WO2020122659A1 - 랜덤 간섭계 및 랜덤 간섭분석 방법 - Google Patents

랜덤 간섭계 및 랜덤 간섭분석 방법 Download PDF

Info

Publication number
WO2020122659A1
WO2020122659A1 PCT/KR2019/017668 KR2019017668W WO2020122659A1 WO 2020122659 A1 WO2020122659 A1 WO 2020122659A1 KR 2019017668 W KR2019017668 W KR 2019017668W WO 2020122659 A1 WO2020122659 A1 WO 2020122659A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
light
random
speckle field
interferometer
Prior art date
Application number
PCT/KR2019/017668
Other languages
English (en)
French (fr)
Inventor
암블라흐프랑수아
카시아니기욤
Original Assignee
기초과학연구원
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 기초과학연구원, 울산과학기술원 filed Critical 기초과학연구원
Priority claimed from KR1020190166255A external-priority patent/KR102367812B1/ko
Publication of WO2020122659A1 publication Critical patent/WO2020122659A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light

Definitions

  • the present invention relates to a random interferometer, and more particularly, to a random interferometer and a random interferometric analysis method capable of measuring intensity variation of a speckle field.
  • An interferometer is a device based on an optical method that uses a wave interference phenomenon for various measurement purposes.
  • Interferometers can cause interference by using a variety of (especially based on electromagnetic) waves, such as sound waves, electron beams, or photon beams.
  • Optical interferometers can be used in a wide variety of fields (especially numerous devices and applications).
  • the present invention is to provide a random interferometer and a random interference analysis method capable of sensitively measuring the fluctuation of the intensity of a speckle field in a cavity.
  • a random interferometer includes a light source emitting coherent incident light; A cavity for generating a speckle field from interference of light modes generated by the incident light being reflected from its inner wall; A detector configured to detect light intensity emitted from the speckle field; And a data analysis unit analyzing the variation of the speckle field from the light intensity.
  • the cavity may Lambertian reflect the incident light and the light modes.
  • the data analysis unit may analyze a variation of the speckle field, and measure a variation in phase, wavelength, or intensity of the incident light.
  • the data analysis unit may analyze variations in the speckle field to measure deformation of the cavity.
  • vibrations around the cavity may be detected from deformation of the cavity.
  • the data analysis unit may analyze the variation of the speckle field to measure the optical properties of the sample provided in the cavity.
  • the data analysis unit may obtain a correlation of the light intensity according to a change in delay time ( ⁇ ).
  • the detector includes one photo detector, and obtaining the correlation of the light intensity may include obtaining an auto-correlation of the light intensity in the one detector.
  • the detector includes two photo detectors, and obtaining a correlation of the light intensity may include obtaining a cross correlation of the light intensity in the two detectors.
  • a random interference analysis method includes providing incident light from a coherent light source into a cavity; Detecting emitted light emitted from a speckle field from interference between light modes generated by the incident light reflecting off the inner wall of the cavity; And it may include analyzing the variation of the speckle field from the change in sensitivity of the emitted light. Analyzing the variation in the speckle field may include analyzing the variation in intensity of the emitted light.
  • Analyzing the fluctuation of the speckle field may include obtaining a correlation of the emitted light intensity according to a change in the delay time ( ⁇ ).
  • the method may measure the phase, wavelength, or intensity variation of the incident light from the analysis.
  • analyzing the variation of the speckle field may include measuring the light intensity in a time series or obtaining an image.
  • the method can measure the deformation of the cavity from the analysis.
  • the method may detect vibration around the cavity from the analysis.
  • the method can measure the optical properties of a sample provided in the cavity from the analysis.
  • the random interferometer according to the present invention can sensitively measure the fluctuation of the intensity of the speckle field in the cavity using a cavity that causes Lambertian reflection.
  • FIG. 1 is a view for explaining a random interferometer according to an embodiment of the present invention.
  • Figure 2 shows the angular distribution of light intensity at the output port of a cavity according to the invention.
  • 5 is a graph for explaining a correlation change of speckle field intensity in cavities.
  • 7A is an example of a cavity according to the present invention.
  • FIG. 7B is a cross-sectional view taken along line A-A' in FIG. 7A.
  • 8A is a view for explaining an experimental example of implementing an interferometer according to the present invention.
  • FIG. 8B is a cross-sectional view taken along line B-B' in FIG. 8A.
  • FIG. 9 is a graph showing a change in cross-correlation according to a voltage change applied to the piezoelectric actuator of the interferometer of FIG. 8A.
  • FIG. 10 is a graph for explaining variation in intensity of a speckle field according to a voltage applied to the piezoelectric actuator of the interferometer of FIG. 8A.
  • FIG 11 shows an example of sensitivity to external vibration and seismic noise in an interferometer according to the present invention.
  • the basic concept of optical interferometry is based on irradiating a cavity with one coherent incident light.
  • the incident light can be separated into thousands of lights (light modes) by diffuse reflection within the cavity.
  • only two of the thousands of optical modes OP1 and OP2 are considered.
  • the optical modes OP1 and OP2 travel along different optical paths P1 and P2 and recombine, causing interference.
  • the optical modes OP1 and OP2 may have different optical path lengths.
  • the interference pattern can be measured by various methods, and the spatial structure of observables, the intensity at a specific point, the total intensity at the surface, or temporary fluctuations can be extracted.
  • the fluctuation of the optical path difference ⁇ P can be caused by various factors. There is a change in the physical length of the optical paths P1 and P2, a change in the refractive index of the medium in the optical paths, a change in the refractive index ellipsoid, and a change in the wavelength (or phase, intensity) of the input light.
  • Interference between light modes requires that they are mutually coherent. This means that the phases of the light modes are correlated in time. This means that in the interferometer, when the initial one light is separated into several lights, the single light has a minimal temporal coherence. That is, the harmonic oscillation phase of light is constant for a shorter period of time than a specific time scale called coherence time, or a distance of a specific time scale called coherence length. It is uniform in a short time distance.
  • the coherence time ( ⁇ c ) is the amount of light that interferes with itself at the delay time ( ⁇ ) (ie, the intensity between the light intensity (E(t)) and the time delayed light intensity (E(t- ⁇ )). Can be statistically predicted from the degree of autocorrelation. If the optical path difference ( ⁇ P) is not too large (ie, ⁇ P ⁇ l c ), a simple relationship between the variation in the optical path difference ( ⁇ P) ( ⁇ P) and the variation in the interference intensity (I) ( ⁇ I) can be obtained. have.
  • the cavity is configured to have an inner wall with excellent diffuse reflectance properties. Diffuse reflections can occur in materials such as paper, white paint, or rough surfaces, or in media with many scattering particles (eg, dusty air or cloudy liquids, etc.). Accordingly, light incident on the cavity is continuously randomly reflected. Most of the incident light is output to the output port of the cavity. Since multiple output ports are used, measurement efficiency can be improved.
  • the cavity multiplier (M) means the average number of times the light modes are reflected before being absorbed by the cavity inner wall, and can be determined as follows.
  • is the albedo of the inner wall of the cavity
  • S is the ratio of the surfaces occupied by ports in the entire inner surface of the cavity. If S is sufficiently small, the cavity multiplication factor M can be determined by the albedo of the cavity. (Ie, M ⁇ ⁇ )
  • the boundary condition of light is very different from the Fabry-Perot cavity.
  • the plane wave is reflected with an excessively disordered wavefront.
  • the diffuse reflective cavity acts as a random resonator.
  • the number of modes of reflected light in the cavity is (here, Can be scaled to the inside area of the cavity, ⁇ is the wavelength of light).
  • speckle may be generated by light interference at a set of wavefronts. Speckle can occur in diffuse reflection of monochromatic light, such as laser light.
  • the interferometer according to the present invention is based on random interferometry called Random Dynamic Interferometry (RDI), and random interferometric analysis called Cavity Amplified Speckle Spectroscopy (CASS).
  • the interferometer according to the invention is constructed on the basis of a cavity with high diffusion reflectivity.
  • the interferometer according to the present invention is capable of generating random optical interference inside the cavity, amplifying their transient fluctuations, and detecting causes of their fluctuations.
  • the optical interferometer according to the present invention is based on coherent light separated into an infinitely large number of cavity multiplication factors M in disorder.
  • the light undergoes reflections at numerous cavity boundaries, such as in the Fabry-Perot cavity.
  • the interferometer of the present invention which has numerous light modes by numerous reflections, can amplify variations in the interference pattern. Furthermore, without the precise design or alignment process of the interferometer, the sensitivity of the random cavity can be improved.
  • the fluctuation of the speckle field according to the fluctuation of the interference pattern can be amplified and detected.
  • the fluctuation of the light intensity due to the fluctuation of the speckle field is related to the correlation function of the light intensity. That is, the mean square variation of light intensity is proportional to the auto-correlation value.
  • the autocorrelation (g( ⁇ )) can be expressed as follows.
  • FIG. 1 is a view for explaining a random interferometer according to an embodiment of the present invention.
  • the random interferometer includes a light source 100, a cavity 200, a first optical fiber 310, a second optical fiber 320, a third optical fiber 330, a detector 400 ), and the data analysis unit 500.
  • a short wavelength laser having a wavelength of 660 nm, an output of 100 mW, a bandwidth of 1 MHz, and intensity noise of 0.2% was used as the light source 100.
  • the light source 100 may be injected with the incident light L into the cavity 200 through the first optical fiber 310, for example.
  • the first optical fiber 310 is coupled to the input port 201 of the cavity 200.
  • the incident light L has a coherence length longer than the path length of the light modes LM reflected from the cavity inner wall.
  • the shape of the cavity 200 may not be limited.
  • the cavity 200 may be spherical, cylindrical, or concave.
  • the cavity 200 may be, for example, a spectralon sphere.
  • the cavity 200 may include an upper body with a lower recessed portion and a lower body with an upper recessed portion.
  • the upper body and the lower body may be combined with each other to form a cavity.
  • the cavity 200 may be made of Teflon or compressed quartz powder.
  • the incident light L injected into the cavity 200 may be divided into light modes LM in the cavity 200.
  • incident light L and light modes LM may be Lambertian reflected.
  • the distribution of light modes LM may be isotropic and uniform.
  • light modes LM may interfere randomly. Since the coherent length of the incident light L is greater than the average path length of the light modes LM, the number of times the light modes LM are reflected from the inner wall 210 of the cavity 200 may be large. Accordingly, interference between the light modes LM may be maximized. Due to the interference of the light modes LM, a 3D speckle field having random intensity and random polarity may be formed. The speckle field may be uniformly and symmetrically distributed within the cavity 200.
  • the amplification of the speckle field fluctuation may be independent of the shape of the cavity 200.
  • the detector 400 may detect speckle strength.
  • the detector 400 may detect the intensity of the emitted light emitted from the speckle field in the cavity 200 through, for example, the second optical fiber 320.
  • the second optical fiber 320 is connected to the output port 202 of the cavity 200.
  • the output port 202 and the detector 400 are shown as one, it is not limited thereto, and may be a plurality.
  • the detector 400 may be a photo detector.
  • the detection unit 400 may be directly coupled to the output port 202 of the cavity 200 without the second optical fiber 320.
  • the data analysis unit 500 may analyze variations in the speckle intensity detected by the detection unit 400 in the time domain and the frequency domain.
  • the detection unit 400 and the data analysis unit 500 may be connected to each other through the third optical fiber 330.
  • the data analysis unit 500 may be a digital or analog correlator. Variations in the speckle field can be obtained from autocorrelation or cross-correlation of the light intensity described above.
  • Figure 2 shows the angular profile of the light intensity at the output port of the cavity according to the invention.
  • the points are experimental measurements, and the solid line is the fit result.
  • the light intensity represents the Lambertian profile of cosine. From the inner wall of the cavity in the present invention, it can be seen that Lambertian diffuse reflection occurs.
  • the Teflon cavity of the present invention is approximately 99.96% ( It was confirmed to have an albedo of 0.005%).
  • FIG. 4 shows the effect of incident light on a cross-correlation base level measured in an interferometer according to the present invention. It is the result of the cross-correlation measurement of the detection light under fluctuation of the incident light.
  • the delay time ( ⁇ ) was 0 seconds.
  • the horizontal axis represents std 2 /mean 2
  • the vertical axis represents the cross-correlation base level.
  • std is the standard deviation of the incident light intensity
  • mean is the average of the incident light intensity.
  • the cross-correlation base level was proportional to std 2 /mean 2 .
  • FIG. 5 is a graph for explaining a correlation change of speckle field intensity in cavities.
  • (a) is for the random interferometer of the Teflon cavity according to the present invention, and
  • (b) is for the Diffusive Wave Spectroscopy (DWS), not the random interferometer.
  • DWS Diffusive Wave Spectroscopy
  • the sample injected into the cavity 200 included PMMA (polymethylmethacrylate, refractive index 1.488) particles having a diameter of 5.5 ⁇ m contained in a solution of 3.5 ml sucrose (refractive index 1.405).
  • PMMA polymethylmethacrylate, refractive index 1.488
  • the number of PMMA particles was constant.
  • the intensity of the speckle field was measured at a sampling rate of 100 kHz for 1 hour.
  • the random interferometer (a) according to the present invention detects a variation in the speckle field about 100 times faster than the DWS(b). That is, it can be seen that the random interferometer according to the present invention has a higher sensitivity than the general DWS.
  • the random interferometer according to the present invention can detect the cause of the fluctuation of the speckle field in the cavity 200. There are many possible causes of speckle field fluctuations. Below, three uses of the random interferometer will be described.
  • the random interferometer according to the present invention can be used as a laser diagnostic device and a spectral variation measurement device.
  • the cavity is completely static (i.e., there is no deformation of the cavity itself, and there is no fluctuation of the medium in the cavity)
  • the ideally infinitely coherent monochromatic incident light creates a completely constant speckle field can do.
  • the variation of the speckle field outside the quantum mechanical variation of the incident light is not detected.
  • the incident light is not completely coherent or contains noise, a variation in the speckle field can be detected.
  • the fluctuation of the speckle field can be amplified at a frequency f greater than the band width ⁇ c - 1 of the incident light spectrum.
  • the fluctuation of the speckle field due to the phase fluctuation of the incident light is amplified, so that spectral quality and spectral noise of the incident light (ie, laser source) can be detected.
  • the fluctuation of the speckle field due to the fluctuation of the intensity of the incident light L is also amplified, so that the intensity noise of the incident light can be detected.
  • the random interferometer according to the present invention can hardly detect phase fluctuations (or wavelength and intensity fluctuations of the incident light).
  • the solid solid line is the raw data
  • the thick dotted line is the fitting line.
  • the correlation shows a sudden (exponentially) decreasing fitting result at 2 kHz. This is due to relaxation oscillation of the laser excited state due to fluctuations in the laser pumping intensity.
  • the random interferometer according to the present invention can measure and diagnose variations in the phase and intensity of the incident light L, and detect wavelength variations. Furthermore, input lights having different wavelengths and not coherent with each other can be analyzed using one random interferometer according to the present invention. As described above, the random interferometer according to the present invention has better performance than a general interferometer that must be precisely tuned at each different wavelength.
  • the random interferometer according to the present invention can be used as a sensor of acoustic, mechanical force or mechanical vibration. If the phase and intensity of the incident light L are stable and the cavity 200 of FIG. 1 is not deformed, the power spectrum of the speckle field is stable.
  • the random interferometer according to the present invention can detect the variation of the speckle field according to the deformation of the cavity 200.
  • the random interferometer according to the present invention can be used to measure pressure changes, sound waves or mechanical vibrations in the surrounding environment.
  • FIG. 7A when the cavity 200 is composed of two bodies 210 and 220, the relative movement of the two bodies may be measured with sensitivity in units of picometers (pm).
  • FIG. 7A is an example of a cavity according to the present invention
  • FIG. 7B is a cross-sectional view taken along line A-A' in FIG. 7A.
  • the cavity 200 may be used as a mechanical resonator.
  • the random interferometer according to the present invention can measure the properties of the elastic material (compliance).
  • 8A is a diagram illustrating an example of an experiment for implementing a cavity of a random interferometer according to the present invention.
  • 8B is a cross-sectional view taken along line B-B' in FIG. 8A.
  • the cavities 200 in FIGS. 8A and 8B include an upper body 210 and a lower body 220.
  • the piezoelectric actuators 230 are disposed between the upper body 210 and the lower body 220.
  • the piezoelectric actuators 230 vibrated by the voltage applied from the controller 240.
  • the piezoelectric actuators 230 vibrated by the voltage applied from the controller 240.
  • the piezoelectric actuators 230 vibrated by the voltage applied from the controller 240.
  • the piezoelectric actuators 230 vibrated by the voltage applied from the controller 240.
  • the piezoelectric actuators 230 vibrated by the voltage applied from the controller 240.
  • the piezoelectric actuators 230 vibrated by the voltage applied from the controller 240.
  • the piezoelectric actuators 230 vibrated by the voltage applied from the controller 240.
  • the piezoelectric actuators 230 vibrated by the voltage applied from the controller 240.
  • the piezoelectric actuators 230 vibrated by the voltage applied
  • FIG. 9 is a graph showing a change in cross-correlation according to a voltage change applied to the piezoelectric actuator of the interferometer of FIG. 8A.
  • the vibration in the piezoelectric actuators 230 is 1 kHz, and the voltage applied from the controller 240 is changed from 1V to 10V.
  • FIG. 10 is a graph for explaining variation in intensity of a speckle field according to a voltage applied to the piezoelectric actuator of the interferometer of FIG. 8A.
  • the first correlation amplitude of FIG. 9 according to the applied voltage is shown in FIG. 10. It is seen that the cavity reacts linearly to mechanical deformation exerted by the piezoelectric actuators 230. That is, it can be seen that the amplitude of the first peak of the cross-correlation of the speckle field linearly responds to the voltage applied by the controller 240. In other words, it can be confirmed that the larger the deformation of the cavity 200, the greater the intensity fluctuation of the speckle field.
  • FIG. 11 shows an example of sensitivity to external vibration and seismic noise in the interferometer of FIG. 1.
  • the cavity in (a) is placed directly on the laboratory floor, showing very large correlation peaks at similar frequencies suggesting seismic noise.
  • the cavity in (b) is placed on an optical table that is not isolated (compressed air is removed), so that peaks due to seismic noise are visible.
  • the cavity of (c) is placed on a passively isolated optical table, showing a small correlation peak at about 100 Hz.
  • the cavity of (d) is placed in a handmade acrylic box (isolated from heat, acoustics and electromagnetics) on an actively isolated breadboard placed on the optical table in condition (c), so that it is of very small size. With the exception of noise, there is no visible vibration.
  • the random interferometer according to the present invention can be used to measure the optical properties of samples provided in a cavity. If the cavity is empty (ie, in a vacuum state), the path of the light modes LM may be determined according to the structure of the cavity inner wall. When air is present in the cavity, the air in the cavity may slightly change the refractive index in the cavity, thereby changing the light modes as the effective light path of the light modes is changed. As an example, when a medium in which the average refractive index in the cavity is changed by about 10 -8 (which is smaller than ⁇ 3x10 4, which is a difference between the refractive index of air and vacuum) is provided in the cavity, fluctuation of the speckle field may be measured.
  • the random interferometer according to the present invention can function as a dynamic refractometer that can measure the refractive index variation of a medium provided inside the cavity 200.
  • the random interferometer can function as a sensor that detects spatial-temporal fluctuations of the refractive index in the cavity.
  • the sample injected into the cavity contained PMMA (polymethylmethacrylate, refractive index 1.488) particles having a diameter of 5.5 ⁇ m contained in a solution of 3.5 ml sucrose (refractive index 1.405).
  • PMMA polymethylmethacrylate, refractive index 1.488
  • the intensity of the speckle field was measured at a sampling rate of 100 kHz for 1 hour.
  • Lines (a) through (e) are for interferometers composed of Teflon cavities, and line (f) is for Diffusive Wave Spectroscopy (DWS), not the interferometer.
  • DWS Diffusive Wave Spectroscopy
  • Line (f) is measured in the same sample as line (e) in DWS. It can be seen that the Teflon cavity according to the present invention has a faster correlation of decoration than the DWS, and the measurement sensitivity is greater.
  • the dilute sample (i.e. line (a)) in the interferometer according to the invention has the same decorrelation as the darker sample (i.e. line (f)) in the DWS.
  • the random interferometer according to the present invention is an optically amplified nephelometer, rheology, particle size measurement, dynamic light scattering for measurement of phase change, or optical, having high sensitivity even with a small size. It can be used as amplified dynamic light scattering. Furthermore, these measurements can be used in accelerometers and vibration sensing using surface capillary waves.
  • the random interferometer according to the present invention can increase the multiplicity of light scattering and improve the detection sensitivity of sub-Angstrom motions.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

본 발명의 랜덤 간섭계는 입사 광을 방출하는 광원; 상기 입사 광이 그의 내부 벽에서 반사되어 생성된 광 모드들의 간섭으로부터 스페클 필드를 생성하는 캐비티; 상기 스페클 필드로부터 방출되는 광 강도를 검출하는 검출부; 및 상기 광 강도로부터 상기 스페클 필드의 변동을 분석하는 데이터 분석부를 포함하고,. 상기 데이터 분석부는 상기 광 강도의 변동을 분석한다.

Description

랜덤 간섭계 및 랜덤 간섭분석 방법
본 발명은 랜덤 간섭계에 대한 것으로, 더욱 상세하게는, 스페클 필드의 강도 변동을 측정할 수 있는 랜덤 간섭계 및 랜덤 간섭분석 방법에 관한 것이다.
간섭계는, 여러 계측 목적을 위해, 파의 간섭 현상을 사용하는 광학적 방법에 기초하는 장치이다. 간섭계는 음파, 전자빔(electron beams), 또는 광(photon beams)과 같은 다양한 (특히, 전자기파에 기반하는) 파를 이용하여 간섭 현상을 일으킬 수 있다. 광 간섭계는 매우 다양한 분야(특히, 수 많은 장치들 및 응용)에서 이용될 수 있다.
본 발명은 캐비티 내의 스페클 필드의 강도 변동을 민감하게 측정할 수 있는 랜덤 간섭계 및 랜덤 간섭분석 방법을 제공하기 위한 것이다.
본 발명의 일 실시예에 따른 랜덤 간섭계는 코히어런트 입사 광을 방출하는 광원; 상기 입사 광이 그의 내부 벽에서 반사되어 생성된 광 모드들의 간섭으로부터 스페클 필드를 생성하는 캐비티; 상기 스페클 필드로부터 방출되는 광 강도(light intensity)를 검출하는 검출부; 및 상기 광 강도로부터 상기 스페클 필드의 변동을 분석하는 데이터 분석부를 포함할 수 있다.
상기 캐비티는 상기 입사 광 및 상기 광 모드들을 램버시안 반사시킬 수 있다.
일 예로, 상기 데이터 분석부는 상기 스페클 필드의 변동을 분석하여, 상기 입사 광의 위상, 파장 또는 강도 변동을 측정할 수 있다.
일 예로, 상기 데이터 분석부는 상기 스페클 필드의 변동을 분석하여, 상기 캐비티의 변형을 측정할 수 있다.
일 예로, 상기 캐비티의 변형으로부터 상기 캐비티 주변의 진동을 감지할 수 있다.
일 예로, 상기 데이터 분석부는 상기 스페클 필드의 변동을 분석하여, 상기 캐비티 내에 제공된 샘플의 광학적 특성을 측정할 수 있다.
상기 데이터 분석부는, 지연시간(τ)의 변화에 따른 상기 광 강도의 상관 관계(correlation)를 획득할 수 있다. 상기 검출부는 하나의 포토 디텍터를 포함하고, 상기 광 강도의 상관 관계를 획득하는 것은 상기 하나의 검출기에서의 상기 광 강도의 자기 상관 관계를 획득하는 것을 포함할 수 있다. 상기 검출부는 2개의 포토 디텍터들을 포함하고, 상기 광 강도의 상관 관계를 획득하는 것은 상기 2개 검출기들에서의 상기 광 강도의 상호 상관 관계를 획득하는 것을 포함할 수 있다.
본 발명의 일 실시예에 따른 랜덤 간섭 분석 방법은 코히어런트 광원으로부터의 입사 광을 캐비티 내로 제공하는 것; 상기 입사 광이 상기 캐비티의 내벽에서 반사되어 생성된 광 모드들 사이의 간섭으로부터의 스페클 필드로부터 방출되는 방출 광을 검출하는 것; 그리고 상기 방출 광의 감도 변화로부터 상기 스페클 필드의 변동을 분석하는 것을 포함할 수 있다. 상기 스페클 필드의 변동을 분석하는 것은 상기 방출 광의 강도 변동을 분석하는 것을 포함할 수 있다.
상기 스페클 필드의 변동을 분석하는 것은, 지연시간(τ)의 변화에 따른 상기 방출 광 강도의 상관 관계를 획득하는 것을 포함할 수 있다.
일 예로, 상기 방법은 상기 분석으로부터 상기 입사 광의 위상, 파장 또는 강도 변동을 측정할 수 있다.
일 예로, 상기 스페클 필드의 변동을 분석하는 것은, 상기 광 강도를 시계열로 측정하거나 이미지를 얻는 것을 포함할 수 있다.
일 예로, 상기 방법은 상기 분석으로부터 상기 캐비티의 변형을 측정할 수 있다.
일 예로, 상기 방법은 상기 분석으로부터 상기 캐비티 주변의 진동을 감지할 수 있다.
일 예로, 상기 방법은 상기 분석으로부터 상기 캐비티 내에 제공된 샘플의 광학적 특성을 측정할 수 있다.
본 발명에 따른 랜덤 간섭계는 램버시안 반사를 일으키는 캐비티를 사용하여, 캐비티 내의 스페클 필드의 강도 변동을 민감하게 측정할 수 있다.
도 1은 본 발명의 실시 예에 따른 랜덤 간섭계를 설명하기 위한 도면이다.
도 2는 본 발명에 따른 캐비티의 출력 포트에서 광 강도의 각도분포를 도시한다.
도 3은 레이저 펄스가 본 발명에 따른 캐비티를 통과할 때 늘어지는 현상을 보여준다.
도 4는 본 발명에 따른 간섭계에서 측정된 상호 상관 베이스 레벨에 대한 입사 광의 영향을 보여준다.
도 5는 캐비티들에서의 스페클 필드 강도의 상관관계 변화를 설명하기 위한 그래프이다
도 6은 직접 조명 하에서의 레이저 광의 상호 상관을 측정한 결과이다.
도 7a는 본 발명에 따른 캐비티의 일 예이다.
도 7b는 도 7a의 A-A'선에 따른 단면도이다.
도 8a는 본 발명에 따른 간섭계를 구현하는 실험예를 설명하기 위한 도면이다.
도 8b는 도 8a의 B-B'선에 따른 단면도이다.
도 9는 도 8a의 간섭계의 압전 액츄에이터에 인가되는 전압 변화에 따른 상호 상관의 변화를 나타내는 그래프이다.
도 10은 도 8a의 간섭계의 압전 액츄에이터에 인가되는 전압에 따른 스페클 필드의 강도 변동을 설명하기 위한 그래프이다.
도 11은 본 발명에 따른 간섭계에서의 외부 진동 및 지진 잡음에 대한 감도의 예를 도시한다.
도 12는 본 발명에 따른 캐비티 내의 샘플의 광학적 특성을 측정한 것을 도시한다.
본 발명의 기술적 사상의 구성 및 효과를 충분히 이해하기 위하여, 첨부한 도면을 참조하여 본 발명의 기술적 사상의 바람직한 실시 예들을 설명한다. 그러나 본 발명 기술적 사상은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라, 여러 가지 형태로 구현될 수 있고 다양한 변경을 가할 수 있다. 단지, 본 실시 예들의 설명을 통해 본 발명의 기술적 사상의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다.
명세서 전체에 걸쳐서 동일한 참조번호로 표시된 부분은 동일한 구성요소들을 나타낸다. 본 명세서에서 기술하는 실시 예들은 본 발명의 기술적 사상의 이상적인 예시도인 개념도를 참고하여 설명될 것이다.
본 명세서에서 사용된 용어는 실시 예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다(comprises)' 및/또는 '포함하는(comprising)'은 언급된 구성요소는 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
본 명세서에서, 광 간섭계(optical interferometry)의 기본 개념은 하나의 코히어런트한(coherent) 입사 광을 캐비티에 조사하는 것에 기초한다. 입사 광은 캐비티 내에서의 확산 반사에 의하여 수천 개의 광들(광 모드들)로 분리될 수 있다. 이하의 실시예에서는, 수천 개의 광 모드들 중 2 개의 광 모드들(OP1, OP2) 만이 고려된다. 상기 광 모드들(OP1, OP2)은 다른 광 경로들(P1, P2)을 따라 주행하고 재결합(recombine)하여, 간섭을 일으킨다. 광 모드들(OP1, OP2)은 다른 광 경로 길이들을 가질 수 있다. 간섭 패턴은 다양한 방법들에 의하여 측정될 수 있으며, 측정 값(observables)의 공간적 구조, 특정 지점에서의 강도, 표면에서의 총 강도, 또는 일시적인 변동 등이 추출될 수 있다. 광 경로들(P1, P2)의 변동은 광 경로 차이(ΔP = |P1 - P2|)의 변동을 야기하고, 측정 값의 변동을 일으킨다. 광 경로 차이(ΔP)의 변동은 여러 가지의 요인들에 의해 야기될 수 있다. 광 경로들(P1, P2)의 물리적 길이의 변화, 광 경로들에서의 매질의 굴절율 변화, 굴절율 타원체(refraction ellipsoid)의 변화, 입력광의 파장(또는 위상, 강도) 변화 등이 있다.
광 모드들 사이의 간섭은 그들이 상호 코히어런트(mutually coherent)인 것을 요구한다. 이것은 광 모드들의 위상(phase)이 시간적으로 관련되어(correlated) 있다는 것을 의미한다. 이는 간섭계 내에서, 초기의 하나의 광이 여러 개의 광들로 분리되는 경우, 상기 하나의 광은 최소한의 시간적 코히어런스(temporal coherence)를 갖는다는 것을 의미한다. 즉, 광의 조화 진동(harmonic oscillation) 위상은 코히어런스 시간(coherence time)이라 불리는 특정 시간 스케일의 시간보다 짧은 시간 동안 일정하거나, 또는 코히어런스 길이(coherence length)라 불리는 특정 시간 스케일의 거리보다 짧은 시간 거리의 파면에서 균일(uniform)하다.
코히어런스 시간(τ c)은 코히어런스 길이(l c)와, l c = τ cc (c는 빛의 속도)로, 관련된다. 코히어런스 시간(τ c)은 광이 지연시간(τ)에서 자기 자신과 간섭하는 정도(즉, 광 강도(E(t))와 시간 지연된 광 강도(E(t-τ)) 사이의 자기 상관(autocorrelation)의 정도)로부터 통계적으로 예측될 수 있다. 만약 광 경로 차이(ΔP)가 너무 크지 않다면(즉, ΔP < l c), 광 경로 차이(ΔP)의 변동(δΔP)과 간섭 강도(I)의 변동(δI) 사이의 간단한 관계식이 얻어질 수 있다.
본 명세서에서, 캐비티는 확산 반사(diffuse reflectance) 특성이 우수한 내벽을 갖도록 구성된다. 확산 반사는 종이, 백색 페인트, 또는 거친 표면과 같은 물질에서, 또는 많은 산란 입자가 있는 매체(예를 들면, 먼지가 있는 공기 또는 흐린 액체 등)에서 발생할 수 있다. 이에 따라, 캐비티로 입사하는 광은 연속적으로 랜덤 반사된다. 입사 광의 대부분은 캐비티의 출력 포트로 출력된다. 복수개의 출력 포트들이 사용되어, 측정 효율이 향상될 수 있다.
랜덤 확산 반사 특성을 갖는 캐비티는 출력 포트들 전체로 균일하고 램버시안(Lambertian) 반사를 일으킬 수 있다. 광 모드들의 각각은 캐비티의 내벽에서 복수 회 반사되므로, 광 모드들은 캐비티 내에서 복수 회 주행(travel)한다. 캐비티 증배 계수(cavity multiplier: M)는 광 모드들이 캐비티 내벽에 흡수되기 전에 반사되는 평균 횟수를 의미하고, 아래와 같이 결정될 수 있다.
Figure PCTKR2019017668-appb-img-000001
여기서, ρ는 캐비티 내벽의 알베도(albedo)이고, S는 캐비티 전체 내표면에서 포트들이 차지하는 표면의 비율이다. S가 충분히 작으면, 캐비티 증배 계수 M은 캐비티의 알베도에 의해 결정될 수 있다. (즉, M ~ ρ)
본 명세서의 캐비티에서, 광의 경계 조건(boundary condition)은 Fabry-Perot 캐비티와는 매우 다르다. 확산 반사에 의하여, 평면파는 과도하게 무질서한 파면을 갖고 반사된다. 이에 따라, 복수개의 반사광들의 평균 광 경로를 초과하는 코히어런트 길이를 갖는 코히어런트 입사 광이 주입될 때, 확산 반사 캐비티(diffuse reflective cavity)는 랜덤 공진기(random resonator)로 행동한다. 캐비티 내의 반사광의 모드들의 수는
Figure PCTKR2019017668-appb-img-000002
(여기서,
Figure PCTKR2019017668-appb-img-000003
는 캐비티의 내부 면적, λ는 광의 파장)로 스케일될 수 있다.
본 명세서의 캐비티에서, 한 세트의 파면(wavefront)에서의 광 간섭에 의하여, 스페클(speckle)이 생성될 수 있다. 스페클은 레이저 광과 같은 단색광의 확산 반사에서 발생할 수 있다.
전술한 바와 같이, 본 발명에 따른 간섭계는 Random Dynamic Interferometry (RDI)라고 불리는 랜덤 간섭 측정(random interferometry), 및 Cavity Amplified Speckle Spectroscopy(CASS)라고 불리는 랜덤 간섭 측정 분석(random interferometric analysis)에 기초한다. 본 발명에 따른 간섭계는 고확산 반사도를 갖는 캐비티에 기초하여 구성된다. 본 발명에 따른 간섭계는 캐비티 내부의 랜덤 광 간섭을 생성하고, 그들의 일시적인 변동을 증폭하고, 그리고 그들의 변동을 만드는 원인들을 검출할 수 있다. 간섭이 두 개의 경로들에서의 광 간섭에 의하여 얻어지는 일반적인 광 간섭계에 비하여, 본 발명에 따른 광 간섭계는 무질서 속의 무한하게 많은 캐비티 증배 계수(M)로 분리되는 코히어런트 광에 기초한다. 상기 광은 Fabry-Perot 캐비티에서와 같은 수많은 캐비티 경계들에서의 반사들을 겪는다. 수많은 반사에 의한 수많은 광 모드들을 갖는 본 발명의 간섭계는 간섭 패턴의 변동을 증폭할 수 있다. 나아가, 간섭계의 정밀한 디자인 또는 정열 과정 없이, 랜덤 캐비티의 감도가 향상될 수 있다.
이와 같이, 간섭 패턴의 변동에 따른 스페클 필드의 변동은 증폭되어 검출될 수 있다. 스페클 필드의 변동에 의한 광 강도의 변동은 광 강도의 상관 함수(correlation function)와 관련된다. 즉, 광 강도의 표준편차 변화(mean square variation)은 자기 상관(auto-correlation) 값에 비례한다.
자기 상관(g(τ))는 다음과 같이 표시될 수 있다.
Figure PCTKR2019017668-appb-img-000004
여기서,
Figure PCTKR2019017668-appb-img-000005
, 그리고
Figure PCTKR2019017668-appb-img-000006
,
Figure PCTKR2019017668-appb-img-000007
는 샘플링 시간 동안 검출된 광자의 평균이고, N은 지연 시간(τ) 동안 검출된 광자의 수이다.
출력 포트에 결합된 검출기(예를 들면, 포톤 디텍터) 자체의 노이즈 때문에 광 강도의 자기 상관으로는 좋은 결과를 얻을 수 없는 경우가 있다. 때문에, 자기 상관과 유사하게, 동일 감도를 갖는 2개의 검출기들로부터의 광 강도들의 상호 상관(cross-correlation)이 얻어진다. 이로부터 스페클 필드의 변동이 검출 가능하다.
이하, 첨부한 도면을 참조하여 본 발명의 기술적 사상의 바람직한 실시 예들을 설명함으로써 본 발명을 상세히 설명한다.
도 1은 본 발명의 실시 예에 따른 랜덤 간섭계를 설명하기 위한 도면이다.
도 1을 참조하면, 본 발명의 실시 예에 따른 랜덤 간섭계는 광원(100), 캐비티(200), 제1 광섬유(310), 제2 광섬유(320), 제3 광섬유(330), 검출부(400), 및 데이터 분석부(500)를 포함할 수 있다.
실험 예로, 광원(100)은 660nm의 파장, 100mW의 출력, 1MHz의 밴드 폭, 및 0.2%의 강도 노이즈를 가지는 단파장 레이저가 사용되었다.
광원(100)은, 예를 들어 제1 광섬유(310)를 통해 캐비티(200) 내로 입사 광(L)을 주입될 수 있다. 제1 광섬유(310)는 캐비티(200)의 입력 포트(201)에 결합된다. 입사 광(L)은 캐비티 내벽에서 반사되는 광 모드들(LM)의 경로 길이보다 긴 코히어런스 길이를 갖는다.
캐비티(200)의 형태는 한정되지 않을 수 있다. 캐비티(200)는 구형일 수도 있고, 원통형일 수도 있고, 오목한 모양일 수도 있다. 캐비티(200)는, 예를 들어 스펙트랄론 구(spectralon sphere)일 수 있다. 이와는 달리, 캐비티(200)는 하부가 리세스된 상부 바디와 상부가 리세스된 하부 바디를 포함할 수 있다. 상부 바디와 하부 바디는 서로 결합하여 캐비티를 구성할 수 있다. 캐비티(200)은 테프론 또는 압축된 쿼츠 파우더로 구성될 수 있다.
캐비티(200) 내로 주입된 입사 광(L)은 캐비티(200) 내에서 광 모드들(LM)로 나누어질 수 있다. 캐비티(200) 내에서, 입사 광(L) 및 광 모드들(LM)은 램버시안(Lambertian) 반사될 수 있다. 캐비티(200) 내에서, 광 모드들(LM)의 분포는 등방적이고, 균일할 수 있다. 캐비티(200) 내에서, 광 모드들(LM)은 랜덤하게 간섭할 수 있다. 입사 광(L)의 코히어런트 길이는 광 모드들(LM)의 평균 경로 길이보다 크므로, 캐비티(200)의 내벽(210)에서 광 모드들(LM)이 반사되는 횟수가 클 수 있다. 이에 따라, 광 모드들(LM) 간의 간섭이 극대화될 수 있다. 광 모드들(LM)의 간섭에 의해, 랜덤한 강도 및 랜덤 극성을 가지는 3D 스페클 필드가 형성될 수 있다. 스페클 필드는 캐비티(200) 내에서 균일하고, 대칭적으로 분포될 수 있다.
캐비티 증배 계수 M을 상대적으로 크게 함으로써, 스페클 필드의 변동이 증폭될 수 있다. 스페클 필드 변동의 증폭은 캐비티(200)의 형태와 무관할 수 있다.
검출부(400)는 스페클 강도를 검출할 수 있다. 검출부(400)는, 예를 들어 제2 광섬유(320)를 통해, 캐비티(200) 내의 스페클 필드로부터 방출된 방출 광의 강도를 검출할 수 있다. 제2 광섬유(320)는 캐비티(200)의 출력 포트(202)에 연결된다. 출력 포트(202) 및 검출부(400)가 하나인 것으로 도시되어 있지만, 이에 한정되지 않고 다수 개일 수 있다. 검출부(400)는 포토 디텍터일 수 있다. 여기서, 검출부(400)는, 제2 광섬유(320) 없이, 캐비티(200)의 출력포트(202)에 직접 결합될 수 있다.
데이터 분석부(500)는 검출부(400)에서 검출된 스페클 강도의 변동을 시간 영역 및 주파수 영역에서 분석할 수 있다. 검출부(400) 및 데이터 분석부(500)는 제3 광섬유(330)를 통해 서로 연결될 수 있다. 데이터 분석부(500)는 디지털 또는 아날로그 상관기(correlator)일 수 있다. 스페클 필드의 변동은 전술한 광 강도의 자기 상관 또는 상호 상관으로부터 얻어질 수 있다.
도 2는 본 발명에 따른 캐비티의 출력 포트에서 광 강도의 각도분포(angular profile)를 도시한다. 점들은 실험 측정 값이고, 실선은 피팅 결과이다. 광 강도는 코사인의 램버시안 프로파일을 나타낸다. 본 발명에서의 캐비티 내벽에서, 램버시안 확산 반사(Lambertian diffuse reflection)가 일어남을 알 수 있다.
도 3은 피코초의 아주 짧은 레이저 펄스(short picosecond laser pulse)가 본 발명에 따른 캐비티를 통과할 때 상당히 늘어지는 것을 보여주는 도시한다. 수치 계산에 의한 피팅 곡선으로부터, 본 발명의 테프론 캐비티는 대략 99.96% (
Figure PCTKR2019017668-appb-img-000008
0.005%)의 알베도를 갖는 것이 확인되었다.
도 4는 본 발명에 따른 간섭계에서 측정된 상호 상관 베이스 레벨(cross-correlation base level)에 대한 입사 광의 영향을 보여준다. 입사 광의 변동 하에서 검출 광의 상호 상관 측정의 결과이다. 지연 시간(τ)은 0 초였다. 가로축은 std 2/mean 2, 세로축은 상호 상관 베이스 레벨을 나타낸다. std는 입사 광 강도의 표준편차, mean은 입사 광 강도의 평균이었다. 상호 상관 베이스 레벨은 std 2/mean 2에 비례하였다.
추가적으로, 고유 노이즈로 인한 상호 상관은 제거되어, 외부 섭동(external perturbation)으로 인한 상관관계만 남겨질 필요가 있다.
도 5는 캐비티들에서의 스페클 필드 강도의 상관관계 변화를 설명하기 위한 그래프이다. (a)는 본 발명에 따른 테프론 캐비티의 랜덤 간섭계에 대한 것이고, (b)는 랜덤 간섭계가 아닌 Diffusive Wave Spectroscopy (DWS)에 대한 것이다.
캐비티(200) 내에 투입된 샘플은 3.5ml의 수크로스(sucrose, 굴절률 1.405) 용액에 함유된 지름 5.5㎛의 PMMA(polymethylmethacrylate, 굴절률 1.488) 입자를 포함하였다. 샘플에서, PMMA 입자의 수는 일정하였다. 스페클 필드의 강도는 1시간 동안 100kHz의 sampling rate으로 측정되었다.
도 5를 참조하여, 본 발명에 따른 랜덤 간섭계(a)는 DWS(b) 보다 스페클 필드의 변동이 약 100배 빨리 검출되는 것을 확인할 수 있다. 즉, 본 발명에 따른 랜덤 간섭계가 일반적인 DWS 보다 높은 민감도를 가짐을 알 수 있다.
본 발명에 따른 랜덤 간섭계는 캐비티(200) 내의 스페클 필드의 변동을 일으키는 원인을 검출할 수 있다. 스페클 필드의 변동을 일으키는 원인은 여러 가지가 있을 수 있다. 아래에서, 그에 따른 랜덤 간섭계의 용도를 3가지 설명한다.
일 예로, 본 발명에 따른 랜덤 간섭계는 레이저 진단기 및 스펙트럼 변동 계측기로 사용될 수 있다. 캐비티가 완전히 정적인 경우(즉, 캐비티 자체의 변형이 없고, 캐비티 내의 매질의 변동이 없는 경우), 이상적으로 완전히 코히어런트한 모노크로매틱(infinitely coherent monochromatic) 입사 광은 완전히 일정한 스페클 필드를 생성할 수 있다. 이 경우, 입사 광의 양자역학적 변동을 벗어나는 스페클 필드의 변동이 검출되지 않는다. 따라서, 입사 광이 완전히 코히어런트 하지 않거나(finite coherence) 노이즈를 포함하는 경우, 스페클 필드의 변동이 검출될 수 있다.
스페클 필드의 변동은, 입사 광 스펙트럼의 밴드 폭(τ c - 1)보다 큰 주파수(f)에서, 증폭될 수 있다. 특히, 입사 광의 위상 변동에 의한 스페클 필드의 변동이 증폭되어, 입사 광(즉, 레이저 소스)의 분광 퀄리티(spectral quality) 및 분광 노이즈(spectral noise)가 검출될 수 있다. 입사 광(L)의 강도 변동에 의한 스페클 필드의 변동 역시 증폭되어, 입사 광의 강도 노이즈가 검출될 수 있다. 입사 광 스펙트럼의 밴드 폭 보다 작은 주파수에서 즉, fτ c < 1, 본 발명에 따른 랜덤 간섭계는 입사 광의 위상 변동들(또는, 입사 광의 파장 및 강도 변동들)을 거의 검출 수 없다.
도 6은 직접 조명 하에서의 레이저 광의 3 시간 상호 상관을 측정한 결과이다. 연한 실선은 raw data, 굵은 점선은 피팅 라인이다. 상관 관계는 2kHz에서 갑자기(기하 급수적으로) 감소하는 피팅(fitting) 결과를 보인다. 이는 레이저 펌핑 강도(pump intensity)의 변동으로 인한 레이저 여기 상태(laser excited state)의 이완 진동(relaxation oscillation)에 기인한다.
이와 같이, 본 발명에 따른 랜덤 간섭계는 입사 광(L)의 위상 및 강도의 변동을 측정 및 진단하고, 파장 변동을 검출할 수 있다. 나아가, 서로 다른 파장을 갖고 서로 코히어런트하지 않는 입력 광들이, 본 발명에 따른 하나의 랜덤 간섭계를 이용하여, 분석될 수 있다. 이와 같이, 본 발명에 따른 랜덤 간섭계는 각각의 서로 다른 파장들에서 정밀하게 튜닝하여야 하는 일반적인 간섭계보다 우수한 성능을 갖는다.
일 예로, 본 발명에 따른 랜덤 간섭계는 음향, 기계적 힘 또는 기계적 진동의 센서로 사용될 수 있다. 입사 광(L)의 위상 및 강도가 안정적이고 도 1의 캐비티(200)가 변형되지 않는다면, 스페클 필드의 파워 스펙트럼은 안정적이다. 본 발명에 따른 랜덤 간섭계는 캐비티(200)의 변형에 따른 스페클 필드의 변동을 검출할 수 있다. 본 발명에 따른 랜덤 간섭계는 주변 환경의 압력 변화, 음파 또는 기계적 진동을 측정하는 것에 사용될 수 있다.
예를 들어, 도 7a와 같이, 캐비티(200)가 두 개의 바디들(210, 220)로 이루어진 경우, 두 개의 바디들의 상대적 움직임은 피코미터(pm) 단위의 민감도로 측정될 수 있다. 도 7a는 본 발명에 따른 캐비티의 일 예이고, 도 7b는 도 7a의 A-A'선에 따른 단면도이다. 두 개의 바디들이 탄성 물질(215)에 의해 결합되는 경우, 캐비티(200)는 기계적 공진기(mechanical resonator)로 이용될 수 있다. 이와 같이, 본 발명에 따른 랜덤 간섭계는 탄성 물질의 특성(compliance)을 측정할 수 있다.
도 8a는 본 발명에 따른 랜덤 간섭계의 캐비티를 구현하는 실험 예를 설명하기 위한 도면이다. 도 8b는 도 8a의 B-B'선에 따른 단면도이다.
도 8a 및 8b 에서의 캐비티(200)는 상부 바디(210) 및 하부 바디(220)를 포함한다. 상부 바디(210) 및 하부 바디(220)) 사이에 압전 액츄에이터들(230)이 배치되었다. 제어기(240)에서 인가되는 전압에 의해, 압전 액츄에이터들(230)이 진동하였다. 이에 따라, 캐비티(200)에 기계적 변형(mechanical deformation)이 발생하고, 캐비티(200) 내에서의 스페클 필드의 강도 변동이 발생하였다. 상기 과정을 통해, 압전 액츄에이터들(230)에 의한 스페클 필드의 강도 변동이 측정될 수 있다. 다시 말하면, 압전 액츄에이터들(230)을 이용하여, 본 발명에 따른 랜덤 간섭계의 감도(sensitivity)가 캘리브레이션(calibration)될 수 있다. 상기 캘리브레이션 결과를 바탕으로, 캐비티(200)의 변형을 일으키는 진동 및 기계적 힘을 측정할 수 있다.
도 9는 도 8a의 간섭계의 압전 액츄에이터에 인가되는 전압 변화에 따른 상호 상관의 변화를 나타내는 그래프이다. 압전 액츄에이터들(230)에서의 진동은 1kHz이고, 제어기(240)에서 인가되는 전압은 1V에서 10V로 변화되었다.
도 10은 도 8a의 간섭계의 압전 액츄에이터에 인가되는 전압에 따른 스페클 필드의 강도 변동을 설명하기 위한 그래프이다. 인가 전압에 따른 도 9의 1차 상관 진폭(first correlation amplitude)의 변화가 도 10에 도시된다. 압전 액츄에이터들(230)에 의해 가해지는 기계적 변형(mechanical deformation)에 대하여 캐비티가 선형적으로 반응하는 것이 보여진다. 즉, 스페클 필드의 상호 상관의 첫 번째 피크의 진폭은 제어기(240)가 인가하는 전압에 선형적으로 반응함을 확인할 수 있다. 다시 말하면, 캐비티(200)의 변형이 클수록, 스페클 필드의 강도 변동이 큰 것을 확인할 수 있다.
나아가, 도 11은 도 1의 간섭계에서의 외부 진동 및 지진 잡음에 대한 감도의 예를 도시한다. (a)의 캐비티는 실험실 바닥 위에 직접 배치되어, 지진 잡음을 암시하는 유사한 주파수에서 매우 큰 상관 피크가 보인다. (b)의 캐비티는 고립되어 있지 않은 (압축 공기가 제거된) 광학 테이블에 배치되어, 지진 잡음에 의한 피크가 보인다. (c)의 캐비티는 수동적으로 격리된 광학 테이블(passively isolated optical table) 상에 배치되어, 약 100Hz에서 작은 상관 피크가 보인다. (d)의 캐비티는 (c) 조건의 광학 테이블 상에 놓여진 적극적으로 격리된 브레드 보드(actively isolated breadboard) 위의 수제 아크릴 상자 (열, 음향 및 전자기로부터의 격리) 내에 배치되어, 아주 적은 크기의 노이즈를 제외하면, 가시적인 진동이 없는 것이 보인다.
일 예로, 본 발명에 따른 랜덤 간섭계는 캐비티 내에 제공된 샘플들의 광학적 특성 측정에 사용될 수 있다. 캐비티가 비어있는 상태이면(즉, 진공 상태이면), 광 모드들(LM)의 경로는 캐비티 내벽의 구조에 따라 결정될 수 있다. 캐비티 내에 공기가 존재하는 경우, 캐비티 내의 공기가 캐비티 내의 굴절률을 약간 변화시켜, 광 모드들의 유효 광 경로가 변경됨에 따라 광 모드들을 변화시킬 수 있다. 일 예로, 캐비티 내의 평균 굴절률을 10 -8 정도(이는 공기와 진공 사의의 굴절율 차이인 ≒ 3x10 4 보다 작다) 변화하는 매질이 캐비티 내에 제공되는 경우, 스페클 필드의 변동이 측정될 수 있다. 결론적으로, 본 발명에 따른 랜덤 간섭계는 캐비티(200) 내부에 제공된 매질의 굴절률 변동을 측정할 수 있는 굴절계(dynamic refractometer)로 기능할 수 있다.
캐비티 내의 굴절률이 공간적으로 불균일하면(spatial index heterogeneities), 스페클 필드가 흩어지므로, 랜덤 간섭계는 캐비티 내의 굴절률의 공간적 시간적 변동(spatio-temporal fluctuations)을 감지하는 센서로 기능할 수 있다.
캐비티 증배 계수가 M인 캐비티 내에 약간 혼탁한 샘플이 제공되는 경우, 캐비티 내에서 광 모드들이 M회 반사되므로, 캐비티 내의 1cm 3의 샘플을 통과하는 광 모드들은 캐비티 밖의 M 3cm 3의 샘플을 통과하는 광 모드들과 동일한 효과를 가질 수 있다.
도 12는 본 발명에 따른 캐비티 내의 샘플의 광학적 특성을 측정한 것을 도시한다. 캐비티 내에 투입된 샘플은 3.5ml의 수크로스(sucrose, 굴절률 1.405) 용액에 함유된 지름 5.5㎛의 PMMA(polymethylmethacrylate, 굴절률 1.488) 입자를 포함하였다. 스페클 필드의 강도는 1시간 동안 100kHz의 sampling rate으로 측정되었다.
선 (a)에서 선 (e)는 테프론 캐비티로 구성된 간섭계에 대한 것이고, 선 (f)는 상기 간섭계가 아닌 Diffusive Wave Spectroscopy (DWS)에 대한 것이다. 선 (a)에서 선 (e)로 갈수록 PMMA 입자의 농도가 증가되어, 매질의 증배도(multiplicity)는 각각 7, 8, 11, 17, 22이었다. 농도가 증가됨에 따라, 섭동이 누적되어, 스페클 강도의 감속 더 빨라진다. 선 (f)는 DWS에서 선 (e)와 동일한 샘플에서 측정된 것이다. 본 발명에 따른 테프론 캐비티가 DWS 보다 상관관계의 감소(decorrelation)가 더 빨리 일어나 측정의 민감도가 더 큰 것을 알 수 있다. 본 발명에 따른 간섭계에서의 묽은 샘플(즉, 선 (a))이 DWS에서의 더 진한 샘플(즉, 선 (f))와 동일한 상관관계의 감소(decorrelation)를 갖는다.
이와 같이, 본 발명에 따른 랜덤 간섭계는 작은 크기로도 높은 민감도를 갖는 광학적으로 증폭된 비탁계(nephelometer), 유동학(rheology), 입자 크기 측정, 상변화의 측정을 위한 동적 광 산란, 또는 광학적으로 증폭된 동적 광 산란 등에 사용될 수 있다. 나아가, 이러한 측정은 가속도계, 및 표면 장력파(capillary waves)를 사용하는 진동 센싱에 사용될 수 있다.
본 발명에 따른 랜덤 간섭계는 광 산란의 다중도(multiplicity of light scattering)를 증대시키고, 옹스트롱 이하 크기 움직임(sub-Angstrom motions)의 검출 감도를 향상시킬 수 있다.
본 발명의 기술적 사상의 실시 예들에 대한 이상의 설명은 본 발명의 기술적 사상의 설명을 위한 예시를 제공한다. 따라서 본 발명의 기술적 사상은 이상의 실시 예들에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당해 기술 분야의 통상의 지식을 가진 자에 의하여 상기 실시 예들을 조합하여 실시하는 등 여러 가지 많은 수정 및 변경이 가능함은 명백하다.

Claims (18)

  1. 코히어런트 입사 광을 방출하는 광원;
    상기 입사 광이 그의 내부 벽에서 반사되어 생성된 광 모드들의 간섭으로부터 스페클 필드를 생성하는 캐비티;
    상기 스페클 필드로부터 방출되는 광 강도를 검출하는 검출부; 및
    상기 광 강도로부터 상기 스페클 필드의 변동을 분석하는 데이터 분석부를 포함하는 랜덤 간섭계.
  2. 청구항 1에 있어서,
    상기 캐비티는 상기 입사 광 및 상기 광 모드들을 램버시안 반사시키는 랜덤 간섭계.
  3. 청구항 1에 있어서,
    상기 데이터 분석부는 상기 스페클 필드의 변동을 분석하여, 상기 입사 광의 위상 노이즈 또는 강도 노이즈를 측정하는 랜덤 간섭계.
  4. 청구항 1에 있어서,
    상기 데이터 분석부는 상기 스페클 필드의 변동을 분석하여, 상기 캐비티의 변형을 측정하는 랜덤 간섭계.
  5. 청구항 4에 있어서,
    상기 캐비티의 변형으로부터 상기 캐비티 주변의 진동을 감지하는 랜덤 간섭계.
  6. 청구항 5에 있어서,
    상기 캐비티 주변의 진동은 음향 또는 지진인 랜덤 간섭계.
  7. 청구항 1에 있어서,
    상기 데이터 분석부는 상기 스페클 필드의 변동을 분석하여, 상기 캐비티 내에 제공된 샘플의 광학적 특성의 동적 변동을 측정하는 랜덤 간섭계.
  8. 청구항 1에 있어서,
    상기 데이터 분석부는 상기 광 강도를 시계열로 측정하거나 이미지를 얻는 랜덤 간섭계.
  9. 청구항 1에 있어서,
    상기 데이터 분석부는, 지연시간의 변화에 따른 상기 광 강도의 상관 관계를 획득하는 랜덤 간섭계.
  10. 청구항 9에 있어서,
    상기 검출부는 하나의 포토 디텍터를 포함하고,
    상기 광 강도의 상관 관계를 획득하는 것은 상기 하나의 포토 디텍터에서의 상기 광 강도의 자기 상관 관계를 획득하는 것을 포함하는 랜덤 간섭계.
  11. 청구항 9에 있어서,
    상기 검출부는 2개의 포토 디텍터들을 포함하고,
    상기 광 강도의 상관 관계를 획득하는 것은 상기 2개 포토 디텍터들에서의 상기 광 강도의 상호 상관 관계를 획득하는 것을 포함하는 랜덤 간섭계.
  12. 코히어런트 광원으로부터의 입사 광을 캐비티 내로 제공하는 것;
    상기 입사 광이 상기 캐비티의 내벽에서 반사되어 생성된 광 모드들 사이의 간섭으로부터의 스페클 필드로부터 방출되는 방출 광을 검출하는 것; 그리고
    상기 방출 광의 감도 변화로부터 상기 스페클 필드의 변동을 분석하는 것을 포함하고,
    상기 스페클 필드의 변동을 분석하는 것은 상기 방출 광의 강도 변동을 분석하는 것을 포함하는 랜덤 간섭 분석 방법.
  13. 청구항 12에 있어서,
    상기 스페클 필드의 변동을 분석하는 것은, 지연시간의 변화에 따른 상기 방출 광 강도의 상관 관계를 획득하는 것을 포함하는 랜덤 간섭 분석 방법.
  14. 청구항 12에 있어서,
    상기 스페클 필드의 변동을 분석하는 것은, 상기 광 강도를 시계열로 측정하거나 이미지를 얻는 것을 포함하는 랜덤 간섭 분석 방법.
  15. 청구항 12에 있어서,
    상기 분석으로부터 상기 입사 광의 위상 노이즈 또는 강도 노이즈를 측정하는 랜덤 간섭 분석 방법.
  16. 청구항 12에 있어서,
    상기 분석으로부터 상기 캐비티의 변형을 측정하는 랜덤 간섭 분석 방법.
  17. 청구항 12에 있어서,
    상기 분석으로부터 상기 캐비티 주변의 진동을 감지하는 랜덤 간섭 분석 방법.
  18. 청구항 12에 있어서,
    상기 분석으로부터 상기 캐비티 내에 제공된 샘플의 광학적 특성의 동적 변동을 측정하는 랜덤 간섭 분석 방법.
PCT/KR2019/017668 2018-12-14 2019-12-13 랜덤 간섭계 및 랜덤 간섭분석 방법 WO2020122659A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20180162463 2018-12-14
KR10-2018-0162463 2018-12-14
KR20180164638 2018-12-18
KR10-2018-0164638 2018-12-18
KR10-2019-0166255 2019-12-13
KR1020190166255A KR102367812B1 (ko) 2018-12-14 2019-12-13 랜덤 간섭계 및 랜덤 간섭분석 방법

Publications (1)

Publication Number Publication Date
WO2020122659A1 true WO2020122659A1 (ko) 2020-06-18

Family

ID=71076592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017668 WO2020122659A1 (ko) 2018-12-14 2019-12-13 랜덤 간섭계 및 랜덤 간섭분석 방법

Country Status (1)

Country Link
WO (1) WO2020122659A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626820A (ja) * 1992-07-08 1994-02-04 Hazama Gumi Ltd 測点の変位自動計測装置
JP2006275868A (ja) * 2005-03-30 2006-10-12 Fujinon Corp スペックル干渉計装置
KR20120102104A (ko) * 2009-12-08 2012-09-17 쓰리엠 이노베이티브 프로퍼티즈 컴파니 생물학적 성장 플레이트 스캐너를 위한 조명 장치 및 방법
KR20160120269A (ko) * 2013-10-29 2016-10-17 더 유니버시티 코트 오브 더 유니버시티 오브 세인트 앤드류스 랜덤 파장계
US20170245796A1 (en) * 2014-09-04 2017-08-31 BAR ILAN UNlVERSITY Optical sensor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626820A (ja) * 1992-07-08 1994-02-04 Hazama Gumi Ltd 測点の変位自動計測装置
JP2006275868A (ja) * 2005-03-30 2006-10-12 Fujinon Corp スペックル干渉計装置
KR20120102104A (ko) * 2009-12-08 2012-09-17 쓰리엠 이노베이티브 프로퍼티즈 컴파니 생물학적 성장 플레이트 스캐너를 위한 조명 장치 및 방법
KR20160120269A (ko) * 2013-10-29 2016-10-17 더 유니버시티 코트 오브 더 유니버시티 오브 세인트 앤드류스 랜덤 파장계
US20170245796A1 (en) * 2014-09-04 2017-08-31 BAR ILAN UNlVERSITY Optical sensor device

Similar Documents

Publication Publication Date Title
Wang et al. Diaphragm design guidelines and an optical pressure sensor based on MEMS technique
CN100565193C (zh) 用于检测透明基片中的缺陷的检测装置
EP3063515B1 (en) Wavelength meter using a speckle pattern
US8681340B2 (en) Microvolume analysis system
CN100401041C (zh) 光波导吸收式气体传感器及测量系统
CN105352583B (zh) 一种测量超声波声压和声强的光学方法和装置及其应用
Manzo et al. A photonic wall pressure sensor for fluid mechanics applications
US20060137467A1 (en) Floating-element shear-stress sensor using an optical Moire transduction technique
US20200023822A1 (en) Waveguide sensor with nanoporous surface layer
KR20150146415A (ko) 동적 광산란 측정 장치 및 동적 광산란 측정 방법
JPH08271219A (ja) 被測定体の物理特性を決定する装置及び方法
JPH0868694A (ja) 蛍光相関分光学的分析方法およびこれを実施する装置
WO2020122659A1 (ko) 랜덤 간섭계 및 랜덤 간섭분석 방법
US8649018B2 (en) Optical cantilever based analyte detection
Graciani et al. 3D stochastic interferometer detects picometer deformations and minute dielectric fluctuations of its optical volume
Zhang et al. High-performance optical coherence velocimeter: theory and applications
KR102367812B1 (ko) 랜덤 간섭계 및 랜덤 간섭분석 방법
Noda et al. Far Infrared Pas Sensor Using Silicon Piezoresistive Cantilever for Continuous Non-Invasive Blood Glucose Measurement
Krehut et al. Low cost velocity sensor based on the self-mixing effect in a laser diode
CN106338470B (zh) 一种光场行波腔增强表面等离子体共振传感装置
CN114859076B (zh) 基于光悬浮多微球阵列的加速度测量方法及装置
AU2016200064B2 (en) Optical sensor
Teo et al. Highly sensitive optical motion detector
Li et al. A Low-Cost Portable Nanophotonic Sensor Based on a Smartphone: A system readily available for many applications
KR20190130912A (ko) 표면 플라즈몬 공명 센서, 그 센서를 이용한 센싱 방법 및 센싱시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19896743

Country of ref document: EP

Kind code of ref document: A1