WO2020124872A1 - 蚀刻监测装置及蚀刻监测方法 - Google Patents
蚀刻监测装置及蚀刻监测方法 Download PDFInfo
- Publication number
- WO2020124872A1 WO2020124872A1 PCT/CN2019/081608 CN2019081608W WO2020124872A1 WO 2020124872 A1 WO2020124872 A1 WO 2020124872A1 CN 2019081608 W CN2019081608 W CN 2019081608W WO 2020124872 A1 WO2020124872 A1 WO 2020124872A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- etching
- incident light
- intensity
- metal layer
- etched
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67253—Process monitoring, e.g. flow or thickness monitoring
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/1306—Details
- G02F1/1309—Repairing; Testing
Definitions
- the invention relates to the technical field of display, and in particular to an etching monitoring device and an etching monitoring method.
- LCD liquid crystal displays
- other flat display devices have been widely used in mobile phones, TVs, and individuals due to their advantages of high image quality, power saving, thin body, and wide range of applications.
- Various consumer electronic products such as digital assistants, digital cameras, notebook computers, and desktop computers have become the mainstream in display devices.
- liquid crystal display devices on the existing market are backlight type liquid crystal displays, which include a liquid crystal display panel and a backlight module.
- the working principle of the liquid crystal display panel is to place liquid crystal molecules in two parallel glass substrates. There are many vertical and horizontal thin wires in the middle of the two glass substrates.
- the liquid crystal molecules are controlled to change the direction by turning on or off, and the light of the backlight module is controlled. Refracted to produce a picture.
- a liquid crystal display panel is composed of a color filter substrate (CF, Color Filter) and a thin film transistor substrate (TFT, Thin Film) Transistor), liquid crystal (LC, Liquid Crystal) and sealant frame (Sealant) sandwiched between the color film substrate and the thin film transistor substrate
- the molding process generally includes: the front-end array (Array) process (film, yellow light, etching And film stripping), the middle cell process (the TFT substrate is bonded to the CF substrate) and the rear stage module assembly process (the driver IC is pressed to the printed circuit board).
- the front-stage Array process is mainly to form a TFT substrate to facilitate the control of the movement of liquid crystal molecules;
- the middle-stage Cell process is mainly to add liquid crystal between the TFT substrate and the CF substrate;
- the rear-stage module assembly process is mainly to drive the IC pressing and printed circuit The integration of the board then drives the liquid crystal molecules to rotate and display images.
- the purpose of the present invention is to provide an etching monitoring device, which can effectively monitor the etching process, provide accurate data for etching quality analysis, and promote the development of etching processes and the improvement of etching accuracy.
- the object of the present invention is also to provide an etching monitoring method, which can effectively monitor the etching process, provide accurate data for etching quality analysis, and promote the development of etching processes and the improvement of etching accuracy.
- the present invention provides an etching monitoring device, including: a plurality of monitoring units, each monitoring unit includes an incident light source and a signal processing module corresponding to the incident light source;
- Each incident light source corresponds to an etching area on the substrate to be etched, and different incident light sources correspond to different etching areas;
- the incident light source is used to emit incident light to the corresponding etching area and reflect the reflected light to generate reflected light;
- the signal processing module is configured to receive the reflected light generated by the incident light emitted by the incident light source corresponding thereto, and convert the reflected light into a corresponding electrical signal according to the intensity of the reflected light;
- the etching state of the substrate to be etched is determined by monitoring the change of the electrical signal converted by each signal processing module.
- the signal processing module includes: a reflection unit and an optical signal processor;
- the reflecting unit is provided on the optical path of the reflected light and is used to reflect the reflected light to generate secondary reflected light;
- the optical signal processor is located on the optical path of the secondary reflected light, and is used to receive the secondary reflected light, and convert the secondary reflected light into corresponding electricity according to the intensity of the secondary reflected light signal.
- Each etching area includes: a base substrate and a first metal layer on the base substrate;
- the incident light emitted by the incident light source corresponding to each etched area has the following characteristics: when the incident light irradiates the first metal layer in its corresponding etched area, the first metal layer reflects the reflection generated by the incident light The light has a first intensity, and when the incident light is irradiated onto the base substrate in its corresponding etching area, the reflected light generated by the base substrate reflecting the incident light has a second intensity different from the first intensity;
- the signal processing module first receives the reflected light of the first intensity and converts to generate the first electrical signal, and then receives the reflected light of the second intensity and converts to generate the second electrical signal.
- the duration of the first electrical signal is The etching time of the first metal layer.
- Each etching area includes: a base substrate, a first metal layer on the base substrate, and a second metal layer on the first metal layer;
- the incident light emitted by the incident light source corresponding to each etched area has the following characteristics: when the incident light irradiates the first metal layer in its corresponding etched area, the first metal layer reflects the reflection generated by the incident light The light has a first intensity, and when the incident light irradiates the base substrate in its corresponding etched area, the reflected light generated by the base substrate reflecting the incident light has a second intensity different from the first intensity, When the incident light is irradiated onto the second metal layer in its corresponding etching area, the reflected light generated by the second metal layer reflecting the incident light has a third intensity different from the first intensity and the second intensity;
- the signal processing module first receives the reflected light of the third intensity, converts and generates a third electrical signal, then receives the reflected light of the first intensity, converts and generates the first electrical signal, and finally receives the reflected light of the second intensity and converts A second electrical signal is generated, the duration of the third electrical signal is the etching duration of the second metal layer, and the duration of the first electrical signal is the etching duration of the first metal layer.
- the etching regions of the substrate to be etched are arranged in an array
- the uniformity of the etching of the substrate to be etched in the row direction is determined, and by monitoring the respective etched regions in the same column
- the difference in electrical signals converted by the corresponding signal processing module determines the etching uniformity of the substrate to be etched in the column direction.
- the invention also provides an etching monitoring method, including the following steps:
- Step S1 An etching monitoring device is provided.
- the etching monitoring device includes: a plurality of monitoring units, each of which includes an incident light source and a signal processing module corresponding to the incident light source;
- Step S2 Provide a substrate to be etched, and set each incident light source to correspond to an etching area on the substrate to be etched, and different incident light sources correspond to different etching areas;
- Step S3 Etching the substrate to be etched, and at the same time, each incident light source emits incident light to its corresponding etching area and reflects the reflected light through the etching area;
- Step S4 Each signal processing module receives the reflected light generated by the incident light emitted by the corresponding incident light source, and converts the reflected light into a corresponding electrical signal according to the intensity of the reflected light;
- Step S5 Monitor the change of the electrical signal converted by each signal processing module to determine the etching state of the substrate to be etched.
- each etching area includes: a base substrate and a first metal layer on the base substrate;
- the incident light emitted by the incident light source corresponding to each etched area has the following characteristics: when the incident light irradiates the first metal layer in the corresponding etched area, the first metal layer reflects the light The reflected light generated by the incident light has a first intensity, and when the incident light is irradiated onto the base substrate in its corresponding etched area, the reflected light generated by the base substrate reflecting the incident light has a difference from the first The second intensity of intensity;
- the signal processing module first receives the reflected light of the first intensity and converts to generate the first electrical signal, and then receives the reflected light of the second intensity and converts to generate the second electrical signal;
- the duration of the first electrical signal is the etching duration of the first metal layer.
- each etching area includes: a base substrate, a first metal layer on the base substrate and a second metal layer on the first metal layer;
- the incident light emitted by the incident light source corresponding to each etched area has the following characteristics: when the incident light irradiates the first metal layer in the corresponding etched area, the first metal layer reflects the light The reflected light generated by the incident light has a first intensity, and when the incident light is irradiated onto the base substrate in its corresponding etched area, the reflected light generated by the base substrate reflecting the incident light has a difference from the first The second intensity of the intensity, when the incident light is irradiated onto the second metal layer in its corresponding etched area, the reflected light generated by the second metal layer reflecting the incident light has a different intensity from the first intensity and the second The third intensity of intensity;
- the signal processing module first receives the reflected light of the third intensity, converts and generates a third electrical signal, then receives the reflected light of the first intensity, converts and generates the first electrical signal, and finally receives the reflection of the second intensity Light, conversion generates a second electrical signal;
- the duration of the third electrical signal is the etching duration of the second metal layer
- the duration of the first electrical signal is the etching duration of the first metal layer
- each etching area of the substrate to be etched is arranged in an array
- step S5 by monitoring the difference in the electrical signals converted by the signal processing modules corresponding to the respective etched regions in the same row, the etching uniformity of the substrate to be etched in the row direction is determined.
- each etching area of the substrate to be etched is arranged in an array
- step S5 by monitoring the difference in the electrical signals converted by the signal processing modules corresponding to the respective etched regions in the same column, the etching uniformity of the substrate to be etched in the column direction is determined.
- the present invention provides an etching monitoring device, including: a plurality of monitoring units, each monitoring unit includes an incident light source and a signal processing module corresponding to the incident light source; each incident light source corresponds to the etching An etching area on the substrate is provided, and different incident light sources correspond to different etching areas; the incident light source is used to emit incident light to its corresponding etching area and reflect the reflected light through the etching area to generate reflected light; the signal processing module , Used to receive the reflected light generated by the incident light emitted by the corresponding incident light source, and convert the reflected light into a corresponding electrical signal according to the intensity of the reflected light; when etching, convert by monitoring each signal processing module The change of the obtained electrical signal determines the etching state of the substrate to be etched, can effectively monitor the etching process, provide accurate data for etching quality analysis, and promote the development of the etching process and the improvement of the etching accuracy.
- the invention also provides an etching
- FIG. 1 is a schematic diagram of an etching monitoring device of the present invention
- FIGS. 2 to 4 are schematic diagrams of the monitoring process of the etching monitoring device of the present invention.
- FIG. 5 is a plan view of the substrate with etching monitored by the etching monitoring device of the present invention.
- FIG. 6 is a flowchart of an etching monitoring method of the present invention.
- the present invention provides an etching monitoring device, including: a plurality of monitoring units 1 , Every monitoring unit 1 Both include an incident light source 11 And one with the incident light source 11 Corresponding signal processing module 12 ;
- Every incident light source 11 Corresponds to an etched area on the substrate to be etched 2 Settings, different incident light sources 11 Corresponding to different etched areas 2 ;
- the incident light source 11 for the corresponding etched area 2 Emit incident light and pass through the etched area 2 Reflection produces reflected light;
- the signal processing module 12 Used to receive the corresponding incident light source 11 Reflected light generated by the emitted incident light, and according to the intensity of the reflected light, the reflected light is converted into a corresponding electrical signal;
- each signal processing module 12 determines the etching state of the substrate to be etched.
- the signal processing module 12 Including: reflection unit 121 And optical signal processor 122 ;
- the reflecting unit 121 Set on the optical path of the reflected light, for reflecting the reflected light to generate secondary reflected light;
- the optical signal processor 122 Located on the optical path of the secondary reflected light, used to receive the secondary reflected light, and convert the secondary reflected light into a corresponding electrical signal according to the intensity of the secondary reflected light.
- the reflection unit 121 It is a mirror.
- the incident light is a monochromatic or compound laser.
- each etched area 2 Both include: substrate substrate twenty one And located on the base substrate twenty one First metal layer twenty two , That is, the substrate to be etched includes a base substrate twenty one And located on the base substrate twenty one First metal layer twenty two , And the substrate to be etched is divided into multiple different etched areas 2 For each monitoring unit 1 Monitor different positions of the substrate to be etched respectively.
- each etched area 2 Corresponding incident light source 11
- the incident light has the following characteristics: the incident light is irradiated to its corresponding etched area 2
- the first metal layer in twenty two When going up, the first metal layer twenty two
- the reflected light generated by reflecting the incident light has a first intensity
- the incident light irradiates its corresponding etched area 2
- Substrate substrate twenty one When loading, the base substrate twenty one Reflected light generated by reflecting the incident light has a second intensity different from the first intensity;
- the signal processing module 12 First receive the reflected light of the first intensity and convert to generate the first electrical signal, then receive the reflected light of the second intensity and convert to generate the second electrical signal, the duration of the first electrical signal is the first metal layer twenty two The etching time.
- the first intensity is significantly different from the second intensity, preferably, the first intensity is different from the second intensity 65% the above.
- the first metal layer twenty two Is a layer of molybdenum ( Mo ) Film
- the color of the etching solution used in the etching process is light blue
- the incident light is a blue laser
- the set start time is 0S
- the incident light irradiates the first metal layer twenty two After going on, reflected to the signal processing module 12
- the signal processing module 12 Identify the intensity of the reflected light as the first intensity, and start to output the first electrical signal accordingly, as shown 4
- the incident light irradiates the base substrate twenty one
- the signal processing module 12 Recognize that the intensity of the reflected light changes from the first intensity to the second intensity, and the corresponding first electrical signal is switched to the second electrical signal.
- the corresponding time is 12s
- the etching time is 12s .
- each etched area 2 Both include: substrate substrate twenty one , Located on the base substrate twenty one First metal layer twenty two And in the first metal layer twenty two Second metal layer twenty three , That is, the substrate to be etched includes a base substrate twenty one , Located on the base substrate twenty one First metal layer twenty two And in the first metal layer twenty two Second metal layer twenty three , And the substrate to be etched is divided into multiple different etched areas 2 For each monitoring unit 1 Monitor different positions of the substrate to be etched respectively.
- each etched area 2 Corresponding incident light source 11
- the incident light has the following characteristics: the incident light is irradiated to its corresponding etched area 2
- the first metal layer in twenty two When going up, the first metal layer twenty two
- the reflected light generated by reflecting the incident light has a first intensity
- the incident light irradiates its corresponding etched area 2
- Substrate substrate twenty one When loading, the base substrate twenty one
- the reflected light generated by reflecting the incident light has a second intensity different from the first intensity
- the incident light irradiates its corresponding etched area 2
- Second metal layer in twenty three When going up, the second metal layer twenty three
- the reflected light generated by reflecting the incident light has a third intensity different from the first intensity and the second intensity.
- the signal processing module 12 First receive the reflected light of the third intensity, convert and generate a third electrical signal, then receive the reflected light of the first intensity, convert and generate the first electrical signal, and finally receive the reflected light of the second intensity and convert and generate the second electrical signal, said The duration of the third electrical signal is the second metal layer twenty two Etching time, the duration of the first electrical signal is the first metal layer twenty two The etching time.
- the first metal layer twenty two Is a layer of molybdenum ( Mo ) Film, the second metal layer twenty three As a layer of copper ( Cu ) Film, the color of the etching solution used in the etching process is light blue, the incident light is a blue laser, and the set start time is 0S , First the second metal layer twenty three Etching, the incident light irradiates the second metal layer twenty three After going on, reflected to the signal processing module 12 , The signal processing module 12 Recognizing that the intensity of the reflected light is the third intensity, the third electrical signal starts to be output accordingly, as shown 3 As shown, when the second metal layer twenty three After being completely etched, the incident light irradiates the first metal layer twenty two On, reflected to the signal processing module 12 , The signal processing module 12 Recognize that the intensity of the reflected light is changed from the third intensity to the first intensity, and correspondingly start to output the first electrical signal at this time 85s , As shown 4 As shown, when
- each etching area of the substrate to be etched 2 Array arrangement during etching, by monitoring each etched area in the same row 2 Corresponding signal processing module 12
- the difference in the electrical signals obtained by the conversion determines the etching uniformity of the substrate to be etched in the row direction, by monitoring each etching area located in the same column 2 Corresponding signal processing module 12
- the difference in the converted electrical signals determines the etching uniformity of the substrate to be etched in the column direction.
- any one of the groups is used as an experimental object to analyze the trend of the etching in the row direction according to the different electrical signals, so as to judge the uniformity of the etching in the row direction.
- the substrate is placed on a transfer mechanism, and a spray head is provided above the transfer mechanism to spray the substrate with etching solution for etching.
- the etching solution will be continuously sprayed out
- the moving speed of the substrate on the conveying mechanism (the moving direction is parallel to the row direction of the substrate) will affect the uniformity of the etching of the substrate in the row direction, and the invention can be applied to the substrate in the row direction of the substrate to be etched.
- Judgment of uniformity by setting different moving speeds and observing the change of the uniformity of the substrate to be etched in the row direction, the relationship between the moving speed of the substrate and the etching uniformity can be quantified, thereby promoting the development of the etching process and the accuracy of etching Promote.
- any one of the first to third groups is selected as the experimental object, and the column direction etching trend is analyzed according to the difference of the electrical signals, so as to judge the column direction etching uniformity.
- one end of the substrate is usually tilted in the column direction so that the substrate forms an inclined angle with the horizontal plane. Judging the uniformity in the column direction, by setting different tilt angles, and observing the change in the uniformity of the substrate to be etched in the column direction, the relationship between the tilt angle of the substrate and the etching uniformity can be quantified, thereby promoting the promotion of the etching process Development and improvement of etching accuracy.
- the present invention also provides an etching monitoring method, including the following steps:
- the etching monitoring device includes: a plurality of monitoring units 1 , Every monitoring unit 1 Both include an incident light source 11 And one with the incident light source 11 Corresponding signal processing module 12 ;
- step S2 Provide a substrate to be etched, put each incident light source 11 Corresponding to an etched area on the substrate to be etched 2 Set, and different incident light sources 11 Corresponding etching area 2 different;
- step S3 Etching the substrate to be etched, while each incident light source 11 Etched area 2 Emit incident light and pass through the etched area 2 Reflection produces reflected light;
- step S4 Various signal processing modules 12 Receive the corresponding incident light source 11 Reflected light generated by the emitted incident light, and according to the intensity of the reflected light, the reflected light is converted into a corresponding electrical signal;
- step S5 Monitor each signal processing module 12 The change of the converted electrical signal determines the etching state of the substrate to be etched.
- the signal processing module 12 Including: reflection unit 121 And optical signal processor 122 ;
- the reflecting unit 121 Set on the optical path of the reflected light, for reflecting the reflected light to generate secondary reflected light;
- the optical signal processor 122 Located on the optical path of the secondary reflected light, used to receive the secondary reflected light, and convert the secondary reflected light into a corresponding electrical signal according to the intensity of the secondary reflected light.
- the reflection unit 121 It is a mirror.
- the incident light is a monochromatic or compound laser.
- each etched area 2 Both include: substrate substrate twenty one And located on the base substrate twenty one First metal layer twenty two , That is, the substrate to be etched includes a base substrate twenty one And located on the base substrate twenty one First metal layer twenty two , And the substrate to be etched is divided into multiple different etched areas 2 For each monitoring unit 1 Monitor different positions of the substrate to be etched respectively.
- each etched area 2 Corresponding incident light source 11
- the incident light has the following characteristics: the incident light is irradiated to its corresponding etched area 2
- the first metal layer in twenty two When going up, the first metal layer twenty two
- the reflected light generated by reflecting the incident light has a first intensity
- the incident light irradiates its corresponding etched area 2
- Substrate substrate twenty one When loading, the base substrate twenty one Reflected light generated by reflecting the incident light has a second intensity different from the first intensity;
- the signal processing module 12 First receive the reflected light of the first intensity and convert to generate the first electrical signal, then receive the reflected light of the second intensity and convert to generate the second electrical signal, the duration of the first electrical signal is the first metal layer twenty two The etching time.
- the first intensity is significantly different from the second intensity, preferably, the first intensity is different from the second intensity 65% the above.
- the first metal layer twenty two Is a layer of molybdenum ( Mo ) Film
- the color of the etching solution used in the etching process is light blue
- the incident light is a blue laser
- the set start time is 0S
- the incident light irradiates the first metal layer twenty two After going on, reflected to the signal processing module 12
- the signal processing module 12 Identify the intensity of the reflected light as the first intensity, and start to output the first electrical signal accordingly, as shown 4
- the incident light irradiates the base substrate twenty one
- the signal processing module 12 Recognize that the intensity of the reflected light changes from the first intensity to the second intensity, and the corresponding first electrical signal is switched to the second electrical signal.
- the corresponding time is 12s
- the etching time is 12s .
- each etched area 2 Both include: substrate substrate twenty one , Located on the base substrate twenty one First metal layer twenty two And in the first metal layer twenty two Second metal layer twenty three , That is, the substrate to be etched includes a base substrate twenty one , Located on the base substrate twenty one First metal layer twenty two And in the first metal layer twenty two Second metal layer twenty three , And the substrate to be etched is divided into multiple different etched areas 2 For each monitoring unit 1 Monitor different positions of the substrate to be etched respectively.
- each etched area 2 Corresponding incident light source 11
- the incident light has the following characteristics: the incident light is irradiated to its corresponding etched area 2
- the first metal layer in twenty two When going up, the first metal layer twenty two
- the reflected light generated by reflecting the incident light has a first intensity
- the incident light irradiates its corresponding etched area 2
- Substrate substrate twenty one When loading, the base substrate twenty one
- the reflected light generated by reflecting the incident light has a second intensity different from the first intensity
- the incident light irradiates its corresponding etched area 2
- Second metal layer in twenty three When going up, the second metal layer twenty three
- the reflected light generated by reflecting the incident light has a third intensity different from the first intensity and the second intensity.
- the signal processing module 12 First receive the reflected light of the third intensity, convert and generate a third electrical signal, then receive the reflected light of the first intensity, convert and generate the first electrical signal, and finally receive the reflected light of the second intensity and convert and generate the second electrical signal, said The duration of the third electrical signal is the second metal layer twenty two Etching time, the duration of the first electrical signal is the first metal layer twenty two The etching time.
- the first metal layer twenty two Is a layer of molybdenum ( Mo ) Film, the second metal layer twenty three As a layer of copper ( Cu ) Film, the color of the etching solution used in the etching process is light blue, the incident light is a blue laser, and the set start time is 0S , First the second metal layer twenty three Etching, the incident light irradiates the second metal layer twenty three After going on, reflected to the signal processing module 12 , The signal processing module 12 Recognizing that the intensity of the reflected light is the third intensity, the third electrical signal starts to be output accordingly, as shown 3 As shown, when the second metal layer twenty three After being completely etched, the incident light irradiates the first metal layer twenty two On, reflected to the signal processing module 12 , The signal processing module 12 Recognize that the intensity of the reflected light is changed from the third intensity to the first intensity, and correspondingly start to output the first electrical signal at this time 85s , As shown 4 As shown, when
- each etching area of the substrate to be etched 2 Array arrangement during etching, by monitoring each etched area in the same row 2 Corresponding signal processing module 12
- the difference in the electrical signals obtained by the conversion determines the etching uniformity of the substrate to be etched in the row direction, by monitoring each etching area located in the same column 2 Corresponding signal processing module 12
- the difference in the converted electrical signals determines the etching uniformity of the substrate to be etched in the column direction.
- any one of the groups is used as an experimental object to analyze the trend of the etching in the row direction according to the different electrical signals, so as to judge the uniformity of the etching in the row direction.
- the substrate is placed on a transfer mechanism, and a spray head is provided above the transfer mechanism to spray the substrate with etching solution for etching.
- the etching solution will be continuously sprayed out
- the moving speed of the substrate on the conveying mechanism (the moving direction is parallel to the row direction of the substrate) will affect the uniformity of the etching of the substrate in the row direction, and the invention can be applied to the substrate in the row direction of the substrate to be etched.
- Judgment of uniformity by setting different moving speeds and observing the change of the uniformity of the substrate to be etched in the row direction, the relationship between the moving speed of the substrate and the etching uniformity can be quantified, thereby promoting the development of the etching process and the accuracy of etching Promote.
- any one of the first to third groups is selected as the experimental object, and the column direction etching trend is analyzed according to the difference of the electrical signals, so as to judge the column direction etching uniformity.
- one end of the substrate is usually tilted in the column direction so that the substrate forms an inclined angle with the horizontal plane. Judging the uniformity in the column direction, by setting different tilt angles, and observing the change in the uniformity of the substrate to be etched in the column direction, the relationship between the tilt angle of the substrate and the etching uniformity can be quantified, thereby promoting the promotion of the etching process Development and improvement of etching accuracy.
- the present invention provides an etching monitoring device, including: a plurality of monitoring units, each monitoring unit includes an incident light source and a signal processing module corresponding to the incident light source; each incident light source corresponds to the etching An etching area on the substrate is provided, and different incident light sources correspond to different etching areas; the incident light source is used to emit incident light to its corresponding etching area and reflect the reflected light to generate reflected light; the signal processing module, It is used to receive the reflected light generated by the incident light emitted by the corresponding incident light source, and convert the reflected light into a corresponding electrical signal according to the intensity of the reflected light; during etching, the conversion is obtained by monitoring each signal processing module
- the change of the electrical signal determines the etching state of the substrate to be etched, can effectively monitor the etching process, provide accurate data for etching quality analysis, and promote the development of the etching process and the improvement of etching accuracy.
- the invention also provides an etching monitoring method, which can effectively monitor
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Optics & Photonics (AREA)
- ing And Chemical Polishing (AREA)
- Weting (AREA)
Abstract
一种蚀刻监测装置及蚀刻监控方法。所述蚀刻监测装置包括:多个监测单元(1),每一个监测单元(1)均包括一个入射光源(11)和一个与该入射光源(11)对应的信号处理模块(12);每一个入射光源(11)对应待蚀刻的基板的上的一个蚀刻区域设置,不同的入射光源(11)对应不同的蚀刻区域(2);所述入射光源(11)用于向其对应的蚀刻区域(2)发射入射光;所述信号处理模块(12),用于接收反射光,并根据所述反射光的强度,将所述反射光转换为相应的电信号,通过监测各个信号处理模块(12)转换得到的电信号的变化,确定所述待蚀刻的基板的蚀刻状态,能够有效监测蚀刻过程,为蚀刻质量分析提供准确的数据,促进蚀刻工艺的开发及蚀刻精度的提升。
Description
本发明涉及显示技术领域,尤其涉及一种蚀刻监测装置及蚀刻监测方法。
随着显示技术的发展,液晶显示器(Liquid Crystal Display,LCD)等平面显示装置因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。
现有市场上的液晶显示装置大部分为背光型液晶显示器,其包括液晶显示面板及背光模组(backlight module)。液晶显示面板的工作原理是在两片平行的玻璃基板当中放置液晶分子,两片玻璃基板中间有许多垂直和水平的细小电线,通过通电与否来控制液晶分子改变方向,将背光模组的光线折射出来产生画面。
通常液晶显示面板由彩膜基板(CF,Color Filter)、薄膜晶体管基板(TFT,Thin Film
Transistor)、夹于彩膜基板与薄膜晶体管基板之间的液晶(LC,Liquid Crystal)及密封胶框(Sealant)组成,其成型工艺一般包括:前段阵列(Array)制程(薄膜、黄光、蚀刻及剥膜)、中段成盒(Cell)制程(TFT基板与CF基板贴合)及后段模组组装制程(驱动IC与印刷电路板压合)。其中,前段Array制程主要是形成TFT基板,以便于控制液晶分子的运动;中段Cell制程主要是在TFT基板与CF基板之间添加液晶;后段模组组装制程主要是驱动IC压合与印刷电路板的整合,进而驱动液晶分子转动,显示图像。
在液晶显示面板的制作过程中经常需要使用蚀刻制程,蚀刻终点的判定的精确性,对蚀刻制程的效果有较大的影响,同时随着显示面板尺寸的不断增大,目前在蚀刻机台进行加工的基板的尺寸在2*2m
2以上,而对于如此巨大的基板进行表面金属膜的蚀刻时,还要求蚀刻精度达到0.05微米及更高的要求,同时要求蚀刻工艺能完成对大尺寸面板均一蚀刻,对此,在现有技术仍缺乏有效的监控手段,来对蚀刻质量进行有效的监测。
本发明的目的在于提供一种蚀刻监测装置,能够有效监测蚀刻过程,为蚀刻质量分析提供准确的数据,促进蚀刻工艺的开发及蚀刻精度的提升。
本发明的目的还在于提供一种蚀刻监测方法,能够有效监测蚀刻过程,为蚀刻质量分析提供准确的数据,促进蚀刻工艺的开发及蚀刻精度的提升。
为实现上述目的,本发明提供了一种蚀刻监测装置,包括:多个监测单元,每一个监测单元均包括一个入射光源和一个与该入射光源对应的信号处理模块;
每一个入射光源对应待蚀刻的基板的上的一个蚀刻区域设置,不同的入射光源对应不同的蚀刻区域;
所述入射光源用于向其对应的蚀刻区域发射入射光并通过该蚀刻区域反射产生反射光;
所述信号处理模块,用于接收与其对应的入射光源发出的入射光所产生的反射光,并根据所述反射光的强度,将所述反射光转换为相应的电信号;
蚀刻时,通过监测各个信号处理模块转换得到的电信号的变化,确定所述待蚀刻的基板的蚀刻状态。
所述信号处理模块包括:反射单元以及光信号处理器;
所述反射单元设于所述反射光的光路上,用于对所述反射光进行反射,产生二次反射光;
所述光信号处理器位于所述二次反射光的光路上,用于接收所述二次反射光,并根据所述二次反射光的强度,将所述二次反射光转换为相应的电信号。
每一个蚀刻区域均包括:衬底基板及位于所述衬底基板上的第一金属层;
每一个蚀刻区域对应的入射光源发出入射光均具有如下特性:所述入射光照射到其对应的蚀刻区域中的第一金属层上时,所述第一金属层反射所述入射光产生的反射光具有第一强度,所述入射光照射到其对应的蚀刻区域中的衬底基板上时,所述衬底基板反射所述入射光产生的反射光具有不同于第一强度的第二强度;
蚀刻时,所述信号处理模块先接收第一强度的反射光,转换产生第一电信号,后接收第二强度的反射光,转换产生第二电信号,所述第一电信号的持续时长为所述第一金属层的蚀刻时长。
每一个蚀刻区域均包括:衬底基板、位于所述衬底基板上的第一金属层及位于第一金属层上的第二金属层;
每一个蚀刻区域对应的入射光源发出入射光均具有如下特性:所述入射光照射到其对应的蚀刻区域中的第一金属层上时,所述第一金属层反射所述入射光产生的反射光具有第一强度,所述入射光照射到其对应的蚀刻区域中的衬底基板上时,所述衬底基板反射所述入射光产生的反射光具有不同于第一强度的第二强度,所述入射光照射到其对应的蚀刻区域中的第二金属层上时,所述第二金属层反射所述入射光产生的反射光具有不同于第一强度和第二强度的第三强度;
蚀刻时,所述信号处理模块先接收第三强度的反射光,转换产生第三电信号,然后接收第一强度的反射光,转换产生第一电信号,最后接收第二强度的反射光,转换产生第二电信号,所述第三电信号的持续时长为所述第二金属层的蚀刻时长,所述第一电信号的持续时长为所述第一金属层的蚀刻时长。
所述待蚀刻的基板的各个蚀刻区域阵列排布;
蚀刻时,通过监测位于同一行的各个蚀刻区域对应的信号处理模块转换得到的电信号的不同,确定所述待蚀刻的基板的在行方向上的蚀刻均一性,通过监测位于同一列的各个蚀刻区域对应的信号处理模块转换得到的电信号的不同,确定所述待蚀刻的基板的在列方向上的蚀刻均一性。
本发明还提供一种蚀刻监测方法,包括如下步骤:
步骤S1、提供一蚀刻监测装置,所述蚀刻监测装置包括:多个监测单元,每一个监测单元均包括一个入射光源和一个与该入射光源对应的信号处理模块;
步骤S2、提供一待蚀刻的基板,将每一个入射光源对应所述待蚀刻的基板的上的一个蚀刻区域设置,且不同的入射光源对应的蚀刻区域不同;
步骤S3、对所述待蚀刻的基板进行蚀刻,同时各个入射光源向其对应的蚀刻区域发射入射光并通过该蚀刻区域反射产生反射光;
步骤S4、各个信号处理模块接收与其对应的入射光源发出的入射光所产生的反射光,并根据所述反射光的强度,将所述反射光转换为相应的电信号;
步骤S5、监测各个信号处理模块转换得到的电信号的变化,确定所述待蚀刻的基板的蚀刻状态。
所述步骤S2中,每一个蚀刻区域均包括:衬底基板及位于所述衬底基板上的第一金属层;
所述步骤S3中,每一个蚀刻区域对应的入射光源发出入射光均具有如下特性:所述入射光照射到其对应的蚀刻区域中的第一金属层上时,所述第一金属层反射所述入射光产生的反射光具有第一强度,所述入射光照射到其对应的蚀刻区域中的衬底基板上时,所述衬底基板反射所述入射光产生的反射光具有不同于第一强度的第二强度;
所述步骤S4中,所述信号处理模块先接收第一强度的反射光,转换产生第一电信号,后接收第二强度的反射光,转换产生第二电信号;
所述步骤S5中,确定所述第一电信号的持续时长为所述第一金属层的蚀刻时长。
所述步骤S2中,每一个蚀刻区域均包括:衬底基板、位于所述衬底基板上的第一金属层及位于第一金属层上的第二金属层;
所述步骤S3中,每一个蚀刻区域对应的入射光源发出入射光均具有如下特性:所述入射光照射到其对应的蚀刻区域中的第一金属层上时,所述第一金属层反射所述入射光产生的反射光具有第一强度,所述入射光照射到其对应的蚀刻区域中的衬底基板上时,所述衬底基板反射所述入射光产生的反射光具有不同于第一强度的第二强度,所述入射光照射到其对应的蚀刻区域中的第二金属层上时,所述第二金属层反射所述入射光产生的反射光具有不同于第一强度和第二强度的第三强度;
所述步骤S4中,所述信号处理模块先接收第三强度的反射光,转换产生第三电信号,然后接收第一强度的反射光,转换产生第一电信号,最后接收第二强度的反射光,转换产生第二电信号;
所述步骤S5中,确定所述第三电信号的持续时长为所述第二金属层的蚀刻时长,所述第一电信号的持续时长为所述第一金属层的蚀刻时长。
所述步骤S2中,所述待蚀刻的基板的各个蚀刻区域阵列排布;
所述步骤S5中,通过监测位于同一行的各个蚀刻区域对应的信号处理模块转换得到的电信号的不同,确定所述待蚀刻的基板的在行方向上的蚀刻均一性。
所述步骤S2中,所述待蚀刻的基板的各个蚀刻区域阵列排布;
所述步骤S5中,通过监测位于同一列的各个蚀刻区域对应的信号处理模块转换得到的电信号的不同,确定所述待蚀刻的基板的在列方向上的蚀刻均一性。
本发明的有益效果:本发明提供一种蚀刻监测装置,包括:多个监测单元,每一个监测单元均包括一个入射光源和一个与该入射光源对应的信号处理模块;每一个入射光源对应待蚀刻的基板的上的一个蚀刻区域设置,不同的入射光源对应不同的蚀刻区域;所述入射光源用于向其对应的蚀刻区域发射入射光并通过该蚀刻区域反射产生反射光;所述信号处理模块,用于接收与其对应的入射光源发出的入射光所产生的反射光,并根据所述反射光的强度,将所述反射光转换为相应的电信号;蚀刻时,通过监测各个信号处理模块转换得到的电信号的变化,确定所述待蚀刻的基板的蚀刻状态,能够有效监测蚀刻过程,为蚀刻质量分析提供准确的数据,促进蚀刻工艺的开发及蚀刻精度的提升。本发明还提供一种蚀刻监测方法,能够有效监测蚀刻过程,为蚀刻质量分析提供准确的数据,促进蚀刻工艺的开发及蚀刻精度的提升。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为本发明的蚀刻监测装置的示意图;
图2至图4为本发明的蚀刻监测装置的监测过程示意图;
图5为本发明的蚀刻监测装置监测的带蚀刻的基板的俯视图;
图6为本发明的蚀刻监测方法的流程图。
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图
1
,本发明提供一种蚀刻监测装置,包括:多个监测单元
1
,每一个监测单元
1
均包括一个入射光源
11
和一个与该入射光源
11
对应的信号处理模块
12
;
每一个入射光源
11
对应待蚀刻的基板的上的一个蚀刻区域
2
设置,不同的入射光源
11
对应不同的蚀刻区域
2
;
所述入射光源
11
用于向其对应的蚀刻区域
2
发射入射光并通过该蚀刻区域
2
反射产生反射光;
所述信号处理模块
12
,用于接收与其对应的入射光源
11
发出的入射光所产生的反射光,并根据所述反射光的强度,将所述反射光转换为相应的电信号;
蚀刻时,通过监测各个信号处理模块
12
转换得到的电信号的变化,确定所述待蚀刻的基板的蚀刻状态。
具体地,如图
2
至图
4
所示,所述信号处理模块
12
包括:反射单元
121
以及光信号处理器
122
;
所述反射单元
121
设于所述反射光的光路上,用于对所述反射光进行反射,产生二次反射光;
所述光信号处理器
122
位于所述二次反射光的光路上,用于接收所述二次反射光,并根据所述二次反射光的强度,将所述二次反射光转换为相应的电信号。
优选地,所述反射单元
121
为一反射镜。
需要说明的是,通过设置反射单元
121
,使得所述反射光再次经过一段光路之后,再射入光信号处理器
122
中,能够避免进入光信号处理
122
中光线受到其他光信号的干扰,保障光信号处理器
122
的监测的准确性。
具体地,所述入射光为单色或复合激光。
具体地,在本发明的第一实施例中,每一个蚀刻区域
2
均包括:衬底基板
21
及位于所述衬底基板
21
上的第一金属层
22
,也即所述待蚀刻的基板包括衬底基板
21
及位于所述衬底基板
21
上的第一金属层
22
,且所述待蚀刻的基板被划分为多个不同的蚀刻区域
2
,供各个监测单元
1
分别对所述待蚀刻的基板的不同位置进行监测。
具体地,在所述第一实施例中,每一个蚀刻区域
2
对应的入射光源
11
发出入射光均具有如下特性:所述入射光照射到其对应的蚀刻区域
2
中的第一金属层
22
上时,所述第一金属层
22
反射所述入射光产生的反射光具有第一强度,所述入射光照射到其对应的蚀刻区域
2
中的衬底基板
21
上时,所述衬底基板
21
反射所述入射光产生的反射光具有不同于第一强度的第二强度;
蚀刻时,所述信号处理模块
12
先接收第一强度的反射光,转换产生第一电信号,后接收第二强度的反射光,转换产生第二电信号,所述第一电信号的持续时长为所述第一金属层
22
的蚀刻时长。
具体地,所述第一强度与第二强度相差明显,优选地,所述第一强度与第二强度相差
65%
以上。
举例来说,如图
3
所示,所述第一金属层
22
为一层钼(
Mo
)膜,蚀刻过程中采用的蚀刻液的颜色为浅蓝色,所述入射光为蓝色的激光,设置开始的时间为
0S
,进行所述第一金属层
22
的蚀刻,入射光照射到第一金属层
22
上之后,反射到信号处理模块
12
,所述信号处理模块
12
识别所述反射光的强度为第一强度,相应开始输出第一电信号,如图
4
所示,当所述第一金属层
22
被完全蚀刻之后,入射光照射到衬底基板
21
上,所述信号处理模块
12
识别所述反射光的强度从第一强度变为第二强度,相应切换输出的第一电信号为第二电信号,此时,对应的时间为
12s
,则第一金属层
22
的蚀刻时长为
12s
。
具体地,在本发明第二实施例中,每一个蚀刻区域
2
均包括:衬底基板
21
、位于所述衬底基板
21
上的第一金属层
22
及位于第一金属层
22
上的第二金属层
23
,也即所述待蚀刻的基板包括衬底基板
21
、位于所述衬底基板
21
上的第一金属层
22
及位于第一金属层
22
上的第二金属层
23
,且所述待蚀刻的基板被划分为多个不同的蚀刻区域
2
,供各个监测单元
1
分别对所述待蚀刻的基板的不同位置进行监测。
具体地,在所述第二实施例中,每一个蚀刻区域
2
对应的入射光源
11
发出入射光均具有如下特性:所述入射光照射到其对应的蚀刻区域
2
中的第一金属层
22
上时,所述第一金属层
22
反射所述入射光产生的反射光具有第一强度,所述入射光照射到其对应的蚀刻区域
2
中的衬底基板
21
上时,所述衬底基板
21
反射所述入射光产生的反射光具有不同于第一强度的第二强度,所述入射光照射到其对应的蚀刻区域
2
中的第二金属层
23
上时,所述第二金属层
23
反射所述入射光产生的反射光具有不同于第一强度和第二强度的第三强度。
蚀刻时,所述信号处理模块
12
先接收第三强度的反射光,转换产生第三电信号,然后接收第一强度的反射光,转换产生第一电信号,最后接收第二强度的反射光,转换产生第二电信号,所述第三电信号的持续时长为所述第二金属层
22
的蚀刻时长,所述第一电信号的持续时长为所述第一金属层
22
的蚀刻时长。
举例来说,如图
2
所示,所述第一金属层
22
为一层钼(
Mo
)膜,所述第二金属层
23
为一层铜(
Cu
)膜,蚀刻过程中采用的蚀刻液的颜色为浅蓝色,所述入射光为蓝色的激光,设置开始的时间为
0S
,首先进行第二金属层
23
的蚀刻,入射光照射到第二金属层
23
上之后,反射到信号处理模块
12
,所述信号处理模块
12
识别所述反射光的强度为第三强度,相应开始输出第三电信号,如图
3
所示,当所述第二金属层
23
被完全蚀刻之后,入射光照射到第一金属层
22
上,反射到信号处理模块
12
,所述信号处理模块
12
识别所述反射光的强度为从第三强度变为第一强度,相应开始输出第一电信号,此时时间为
85s
,如图
4
所示,当所述第一金属层
22
被完全蚀刻之后,入射光照射到衬底基板
21
上,所述信号处理模块
12
识别所述反射光的强度从第一强度变为第二强度,相应切换输出的第一电信号为第二电信号,此时,对应的时间为
97s
,则第二金属层
23
的蚀刻时长为
85s
,第一金属层
22
的蚀刻时长为
12s
。
具体地,如图
5
所示,在本发明的一些实施例中,所述待蚀刻的基板的各个蚀刻区域
2
阵列排布;蚀刻时,通过监测位于同一行的各个蚀刻区域
2
对应的信号处理模块
12
转换得到的电信号的不同,确定所述待蚀刻的基板的在行方向上的蚀刻均一性,通过监测位于同一列的各个蚀刻区域
2
对应的信号处理模块
12
转换得到的电信号的不同,确定所述待蚀刻的基板的在列方向上的蚀刻均一性。
例如,可以选择
Z1-Z3
、
Z4-Z6
或
Z7-Z9
中的任意一组作为实验对象,根据其电信号的不同来分析行方向蚀刻趋势,从而判断行方向蚀刻均一性。
需要说明的是,在蚀刻时,会将基板置于一传送机构上,并在传送机构上方设置喷头,向基板喷洒蚀刻液进行蚀刻,在传送机构移动的过程中,蚀刻液会持续的喷洒出来,此时基板在传送机构上移动速度(移动方向平行于基板的行方向)会对所述基板在行方向的蚀刻均一性产生影响,利用本发明可以对所述待蚀刻的基板在行方向上的均一性进行判断,通过设置不同移动速度,观察待蚀刻的基板在行方向上的均一性的变化,能够量化基板的移动速度与蚀刻均一性之间关系,从而促进促进蚀刻工艺的开发及蚀刻精度的提升。
例如,以
Z1
、
Z4
及
Z7
为第一组、
Z2
、
Z5
及
Z8
为第二组、
Z3
、
Z6
及
Z9
为第三组,选取第一至第三组中的任一组来作为实验对象,根据其电信号的不同来分析列方向蚀刻趋势,从而判断列方向蚀刻均一性。
需要说明的是,在蚀刻时,为了促进蚀刻液在基板上流动,通常沿列方向将基板的一端翘起,使得基板与水平面形成一倾斜角,利用本发明可以对所述待蚀刻的基板在列方向上的均一性进行判断,通过设置不同倾斜角,观察待蚀刻的基板在列方向上的均一性的变化,能够量化基板的倾斜角与蚀刻均一性之间关系,从而促进促进蚀刻工艺的开发及蚀刻精度的提升。
请参阅图
6
,本发明还提供一种蚀刻监测方法,包括如下步骤:
步骤
S1
、提供一蚀刻监测装置,所述蚀刻监测装置包括:多个监测单元
1
,每一个监测单元
1
均包括一个入射光源
11
和一个与该入射光源
11
对应的信号处理模块
12
;
步骤
S2
、提供一待蚀刻的基板,将每一个入射光源
11
对应所述待蚀刻的基板的上的一个蚀刻区域
2
设置,且不同的入射光源
11
对应的蚀刻区域
2
不同;
步骤
S3
、对所述待蚀刻的基板进行蚀刻,同时各个入射光源
11
向其对应的蚀刻区域
2
发射入射光并通过该蚀刻区域
2
反射产生反射光;
步骤
S4
、各个信号处理模块
12
接收与其对应的入射光源
11
发出的入射光所产生的反射光,并根据所述反射光的强度,将所述反射光转换为相应的电信号;
步骤
S5
、监测各个信号处理模块
12
转换得到的电信号的变化,确定所述待蚀刻的基板的蚀刻状态。
具体地,如图
2
至图
4
所示,所述信号处理模块
12
包括:反射单元
121
以及光信号处理器
122
;
所述反射单元
121
设于所述反射光的光路上,用于对所述反射光进行反射,产生二次反射光;
所述光信号处理器
122
位于所述二次反射光的光路上,用于接收所述二次反射光,并根据所述二次反射光的强度,将所述二次反射光转换为相应的电信号。
优选地,所述反射单元
121
为一反射镜。
需要说明的是,通过设置反射单元
121
,使得所述反射光再次经过一段光路之后,再射入光信号处理器
122
中,能够避免进入光信号处理
122
中光线受到其他光信号的干扰,保障光信号处理器
122
的监测的准确性。
具体地,所述入射光为单色或复合激光。
具体地,在本发明的第一实施例中,每一个蚀刻区域
2
均包括:衬底基板
21
及位于所述衬底基板
21
上的第一金属层
22
,也即所述待蚀刻的基板包括衬底基板
21
及位于所述衬底基板
21
上的第一金属层
22
,且所述待蚀刻的基板被划分为多个不同的蚀刻区域
2
,供各个监测单元
1
分别对所述待蚀刻的基板的不同位置进行监测。
具体地,在所述第一实施例中,每一个蚀刻区域
2
对应的入射光源
11
发出入射光均具有如下特性:所述入射光照射到其对应的蚀刻区域
2
中的第一金属层
22
上时,所述第一金属层
22
反射所述入射光产生的反射光具有第一强度,所述入射光照射到其对应的蚀刻区域
2
中的衬底基板
21
上时,所述衬底基板
21
反射所述入射光产生的反射光具有不同于第一强度的第二强度;
蚀刻时,所述信号处理模块
12
先接收第一强度的反射光,转换产生第一电信号,后接收第二强度的反射光,转换产生第二电信号,所述第一电信号的持续时长为所述第一金属层
22
的蚀刻时长。
具体地,所述第一强度与第二强度相差明显,优选地,所述第一强度与第二强度相差
65%
以上。
举例来说,如图
3
所示,所述第一金属层
22
为一层钼(
Mo
)膜,蚀刻过程中采用的蚀刻液的颜色为浅蓝色,所述入射光为蓝色的激光,设置开始的时间为
0S
,进行所述第一金属层
22
的蚀刻,入射光照射到第一金属层
22
上之后,反射到信号处理模块
12
,所述信号处理模块
12
识别所述反射光的强度为第一强度,相应开始输出第一电信号,如图
4
所示,当所述第一金属层
22
被完全蚀刻之后,入射光照射到衬底基板
21
上,所述信号处理模块
12
识别所述反射光的强度从第一强度变为第二强度,相应切换输出的第一电信号为第二电信号,此时,对应的时间为
12s
,则第一金属层
22
的蚀刻时长为
12s
。
具体地,在本发明第二实施例中,每一个蚀刻区域
2
均包括:衬底基板
21
、位于所述衬底基板
21
上的第一金属层
22
及位于第一金属层
22
上的第二金属层
23
,也即所述待蚀刻的基板包括衬底基板
21
、位于所述衬底基板
21
上的第一金属层
22
及位于第一金属层
22
上的第二金属层
23
,且所述待蚀刻的基板被划分为多个不同的蚀刻区域
2
,供各个监测单元
1
分别对所述待蚀刻的基板的不同位置进行监测。
具体地,在所述第二实施例中,每一个蚀刻区域
2
对应的入射光源
11
发出入射光均具有如下特性:所述入射光照射到其对应的蚀刻区域
2
中的第一金属层
22
上时,所述第一金属层
22
反射所述入射光产生的反射光具有第一强度,所述入射光照射到其对应的蚀刻区域
2
中的衬底基板
21
上时,所述衬底基板
21
反射所述入射光产生的反射光具有不同于第一强度的第二强度,所述入射光照射到其对应的蚀刻区域
2
中的第二金属层
23
上时,所述第二金属层
23
反射所述入射光产生的反射光具有不同于第一强度和第二强度的第三强度。
蚀刻时,所述信号处理模块
12
先接收第三强度的反射光,转换产生第三电信号,然后接收第一强度的反射光,转换产生第一电信号,最后接收第二强度的反射光,转换产生第二电信号,所述第三电信号的持续时长为所述第二金属层
22
的蚀刻时长,所述第一电信号的持续时长为所述第一金属层
22
的蚀刻时长。
举例来说,如图
2
所示,所述第一金属层
22
为一层钼(
Mo
)膜,所述第二金属层
23
为一层铜(
Cu
)膜,蚀刻过程中采用的蚀刻液的颜色为浅蓝色,所述入射光为蓝色的激光,设置开始的时间为
0S
,首先进行第二金属层
23
的蚀刻,入射光照射到第二金属层
23
上之后,反射到信号处理模块
12
,所述信号处理模块
12
识别所述反射光的强度为第三强度,相应开始输出第三电信号,如图
3
所示,当所述第二金属层
23
被完全蚀刻之后,入射光照射到第一金属层
22
上,反射到信号处理模块
12
,所述信号处理模块
12
识别所述反射光的强度为从第三强度变为第一强度,相应开始输出第一电信号,此时时间为
85s
,如图
4
所示,当所述第一金属层
22
被完全蚀刻之后,入射光照射到衬底基板
21
上,所述信号处理模块
12
识别所述反射光的强度从第一强度变为第二强度,相应切换输出的第一电信号为第二电信号,此时,对应的时间为
97s
,则第二金属层
23
的蚀刻时长为
85s
,第一金属层
22
的蚀刻时长为
12s
。
具体地,如图
5
所示,在本发明的一些实施例中,所述待蚀刻的基板的各个蚀刻区域
2
阵列排布;蚀刻时,通过监测位于同一行的各个蚀刻区域
2
对应的信号处理模块
12
转换得到的电信号的不同,确定所述待蚀刻的基板的在行方向上的蚀刻均一性,通过监测位于同一列的各个蚀刻区域
2
对应的信号处理模块
12
转换得到的电信号的不同,确定所述待蚀刻的基板的在列方向上的蚀刻均一性。
例如,可以选择
Z1-Z3
、
Z4-Z6
或
Z7-Z9
中的任意一组作为实验对象,根据其电信号的不同来分析行方向蚀刻趋势,从而判断行方向蚀刻均一性。
需要说明的是,在蚀刻时,会将基板置于一传送机构上,并在传送机构上方设置喷头,向基板喷洒蚀刻液进行蚀刻,在传送机构移动的过程中,蚀刻液会持续的喷洒出来,此时基板在传送机构上移动速度(移动方向平行于基板的行方向)会对所述基板在行方向的蚀刻均一性产生影响,利用本发明可以对所述待蚀刻的基板在行方向上的均一性进行判断,通过设置不同移动速度,观察待蚀刻的基板在行方向上的均一性的变化,能够量化基板的移动速度与蚀刻均一性之间关系,从而促进促进蚀刻工艺的开发及蚀刻精度的提升。
例如,以
Z1
、
Z4
及
Z7
为第一组、
Z2
、
Z5
及
Z8
为第二组、
Z3
、
Z6
及
Z9
为第三组,选取第一至第三组中的任一组来作为实验对象,根据其电信号的不同来分析列方向蚀刻趋势,从而判断列方向蚀刻均一性。
需要说明的是,在蚀刻时,为了促进蚀刻液在基板上流动,通常沿列方向将基板的一端翘起,使得基板与水平面形成一倾斜角,利用本发明可以对所述待蚀刻的基板在列方向上的均一性进行判断,通过设置不同倾斜角,观察待蚀刻的基板在列方向上的均一性的变化,能够量化基板的倾斜角与蚀刻均一性之间关系,从而促进促进蚀刻工艺的开发及蚀刻精度的提升。
综上所述,本发明提供一种蚀刻监测装置,包括:多个监测单元,每一个监测单元均包括一个入射光源和一个与该入射光源对应的信号处理模块;每一个入射光源对应待蚀刻的基板的上的一个蚀刻区域设置,不同的入射光源对应不同的蚀刻区域;所述入射光源用于向其对应的蚀刻区域发射入射光并通过该蚀刻区域反射产生反射光;所述信号处理模块,用于接收与其对应的入射光源发出的入射光所产生的反射光,并根据所述反射光的强度,将所述反射光转换为相应的电信号;蚀刻时,通过监测各个信号处理模块转换得到的电信号的变化,确定所述待蚀刻的基板的蚀刻状态,能够有效监测蚀刻过程,为蚀刻质量分析提供准确的数据,促进蚀刻工艺的开发及蚀刻精度的提升。本发明还提供一种蚀刻监测方法,能够有效监测蚀刻过程,为蚀刻质量分析提供准确的数据,促进蚀刻工艺的开发及蚀刻精度的提升。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。
Claims (10)
- 一种蚀刻监测装置,包括:多个监测单元,每一个监测单元均包括一个入射光源和一个与该入射光源对应的信号处理模块;每一个入射光源对应待蚀刻的基板的上的一个蚀刻区域设置,不同的入射光源对应不同的蚀刻区域;所述入射光源用于向其对应的蚀刻区域发射入射光并通过该蚀刻区域反射产生反射光;所述信号处理模块,用于接收与其对应的入射光源发出的入射光所产生的反射光,并根据所述反射光的强度,将所述反射光转换为相应的电信号;蚀刻时,通过监测各个信号处理模块转换得到的电信号的变化,确定所述待蚀刻的基板的蚀刻状态。
- 如权利要求1所述的蚀刻监测装置,其中,所述信号处理模块包括:反射单元以及光信号处理器;所述反射单元设于所述反射光的光路上,用于对所述反射光进行反射,产生二次反射光;所述光信号处理器位于所述二次反射光的光路上,用于接收所述二次反射光,并根据所述二次反射光的强度,将所述二次反射光转换为相应的电信号。
- 如权利要求1所述的蚀刻监测装置,其中,每一个蚀刻区域均包括:衬底基板及位于所述衬底基板上的第一金属层;每一个蚀刻区域对应的入射光源发出入射光均具有如下特性:所述入射光照射到其对应的蚀刻区域中的第一金属层上时,所述第一金属层反射所述入射光产生的反射光具有第一强度,所述入射光照射到其对应的蚀刻区域中的衬底基板上时,所述衬底基板反射所述入射光产生的反射光具有不同于第一强度的第二强度;蚀刻时,所述信号处理模块先接收第一强度的反射光,转换产生第一电信号,后接收第二强度的反射光,转换产生第二电信号,所述第一电信号的持续时长为所述第一金属层的蚀刻时长。
- 如权利要求1所述的蚀刻监测装置,其中,每一个蚀刻区域均包括:衬底基板、位于所述衬底基板上的第一金属层及位于第一金属层上的第二金属层;每一个蚀刻区域对应的入射光源发出入射光均具有如下特性:所述入射光照射到其对应的蚀刻区域中的第一金属层上时,所述第一金属层反射所述入射光产生的反射光具有第一强度,所述入射光照射到其对应的蚀刻区域中的衬底基板上时,所述衬底基板反射所述入射光产生的反射光具有不同于第一强度的第二强度,所述入射光照射到其对应的蚀刻区域中的第二金属层上时,所述第二金属层反射所述入射光产生的反射光具有不同于第一强度和第二强度的第三强度;蚀刻时,所述信号处理模块先接收第三强度的反射光,转换产生第三电信号,然后接收第一强度的反射光,转换产生第一电信号,最后接收第二强度的反射光,转换产生第二电信号,所述第三电信号的持续时长为所述第二金属层的蚀刻时长,所述第一电信号的持续时长为所述第一金属层的蚀刻时长。
- 如权利要求1所述的蚀刻监测装置,其中,所述待蚀刻的基板的各个蚀刻区域阵列排布;蚀刻时,通过监测位于同一行的各个蚀刻区域对应的信号处理模块转换得到的电信号的不同,确定所述待蚀刻的基板的在行方向上的蚀刻均一性,通过监测位于同一列的各个蚀刻区域对应的信号处理模块转换得到的电信号的不同,确定所述待蚀刻的基板的在列方向上的蚀刻均一性。
- 一种蚀刻监测方法,包括如下步骤:步骤S1、提供一蚀刻监测装置,所述蚀刻监测装置包括:多个监测单元,每一个监测单元均包括一个入射光源和一个与该入射光源对应的信号处理模块;步骤S2、提供一待蚀刻的基板,将每一个入射光源对应所述待蚀刻的基板的上的一个蚀刻区域设置,且不同的入射光源对应的蚀刻区域不同;步骤S3、对所述待蚀刻的基板进行蚀刻,同时各个入射光源向其对应的蚀刻区域发射入射光并通过该蚀刻区域反射产生反射光;步骤S4、各个信号处理模块接收与其对应的入射光源发出的入射光所产生的反射光,并根据所述反射光的强度,将所述反射光转换为相应的电信号;步骤S5、监测各个信号处理模块转换得到的电信号的变化,确定所述待蚀刻的基板的蚀刻状态。
- 如权利要求6所述的蚀刻监测方法,其中,所述步骤S2中,每一个蚀刻区域均包括:衬底基板及位于所述衬底基板上的第一金属层;所述步骤S3中,每一个蚀刻区域对应的入射光源发出入射光均具有如下特性:所述入射光照射到其对应的蚀刻区域中的第一金属层上时,所述第一金属层反射所述入射光产生的反射光具有第一强度,所述入射光照射到其对应的蚀刻区域中的衬底基板上时,所述衬底基板反射所述入射光产生的反射光具有不同于第一强度的第二强度;所述步骤S4中,所述信号处理模块先接收第一强度的反射光,转换产生第一电信号,后接收第二强度的反射光,转换产生第二电信号;所述步骤S5中,确定所述第一电信号的持续时长为所述第一金属层的蚀刻时长。
- 如权利要求6所述的蚀刻监测方法,其中,所述步骤S2中,每一个蚀刻区域均包括:衬底基板、位于所述衬底基板上的第一金属层及位于第一金属层上的第二金属层;所述步骤S3中,每一个蚀刻区域对应的入射光源发出入射光均具有如下特性:所述入射光照射到其对应的蚀刻区域中的第一金属层上时,所述第一金属层反射所述入射光产生的反射光具有第一强度,所述入射光照射到其对应的蚀刻区域中的衬底基板上时,所述衬底基板反射所述入射光产生的反射光具有不同于第一强度的第二强度,所述入射光照射到其对应的蚀刻区域中的第二金属层上时,所述第二金属层反射所述入射光产生的反射光具有不同于第一强度和第二强度的第三强度;所述步骤S4中,所述信号处理模块先接收第三强度的反射光,转换产生第三电信号,然后接收第一强度的反射光,转换产生第一电信号,最后接收第二强度的反射光,转换产生第二电信号;所述步骤S5中,确定所述第三电信号的持续时长为所述第二金属层的蚀刻时长,所述第一电信号的持续时长为所述第一金属层的蚀刻时长。
- 如权利要求6所述的蚀刻监测方法,其中,所述步骤S2中,所述待蚀刻的基板的各个蚀刻区域阵列排布;所述步骤S5中,通过监测位于同一行的各个蚀刻区域对应的信号处理模块转换得到的电信号的不同,确定所述待蚀刻的基板的在行方向上的蚀刻均一性。
- 如权利要求6所述的蚀刻监测方法,其中,所述步骤S2中,所述待蚀刻的基板的各个蚀刻区域阵列排布;所述步骤S5中,通过监测位于同一列的各个蚀刻区域对应的信号处理模块转换得到的电信号的不同,确定所述待蚀刻的基板的在列方向上的蚀刻均一性。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811575332.7A CN109659262B (zh) | 2018-12-21 | 2018-12-21 | 蚀刻监测装置及蚀刻监测方法 |
CN201811575332.7 | 2018-12-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020124872A1 true WO2020124872A1 (zh) | 2020-06-25 |
Family
ID=66115983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/081608 WO2020124872A1 (zh) | 2018-12-21 | 2019-04-04 | 蚀刻监测装置及蚀刻监测方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109659262B (zh) |
WO (1) | WO2020124872A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114481333A (zh) * | 2022-02-16 | 2022-05-13 | 淮安纳微传感器有限公司 | 一种传感器单晶硅刻蚀质量监测方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112697680B (zh) * | 2019-10-23 | 2023-04-28 | 航天科工惯性技术有限公司 | 一种玻璃化学蚀刻速率在线检测装置和方法 |
CN113447243B (zh) * | 2020-05-26 | 2023-03-10 | 重庆康佳光电技术研究院有限公司 | 一种终点检测装置、蚀刻设备以及检测方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6664013B1 (en) * | 2001-11-07 | 2003-12-16 | Advanced Micro Devices, Inc. | Methods of characterizing device performance based upon the duration of an endpointed photoresist develop process, and system for accomplishing same |
JP3972808B2 (ja) * | 2002-12-02 | 2007-09-05 | 株式会社日立ハイテクノロジーズ | エッチング方法及びエッチング装置 |
CN101459049A (zh) * | 2007-12-11 | 2009-06-17 | 中芯国际集成电路制造(上海)有限公司 | 一种用于探测刻蚀终点的装置及方法 |
CN101458445A (zh) * | 2007-12-11 | 2009-06-17 | 中芯国际集成电路制造(上海)有限公司 | 一种用于探测刻蚀终点的装置及方法 |
CN108220962A (zh) * | 2017-12-29 | 2018-06-29 | 深圳市华星光电技术有限公司 | 控制湿法蚀刻终点的装置及方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0990330A (ja) * | 1995-09-20 | 1997-04-04 | Advanced Display:Kk | 液晶表示装置の製法 |
CN102856230B (zh) * | 2012-10-09 | 2015-02-04 | 深圳市华星光电技术有限公司 | Tft基板接触孔蚀刻制程监控方法 |
CN105575846B (zh) * | 2016-03-15 | 2018-11-09 | 武汉华星光电技术有限公司 | 一种金属湿式蚀刻终点的监控方法及其装置 |
CN107993946B (zh) * | 2016-10-27 | 2020-11-20 | 中微半导体设备(上海)股份有限公司 | 宽带光谱光学测量装置及等离子体处理装置 |
-
2018
- 2018-12-21 CN CN201811575332.7A patent/CN109659262B/zh active Active
-
2019
- 2019-04-04 WO PCT/CN2019/081608 patent/WO2020124872A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6664013B1 (en) * | 2001-11-07 | 2003-12-16 | Advanced Micro Devices, Inc. | Methods of characterizing device performance based upon the duration of an endpointed photoresist develop process, and system for accomplishing same |
JP3972808B2 (ja) * | 2002-12-02 | 2007-09-05 | 株式会社日立ハイテクノロジーズ | エッチング方法及びエッチング装置 |
CN101459049A (zh) * | 2007-12-11 | 2009-06-17 | 中芯国际集成电路制造(上海)有限公司 | 一种用于探测刻蚀终点的装置及方法 |
CN101458445A (zh) * | 2007-12-11 | 2009-06-17 | 中芯国际集成电路制造(上海)有限公司 | 一种用于探测刻蚀终点的装置及方法 |
CN108220962A (zh) * | 2017-12-29 | 2018-06-29 | 深圳市华星光电技术有限公司 | 控制湿法蚀刻终点的装置及方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114481333A (zh) * | 2022-02-16 | 2022-05-13 | 淮安纳微传感器有限公司 | 一种传感器单晶硅刻蚀质量监测方法 |
CN114481333B (zh) * | 2022-02-16 | 2023-10-03 | 淮安纳微传感器有限公司 | 一种传感器单晶硅刻蚀质量监测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109659262B (zh) | 2020-11-24 |
CN109659262A (zh) | 2019-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020124872A1 (zh) | 蚀刻监测装置及蚀刻监测方法 | |
WO2020019494A1 (zh) | 液晶显示装置的制作方法及液晶显示装置 | |
US9651731B2 (en) | Light guide plate, manufacturing method of the same and display device comprising the same | |
US20080094348A1 (en) | Liquid crystal display device with light sensor on light guide plate thereof | |
KR20090093597A (ko) | 액정표시장치의 검사장치 및 검사방법 | |
KR20120119082A (ko) | 액정표시장치용 기판 절단 방법 | |
CN104297978A (zh) | 一种显示基板及其制备方法、显示装置及其制备方法 | |
WO2020087651A1 (zh) | 背光模组及显示装置 | |
JP4775313B2 (ja) | レーザ切断方法 | |
WO2016127480A1 (zh) | 阵列基板及其断线修补方法 | |
WO2017124609A1 (zh) | 检测液晶显示面板良率的方法 | |
JP3991608B2 (ja) | レーザ切断方法、電気光学装置の製造方法、電気光学装置、電子機器およびレーザ切断装置 | |
US9477102B2 (en) | Method of promoting brightness uniformity of liquid crystal module | |
US20150146122A1 (en) | Trace Structure, Repair Method and Liquid Crystal Panel Thereof | |
CN108803150B (zh) | 光照装置及对mmg面板进行配向的方法 | |
US11520171B2 (en) | Display panel manufacturing method and manufacturing device | |
CN106019742A (zh) | 液晶显示面板的制作方法 | |
JP2002224870A (ja) | レーザ切断方法、電気光学装置の製造方法、電気光学装置、および電子機器 | |
WO2020124871A1 (zh) | 蚀刻终点监控装置及蚀刻终点监控方法 | |
WO2020113894A1 (zh) | 电性测试设备及电性测试设备十字线缺陷精确定位方法 | |
WO2020186561A1 (zh) | 液晶显示面板的制作方法 | |
CN107357087A (zh) | 液晶显示面板的配向方法 | |
CN107315284A (zh) | 液晶显示面板及其制作方法 | |
WO2020143099A1 (zh) | 显示面板走线结构及其制作方法 | |
CN107167935B (zh) | 释放阵列基板的膜层应力的方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19900516 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19900516 Country of ref document: EP Kind code of ref document: A1 |