,
    接收所述网络设备发送的第二信令,所述第二信令用于去激活所述第一参考信号和所述第二参考信号。
  49. 根据权利要求37至44中任一项所述的终端设备,其特征在于,所述CSI上报、所述第一参考信号、所述第二参考信号均是非周期性的,
    所述收发器还用于,接收所述网络设备发送的第三信令,所述第三信令用于通知:所述终端设备上报所述CSI、所述网络设备发送所述第一参考信号、所述终端设备发送所述第二参考信号。
  50. 根据权利要求37至49中任一项所述的终端设备,其特征在于,
    所述收发器在接收第一参考信号之前发送所述第二参考信号,或所述收发器在接收第一参考信号的同时发送所述第二参考信号。
  51. 根据权利要求50所述的终端设备,其特征在于,
    所述收发器接收第一参考信号和所述收发器发送第二参考信号之间相距预定时长,所述预定时长是由所述网络设备计算预编码矩阵的能力确定的,或者是预先设置的。
  52. 根据权利要求51所述的终端设备,其特征在于,对于不同的子载波间隔,设置的所述预定时长不同。
  53. 根据权利要求37至52中任一项所述的终端设备,其特征在于,所述CSI上报的配置信息中包括码本配置信息,所述码本配置信息用于指示所述终端设备所述CSI的反馈模式。
  54. 根据权利要求37至53中任一项所述的终端设备,其特征在于,
    所述第一参考信号为信道状态信息参考信号CSI-RS,或,
    所述第二参考信号为以下任意一种:探测参考信号SRS、多普勒跟踪参考信号DT-RS、相位追踪参考信号PT-RS。
  55. 一种芯片,其特征在于,包括:至少一个处理器和接口,
    所述接口接收CSI上报的配置信息,所述CSI上报的配置信息关联第一参考信号的配置信息和第二参考信号的配置信息,所述第二参考信号用于上行信道测量,所述第一参考信号用于下行信道测量;
    所述处理器,用于基于所述第一参考信号和所述第二参考信号,进行信道测量并反馈CSI。
  56. 一种芯片,其特征在于,包括:至少一个处理器和接口,
    所述接口接收CSI上报的配置信息,所述CSI上报的配置信息关联第一参考信号的配置信息,所述第一参考信号的配置信息关联第二参考信号,所述第二参考信号用于上行信道测量,所述第一参考信号用于下行信道测量;
    所述处理器,用于基于所述第一参考信号和所述第二参考信号,进行信道测量并反馈CSI。
  57. 一种芯片,其特征在于,包括:至少一个处理器和接口,
    所述接口发送用于上行信道测量的第二参考信号;
    所述接口还接收第一参考信号,所述第一参考信号是网络设备基于信道信息处理得到的参考信号,所述信道信息是所述网络设备基于所述第二参考信号进行上行信道测量得到的;
    所述处理器,用于根据所述第一参考信号进行下行信道测量,获得所述下行信道的信道状态;
    所述接口还根据所述下行信道的信道状态发送CSI。
  58. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有程序指令,当其在处理器上运行时,执行如权利要求1至18中任一项所述的方法。
  59. 一种计算机程序产品,其特征在于,当所述计算机程序产品在通信装置上运行时,使得所述通信装置执行如权利要求1至18中任一项所述的方法。
PCT/CN2019/123159 2018-12-21 2019-12-05 一种信道状态信息csi上报的配置方法和通信装置 WO2020125422A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19899970.8A EP3886485A4 (en) 2018-12-21 2019-12-05 CHANNEL STATE INFORMATION REPORT (CSI) CONFIGURATION METHOD AND COMMUNICATION APPARATUS
US17/352,108 US20210314122A1 (en) 2018-12-21 2021-06-18 Method for configuring channel state information csi reporting and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811571623.9 2018-12-21
CN201811571623.9A CN111356171A (zh) 2018-12-21 2018-12-21 一种信道状态信息csi上报的配置方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/352,108 Continuation US20210314122A1 (en) 2018-12-21 2021-06-18 Method for configuring channel state information csi reporting and communication apparatus

Publications (1)

Publication Number Publication Date
WO2020125422A1 true WO2020125422A1 (zh) 2020-06-25

Family

ID=71100795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123159 WO2020125422A1 (zh) 2018-12-21 2019-12-05 一种信道状态信息csi上报的配置方法和通信装置

Country Status (4)

Country Link
US (1) US20210314122A1 (zh)
EP (1) EP3886485A4 (zh)
CN (1) CN111356171A (zh)
WO (1) WO2020125422A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114557014A (zh) * 2022-01-13 2022-05-27 北京小米移动软件有限公司 信息上报、信息接收方法、装置、设备及存储介质
EP4199568A4 (en) * 2020-08-28 2023-10-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND DEVICE FOR COMPENSATING TRANSMISSION DELAYS, DEVICE AND STORAGE MEDIUM

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3582538B1 (en) * 2017-02-10 2023-06-21 LG Electronics Inc. Method for measuring and reporting channel state information in wireless communication system and apparatus therefor
WO2021102952A1 (en) * 2019-11-29 2021-06-03 Zte Corporation Method for wireless channel reference signal transmission and channel state information feedback
CN114079491A (zh) * 2020-08-21 2022-02-22 华为技术有限公司 数据传输方法及装置、无线通信系统、存储介质
CN114338293A (zh) * 2020-09-30 2022-04-12 华为技术有限公司 一种通信方法及装置
WO2022151458A1 (zh) * 2021-01-17 2022-07-21 华为技术有限公司 信道信息获取方法及相关设备
WO2022160353A1 (zh) * 2021-02-01 2022-08-04 北京小米移动软件有限公司 一种信道状态信息csi的编译码方法及装置
US11943174B2 (en) * 2021-07-06 2024-03-26 Qualcomm Incorporated Dynamic parameter adaptation for aperiodic doppler tracking sounding reference signal resource sets
WO2023206089A1 (en) * 2022-04-26 2023-11-02 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for ul reference signal transmission
CN117119603A (zh) * 2022-05-12 2023-11-24 华为技术有限公司 通信方法和通信装置
CN117956618A (zh) * 2022-10-31 2024-04-30 华为技术有限公司 一种资源配置的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045697A1 (ja) * 2013-09-26 2015-04-02 株式会社Nttドコモ 無線通信装置、チャネル推定方法及び信号中継方法
CN107734538A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 参考信号的配置、确定方法及装置、基站、终端
CN108540995A (zh) * 2017-03-03 2018-09-14 维沃移动通信有限公司 一种信道状态检测方法、网络设备及用户设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105450272B (zh) * 2014-09-15 2021-07-20 中兴通讯股份有限公司 一种导频信息的反馈方法、装置及终端
US11509364B2 (en) * 2017-03-13 2022-11-22 Qualcomm Incorporated Techniques and apparatuses for uplink precoder determination using downlink reference signals or downlink precoder determination using uplink reference signals
US20180323846A1 (en) * 2017-05-05 2018-11-08 Mediatek Inc. Methods and apparatus for acquiring channel state information with channel reciprocity
CN108092697B (zh) * 2017-05-11 2022-11-15 中兴通讯股份有限公司 信号的传输方法和装置
CN107911153B (zh) * 2017-10-31 2021-01-19 东南大学 一种面向fdd系统的基于上行csi的下行信道重建方法
WO2020061952A1 (en) * 2018-09-27 2020-04-02 Qualcomm Incorporated Sounding reference signal (srs) guided downlink channel state information-reference signal (csi-rs) scan

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045697A1 (ja) * 2013-09-26 2015-04-02 株式会社Nttドコモ 無線通信装置、チャネル推定方法及び信号中継方法
CN107734538A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 参考信号的配置、确定方法及装置、基站、终端
CN108540995A (zh) * 2017-03-03 2018-09-14 维沃移动通信有限公司 一种信道状态检测方法、网络设备及用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3886485A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4199568A4 (en) * 2020-08-28 2023-10-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND DEVICE FOR COMPENSATING TRANSMISSION DELAYS, DEVICE AND STORAGE MEDIUM
CN114557014A (zh) * 2022-01-13 2022-05-27 北京小米移动软件有限公司 信息上报、信息接收方法、装置、设备及存储介质

Also Published As

Publication number Publication date
EP3886485A4 (en) 2022-01-19
US20210314122A1 (en) 2021-10-07
EP3886485A1 (en) 2021-09-29
CN111356171A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
WO2020125422A1 (zh) 一种信道状态信息csi上报的配置方法和通信装置
US11811471B2 (en) Channel measurement method and communications apparatus
US11411623B2 (en) Channel measurement method and communications apparatus
WO2019019839A1 (zh) 用于数据传输的方法、装置和系统
CN111064499B (zh) 指示和确定预编码向量的方法以及通信装置
KR20210142724A (ko) 단말 디바이스 능력을 보고하기 위한 방법 및 통신 장치
CN111817798B (zh) 一种信道测量方法和通信装置
JP7238167B2 (ja) プリコーディング行列表示及び決定方法、及び通信装置
KR20160086948A (ko) 채널 상태 정보의 피드백 방법 및 장치
US11588524B2 (en) Channel measurement method and communications apparatus
WO2020221117A1 (zh) 一种用于构建预编码矩阵的系数指示方法和通信装置
US20200021343A1 (en) Signaling sending method, apparatus, and system
WO2020143577A1 (zh) 参数配置方法和通信装置
US11943014B2 (en) Channel measurement method and communications apparatus
US11362707B2 (en) Precoding vector indicating and determining method and communications apparatus
US20230013510A1 (en) Method for indicating channel state information csi measurement and communication apparatus
WO2020135101A1 (zh) 用于构建预编码向量的向量指示方法以及通信装置
WO2020211681A1 (zh) 一种信道测量方法和通信装置
WO2020143580A1 (zh) 用于构建预编码向量的向量指示方法和通信装置
WO2020233500A1 (zh) 一种通信方法及通信装置
WO2021036934A1 (zh) 发送和接收指示的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019899970

Country of ref document: EP

Effective date: 20210625