WO2020125093A1 - 泵体组件及转缸活塞压缩机 - Google Patents

泵体组件及转缸活塞压缩机 Download PDF

Info

Publication number
WO2020125093A1
WO2020125093A1 PCT/CN2019/105976 CN2019105976W WO2020125093A1 WO 2020125093 A1 WO2020125093 A1 WO 2020125093A1 CN 2019105976 W CN2019105976 W CN 2019105976W WO 2020125093 A1 WO2020125093 A1 WO 2020125093A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
hole
shaft
oil
fitting
Prior art date
Application number
PCT/CN2019/105976
Other languages
English (en)
French (fr)
Inventor
魏会军
胡余生
徐嘉
李直
杜忠诚
杨森
任丽萍
梁社兵
张荣婷
史正良
丁宁
刘一波
郭霜
廖李平
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811544546.8A external-priority patent/CN109595157B/zh
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Publication of WO2020125093A1 publication Critical patent/WO2020125093A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft

Definitions

  • the present disclosure relates to the technical field of compressors, and in particular to a pump body assembly and a rotary cylinder piston compressor.
  • the rotary cylinder piston compressor adopts a cross-slider structure principle, combining the main structure of the piston compressor and the main structure of the rotor compressor.
  • the related rotary cylinder piston compressor includes: a rotary shaft, a piston sleeved outside the rotary shaft, and a cylinder sleeved outside the piston; refer to Figure 1, O1 is the center of the shaft, O2 is the center of the cylinder, e is the center of the circle, and the square is the piston Centroid.
  • O1 is the center of the shaft
  • O2 is the center of the cylinder
  • e is the center of the circle
  • the square is the piston Centroid.
  • the rotating shaft and the cylinder are eccentrically assembled.
  • the rotating shaft drives the cylinder to rotate through the piston. Due to the eccentric relationship between the rotating shaft and the cylinder, when running, The rotating shaft and the cylinder rotate around their respective axes, and the piston reciprocates relative to the cylinder to achieve gas compression.
  • the rotating shaft is provided with an inner hole extending in the axial direction, and at least one oil supply hole extending in the radial direction, the oil supply hole penetrates along the hole wall of the inner hole to the outer peripheral wall of the rotating shaft, In this way, the oil entering from the inner hole is supplied to the joint between the rotating shaft and the piston to lubricate the movement between the rotating shaft and the piston.
  • This form of lubrication has limited lubrication between the shaft and the piston.
  • the pump body assembly includes: a rotating shaft with a shaft inner hole provided therein, the shaft inner hole extending along an axial direction of the rotating shaft; the rotating shaft is provided with a first assembly portion, The first assembly part is provided with a shaft oil hole, and the shaft oil hole communicates with the shaft inner hole;
  • the piston is provided with a rotating shaft mounting hole suitable for the rotating shaft to pass through, and the hole wall of the rotating shaft mounting hole is provided with a second assembling portion, the second assembling portion is in contact with the first assembling portion;
  • the piston is configured to reciprocate relative to the rotating shaft under the rotation of the rotating shaft;
  • the shaft oil groove is provided in the first assembly part and communicates with the shaft oil hole
  • the shaft oil hole is used to guide the oil in the inner hole of the shaft between the first assembling part and the second assembling part.
  • the shaft oil groove extends in the axial direction of the rotating shaft.
  • the first assembling portion includes two first planes that are provided on the rotating shaft and are oppositely arranged, and the second assembling portion includes a hole wall provided on the rotating shaft mounting hole and are disposed oppositely Second plane.
  • the shaft oil groove is provided in a non-center area of the first fitting portion.
  • the upstream area of the first assembly portion is a shaft-fitting bearing area
  • the downstream area of the first assembly portion is a shaft-fitting non-loading area
  • the shaft oil groove is provided A non-load bearing area is fitted on the shaft.
  • the inner circle matching oil guide groove is spiral; the inner circle matching oil guide groove is provided on the outer peripheral surface of the boss, and the rotation direction of the inner circle matching oil guide groove is opposite to the cylinder The rotation direction of the inner circle matching member is opposite; or, the inner circle matching oil guide groove is provided on the hole wall of the rotating shaft hole, and the rotation direction of the inner circle matching oil guide groove is opposite to that of the cylinder The direction of rotation of the inner circle fittings is the same.
  • the pump body assembly includes:
  • the rotating shaft includes a shaft body and a shaft inner hole provided in the shaft body, the shaft inner hole extends along the axial direction of the shaft body; the shaft body has a first assembly part that cooperates with the piston, The outer peripheral wall of the first assembly part has two first planes arranged oppositely, and the rotating shaft reciprocates relative to the piston in a direction parallel to the first plane; At least one shaft oil hole is interposed between the first planes;
  • the piston is provided with a rotating shaft mounting hole suitable for the rotating shaft to pass through, and the hole wall of the rotating shaft mounting hole has two oppositely disposed second planes, the second plane cooperates with the first plane on the corresponding side ;
  • At least one shaft oil groove is provided on at least one of the first planes and extends along the axial direction of the shaft body, and the shaft oil groove communicates with the shaft oil hole.
  • the shaft oil groove extends from one end to the other end of the first plane.
  • the shaft oil groove is linear.
  • a plurality of shaft oil holes are provided between the hole wall of the shaft inner hole and the corresponding first plane.
  • each of the first planes is provided with at least one shaft oil groove.
  • each of the first planes is provided with one shaft oil groove.
  • the shaft oil groove is eccentrically arranged on the first plane.
  • an area on the first plane moving toward the corresponding second plane is a shaft-fitting bearing area, and faces away from the corresponding second plane
  • the moving area is a shaft-fitting non-load-bearing area
  • the shaft oil groove is provided on the shaft-matching non-bearing area.
  • the shaft oil hole extends in a radial direction of the shaft body.
  • the pump body assembly further includes:
  • the cylinder is sleeved outside the piston, and is provided with a piston mounting hole suitable for mounting the piston, and the piston is adapted to reciprocate relative to the cylinder in the piston mounting hole;
  • the cylinder liner is provided with a cylinder installation cavity adapted to install the cylinder, and the cylinder is adapted to rotate relative to the cylinder liner in the cylinder installation cavity.
  • the cylinder includes:
  • a cylinder body, the peripheral wall of the cylinder body is penetratingly provided with the piston mounting hole;
  • At least one cylinder oil guide hole extends through the hole wall of the piston mounting hole to the outer circumferential surface of the cylinder.
  • the cylinder liner is provided with an air suction port that communicates with the cylinder installation cavity, and the cylinder oil guide hole is arranged offset from the air suction port.
  • the piston is provided with a rotation shaft mounting hole suitable for the rotation shaft to pass through, and at least one oil outlet hole is provided on a side wall of the piston corresponding to the cylinder oil guide hole, the The oil outlet extends from the hole wall of the rotating shaft mounting hole to the outer peripheral surface of the piston.
  • the pump body assembly further includes two end face fittings, which are respectively provided at both ends of the cylinder and connected to the cylinder liner.
  • the pump body assembly further includes at least one evacuation structure provided on at least one end face of the end face fitting facing the cylinder, or on at least one end face of the cylinder and the cylinder liner
  • the evacuation structure includes at least one oil drain groove, which extends from the inner peripheral surface of the end face fitting to the outer peripheral surface of the end face fitting, or by the cylinder corresponding to the inside of the end face fitting The peripheral surface extends to the outer peripheral surface of the cylinder liner.
  • the evacuation structure is provided on at least one end face of the end face fitting toward the cylinder, and the oil drain groove extends from the inner peripheral surface of the end face fitting to the end face of the end face fitting Outer peripheral surface.
  • the shelter structure further includes at least one shelter groove that extends along the circumferential direction of the end face fitting and communicates with the oil drain groove.
  • the cylinder liner is provided with an exhaust port that communicates with the installation cavity of the cylinder;
  • the end face of the cylinder has a first mating portion, and the first mating portion is under the pressure of the exhaust port Has a tendency to move toward the corresponding end face fitting;
  • a position on the side of the end face fitting facing the cylinder corresponding to the first fitting part is a second fitting part, and at least one pressure groove is provided on the second fitting part of at least one end face fitting
  • the pressure groove is suitable for passing pressure oil and/or pressure gas to reduce or eliminate the tendency of the first fitting portion to move toward the corresponding end face fitting.
  • the cylinder is provided with a shaft hole
  • the pump body structure further includes:
  • At least one inner circle fitting the inner circle fitting includes a fitting body, and a boss extending from the fitting body; the boss is adapted to extend into the rotating shaft hole and be connected to the rotating shaft The hole wall of the hole fits; the maximum length of the fitting body in the radial direction of the cylinder is greater than the diameter of the rotating shaft hole; the cylinder rotates relative to the inner circular fitting;
  • An inner circle matching oil guide groove is provided on the outer peripheral surface of the boss, and extends from the end of the boss away from the mating body to the mating body; or, the inner circle fits
  • the oil guide groove is provided on the hole wall of the rotating shaft hole, and extends from the hole wall of the piston mounting hole to the outer end surface of the cylinder.
  • it further includes a ring-shaped inner circle matching oil storage groove provided on the outer peripheral surface of the boss and/or the hole wall of the rotating shaft hole; the inner circle The cooperating oil storage groove communicates with an end of the inner circular cooperating oil guide groove away from the cooperating body.
  • the mating body is provided with an inner circular cooperating oil drain hole
  • the inner circular cooperating oil drain hole is a through hole penetrating the mating body in the axial direction and cooperating with the inner circle oil guide groove The end remote from the piston mounting hole communicates.
  • the cylinder includes a cylinder body, and a convex shaft extending outward from at least one end of the cylinder body, the convex shaft is provided with a rotating shaft hole and at least one convex shaft oil guide hole;
  • the rotating shaft hole is suitable for mounting a rotating shaft;
  • the convex shaft oil guide hole penetrates the side wall of the convex shaft and communicates with the rotating shaft hole; and the pump body structure further includes:
  • At least one outer-circumferential fitting the outer-circular fitting having a fitting hole adapted to fit into the convex shaft; the diameter of the fitting hole is smaller than the outer diameter of the cylinder; the cylinder is relative to the outer fitting Turn
  • An outer circular matching oil guide groove which is provided on the hole wall of the matching hole, and extends from the end wall of the matching hole toward the end of the cylinder body to an end away from the cylinder body; or
  • the outer-circumferential cooperating oil guide groove is provided on the outer circumferential surface of the convex shaft, and the end connected from the convex shaft to the cylinder body extends to the end away from the cylinder body.
  • it further includes a ring-shaped outer-circumferential matching oil storage groove, which is provided on the hole wall of the matching hole and/or the outer circumferential surface of the convex shaft; the outer A circular matching oil storage groove communicates with an end of the outer circular matching oil guide groove facing the cylinder body.
  • a rotary cylinder piston compressor includes the pump body assembly described above.
  • the pump body assembly includes: a rotating shaft, including a shaft body, and a shaft bore provided in the shaft body, the shaft bore extending along the axis of the shaft body; the shaft The body has a first engaging portion that cooperates with the piston, an outer peripheral wall of the first engaging portion has two first planes disposed oppositely, and the rotating shaft reciprocates relative to the piston in a direction parallel to the first plane Movement; at least one shaft oil hole is provided between the hole wall of the shaft inner hole and the first plane; the piston is provided with a shaft mounting hole suitable for the shaft to pass through, the shaft mounting hole The hole wall has two oppositely disposed second planes, the second plane cooperates with the first plane on the corresponding side; at least one shaft oil groove is provided on at least one first plane and along the shaft body Extending axially, the shaft oil groove communicates with the shaft oil hole.
  • the oil in the shaft inner hole can flow into the shaft oil groove through the shaft oil hole, thereby bettering the rotation shaft and the piston
  • the lubrication effectively reduces the wear between the rotating shaft and the piston, improves the service life of the pump body structure and compressor of the cylinder with this structure, and improves the reliability of the pump body structure and compressor.
  • the shaft oil groove is linear. In this way, the oil in the shaft oil groove can be quickly diffused, thereby achieving better lubrication between the rotating shaft and the piston.
  • each of the first planes is provided with at least one shaft oil groove. In this way, it is possible to lubricate the planes on both sides of the rotating shaft and the corresponding walls of the mounting holes of the rotating shaft, thereby obtaining a better lubrication effect.
  • an area on the first plane moving toward the corresponding second plane is a shaft-fitting bearing area, and faces away from the corresponding The area where the two planes move is the shaft matching non-bearing area, and the shaft oil groove is provided on the shaft matching non-bearing area.
  • Figure 1 is a schematic diagram of the principle of the cross slider structure
  • FIG. 2 is a perspective exploded schematic view of the pump body assembly provided in Embodiment 1 of the present disclosure
  • FIG. 3 is a perspective assembly diagram of the pump body assembly shown in FIG. 2 in a state where the rotating shaft and the piston are engaged;
  • FIG. 4 is a perspective schematic view of the rotating shaft of the pump body assembly shown in FIG. 2;
  • FIG. 5 is a schematic cross-sectional view of the rotating shaft shown in FIG. 3;
  • FIG. 6 is a schematic perspective structural view of a cylinder of the pump body assembly shown in FIG. 2;
  • FIG. 7 is a schematic cross-sectional view of the cylinder and cylinder liner shown in FIG. 6 in a mated state
  • FIG. 8 is a schematic perspective structural view of the piston of the pump body assembly shown in FIG. 2;
  • FIG. 9 is a schematic perspective view of the upper limit plate of the pump body assembly shown in FIG. 2;
  • FIG. 10 is a schematic cross-sectional view of the limit shown in FIG. 9;
  • FIG. 11 is a schematic perspective structural view of the lower limit plate of the pump body assembly shown in FIG. 2;
  • FIG. 12 is a schematic cross-sectional view of the limit shown in FIG. 11;
  • FIG. 13 is a perspective schematic view of the lower flange of the pump body assembly shown in FIG. 2;
  • FIG. 14 is a schematic cross-sectional view of the lower flange shown in FIG. 13;
  • FIG. 15 is a schematic cross-sectional view in the assembled state of the pump body assembly shown in FIG. 2;
  • FIG. 16 is an enlarged schematic view of area A in FIG. 15;
  • FIG. 17 is a schematic perspective view of the upper limit plate of the pump body assembly shown in FIG. 2 after the evacuation groove is removed;
  • FIG. 18 is a schematic cross-sectional view of the upper limit plate shown in FIG. 17;
  • FIG. 19 is an enlarged schematic view of area B in FIG. 15;
  • FIG. 20 is a schematic cross-sectional view of the pump body assembly provided in Embodiment 2 of the present disclosure.
  • FIG. 21 is a schematic bottom view of the upper flange of the pump body structure shown in FIG. 20;
  • FIG. 22 is a schematic cross-sectional view of the upper flange shown in FIG. 21;
  • FIG. 23 is a schematic plan view of the lower limit plate of the pump body structure shown in FIG. 20;
  • FIG. 24 is a schematic cross-sectional view of the lower limit plate shown in FIG. 23;
  • 1-rotating shaft 11-axis body, 111-first plane, 12-axis inner hole, 13-axis oil hole, 14-axis oil groove,
  • some embodiments of the present disclosure provide a pump body assembly with a better lubricating effect between the rotating shaft and the piston and Rotary cylinder piston compressor.
  • the pump body assembly includes: a rotating shaft 1 in which a shaft inner hole 12 is provided, and the shaft inner hole 12 extends along the axial direction of the rotating shaft 1; the rotating shaft 1 is provided with a first assembling portion, and the first assembling portion is provided with The shaft oil hole 13 communicates with the shaft inner hole 12;
  • the piston 2 is provided with a rotating shaft mounting hole 21 suitable for the rotating shaft 1 to pass through.
  • the hole wall of the rotating shaft mounting hole 21 is provided with a second assembling portion, which is in contact with the first assembling portion; the piston 2 is configured to The rotation of the rotary shaft 1 reciprocates relative to the rotary shaft 1;
  • the shaft oil groove 14 is provided in the first assembly part and communicates with the shaft oil hole 13;
  • the shaft oil hole 13 is used to guide the oil in the inner hole of the shaft between the first assembling part and the second assembling part.
  • the shaft oil groove 14 extends in the axial direction of the rotating shaft 1.
  • the first assembling portion includes two first planes 111 disposed on the rotating shaft 1 and opposite to each other, and the second assembling portion includes a hole wall disposed on the rotating shaft mounting hole 21 and a second surface 22 disposed opposite .
  • the shaft oil groove 14 is provided in a non-central area of the first fitting portion.
  • the upstream area of the first assembly portion is a shaft-fitting bearing area
  • the downstream area of the first assembly portion is a shaft-fitting non-loading area
  • the shaft oil groove 14 is provided in the shaft fitting non-loading area .
  • the pump body assembly further includes:
  • the cylinder 3 is sleeved outside the piston 2 and is provided with a piston mounting hole 31 suitable for mounting the piston 2.
  • the piston 2 is adapted to reciprocate relative to the cylinder 3 in the piston mounting hole 31;
  • the cylinder liner 4 is provided with a cylinder installation cavity 41 suitable for installing the cylinder 3.
  • the cylinder 3 is adapted to rotate relative to the cylinder liner 4 in the cylinder installation cavity 41.
  • the cylinder 3 is provided with a shaft hole 34, and the pump body structure further includes:
  • the inner circle fitting includes a fitting body 721, and a boss 722 extending from the fitting body 721; the boss 722 is adapted to be extended into the shaft hole 34 and is connected to the hole wall of the shaft hole 34 Fit; the maximum length of the fit body 721 in the radial direction of the cylinder 3 is larger than the diameter of the shaft hole 34; the cylinder 3 rotates relative to the inner circle fitting;
  • the inner circle matching oil guide groove 81 is provided on the outer peripheral surface of the boss 722, and extends from the end of the boss 722 away from the fitting body 721 to the fitting body 721; or, the inner circle matching oil guide groove 81 is provided on the rotating shaft
  • the hole wall of the hole 34 extends from the hole wall of the piston mounting hole 31 to the outer end surface of the cylinder 3.
  • the inner circular matching oil guide groove 81 is spiral, the inner circular matching oil guide groove 81 is provided on the outer circumferential surface of the boss 722, and the rotation direction of the inner circular matching oil guide groove 81 and the cylinder 3 are opposite to the inner circular matching member The direction of rotation is opposite; or, the inner circle matching oil guide groove 81 is provided on the hole wall of the rotating shaft hole 34, and the rotation direction of the inner circle matching oil guide groove 81 is the same as the rotation direction of the cylinder 3 relative to the inner circle matching member.
  • this embodiment provides a pump body assembly, including a rotating shaft 1, a piston 2, a shaft oil groove 14, a cylinder 3, and a cylinder sleeve 4.
  • the rotating shaft 1 is installed in the piston 2 and includes a shaft body 11 and a shaft inner hole 12 provided in the shaft body 11.
  • the shaft inner hole 12 extends along the axial direction of the shaft body 11;
  • An assembling part, the outer peripheral wall of the first assembling part has two first planes 111 arranged oppositely, and the rotating shaft 1 reciprocates relative to the piston 2 in a direction parallel to the first plane 111;
  • a plurality of shaft oil holes 13 are penetrated between 111.
  • the rotating shaft 1 and the cylinder 3 are arranged eccentrically.
  • only one shaft oil hole 13 may be provided between the hole wall of the shaft inner hole 12 and the corresponding first plane 111.
  • the piston 2 is installed in the cylinder 3, and is provided with a rotation shaft mounting hole 21 suitable for the rotation shaft 1 to pass through.
  • the hole wall of the rotation shaft mounting hole 21 has two oppositely disposed second planes 22, and the second plane 22 and the corresponding side A plane 111 fits.
  • the shaft oil groove 14 has two, which are respectively disposed on two first planes 111 and extend along the axial direction of the shaft body 11.
  • the shaft oil groove 14 communicates with the shaft oil hole 13. In this way, it is possible to lubricate the planes on both sides of the rotating shaft 1 and the corresponding walls of the mounting holes 21 of the rotating shaft, thereby obtaining a better lubrication effect.
  • the cylinder 3 is sleeved outside the piston 2 and is provided with a piston mounting hole 31 suitable for mounting the piston 2.
  • the piston 2 is adapted to reciprocate relative to the cylinder 3 in the piston mounting hole 31.
  • the cylinder liner 4 is provided with a cylinder installation cavity 41 adapted to install the cylinder 3, and the cylinder 3 is adapted to rotate relative to the cylinder liner 4 in the cylinder installation cavity 41.
  • the rotating shaft 1 rotates so that the piston 2 reciprocates relative to the cylinder 3 and drives the cylinder 3 to rotate relative to the cylinder liner 4.
  • the oil in the shaft inner hole 12 can flow into the shaft oil groove 14 through the shaft oil hole 13 to align the shaft 1
  • Better lubrication between the piston and the piston 2 effectively reduces the wear between the rotating shaft 1 and the piston 2, improves the service life of the pump body structure and compressor of the cylinder 3 with this structure, and improves the pump body Structure and reliability of the compressor.
  • the specific length of the shaft oil groove 14 is not limited. In some embodiments, the shaft oil groove 14 extends from one end to the other end of the first plane 111.
  • the specific shape of the shaft oil groove 14 may be various, and the shaft oil groove 14 in this embodiment is linear. In this way, the oil in the shaft oil groove 14 can be quickly diffused, thereby achieving better lubrication between the rotating shaft 1 and the piston 2.
  • the shaft oil groove 14 may be curved such as an arc or a wave.
  • the specific positions of the shaft oil groove 14 on the first plane 111 can be various.
  • the shaft oil groove 14 is eccentrically arranged on the first plane 111.
  • the shaft oil groove 14 may be provided in the center of the first plane 111.
  • the shaft oil groove 14 is provided on the shaft matching non-loading area.
  • the shaft oil hole 13 in this embodiment extends along the radial direction of the shaft body 11.
  • the cylinder 3 includes a cylinder body and at least one cylinder oil guide hole 33.
  • a piston mounting hole 31 is opened through the peripheral wall of the cylinder body.
  • the cylinder oil guide hole 33 extends through the hole wall of the piston mounting hole 31 to the outer circumferential surface of the cylinder 3.
  • the oil in the piston mounting hole 31 can flow to the outer circumferential surface of the cylinder 3 through the cylinder oil guide hole 33, thereby lubricating between the cylinder 3 and the cylinder liner 4, effectively This reduces the wear that occurs between the cylinder 3 and the cylinder liner 4, improves the service life of the pump body structure and compressor of the cylinder 3 with this structure, and at the same time improves the reliability of the pump body structure and compressor.
  • the cylinder oil guide hole 33 extends in the radial direction of the cylinder body.
  • the specific shape of the cylinder oil guide hole 33 is not limited, and the cylinder oil guide hole 33 in this embodiment is linear. As an alternative embodiment, the cylinder oil guide hole 33 may be curved such as an arc or a wave.
  • the piston mounting hole 31 divides the peripheral wall of the cylinder body into two opposing cylinder side walls.
  • each cylinder side wall At least one cylinder oil guide hole 33 is provided.
  • the cylinder oil guide hole 33 may be provided on only one cylinder side wall.
  • the number of cylinder oil guide holes 33 provided on each cylinder side wall is not limited. In some embodiments, two cylinder oil guide holes 33 are provided on each cylinder side wall. As an alternative embodiment, one or three cylinder oil guide holes 33 may be provided on each cylinder side wall.
  • each cylinder side wall There may be various specific positions of the cylinder oil guide holes 33 on the cylinder side wall.
  • each cylinder side The two cylinder oil guide holes 33 in the wall are respectively provided at both ends of the cylinder side wall.
  • the cylinder liner 4 is provided with an intake port that communicates with the cylinder installation cavity 41, and the cylinder oil guide hole 33 and the intake port are staggered. Since the cylinder oil guide hole 33 is usually high pressure and the suction port is usually low pressure, the cylinder oil guide hole 33 and the suction port are staggered, which can effectively prevent the oil in the cylinder oil guide hole 33 from leaking to the suction port , To further ensure the lubrication effect and compressor performance.
  • the piston 2 is provided with a shaft mounting hole 21 suitable for the shaft 1 to pass through.
  • the piston 2 and the cylinder guide oil The side wall corresponding to the hole 33 is provided with at least one oil outlet hole 23.
  • the oil outlet hole 23 extends from the hole wall of the rotating shaft mounting hole 21 to the outer circumferential surface of the piston 2.
  • An oil hole 23 is provided on the piston 2 to allow the oil in the rotating shaft mounting hole 21 to flow to the outer peripheral surface of the piston 2 through the oil hole 23, thereby lubricating between the piston 2 and the cylinder 3, effectively reducing the The wear and tear generated between the cylinders 3 improves the service life and reliability of the pump body structure and compressor.
  • the oil outlet hole 23 and the cylinder oil guide hole 33 in this embodiment are staggered Settings.
  • At least one oil outlet 23 is provided on two opposite side walls corresponding to the piston 2 and the cylinder oil guide 33. This can make the lubrication between the piston 2 and the cylinder 3 more even in the circumferential direction.
  • the specific number of the oil outlet holes 23 is not limited. In some embodiments, two opposite side walls of the piston 2 and the cylinder oil guide holes 33 are respectively provided with an oil outlet hole 23. As an alternative embodiment, two or three oil outlet holes 23 may be provided on two opposite side walls corresponding to the piston 2 and the cylinder oil guide hole 33 respectively.
  • the specific location of the oil outlet hole 23 on the side wall of the piston 2 may be various.
  • the oil outlet hole 23 in this embodiment is located in the middle of the side wall of the piston 2.
  • the oil outlet hole 23 may also be located at the upper or lower position in the middle of the side wall of the piston 2.
  • the pump body assembly provided in this embodiment further includes two end face fittings.
  • the two end face fittings are respectively provided at both ends of the cylinder 3 and connected to the cylinder liner 4.
  • the two end face fittings are provided with through holes that allow the rotating shaft 1 to pass through.
  • At least one end face fitting is provided with a evacuation structure at its end facing the cylinder 3.
  • the evacuation structure includes at least one oil drain groove 61.
  • the oil drain groove 61 extends from the inner peripheral surface of the end face fitting to the outer peripheral surface of the end face fitting.
  • the oil in the cylinder installation cavity 41 can enter the oil drain groove 61 During the rotation of the cylinder 3, the oil flows from the inner peripheral surface of the end face fitting to the outer peripheral surface of the end face fitting under the action of centrifugal force in the oil drain groove 61.
  • a evacuation structure may be provided on at least one end surface of the cylinder 3 toward the end surface fitting, and the oil drain groove 61 extends from the inner circumferential surface of the cylinder 3 to the outer circumferential surface of the cylinder 3.
  • At least one evacuation structure is provided at the end of each end face fitting facing the cylinder 3. In this way, sufficient lubrication can be performed between the cylinder 3 and the end fittings at both ends, which effectively reduces the wear between the cylinder 3 and the end fittings, and further improves the service life and reliability of the pump body structure and compressor Sex.
  • a evacuation structure may also be provided on only one end face fitting.
  • each end face fitting is not limited. In some embodiments, an end of each end face fitting toward the cylinder 3 is provided with an evacuation structure. As an alternative embodiment, the end of each end face fitting facing the cylinder 3 may also be provided with two or three evacuation structures.
  • the specific shape of the oil drain groove 61 may be various, and the oil drain groove 61 in this embodiment is linear. As an alternative embodiment, the oil drain groove 61 may be curved such as an arc or a wave.
  • the specific extension method of the oil drain groove 61 on the end face fitting is not limited. In some embodiments, the oil drain groove 61 extends in the radial direction of the end face fitting.
  • the specific number of oil drain grooves 61 in the air avoidance structure is not limited, and the air escape structure in this embodiment includes one oil drain groove 61.
  • the evacuation structure may also include two or three oil drain grooves 61.
  • the evacuation structure further includes at least one evacuation groove 62.
  • the evacuation groove 62 extends along the circumferential direction of the end face fitting and communicates with the oil discharge groove 61.
  • the provision of the evacuation groove 62 can, on the one hand, lubricate the cylinder 3 and the end face fitting more fully, and on the other hand, can reduce the contact area between the cylinder 3 and the end face fitting end face, thereby reducing friction loss and reducing
  • the friction heat between the cylinder 3 and the end face fittings can also be discharged through the oil in the relief groove 62 and the oil discharge groove 61.
  • the relief groove 62 may be provided on the end surface of the cylinder 3 and extend in the circumferential direction of the cylinder 3.
  • the specific shape of the shelter groove 62 may be various, and the shelter groove 62 in this embodiment is ring-shaped. In this way, more sufficient lubrication can be performed between the cylinder 3 and the end face fittings.
  • the evacuation groove 62 may have a semi-annular shape or an excellent arc shape.
  • the specific number of the evacuation grooves 62 in the evacuation structure can be various, and can be flexibly selected according to requirements.
  • the evacuation structure includes a plurality of evacuation grooves 62, and the evacuation grooves 62 are distributed at intervals in the radial direction of the end face fitting.
  • the shelter structure may include only one shelter 62.
  • the specific position of the evacuation groove 62 on the end face fitting is not limited. In some embodiments, the evacuation groove 62 is provided near the inner circumferential surface of the end face fitting.
  • the two end face fittings may be various.
  • the two end face fittings may both be limit plates, and are an upper limit plate 51 and a lower limit plate 52, respectively.
  • both end face fittings are flanges.
  • both ends of the cylinder 3 may be internally fitted through an upper flange 71 and a lower flange 72, or separately.
  • the outer circle is matched by the upper limit plate 51 and the lower limit plate 52, and both ends can be simultaneously matched by the inner and outer circles, one end can be simultaneously matched by the inner and outer circles, and the other end is matched by the inner or outer circle; when the cylinder 3 includes When the cylinder body and a convex shaft, the end of the cylinder 3 without the convex shaft can be internally fitted through the flange, and the end with the convex shaft can be internally fitted through the flange or externally fitted through the limit plate; when the cylinder 3 When only the cylinder body is included, and the convex shafts are not provided at both ends, generally the two ends of the cylinder 3 are internally fitted through flanges.
  • the inner circle fit refers to the fit with the rotating shaft hole 34 of the cylinder 3
  • the outer circle fit refers to the fit with the outer edge of the cylinder 3 in the circumferential direction.
  • the cylinder 3 includes a cylinder body, and convex shafts respectively extending outward from both ends of the cylinder body, wherein the lower end of the cylinder body is internally fitted through the lower flange 72 at the convex shaft, The upper end of the cylinder body is externally fitted through the upper limit plate 51 at the convex shaft.
  • the pump body assembly provided in this embodiment includes two limit plates and two flanges.
  • the two limit plates are an upper limit plate 51 and a lower limit plate 52, and the two flanges are an upper flange 71 and a flange.
  • Lower flange 72 is provided between them.
  • the upper limit plate 51 is provided between the upper flange 71 and the upper end of the cylinder 3
  • the lower limit plate 52 is provided between the lower flange 72 and the lower end of the cylinder 3.
  • the upper limit plate 51 is used to cooperate with the upper end of the cylinder 3 to support the cylinder 3 externally
  • the lower flange 72 is used to cooperate with the lower end of the cylinder 3 to support the cylinder 3 internally.
  • the upper flange 71 and the lower limit plate 52 are used to achieve the normal assembly limit with the cylinder 3.
  • the pump body assembly provided in this embodiment further includes an inner circular fitting.
  • the cylinder 3 is provided with a rotating shaft hole 34.
  • the rotating shaft hole 34 penetrates the cylinder 3 in the axial direction and is suitable for mounting the rotating shaft 1.
  • the piston mounting hole 31 penetrates the side wall of the cylinder 3 and is suitable for mounting the piston 2.
  • the inner circular fitting has one, which is arranged at the lower end of the cylinder 3, and includes a fitting body 721, and a boss 722 extending from the fitting body 721; the boss 722 is adapted to be extended into the shaft hole 34 and is connected to the shaft hole 34
  • the maximum length of the matching body 721 in the radial direction of the cylinder 3 is greater than the diameter of the shaft hole 34; the cylinder 3 rotates relative to the inner circular fitting.
  • the outer circumferential surface of the boss 722 is provided with an inner circular matching oil guide groove 81.
  • the inner circular matching oil guide groove 81 extends from the end of the boss 722 away from the matching body 721 to the matching body 721.
  • the hole wall of the rotating shaft hole 34 may be provided with an inner circle matching oil guide groove 81, and the inner circle matching oil guide groove 81 extends from the hole wall of the piston mounting hole 31 to the outer end surface of the cylinder 3.
  • the inner circular fitting oil guide groove 81 By providing an inner circular fitting oil guide groove 81 on the outer peripheral surface of the boss 722 or the hole wall of the rotating shaft hole 34, and the inner circular fitting oil guide groove 81 extends from the end of the boss 722 away from the fitting body 721 to the fitting body 721, or by the piston
  • the hole wall of the mounting hole 31 extends to the outer end surface of the cylinder 3, so that the oil sprayed during the rotation of the rotating shaft 1 can enter the inner-circumferential matching oil guide groove 81, so that the outer peripheral surface of the boss 722 and the hole wall of the rotating shaft hole 34 Lubrication between them effectively reduces the wear between the cylinder 3 and the inner circle fittings, and improves the service life and reliability of the pump body structure and compressor.
  • the specific shape of the mating body 721 can be various.
  • the mating body 721 is cylindrical and the outer diameter is larger than the diameter of the shaft hole 34.
  • the mating body 721 may also be a cylindrical body with a rectangular cross section.
  • the specific shapes of the inner circle matching oil guide groove 81 may be various.
  • the inner circle matching oil guide groove 81 is spiral.
  • the inner circle matching the oil guide groove 81 in this structural form can make the oil in the inner circle matching the oil guide groove 81 more adequately lubricate the outer peripheral surface of the boss 722 and the hole wall of the rotating shaft hole 34.
  • the inner circle matching oil guide groove 81 may be linear and extend in the axial direction of the boss 722.
  • the inner circle cooperates with the rotation direction of the oil guide groove 81 and the cylinder
  • the relationship between the rotation directions of 3 satisfies: when the cylinder 3 rotates relative to the inner circular fitting, a component force applied to the oil in the inner circular fitting oil guide groove 81 toward the fitting body 721 is applied.
  • the rotation direction of the inner circle matching oil guide groove 81 is opposite to the rotation direction of the cylinder 3 relative to the inner circle matching member.
  • the rotation direction of the inner circle matching oil guide groove 81 rotates with the cylinder 3 relative to the inner circle matching member The same direction.
  • an inner circle matching oil storage groove 82 is provided on the outer peripheral surface of the boss 722, the inner circle matching oil storage groove 82 is ring-shaped, and is separated from the matching body with the inner circle matching oil guide groove 81 One end of 721 is connected. In this way, the supply of oil at the end of the inner-circumferential mating oil guide groove 81 away from the mating body 721 can be ensured, thereby ensuring effective lubrication between the outer peripheral surface of the boss 722 and the hole wall of the rotating shaft hole 34.
  • an inner circle matching oil storage groove 82 is provided on the hole wall of the rotating shaft hole 34.
  • the outer circumferential surface of the boss 722 and the hole wall of the rotating shaft hole 34 are respectively provided with inner circle matching oil storage grooves 82.
  • the end of the boss 722 away from the matching body 721 is provided with an inner circle matching chamfer 83, the inner circle matching chamfer 83 and the shaft hole 34 Between the walls of the holes, an inner circle matching oil storage groove 82 is formed.
  • an end of the rotating shaft hole 34 facing the piston mounting hole 31 is provided with an inner circle matching chamfer 83, and the inner circle matching chamfer 83 and the outer peripheral surface of the boss 722 form an inner circle matching reservoir Oil tank 82.
  • the end of the boss 722 away from the mating body 721 is provided with an inner rounded chamfer 83, and the end of the shaft hole 34 facing the piston mounting hole 31 is also provided with an inner rounded chamfer 83;
  • the mating body 721 is provided with an inner circle matching oil drain hole 84.
  • the inner circle matching oil drain hole 84 is a through hole that penetrates the mating body 721 in the axial direction and is away from the piston with the inner circle matching oil guide groove 81 One end of the mounting hole 31 communicates.
  • the arrangement of the inner circle matching oil drain hole 84 can immediately discharge the oil in the inner circle matching oil guide groove 81 to the oil sump of the compressor, thereby forming an oil circuit circulation, and the oil in the inner circle matching oil guide groove 81 can be taken away in real time
  • the absorbed frictional heat between the outer peripheral surface of the boss 722 and the hole wall of the shaft hole 34 reduces the temperature of the friction pair formed between the outer peripheral surface of the boss 722 and the hole wall of the shaft hole 34 of the cylinder 3 and increases Compressor reliability.
  • the specific positions of the inner circle matching oil guide groove 81 on the boss 722 may be various.
  • the inner circle matching oil guide groove 81 is provided on the cylinder 3 in the non-load bearing area. Since the friction between the outer peripheral surface of the boss 722 at the matching bearing area of the cylinder 3 and the hole wall of the rotating shaft hole 34 is greater, the inner circular matching oil guide groove 81 is provided on the matching non-loading area of the cylinder 3 to ensure that the cylinder 3 fits and bears The continuity of the lubricating oil film at the zone, so as to ensure that the lubricating zone has a good lubricating effect, reduce the wear at the matching load zone of the cylinder 3, and thereby sufficiently reduce the outer peripheral surface of the boss 722 and the hole wall of the rotating shaft hole 34 of the cylinder At the same time, it also has the effect of preventing the stress concentration at the cylinder 3 matching the load bearing area.
  • the cylinder 3 includes a cylinder body and convex shafts extending outward from both ends of the cylinder body.
  • the hole wall of the rotating shaft hole 34 at the convex shaft is fitted with the outer circumferential surface of the inner circular fitting.
  • a convex shaft may extend from only one end of the cylinder body.
  • it is also possible that neither end of the cylinder body is provided with a convex shaft.
  • the pump body assembly provided in some embodiments further includes an oil inlet hole 85 provided on the mating body 721.
  • the oil inlet hole 85 penetrates the mating body 721 in the axial direction and is disposed near the boss 722.
  • the specific structural form of the inner circular fitting can be various.
  • the inner circular fitting in this embodiment is the lower flange 72.
  • the pump body assembly provided in this embodiment further includes an outer circular fitting.
  • a piston mounting hole 31 is provided on the cylinder body.
  • the convex shaft is provided with a rotating shaft hole 34 and at least one convex shaft oil guide hole; the rotating shaft hole 34 is suitable for mounting the rotating shaft 1; the convex shaft oil guide hole penetrates the side wall of the convex shaft and communicates with the rotating shaft hole 34.
  • the outer cylindrical fitting has one, which is provided on the upper end of the cylinder 3 and is provided with a fitting hole 711 suitable for being inserted into the convex shaft; the diameter of the fitting hole 711 is smaller than the outer diameter of the cylinder 3; the cylinder 3 rotates relative to the outer cylindrical fitting.
  • the outer circular matching oil guide groove 91 is provided on the hole wall of the matching hole 711, and the outer circular matching oil guide groove 91 is provided on the outer periphery of the convex shaft from the end of the matching hole 711 toward the end away from the cylinder body; On the surface, the end connected by the convex shaft and the cylinder body extends to the end away from the cylinder body.
  • the oil sprayed during the rotation of the rotating shaft 1 can be led out between the outer peripheral surface of the convex shaft and the hole wall of the fitting hole 711;
  • the outer wall of the hole or the outer peripheral surface of the convex shaft is provided with an outer circular matching oil guide groove 91, and the outer circular matching oil guide groove 91 extends from the hole wall of the matching hole 711 toward one end of the cylinder body to away from the cylinder body One end, or the end connected by the convex shaft and the cylinder body, extends to the end away from the cylinder body, so that the oil sprayed from the oil guide hole of the convex shaft during the rotation of the rotating shaft 1 can enter the outer circle guide In the oil groove 91, the outer surface of the convex shaft and the hole wall of the fitting hole 711 are lubricated, which effectively reduces the wear between the cylinder 3 and the outer fitting, and improves the service life of the pump body structure and the compressor. reliability.
  • the specific shape of the outer-circumferential matching oil-guiding groove 91 may be various.
  • the outer-circular matching oil-guiding groove 91 is linear and extends along the axial direction of the fitting hole 711 or the axial direction of the convex shaft.
  • the outer cylindrical matching oil guide groove 91 may also be spiral, and the relationship between the rotation direction of the outer cylindrical matching oil guide groove 91 and the rotation direction of the cylinder 3 satisfies: the cylinder 3 rotates relative to the outer ring fitting At this time, a force is applied to the oil in the outer circle matching oil guide groove 91 away from the cylinder body.
  • the specific position of the convex shaft oil guide hole is not limited, and the convex shaft oil guide hole in this embodiment is provided close to the cylinder body.
  • convex shaft oil guide holes there may be multiple specific numbers of the convex shaft oil guide holes. In some embodiments, there are two convex shaft oil guide holes, which are oppositely arranged on the convex shaft. As an alternative embodiment, the convex shaft oil guide hole may have only one. As an alternative embodiment, the convex shaft oil guide holes may have three or four, etc., and are evenly distributed along the circumferential direction of the convex shaft.
  • the pump body assembly provided in some embodiments further includes a ring-shaped outer oil storage groove 92 which is provided on the hole wall of the matching hole 711 and cooperates with the outer oil guide groove 91 toward the cylinder One end of the body is connected. This can ensure the supply of oil at the end of the cylindrical fitting oil guide groove 91 toward the cylinder body, thereby ensuring that effective lubrication can be performed between the outer peripheral surface of the convex shaft and the hole wall of the fitting hole 711.
  • the outer-circumferential oil reservoir 92 may be provided on the outer circumferential surface of the convex shaft.
  • the outer-circumferential matching oil reservoir 92 may also be provided on the hole wall of the matching hole 711 and the outer circumferential surface of the convex shaft.
  • the outer circle matching oil storage tank 92 There may be many specific ways to form the outer circle matching oil storage tank 92.
  • the end of the outer circle matching member facing the cylinder 3 is provided with a ring-shaped groove 93 at the matching hole 711.
  • the groove 93 and an outer circumferential surface of the convex shaft form an outer circumferential fitting oil storage groove 92.
  • the hole wall of the fitting hole 711 may be provided with a chamfer at the end facing the cylinder body, and an outer cylindrical fitting oil reservoir 92 is formed between the chamfer and the outer peripheral surface of the convex shaft.
  • the outer circular matching oil guide groove 91 is provided on the non-load bearing area of the cylinder 3. Since the friction between the outer peripheral surface of the convex shaft at the matching bearing area of the cylinder 3 and the hole wall of the fitting hole 711 is greater, the outer cylindrical matching oil guide groove 91 is provided on the matching non-loading area of the cylinder 3 to ensure that the cylinder 3 fits the bearing area The continuity of the lubricating oil film at the location ensures that the lubricating area has a good lubricating effect, reduces the wear at the matching bearing area of the cylinder 3, and thereby fully reduces the wear between the outer peripheral surface of the convex shaft and the hole wall of the fitting hole 711. It has the effect of preventing the concentration of stress at the cylinder 3 in the load bearing area.
  • the inner circle fitting part is provided with an outer circle fitting oil drain hole.
  • the outer circle fitting oil drain hole is a through hole penetrating the inner circle fitting part in the axial direction, and communicates with an end of the outer circle fitting oil guide groove 91 away from the cylinder body.
  • the setting of the outer circle matching oil drain hole can immediately discharge the oil in the outer circle matching oil guide groove 91 to the oil sump of the compressor, thereby forming an oil circuit circulation, and the oil in the outer circle matching oil guide groove 91 can take away and absorb in real time
  • the frictional heat between the outer peripheral surface of the convex shaft and the hole wall of the fitting hole 711 reduces the temperature of the friction pair formed between the outer peripheral surface of the convex shaft and the hole wall of the fitting hole 711, improving the reliability of the compressor.
  • outer-circumferential fitting there may be various specific structural forms of the outer-circumferential fitting, and the outer-circumferential fitting in this embodiment is the upper limit plate 51.
  • the inner circle fit refers to the rotation axis hole 34 of the cylinder 4 and the outer circle fit refers to the outer circumference of the cylinder 4.
  • This embodiment also provides a rotary-cylinder piston compressor, including the pump body assembly described above.
  • the pump body assembly provided in this embodiment differs from Embodiment 1 in that the cylinder 3 is provided with a convex shaft at only one end of the cylinder body, and the upper limit plate 51 and the lower Flange 72.
  • the cylinder liner 4 is provided with an exhaust port and an intake port that communicate with the cylinder installation cavity 41, respectively.
  • the end face of the cylinder 3 has a first fitting portion; the first fitting portion has a tendency to move toward the corresponding end face fitting under the pressure of the exhaust port;
  • the side of the end fitting facing the cylinder 3 corresponds to the first fitting portion is the second fitting portion 10, and the second fitting portion 10 of at least one end fitting is provided with at least one pressure groove 20, which is suitable for Pressure oil and/or pressure gas are introduced to reduce or eliminate the tendency of the first fitting portion to move toward the corresponding end face fitting.
  • the high pressure at the exhaust port applies a horizontal pressure to the cylinder 3, it will be applied to the cylinder 3 with a torque that makes the cylinder 3 have a tendency to tilt (especially when the cylinder 3 is only provided with a short shaft at one end, the cylinder 3 will be easier (Inclined), the first fitting portion has a tendency to move toward the corresponding end face fitting.
  • the pressure oil and/or pressure gas passing into the pressure groove 20 will cause the cylinder 3 to receive a torque opposite to the above-mentioned torque, so that The tendency of the first fitting portion to move toward the corresponding end face fitting is reduced or eliminated, thereby reducing the inclination of the cylinder 3 or avoiding the inclination of the cylinder 3.
  • At least one pressure groove 20 is provided on the second fitting portion 10 of each end face fitting. In this way, a torque opposite to the torque that makes the cylinder 3 have a tendency to tilt can be applied from both ends of the cylinder 3, thereby more effectively reducing the tilt of the cylinder 3 or preventing the cylinder 3 from tilting.
  • a pressure groove 20 may be provided on the second fitting portion 10 of only one end face fitting.
  • a pressure groove 20 is provided on the second fitting portion 10 of each end face fitting.
  • two or three pressure grooves 20 may also be provided on the second fitting portion 10 of each end face fitting.
  • the pressure tank 20 may pass pressure oil and/or pressure gas.
  • the pressure tank 20 communicates with the oil passage on the end fitting.
  • the oil passage of the end fitting has high-pressure oil and high-pressure gas flowing in from the rotating shaft 1. In this way, high-pressure oil and high-pressure gas can be supplied to the pressure tank 20 only through the oil circuit, which has the advantages of simple structure and easy implementation.
  • the specific shape of the pressure groove 20 can be various.
  • the pressure groove 20 is arc-shaped and extends along the circumferential direction of the end face fitting.
  • the pressure groove 20 may be linear or wavy.
  • the cylinder body and the convex shaft together form a shaft hole 34 suitable for the shaft 1 of the pump body structure to pass through.
  • the specific forms of the two end face fittings may have various forms.
  • the end face fitting piece matching the upper end face of the cylinder 3 is the upper flange 71
  • the end face fitting piece matching the lower end face of the cylinder 3 is the lower limit plate. 52.
  • both end face fittings are flanges.
  • both end face fittings are limit plates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Compressor (AREA)

Abstract

一种泵体组件及转缸活塞压缩机,泵体组件包括:转轴(1),包括轴本体,及设于轴本体中的轴内孔(12),轴内孔(12)沿轴本体的轴向延伸;轴本体具有与活塞配合的第一配合部,第一配合部的外周壁具有两相对设置的第一平面(111),转轴(1)相对于活塞(2)沿与第一平面(111)平行的方向往复运动;轴内孔(12)的孔壁与第一平面(111)之间贯穿设置有至少一个轴油孔(13);活塞(2),设有适于供转轴(1)穿过的转轴安装孔(21),转轴安装孔(21)的孔壁具有两相对设置的第二平面(22),第二平面(22)与对应侧的第一平面(111)相配合;至少一个轴油槽(14),设于至少一个第一平面(111)上,并沿轴本体的轴向延伸,轴油槽(14)与轴油孔(13)连通。该泵体组件可对转轴(1)和活塞(2)之间进行更好的润滑,减少转轴(1)和活塞(2)之间的磨损。

Description

泵体组件及转缸活塞压缩机
相关申请的交叉引用
本申请是以CN申请号为201811544546.8,申请日为2018年12月17日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及压缩机技术领域,具体涉及一种泵体组件及转缸活塞压缩机。
背景技术
转缸活塞压缩机采用一种十字滑块结构原理,将活塞压缩机主要结构和转子式压缩机主要结构相结合。相关的转缸活塞压缩机包括:转轴,套设于转轴外的活塞,及套设于活塞外的气缸;参阅图1,O1为转轴圆心,O2为气缸圆心,e为圆心距,方块为活塞质心。转轴转动时,带动活塞进行圆周运动,活塞相对于气缸中心的距离在0~e范围内运行,转轴与气缸成偏心装配,转轴通过活塞带动气缸旋转,由于转轴和气缸存在偏心关系,运行时,转轴和气缸分别绕各自的轴心旋转,相对于气缸,活塞作往复运动,实现气体压缩。
在上述的转缸活塞压缩机中,转轴上设有沿轴向延伸的内孔,及沿径向延伸的至少一个供油孔,供油孔沿内孔的孔壁贯穿至转轴的外周壁,以将从内孔进入的油供应至转轴与活塞的配合处,对转轴与活塞之间的运动进行润滑。这种形式的润滑,对转轴与活塞之间的润滑效果比较有限。
发明内容
依据本公开的一些实施例的一个方面,泵体组件包括:转轴,其内设有轴内孔,所述轴内孔沿所述转轴的轴向延伸;所述转轴设有第一装配部,所述第一装配部设有轴油孔,所述轴油孔与所述轴内孔连通;
活塞,设有适于供所述转轴穿过的转轴安装孔,所述转轴安装孔的孔壁设有第二装配部,所述第二装配部与所述第一装配部接触配合;所述活塞被配置为在所述转轴的转动下相对于所述转轴往复运动;以及
轴油槽,设于所述第一装配部,且与所述轴油孔连通;
其中,所述轴油孔用于将所述轴内孔的油引向所述第一装配部与所述第二装配部之间。
在一些实施例中,所述轴油槽沿所述转轴的轴向延伸。
在一些实施例中,所述第一装配部包括设于所述转轴、且相对设置的两个第一平面,所述第二装配部包括设于所述转轴安装孔的孔壁、且相对设置的第二平面。
在一些实施例中,所述轴油槽设于所述第一配合部的非中心区域。
在一些实施例中,沿所述转轴的转动方向,所述第一装配部的上游区域为轴配合承载区,所述第一装配部的下游区域为轴配合非承载区,所述轴油槽设于所述轴配合非承载区。
在一些实施例中,所述内圆配合导油槽为螺旋状;所述内圆配合导油槽设于所述凸台的外周面上,所述内圆配合导油槽的旋向与所述气缸相对于所述内圆配合件转动的方向相反;或者,所述内圆配合导油槽设于所述转轴孔的孔壁上,所述内圆配合导油槽的旋向与所述气缸相对于所述内圆配合件转动的方向相同。
依据本公开的一些实施例的一个方面,泵体组件包括:
转轴,包括轴本体,及设于所述轴本体中的轴内孔,所述轴内孔沿所述轴本体的轴向延伸;所述轴本体具有与所述活塞配合的第一装配部,所述第一装配部的外周壁具有两相对设置的第一平面,所述转轴相对于所述活塞沿与所述第一平面平行的方向往复运动;所述轴内孔的孔壁与所述第一平面之间贯穿设置有至少一个轴油孔;
活塞,设有适于供所述转轴穿过的转轴安装孔,所述转轴安装孔的孔壁具有两相对设置的第二平面,所述第二平面与对应侧的所述第一平面相配合;
至少一个轴油槽,设于至少一个所述第一平面上,并沿所述轴本体的轴向延伸,所述轴油槽与所述轴油孔连通。
在一些实施例中,所述轴油槽由所述第一平面的一端延伸至另一端。
在一些实施例中,所述轴油槽呈直线状。
在一些实施例中,所述轴内孔的孔壁与对应的所述第一平面之间设有多个所述轴油孔。
在一些实施例中,每个所述第一平面上分别设有至少一个所述轴油槽。
在一些实施例中,每个所述第一平面上分别设有一个所述轴油槽。
在一些实施例中,所述轴油槽在所述第一平面上偏心设置。
在一些实施例中,所述转轴带动所述活塞转动的过程中,所述第一平面上朝向对 应的所述第二平面运动的区域为轴配合承载区,背向对应的所述第二平面运动的区域为轴配合非承载区,所述轴油槽设于所述轴配合非承载区上。
在一些实施例中,所述轴油孔沿所述轴本体的径向延伸。
在一些实施例中,泵体组件还包括:
气缸,套设于所述活塞外,并设有适于安装所述活塞的活塞安装孔,所述活塞适于在所述活塞安装孔中相对于所述气缸往复移动;
气缸套,设有适于安装所述气缸的气缸安装腔,所述气缸适于在所述气缸安装腔中相对于所述气缸套转动。
在一些实施例中,所述气缸包括:
缸本体,所述缸本体的周壁上贯穿地开设有所述活塞安装孔;
至少一个气缸导油孔,由所述活塞安装孔的孔壁贯穿延伸至所述气缸的外周面。
在一些实施例中,所述气缸套上设有与所述气缸安装腔连通的吸气口,所述气缸导油孔与所述吸气口错开设置。
在一些实施例中,所述活塞上设有适于供所述转轴穿过的转轴安装孔,所述活塞与所述气缸导油孔对应的侧壁上设有至少一个出油孔,所述出油孔由所述转轴安装孔的孔壁延伸至所述活塞的外周面。
在一些实施例中,泵体组件还包括两个端面配合件,分别设于所述气缸的两端,并连接于所述气缸套上。
在一些实施例中,泵体组件还包括至少一个避空结构,设于至少一个所述端面配合件朝向所述气缸的端面上,或者设于所述气缸和所述气缸套的至少一个端面上;所述避空结构包括至少一个排油槽,所述排油槽由所述端面配合件的内周面延伸至所述端面配合件的外周面,或者由所述气缸对应所述端面配合件的内周面延伸至所述气缸套的外周面。
在一些实施例中,所述避空结构设于至少一个所述端面配合件朝向所述气缸的端面上,所述排油槽由所述端面配合件的内周面延伸至所述端面配合件的外周面。
在一些实施例中,所述避空结构还包括至少一个避空槽,所述避空槽沿所述端面配合件的周向延伸,并与所述排油槽连通。
在一些实施例中,气缸套设有与所述气缸安装腔连通的排气口;所述气缸的端面具有第一配合部,所述第一配合部在所述排气口处的压力作用下具有朝向对应的所述端面配合件运动的趋势;
所述端面配合件朝向所述气缸的一侧面上对应所述第一配合部的位置处为第二配合部,至少一个所述端面配合件的所述第二配合部上设有至少一个压力槽,所述压力槽适于通入压力油和/或压力气以使所述第一配合部朝向对应的所述端面配合件运动的趋势减少或消除。
在一些实施例中,所述气缸上设有转轴孔,所述泵体结构还包括:
至少一个内圆配合件,所述内圆配合件包括配合本体,及由所述配合本体延伸而出的凸台;所述凸台适于伸置于所述转轴孔中,并与所述转轴孔的孔壁配合;所述配合本体在所述气缸径向上的最大长度大于所述转轴孔的孔径;所述气缸相对于内圆配合件转动;
内圆配合导油槽,所述内圆配合导油槽设于所述凸台的外周面上,由所述凸台远离所述配合本体的一端延伸至所述配合本体;或者,所述内圆配合导油槽设于所述转轴孔的孔壁上,由所述活塞安装孔的孔壁延伸至所述气缸的外端面。
在一些实施例中,还包括呈环状的内圆配合储油槽,所述内圆配合储油槽设于所述凸台的外周面和/或所述转轴孔的孔壁上;所述内圆配合储油槽与所述内圆配合导油槽远离所述配合本体的一端连通。
在一些实施例中,所述配合本体上设有内圆配合排油孔,所述内圆配合排油孔为沿轴向贯穿所述配合本体的通孔,并与所述内圆配合导油槽远离所述活塞安装孔的一端连通。
在一些实施例中,所述气缸包括缸本体,及由所述缸本体的至少一端向外延伸而出的凸轴,所述凸轴上设有转轴孔和至少一个凸轴导油孔;所述转轴孔适于安装转轴;所述凸轴导油孔贯穿所述凸轴的侧壁,并与所述转轴孔连通;所述泵体结构还包括:
至少一个外圆配合件,所述外圆配合件设有适于装入所述凸轴的配合孔;所述配合孔的孔径小于所述气缸的外径;所述气缸相对于外圆配合件转动;
外圆配合导油槽,所述外圆配合导油槽设于所述配合孔的孔壁上,由所述配合孔的孔壁朝向所述缸本体的一端延伸至远离所述缸本体的一端;或者,所述外圆配合导油槽设于所述凸轴的外周面上,由所述凸轴与所述缸本体连接的一端延伸至远离所述缸本体的一端。
在一些实施例中,还包括呈环状的外圆配合储油槽,所述外圆配合储油槽设于所述配合孔的孔壁上和/或所述凸轴的外周面上;所述外圆配合储油槽与所述外圆配合导油槽朝向所述缸本体的一端连通。
依据本公开的一些实施例的一个方面,转缸活塞压缩机包括上述的泵体组件。
依据本公开的一些实施例,泵体组件包括:转轴,包括轴本体,及设于所述轴本体中的轴内孔,所述轴内孔沿所述轴本体的轴向延伸;所述轴本体具有与所述活塞配合的第一配合部,所述第一配合部的外周壁具有两相对设置的第一平面,所述转轴相对于所述活塞沿与所述第一平面平行的方向往复运动;所述轴内孔的孔壁与所述第一平面之间贯穿设置有至少一个轴油孔;活塞,设有适于供所述转轴穿过的转轴安装孔,所述转轴安装孔的孔壁具有两相对设置的第二平面,所述第二平面与对应侧的所述第一平面相配合;至少一个轴油槽,设于至少一个所述第一平面上,并沿所述轴本体的轴向延伸,所述轴油槽与所述轴油孔连通。通过在至少一个第一平面上设置至少一个沿轴本体的轴向延伸的轴油槽,可以使轴内孔中的油通过轴油孔流至轴油槽中,从而对转轴和活塞之间进行更好的润滑,有效地减少了转轴和活塞之间的磨损,提高了具有这种结构的气缸的泵体结构及压缩机的使用寿命,同时提高了泵体结构及压缩机的可靠性。
依据本公开的一些实施例,所述轴油槽呈直线状。这样可以使轴油槽中的油快速扩散,从而实现对转轴和活塞之间进行更好的润滑。
依据本公开的一些实施例,每个所述第一平面上分别设有至少一个所述轴油槽。这样可以对转轴两侧的平面与对应的转轴安装孔孔壁之间进行润滑,从而获得更好的润滑效果。
依据本公开的一些实施例,所述转轴带动所述活塞转动的过程中,所述第一平面上朝向对应的所述第二平面运动的区域为轴配合承载区,背向对应的所述第二平面运动的区域为轴配合非承载区,所述轴油槽设于所述轴配合非承载区上。这样可以在为第一平面和第二平面之间充分供油的同时,防止减小轴配合承载区的面积,从而可以避免轴配合承载区的应力增加,进一步减少转轴与活塞之间的磨损。
附图说明
图1为十字滑块结构的原理示意图;
图2为本公开的实施例1中提供的泵体组件的立体分解示意图;
图3为图2所示的泵体组件的转轴与活塞配合状态下的立体组装示意图;
图4为图2所示的泵体组件的转轴的立体示意图;
图5为图3所示的转轴的剖视示意图;
图6为图2所示的泵体组件的气缸的立体结构示意图;
图7为图6所示的气缸与气缸套配合状态下的剖视示意图;
图8为图2所示的泵体组件的活塞的立体结构示意图;
图9为图2所示的泵体组件的上限位板的立体结构示意图;
图10为图9所示的所述限位的剖视示意图;
图11为图2所示的泵体组件的下限位板的立体结构示意图;
图12为图11所示的所述限位的剖视示意图;
图13为图2所示的泵体组件的下法兰的立体示意图;
图14为图13所示的下法兰的剖视示意图;
图15为图2所示的泵体组件的装配状态下的剖视示意图;
图16为图15中A区域的放大示意图;
图17为图2所示的泵体组件的上限位板的去掉避空槽后的立体示意图;
图18为图17所示的上限位板的剖视示意图;
图19为图15中B区域的放大示意图;
图20为本公开的实施例2中提供的泵体组件的剖视示意图;
图21为图20所示的泵体结构的上法兰的仰视示意图;
图22为图21所示的上法兰的剖视示意图;
图23为图20所示的泵体结构的下限位板的俯视示意图;
图24为图23所示的下限位板的剖视示意图;
附图标记说明:
1-转轴,11-轴本体,111-第一平面,12-轴内孔,13-轴油孔,14-轴油槽,
2-活塞,21-转轴安装孔,22-第二平面,23-出油孔,
3-气缸,31-活塞安装孔,32-缸本体,321-缸侧壁,33-气缸导油孔,34-转轴孔,35-凸轴,36-第一配合部,
4-气缸套,41-气缸安装腔,
51-上限位板,52-下限位板,
61-排油槽,62-避空槽,
71-上法兰,711-配合孔,72-下法兰,721-配合本体,722-凸台,
81-内圆配合导油槽,82-内圆配合储油槽,83-内圆配合倒角,84-内圆配合排油孔,85-进油孔,
91-外圆配合导油槽,92-外圆配合储油槽,93-凹槽,
10-第二配合部,20-压力槽。
具体实施方式
下面将结合本公开实施例中的附图,对实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开保护范围的限制。
基于现有技术中的转缸活塞压缩机中转轴和活塞之间的润滑效果较为有限的缺陷,本公开的一些实施例提供了一种转轴和活塞之间的润滑效果较好的泵体组件及转缸活塞压缩机。
在一些实施例中,泵体组件包括:转轴1,其内设有轴内孔12,轴内孔12沿转轴1的轴向延伸;转轴1设有第一装配部,第一装配部设有轴油孔13,轴油孔13与轴内孔12连通;
活塞2,设有适于供转轴1穿过的转轴安装孔21,转轴安装孔21的孔壁设有第二装配部,第二装配部与第一装配部接触配合;活塞2被配置为在转轴1的转动下相对于转轴1往复运动;以及
轴油槽14,设于第一装配部,且与轴油孔13连通;
其中,轴油孔13用于将轴内孔的油引向第一装配部与第二装配部之间。
在一些实施例中,轴油槽14沿转轴1的轴向延伸。
在一些实施例中,第一装配部包括设于转轴1、且相对设置的两个第一平面111,第二装配部包括设于转轴安装孔21的孔壁、且相对设置的第二平面22。
在一些实施例中,轴油槽14设于第一配合部的非中心区域。
在一些实施例中,沿转轴1的转动方向,第一装配部的上游区域为轴配合承载区,第一装配部的下游区域为轴配合非承载区,轴油槽14设于轴配合非承载区。
在一些实施例中,泵体组件还包括:
气缸3,套设于活塞2外,并设有适于安装活塞2的活塞安装孔31,活塞2适于在活塞安装孔31中相对于气缸3往复移动;
气缸套4,设有适于安装气缸3的气缸安装腔41,气缸3适于在气缸安装腔41中相对于气缸套4转动。
在一些实施例中,气缸3上设有转轴孔34,泵体结构还包括:
至少一个内圆配合件,内圆配合件包括配合本体721,及由配合本体721延伸而出的凸台722;凸台722适于伸置于转轴孔34中,并与转轴孔34的孔壁配合;配合本体721在气缸3径向上的最大长度大于转轴孔34的孔径;气缸3相对于内圆配合件转动;
内圆配合导油槽81,内圆配合导油槽81设于凸台722的外周面上,由凸台722远离配合本体721的一端延伸至配合本体721;或者,内圆配合导油槽81设于转轴孔34的孔壁上,由活塞安装孔31的孔壁延伸至气缸3的外端面。
在一些实施例中,内圆配合导油槽81为螺旋状,内圆配合导油槽81设于凸台722的外周面上,内圆配合导油槽81的旋向与气缸3相对于内圆配合件转动的方向相反;或者,内圆配合导油槽81设于转轴孔34的孔壁上,内圆配合导油槽81的旋向与气缸3相对于内圆配合件转动的方向相同。
实施例1
如图2-图5所示,本实施例提供一种泵体组件,包括转轴1、活塞2、轴油槽14、气缸3、气缸套4。
转轴1安装于活塞2中,并包括轴本体11,及设于轴本体11中的轴内孔12,轴内孔12沿轴本体11的轴向延伸;轴本体11具有与活塞2配合的第一装配部,第一装配部的外周壁具有两相对设置的第一平面111,转轴1相对于活塞2沿与第一平面111平行的方向往复运动;轴内孔12的孔壁与第一平面111之间贯穿设置有多个轴油孔13。转轴1与气缸3偏心设置。作为可变换的实施方式,轴内孔12的孔壁与对应的第一平面111之间也可以只设有一个轴油孔13。
活塞2安装于气缸3中,并设有适于供转轴1穿过的转轴安装孔21,转轴安装孔21的孔壁具有两相对设置的第二平面22,第二平面22与对应侧的第一平面111相配合。
轴油槽14具有两个,分别设于两个第一平面111上,并沿轴本体11的轴向延伸, 轴油槽14与轴油孔13连通。这样可以对转轴1两侧的平面与对应的转轴安装孔21孔壁之间进行润滑,从而获得更好的润滑效果。作为可变换的实施方式,轴油槽14也可以只具有一个,设于其中一个第一平面111上。作为可变换的实施方式,也可以是,轴油槽14具有四个,每个第一平面111上分别设有两个轴油槽14。
气缸3套设于活塞2外,并设有适于安装活塞2的活塞安装孔31,活塞2适于在活塞安装孔31中相对于气缸3往复移动。
气缸套4设有适于安装气缸3的气缸安装腔41,气缸3适于在气缸安装腔41中相对于气缸套4转动。
转轴1转动,使得活塞2相对于气缸3往复运动,并带动气缸3相对于气缸套4转动。
通过在至少一个第一平面111上设置至少一个沿轴本体11的轴向延伸的轴油槽14,可以使轴内孔12中的油通过轴油孔13流至轴油槽14中,从而对转轴1和活塞2之间进行更好的润滑,有效地减少了转轴1和活塞2之间的磨损,提高了具有这种结构的气缸3的泵体结构及压缩机的使用寿命,同时提高了泵体结构及压缩机的可靠性。
轴油槽14的具体长度不受限制,在一些本实施例中,轴油槽14由第一平面111的一端延伸至另一端。
轴油槽14的具体形状可以有多种,本实施例中的轴油槽14呈直线状。这样可以使轴油槽14中的油快速扩散,从而实现对转轴1和活塞2之间进行更好的润滑。作为可变换的实施方式,轴油槽14也可以呈弧状或波浪状等曲线状。
轴油槽14在第一平面111上的具体位置可以有多种,在一些本实施例中,轴油槽14在第一平面111上偏心设置。作为可变换的实施方式,轴油槽14也可以设于第一平面111的中心。
可选的,转轴1带动活塞2转动的过程中,第一平面111上朝向对应的第二平面22运动的区域为轴配合承载区,背向对应的第二平面22运动的区域为轴配合非承载区,轴油槽14设于轴配合非承载区上。这样可以在为第一平面111和第二平面22之间充分供油的同时,防止减小轴配合承载区的面积,从而可以避免轴配合承载区的应力增加,进一步减少转轴1与活塞2之间的磨损。
轴油孔13的具体设置方式可以有多种,本实施例中的轴油孔13沿轴本体11的径向延伸。
如图2、图6-图8所示,本实施例提供的泵体组件中,气缸3包括缸本体和至少 一个气缸导油孔33。
缸本体的周壁上贯穿地开设有活塞安装孔31。
气缸导油孔33由活塞安装孔31的孔壁贯穿延伸至气缸3的外周面。
通过在缸本体上设至少一个气缸导油孔33,可以使活塞安装孔31中的油通过气缸导油孔33流至气缸3外周面,从而对气缸3与气缸套4之间进行润滑,有效地减少了气缸3与气缸套4之间产生的磨损,提高了具有这种结构的气缸3的泵体结构及压缩机的使用寿命,同时提高了泵体结构及压缩机的可靠性。
气缸导油孔33的具体延伸方式可以有多种,在一些本实施例中,气缸导油孔33沿缸本体的径向延伸。
气缸导油孔33的具体形状不受限制,本实施例中的气缸导油孔33呈直线状。作为可变换的实施方式,气缸导油孔33也可以呈弧状或波浪状等曲线状。
在一些本实施例中,活塞安装孔31将缸本体的周壁分隔成两相对的缸侧壁,为了可以使得对气缸3与气缸套4之间的润滑在周向上更均衡,每个缸侧壁上设有至少一个气缸导油孔33。作为可变换的实施方式,也可以只在一个缸侧壁上设置气缸导油孔33。
每个缸侧壁上设置的气缸导油孔33数量不做限制,在一些本实施例中,每个缸侧壁上设有两个气缸导油孔33。作为可变换的实施方式,也可以是,每个缸侧壁上设有一个或三个气缸导油孔33。
气缸导油孔33在缸侧壁上的具体位置可以有多种,为了可以使得对气缸3与气缸套4之间的润滑在轴向上更均衡,在一些本实施例中,每个缸侧壁上的两个气缸导油孔33分别设于缸侧壁的两端。
在一些本实施例中,气缸套4上设有与气缸安装腔41连通的吸气口,气缸导油孔33与吸气口错开设置。由于气缸导油孔33处通常为高压,而吸气口处通常为低压,所以将气缸导油孔33和吸气口错开设置,可以有效防止气缸导油孔33中的油向吸气口泄漏,进一步确保润滑效果和压缩机的性能。
为了减少活塞2与气缸3之间产生的磨损,在一些本实施例中,如图8所示,活塞2上设有适于供转轴1穿过的转轴安装孔21,活塞2与气缸导油孔33对应的侧壁上设有至少一个出油孔23,出油孔23由转轴安装孔21的孔壁延伸至活塞2的外周面。在活塞2上设置出油孔23,可以使转轴安装孔21中的油通过出油孔23流至活塞2外周面,从而对活塞2与气缸3之间进行润滑,有效地减少了活塞2与气缸3之间产生 的磨损,提高了泵体结构及压缩机的使用寿命及可靠性。
为了有效防止由出油孔23流出的油直接从气缸导油孔33流出,进而确保对活塞2与气缸3之间进行充分润滑,本实施例中的出油孔23与气缸导油孔33错开设置。
在一些本实施例中,活塞2与气缸导油孔33对应的两相对侧壁上分别设有至少一个出油孔23。这样可以使得对活塞2与气缸3之间的润滑在周向上更均衡。
出油孔23的具体数量不做限制,在一些本实施例中,活塞2与气缸导油孔33对应的两相对侧壁上分别设有一个出油孔23。作为可变换的实施方式,活塞2与气缸导油孔33对应的两相对侧壁上也可以分别设有两个或三个出油孔23。
出油孔23在活塞2侧壁上的具体位置可以有多种,本实施例中的出油孔23位于活塞2的侧壁中部。作为可变换的实施方式,出油孔23也可以位于活塞2的侧壁中部偏上或偏下的位置。
如图2、图9-图12所示,本实施例提供的泵体组件中,还包括两个端面配合件。
两个端面配合件分别设于气缸3的两端,并连接于气缸套4上。两个端面配合件上设有允许转轴1穿过的通孔。
至少一个端面配合件朝向气缸3的一端设有避空结构,避空结构包括至少一个排油槽61,排油槽61由端面配合件的内周面延伸至端面配合件的外周面。
通过在至少一个端面配合件上设至少一个排油槽61,且排油槽61由端面配合件的内周面延伸至端面配合件的外周面,可以使气缸安装腔41中的油进入到排油槽61中,气缸3在转动过程中,油在离心力作用下在排油槽61中由所述端面配合件的内周面流至所述端面配合件的外周面,同时,气缸3的端面不断扫过排油槽61,油供应到气缸3与端面配合件之间的各个部位,对气缸3与端面配合件之间进行充分润滑,有效减少了气缸3与端面配合件之间的磨损,提高了泵体结构和压缩机的使用寿命及可靠性。
作为可变换的实施方式,也可以是,气缸3朝向端面配合件的至少一个端面上设有避空结构,排油槽61由气缸3的内周面延伸至气缸3的外周面。
在一些本实施例中,每个端面配合件朝向气缸3的一端设有至少一个避空结构。这样可以使气缸3与两端的端面配合件之间均进行充分的润滑,更加有效地减少了气缸3与端面配合件之间的磨损,更进一步提高了泵体结构和压缩机的使用寿命及可靠性。作为可变换的实施方式,也可以只在一个端面配合件上设置避空结构。
每个端面配合件上设置的避空结构数量不受限制,在一些本实施例中,每个端面 配合件朝向气缸3的一端设有一个避空结构。作为可变换的实施方式,每个端面配合件朝向气缸3的一端也可以设有两个或三个避空结构。
排油槽61的具体形状可以有多种,本实施例中的排油槽61呈直线状。作为可变换的实施方式,排油槽61也可以呈弧状或波浪状等曲线状。
排油槽61在端面配合件上的具体延伸方式不做限制,在一些本实施例中,排油槽61沿端面配合件的径向延伸。
避空结构中的排油槽61具体数量不做限制,本实施例中的避空结构包括一个排油槽61。作为可变换的实施方式,避空结构也可以包括两个或三个排油槽61。
在一些实施例中,避空结构还包括至少一个避空槽62,避空槽62沿端面配合件的周向延伸,并与排油槽61连通。避空槽62的设置,一方面可以对气缸3与端面配合件之间进行更加充分的润滑,另一方面,可以减少气缸3与端面配合件端面之间的接触面积,从而减少摩擦损耗,降低磨损,同时,气缸3与端面配合件之间的摩擦热,也可以通过避空槽62和排油槽61中的油排出。作为可变换的实施方式,避空槽62也可以设于气缸3的端面上,并沿气缸3的周向延伸。
避空槽62的具体形状可以有多种,本实施例中的避空槽62呈环状。这样可以对气缸3与端面配合件之间进行更加充分的润滑。作为可变换的实施方式,避空槽62也可以呈半环状或优弧状等。
避空结构中避空槽62的具体数量可以有多种,可以根据需求灵活选择。在一些本实施例中,避空结构包括多个避空槽62,且多个避空槽62沿端面配合件的径向间隔分布。作为可变换的实施方式,避空结构也可以只包括一个避空槽62。
避空槽62在端面配合件上的具体位置不受限制,在一些本实施例中,避空槽62靠近端面配合件的内周面设置。
两个端面配合件的具体形式可以有多种,在一些本实施例中,两个端面配合件可以均为限位板,且分别为上限位板51和下限位板52。作为可变换的实施方式,也可以是,两个端面配合件均为法兰。作为可变换的实施方式,还可以是,一个端面配合件为限位板,另一个端面配合件为法兰。
实现气缸3配合的具体方式可以有多种,可以根据气缸3的具体不同结构形式,而进行灵活设置。例如,当气缸3包括缸本体和两个凸轴(即通常所说的短轴)时,气缸3的两端可以分别通过上法兰71和下法兰72来实现内圆配合,也可以分别通过上限位板51和下限位板52来实现外圆配合,还可以两端均通过内外圆同时配合,也 可以一端通过内外圆同时配合,另一端通过内圆或外圆配合;当气缸3包括缸本体和一个凸轴时,气缸3没有凸轴的一端可以通过法兰实现内圆配合,有凸轴的一端可以通过法兰实现内圆配合或通过限位板实现外圆配合;当气缸3只包括缸本体,两端均不设凸轴时,一般会将气缸3的两端通过法兰来进行内圆配合。
需要说明的是,内圆配合是指与气缸3的转轴孔34进行配合,外圆配合是指与气缸3的外缘周向进行配合。
在一些本实施例中,气缸3包括缸本体,及由缸本体的两端分别向外延伸而出的凸轴,其中,缸本体的下端在凸轴处通过下法兰72进行内圆配合,缸本体的上端在凸轴处通过上限位板51进行外圆配合。
本实施例提供的泵体组件中,包括两个限位板和两个法兰,两个限位板分别为上限位板51和下限位板52,两个法兰分别为上法兰71和下法兰72。其中,上限位板51设于上法兰71与气缸3的上端之间,下限位板52设于下法兰72与气缸3的下端之间。上限位板51用于与气缸3的上端进行外圆配合,对气缸3进行外圆支承;下法兰72用于与气缸3的下端进行内圆配合,对气缸3进行内圆支承。上法兰71和下限位板52则用来实现通常的与气缸3之间的装配限位。
如图2、图13-图16所示,本实施例提供的泵体组件中,还包括内圆配合件。
气缸3设有转轴孔34,转轴孔34沿轴向贯穿气缸3并适于安装转轴1,活塞安装孔31贯穿气缸3的侧壁并适于安装活塞2。内圆配合件具有一个,设于气缸3的下端,包括配合本体721,及由配合本体721延伸而出的凸台722;凸台722适于伸置于转轴孔34中,并与转轴孔34的孔壁配合;配合本体721在气缸3径向上的最大长度大于转轴孔34的孔径;气缸3相对于内圆配合件转动。作为可变换的实施方式,内圆配合件也可以具有两个,分别设于气缸3的两端。
凸台722的外周面上设有内圆配合导油槽81,内圆配合导油槽81由凸台722远离配合本体721的一端延伸至配合本体721。作为可变换的实施方式,也可以是,转轴孔34的孔壁上设有内圆配合导油槽81,且内圆配合导油槽81由活塞安装孔31的孔壁延伸至气缸3的外端面。
通过在凸台722的外周面或转轴孔34的孔壁上设置内圆配合导油槽81,且内圆配合导油槽81由凸台722远离配合本体721的一端延伸至配合本体721,或由活塞安装孔31的孔壁延伸至气缸3的外端面,可以使转轴1转动过程中喷出的油进入到内圆配合导油槽81中,从而对凸台722的外周面与转轴孔34的孔壁之间进行润滑,有 效减少了气缸3与内圆配合件之间的磨损,提高了泵体结构和压缩机的使用寿命及可靠性。
配合本体721的具体形状可以有多种,在一些本实施例中,配合本体721呈圆柱状,且外径大于转轴孔34的孔径。作为可变换的实施方式,配合本体721也可以为横截面呈矩形的柱体。
内圆配合导油槽81的具体形状可以有多种,本实施例中的内圆配合导油槽81呈螺旋状。这种结构形式的内圆配合导油槽81,可以使得内圆配合导油槽81中的油对凸台722外周面与转轴孔34的孔壁之间的润滑更充分。作为可变换的实施方式,内圆配合导油槽81也可以呈直线状,沿凸台722的轴向延伸。
为了能够为内圆配合导油槽81中油的流动提供动力,增强内圆配合导油槽81中油的流动性,进而增强润滑效果,在一些本实施例中,内圆配合导油槽81的旋向与气缸3的转动方向之间的关系满足:气缸3相对于内圆配合件旋转时,施加给内圆配合导油槽81中的油一个朝向配合本体721的分力。可选的,内圆配合导油槽81的旋向与气缸3相对于内圆配合件转动的方向相反。作为可变换的实施方式,当内圆配合导油槽81设于转轴孔34的孔壁上是,则可选的,内圆配合导油槽81的旋向与气缸3相对于内圆配合件转动的方向相同。
在一些实施例中提供的泵体组件中,在凸台722的外周面上设有内圆配合储油槽82,内圆配合储油槽82呈环状,并与内圆配合导油槽81远离配合本体721的一端连通。这样可以保证内圆配合导油槽81远离配合本体721的一端处的油的供应,从而确保能够对凸台722的外周面与转轴孔34的孔壁之间进行实施有效的润滑。作为可变换的实施方式,在转轴孔34的孔壁上设有内圆配合储油槽82。作为可变换的实施方式,凸台722的外周面上,及转轴孔34的孔壁上均分别设有内圆配合储油槽82。
内圆配合储油槽82的具体形成方式可以有多种,在一些本实施例中,凸台722远离配合本体721的一端设有内圆配合倒角83,内圆配合倒角83与转轴孔34的孔壁之间形成内圆配合储油槽82。
作为可变换的实施方式,也可以是,转轴孔34朝向活塞安装孔31的一端设有内圆配合倒角83,内圆配合倒角83与凸台722的外周面之间形成内圆配合储油槽82。
作为可变换的实施方式,还可以是,凸台722远离配合本体721的一端设有内圆配合倒角83,同时转轴孔34朝向活塞安装孔31的一端也设有内圆配合倒角83;凸台722上的内圆配合倒角83与转轴孔34的孔壁之间,及转轴孔34上的内圆配合倒 角83与凸台722的外周面之间,共同形成内圆配合储油槽82,亦即,两个内圆配合倒角83之间形成所述内圆配合储油槽82。
在一些本实施例中,配合本体721上设有内圆配合排油孔84,内圆配合排油孔84为沿轴向贯穿配合本体721的通孔,并与内圆配合导油槽81远离活塞安装孔31的一端连通。内圆配合排油孔84的设置,可以将内圆配合导油槽81中的油即时排出至压缩机的油池中,从而形成油路循环,内圆配合导油槽81中的油能够实时带走吸收的凸台722的外周面与转轴孔34的孔壁之间的摩擦热,降低了凸台722的外周面与气缸3的转轴孔34的孔壁之间构成的摩擦副的温度,提高了压缩机的可靠性。
转轴1带动气缸3转动的过程中,气缸3朝向对应的凸台722的外周面运动的区域,及凸台722的外周面与该区域对应的区域,为气缸3配合承载区;气缸3背向对应的凸台722的外周面运动的区域,及凸台722的外周面与该区域对应的区域,为气缸3配合非承载区。
内圆配合导油槽81在凸台722上的具体位置可以有多种,在一些本实施例中,内圆配合导油槽81设于气缸3配合非承载区上。由于气缸3配合承载区处凸台722的外周面与转轴孔34的孔壁之间的摩擦更大,将内圆配合导油槽81设置在气缸3配合非承载区上,可以保证气缸3配合承载区处润滑油膜的连续性,从而确保润滑区具有较好的润滑效果,降低气缸3配合承载区处的磨损,进而充分降低凸台722的外周面与气缸3的转轴孔34的孔壁之间的磨损,同时还具有防止气缸3配合承载区处应力集中的效果。
在一些本实施例中,气缸3包括缸本体,及由缸本体的两端分别向外延伸而出的凸轴,转轴孔34在凸轴处的孔壁与内圆配合件的外周面相配合。作为可变换的实施方式,也可以是,只在缸本体的一端延伸出有凸轴。作为可变换的实施方式,还可以是,缸本体的两端均不设凸轴。
在一些实施例中提供的泵体组件,还包括设于配合本体721上的进油孔85,进油孔85沿轴向贯穿配合本体721,并靠近凸台722设置。
内圆配合件的具体结构形式可以有多种,本实施例中的内圆配合件为下法兰72。
如图2、图15及图17-图19所示,本实施例提供的泵体组件中,还包括外圆配合件。
缸本体上设有活塞安装孔31。凸轴上设有转轴孔34和至少一个凸轴导油孔;转轴孔34适于安装转轴1;凸轴导油孔贯穿凸轴的侧壁,并与转轴孔34连通。
外圆配合件具有一个,设于气缸3的上端,设有适于装入凸轴的配合孔711;配合孔711的孔径小于气缸3的外径;气缸3相对于外圆配合件转动。作为可变换的实施方式,外圆配合件也可以具有两个,分别设于气缸3的两端。
外圆配合导油槽91设于配合孔711的孔壁上,由配合孔711的孔壁朝向缸本体的一端延伸至远离缸本体的一端;或者,外圆配合导油槽91设于凸轴的外周面上,由凸轴与缸本体连接的一端延伸至远离缸本体的一端。
通过在凸轴上设有至少一个凸轴导油孔,可以将转轴1转动过程中喷出的油导出至凸轴的外周面与配合孔711的孔壁之间;同时,通过在配合孔711的孔壁上或凸轴的外周面上设置外圆配合导油槽91,且外圆配合导油槽91由所述配合孔711的孔壁朝向所述缸本体的一端延伸至远离所述缸本体的一端,或由所述凸轴与所述缸本体连接的一端延伸至远离所述缸本体的一端,可以使转轴1转动过程中由凸轴导油孔处喷出的油进入到外圆配合导油槽91中,从而对凸轴的外周面与配合孔711的孔壁之间进行润滑,有效减少了气缸3与外圆配合件之间的磨损,提高了泵体结构和压缩机的使用寿命及可靠性。
外圆配合导油槽91的具体形状可以有多种,在一些本实施例中,外圆配合导油槽91呈直线状,并沿配合孔711的轴向或凸轴的轴向延伸。作为可变换的实施方式,外圆配合导油槽91也可以呈螺旋状,且外圆配合导油槽91的旋向与气缸3的转动方向之间的关系满足:气缸3相对于外圆配合件旋转时,施加给外圆配合导油槽91中的油一个远离缸本体的分力。
凸轴导油孔的具体位置不做限制,本实施例中的凸轴导油孔靠近缸本体设置。
凸轴导油孔的具体数量可以有多种,在一些本实施例中,凸轴导油孔具有两个,并在凸轴上相对设置。作为可变换的实施方式,凸轴导油孔也可以只具有一个。作为可变换的实施方式,凸轴导油孔也可以具有三个或四个等,沿凸轴的周向均匀分布。
在一些实施例中提供的泵体组件,还包括呈环状的外圆配合储油槽92,外圆配合储油槽92设于配合孔711的孔壁上,并与外圆配合导油槽91朝向缸本体的一端连通。这样可以保证外圆配合导油槽91朝向缸本体一端处的油的供应,从而确保能够对凸轴的外周面与配合孔711的孔壁之间进行实施有效的润滑。作为可变换的实施方式,外圆配合储油槽92也可以设于凸轴的外周面上。作为可变换的实施方式,外圆配合储油槽92还可以同时设于配合孔711的孔壁上,及凸轴的外周面上。
外圆配合储油槽92的具体形成方式可以有多种,在一些本实施例中,外圆配合 件朝向气缸3的一端在配合孔711处开设有呈环状的凹槽93,所述凹槽93与凸轴的外周面之间形成外圆配合储油槽92。作为可变换的实施方式,也可以是,配合孔711的孔壁朝向缸本体的一端设有倒角,倒角与凸轴的外周面之间形成外圆配合储油槽92。
外圆配合导油槽91在配合孔711的孔壁上的具体位置可以有多种,在一些本实施例中,外圆配合导油槽91设于气缸3配合非承载区上。由于气缸3配合承载区处凸轴的外周面与配合孔711的孔壁之间的摩擦更大,将外圆配合导油槽91设置在气缸3配合非承载区上,可以保证气缸3配合承载区处润滑油膜的连续性,从而确保润滑区具有较好的润滑效果,降低气缸3配合承载区处的磨损,进而充分降低凸轴的外周面与配合孔711的孔壁之间的磨损,同时还具有防止气缸3配合承载区处应力集中的效果。
内圆配合件上设有外圆配合排油孔,外圆配合排油孔为沿轴向贯穿内圆配合件的通孔,并与外圆配合导油槽91远离缸本体的一端连通。外圆配合排油孔的设置,可以将外圆配合导油槽91中的油即时排出至压缩机的油池中,从而形成油路循环,外圆配合导油槽91中的油能够实时带走吸收的凸轴的外周面与配合孔711的孔壁之间的摩擦热,降低了凸轴的外周面与配合孔711的孔壁之间构成的摩擦副的温度,提高了压缩机的可靠性。
外圆配合件的具体结构形式可以有多种,本实施例中的外圆配合件为上限位板51。
内圆配合指与气缸4的转轴孔34进行配合,外圆配合指与气缸4的外缘周向进行配合。
本实施例还提供一种转缸活塞压缩机,包括上述的泵体组件。
实施例2
如图20-图24所示,本实施例提供的泵体组件,与实施例1的不同之处在于,气缸3只在缸本体的一端设有凸轴,同时去掉了上限位板51和下法兰72。
气缸套4设有与气缸安装腔41分别连通的排气口和吸气口。气缸3的端面具有第一配合部;第一配合部在排气口处的压力作用下具有朝向对应的端面配合件运动的趋势;
端面配合件朝向气缸3的一侧面上对应第一配合部的位置处为第二配合部10,至少一个端面配合件的第二配合部10上设有至少一个压力槽20,压力槽20适于通入压力油和/或压力气以使第一配合部朝向对应的端面配合件运动的趋势减少或消除。
当排气口处的高压施加给气缸3一个水平压力时,会施加给气缸3一个使气缸3 具有倾斜趋势的力矩(特别是当气缸3只在一端设有短轴时,气缸3会更加容易倾斜),第一配合部具有朝向对应的端面配合件运动的趋势,此时,通入压力槽20的压力油和/或压力气会使气缸3受到一个与上述力矩相反的力矩,使所述第一配合部朝向对应的所述端面配合件运动的趋势减少或消除,从而使气缸3的倾斜程度减小或者避免气缸3发生倾斜。
在一些本实施例中,每个端面配合件的第二配合部10上设有至少一个压力槽20。这样可以从气缸3的两端分别施加与使气缸3具有倾斜趋势的力矩相反的力矩,从而更加有效地使气缸3的倾斜程度减小或者避免气缸3发生倾斜。作为可变换的实施方式,也可以是,只有一个端面配合件的第二配合部10上设有压力槽20。
每个端面配合件上的压力槽20的具体数量可以有多种,在一些本实施例中,每个端面配合件的第二配合部10上设有一个压力槽20。作为可变换的实施方式,每个端面配合件的第二配合部10上也可以设有两个或三个压力槽20。
为压力槽20通入压力油和/或压力气的具体方式可以有多种,在一些本实施例中,压力槽20与端面配合件上的油路连通。端面配合件的油路中具有从转轴1流入的高压油和高压气。这样只需通过油路即可实现为压力槽20提供高压油和高压气,具有结构简单,便于实现的优点。
压力槽20的具体形状可以有多种,在一些本实施例中,压力槽20呈弧状,并沿端面配合件的周向延伸。作为可变换的实施方式,压力槽20也可以呈直线状或波浪状等。
缸本体和凸轴共同形成适于供泵体结构的转轴1穿过的转轴孔34。
两个端面配合件的具体形式可以有多种,在一些本实施例中,与气缸3上端面配合的端面配合件为上法兰71,与气缸3下端面配合的端面配合件为下限位板52。作为可变换的实施方式,也可以是,两个端面配合件均为法兰。作为可变换的实施方式,还可以是,两个端面配合件均为限位板。
在本公开的描述中,需要理解的是,使用“第一”、“第二”、“第三”等词语来限定零部件,仅仅是为了便于对上述零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本公开保护范围的限制。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱 离本公开技术方案的精神,其均应涵盖在本公开请求保护的技术方案范围当中。

Claims (23)

  1. 一种泵体组件,包括:
    转轴(1),其内设有轴内孔(12),所述轴内孔(12)沿所述转轴(1)的轴向延伸;所述转轴(1)设有第一装配部,所述第一装配部设有轴油孔(13),所述轴油孔(13)与所述轴内孔(12)连通;
    活塞(2),设有适于供所述转轴(1)穿过的转轴安装孔(21),所述转轴安装孔(21)的孔壁设有第二装配部,所述第二装配部与所述第一装配部接触配合;所述活塞(2)被配置为在所述转轴(1)的转动下相对于所述转轴(1)往复运动;以及
    轴油槽(14),设于所述第一装配部,且与所述轴油孔(13)连通;
    其中,所述轴油孔(13)用于将所述轴内孔的油引向所述第一装配部与所述第二装配部之间。
  2. 根据权利要求1所述的泵体组件,其中,所述轴油槽(14)沿所述转轴(1)的轴向延伸。
  3. 根据权利要求1所述的泵体组件,其中,所述轴油槽(14)呈直线状。
  4. 根据权利要求1所述的泵体组件,其中,所述第一装配部包括设于所述转轴(1)、且相对设置的两个第一平面(111),所述第二装配部包括设于所述转轴安装孔(21)的孔壁、且相对设置的第二平面(22)。
  5. 根据权利要求1所述的泵体组件,其中,所述轴油槽(14)设于所述第一配合部的非中心区域。
  6. 根据权利要求4所述的泵体组件,其中,沿所述转轴(1)的转动方向,所述第一装配部的上游区域为轴配合承载区,所述第一装配部的下游区域为轴配合非承载区,所述轴油槽(14)设于所述轴配合非承载区。
  7. 根据权利要求1所述的泵体组件,其中,所述轴油孔(13)沿所述转轴(1)的径向延伸。
  8. 根据权利要求1-7中任一项所述的泵体组件,还包括:
    气缸(3),套设于所述活塞(2)外,并设有适于安装所述活塞(2)的活塞安装孔(31),所述活塞(2)适于在所述活塞安装孔(31)中相对于所述气缸(3)往复移动;
    气缸套(4),设有适于安装所述气缸(3)的气缸安装腔(41),所述气缸(3) 适于在所述气缸安装腔(41)中相对于所述气缸套(4)转动。
  9. 根据权利要求8所述的泵体组件,其中,所述气缸(3)包括:
    缸本体(32),所述缸本体(32)的周壁上贯穿地开设有所述活塞安装孔(31);
    至少一个气缸导油孔(33),由所述活塞安装孔(31)的孔壁贯穿延伸至所述气缸(3)的外周面。
  10. 根据权利要求9所述的泵体组件,其中,所述气缸套(4)上设有与所述气缸安装腔(41)连通的吸气口,所述气缸导油孔(33)与所述吸气口错开设置。
  11. 根据权利要求9所述的泵体组件,其中,所述活塞(2)上设有适于供所述转轴(1)穿过的转轴安装孔(21),所述活塞(2)与所述气缸导油孔(33)对应的侧壁上设有至少一个出油孔(23),所述出油孔(23)由所述转轴安装孔(21)的孔壁延伸至所述活塞(2)的外周面。
  12. 根据权利要求8所述的泵体组件,还包括两个端面配合件,分别设于所述气缸(3)的两端,并连接于所述气缸套(4)上。
  13. 根据权利要求12所述的泵体组件,还包括至少一个避空结构,设于至少一个所述端面配合件朝向所述气缸(3)的端面上,或者设于所述气缸(3)和所述气缸套(4)的至少一个端面上;所述避空结构包括至少一个排油槽(61),所述排油槽(61)由所述端面配合件的内周面延伸至所述端面配合件的外周面,或者由所述气缸(3)对应所述端面配合件的内周面延伸至所述气缸套(4)的外周面。
  14. 根据权利要求13所述的泵体组件,其中,所述避空结构设于至少一个所述端面配合件朝向所述气缸(3)的端面上,所述排油槽(61)由所述端面配合件的内周面延伸至所述端面配合件的外周面。
  15. 根据权利要求14所述的泵体组件,其中,所述避空结构还包括至少一个避空槽(62),所述避空槽(62)沿所述端面配合件的周向延伸,并与所述排油槽(61)连通。
  16. 根据权利要求12所述的泵体组件,其中,
    气缸套(4)设有与所述气缸安装腔(41)连通的排气口;所述气缸(3)的端面具有第一配合部(36),所述第一配合部(36)在所述排气口处的压力作用下具有朝向对应的所述端面配合件运动的趋势;
    所述端面配合件朝向所述气缸(3)的一侧面上对应所述第一配合部(36)的位置处为第二配合部(10),至少一个所述端面配合件的所述第二配合部(10)上设有 至少一个压力槽(20),所述压力槽(20)适于通入压力油和/或压力气以使所述第一配合部(36)朝向对应的所述端面配合件运动的趋势减少或消除。
  17. 根据权利要求8所述的泵体组件,其中,所述气缸(3)上设有转轴孔(34),所述泵体结构还包括:
    至少一个内圆配合件,所述内圆配合件包括配合本体(721),及由所述配合本体(721)延伸而出的凸台(722);所述凸台(722)适于伸置于所述转轴孔(34)中,并与所述转轴孔(34)的孔壁配合;所述配合本体(721)在所述气缸(3)径向上的最大长度大于所述转轴孔(34)的孔径;所述气缸(3)相对于内圆配合件转动;
    内圆配合导油槽(81),所述内圆配合导油槽(81)设于所述凸台(722)的外周面上,由所述凸台(722)远离所述配合本体(721)的一端延伸至所述配合本体(721);或者,所述内圆配合导油槽(81)设于所述转轴孔(34)的孔壁上,由所述活塞安装孔(31)的孔壁延伸至所述气缸(3)的外端面。
  18. 根据权利要求17所述的泵体组件,其中,所述内圆配合导油槽(81)为螺旋状;当所述内圆配合导油槽(81)设于所述凸台(722)的外周面上,所述内圆配合导油槽(81)的旋向与所述气缸(3)相对于所述内圆配合件转动的方向相反;或者,当所述内圆配合导油槽(81)设于所述转轴孔(34)的孔壁上,所述内圆配合导油槽(81)的旋向与所述气缸(3)相对于所述内圆配合件转动的方向相同。
  19. 根据权利要求17所述的泵体组件,还包括呈环状的内圆配合储油槽(82),所述内圆配合储油槽(82)设于所述凸台(722)的外周面和/或所述转轴孔(34)的孔壁上;所述内圆配合储油槽(82)与所述内圆配合导油槽(81)远离所述配合本体(721)的一端连通。
  20. 根据权利要求19所述的泵体组件,其中,所述配合本体(721)上设有内圆配合排油孔(84),所述内圆配合排油孔(84)为沿轴向贯穿所述配合本体(721)的通孔,并与所述内圆配合导油槽(81)远离所述活塞安装孔(31)的一端连通。
  21. 根据权利要求12所述的泵体组件,其中,所述气缸(3)包括缸本体(32),及由所述缸本体(32)的至少一端向外延伸而出的凸轴(35),所述凸轴(35)上设有转轴孔(34)和至少一个凸轴导油孔;所述转轴孔(34)适于安装转轴(1);所述凸轴导油孔贯穿所述凸轴(35)的侧壁,并与所述转轴孔(34)连通;所述泵体结构还包括:
    至少一个外圆配合件,所述外圆配合件设有适于装入所述凸轴(35)的配合孔 (711);所述配合孔(711)的孔径小于所述气缸(3)的外径;所述气缸(3)相对于外圆配合件转动;
    外圆配合导油槽(91),所述外圆配合导油槽(91)设于所述配合孔(711)的孔壁上,由所述配合孔(711)的孔壁朝向所述缸本体(32)的一端延伸至远离所述缸本体(32)的一端;或者,所述外圆配合导油槽(91)设于所述凸轴(35)的外周面上,由所述凸轴(35)与所述缸本体(32)连接的一端延伸至远离所述缸本体(32)的一端。
  22. 根据权利要求21所述的泵体组件,还包括呈环状的外圆配合储油槽(92),所述外圆配合储油槽(92)设于所述配合孔(711)的孔壁上和/或所述凸轴(35)的外周面上;所述外圆配合储油槽(92)与所述外圆配合导油槽(91)朝向所述缸本体(32)的一端连通。
  23. 一种转缸活塞压缩机,包括权利要求1-22中任一项所述的泵体组件。
PCT/CN2019/105976 2018-12-17 2019-09-16 泵体组件及转缸活塞压缩机 WO2020125093A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811544546.8A CN109595157B (zh) 2018-12-17 转缸活塞压缩机的泵体结构及转缸活塞压缩机
CN201811544546.8 2018-12-17

Publications (1)

Publication Number Publication Date
WO2020125093A1 true WO2020125093A1 (zh) 2020-06-25

Family

ID=65962939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105976 WO2020125093A1 (zh) 2018-12-17 2019-09-16 泵体组件及转缸活塞压缩机

Country Status (1)

Country Link
WO (1) WO2020125093A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3279445A (en) * 1964-06-15 1966-10-18 Karol Robert Rotary piston engine
CN104454021A (zh) * 2014-11-15 2015-03-25 周觉明 具有转轮活塞同步回旋机构的流体动力机械
CN204877938U (zh) * 2015-08-07 2015-12-16 珠海格力节能环保制冷技术研究中心有限公司 流体机械和换热设备
CN204877941U (zh) * 2015-08-07 2015-12-16 珠海格力节能环保制冷技术研究中心有限公司 压缩机和换热设备
CN205064265U (zh) * 2015-08-07 2016-03-02 珠海格力节能环保制冷技术研究中心有限公司 流体机械和换热设备
CN106015008A (zh) * 2016-07-29 2016-10-12 珠海格力节能环保制冷技术研究中心有限公司 一种转缸活塞压缩机泵体及采用其的压缩机
CN106089717A (zh) * 2016-07-28 2016-11-09 珠海格力节能环保制冷技术研究中心有限公司 一种压缩机泵体及压缩机
CN108331754A (zh) * 2018-03-13 2018-07-27 珠海格力节能环保制冷技术研究中心有限公司 泵体组件及具有其的压缩机
CN108799129A (zh) * 2018-07-18 2018-11-13 珠海格力电器股份有限公司 气缸结构、泵体结构及转缸压缩机
CN209414159U (zh) * 2018-12-17 2019-09-20 珠海格力节能环保制冷技术研究中心有限公司 转缸活塞压缩机的泵体结构及转缸活塞压缩机

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3279445A (en) * 1964-06-15 1966-10-18 Karol Robert Rotary piston engine
CN104454021A (zh) * 2014-11-15 2015-03-25 周觉明 具有转轮活塞同步回旋机构的流体动力机械
CN204877938U (zh) * 2015-08-07 2015-12-16 珠海格力节能环保制冷技术研究中心有限公司 流体机械和换热设备
CN204877941U (zh) * 2015-08-07 2015-12-16 珠海格力节能环保制冷技术研究中心有限公司 压缩机和换热设备
CN205064265U (zh) * 2015-08-07 2016-03-02 珠海格力节能环保制冷技术研究中心有限公司 流体机械和换热设备
CN106089717A (zh) * 2016-07-28 2016-11-09 珠海格力节能环保制冷技术研究中心有限公司 一种压缩机泵体及压缩机
CN106015008A (zh) * 2016-07-29 2016-10-12 珠海格力节能环保制冷技术研究中心有限公司 一种转缸活塞压缩机泵体及采用其的压缩机
CN108331754A (zh) * 2018-03-13 2018-07-27 珠海格力节能环保制冷技术研究中心有限公司 泵体组件及具有其的压缩机
CN108799129A (zh) * 2018-07-18 2018-11-13 珠海格力电器股份有限公司 气缸结构、泵体结构及转缸压缩机
CN209414159U (zh) * 2018-12-17 2019-09-20 珠海格力节能环保制冷技术研究中心有限公司 转缸活塞压缩机的泵体结构及转缸活塞压缩机

Also Published As

Publication number Publication date
CN109595157A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
CN211397889U (zh) 泵体组件、流体机械及换热设备
CN105604937A (zh) 流体机械和换热设备
US8888475B2 (en) Scroll compressor with oil supply across a sealing part
WO2017024863A1 (zh) 流体机械、换热设备和流体机械的运行方法
WO2017024862A1 (zh) 流体机械、换热设备和流体机械的运行方法
KR20100000369A (ko) 로터리 압축기
CN115095516A (zh) 用泵设备及柱塞泵
US11371496B2 (en) Eccentric sleeve for crankshaft of compressor, crankshaft, crankshaft assembly and compressor
WO2023045270A1 (zh) 一种泵体和压缩机
WO2022116577A1 (zh) 泵体组件及具有其的流体机械
KR102253538B1 (ko) 크랭크 샤프트, 펌프 몸체 구성 요소, 및 압축기
KR20140048823A (ko) 로터리 압축기
WO2020125093A1 (zh) 泵体组件及转缸活塞压缩机
WO2021004296A1 (zh) 压缩机及换热设备
CN105649983A (zh) 一种空气压缩泵
WO2023236499A1 (zh) 泵体组件、压缩机以及具有其的空调器
CN109488592B (zh) 转缸活塞压缩机的泵体结构及转缸活塞压缩机
WO2022242202A1 (zh) 压缩机及具有其的空调器
KR20210012231A (ko) 로터리 압축기
CN113482932B (zh) 旋转式压缩机及制冷设备
CN109595157B (zh) 转缸活塞压缩机的泵体结构及转缸活塞压缩机
CN111043036B (zh) 泵体组件、压缩机和空调器
CN112412792B (zh) 压缩机及具有该压缩机的冷冻循环装置
CN211397891U (zh) 泵体组件、流体机械及换热设备
JP7105387B2 (ja) ポンプボディアセンブリ、圧縮機及びエアコン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898505

Country of ref document: EP

Kind code of ref document: A1