WO2020125139A1 - 闪烁体反射层制备模具及方法 - Google Patents

闪烁体反射层制备模具及方法 Download PDF

Info

Publication number
WO2020125139A1
WO2020125139A1 PCT/CN2019/109928 CN2019109928W WO2020125139A1 WO 2020125139 A1 WO2020125139 A1 WO 2020125139A1 CN 2019109928 W CN2019109928 W CN 2019109928W WO 2020125139 A1 WO2020125139 A1 WO 2020125139A1
Authority
WO
WIPO (PCT)
Prior art keywords
scintillator
reflective layer
groove
glue
block
Prior art date
Application number
PCT/CN2019/109928
Other languages
English (en)
French (fr)
Inventor
王燕春
何会绍
张清军
李元景
王永强
孙玉峰
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811551424.1A external-priority patent/CN109501330A/zh
Priority claimed from CN201811551446.8A external-priority patent/CN111337969B/zh
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Publication of WO2020125139A1 publication Critical patent/WO2020125139A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal

Definitions

  • the present disclosure relates to the field of scintillator manufacturing, and in particular, to a mold and method for preparing a scintillator reflective layer.
  • the scintillator is an element that converts high-energy rays (for example, X-rays or gamma rays) into visible light.
  • the visible light emitted by the scintillator can be converted into an electrical signal by a photoelectric conversion device.
  • the line scan imaging method is generally adopted.
  • the array detector in the radiation imaging security inspection system includes an array of scintillators and photoelectric conversion devices, which can convert high-energy rays passing through the detected object into electrical signals.
  • the high-energy rays interact with the material of the object when the object is irradiated, and the high-energy rays attenuated through the object are received by the array detector and converted into electrical signals, and further form an image.
  • the scintillator usually retains a light exit surface, and couples the light exit surface with a photoelectric conversion device such as a silicon photomultiplier tube or a photodiode.
  • a photoelectric conversion device such as a silicon photomultiplier tube or a photodiode.
  • the scintillation photons generated in the scintillator reach the photoelectric conversion device through the light exit surface, and are converted into electrical signals by the photoelectric conversion device, thereby realizing the detection of high-energy rays.
  • the emission of scintillation light in the scintillator is in any direction, so if the outer surface of the scintillator can transmit photons, only part of the photons will eventually reach the photoelectric conversion device to be detected, and the rest of the photons will be from the light emission surface. Other surfaces escape from the scintillator body without being detected, which makes detection efficiency inefficient.
  • a reflective layer is usually prepared on the other surfaces except the light exit surface, so that the scintillation photons reaching these surfaces can be reflected back to the scintillator.
  • the photons after one or more reflections are eventually lost in the scintillator, or are detected by the photoelectric conversion device through the light exit surface and emitted from the scintillator, so the scintillator's outer reflective layer effectively improves the detection efficiency of the scintillation photons.
  • the reflective glue is separately scraped on the surface where the reflective layer needs to be prepared, or the reflective sheet is separately attached.
  • the inventors have found that the method of preparing the reflective layer in the related art has problems of low efficiency, low packaging accuracy, and easy light leakage. Especially for small-sized scintillator arrays with fine pixels, such as the case where the size is only a few millimeters, the The preparation method is difficult to operate.
  • the embodiments of the present disclosure provide a scintillator reflective layer manufacturing mold and method, which can improve the manufacturing efficiency.
  • a mold for preparing a scintillator reflective layer including:
  • Mold body including multiple mold components that can be combined and disassembled
  • the plurality of mold components can be combined with each other to form a groove for accommodating the scintillator block.
  • the plurality of mold components include:
  • At least one positioning bar including at least one groove
  • the at least one positioning bar is detachably installed on the bottom frame.
  • the top surface of the positioning bar is provided with a plurality of groups of raised divided vertical bars, the grooves are formed between each group of divided vertical bars, and a first volume is formed between adjacent groups of divided vertical bars Glue slot.
  • the plurality of mold assemblies further includes:
  • At least one side bar is detachably installed on the bottom frame, and is closely arranged between adjacent positioning bars;
  • the side edge of the side bar is higher than the top surface of the positioning bar, and together with each set of divided vertical bars, the groove and the first glue receiving groove are enclosed together.
  • the side bar includes two side edges, and a second glue containing groove is formed between the two side edges.
  • the height of the split vertical bar and the side edge relative to the top surface of the positioning bar both exceed the height of the scintillator block.
  • a guide mechanism is provided between the base frame and the at least one positioning bar, for guiding the at least one positioning bar to be mounted on the base frame in a preset direction.
  • the guide mechanism is a dovetail-shaped guide rail guide groove matching structure.
  • it also includes:
  • the connecting piece is used for connecting the positioning bar and the side bar, and fixing the relative position between the positioning bar and the side bar.
  • it also includes:
  • the positioning sleeve has a thin-wall structure capable of accommodating the hollow channel of the scintillator block;
  • the outer side wall of the thin-walled structure matches the side wall of the groove, so that the thin-walled structure can fit into the groove, and the wall thickness of the thin-walled structure and the flicker
  • the reflective layer of the bulk has the same thickness.
  • the positioning sleeve further includes a hand-held portion connected to the upper portion of the thin-walled structure.
  • it also includes:
  • the cover plate can cover the assembled multiple mold components.
  • a method for preparing a scintillator reflective layer includes:
  • the glue in the gap is cured to form a reflective layer.
  • the method before setting the scintillator block, the method further includes:
  • the bottom surface of the scintillator block is provided with a glue film or an adhesive, so that the bottom surface of the scintillator block is adhered in the groove through the glue film or the adhesive.
  • the operation of setting the scintillator block includes:
  • a positioning sleeve is inserted into the groove, and the positioning sleeve has a hollow channel capable of accommodating the scintillator block;
  • the outer contours of the sides of the scintillator block and the gap formed between the side walls of the groove are all equal or not completely equal in size.
  • the operation of pouring glue includes:
  • the method further includes:
  • the method further includes:
  • a cover plate is covered above the scintillator block, and the cover plate forms a squeezing effect on the top surface of the scintillator block.
  • the method further includes:
  • the burrs of the reflective layer are eliminated by trimming and sanding.
  • the method further includes:
  • the thickness of the reflective layer is adjusted by precision grinding.
  • the method before setting the scintillator block, the method further includes:
  • a release agent is applied to at least the inner wall of the groove.
  • the method before covering the cover plate, the method further includes:
  • the top surface of the scintillator block is covered with release paper or release film.
  • the glue paste is a uniform mixture of reflective powder and curable transparent colloid formed by grinding.
  • one or more of curing agent, defoaming agent and diluent are added to the glue.
  • the scintillator block is a bare scintillator block without a reflective layer on the surface.
  • this preparation method can form a reflective layer on at least part of the side surface of the scintillator block at one time according to the needs, greatly improving the preparation efficiency, and easily ensuring the thickness uniformity of the reflective layer and improving the scintillator reflective layer Quality of preparation.
  • FIG. 1 is a schematic flowchart of some embodiments of a method for preparing a scintillator reflective layer according to the present disclosure
  • FIG. 2 is a schematic flow chart of other embodiments of a method for preparing a scintillator reflective layer according to the present disclosure
  • FIG. 3 is a schematic flowchart of still other embodiments of a method for preparing a scintillator reflective layer according to the present disclosure
  • FIG. 4 is a schematic structural view of some embodiments of preparing a mold for a scintillator reflective layer according to the present disclosure
  • FIG. 5 is a schematic structural view of a scintillator block used for preparing a scintillator reflective layer
  • FIG. 6 is a schematic diagram of setting a scintillator block in the combined scintillator reflective layer preparation mold
  • FIG. 7 is a schematic structural view of a positioning sleeve in some embodiments of a mold for preparing a scintillator reflective layer according to the present disclosure
  • FIG. 8 is a schematic diagram of setting a full scintillator block in the combined scintillator reflective layer preparation mold
  • FIG. 9 is a schematic structural view of a partial top view of some embodiments of a mold for preparing a scintillator reflective layer according to the present disclosure.
  • FIG. 10 is a schematic structural view of the AA section in FIG. 9;
  • FIG. 11 is a schematic view of the structure of the scintillator obtained after the scintillator reflective layer is prepared.
  • first”, “second” and similar words used in this disclosure do not indicate any order, quantity or importance, but are only used to distinguish different parts. Similar words such as “include” or “include” mean that the elements before the word cover the elements listed after the word, and do not exclude the possibility of covering other elements. “Up”, “down”, “left”, “right”, etc. are only used to indicate the relative positional relationship. When the absolute position of the described object changes, the relative positional relationship may also change accordingly.
  • a specific device when it is described that a specific device is located between the first device and the second device, there may or may not be an intervening device between the specific device and the first device or the second device.
  • the specific device When it is described that a specific device is connected to another device, the specific device may be directly connected to the other device without an intervening device, or may be directly connected to the other device without an intervening device.
  • a method for preparing a scintillator reflective layer of the present disclosure includes:
  • Step 200 Place the scintillator block 10 in the groove 32 of the mold, and reserve a gap between the side wall of the groove 32 and at least part of the outer contour of the side surface of the scintillator block 10;
  • Step 400 pouring the glue used to form the reflective layer 13 into the gap
  • Step 600 Curing the glue in the gap to form the reflective layer 13.
  • the groove 32 is a space to accommodate the scintillator block 10 and the pouring glue.
  • the scintillator block 10 ie, bare scintillator block
  • the light emitting surface side of the scintillator block 10 is in contact with the bottom surface of the groove 32.
  • the inner size of the groove 32 and the outer size of the scintillator block 10 conform to a preset difference to meet the width requirement of the reserved gap.
  • the scintillator block may be a single scintillator or a scintillator array.
  • the scintillator array may be a single-row, multi-row, and area array scintillator array.
  • the scintillator array may also be an irregular-shaped scintillator array.
  • the outer contours of all sides of the scintillator block 10 may be reserved for the side walls of the groove 32 so as to form the reflective layer 13 of each side wall.
  • the scintillator block 10 may only have a gap between the outer contour of part of the side surface and the side wall of the groove 32 so as to form a reflective layer on part of the side surface.
  • the outer contours of the side surfaces of the scintillator block 10 and the side walls of the groove 32 are all equal in size, so that a reflective layer with a uniform thickness can be formed.
  • the size of the gap formed between the outer contour of each side of the scintillator block 10 and the side wall of the groove 32 may not be completely equal.
  • the glue used to form the reflective layer in step 400 is a uniform mixture formed by reflecting powder and curable transparent colloid through grinding.
  • white or other color pigments can be used for the reflective powder.
  • the white pigment can be, but not limited to, TiO 2 , MgO, (PbCO 3 ).
  • Pigment powder can be composed of 0.01-100um powder with different particle sizes.
  • the curable transparent colloid can be selected from any resin with moderate viscosity, long operating time at room temperature, transparent, high strength and good weather resistance after curing, such as epoxy resin, acrylic resin, polystyrene resin, poly Amide resin or silicone resin.
  • the mass content of the solid reflective powder accounts for 20 to 80% of the total glue.
  • the paste is ball milled and/or roller milled to ensure that the reflective powder is evenly distributed in the paste.
  • one or more additives can be added to the glue.
  • the additives may include one or more of curing agents, defoamers and diluents.
  • the bottom surface of the scintillator block 10 may also be provided with an adhesive film or adhesive, so that the bottom surface of the scintillator block 10 is adhered to the groove 32 through the adhesive film or adhesive.
  • an adhesive film or an adhesive By pasting an adhesive film or an adhesive, the scintillator block 10 can be fixed, and a reflective layer can be avoided on the light-emitting surface of the scintillator block 10.
  • Defoaming can be achieved by one or a combination of grinding, centrifugation, vacuuming, and addition of defoamers.
  • the timing of the defoaming operation can be selected before pouring the glue or after pouring the glue.
  • the defoaming operation can be one or a combination of centrifugal, vacuum, etc.; when defoaming is performed before the glue is poured, the defoaming operation can include Grind or add defoamer to eliminate bubbles in the glue.
  • the bottom surface of the scintillator block 10 may be provided with a glue film or an adhesive, so that the scintillator block 10 is flashed by the glue film or the adhesive
  • the bottom surface of the bulk 10 is adhered in the groove 32, so that a reflective layer of a desired thickness is formed when the glue is poured and cured.
  • the scintillator block 10 and the groove 32 can also be fixed by other methods such as snapping.
  • a corresponding amount of glue can be filled in the gap.
  • the glue can be poured into the gap when the glue is poured, and the glue can be filled to the gap and cover the scintillator block 10 Top surface.
  • a reflective layer can also be formed on the side opposite to the light exit surface of the scintillator block 10.
  • the depth of the groove 32 is greater than the thickness of the scintillator block 10.
  • the cover plate squeezes the glue on the top surface of the scintillator block 10, so that the reflective layer 12 on the top surface of the scintillator block 10 is smoother.
  • the reflective layer 12 of a specific shape may be formed by the surface shape of the cover plate.
  • step 710 the scintillator or scintillator array 10' formed with the reflective layer 13 can be detached from the mold.
  • step 720 the burrs of the glue formed by the reflective layer 13 in the mold gap can be eliminated by trimming and grinding.
  • the thickness of the reflective layer of the scintillator or scintillator array 10' can be detected after demolding. If the size does not match, it can be processed by step 730. In step 730, after the scintillator is detached from the mold, the thickness of the reflective layer 13 is adjusted by precision grinding.
  • the inner wall of the groove 32 may be coated before the scintillator block 10 is provided Release agent. If necessary, in addition to the inner wall of the groove, a mold release agent may be applied to all surfaces on the mold for preparing the scintillator reflective layer that may contact the glue.
  • the cover plate in addition to applying a release agent on the inner wall of the groove 32, the cover plate may be close to the top surface of the scintillator block 10 before covering the cover plate One side is coated with a release agent. In other embodiments, the top surface of the scintillator block 10 may be covered with release paper or release film.
  • the operation of setting the scintillator block 10 in step 200 may specifically include steps 210-230.
  • a positioning sleeve 50 is inserted into the groove 32, and the positioning sleeve 50 has a hollow channel 51 capable of accommodating the scintillator block 10.
  • the scintillator block 10 is provided to the bottom of the groove 32 via the hollow channel 51.
  • the positioning sleeve 50 is removed from the groove 32 so as to form a gap between the side wall of the groove 32 and the scintillator block 10.
  • the hollow channel 51 of the positioning sleeve 50 is the same size as the scintillator block 10, and may have a slightly positive tolerance so that only the scintillator block 10 is allowed to pass through.
  • the scintillator reflective layer preparation mold includes a mold body.
  • the mold body includes a plurality of mold components that can be assembled and disassembled, and the plurality of mold components can be combined with each other to form a groove 32 that accommodates the scintillator block 10.
  • the scintillator reflective layer preparation mold can be realized by using various mold components that can be combined and disassembled.
  • the plurality of mold assemblies include: a chassis 20 and at least one positioning bar 30.
  • the positioning bar 30 includes at least one groove 32 for receiving the scintillator block 10 and receiving the poured glue.
  • the positioning bar 30 can be installed on the base frame 20 and removed from the base frame 20 as needed, so that the manufacturer can install more or less positioning bars as needed to complete the specified number of scintillator blocks 10 at one time Preparation of reflective layer.
  • the positioning bar 30 by removing the positioning bar 30 from the chassis 20, the demolding of the scintillator or the scintillator array 10' formed with the reflective layer 13 is assisted.
  • the top surface of the positioning bar 30 is provided with multiple sets of raised divided vertical bars 31.
  • the grooves 32 are formed between the divided vertical bars 31 of each group, and the first glue containing groove 33 is formed between the divided vertical bars 31 of the adjacent group.
  • the split vertical bar 31 can be designed according to the depth, length and other dimensions of the groove 32.
  • the first glue containing groove 33 can receive glue overflowing from the groove 32.
  • the multiple mold assemblies further include at least one side bar 40.
  • the side bar 40 is detachably mounted on the bottom frame 20 and is snugly disposed between adjacent positioning bars 30.
  • the side edge 41 of the side bar 40 is higher than the top surface of the positioning bar 30, and together with each set of divided vertical bars 31 encloses the groove 32 and the first glue receiving groove 33.
  • the chassis 20 includes a support surface 21 that supports the positioning bar 30 and the side bar 40, and a convex bezel 22 that blocks the positioning bar 30 and the side bar 40 on the side.
  • the side bar 40 and the positioning bar 30 may be arranged at intervals, and the width of the groove 32 thus formed corresponds to the width of the single row of scintillator blocks.
  • more than two positioning bars 30 may be disposed between the two side bars 40a and 40b, so that the reflective layer of the scintillator block with more rows can be prepared.
  • the side bar 40 may include two side edges 41, and a second glue containing groove 42 is formed between the two side edges 41. The second glue tank 42 can receive glue overflowing from the groove 32.
  • the heights of the split vertical bar 31 and the side edge 41 relative to the top surface of the positioning bar 30 both exceed the height of the scintillator block 10, so Therefore, the depth of the groove 32 exceeds the height of the scintillator block 10.
  • a guiding mechanism may be provided between the chassis 20 and the at least one positioning bar 30 to guide the at least one positioning bar 30 along the pre The direction is installed on the bottom frame 20.
  • the guide mechanism may adopt a dovetail-shaped guide rail guide groove fitting structure, so as to guide the positioning bar 30 in a direction parallel to the surface of the chassis 20 while restricting the positioning bar 30 from other directions of the chassis 20 Disengagement, thereby improving the convenience and stability of the positioning bar 30 installation.
  • the bottom of the positioning bar 30 is provided with a dovetail-shaped protrusion 34 that protrudes downward
  • the support surface 21 of the chassis 20 is provided with a dovetail-shaped groove 22 that is recessed downward, the dovetail groove protrusion 34 and the dovetail
  • the groove 22 forms a dovetail-shaped guide groove matching structure.
  • the guide mechanism may also have other structural forms, such as a guide groove matching structure of a guide rail of another shape, or a guide groove structure provided at both ends of the positioning bar 30.
  • a guide mechanism may also be provided between the side bar 40 and the chassis 20, and the side bar 40 and the positioning bar 30 may share the same guide mechanism.
  • a dovetail-shaped protrusion 43 protruding downward is provided at the bottom of the side bar 40, and the dovetail-shaped protrusion 43 also forms a dovetail-shaped guide rail guide groove matching structure with the dovetail-shaped groove 22
  • the operator can gradually install the positioning bar 30 and the side bar 40 in this order on the chassis 20 in order.
  • the positioning bar 30 and the side bar 40 can be connected by a connecting member 60 and the relative position between the positioning bar 30 and the side bar 40 can be fixed.
  • the connecting member 60 may use bolts, pins, etc., and the operator may pass the connecting member 60 through the connecting hole 35 of each positioning bar 30 and the connecting hole 44 of each side bar 40 and fix it.
  • the operator can set the scintillator block 10 into the groove 32 formed by the positioning bar 30 or the positioning bar 30 and the side stop bar 40 by means of the positioning sleeve 50.
  • the positioning sleeve 50 has a thin-walled structure 52 capable of accommodating the hollow channel 51 of the scintillator block 10.
  • the outer side wall of the thin-walled structure 52 can be matched with the side wall of the groove 32 so that the thin-walled structure 52 can be inserted into the groove 32 snugly.
  • the wall thickness of the thin-walled structure 52 may be set to be the same as the thickness of the reflective layer 13 of the scintillator block 10. In this way, after the scintillator block 10 is fixed in the groove 32, the positioning sleeve 50 is taken out to form a reserved gap between the side wall of the groove 32 and the outer contour of the side surface of the scintillator block 10. According to the different thickness requirements of the thin-walled structure 52, it can be manufactured by turning and milling, thin-wall stamping or injection molding.
  • the positioning sleeve 50 can be made of materials with certain strength and rigidity such as metal or resin.
  • the positioning sleeve 50 further includes a hand-held portion 53 connected to the upper portion of the thin-walled structure 52.
  • a supporting portion 54 may also be provided between the hand-held portion 53 and the thin-walled structure 52. When the thin-walled structure 52 is inserted into the groove 32, it may be supported by the supporting portion 54 above each positioning bar 30 and the side bar 40.
  • the operator can grasp the hand-held portion 53 by hand to insert the thin-walled structure 52 into the first groove 32, and after setting the scintillator block 10, pass the hand-held portion 53 Remove the thin-walled structure 52 from the groove 32, and then insert it into the second groove 32, and repeat this process until the scintillator block 10 is provided in all the grooves 32 shown in FIG.
  • a cover plate can be added in the scintillator reflective layer preparation mold and covered by the cover plate after the combination Above the plurality of mold assemblies to make the reflective layer on the top surface of the scintillator block 10 more flat.
  • the following describes the preparation process of the scintillator reflective layer based on a specific scintillator reflective layer preparation mold.
  • the scintillator block to be prepared with an external reflection layer is a one-dimensional linear array with a length of 25 mm, a width of 3 mm, and a thickness of 1.5 mm. It is also expected that the thickness of the prepared five outer surfaces except for the light exit surface is 0.2 mm.
  • the positioning bar 30 can be processed into a width of 3.4 mm, and a convex divided bar 31 is processed on the positioning bar 30, and the height of the divided bar 31 is 1.8 mm, so that the divided bar 31
  • the length of the intervening groove 32 is 25.4 mm, and the length of the first glue receiving groove 33 is 3 mm.
  • the side bar 40 is also processed to a thickness of 4 mm, and the height of the side 41 of the side bar 40 is equal to the height of the divided vertical bar 31 after installation.
  • a second glue tank with a width of 2 mm is provided on the side bar 40.
  • the positioning sleeve 50 can be made by stamping and flanging a metal plate with a thickness of 0.2 mm.
  • the above components can be made of stainless steel with high surface finish.
  • double-sided tape or adhesive can be pasted on the light emitting surface of the scintillator block 10 in advance, and the installed mold can be soaked with a release agent and then dried. In this way, the release agent is attached to the surfaces that are in contact with the glue, thereby facilitating the film-releasing operation.
  • the reserved gap between the split vertical bars 31 on the opposite sides of the scintillator block 10 and the scintillator block 10 is W2, and the scintillator block 10 is opposite to each other.
  • the reserved gap between the side 41 of the side bar 40 on both sides and the scintillator block 10 is W1
  • the reserved gap between the upper edge of the partition bar 31 and the side 41 and the top surface of the scintillator block 10 is W3 .
  • the glue paste is poured into the reserved gap of each groove, and the glue paste covers the top surface of the scintillator block 10.
  • the glue After pouring the glue, the glue is subjected to vacuum defoaming treatment, so that the glue can fully fill the reserved gap, so as to completely cover the side and top surfaces of the scintillator block 10.
  • the defoaming operation may precede the operation of covering the cover plate.
  • a cover plate is covered above each scintillator block 10, and after the cover plate abuts on the upper edges of the divided vertical bars 31 and the side edges 41, a relatively flat glue area is formed on the top surface of the scintillator block 10, The excess glue will be squeezed and flow into the first glue container 31 and the second glue container 42.
  • the connecting member 60 is removed, and then each positioning bar 30 and the side bar 40 are sequentially removed, and then the scintillator array having the outer reflective layer formed is removed from the positioning bar 30.
  • the double-sided tape on the scintillator array can be peeled off to expose the light-emitting surface that does not cover the reflective layer, and the remaining surfaces are covered with a reflective layer of a certain thickness.
  • the burrs on the reflective layer can be removed by manual or mechanical grinding. If the overall size of the scintillator array where the reflective layer has been formed deviates from the design, for example, slightly larger than the design value, the reflective layer in the direction of larger size can be ground to obtain a finished scintillator array whose size meets the design value.
  • the positioning bar 30, the side bar 40 and the bottom frame 20 can be reused in another preparation process.
  • the method of preparing the reflective layer in the related art has the problems of low efficiency, low packaging accuracy, and easy light leakage, especially for those with only a few millimeters. It is difficult to handle small-sized scintillator arrays of fine pixels, and some embodiments of the present disclosure can prepare all reflection layers on the other five surfaces except the light exit surface at one time, and the reflection layer of the packaged scintillator has good uniformity. In terms of operation, the preparation of a large number of scintillator reflective layers can be achieved with fewer operating procedures, so it is very efficient, and is particularly suitable for the reflective layer packaging of a small-sized scintillator array with a fine structure.
  • the production cost of the scintillator array (such as GOS ceramic scintillator array) is significantly reduced, which is beneficial to expand its application range from the traditional medical radiation imaging field to the large-scale application in the field of security inspection radiation imaging requiring lower cost.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Radiation (AREA)

Abstract

一种闪烁体反射层制备模具及方法。闪烁体反射层制备模具包括:模具本体,包括可组合和拆卸的多个模具组件;其中,所述多个模具组件能够通过相互组合,形成容置闪烁体块(10)的凹槽(32)。其能够提高闪烁体反射层的制备效率。

Description

闪烁体反射层制备模具及方法
相关申请的交叉引用
本申请是以CN申请号为201811551446.8,申请日为2018年12月19日的申请和CN申请号为201811551424.1,申请日为2018年12月19日的申请为基础,并主张它们的优先权,这两个CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及闪烁体制造领域,尤其涉及一种闪烁体反射层制备模具及方法。
背景技术
闪烁体是将高能射线(例如X射线或γ射线)转换为可见光的元件。闪烁体所发出的可见光可通过光电转换器件转化为电信号。在辐射成像安检系统中,一般采用线扫描成像方式。辐射成像安检系统中的阵列探测器包括阵列形式的闪烁体和光电转换器件,能够将透过被检测物体的高能射线转换为电信号。高能射线在照射被照物时与被照物的物质发生作用,穿过被照物衰减后的高能射线被阵列探测器接收并转换成电信号,并进一步形成图像。
闪烁体在实际应用时,通常保留一个出光面,并使该出光面与例如硅光电倍增管或光电二极管等光电转换器件耦合。闪烁体内产生的闪烁光子通过该出光面到达光电转换器件,并被光电转换器件转化为电信号,从而实现对高能射线的探测。
闪烁光在闪烁体内的发射是任意方向的,因此如果闪烁体的外表面均可透射出光子的话,则仅有部分光子最终到达光电转换器件而被探测,其余光子则会从除出光面以外的其它面逸出闪烁体外而不会被探测到,从而使得探测效率低下。
为了使闪烁体内产生的闪烁光子被更充分地探测到,通常在除出光面以外的其余面制备反射层,以使得到达这些面的闪烁光子可以被反射回闪烁体。这样,经过一次或多次反射的光子最终或者在闪烁体内损耗,或者通过出光面射出闪烁体外而被光电转换器件探测到,因此利用闪烁体的外反射层有效地提高闪烁光子的探测效率。
为了制备闪烁体的反射层,在相关技术中在需要制备反射层的面单独刮涂反射胶浆,或者单独贴反射片。
发明内容
经发明人研究发现,相关技术中制备反射层的方式存在效率较低、封装精度不高、容易漏光等问题,尤其对于具有精细像素的小尺寸闪烁体阵列,例如尺寸只有数毫米的情况,该制备方式难于操作。
有鉴于此,本公开实施例提供一种闪烁体反射层制备模具及方法,能够提高制备效率。
在本公开的一个方面,提供一种闪烁体反射层制备模具,包括:
模具本体,包括可组合和拆卸的多个模具组件;
其中,所述多个模具组件能够通过相互组合,形成容置闪烁体块的凹槽。
在一些实施例中,所述多个模具组件包括:
底架;
至少一个定位条,包括至少一个凹槽;
其中,所述至少一个定位条可拆卸地安装在所述底架上。
在一些实施例中,所述定位条的顶部表面设有多组凸起的分割立条,每组分割立条之间形成所述凹槽,相邻组的分割立条之间形成第一容胶槽。
在一些实施例中,所述多个模具组件还包括:
至少一个侧挡条,可拆卸地安装在所述底架上,并紧贴地设置在相邻的定位条之间;
其中,所述侧挡条的侧边高于所述定位条的顶部表面,并与各组分割立条共同围成所述凹槽和所述第一容胶槽。
在一些实施例中,所述侧挡条包括两个侧边,在所述两个侧边之间形成有第二容胶槽。
在一些实施例中,所述分割立条和所述侧边相对于所述定位条的顶部表面的高度均超过所述闪烁体块的高度。
在一些实施例中,所述底架与所述至少一个定位条之间设有导向机构,用于引导所述至少一个定位条沿预设方向安装到所述底架上。
在一些实施例中,所述导向机构为燕尾形状的导轨导槽配合结构。
在一些实施例中,还包括:
连接件,用于连接所述定位条和所述侧挡条,并固定所述定位条和所述侧挡条之间的相对位置。
在一些实施例中,还包括:
定位套筒,具有能够容纳所述闪烁体块的中空通道的薄壁结构;
其中,所述薄壁结构的外侧壁与所述凹槽的侧壁匹配,以使所述薄壁结构能够贴合地插入所述凹槽内,所述薄壁结构的壁厚与所述闪烁体块的反射层厚度相同。
在一些实施例中,所述定位套筒还包括手持部,连接在所述薄壁结构的上部。
在一些实施例中,还包括:
盖板,能够覆盖在组合后的所述多个模具组件的上方。
在本公开的一个方面,提供一种闪烁体反射层制备方法,包括:
将闪烁体块设置在模具的凹槽内,并在所述凹槽的侧壁与所述闪烁体块的至少部分侧面外轮廓之间预留间隙;
将用于形成反射层的胶浆灌注到所述间隙内;
使所述间隙内的胶浆固化,以形成反射层。
在一些实施例中,在设置所述闪烁体块之前,还包括:
将所述闪烁体块的底部表面设置胶膜或胶粘剂,以便通过胶膜或胶粘剂将所述闪烁体块的底部表面粘接在所述凹槽内。
在一些实施例中,设置所述闪烁体块的操作包括:
在所述凹槽内插设定位套筒,所述定位套筒具有能够容纳所述闪烁体块的中空通道;
将所述闪烁体块经由所述中空通道设置到所述凹槽的底部;
将所述定位套筒从所述凹槽内取出,以便形成所述凹槽的侧壁与所述闪烁体块之间的间隙。
在一些实施例中,在预留间隙时,所述闪烁体块的各个侧面外轮廓分别与所述凹槽的侧壁之间形成的间隙尺寸均相等或不完全相等。
在一些实施例中,灌注胶浆的操作包括:
将所述胶浆灌注到所述间隙内,并使所述胶浆填充满所述间隙,并覆盖所述闪烁体块的顶部表面。
在一些实施例中,在灌注胶浆之后或之前,还包括:
消除所述胶浆内的气泡。
在一些实施例中,在所述胶浆覆盖所述闪烁体块的顶部表面后,还包括:
在所述闪烁体块的上方覆盖盖板,通过所述盖板对所述闪烁体块的顶部表面的胶 浆形成挤压作用。
在一些实施例中,在形成反射层之后,还包括:
使形成有反射层的闪烁体或闪烁体阵列与所述模具脱离;
通过修剪和打磨消除所述反射层的毛边。
在一些实施例中,在所述闪烁体或闪烁体阵列脱离所述模具后,还包括:
通过精密研磨调整所述反射层的厚度。
在一些实施例中,在设置所述闪烁体块之前,还包括:
至少在所述凹槽的内壁涂覆脱模剂。
在一些实施例中,在覆盖盖板之前,还包括:
在所述盖板靠近所述闪烁体块的顶部表面的一侧涂覆脱模剂;或者
在所述闪烁体块的顶部表面覆盖离型纸或离型膜。
在一些实施例中,所述胶浆为反光粉末和可固化透明胶体通过研磨形成的均匀混合物。
在一些实施例中,在所述胶浆内添加有固化剂、消泡剂和稀释剂中的一种或多种。
在一些实施例中,所述闪烁体块为表面未设置反射层的裸闪烁体块。
因此,根据本公开实施例,通过将闪烁体块设置到模具的凹槽内,并在凹槽与闪烁体块之间的预留间隙灌注可形成反射层的胶浆,待胶浆固化后即形成反射层,这种制备方式可根据需要对闪烁体块的至少部分侧面一次性形成反射层,极大程度地提高了制备效率,且容易确保反射层的厚度均匀性,提高了闪烁体反射层的制备质量。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1是根据本公开闪烁体反射层制备方法的一些实施例的流程示意图;
图2是根据本公开闪烁体反射层制备方法的另一些实施例的流程示意图;
图3是根据本公开闪烁体反射层制备方法的再一些实施例的流程示意图;
图4是根据本公开闪烁体反射层制备模具的一些实施例的结构示意图;
图5是制备闪烁体反射层所用的闪烁体块的结构示意图;
图6是在组合后的闪烁体反射层制备模具中设置闪烁体块的示意图;
图7是根据本公开闪烁体反射层制备模具的一些实施例中定位套筒的结构示意图;
图8是在组合后的闪烁体反射层制备模具中设置满闪烁体块的示意图;
图9是根据本公开闪烁体反射层制备模具的一些实施例的局部俯视角度的结构示意图;
图10是图9中AA截面的结构示意图;
图11是制备了闪烁体反射层后得到的闪烁体的结构示意图。
应当明白,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分应被解释为仅仅是示例性的,而不是作为限制。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定器件位于第一器件和第二器件之间时,在该特定器件与第一器件或第二器件之间可以存在居间器件,也可以不存在居间器件。当描述到特定器件连接其它器件时,该特定器件可以与所述其它器件直接连接而不具有居间器件,也可以不与所述其它器件直接连接而具有居间器件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
如图1所示,是根据本公开闪烁体反射层制备方法的一些实施例的流程示意图。参考图1,并结合图2-图12所示,在一些实施例中,本公开闪烁体反射层制备方法包括:
步骤200、将闪烁体块10设置在模具的凹槽32内,并在所述凹槽32的侧壁与所述闪烁体块10的至少部分侧面外轮廓之间预留间隙;
步骤400、将用于形成反射层13的胶浆灌注到所述间隙内;
步骤600、使所述间隙内的胶浆固化,以形成反射层13。
在本实施例中,凹槽32是容纳闪烁体块10和灌注胶浆的空间。表面未设置反射层的闪烁体块10(即裸闪烁体块)被设置在模具的凹槽32内,且闪烁体块10的出光面侧与凹槽32的底面接触。该凹槽32的内部尺寸与闪烁体块10的外部尺寸符合预设差值,以满足预留间隙的宽度要求。
参考图6,闪烁体块可以是单一闪烁体或者闪烁体阵列,闪烁体阵列可以是单排、多排以及面阵等形式的闪烁体阵列,闪烁体阵列还可以是非规则形状的闪烁体阵列。
在将闪烁体块10设置到凹槽32时,闪烁体块10的所有侧面的外轮廓都可以与凹槽32的侧壁预留间隙,以便形成各个侧壁的反射层13。在另一些实施例中,闪烁体块10也可以只有部分侧面的外轮廓与凹槽32的侧壁预留间隙,以便形成部分侧面的反射层。
在预留间隙时,所述闪烁体块10的各个侧面外轮廓分别与所述凹槽32的侧壁之间形成的间隙尺寸均相等,这样可形成厚度均匀的反射层。在另一些实施例中,所述闪烁体块10的各个侧面外轮廓分别与所述凹槽32的侧壁之间形成的间隙尺寸可以不完全相等。
步骤400中用于形成反射层的胶浆为反光粉末和可固化的透明胶体通过研磨形成的均匀混合物。根据需求的反射效率,反光粉末可选用白色或其他颜色的颜料。在这其中,白色颜料可以但不限于为TiO 2、MgO、(PbCO 3)﹒Pb(OH) 2、Ba 2SO 4和ZnO粉末中的一种或多种的混合。颜料粉末可采用0.01~100um的不同粒径粉末级配构成。
可固化的透明胶体可选用任意粘度适度的、室温可操作时间较长的、透明的、固化后具有较高强度和耐候性能良好的树脂,例如环氧树脂、丙烯酸树脂、聚苯乙烯树脂、聚酰胺树脂或硅酮树脂等。固体的反光粉末的质量含量占总胶浆的20~80%。胶 浆经球磨和/或辊式研磨,以确保反光粉均匀分布于胶浆中。
为了改善胶浆的灌封性能,可在胶浆中添加一种或多种添加剂。添加剂可以包括固化剂、消泡剂和稀释剂中的一种或多种。
在步骤200之前,还可将所述闪烁体块10的底部表面设置胶膜或胶粘剂,以便通过胶膜或胶粘剂将所述闪烁体块10的底部表面粘接在所述凹槽32内。通过粘贴胶膜或胶粘剂,既能够固定闪烁体块10,也能避免闪烁体块10的出光面形成反射层。
胶浆添加反光粉的过程以及闪烁体固定好后灌注胶浆的过程中需充分消除胶浆内的气泡,以便提高反射层的质量。除泡可选用研磨、离心、抽真空、添加消泡剂等方式中的一种或几种结合来实现。除泡操作的时机可选在灌注胶浆之前,或者在灌注胶浆之后。当在灌注胶浆之后进行除泡时,除泡的操作可以选用离心、抽真空等方式的一种或几种的结合;当在灌注胶浆之前进行除泡时,除泡的操作可以包括通过研磨或添加消泡剂的方式消除胶浆内的气泡。
为了使闪烁体块10稳定地固定在凹槽32内,可以在设置闪烁体块10之前,将所述闪烁体块10的底部表面设置胶膜或胶粘剂,以便通过胶膜或胶粘剂将所述闪烁体块10的底部表面粘接在所述凹槽32内,从而在胶浆灌注和固化时形成期望厚度的反射层。在另一些实施例中,闪烁体块10与凹槽32之间也可通过卡接等其他方式进行固定。
根据在闪烁体块10上需要形成的反射层的范围,可在间隙内填充相应量的胶浆。为了获得更完全的反射层范围,则可在灌注胶浆时,将所述胶浆灌注到所述间隙内,并使所述胶浆填充满所述间隙,并覆盖所述闪烁体块10的顶部表面。这样就能够在闪烁体块10的出光面的反向侧也形成反射层。
为了使闪烁体块10的顶部表面也覆盖胶浆,凹槽32的深度大于闪烁体块10的厚度,当灌胶量完全充满凹槽32,并覆盖闪烁体块10时,在闪烁体块10的上方会因为表面张力而形成向上的弧度。为了使闪烁体块10顶部表面的反射层厚度均匀,可在所述胶浆覆盖所述闪烁体块10的顶部表面后,在所述闪烁体块10的上方覆盖盖板,通过平整度高的盖板对所述闪烁体块10的顶部表面的胶浆形成挤压作用,从而使闪烁体块10的顶部表面的反射层12更加平整。另外,还可以通过盖板的表面形状来形成特定形状的反射层12。
如图2所示,为根据本公开闪烁体反射层制备方法的另一些实施例的流程示意图。与前述实施例相比,在步骤600形成反射层13之后,还包括步骤710和步骤720。在 步骤710中,可使形成有反射层13的闪烁体或闪烁体阵列10'与所述模具脱离。脱离模具的闪烁体阵列10'在去除了出光面的残余胶膜之后,可在步骤720通过修剪和打磨消除所述反射层13在模具缝隙中形成的胶浆毛边。
为了使闪烁体或闪烁体阵列10'的各面的反射层13的尺寸符合设计要求,可在脱模后检测闪烁体或闪烁体阵列10'的反射层的厚度。如果尺寸不符合,则可通过步骤730进行处理。在步骤730中,当所述闪烁体脱离所述模具后,通过精密研磨调整所述反射层13的厚度。
在上述闪烁体反射层制备方法的各实施例中,为了使形成反射层的闪烁体阵列更容易脱模,可在设置所述闪烁体块10之前,至少在所述凹槽32的内壁涂覆脱模剂。根据需要,除了凹槽内壁之外,可以对制备闪烁体反射层的模具上所有可能接触胶浆的表面都涂覆脱模剂。对于覆盖盖板的方法实施例来说,则除了在凹槽32的内壁涂覆脱模剂之外,还可以在覆盖盖板之前,在所述盖板靠近所述闪烁体块10的顶部表面的一侧涂覆脱模剂。在另一些实施例中,还可以在所述闪烁体块10的顶部表面覆盖离型纸或离型膜。
如图3所示,为根据本公开闪烁体反射层制备方法的再一些实施例的流程示意图。参考图3,在一些实施例中,步骤200中设置所述闪烁体块10的操作可具体包括步骤210-步骤230。在步骤210中,在所述凹槽32内插设定位套筒50,所述定位套筒50具有能够容纳所述闪烁体块10的中空通道51。在步骤220中,将所述闪烁体块10经由所述中空通道51设置到所述凹槽32的底部。在步骤230中,将所述定位套筒50从所述凹槽32内取出,以便形成所述凹槽32的侧壁与所述闪烁体块10之间的间隙。
在设计定位套筒时,定位套筒50的中空通道51与闪烁体块10相同的尺寸,可以有少许正的公差,以便仅允许闪烁体块10通过。
参考图4、图6-图10,本公开实施例也提供了能够支持前述制备方法的闪烁体反射层制备模具。在一些实施例中,闪烁体反射层制备模具包括模具本体。模具本体包括可组合和拆卸的多个模具组件,多个模具组件能够通过相互组合,形成容置闪烁体块10的凹槽32。
闪烁体反射层制备模具可采用各种可组合和拆卸的模具组件实现。例如在图4中,多个模具组件包括:底架20和至少一个定位条30。定位条30包括至少一个凹槽32,用于容纳闪烁体块10,并接收灌注的胶浆。定位条30可安装在所述底架20上,并根据需要从底架20上拆除,这样制作者可根据需要安装更多或更少的定位条,以便一 次完成指定数量的闪烁体块10的反射层的制备。另外,通过从底架20上拆除定位条30来辅助形成有反射层13的闪烁体或闪烁体阵列10'的脱模。
参考图4,在一些实施例中,定位条30的顶部表面设有多组凸起的分割立条31。每组分割立条31之间形成所述凹槽32,相邻组的分割立条31之间形成第一容胶槽33。分割立条31可根据凹槽32的深度、长度等尺寸进行设计。第一容胶槽33可接收从凹槽32中溢出的胶浆。
为了更好地控制凹槽32的宽度,在一些实施例中,多个模具组件还包括至少一个侧挡条40。侧挡条40可拆卸地安装在所述底架20上,并紧贴地设置在相邻的定位条30之间。侧挡条40的侧边41高于所述定位条30的顶部表面,并与各组分割立条31共同围成所述凹槽32和所述第一容胶槽33。
参考图4和图6,底架20包括支撑定位条30和侧挡条40的支撑表面21,以及在侧方阻挡定位条30和侧挡条40的凸起边框22。根据待制备反射层的闪烁体块的尺寸,可将侧挡条40和定位条30间隔排列设置,这样形成的凹槽32的宽度与单排的闪烁体块的宽度相对应。在另一些实施例中,在两个侧挡条40a和40b之间可以设置两个以上的定位条30,这样就可实现更多排数的闪烁体块的反射层的制备。在图4中,侧挡条40可包括两个侧边41,在所述两个侧边41之间形成有第二容胶槽42。第二容胶槽42可接收从凹槽32中溢出的胶浆。
为了使胶浆能够覆盖闪烁体块10的顶部表面,可使分割立条31和所述侧边41相对于所述定位条30的顶部表面的高度均超过所述闪烁体块10的高度,这样就使得凹槽32的深度超过所述闪烁体块10的高度。
参考图4,为了使定位条30能够稳定可靠地安装到底架20上,可在底架20与所述至少一个定位条30之间设置导向机构,用于引导所述至少一个定位条30沿预设方向安装到所述底架20上。在图4中,导向机构可采用燕尾形状的导轨导槽配合结构,以便在沿平行于底架20的表面的方向为定位条30导向的同时,还限制定位条30从底架20的其他方向脱离,从而提高定位条30安装的便利性和稳定性。
例如,在定位条30的底部设有向下凸起的燕尾形凸起34,在底架20的支撑表面21上设有向下凹入的燕尾形凹槽22,燕尾槽凸起34和燕尾形凹槽22构成了燕尾形状的导轨导槽配合结构。在另一些实施例中,导向机构也可以其他结构形式,例如其他形状的导轨导槽配合结构,或者设置在定位条30两端的导槽结构等。
在侧挡条40与底架20之间还可设置导向机构,侧挡条40可以与定位条30共用 相同的导向机构。例如,在侧挡条40的底部设有向下凸起的燕尾形凸起43,该燕尾形凸起43也与燕尾形凹槽22构成了燕尾形状的导轨导槽配合结构
这样,操作人员可根据需要将定位条30和侧挡条40按照顺序逐渐地安装到底架20上。之后,可通过连接件60连接所述定位条30和所述侧挡条40,并固定所述定位条30和所述侧挡条40之间的相对位置。连接件60可采用螺栓、销轴等,操作人员可将连接件60穿过各个定位条30的连接孔35和各个侧挡条40的连接孔44并固定。
为了简化闪烁体块10的设置,操作人员可借助于定位套筒50将闪烁体块10设置到由定位条30或者定位条30和侧挡条40共同形成的凹槽32中。参考图7,在一些实施例中,定位套筒50具有能够容纳所述闪烁体块10的中空通道51的薄壁结构52。薄壁结构52的外侧壁可与所述凹槽32的侧壁匹配,以使所述薄壁结构52能够贴合地插入所述凹槽32内。为了精准控制生成的反射层13的厚度,可将所述薄壁结构52的壁厚设置成与所述闪烁体块10的反射层13厚度相同。这样,当闪烁体块10固定在凹槽32之后,取出定位套筒50即可形成凹槽32侧壁与闪烁体块10的侧面外轮廓之间的预留间隙。根据薄壁结构52的不同厚度要求,可采用车铣加工、薄壁冲压加工或注塑加工的方式制作。而定位套筒50可采用金属或树脂等具有一定强度及刚性的材料制成。
为了方便操作人员操作,在一些实施例中,定位套筒50还包括手持部53,连接在所述薄壁结构52的上部。在手持部53和薄壁结构52之间还可设置支撑部54,在薄壁结构52插入凹槽32时可通过支撑部54支撑在各个定位条30和侧挡条40的上方。
参考图6-图8,在安装完模具后,操作人员可用手抓住手持部53将薄壁结构52插入到第一个凹槽32内,并在设置完闪烁体块10之后,通过手持部53将薄壁结构52从凹槽32中取出,然后再插入到第二个凹槽32内,并重复这个过程,直至图8所示的所有凹槽32中均设置闪烁体块10。
当将胶浆灌注到各个凹槽32内,并将胶浆覆盖到闪烁体块10的顶部表面后,可在闪烁体反射层制备模具中增加盖板,并通过盖板覆盖在组合后的所述多个模具组件的上方,以使闪烁体块10顶部表面的反射层更加平整。
参考图4-图11,下面基于一个具体的闪烁体反射层制备模具对闪烁体反射层制备流程进行详细说明。
根据设计需要,待制备外反射层的闪烁体块呈一维线性阵列,其长度25mm,宽度3mm,厚度1.5mm。并希望制备出的除出光面以外的5个外表面的反射层厚度均为0.2mm。
根据上述设计尺寸,可将定位条30加工成宽度3.4mm,并在定位条30上加工出凸起的分割立条31,并使分割立条31的高度为1.8mm,使分割立条31之间的凹槽32的长度为25.4mm,第一容胶槽33的长度为3mm。还将侧挡条40加工成厚度4mm,侧挡条40的侧边41的高度与安装后与分割立条31高度相等。在侧挡条40上设置2mm宽的第二容胶槽。定位套筒50可采用0.2mm厚度的金属板冲压翻边制成。以上各个部件可采用表面光洁度较高的不锈钢材质。
在灌注胶浆之前,可在闪烁体块10的出光面预先粘贴好双面胶或涂好胶粘剂,并将安装好的模具用脱模剂浸泡然后晾干。这样就使得与胶浆接触的面均附着有脱模剂,从而方便脱膜操作。
当将闪烁体块10设置到凹槽32时,参考图9和图10,闪烁体块10相对两侧的分割立条31与闪烁体块10的预留间隙为W2,闪烁体块10另外相对的两侧的侧挡条40的侧边41与闪烁体块10的预留间隙为W1,而分割立条31和侧边41的上边缘与闪烁体块10的顶部表面的预留间隙为W3。将胶浆灌注到各个凹槽的预留间隙中,并使胶浆覆盖闪烁体块10的顶部表面。
灌注胶浆后,对胶浆进行真空除泡处理,以便使胶浆充分填充预留间隙,从而完全覆盖闪烁体块10的侧面和顶部表面。除泡操作可先于覆盖盖板的操作之前。然后,在各个闪烁体块10的上方覆盖盖板,盖板抵靠到分割立条31和侧边41的上边缘后,就在闪烁体块10的顶部表面形成了比较平整的胶浆区域,而多余的胶浆则会被挤压流到第一容胶槽31和第二容胶槽42内。
待胶浆充分固化后,将连接件60拆下,然后依次取下各个定位条30和侧挡条40,再从定位条30上取下已形成外反射层的闪烁体阵列。撕下闪烁体阵列上的双面胶即可露出未覆盖反射层的出光面,而其余各面均覆盖有一定厚度的反射层。
对于反射层上的毛刺,可通过手工或机械打磨去除。若已形成反射层的闪烁体阵列的总体尺寸与设计有偏差,例如稍大于设计值,则可对尺寸大的方向的反射层进行研磨,以便得到尺寸满足设计值的成品闪烁体阵列。而定位条30、侧挡条40及底架20可在另一次制备过程中重复使用。
通过对前述闪烁体反射层制备模具及方法实施例的说明,针对于相关技术中制备 反射层的方式存在效率较低、封装精度不高、容易漏光等问题,尤其是对于通常只有数毫米的具有精细像素的小尺寸闪烁体阵列难于操作等问题,本公开的一些实施例可在除出光面以外的其余五个面上一次性制备全部的反射层,而且封装的闪烁体外反射层均匀性好。在操作方面,可以以较少的操作工序实现大量的闪烁体反射层的制备,因此十分高效,尤其适用于精细结构的小尺寸闪烁体阵列的反射层封装。这样就显著地降低了闪烁体阵列(例如GOS陶瓷闪烁体阵列)的生产成本,有利于使其应用范围从传统的医疗辐射成像领域扩展到要求成本更低的安检辐射成像领域大规模应用。
至此,已经详细描述了本公开的各实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (26)

  1. 一种闪烁体反射层制备模具,包括:
    模具本体,包括可组合和拆卸的多个模具组件;
    其中,所述多个模具组件能够通过相互组合,形成容置闪烁体块(10)的凹槽(32)。
  2. 根据权利要求1所述的闪烁体反射层制备模具,其中,所述多个模具组件包括:
    底架(20);
    至少一个定位条(30),包括至少一个凹槽(32);
    其中,所述至少一个定位条(30)可拆卸地安装在所述底架(20)上。
  3. 根据权利要求2所述的闪烁体反射层制备模具,其中,所述定位条(30)的顶部表面设有多组凸起的分割立条(31),每组分割立条(31)之间形成所述凹槽(32),相邻组的分割立条(31)之间形成第一容胶槽(33)。
  4. 根据权利要求3所述的闪烁体反射层制备模具,其中,所述多个模具组件还包括:
    至少一个侧挡条(40),可拆卸地安装在所述底架(20)上,并紧贴地设置在相邻的定位条(30)之间;
    其中,所述侧挡条(40)的侧边(41)高于所述定位条(30)的顶部表面,并与各组分割立条(31)共同围成所述凹槽(32)和所述第一容胶槽(33)。
  5. 根据权利要求4所述的闪烁体反射层制备模具,其中,所述侧挡条(40)包括两个侧边(41),在所述两个侧边(41)之间形成有第二容胶槽(42)。
  6. 根据权利要求4所述的闪烁体反射层制备模具,其中,所述分割立条(31)和所述侧边(41)相对于所述定位条(30)的顶部表面的高度均超过所述闪烁体块(10)的高度。
  7. 根据权利要求2所述的闪烁体反射层制备模具,其中,所述底架(20)与所述至少一个定位条(30)之间设有导向机构,用于引导所述至少一个定位条(30)沿预设方向安装到所述底架(20)上。
  8. 根据权利要求7所述的闪烁体反射层制备模具,其中,所述导向机构为燕尾形状的导轨导槽配合结构。
  9. 根据权利要求4所述的闪烁体反射层制备模具,还包括:
    连接件(60),用于连接所述定位条(30)和所述侧挡条(40),并固定所述定位条(30)和所述侧挡条(40)之间的相对位置。
  10. 根据权利要求1所述的闪烁体反射层制备模具,还包括:
    定位套筒(50),具有能够容纳所述闪烁体块(10)的中空通道(51)的薄壁结构(52);
    其中,所述薄壁结构(52)的外侧壁与所述凹槽(32)的侧壁匹配,以使所述薄壁结构(52)能够贴合地插入所述凹槽(32)内,所述薄壁结构(52)的壁厚与所述闪烁体块(10)的反射层(13)厚度相同。
  11. 根据权利要求10所述的闪烁体反射层制备模具,其中,所述定位套筒(50)还包括手持部(53),连接在所述薄壁结构(52)的上部。
  12. 根据权利要求1所述的闪烁体反射层制备模具,还包括:
    盖板,能够覆盖在组合后的所述多个模具组件的上方。
  13. 一种闪烁体反射层制备方法,包括:
    将闪烁体块(10)设置在模具的凹槽(32)内,并在所述凹槽(32)的侧壁与所述闪烁体块(10)的至少部分侧面外轮廓之间预留间隙;
    将用于形成反射层(13)的胶浆灌注到所述间隙内;
    使所述间隙内的胶浆固化,以形成反射层(13)。
  14. 根据权利要求13所述的闪烁体反射层制备方法,其中,在设置所述闪烁体块(10)之前,还包括:
    将所述闪烁体块(10)的底部表面设置胶膜或胶粘剂,以便通过胶膜或胶粘剂将所述闪烁体块(10)的底部表面粘接在所述凹槽(32)内。
  15. 根据权利要求13所述的闪烁体反射层制备方法,其中,设置所述闪烁体块(10)的操作包括:
    在所述凹槽(32)内插设定位套筒(50),所述定位套筒(50)具有能够容纳所述闪烁体块(10)的中空通道(51);
    将所述闪烁体块(10)经由所述中空通道(51)设置到所述凹槽(32)的底部;
    将所述定位套筒(50)从所述凹槽(32)内取出,以便形成所述凹槽(32)的侧壁与所述闪烁体块(10)之间的间隙。
  16. 根据权利要求13所述的闪烁体反射层制备方法,其中,在预留间隙时,所述闪烁体块(10)的各个侧面外轮廓分别与所述凹槽(32)的侧壁之间形成的间隙尺 寸均相等或不完全相等。
  17. 根据权利要求13所述的闪烁体反射层制备方法,其中,灌注胶浆的操作包括:
    将所述胶浆灌注到所述间隙内,并使所述胶浆填充满所述间隙,并覆盖所述闪烁体块(10)的顶部表面。
  18. 根据权利要求17所述的闪烁体反射层制备方法,其中,在灌注胶浆之后或之前,还包括:
    消除所述胶浆内的气泡。
  19. 根据权利要求17所述的闪烁体反射层制备方法,其中,在所述胶浆覆盖所述闪烁体块(10)的顶部表面后,还包括:
    在所述闪烁体块(10)的上方覆盖盖板,通过所述盖板对所述闪烁体块(10)的顶部表面的胶浆形成挤压作用。
  20. 根据权利要求13所述的闪烁体反射层制备方法,其中,在形成反射层(13)之后,还包括:
    使形成有反射层(13)的闪烁体或闪烁体阵列与所述模具脱离;
    通过修剪和打磨消除所述反射层(13)的毛边。
  21. 根据权利要求20所述的闪烁体反射层制备方法,其中,在所述闪烁体或闪烁体阵列脱离所述模具后,还包括:
    通过精密研磨调整所述反射层(13)的厚度。
  22. 根据权利要求13所述的闪烁体反射层制备方法,其中,在设置所述闪烁体块(10)之前,还包括:
    至少在所述凹槽(32)的内壁涂覆脱模剂。
  23. 根据权利要求19所述的闪烁体反射层制备方法,其中,在覆盖盖板之前,还包括:
    在所述盖板靠近所述闪烁体块(10)的顶部表面的一侧涂覆脱模剂;或者
    在所述闪烁体块(10)的顶部表面覆盖离型纸或离型膜。
  24. 根据权利要求13所述的闪烁体反射层制备方法,其中,所述胶浆为反光粉末和可固化透明胶体通过研磨形成的均匀混合物。
  25. 根据权利要求24所述的闪烁体反射层制备方法,其中,在所述胶浆内添加有固化剂、消泡剂和稀释剂中的一种或多种。
  26. 根据权利要求13所述的闪烁体反射层制备方法,其中,所述闪烁体块(10)为表面未设置反射层的裸闪烁体块。
PCT/CN2019/109928 2018-12-19 2019-10-08 闪烁体反射层制备模具及方法 WO2020125139A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811551424.1 2018-12-19
CN201811551424.1A CN109501330A (zh) 2018-12-19 2018-12-19 闪烁体反射层制备模具
CN201811551446.8 2018-12-19
CN201811551446.8A CN111337969B (zh) 2018-12-19 2018-12-19 闪烁体反射层制备方法

Publications (1)

Publication Number Publication Date
WO2020125139A1 true WO2020125139A1 (zh) 2020-06-25

Family

ID=71102044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109928 WO2020125139A1 (zh) 2018-12-19 2019-10-08 闪烁体反射层制备模具及方法

Country Status (1)

Country Link
WO (1) WO2020125139A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0528676B1 (en) * 1991-08-21 1997-04-09 General Electric Company A solid state radiation imager having a reflective and protective coating
KR20100052612A (ko) * 2008-11-11 2010-05-20 서준석 플라스틱 섬광체와 그 제조방법
CN103668465A (zh) * 2012-09-11 2014-03-26 上海联影医疗科技有限公司 闪烁探测器晶体模块的制作模具及方法
CN104037185A (zh) * 2014-05-06 2014-09-10 友达光电股份有限公司 光检测器及其制造方法
CN203838347U (zh) * 2014-04-25 2014-09-17 中国科学院宁波材料技术与工程研究所 闪烁体阵列制备模具
CN105403907A (zh) * 2015-12-02 2016-03-16 沈阳东软医疗系统有限公司 一种闪烁晶体块及其制备方法、闪烁晶体探测器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0528676B1 (en) * 1991-08-21 1997-04-09 General Electric Company A solid state radiation imager having a reflective and protective coating
KR20100052612A (ko) * 2008-11-11 2010-05-20 서준석 플라스틱 섬광체와 그 제조방법
CN103668465A (zh) * 2012-09-11 2014-03-26 上海联影医疗科技有限公司 闪烁探测器晶体模块的制作模具及方法
CN203838347U (zh) * 2014-04-25 2014-09-17 中国科学院宁波材料技术与工程研究所 闪烁体阵列制备模具
CN104037185A (zh) * 2014-05-06 2014-09-10 友达光电股份有限公司 光检测器及其制造方法
CN105403907A (zh) * 2015-12-02 2016-03-16 沈阳东软医疗系统有限公司 一种闪烁晶体块及其制备方法、闪烁晶体探测器

Similar Documents

Publication Publication Date Title
US10448908B2 (en) Radiographic imaging apparatus and imaging system
US8693066B2 (en) Image reading device and method for manufacturing the same
US20100265597A1 (en) Rectangular stacked glass lens module with alignment member and manufacturing method thereof
CN1673773A (zh) 辐射检测器及其制造方法
CN208930725U (zh) 一种连续光固化3d打印机的料槽装置
JP4338938B2 (ja) シンチレータ装置、x線検出器、x線検査装置、及び、シンチレータ装置を製造する方法
CN105940262B (zh) 具有自对准预制透镜的发光设备
US20180198032A1 (en) Process Method for Refining Photoconverter to Bond-Package LED and Refinement Equipment System
WO2020125139A1 (zh) 闪烁体反射层制备模具及方法
WO2013146167A1 (ja) シンチレータデュアルアレイの製造方法
CN111337969B (zh) 闪烁体反射层制备方法
US20160172414A1 (en) Radiation imaging apparatus, method of manufacturing the same, and radiation inspection apparatus
CN210166546U (zh) 一种镜片胶合装置
US9702985B2 (en) Method for producing radiation detector
US9046615B2 (en) Production method of scintillator array
CN209580556U (zh) 闪烁体反射层制备模具
CN109501330A (zh) 闪烁体反射层制备模具
US10267926B2 (en) Radiation detector, and radiation tomography device provided with same
US8649647B2 (en) Method of manufacturing a light guide assembly
CN109453962B (zh) 一种镜头防水自动点胶工艺
CN103558627B (zh) 一种贴膜式硅酸钇镥阵列、制造该贴膜式硅酸钇镥阵列的夹具及制造方法
CN216013799U (zh) 基于3d打印制造的显微成像及光学传感物联网系统
KR101621387B1 (ko) X-선 디지털 촬영 장치용 형광판 및 이를 포함하는 x-선 검출기
CN202601617U (zh) 光感测装置
CA2968415C (en) Mammography detector with small chest distance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899956

Country of ref document: EP

Kind code of ref document: A1