WO2020121806A1 - Stator, and motor using the same - Google Patents

Stator, and motor using the same Download PDF

Info

Publication number
WO2020121806A1
WO2020121806A1 PCT/JP2019/046253 JP2019046253W WO2020121806A1 WO 2020121806 A1 WO2020121806 A1 WO 2020121806A1 JP 2019046253 W JP2019046253 W JP 2019046253W WO 2020121806 A1 WO2020121806 A1 WO 2020121806A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
wire
layer
conductor
conductor wire
Prior art date
Application number
PCT/JP2019/046253
Other languages
French (fr)
Japanese (ja)
Inventor
博 米田
渡辺 彰彦
浩勝 国友
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020559090A priority Critical patent/JP7394396B2/en
Priority to CN201980074791.3A priority patent/CN113039704B/en
Publication of WO2020121806A1 publication Critical patent/WO2020121806A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure

Definitions

  • the present invention relates to a stator, particularly a stator around which a conductor wire having a rectangular cross section is wound, and a motor using the stator.
  • a so-called multi-layered coil is often used in which a coil is formed by winding conductive wires so as to be sequentially stacked from the surface of the insulator.
  • the present invention has been made in view of the above points, and an object thereof is to provide a stator that suppresses winding disorder at the rewound portion of a conductive wire and that has a high space factor of a coil, and a motor using the same. is there.
  • a stator according to the present invention is provided with an annular yoke and a predetermined gap in the circumferential direction of the yoke, and from the inner circumference of the yoke in the radial direction of the yoke.
  • a stator including a plurality of teeth, a plurality of insulators mounted on each of the plurality of teeth, and a plurality of coils each having a rectangular cross section and wound around each of the plurality of insulators. Then, the insulator has a tubular wire winding portion around which the wire is wound, and a wire guide groove that is provided at one end of the wire winding portion and that guides the wire to the wire winding portion.
  • a plurality of second side surfaces and at least a corner portion of the conductive wire winding portion for winding the conductive wire around the first end surface so as to form a predetermined angle with respect to a direction orthogonal to the radial direction.
  • the plurality of protrusions are provided at a predetermined distance from each other in the radial direction, and the protrusions are provided on the first surface and the second collar portion facing the first collar portion. And a second surface facing each other, and at least one of the first surface and the second surface has a convex curved surface.
  • the conductor wire having a rectangular cross section can be stably wound in an aligned and multi-layered manner on the insulator.
  • the motor according to the present invention is characterized by at least including the stator and a rotor provided at a predetermined distance from the stator.
  • the conductor wire is wound around the insulator in a line and in multiple layers, so that the space factor of the coil can be increased and a highly efficient motor can be realized.
  • a conductor wire having a rectangular cross section can be stably wound in an aligned and multi-layered manner on an insulator. Further, according to the motor of the present invention, the space factor of the coil can be increased and a highly efficient motor can be realized.
  • FIG. 1 is a sectional view of a motor according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the insulator.
  • FIG. 3 is a schematic view of a main part of the stator.
  • FIG. 4 is a schematic view of a main part of the stator viewed from the upper side in the axial direction.
  • FIG. 5 is a sectional view taken along line VV of FIG.
  • FIG. 6 is a schematic diagram for explaining the relationship between the inclination angle of the conductor wire with respect to the radial direction and the distance between the conductor wires adjacent in the radial direction.
  • FIG. 7 is a schematic diagram illustrating the relationship between the receding angle of the slot and the inclination angle of the conductor wire with respect to the radial direction.
  • FIG. 8 is a figure which shows the structure of the winding equipment of a conducting wire.
  • FIG. 9 is a process explanatory view showing a process in which the conductor wire is wound around the insulator.
  • FIG. 10A is a schematic diagram showing an arrangement of conductors on a conductor winding portion when a protrusion is not provided.
  • FIG. 10B is a schematic diagram showing an arrangement of conductors on a conductor winding portion when a protrusion is provided.
  • FIG. 11 is a schematic view of another insulator.
  • FIG. 12 is a schematic diagram of the first insulator according to the modification.
  • FIG. 13 is a schematic diagram of the second insulator according to the modification.
  • FIG. 14 is a schematic diagram of a third insulator according to the modification.
  • FIG. 12 is a schematic diagram of the first insulator according to the modification.
  • FIG. 13 is a schematic diagram of the second insulator according to the modification.
  • FIG. 14 is a
  • FIG. 15 is a schematic diagram of a fourth insulator according to the modification.
  • FIG. 16 is a schematic diagram of an insulator according to the second embodiment of the present invention.
  • FIG. 17 is a schematic view of a main part of the stator viewed from the lower side in the axial direction.
  • FIG. 18A is a schematic sectional view of an essential part of the stator according to the third embodiment of the present invention.
  • FIG. 18B is a schematic sectional view of a main part of a stator for comparison.
  • FIG. 19A is a schematic sectional view of an essential part of the stator according to the fourth embodiment of the present invention.
  • FIG. 19B is a schematic sectional view of a main part of a stator for comparison.
  • FIG. 20 is a schematic cross-sectional view of a main part of a stator filled with a heat dissipation material.
  • FIG. 1 shows a cross-sectional view of the motor according to this embodiment.
  • the radial direction of the motor 1000 and the stator 100 is the “radial direction”
  • the outer peripheral direction is the “circumferential direction”
  • the direction in which the output shaft 210 of the motor 1000 extends May be referred to as "axial direction”.
  • the output shaft 210 substantially coincides with the central axis of the stator 100
  • the direction in which the central axis of the stator 100 extends may be referred to as the “axial direction”.
  • the center side of the stator 100 may be referred to as the inner side in the radial direction
  • the outer peripheral side may be referred to as the outer side in the radial direction.
  • the motor 1000 has a stator 100 and a rotor 200. Although the motor 1000 has components other than these, for example, components such as a motor case and a bearing that supports the output shaft 210, illustration and description thereof will be omitted for convenience of description.
  • the motor 1000 is a so-called inner rotor type motor, but is not particularly limited to this and may be an outer rotor type motor.
  • the stator 100 includes an annular yoke 20, a plurality of teeth 10 connected to the inner circumference of the yoke 20 and provided at equal intervals along the inner circumference, and a plurality of teeth mounted on each of the plurality of teeth 10. It has an insulator 50 (see FIG. 2), a plurality of slots 30 configured as a space between the teeth 10 adjacent in the circumferential direction, and a plurality of coils 40 housed in the plurality of slots 30.
  • the rotor 200 is arranged on the outer side in the radial direction with a certain distance from the rotor 200.
  • Tooth 10 when it means a singular number, it is referred to as Tooth 10, and when it means a plurality, it is referred to as Teeth 10. Further, in the case where either one or a plurality of numbers may be used, they are referred to as teeth 10.
  • the teeth 10 are formed, for example, by stacking electromagnetic steel plates containing silicon and the like and then punching them.
  • the yoke 20 is an annular member formed by connecting a plurality of split yokes 21 in the circumferential direction. Similar to the teeth 10, the split yoke 21 is formed by stacking electromagnetic steel plates and punching them.
  • the tooth 10 is provided in each of the split yokes 21.
  • the coil 40 is a component formed by winding a conductor wire 41 (see FIG. 3) having a rectangular cross section, and the coil 40 is mounted on the tooth 10 with the insulator 50 sandwiched therebetween and is housed in the slot 30. ..
  • the insulator 50 is a component made of an insulating material attached to the tooth 10 and the split yoke 21, and electrically separates the coil 40 from the tooth 10 and the yoke 20. The structure of the insulator 50 will be described in detail later.
  • the coil 40 may be referred to as coils U1 to U4, V1 to V4, and W1 to W4 depending on the phase of the current flowing through the coil 40.
  • the conductive wire 41 that constitutes the coil 40 is aligned and wound in multiple layers around the insulator 50 mounted on the tooth 10 (see FIG. 3 ).
  • the rotor 200 has an output shaft 210 arranged at the shaft center and magnets 220 facing the stator 100 and having N poles and S poles alternately arranged along the outer peripheral direction of the output shaft 210.
  • the material, shape, and material of the magnet 220 can be appropriately changed according to the output of the motor 1000 and the like.
  • the coils U1 to U4, V1 to V4, and W1 to W4 are connected in series, respectively, and three-phase currents of U, V, and W phases having a phase difference of 120° in electrical angle are respectively generated in the coils U1 to U4.
  • the rotating magnetic field is generated in the stator 100 by being supplied to and excited by V1 to V4 and W1 to W4. This rotating magnetic field interacts with the magnetic field generated by the magnet 220 provided in the rotor 200 to generate torque in the rotor 200, and the output shaft 210 is supported and rotated by a bearing (not shown).
  • FIG. 2 shows a schematic diagram of the insulator according to the present embodiment.
  • the shape of the insulator 50 is shown in a simplified form. Further, in FIG. 2, an enlarged view of a portion surrounded by a broken line is also shown. Further, in FIG. 2, the shape of the conducting wire 41 after being wound one layer is shown by a dashed line.
  • the insulator 50 includes a conductive wire winding portion 52 around which the conductive wire 41 is wound, and a first flange portion provided at a radially outer end of the conductive wire winding portion 52 and having a conductive wire guide groove 51a. It has 51 and the 2nd collar part 53 provided in the radial inside end of the conducting wire winding part 52.
  • the conductor wire 41 is guided to the conductor wire winding portion 52 through the conductor wire guide groove 51a.
  • the shape of the wire guide groove 51a is not limited to the shape shown in FIG. 2, and may be, for example, a shape inclined with respect to the radial direction (see FIG. 4). In the latter case, the guide angle ⁇ of the conductive wire 41 (see FIG. 4) can be made smaller, and winding disorder of the conductive wire 41 can be suppressed more easily.
  • the insulator 50 is attached to the tooth 10 so that the first flange portion 51 covers a part of the split yoke 21.
  • the conductor winding portion 52 has a rectangular tubular shape in a cross-sectional view, and has a first end face 52a continuous with the bottom surface of the conductor guide groove 51a, a first end face 52a, and a second end face 52b axially opposed to each other. ing. Further, the conductive wire winding portion 52 includes a first side surface 52c provided so as to extend in the axial direction from one end side in the circumferential direction of the first end surface 52a to one end side in the circumferential direction of the second end surface 52b, and the first end surface 52a. The second side surface 52d (see FIG.
  • the conducting wire winding part 52 has four corner parts 52e1 to 52e4.
  • the four corner portions 52e1 to 52e4 are the first corner portion 52e1 located between the first end surface 52a and the first side surface 52c, and the second corner portion located between the first side surface 52c and the second end surface 52b. 52e2, a third corner portion 52e3 located between the second end surface 52b and the second side surface 52d, and a fourth corner portion 52e4 located between the second side surface 52d and the first end surface 52a.
  • a plurality of protrusions 60 are provided on each of the four corner portions 52e1 to 52e4.
  • the protrusion 60 is provided so as to extend from each of the corner portions 52e1 to 52e4 so as to cover the adjacent surface.
  • the projection 60 provided on the first corner portion 52e1 is provided so as to cover the first end surface 52a and the first side surface 52c, respectively
  • the projection 60 provided on the third corner portion 52e3 includes the second end surface 52b and the second end surface 52b.
  • the second side surfaces 52d are provided so as to overlap with each other.
  • the plurality of protrusions 60 provided on each of the corner portions 52e1 to 52e4 are provided at intervals Z in the radial direction.
  • the projection 60 has a first surface 60a that faces the first flange portion 51 and a second surface 60b that faces the second flange portion 53, whereas the first surface 60a is a flat plane.
  • the second surface 60b is a curved surface that is convex inward in the radial direction.
  • FIG. 3A and 3B are schematic views of a main part of the stator according to the present embodiment.
  • FIG. 3A is a perspective view seen from the upper side in the axial direction
  • FIG. 3B is a perspective view seen from the lower side in the axial direction.
  • FIG. 4 is a schematic view of a main part of the stator as seen from the upper side in the axial direction
  • FIG. 5 is a sectional view taken along line VV of FIG.
  • the conductor wire guide groove 51a has a shape inclined at a guide angle ⁇ with respect to a direction orthogonal to the radial direction when viewed in the axial direction.
  • the projection 60 is omitted.
  • the cross-sectional shape including the protrusion 60 is shown in FIG. 10B described later.
  • the arrows shown in FIG. 5 indicate the winding order in each layer of the conductive wire 41.
  • the first-layer conductive wire 411 is wound from the first flange portion 51 toward the second flange portion 53
  • the second-layer wiring 412 is wound from the second flange portion 53 toward the first flange portion 51. It is wound.
  • the conductive wire 41 when the conductive wire 41 is wound around the conductive wire winding portion 52 in n layers (n is an integer of 2 or more), the (i-1)th layer (i is an integer of 2 or more, and i
  • the portion where the conductor wire 41 of ⁇ n) is rewound from the conductor wire 41 of the i-th layer may be referred to as a cross portion 4i (cross portions 42, 43,..., 4i).
  • the conductive wire 41 is wound so that the cross portion 4i is located on the first end surface 52a.
  • the conductor wire 41 is aligned and wound around the conductor wire winding portion 52 of the insulator 50.
  • the first-layer conductor wire 411 guided from the conductor wire guide groove 51a to the first end surface 52a has a predetermined cross angle ⁇ with respect to the direction orthogonal to the radial direction. It is wound around the first end face 52a so as to form (see FIG. 4).
  • the second-layer conductive wire 412 rewound from the first-layer conductive wire 411 at the radially inner end of the conductive-wire winding portion 52 is wound around the first end surface 52a at an angle different from the cross angle ⁇ .
  • the conductor wire 413 of the third layer which is rewound from the conductor wire 412 of the second layer at the radially outer end of the conductor wire winding portion 52, is wound around the first end face 52a at an angle substantially equal to the cross angle ⁇ . ..
  • the conductor wire 411 of the first layer is positioned by the plurality of protrusions 60 provided on the corner portions 52e1 to 52e4 and is held on the surface of the conductor wire winding portion 52 (see FIGS. 10A and 10B). Further, the first-layer conductive wire 411 is formed on the surface of the conductive wire winding portion 52, that is, the first end surface 52a, the second end surface 52b, the first side surface 52c, and the first side surface 52c so as to form a predetermined angle ⁇ with respect to the radial direction. It is wound so as to be inclined with respect to each of the two side surfaces 52d.
  • the conductor wire 41 of the second and subsequent layers is aligned and wound by being supported by the end face 41b of the conductor wire 41 of the layer immediately below.
  • the conductor wires 41 of the second and subsequent layers are also inclined to form a predetermined angle ⁇ with respect to the radial direction and are wound around the conductor wire 41 of the layer immediately below.
  • the surface of the conductive wire 41 forming an angle ⁇ with the radial direction is referred to as a flat surface 41a
  • the surface of the conductive wire 41 orthogonal to the flat surface 41a is referred to as an end surface 41b, which will also be referred to in the following description.
  • the first-layer conductor wire 411 guided from the conductor wire guide groove 51a to the first end surface 52a is wound so as to be pressed against the inner surface 51b of the first flange portion 51. Therefore, as shown in FIG. 4, a curved portion that bulges radially inward is formed in the first-layer conductor wire 411 at the end portion of the conductor wire guide groove 51a.
  • the radius of curvature R can be increased by setting the winding angle of the conductor wire 411 of the first layer so that the guide angle ⁇ and the cross angle ⁇ shown in FIG. 4 satisfy the relationship of the following expression (1). It is possible to suppress winding disorder of the conductive wire 41, especially the conductive wire 411 of the first layer.
  • FIG. 6 is a schematic diagram illustrating the relationship between the inclination angle of the conductor wire with respect to the radial direction and the distance between the conductor wires adjacent to each other in the radial direction.
  • FIG. 6A shows the theoretical limit when the conductor wires adjacent to each other in the radial direction overlap each other.
  • Drawings (b) and (c) show the case where the end faces of the conductors adjacent in the radial direction partially overlap each other.
  • the corner portion of the conductive wire 41 has an arc-shaped cross section having a predetermined radius.
  • FIG. 7 shows a schematic diagram for explaining the relationship between the receding angle of the slot and the inclination angle of the conductor wire with respect to the radial direction.
  • the insulator 50 is not shown in FIGS. Further, in FIG. 7, an enlarged view of a portion surrounded by a broken line is also shown.
  • the maximum value ⁇ max of the inclination angle ⁇ of the conductor wire 41 with respect to the radial direction is represented by the formula (2), as shown in FIG. 6A. .. 6A to 6C show the first-layer conductive wire 411.
  • X is the long side of the conducting wire 411 in the cross sectional view
  • Y is the short side of the conducting wire 411 in the cross sectional view
  • X corresponds to one side of the flat surface 41a
  • Y corresponds to one side of the end surface 41b.
  • the maximum value Zmax of the pitch Z between the conductor wires 411 that are adjacent in the radial direction is expressed by the following equation (3).
  • the pitch Z corresponds to the interval Z between the protrusions 60 shown in FIG.
  • variable ⁇ is the degree of overlap (%) between the short sides of the conductor 41
  • variable ⁇ is the margin (%) of the pitch Z.
  • the variables ⁇ and ⁇ can be appropriately changed depending on the cross-sectional shape of the conductive wire 41, the material and state of the surface insulating film (not shown) of the conductive wire 41, and the like. Further, the variables ⁇ and ⁇ can change within the ranges represented by the expressions (6) and (7), respectively.
  • variable ⁇ is about 20% or more in order to stably hold the conductors 41 on the conductor winding portion 52.
  • the variable ⁇ is preferably about 103%.
  • FIG. 6 shows the case where the first-layer conductive wire 411 is in contact with each other in the radial direction
  • the relationships shown in the formulas (2) to (7) are otherwise applicable to, for example, the first-layer conductive wire 411.
  • the conductor wire 412 of the second layer is in radial contact with each other so that the short sides thereof partially overlap each other, or the conductor wire 412 of the second layer and the conductor wire 413 of the third layer have mutually short sides.
  • they are in radial contact with each other so that they overlap.
  • the volume of the above-mentioned ineffective space can be reduced by winding the conducting wire with the above inclination angle ⁇ in the radial direction.
  • the inclination angle ⁇ is preferably equal to or smaller than the receding angle ⁇ core of the slot 30.
  • ⁇ core is provided at the radially inner end of the tooth 10 and is a virtual plane that passes through the side surface of the projecting portion 10 a that projects in the circumferential direction and the side surface of the split yoke 21, and the first winding portion 52. It corresponds to an angle formed by the side surface 52c or the second side surface 52d.
  • the inclination angle ⁇ is smaller than the receding angle ⁇ core with reference to the second side surface 52d, the uppermost conductor wire 41 of the conductor wires 41 wound in multiple layers around the insulator 50 does not protrude in the circumferential direction and the corresponding slot 30 does not protrude. Since it is housed inside, the space factor of the coil 40 can be kept high. However, in consideration of the cross angle ⁇ , the interval Z between the protrusions 60, etc., the inclination angle ⁇ may be equal to or smaller than the receding angle ⁇ core.
  • FIG. 8 shows the configuration of the winding equipment for the conductive wire
  • FIG. 9 shows a process explanatory view of the process in which the conductive wire is wound around the insulator. Note that, for convenience of description, in FIG. 8, only a main part of the winding equipment is illustrated in a simplified manner. Further, the projection 60 provided on the insulator 50 is not shown. Further, in FIG. 9, the winding equipment is not shown.
  • the conductor wire 41 shown in this embodiment can be wound around the insulator 50 by a normal work rotation method. That is, the tooth 10 to which the insulator 50 is attached is set on the holding table 2100, the conductor 41 is guided to the conductor winding portion 52 from the conductor guide groove 51a, and the tip of the conductor 41 is gripped by the nozzle 2200.
  • the holding table 2100 has a rotation shaft (not shown), and the rotation shaft and the radial center line of the insulator 50 are made to coincide with each other.
  • the conductor 41 is wound around the insulator 50 by rotating the holder 2100 around its rotation axis and moving the nozzle 2200 relative to the holder 2100.
  • the nozzle 2200 moves the tip of the conductive wire 41 such that the conductive wire 411 of the first layer is held by the protrusion 60 and wound around the first end surface 52a at the cross angle ⁇ .
  • the tip of the conductor wire 41 is moved so that the conductor wire 411 of the first layer is parallel to the inner surface 51b of the first flange 51.
  • the nozzle 2200 moves the tip of the conductive wire 41 so as to have the winding shape shown in FIG. 9.
  • the first-layer conductor wire 411 is aligned and wound around the conductor wire winding portion 52 as shown in FIG. 9A.
  • the first-layer conductive wire 411 is rewound from the second-layer conductive wire 412, and the second-layer conductive wire 412 is arranged so as to be substantially symmetrical to the first-layer conductive wire 411 in the radial direction. It is wound around the one end face 52a ((b) of FIG. 9).
  • the conductor wire 412 of the second layer is wound to the radially outer end of the conductor wire winding portion 52 (FIG.
  • the conductor wire 413 of the third layer is wound around the first end surface 52a at an angle substantially equal to the cross angle ⁇ .
  • the first-layer conductor wire 411 is supported by a plurality of protrusions 60 provided at the corner portions 52e1 to 52e4 of the conductor wire winding portion 52, It is wound so as to be inclined with respect to the surface of the conductive wire winding portion 52 so as to form an inclination angle ⁇ with respect to.
  • the second-layer conductor wire 412 is supported by the end surface 41b of the first-layer conductor wire 411 and is wound around the first-layer conductor wire 411 so as to form an inclination angle ⁇ with respect to the radial direction.
  • the conductor wire 413 of the third layer is supported by the end surface 41b of the conductor wire 412 of the second layer and wound around the conductor wire 412 of the second layer so as to form an inclination angle ⁇ with respect to the radial direction. ..
  • the winding method using a nozzle is described as an example, but a winding method using a roller, a hook, a cam or the like that guides the conducting wire 41 may be used instead of the nozzle.
  • the work rotation method is suitable for winding the conductor wire 41 having a non-circular cross-sectional shape, but if the trouble such as the conductor wire 41 being twisted and deformed can be eliminated, the conductor wire 41 is fixed by the work fixing method. It may be wrapped.
  • the stator 100 is provided with the annular yoke 20 and the yoke 20 at a predetermined interval in the circumferential direction and from the inner circumference of the yoke 20 in the radial direction of the yoke 20.
  • the insulator 50 is provided at a cylindrical wire winding portion 52 around which the wire 41 is wound, and a radially outer end portion of the wire winding portion 52, and a wire guide groove for guiding the wire 41 to the wire winding portion 52. It has the 1st collar part 51 which has 51a, and the 2nd collar part 53 provided in the radial inside end of the conducting wire winding part 52.
  • the conductive wire winding portion 52 includes a first end surface 52a continuous to the bottom surface of the conductive wire guide groove 51a, a second end surface 52b opposed to each other in the axial direction of the stator 100, and a circumferential edge of the first end surface 52a.
  • the first side face 52c and the second side face 52d are provided to face each other in the circumferential direction and face each other in the circumferential direction.
  • the conductor winding portion 52 is provided at the corner portions 52e1 to 52e4, and is for winding the conductor 41 around the first end surface 52a so as to form a predetermined cross angle ⁇ with respect to the direction orthogonal to the radial direction. It has a plurality of protrusions 60.
  • the plurality of protrusions 60 are provided at intervals Z in the radial direction and have a first surface 60a facing the first flange portion 51 and a second surface 60b facing the second flange portion 53.
  • the first surface 60a is a flat plane, while the second surface 60b is a curved surface that is convex inward in the radial direction.
  • stator 100 By configuring the stator 100 in this manner, it is possible to stably wind the conductor wire 41 having a rectangular cross section, that is, a rectangular wire around the insulator 50 in an aligned and multi-layered manner. This will be further described with reference to the drawings.
  • FIG. 10A is a schematic diagram showing the arrangement of conductors on a conductor winding portion when no protrusion is provided
  • FIG. 10B is a schematic diagram showing the arrangement of conductors on a conductor winding portion when protrusions are provided.
  • 10A and 10B an enlarged view of a portion surrounded by a broken line is also shown.
  • FIGS. 10A and 10B only the first-layer conductive wire 411 among the conductive wires 41 is shown.
  • the alternate long and short dash line indicates the actual position of the conductive wire 41, and the dotted line indicates the position at which the conductive wire 41 should originally be wound.
  • the first-layer conductor wire 411 is a first layer adjacent to the first layer in the radial direction.
  • a force directed inward in the radial direction is received from the conducting wire 411.
  • the conductor wire winding portion 52 is not provided with the protrusions 60, there is no mechanism for supporting the conductor wire 411 of the first layer in the radial direction, and thus the conductor wire 411 of the first layer is displaced from its original position to the conductor wire winding portion 52. It is wound.
  • winding disorder occurs, and the first-layer conductive wire 411 is not aligned and wound around the conductive wire winding portion 52. Further, when winding disorder occurs in the first-layer conductive wire 411, the second-layer and subsequent conductive wires 41 sequentially wound on the first-layer conductive wire 411 are not aligned and wound, and as a result, the space factor of the coil 40 decreases. Will end up.
  • the plurality of protrusions 60 are provided on each of the corner portions 52e1 to 52e4 of the conductor winding portion 52 to support the conductor wire 411 of the first layer in the radial direction. it can. Further, since the plurality of protrusions 60 are provided at intervals Z in the radial direction, the conductor wire 411 of the first layer is held on the surface of the conductor wire winding portion 52 in a state of being aligned and wound. Further, although not shown in FIG.
  • the second-layer conductive wire 412 is supported by the end surface 41b of the first-layer conductive wire 411, and thus is aligned and wound on the first-layer conductive wire 411 to form the third-layer conductive wire 412.
  • the conducting wire 41 after the eye is similarly wound around the insulator 50 in an aligned manner, and the aligned wound and multilayer wound coil 40 can be stably realized.
  • the first surface 60a of the projection 60 is a flat plane
  • the second surface 60b is a curved surface that is convex inward in the radial direction.
  • the second surface 60b into a convex curved surface
  • a mold not shown
  • a special release agent is used to facilitate the removal of the protrusions 60, or when the protrusions 60 are removed from the mold, the protrusions 60 are chipped and defective insulators 50 are produced. It is possible to suppress an increase in manufacturing cost.
  • the first-layer conductive wire 411 wound around the conductive wire winding portion 52 is supported by the plurality of protrusions 60, is wound around the first end surface 52a at the cross angle ⁇ , and is inclined with respect to the radial direction. It is wound so as to be inclined on the surface of the conductive wire winding portion 52 so as to form an angle ⁇ .
  • the conductor wire 41 is wound around the conductor wire winding portion 52 in n layers (n is an integer of 2 or more), and the conductor wire 41 of the i-th layer (i is an integer of 2 or more and i ⁇ n) is the first wire. At the end face 52a, it is rewound from the conducting wire 41 of the (i-1)th layer and wound on the conducting wire 41 of the (i-1)th layer at an angle different from the cross angle ⁇ .
  • the i-th conductor wire 41 is supported on the end surface 41b of the (i-1)-th conductor wire 41 so that the i-th conductor wire 41 forms an inclination angle ⁇ with the (i-1)-th conductor wire. It is wound.
  • the end surface 41b of the first-layer conductive wire 411 that is held by the plurality of protrusions 60 and is aligned and wound at an inclination angle ⁇ with the radial direction is supported.
  • the conductor wire 412 of the second layer is aligned and wound on the conductor wire 411 of the first layer without being disturbed by the cross portion 42.
  • the end face 41b of the (i-1)-th layer conductive wire 41 wound in a line is used as a supporting portion, and the i-th layer conductive wire 41 is not disturbed at the cross portion 4i and It is rolled up on top.
  • the projection 60 provided on the corner portion 52e1 between the first end surface 52a and the first side surface 52c and the projection 60 provided on the corner portion 52e2 between the first side surface 52c and the second end surface 52b are provided respectively.
  • the second surfaces 60b which are convex curved surfaces, face the same direction as each other, in this case, the radially inner side.
  • the position of the cross portion 4i can be reliably determined on the first end surface 52a.
  • the motor 1000 includes at least a stator 100 and a rotor 200 provided at a predetermined distance from the stator 100, and the conductive wire 41 is wound around the insulator 50 in a line and in multiple layers.
  • the conductor wire 41 is aligned and wound in multiple layers around the insulator 50 by the plurality of protrusions 60 provided on the conductor wire winding portion 50.
  • the space factor of the coil 40 in the slot 30 can be increased, and the highly efficient motor 1000 can be realized.
  • the protrusion 60 is provided so as to extend from each of the corner portions 52e1 to 52e4 so as to cover the adjacent surface, but the present invention is not limited to this, and the protrusion 60 may be, for example, as shown in FIG. May be provided only in each of the corner portions 52e1 to 52e4. Also in this case, the first-layer conductive wire 411 is wound while being inclined at the cross angle ⁇ with respect to the first end surface 52a, and is supported by the first surface 60a of the protrusion 60 to be the surface of the conductive wire winding portion 52. It is lined up and wound.
  • ⁇ Modification> 12 to 15 are schematic diagrams of the first to fourth insulators according to this modification.
  • (a) is a perspective view seen from the upper side in the axial direction
  • (b) is a perspective view seen from the lower side in the axial direction.
  • 12 to 15 the same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the projection 60 is provided on each of the corner portions 52e1 to 52e4, whereas in the configuration shown in the present modification, the other portions, for example, the first side surface 52c and the second side surface 52d. Etc. are different in that the protrusions 61 are also provided.
  • a plurality of protrusions 61 are arranged at intervals Z in the radial direction and parallel to the inner surface 51b of the first flange portion 51. May be provided.
  • the plurality of protrusions 61 may be provided on the first side surface 52c so as to extend linearly from the corner portion 52e1 to the corner portion 52e2.
  • a plurality of protrusions 61 may be provided on the second side surface 52d so as to extend linearly from the corner portion 52e3 to the corner portion 52e4.
  • a plurality of protrusions 62 are radially spaced apart from each other on the second end surface 52b and are spaced apart from each other by the inner surface 51b of the first flange portion 51. It may be provided so as to be parallel. Specifically, a plurality of protrusions 62 may be provided on the second end surface 52b so as to extend linearly from the corner portion 52e2 to the corner portion 52e3. In the configuration shown in FIG. 13, the protrusion 62 is provided so as to continuously extend from the corner portion 52e1 to the corner portion 52e3.
  • a plurality of protrusions 63 may be provided on the first end surface 52a at intervals Z in the radial direction.
  • the protrusion 63 may be provided on the first end surface 52b so as to extend linearly from the corner portion 52e4 to the corner portion 52e1.
  • the plurality of protrusions 63 provided on the first end surface 52a are inclined at a cross angle ⁇ with respect to the direction orthogonal to the radial direction and are spaced apart from each other by a distance Z in the radial direction. Are provided respectively.
  • the same effect as that of the first embodiment can be obtained.
  • the winding position of the conductive wire 41 can be reliably determined and the conductive wire 41 can be stabilized. It can be rolled into a line.
  • the protrusions 64 provided on the first and second end faces 52a, 52b and the first and second side faces 52c, 52d are respectively extended in the extending direction. You may comprise so that it may become discontinuous.
  • the plurality of protrusions 64 are provided on the first side surface 52c and the second side surface 52d at intervals in the radial direction and the axial direction, respectively.
  • a plurality of protrusions 64 are provided on the second end surface 52b at intervals in the radial direction and the circumferential direction.
  • a plurality of protrusions 64 are provided on the first end surface 52a at intervals in the radial direction and the circumferential direction, respectively.
  • the interval between the protrusions 64 provided on each of the surfaces 52a to 52d in the radial direction is the above-mentioned interval Z.
  • the insulator 50 shown in FIG. 15 is applied to the stator 100, the same effect as that of the first embodiment can be obtained.
  • the shape of the protrusion 64 shown in FIG. 15 may be applied to the configurations shown in FIGS. 12 and 13.
  • FIG. 16 shows a schematic diagram of the insulator according to the present embodiment
  • FIG. 17 shows a schematic diagram of a main part of the stator as seen from the axial upper side. Note that, in FIG. 16, an enlarged view of a portion surrounded by a broken line is also shown. Further, in FIG. 16, the same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. Further, in FIG. 17, only the first-layer conductive wire 411 among the conductive wires 41 is shown.
  • the protrusion 60 provided on the corner 52e1 between the first end face 52a and the first side face 52c and the protrusion 60 provided on the corner 52e2 between the first side face 52c and the second end face 52b Means that the second surfaces 60b provided on each of them face inward in the radial direction.
  • the protrusion 60 provided at the corner portion 52e1 between the first end face 52a and the first side face 52c has the second face 60b facing inward in the radial direction.
  • the second surface 60b of the projection 60 provided on the corner portion 52e2 between the first side surface 52c and the second end surface 52b is oriented radially outward. That is, in the former projection 60 and the latter projection 60, the second surfaces 60b provided on the projections 60 face in opposite directions.
  • the cross portion 4i can be provided not only on the first end surface 52a but also on the second end surface 52b. That is, the conductive wire 41 is also rewound from the j-th layer (j is an integer, 1 ⁇ j ⁇ n ⁇ 1) to the (j+1)-th layer on the second end face 52b, and the cross portion 4i is also on the second end face 52b. It is provided. As a result, the degree of freedom in designing the stator 100 and thus the motor 1000 can be improved.
  • the first-layer conductive wire 411 may be wound on the second end surface 52b so as to form a cross angle ⁇ with respect to the direction orthogonal to the radial direction. ..
  • FIG. 18A is a schematic sectional view of a main part of a stator according to the present embodiment
  • FIG. 18B is a schematic sectional view of a main part of a stator for comparison.
  • the protrusion 60 is not shown for convenience of description.
  • the same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the k-th winding of the first-layer conductive wire 411 (k is the number of windings of the first-layer conductive wire 411) is arranged at the radially inner end of the conductive-wire winding portion 52.
  • a step 52f having a predetermined height is provided in a portion to be cut.
  • the step 52f is provided continuously to the surface of the conductive wire winding portion 52, that is, on both the first and second end surfaces 52a and 52b and the first and second side surfaces 52c and 5d. Further, the conductor wire 411 of the first layer is not wound around the step 52f.
  • the conductor 41 through which the leakage magnetic flux passes that is, the portion corresponding to the k-th winding located on the radially inner side of the conductor 411 of the first layer is predetermined.
  • the conductor wire 411 of the first layer is prevented from being wound around the portion.
  • the step 52f may be provided across the (k ⁇ 1)th turn and the kth turn of the first-layer conductor wire 411. Further, the step 52f may be provided so as to extend to a portion where the first winding of the second layer conductive wire 412 is to be wound.
  • the height and the radial length of the step 52f can be appropriately changed depending on the balance between the reduction degree of the eddy current flowing through the conductor 41 and the reduction of the space factor of the coil 40.
  • the conductor wire winding portion 52 is arranged so that the conductor wire 41 contacts the inner surface 51b of the first collar portion 51. It is preferable to abut.
  • FIG. 19A shows a schematic sectional view of a main part of a stator according to the present embodiment
  • FIG. 19B shows a schematic sectional view of a main part of a stator for comparison. Note that, for convenience of description, the projection 60 is omitted in FIGS. 19A and 19B. Further, the same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the conductor wire 41 wound around one insulator 50 and the conductor wire 41 wound around the other insulator 50 have symmetrical shapes. Each is wound so that.
  • the space factor of the coil 40 can be increased by forming each conductive wire 41 into the winding shape shown in FIG. 19A. This will be further described.
  • the coils 40 adjacent to each other in the circumferential direction face each other.
  • the conductive wire 41 is wound so that the planes are symmetrical.
  • the coils 40 adjacent to each other in the circumferential direction and the coils 40 are mounted in the circumferential direction in order to suppress interference between the coils 40 and to secure an insulation distance between them. It is necessary to arrange the teeth 10 to be spaced apart by a predetermined value or more.
  • the gap may become too large and the non-effective space not occupied by the conductive wire 41 in the slot 30 may increase.
  • the insulating shape of the coils 40 adjacent to each other in the circumferential direction is ensured by making the winding shapes of the conductor wires 41 wound around the insulators 50 adjacent to each other in the circumferential direction asymmetric.
  • the non-effective space can be reduced and the space factor of the coil 40 can be increased.
  • the 1st turn of each conductor wire 41 (l is an integer, 1 ⁇ l ⁇ k; k is the number of turns of the first-layer conductor wire).
  • the degree of reduction of the non-effective space can be further increased and the degree of freedom in designing the coil 40 can be improved.
  • the conducting wire 41 located on the right side of the paper surface has the third winding of 6 layers.
  • the winding shape of the conductive wire 41 is not particularly limited to this, and may be appropriately changed depending on the size of the coil 40, the number of layers of the conductive wire 41, the number of windings, and the like.
  • a heat radiating material 70 for radiating the heat generated in the conductive wire 41 to the outside may be filled between the conductive wires 41 adjacent to each other in the radial direction.
  • the stator 100 By configuring the stator 100 in this way, the temperature rise of the stator 100 can be suppressed and the efficiency of the motor 1000 can be improved.
  • the work rotating method is used to wind the conductor wire 41 around the insulator 50, but the winding method of the coil 7 is not particularly limited.
  • the holding base 2100 may be fixed, and the conductor 41 may be wound around the insulator 50 by a so-called conducting wire rotation method in which the nozzle 2200 moves around the holding base 2100.
  • the yoke 20 does not have to have a configuration in which the split yokes 21 are connected in the circumferential direction. May be.
  • the plurality of teeth 10 may be connected to the inner circumference of the yoke 20 after the yoke 20 is formed in an annular shape.
  • the insulator 50 may be a so-called split type insulator that is mounted from above and below in the axial direction of the tooth 10, or may be an integral structure that covers the entire outer peripheral surface of the tooth 10.
  • the coil 40 may be composed of the conductor wire 41 wound in one layer. Also in this case, the conductor wire 41 is wound in a line around each of the plurality of insulators 50.
  • the cross-sectional shape of the conductor wire 41 may be a quadrangle as shown in FIGS. 6(a) and 6(b), or a quadrangle with chamfered four corners as shown in FIG. 6(c). Further, the cross-sectional shape of the conductive wire 41 is not particularly limited to the shape shown in FIG. 6, and for example, the side X may be longer than the side Y.
  • the tooth 10 may have different cross-sectional shapes at the axial end and the axial center.
  • the cross-sectional shape of the tooth 10 is continuously or stepwise changed so that the width in the direction orthogonal to the radial direction is narrower at the both ends of the axial end, or at the upper end or the lower end, than at the center. May be.
  • the inner peripheral surface of the conductive wire winding portion 52 of the insulator 50 may be deformed in accordance with the change in the cross-sectional shape of the tooth 10.
  • stator of the present invention can increase the space factor of the coil, it is particularly useful when applied to a motor that requires high efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

A stator 100 includes a plurality of teeth 10 arranged on a yoke 20, insulators 50 mounted on the respective teeth 10, and a coil 40 that is configured by a conducting wire 41 having a rectangular cross section and is wound around the insulators 50. Each of the insulators 50 includes a conducting wire winding portion 52, and a first flange portion 51 and a second flange portion 53 at both ends of the conducting wire winding portion 52. A plurality of protrusions 60 are provided on corner portions 52e1 to 52e4 of the conducting wire winding portion 52. Each of the protrusions 60 has a first surface 50a facing the first flange portion 51 and a second surface 60b which faces the second flange portion 53 and is a convex curved surface.

Description

ステータ及びそれを用いたモータStator and motor using the same
 本発明は、ステータ、特に断面が矩形状の導線が巻回されるステータ及びそれを用いたモータに関する。 The present invention relates to a stator, particularly a stator around which a conductor wire having a rectangular cross section is wound, and a motor using the stator.
 近年、産業、車載用途でモータの需要は高まっている。その中で、モータの効率向上が要望されており、ステータのスロット内に配置されるコイルの占積率向上がモータの効率向上のために有効であることが知られている。コイルの占積率を向上させることで、モータの駆動時に、コイルに流れる電流に起因する損失を抑制できる。 Demand for motors has increased in recent years in industrial and vehicle applications. Among them, there is a demand for improving the efficiency of the motor, and it is known that improving the space factor of the coil arranged in the slot of the stator is effective for improving the efficiency of the motor. By increasing the space factor of the coil, it is possible to suppress the loss caused by the current flowing through the coil when the motor is driven.
 従来、断面が矩形状の導線、いわゆる平角線を用いてコイルを構成したり、導線が巻回されるインシュレータの表面に導線を案内、保持ずる溝を設けたりすることで、スロット内でのコイルの占積率を向上する技術が知られている(例えば、特許文献1~5参照)。 Conventionally, by forming a coil using a conductor wire having a rectangular cross section, that is, a rectangular wire, or providing a groove for guiding and holding the conductor wire on the surface of an insulator around which the conductor wire is wound, the coil in the slot is formed. There are known techniques for improving the space factor of (see, for example, Patent Documents 1 to 5).
特開2000-350420号公報Japanese Patent Laid-Open No. 2000-350420 特開2007-267492号公報JP, 2007-267492, A 特開2017-169310号公報JP, 2017-169310, A 特許第4271495号公報Japanese Patent No. 4271495 特許第5252807号公報Patent No. 5252807
 ところで、モータの出力を高めるために、インシュレータの表面から順次積み上げるように導線を巻回してコイルが構成される、いわゆる多層巻きのコイルが多く用いられている。 By the way, in order to increase the output of the motor, a so-called multi-layered coil is often used in which a coil is formed by winding conductive wires so as to be sequentially stacked from the surface of the insulator.
 しかし、導線を多層巻きする場合、例えば、1層目の導線から2層目の導線への巻き替わり部分で膨らみが生じて導線の巻き乱れを起こしやすい。特に、平角線を用いて多層巻きのコイルを構成する場合、1層目の導線と2層目の導線とは平面同士が当接してインシュレータに巻回されるため、当接面で導線がすべりやすくなり、上記の巻き乱れがより起こりやすくなる。 However, when conducting wires in multiple layers, for example, a bulge is likely to occur at the rewinding part from the conducting wire of the first layer to the conducting wire of the second layer, and the winding disorder of the conducting wire is likely to occur. In particular, when a coil of a multi-layer winding is formed by using a rectangular wire, the conductor wires of the first layer and the conductor wire of the second layer are wound around the insulator with their flat surfaces abutting each other, so that the conductor wire slips on the contact surface. It becomes easier and the above winding disorder becomes more likely to occur.
 このように、導線の巻き乱れが生じると、コイルの占積率が低下してしまい、モータの効率を十分に高めることができなかった。  In this way, if winding of the conducting wire is disturbed, the space factor of the coil will decrease, and it was not possible to sufficiently improve the efficiency of the motor.
 本発明はかかる点に鑑みてなされたもので、その目的は、導線の巻き替わり部分での巻き乱れを抑制し、コイルの占積率を高めたステータ及びそれを用いたモータを提供することにある。 The present invention has been made in view of the above points, and an object thereof is to provide a stator that suppresses winding disorder at the rewound portion of a conductive wire and that has a high space factor of a coil, and a motor using the same. is there.
 上記目的を達成するために、本発明に係るステータは、環状のヨークと、前記ヨークの周方向に所定の間隔をあけて配設されるとともに、前記ヨークの内周から前記ヨークの径方向に延びる複数のティースと、複数のティースのそれぞれに装着される複数のインシュレータと、断面が矩形状の導線で構成され、複数のインシュレータのそれぞれに巻回される複数のコイルと、を備えたステータであって、前記インシュレータは、前記導線が巻回される筒状の導線巻回部と、前記導線巻回部の一端に設けられ、前記導線を前記導線巻回部に案内する導線案内溝を有する第1鍔部と、前記導線巻回部の他端に設けられた第2鍔部と、を有し、前記導線巻回部は、前記導線案内溝の底面に連続する第1端面及び前記第1端面と前記ステータの軸方向で互いに対向する第2端面と、前記第1端面の周方向端辺から前記第2端面の周方向端辺にかけて設けられ、前記周方向で互いに対向する第1側面及び第2側面と、前記導線巻回部のコーナー部に少なくとも設けられ、前記径方向と直交する方向に対して所定の角度をなすように前記導線を前記第1端面に巻回させるための複数の突起と、を有し、前記複数の突起は、前記径方向に互いに所定の間隔をあけて設けられ、前記突起は、前記第1鍔部に対向する第1面と前記第2鍔部に対向する第2面とを有し、前記第1面及び前記第2面の少なくとも一方は、凸状の曲面を有することを特徴とする。 In order to achieve the above object, a stator according to the present invention is provided with an annular yoke and a predetermined gap in the circumferential direction of the yoke, and from the inner circumference of the yoke in the radial direction of the yoke. A stator including a plurality of teeth, a plurality of insulators mounted on each of the plurality of teeth, and a plurality of coils each having a rectangular cross section and wound around each of the plurality of insulators. Then, the insulator has a tubular wire winding portion around which the wire is wound, and a wire guide groove that is provided at one end of the wire winding portion and that guides the wire to the wire winding portion. A first flange portion and a second flange portion provided at the other end of the conductor winding portion, wherein the conductor winding portion has a first end surface continuous with a bottom surface of the conductor guide groove and the first end surface. A first end surface and a second end surface that faces each other in the axial direction of the stator; and a first side surface that is provided from a circumferential edge of the first end surface to a circumferential edge of the second end surface and that faces each other in the circumferential direction. And a plurality of second side surfaces and at least a corner portion of the conductive wire winding portion for winding the conductive wire around the first end surface so as to form a predetermined angle with respect to a direction orthogonal to the radial direction. The plurality of protrusions are provided at a predetermined distance from each other in the radial direction, and the protrusions are provided on the first surface and the second collar portion facing the first collar portion. And a second surface facing each other, and at least one of the first surface and the second surface has a convex curved surface.
 この構成によれば、断面が矩形状の導線をインシュレータに安定して整列巻きかつ多層巻きすることができる。 According to this configuration, the conductor wire having a rectangular cross section can be stably wound in an aligned and multi-layered manner on the insulator.
 また、本発明に係るモータは、前記ステータと、前記ステータと所定の間隔をあけて設けられたロータと、を少なくとも備えたことを特徴とする。 The motor according to the present invention is characterized by at least including the stator and a rotor provided at a predetermined distance from the stator.
 この構成によれば、導線がインシュレータに整列巻きかつ多層巻きされることにより、コイルの占積率を高めることができ、高効率のモータを実現できる。 According to this configuration, the conductor wire is wound around the insulator in a line and in multiple layers, so that the space factor of the coil can be increased and a highly efficient motor can be realized.
 本発明のステータによれば、断面が矩形状の導線をインシュレータに安定して整列巻きかつ多層巻きすることができる。また、本発明のモータによれば、コイルの占積率を高めることができ、高効率のモータを実現できる。 According to the stator of the present invention, a conductor wire having a rectangular cross section can be stably wound in an aligned and multi-layered manner on an insulator. Further, according to the motor of the present invention, the space factor of the coil can be increased and a highly efficient motor can be realized.
図1は、本発明の実施形態1に係るモータの断面図である。FIG. 1 is a sectional view of a motor according to the first embodiment of the present invention. 図2は、インシュレータの模式図である。FIG. 2 is a schematic diagram of the insulator. 図3は、ステータの要部の模式図である。FIG. 3 is a schematic view of a main part of the stator. 図4は、軸方向上側から見たステータの要部の模式図である。FIG. 4 is a schematic view of a main part of the stator viewed from the upper side in the axial direction. 図5は、図3のV-V線での断面図である。FIG. 5 is a sectional view taken along line VV of FIG. 図6は、径方向に対する導線の傾斜角及び径方向に隣接する導線間距離の関係を説明する模式図である。FIG. 6 is a schematic diagram for explaining the relationship between the inclination angle of the conductor wire with respect to the radial direction and the distance between the conductor wires adjacent in the radial direction. 図7は、スロットの後退角と径方向に対する導線の傾斜角との関係を説明する模式図である。FIG. 7 is a schematic diagram illustrating the relationship between the receding angle of the slot and the inclination angle of the conductor wire with respect to the radial direction. 図8は、導線の巻回設備の構成を示す図である。FIG. 8: is a figure which shows the structure of the winding equipment of a conducting wire. 図9は、導線がインシュレータに巻回される過程を示す工程説明図である。FIG. 9 is a process explanatory view showing a process in which the conductor wire is wound around the insulator. 図10Aは、突起を設けない場合の導線巻回部上の導線の配置を示す模式図である。FIG. 10A is a schematic diagram showing an arrangement of conductors on a conductor winding portion when a protrusion is not provided. 図10Bは、突起を設けた場合の導線巻回部上の導線の配置を示す模式図である。FIG. 10B is a schematic diagram showing an arrangement of conductors on a conductor winding portion when a protrusion is provided. 図11は、別のインシュレータの模式図である。FIG. 11 is a schematic view of another insulator. 図12は、変形例に係る第1のインシュレータの模式図である。FIG. 12 is a schematic diagram of the first insulator according to the modification. 図13は、変形例に係る第2のインシュレータの模式図である。FIG. 13 is a schematic diagram of the second insulator according to the modification. 図14は、変形例に係る第3のインシュレータの模式図である。FIG. 14 is a schematic diagram of a third insulator according to the modification. 図15は、変形例に係る第4のインシュレータの模式図である。FIG. 15 is a schematic diagram of a fourth insulator according to the modification. 図16は、本発明の実施形態2に係るインシュレータの模式図である。FIG. 16 is a schematic diagram of an insulator according to the second embodiment of the present invention. 図17は、軸方向下側から見たステータの要部の模式図である。FIG. 17 is a schematic view of a main part of the stator viewed from the lower side in the axial direction. 図18Aは、本発明の実施形態3に係るステータの要部の断面模式図である。FIG. 18A is a schematic sectional view of an essential part of the stator according to the third embodiment of the present invention. 図18Bは、比較のためのステータの要部の断面模式図である。FIG. 18B is a schematic sectional view of a main part of a stator for comparison. 図19Aは、本発明の実施形態4に係るステータの要部の断面模式図である。FIG. 19A is a schematic sectional view of an essential part of the stator according to the fourth embodiment of the present invention. 図19Bは、比較のためのステータの要部の断面模式図である。FIG. 19B is a schematic sectional view of a main part of a stator for comparison. 図20は、放熱材を充填したステータの要部の断面模式図である。FIG. 20 is a schematic cross-sectional view of a main part of a stator filled with a heat dissipation material.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでは全くない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The description of the preferred embodiments below is merely exemplary in nature and is in no way intended to limit the invention, its applications, or its uses.
 (実施形態1)
 [モータの構成]
 図1は、本実施形態に係るモータの断面図を示す。なお、以降の説明において、モータ1000及びステータ100の半径方向を「径方向」と、外周方向を「周方向」と、モータ1000の出力軸210の延びる方向(図1における紙面と垂直な方向)を「軸方向」とそれぞれ呼ぶことがある。また、出力軸210は、ステータ100の中心軸にほぼ一致するため、ステータ100の中心軸の延びる方向を「軸方向」と呼ぶことがある。また、径方向において、ステータ100の中心側を径方向内側と、外周側を径方向外側と呼ぶことがある。
(Embodiment 1)
[Motor configuration]
FIG. 1 shows a cross-sectional view of the motor according to this embodiment. In the following description, the radial direction of the motor 1000 and the stator 100 is the “radial direction”, the outer peripheral direction is the “circumferential direction”, and the direction in which the output shaft 210 of the motor 1000 extends (direction perpendicular to the plane of FIG. 1). May be referred to as "axial direction". Further, since the output shaft 210 substantially coincides with the central axis of the stator 100, the direction in which the central axis of the stator 100 extends may be referred to as the “axial direction”. In the radial direction, the center side of the stator 100 may be referred to as the inner side in the radial direction, and the outer peripheral side may be referred to as the outer side in the radial direction.
 モータ1000は、ステータ100とロータ200とを有している。なお、モータ1000は、これら以外の構成部品、例えば、モータケースや出力軸210を軸支する軸受等の部品を有しているが、説明の便宜上、その図示及び説明を省略する。モータ1000は、いわゆるインナーロータ型のモータであるが特にこれに限定されず、アウターロータ型のモータであってもよい。 The motor 1000 has a stator 100 and a rotor 200. Although the motor 1000 has components other than these, for example, components such as a motor case and a bearing that supports the output shaft 210, illustration and description thereof will be omitted for convenience of description. The motor 1000 is a so-called inner rotor type motor, but is not particularly limited to this and may be an outer rotor type motor.
 ステータ100は、円環状のヨーク20と、ヨーク20の内周に接続され、当該内周に沿って等間隔に設けられた複数のティース10と、複数のティース10のそれぞれに装着された複数のインシュレータ50(図2参照)と、周方向に隣り合うティース10の間の空間として構成される複数のスロット30と、複数のスロット30内にそれぞれ収容された複数のコイル40とを有しており、ロータ200の径方向外側に、ロータ200と一定の間隔をあけて配置されている。 The stator 100 includes an annular yoke 20, a plurality of teeth 10 connected to the inner circumference of the yoke 20 and provided at equal intervals along the inner circumference, and a plurality of teeth mounted on each of the plurality of teeth 10. It has an insulator 50 (see FIG. 2), a plurality of slots 30 configured as a space between the teeth 10 adjacent in the circumferential direction, and a plurality of coils 40 housed in the plurality of slots 30. The rotor 200 is arranged on the outer side in the radial direction with a certain distance from the rotor 200.
 なお、以降の説明において、単数であることを意味する場合はトゥース(Tooth)10と呼び、複数であることを意味する場合はティース(Teeth)10と呼ぶこととする。また、単数、複数いずれでもよい場合は、ティース10と呼ぶこととする。 Note that, in the following description, when it means a singular number, it is referred to as Tooth 10, and when it means a plurality, it is referred to as Teeth 10. Further, in the case where either one or a plurality of numbers may be used, they are referred to as teeth 10.
 ティース10は、例えば、ケイ素等を含有した電磁鋼板を積層後に打ち抜き加工して形成される。ヨーク20は、複数の分割ヨーク21を周方向に接続してなる円環状の部材である。分割ヨーク21は、ティース10と同様に、電磁鋼板を積層後に打ち抜き加工して形成される。分割ヨーク21のそれぞれにトゥース10が配設されている。 The teeth 10 are formed, for example, by stacking electromagnetic steel plates containing silicon and the like and then punching them. The yoke 20 is an annular member formed by connecting a plurality of split yokes 21 in the circumferential direction. Similar to the teeth 10, the split yoke 21 is formed by stacking electromagnetic steel plates and punching them. The tooth 10 is provided in each of the split yokes 21.
 コイル40は、断面が矩形状の導線41(図3参照)が巻回されてなる部品であり、コイル40は、インシュレータ50を挟んでトゥース10に装着されて、スロット30内に収容されている。インシュレータ50はトゥース10及び分割ヨーク21に装着された絶縁材料からなる部品であり、コイル40とティース10及びヨーク20とを電気的に分離している。インシュレータ50の構造については後で詳述する。なお、本実施形態では、コイル40に流れる電流の位相に応じて、コイル40をコイルU1~U4,V1~V4,W1~W4とそれぞれ呼ぶことがある。また、コイル40を構成する導線41はトゥース10に装着されたインシュレータ50に対して整列巻きかつ多層巻きされている(図3参照)。 The coil 40 is a component formed by winding a conductor wire 41 (see FIG. 3) having a rectangular cross section, and the coil 40 is mounted on the tooth 10 with the insulator 50 sandwiched therebetween and is housed in the slot 30. .. The insulator 50 is a component made of an insulating material attached to the tooth 10 and the split yoke 21, and electrically separates the coil 40 from the tooth 10 and the yoke 20. The structure of the insulator 50 will be described in detail later. In the present embodiment, the coil 40 may be referred to as coils U1 to U4, V1 to V4, and W1 to W4 depending on the phase of the current flowing through the coil 40. In addition, the conductive wire 41 that constitutes the coil 40 is aligned and wound in multiple layers around the insulator 50 mounted on the tooth 10 (see FIG. 3 ).
 ロータ200は、軸心に配置された出力軸210と、ステータ100に対向してN極、S極が出力軸210の外周方向に沿って交互に配置された磁石220とを有している。なお、磁石220の材料や形状や材質については、モータ1000の出力等に応じて適宜変更しうる。 The rotor 200 has an output shaft 210 arranged at the shaft center and magnets 220 facing the stator 100 and having N poles and S poles alternately arranged along the outer peripheral direction of the output shaft 210. The material, shape, and material of the magnet 220 can be appropriately changed according to the output of the motor 1000 and the like.
 コイルU1~U4,V1~V4,W1~W4はそれぞれ直列に接続されており、互いに電気角で120°の位相差を有するU,V,W相の3相の電流がそれぞれコイルU1~U4,V1~V4,W1~W4に供給されて励磁され、ステータ100に回転磁界が発生する。この回転磁界と、ロータ200に設けられた磁石220が発生する磁界とが相互作用して、ロータ200にトルクが発生し、出力軸210が図示しない軸受に支持されて回転する。 The coils U1 to U4, V1 to V4, and W1 to W4 are connected in series, respectively, and three-phase currents of U, V, and W phases having a phase difference of 120° in electrical angle are respectively generated in the coils U1 to U4. The rotating magnetic field is generated in the stator 100 by being supplied to and excited by V1 to V4 and W1 to W4. This rotating magnetic field interacts with the magnetic field generated by the magnet 220 provided in the rotor 200 to generate torque in the rotor 200, and the output shaft 210 is supported and rotated by a bearing (not shown).
 [インシュレータの構成]
 図2は、本実施形態に係るインシュレータの模式図を示す。なお、説明の便宜上、インシュレータ50の形状を簡略化して図示している。また、図2において、破線で囲まれた部分の拡大図をあわせて図示している。また、図2において、導線41が1層巻回された後の形状を一点鎖線で示している。
[Insulator configuration]
FIG. 2 shows a schematic diagram of the insulator according to the present embodiment. For convenience of explanation, the shape of the insulator 50 is shown in a simplified form. Further, in FIG. 2, an enlarged view of a portion surrounded by a broken line is also shown. Further, in FIG. 2, the shape of the conducting wire 41 after being wound one layer is shown by a dashed line.
 図2に示すように、インシュレータ50は、導線41が巻回される導線巻回部52と、導線巻回部52の径方向外側端部に設けられ、導線案内溝51aを有する第1鍔部51と、導線巻回部52の径方向内側端部に設けられた第2鍔部53とを有している。 As shown in FIG. 2, the insulator 50 includes a conductive wire winding portion 52 around which the conductive wire 41 is wound, and a first flange portion provided at a radially outer end of the conductive wire winding portion 52 and having a conductive wire guide groove 51a. It has 51 and the 2nd collar part 53 provided in the radial inside end of the conducting wire winding part 52.
 導線41は、導線案内溝51aを通って、導線巻回部52に案内される。なお、導線案内溝51aの形状は、図2に示す形状に限定されず、例えば、径方向に関して斜めに傾斜した形状(図4参照)であってもよい。後者の方が、導線41の案内角δ(図4参照)を小さくでき、導線41の巻き乱れを抑制しやすい。なお、第1鍔部51が分割ヨーク21の一部を覆うように、インシュレータ50がトゥース10に装着されている。 The conductor wire 41 is guided to the conductor wire winding portion 52 through the conductor wire guide groove 51a. The shape of the wire guide groove 51a is not limited to the shape shown in FIG. 2, and may be, for example, a shape inclined with respect to the radial direction (see FIG. 4). In the latter case, the guide angle δ of the conductive wire 41 (see FIG. 4) can be made smaller, and winding disorder of the conductive wire 41 can be suppressed more easily. The insulator 50 is attached to the tooth 10 so that the first flange portion 51 covers a part of the split yoke 21.
 導線巻回部52は、断面視で角筒状であり、導線案内溝51aの底面に連続する第1端面52aと第1端面52aと軸方向で互いに対向する第2端面52bと、を有している。さらに、導線巻回部52は、第1端面52aの周方向一端辺から第2端面52bの周方向一端辺にかけて、軸方向に延びるように設けられた第1側面52cと、第1端面52aの周方向他端辺から第2端面52bの周方向他端辺にかけて、軸方向に延びるように設けられた第2側面52d(図3参照)とを有している。第1側面52c及び第2側面52dは周方向で互いに対向している。 The conductor winding portion 52 has a rectangular tubular shape in a cross-sectional view, and has a first end face 52a continuous with the bottom surface of the conductor guide groove 51a, a first end face 52a, and a second end face 52b axially opposed to each other. ing. Further, the conductive wire winding portion 52 includes a first side surface 52c provided so as to extend in the axial direction from one end side in the circumferential direction of the first end surface 52a to one end side in the circumferential direction of the second end surface 52b, and the first end surface 52a. The second side surface 52d (see FIG. 3) is provided so as to extend in the axial direction from the other end side in the circumferential direction to the other end side in the circumferential direction of the second end face 52b. The first side surface 52c and the second side surface 52d face each other in the circumferential direction.
 また、導線巻回部52は、4つのコーナー部52e1~52e4を有している。4つのコーナー部52e1~52e4は、第1端面52aと第1側面52cとの間に位置する第1コーナー部52e1と、第1側面52cと第2端面52bとの間に位置する第2コーナー部52e2と、第2端面52bと第2側面52dとの間に位置する第3コーナー部52e3と、第2側面52dと第1端面52aとの間に位置する第4コーナー部52e4と、からなる。 Also, the conducting wire winding part 52 has four corner parts 52e1 to 52e4. The four corner portions 52e1 to 52e4 are the first corner portion 52e1 located between the first end surface 52a and the first side surface 52c, and the second corner portion located between the first side surface 52c and the second end surface 52b. 52e2, a third corner portion 52e3 located between the second end surface 52b and the second side surface 52d, and a fourth corner portion 52e4 located between the second side surface 52d and the first end surface 52a.
 また、4つのコーナー部52e1~52e4のそれぞれに複数の突起60が設けられている。突起60は各コーナー部52e1~52e4からそれぞれ隣接する面にかかるように延びて設けられている。例えば、第1コーナー部52e1に設けられた突起60は、第1端面52a及び第1側面52cにそれぞれかかるように設けられ、第3コーナー部52e3に設けられた突起60は、第2端面52b及び第2側面52dにそれぞれかかるように設けられている。また、各コーナー部52e1~52e4にそれぞれ設けられた複数の突起60は径方向に互いに間隔Zをあけて設けられている。 Also, a plurality of protrusions 60 are provided on each of the four corner portions 52e1 to 52e4. The protrusion 60 is provided so as to extend from each of the corner portions 52e1 to 52e4 so as to cover the adjacent surface. For example, the projection 60 provided on the first corner portion 52e1 is provided so as to cover the first end surface 52a and the first side surface 52c, respectively, and the projection 60 provided on the third corner portion 52e3 includes the second end surface 52b and the second end surface 52b. The second side surfaces 52d are provided so as to overlap with each other. The plurality of protrusions 60 provided on each of the corner portions 52e1 to 52e4 are provided at intervals Z in the radial direction.
 突起60は、第1鍔部51に対向する第1面60aと、第2鍔部53に対向する第2面60bとを有しており、第1面60aがフラットな平面であるのに対し、第2面60bは径方向内側に向かって凸状の曲面となっている。 The projection 60 has a first surface 60a that faces the first flange portion 51 and a second surface 60b that faces the second flange portion 53, whereas the first surface 60a is a flat plane. The second surface 60b is a curved surface that is convex inward in the radial direction.
 [ステータの要部の構成]
 図3は、本実施形態に係るステータの要部の模式図を示し、(a)図は、軸方向上側から見た斜視図を、(b)図は、軸方向下側から見た斜視図をそれぞれ示している。図4は、軸方向上側から見たステータの要部の模式図を、図5は、図3のV-V線での断面図をそれぞれ示す。
[Structure of essential parts of stator]
3A and 3B are schematic views of a main part of the stator according to the present embodiment. FIG. 3A is a perspective view seen from the upper side in the axial direction, and FIG. 3B is a perspective view seen from the lower side in the axial direction. Are shown respectively. FIG. 4 is a schematic view of a main part of the stator as seen from the upper side in the axial direction, and FIG. 5 is a sectional view taken along line VV of FIG.
 なお、説明の便宜上、図3において、導線41は導線巻回部52に3層目の途中まで巻回された状態を、図4において、導線41は導線巻回部52に1層目の途中まで巻回された状態をそれぞれ示している。さらに、説明の便宜上、図4において、軸方向から見て、導線案内溝51aを、径方向と直交する方向に対して案内角δで傾斜した形状としている。 For convenience of explanation, in FIG. 3, the conductive wire 41 is wound around the conductive wire winding portion 52 to the middle of the third layer, and in FIG. 4, the conductive wire 41 is wound around the conductive wire winding portion 52 in the middle of the first layer. The state of being wound up is shown respectively. Further, for convenience of description, in FIG. 4, the conductor wire guide groove 51a has a shape inclined at a guide angle δ with respect to a direction orthogonal to the radial direction when viewed in the axial direction.
 また、図5において、突起60の図示を省略している。なお、突起60も含めた断面形状は、後述する図10Bに示している。また、図5に示す矢印は導線41の各層における巻回順を示している。例えば、1層目の導線411は、第1鍔部51から第2鍔部53に向かって巻回され、2層目の配線412は、第2鍔部53から第1鍔部51に向かって巻回されている。 Further, in FIG. 5, the projection 60 is omitted. The cross-sectional shape including the protrusion 60 is shown in FIG. 10B described later. The arrows shown in FIG. 5 indicate the winding order in each layer of the conductive wire 41. For example, the first-layer conductive wire 411 is wound from the first flange portion 51 toward the second flange portion 53, and the second-layer wiring 412 is wound from the second flange portion 53 toward the first flange portion 51. It is wound.
 なお、以降の説明において、導線41が導線巻回部52にn層巻き(nは2以上の整数)されている場合、(i-1)層目(iは2以上の整数で、かつi≦n)の導線41からi層目の導線41に巻き替わる部分をクロス部4i(クロス部42,43,・・・,4i)と呼ぶことがある。また、本実施形態において、第1端面52a上にクロス部4iが位置するように導線41は巻回される。また、導線41は、インシュレータ50の導線巻回部52に整列巻きかつ多層巻きされている。 In the following description, when the conductive wire 41 is wound around the conductive wire winding portion 52 in n layers (n is an integer of 2 or more), the (i-1)th layer (i is an integer of 2 or more, and i The portion where the conductor wire 41 of ≦n) is rewound from the conductor wire 41 of the i-th layer may be referred to as a cross portion 4i (cross portions 42, 43,..., 4i). Further, in the present embodiment, the conductive wire 41 is wound so that the cross portion 4i is located on the first end surface 52a. In addition, the conductor wire 41 is aligned and wound around the conductor wire winding portion 52 of the insulator 50.
 図3の(a)図及び図4に示すように、導線案内溝51aから第1端面52aに案内された1層目の導線411は、径方向と直交する方向に対して所定のクロス角ε(図4参照)をなすように第1端面52aに巻回されている。また、導線巻回部52の径方向内側端部で1層目の導線411から巻き替わった2層目の導線412は、クロス角εと異なる角度で第1端面52aに巻回されている。さらに、導線巻回部52の径方向外側端部で2層目の導線412から巻き替わった3層目の導線413は、クロス角εとほぼ同じ角度で第1端面52aに巻回されている。 As shown in FIG. 3A and FIG. 4, the first-layer conductor wire 411 guided from the conductor wire guide groove 51a to the first end surface 52a has a predetermined cross angle ε with respect to the direction orthogonal to the radial direction. It is wound around the first end face 52a so as to form (see FIG. 4). The second-layer conductive wire 412 rewound from the first-layer conductive wire 411 at the radially inner end of the conductive-wire winding portion 52 is wound around the first end surface 52a at an angle different from the cross angle ε. Furthermore, the conductor wire 413 of the third layer, which is rewound from the conductor wire 412 of the second layer at the radially outer end of the conductor wire winding portion 52, is wound around the first end face 52a at an angle substantially equal to the cross angle ε. ..
 一方、図3の(b)図に示すように、第2端面52bと第1側面52cと第2側面52dとにおいて、1層目~3層目の導線411~413ともに、第1鍔部51の径方向内側に位置する端面(以下、第1鍔部51の内面51bという)と互いに平行となるように導線巻回部52に巻回されている。 On the other hand, as shown in FIG. 3B, on the second end face 52b, the first side face 52c, and the second side face 52d, all the lead wires 411 to 413 of the first to third layers are connected to the first flange portion 51. Is wound around the conductor winding portion 52 so as to be parallel to the end surface located on the radially inner side (hereinafter referred to as the inner surface 51b of the first flange portion 51).
 また、1層目の導線411は、各コーナー部52e1~52e4に設けられた複数の突起60によって位置決めされて、導線巻回部52の表面に保持されている(図10A,10B参照)。また、1層目の導線411は、径方向に対して所定の角度θをなすように、導線巻回部52の表面、つまり、第1端面52a、第2端面52b、第1側面52c、第2側面52dのそれぞれに対して傾斜して巻回されている。 The conductor wire 411 of the first layer is positioned by the plurality of protrusions 60 provided on the corner portions 52e1 to 52e4 and is held on the surface of the conductor wire winding portion 52 (see FIGS. 10A and 10B). Further, the first-layer conductive wire 411 is formed on the surface of the conductive wire winding portion 52, that is, the first end surface 52a, the second end surface 52b, the first side surface 52c, and the first side surface 52c so as to form a predetermined angle θ with respect to the radial direction. It is wound so as to be inclined with respect to each of the two side surfaces 52d.
 一方、図5に示すように、2層目以降の導線41は、その直下の層の導線41における端面41bに支持されて整列巻きされている。2層目以降の導線41も1層目の導線411と同様に、径方向に対して所定の角度θをなすように傾斜して、直下の層の導線41に巻回されている。なお、図5において、径方向と角度θをなす導線41の面を平面41aと、平面41aと直交する導線41の面を端面41bと呼び、以降の説明においても同様に呼ぶこととする。 On the other hand, as shown in FIG. 5, the conductor wire 41 of the second and subsequent layers is aligned and wound by being supported by the end face 41b of the conductor wire 41 of the layer immediately below. Similarly to the conductor wire 411 of the first layer, the conductor wires 41 of the second and subsequent layers are also inclined to form a predetermined angle θ with respect to the radial direction and are wound around the conductor wire 41 of the layer immediately below. In FIG. 5, the surface of the conductive wire 41 forming an angle θ with the radial direction is referred to as a flat surface 41a, and the surface of the conductive wire 41 orthogonal to the flat surface 41a is referred to as an end surface 41b, which will also be referred to in the following description.
 図3~図5に示すように、導線41を導線巻回部52に整列巻きかつ多層巻きとするためには、特に1層目の導線411での巻き乱れを防止する必要がある。 As shown in FIGS. 3 to 5, in order to arrange the conductor wire 41 around the conductor wire winding portion 52 in an aligned and multi-layered manner, it is necessary to prevent winding disorder particularly in the first-layer conductor wire 411.
 このことについてさらに説明する。導線案内溝51aから第1端面52aに案内された1層目の導線411は、第1鍔部51の内面51bに押し付けられるように巻回される。このため、図4に示すように、導線案内溝51aの終端部分において、1層目の導線411に径方向内側に膨らむ湾曲部分が形成される。 I will explain this further. The first-layer conductor wire 411 guided from the conductor wire guide groove 51a to the first end surface 52a is wound so as to be pressed against the inner surface 51b of the first flange portion 51. Therefore, as shown in FIG. 4, a curved portion that bulges radially inward is formed in the first-layer conductor wire 411 at the end portion of the conductor wire guide groove 51a.
 湾曲部分の曲率半径をRとするとき、曲率半径Rが小さくなると、導線案内溝51aの終端部分での1層目の導線411の変形量、つまり、径方向内側への膨らみ量が大きくなり、巻き乱れが生じやすくなる。したがって、曲率半径Rをできるだけ大きくする必要がある。 When the radius of curvature R of the curved portion is R, and when the radius of curvature R becomes smaller, the amount of deformation of the first-layer conductor wire 411 at the end portion of the conductor guide groove 51a, that is, the amount of bulging inward in the radial direction increases, Winding is likely to occur. Therefore, it is necessary to make the radius of curvature R as large as possible.
 このため、図4に示す案内角δとクロス角εとが以下の式(1)の関係を満たすように1層目の導線411の巻回角度を設定することで、曲率半径Rを大きくでき、導線41、特に1層目の導線411の巻き乱れを抑制できる。 Therefore, the radius of curvature R can be increased by setting the winding angle of the conductor wire 411 of the first layer so that the guide angle δ and the cross angle ε shown in FIG. 4 satisfy the relationship of the following expression (1). It is possible to suppress winding disorder of the conductive wire 41, especially the conductive wire 411 of the first layer.
 ε≦δ ・・・(1) Ε≦δ (1)
 図6は、径方向に対する導線の傾斜角及び径方向に隣接する導線間距離の関係を説明する模式図を示し、(a)図は径方向に隣接する導線同士が重なり合う場合の理論限界を、(b)図及び(c)図は径方向に隣接する導線の端面同士が一部重なり合う場合をそれぞれ示す。なお、(c)図において、導線41の角部は所定の半径を有する円弧状の断面となっている。 FIG. 6 is a schematic diagram illustrating the relationship between the inclination angle of the conductor wire with respect to the radial direction and the distance between the conductor wires adjacent to each other in the radial direction. FIG. 6A shows the theoretical limit when the conductor wires adjacent to each other in the radial direction overlap each other. Drawings (b) and (c) show the case where the end faces of the conductors adjacent in the radial direction partially overlap each other. In addition, in the figure (c), the corner portion of the conductive wire 41 has an arc-shaped cross section having a predetermined radius.
 また、図7は、スロットの後退角と径方向に対する導線の傾斜角との関係を説明する模式図を示す。なお、説明の便宜上、図6,7において、インシュレータ50については図示を省略している。また、図7において、破線で囲まれた部分の拡大図をあわせて図示している。 Also, FIG. 7 shows a schematic diagram for explaining the relationship between the receding angle of the slot and the inclination angle of the conductor wire with respect to the radial direction. For convenience of description, the insulator 50 is not shown in FIGS. Further, in FIG. 7, an enlarged view of a portion surrounded by a broken line is also shown.
 インシュレータ50に巻回された導線41が径方向で互いに接する場合、図6の(a)図に示すように、径方向に対する導線41の傾斜角θの最大値θmaxは式(2)で表わされる。なお、図6の(a)図~(c)図は、いずれも1層目の導線411を示している。 When the conductor wires 41 wound around the insulator 50 are in contact with each other in the radial direction, the maximum value θmax of the inclination angle θ of the conductor wire 41 with respect to the radial direction is represented by the formula (2), as shown in FIG. 6A. .. 6A to 6C show the first-layer conductive wire 411.
 θmax=tan-1(Y/X) ・・・(2) θmax=tan −1 (Y/X) (2)
 ここで、Xは断面視における導線411の長辺、Yは断面視における導線411の短辺であり、Xは平面41aの一辺に、Yは端面41bの一辺にそれぞれ相当する。 Here, X is the long side of the conducting wire 411 in the cross sectional view, Y is the short side of the conducting wire 411 in the cross sectional view, X corresponds to one side of the flat surface 41a, and Y corresponds to one side of the end surface 41b.
 また、このとき、径方向に隣り合う導線411のピッチZの最大値Zmaxは以下の式(3)で表わされる。なお、このピッチZは、図2に示す突起60間の間隔Zに相当する。 Also, at this time, the maximum value Zmax of the pitch Z between the conductor wires 411 that are adjacent in the radial direction is expressed by the following equation (3). The pitch Z corresponds to the interval Z between the protrusions 60 shown in FIG.
 Zmax=X/cos(θmax) ・・・(3) Zmax=X/cos(θmax) (3)
 一方、図6の(b)、(c)図に示すように、導線411が互いの短辺同士が所定の長さで重なるように接する場合は、上記の傾斜角θは以下の式(4)で表わされ、ピッチZは式(5)で表わされる。 On the other hand, as shown in FIGS. 6B and 6C, when the conducting wires 411 are in contact with each other such that their short sides overlap each other with a predetermined length, the above inclination angle θ is calculated by the following equation (4). ) And the pitch Z is expressed by the equation (5).
 θ=θmax×α=tan-1(Y/X)(100-α) ・・・(4)
 Z=Zmax×β=(X/cosθ)×(β/100) ・・・(5)
θ=θmax×α=tan −1 (Y/X) (100−α) (4)
Z=Zmax×β=(X/cos θ)×(β/100) (5)
 ここで、変数αは導線41の短辺同士の重なり度合い(%)であり、変数βはピッチZの裕度(%)である。変数α、βは、それぞれ導線41の断面形状や、導線41における図示しない表面絶縁皮膜の材質、状態等により適宜変更されうる。また、変数α、βはそれぞれ、式(6)、(7)で表わされる範囲で変化しうる。 Here, the variable α is the degree of overlap (%) between the short sides of the conductor 41, and the variable β is the margin (%) of the pitch Z. The variables α and β can be appropriately changed depending on the cross-sectional shape of the conductive wire 41, the material and state of the surface insulating film (not shown) of the conductive wire 41, and the like. Further, the variables α and β can change within the ranges represented by the expressions (6) and (7), respectively.
 0<α(%)<100 ・・・(6)
 β(%)>100 ・・・(7)
0<α(%)<100 (6)
β (%)>100 (7)
 なお、互いの短辺同士が互いに重なるように導線41が接する場合、導線41が安定して導線巻回部52に保持されるためには、変数αは20%程度かそれ以上であるのが好ましい。同様に、変数βは103%程度であるのが好ましい。 When the conductors 41 are in contact with each other such that their short sides overlap each other, the variable α is about 20% or more in order to stably hold the conductors 41 on the conductor winding portion 52. preferable. Similarly, the variable β is preferably about 103%.
 なお、図6では、1層目の導線411が径方向で接する場合を示したが、式(2)~(7)に示す関係は、それ以外の場合、例えば、1層目の導線411と2層目の導線412とが互いの短辺同士が一部重なり合うように径方向で接している場合や、2層目の導線412と3層目の導線413とが互いの短辺同士が一部重なり合うように径方向で接している場合にも、当然に成立する。 Although FIG. 6 shows the case where the first-layer conductive wire 411 is in contact with each other in the radial direction, the relationships shown in the formulas (2) to (7) are otherwise applicable to, for example, the first-layer conductive wire 411. When the conductor wire 412 of the second layer is in radial contact with each other so that the short sides thereof partially overlap each other, or the conductor wire 412 of the second layer and the conductor wire 413 of the third layer have mutually short sides. Naturally, it is also true when they are in radial contact with each other so that they overlap.
 また、図7中に一点鎖線で示しているのは、従来の巻回手順で巻回された導線41の配置であり、傾斜角θを付けず導線巻回部52に導線41が巻回された場合に相当する。この場合は、コイル40の最上層で導線41が配置されない非有効空間の体積が増加するか、あるいは導線41がスロット30からはみ出してしまうおそれがある。 Further, what is indicated by a chain line in FIG. 7 is the arrangement of the conductor wire 41 wound by the conventional winding procedure, and the conductor wire 41 is wound around the conductor wire winding portion 52 without the inclination angle θ. It corresponds to the case. In this case, there is a possibility that the volume of the non-effective space in which the conducting wire 41 is not arranged is increased in the uppermost layer of the coil 40, or the conducting wire 41 protrudes from the slot 30.
 一方、図7に示すように、径方向に対して上記の傾斜角θを付けて導線を巻回することで、上記の非有効空間の体積を低減できる。また、傾斜角θはスロット30の後退角θcore以下であるのが好ましい。ここで、θcoreは、トゥース10の径方向内側端部に設けられ、周方向に張り出した張り出し部10aの側面と、分割ヨーク21の側面とを通る仮想平面と、導線巻回部52の第1側面52cまたは第2側面52dとがなす角に相当する。例えば、第2側面52dを基準として、傾斜角θが後退角θcoreより小さければ、インシュレータ50に多層巻きされた導線41のうち最上層の導線41が、周方向にはみ出すことなく、対応するスロット30内に収容されるため、コイル40の占積率を高く維持できる。ただし、クロス角εや突起60間の間隔Z等も考慮した場合、傾斜角θは後退角θcore以下であればよい。 On the other hand, as shown in FIG. 7, the volume of the above-mentioned ineffective space can be reduced by winding the conducting wire with the above inclination angle θ in the radial direction. Further, the inclination angle θ is preferably equal to or smaller than the receding angle θcore of the slot 30. Here, θ core is provided at the radially inner end of the tooth 10 and is a virtual plane that passes through the side surface of the projecting portion 10 a that projects in the circumferential direction and the side surface of the split yoke 21, and the first winding portion 52. It corresponds to an angle formed by the side surface 52c or the second side surface 52d. For example, if the inclination angle θ is smaller than the receding angle θcore with reference to the second side surface 52d, the uppermost conductor wire 41 of the conductor wires 41 wound in multiple layers around the insulator 50 does not protrude in the circumferential direction and the corresponding slot 30 does not protrude. Since it is housed inside, the space factor of the coil 40 can be kept high. However, in consideration of the cross angle ε, the interval Z between the protrusions 60, etc., the inclination angle θ may be equal to or smaller than the receding angle θcore.
 [導線の巻回方法]
 図8は、導線の巻線設備の構成を、図9は、導線がインシュレータに巻回される過程の工程説明図をそれぞれ示す。なお、説明の便宜上、図8において、巻回設備は要部のみを簡略化して図示している。また、インシュレータ50に設けられた突起60は図示を省略する。また、図9において、巻線設備の図示を省略している。
[Method of winding conductors]
FIG. 8 shows the configuration of the winding equipment for the conductive wire, and FIG. 9 shows a process explanatory view of the process in which the conductive wire is wound around the insulator. Note that, for convenience of description, in FIG. 8, only a main part of the winding equipment is illustrated in a simplified manner. Further, the projection 60 provided on the insulator 50 is not shown. Further, in FIG. 9, the winding equipment is not shown.
 図8に示すように、本実施形態に示す導線41は、通常のワーク回転方式でインシュレータ50に巻回することができる。つまり、インシュレータ50が装着されたトゥース10を保持台2100にセットするとともに、導線案内溝51aから導線41を導線巻回部52に案内し、導線41の先端をノズル2200で把持する。なお、保持台2100は図示しない回転軸を有しており、この回転軸とインシュレータ50の径方向中心線とが一致するようにする。 As shown in FIG. 8, the conductor wire 41 shown in this embodiment can be wound around the insulator 50 by a normal work rotation method. That is, the tooth 10 to which the insulator 50 is attached is set on the holding table 2100, the conductor 41 is guided to the conductor winding portion 52 from the conductor guide groove 51a, and the tip of the conductor 41 is gripped by the nozzle 2200. The holding table 2100 has a rotation shaft (not shown), and the rotation shaft and the radial center line of the insulator 50 are made to coincide with each other.
 この状態で、保持台2100をその回転軸の回りに回転させるとともに、ノズル2200を保持台2100に対して相対的に移動させることで、導線41がインシュレータ50に巻回される。なお、ノズル2200は、1層目の導線411が突起60に保持されてクロス角εで第1端面52aに巻回されるように、導線41の先端を移動させる。さらに、第2端面52bと第1及び第2側面52c,52dでは、1層目の導線411が第1鍔部51の内面51bと互いに平行となるように、導線41の先端を移動させる。さらに、2層目の導線412以降では、ノズル2200は、図9に示す巻回形状となるように導線41の先端を移動させる。 In this state, the conductor 41 is wound around the insulator 50 by rotating the holder 2100 around its rotation axis and moving the nozzle 2200 relative to the holder 2100. The nozzle 2200 moves the tip of the conductive wire 41 such that the conductive wire 411 of the first layer is held by the protrusion 60 and wound around the first end surface 52a at the cross angle ε. Further, at the second end face 52b and the first and second side faces 52c, 52d, the tip of the conductor wire 41 is moved so that the conductor wire 411 of the first layer is parallel to the inner surface 51b of the first flange 51. Further, after the second-layer conductive wire 412, the nozzle 2200 moves the tip of the conductive wire 41 so as to have the winding shape shown in FIG. 9.
 このように導線41がインシュレータ50に巻回されることで、図9の(a)図に示すように、1層目の導線411が導線巻回部52に整列巻きされる。次に、クロス部42で1層目の導線411から2層目の導線412に巻き替わるとともに、2層目の導線412は、径方向に関して1層目の導線411とほぼ対称をなすように第1端面52aに巻回される(図9の(b)図)。さらに、2層目の導線412は、導線巻回部52の径方向外側端部まで巻回され(図9の(c)図)、クロス部43で3層目の導線413に巻き替わる(図9の(d)図)。3層目の導線413は、クロス角εとほぼ同じ角度で第1端面52aに巻回される。 By thus winding the conductor wire 41 around the insulator 50, the first-layer conductor wire 411 is aligned and wound around the conductor wire winding portion 52 as shown in FIG. 9A. Next, at the cross portion 42, the first-layer conductive wire 411 is rewound from the second-layer conductive wire 412, and the second-layer conductive wire 412 is arranged so as to be substantially symmetrical to the first-layer conductive wire 411 in the radial direction. It is wound around the one end face 52a ((b) of FIG. 9). Furthermore, the conductor wire 412 of the second layer is wound to the radially outer end of the conductor wire winding portion 52 (FIG. 9C), and is rewound to the conductor wire 413 of the third layer at the cross portion 43 (FIG. (Fig. 9 (d)). The conductor wire 413 of the third layer is wound around the first end surface 52a at an angle substantially equal to the cross angle ε.
 また、図示しないが、図9の(c)図において、導線巻回部52の各コーナー部52e1~52e4に設けられた複数の突起60に支持されて、1層目の導線411は、径方向に対して傾斜角θをなすように、導線巻回部52の表面に対して傾斜して巻回されている。2層目の導線412は、1層目の導線411における端面41bに支持されて、径方向に対して傾斜角θをなすように、1層目の導線411に巻回されている。同様に、3層目の導線413は、2層目の導線412における端面41bに支持されて、径方向に対して傾斜角θをなすように、2層目の導線412に巻回されている。 Although not shown, in FIG. 9C, the first-layer conductor wire 411 is supported by a plurality of protrusions 60 provided at the corner portions 52e1 to 52e4 of the conductor wire winding portion 52, It is wound so as to be inclined with respect to the surface of the conductive wire winding portion 52 so as to form an inclination angle θ with respect to. The second-layer conductor wire 412 is supported by the end surface 41b of the first-layer conductor wire 411 and is wound around the first-layer conductor wire 411 so as to form an inclination angle θ with respect to the radial direction. Similarly, the conductor wire 413 of the third layer is supported by the end surface 41b of the conductor wire 412 of the second layer and wound around the conductor wire 412 of the second layer so as to form an inclination angle θ with respect to the radial direction. ..
 なお、本実施形態においては、ノズルを用いた巻線工法を一例に記しているが、ノズルに替えて導線41を案内するローラー、フック又はカム等を用いる巻線工法を採用してもよい。また、前述したように、ワーク回転方式が非円形の断面形状を有する導線41の巻装に適しているが、導線41がよじれて変形する等の不具合を解消できれば、ワーク固定方式で導線41を巻装してもよい。 Note that, in the present embodiment, the winding method using a nozzle is described as an example, but a winding method using a roller, a hook, a cam or the like that guides the conducting wire 41 may be used instead of the nozzle. Further, as described above, the work rotation method is suitable for winding the conductor wire 41 having a non-circular cross-sectional shape, but if the trouble such as the conductor wire 41 being twisted and deformed can be eliminated, the conductor wire 41 is fixed by the work fixing method. It may be wrapped.
 [効果等]
 以上説明したように、本実施形態に係るステータ100は、環状のヨーク20と、ヨーク20の周方向に所定の間隔をあけて配設されるとともに、ヨーク20の内周からヨーク20の径方向に延びる複数のティース10と、複数のティース10のそれぞれに装着される複数のインシュレータ50と、断面が矩形状の導線41で構成され、複数のインシュレータ50のそれぞれに巻回される複数のコイル40と、を備えている。
[Effects, etc.]
As described above, the stator 100 according to the present embodiment is provided with the annular yoke 20 and the yoke 20 at a predetermined interval in the circumferential direction and from the inner circumference of the yoke 20 in the radial direction of the yoke 20. A plurality of teeth 10, a plurality of insulators 50 attached to each of the plurality of teeth 10, a conductor 41 having a rectangular cross section, and a plurality of coils 40 wound around each of the plurality of insulators 50. And are equipped with.
 インシュレータ50は、導線41が巻回される筒状の導線巻回部52と、導線巻回部52の径方向外側端部に設けられ、導線41を導線巻回部52に案内する導線案内溝51aを有する第1鍔部51と、導線巻回部52の径方向内側端部に設けられた第2鍔部53と、を有している。 The insulator 50 is provided at a cylindrical wire winding portion 52 around which the wire 41 is wound, and a radially outer end portion of the wire winding portion 52, and a wire guide groove for guiding the wire 41 to the wire winding portion 52. It has the 1st collar part 51 which has 51a, and the 2nd collar part 53 provided in the radial inside end of the conducting wire winding part 52.
 導線巻回部52は、導線案内溝51aの底面に連続する第1端面52a及び第1端面52aとステータ100の軸方向で互いに対向する第2端面52bと、第1端面52aの周方向端辺から第2端面52bの周方向端辺にかけて設けられ、周方向で互いに対向する第1側面52c及び第2側面52dと、を有している。また、導線巻回部52は、そのコーナー部52e1~52e4に設けられ、径方向と直交する方向に対して所定のクロス角εをなすように導線41を第1端面52aに巻回させるための複数の突起60を有している。 The conductive wire winding portion 52 includes a first end surface 52a continuous to the bottom surface of the conductive wire guide groove 51a, a second end surface 52b opposed to each other in the axial direction of the stator 100, and a circumferential edge of the first end surface 52a. To a second side face 52b, the first side face 52c and the second side face 52d are provided to face each other in the circumferential direction and face each other in the circumferential direction. Further, the conductor winding portion 52 is provided at the corner portions 52e1 to 52e4, and is for winding the conductor 41 around the first end surface 52a so as to form a predetermined cross angle ε with respect to the direction orthogonal to the radial direction. It has a plurality of protrusions 60.
 複数の突起60は、径方向に互いに間隔Zをあけて設けられ、第1鍔部51に対向する第1面60aと第2鍔部53に対向する第2面60bとを有している。第1面60aがフラットな平面であるのに対し、第2面60bは径方向内側に向かって凸状の曲面となっている。 The plurality of protrusions 60 are provided at intervals Z in the radial direction and have a first surface 60a facing the first flange portion 51 and a second surface 60b facing the second flange portion 53. The first surface 60a is a flat plane, while the second surface 60b is a curved surface that is convex inward in the radial direction.
 ステータ100をこのように構成することで、断面が矩形状の、いわゆる平角線の導線41をインシュレータ50に安定して整列巻きかつ多層巻きすることができる。このことについて、図面を用いてさらに説明する。 By configuring the stator 100 in this manner, it is possible to stably wind the conductor wire 41 having a rectangular cross section, that is, a rectangular wire around the insulator 50 in an aligned and multi-layered manner. This will be further described with reference to the drawings.
 図10Aは、突起を設けない場合の導線巻回部上の導線の配置を示す模式図であり、図10Bは、突起を設けた場合の導線巻回部上の導線の配置を示す模式図である。なお、図10A,10Bにおいて、破線で囲まれた部分の拡大図をあわせて図示している。また、図10A,10Bにおいて、導線41のうち1層目の導線411のみを示している。また、一点鎖線は導線41の実際の位置を、点線は導線41が本来巻回されるべき位置をそれぞれ示している。 FIG. 10A is a schematic diagram showing the arrangement of conductors on a conductor winding portion when no protrusion is provided, and FIG. 10B is a schematic diagram showing the arrangement of conductors on a conductor winding portion when protrusions are provided. is there. 10A and 10B, an enlarged view of a portion surrounded by a broken line is also shown. Further, in FIGS. 10A and 10B, only the first-layer conductive wire 411 among the conductive wires 41 is shown. The alternate long and short dash line indicates the actual position of the conductive wire 41, and the dotted line indicates the position at which the conductive wire 41 should originally be wound.
 図10Aに示すように、導線案内溝51aから案内された1層目の導線411が導線巻回部52に巻回される過程において、1層目の導線411は径方向に隣り合う1層目の導線411から径方向内側に向かう力を受ける。導線巻回部52に突起60を設けていない場合、1層目の導線411を径方向で支持する機構が無いため、1層目の導線411は本来の位置からずれて導線巻回部52に巻回される。このため、巻き乱れが生じて、1層目の導線411は導線巻回部52に整列巻きされなくなる。また、1層目の導線411に巻き乱れが生じると、その上に順次巻回される2層目以降の導線41も整列して巻回されなくなり、結果としてコイル40の占積率が低下してしまう。 As shown in FIG. 10A, in the process in which the first-layer conductor wire 411 guided from the conductor wire guide groove 51a is wound around the conductor wire winding portion 52, the first-layer conductor wire 411 is a first layer adjacent to the first layer in the radial direction. A force directed inward in the radial direction is received from the conducting wire 411. When the conductor wire winding portion 52 is not provided with the protrusions 60, there is no mechanism for supporting the conductor wire 411 of the first layer in the radial direction, and thus the conductor wire 411 of the first layer is displaced from its original position to the conductor wire winding portion 52. It is wound. Therefore, winding disorder occurs, and the first-layer conductive wire 411 is not aligned and wound around the conductive wire winding portion 52. Further, when winding disorder occurs in the first-layer conductive wire 411, the second-layer and subsequent conductive wires 41 sequentially wound on the first-layer conductive wire 411 are not aligned and wound, and as a result, the space factor of the coil 40 decreases. Will end up.
 一方、図10Bに示すように、本実施形態によれば、導線巻回部52の各コーナー部52e1~52e4にそれぞれ複数の突起60を設けることにより、1層目の導線411を径方向で支持できる。また、複数の突起60は径方向に互いに間隔Zをあけて設けられているため、1層目の導線411は整列巻きされた状態で導線巻回部52の表面に保持される。さらに、図10Bでは図示していないが、2層目の導線412は、1層目の導線411の端面41bに支持されることで、1層目の導線411の上に整列巻きされ、3層目以降の導線41も同様にインシュレータ50に整列巻きされ、整列巻きかつ多層巻きされたコイル40を安定して実現できる。 On the other hand, as shown in FIG. 10B, according to the present embodiment, the plurality of protrusions 60 are provided on each of the corner portions 52e1 to 52e4 of the conductor winding portion 52 to support the conductor wire 411 of the first layer in the radial direction. it can. Further, since the plurality of protrusions 60 are provided at intervals Z in the radial direction, the conductor wire 411 of the first layer is held on the surface of the conductor wire winding portion 52 in a state of being aligned and wound. Further, although not shown in FIG. 10B, the second-layer conductive wire 412 is supported by the end surface 41b of the first-layer conductive wire 411, and thus is aligned and wound on the first-layer conductive wire 411 to form the third-layer conductive wire 412. Similarly, the conducting wire 41 after the eye is similarly wound around the insulator 50 in an aligned manner, and the aligned wound and multilayer wound coil 40 can be stably realized.
 また、図10Bに示すように、突起60の第1面60aがフラットな平面であるのに対し、第2面60bは、径方向内側に向かって凸状の曲面である。突起60をこのように構成することで、1層目の導線411の端面41bが第1面60aに安定して保持される。さらに、導線41の厚さ、この場合、断面視における1層目の導線411の長辺Xや短辺Yが設計値からばらついて傾斜角θが変動するような場合にも、第2面60bが曲面であるため、1層目の導線411を第2面60bに確実に当接させることができる。このことにより、1層目の導線411が所定の位置に位置決めされた状態で導線巻回部52の表面に保持されて整列巻きされる。 Further, as shown in FIG. 10B, the first surface 60a of the projection 60 is a flat plane, whereas the second surface 60b is a curved surface that is convex inward in the radial direction. By configuring the protrusion 60 in this way, the end surface 41b of the first-layer conductive wire 411 is stably held on the first surface 60a. Further, even when the thickness of the conductive wire 41, in this case, the long side X or the short side Y of the first-layer conductive wire 411 in the cross-sectional view varies from the design value and the inclination angle θ changes, the second surface 60b. Is a curved surface, the first-layer conductive wire 411 can be reliably brought into contact with the second surface 60b. As a result, the first-layer conductor wire 411 is held on the surface of the conductor wire winding portion 52 in a state where it is positioned at a predetermined position, and the conductor wire 411 is aligned and wound.
 また、第2面60bを凸状の曲面とすることで、インシュレータ50を図示しない金型で一体成形する場合に、金型から突起60を外すのが容易となる。このことにより、突起60を外しやすくするための特別な離型剤を用いたり、金型から突起60を外す際に、突起60が欠けてインシュレータ50の不良品が生じたりして、インシュレータ50の製造コストが増加するのを抑制できる。 Further, by forming the second surface 60b into a convex curved surface, when the insulator 50 is integrally molded with a mold (not shown), it becomes easy to remove the protrusion 60 from the mold. As a result, a special release agent is used to facilitate the removal of the protrusions 60, or when the protrusions 60 are removed from the mold, the protrusions 60 are chipped and defective insulators 50 are produced. It is possible to suppress an increase in manufacturing cost.
 また、導線巻回部52に巻回される1層目の導線411は、複数の突起60に支持されることで、第1端面52aにクロス角εで巻回されるとともに、径方向と傾斜角θをなすように導線巻回部52の表面に傾斜して巻回されている。 The first-layer conductive wire 411 wound around the conductive wire winding portion 52 is supported by the plurality of protrusions 60, is wound around the first end surface 52a at the cross angle ε, and is inclined with respect to the radial direction. It is wound so as to be inclined on the surface of the conductive wire winding portion 52 so as to form an angle θ.
 また、導線41は導線巻回部52にn層巻き(nは2以上の整数)されており、i層目(iは2以上の整数で、かつi≦n)の導線41は、第1端面52aにおいて(i-1)層目の導線41から巻き替わり、かつ(i-1)層目の導線41の上にクロス角εと異なる角度で巻回されている。i層目の導線41は、(i-1)層目の導線41の端面41bに支持されることで、径方向と傾斜角θをなすように(i-1)層目の導線の上に巻回されている。 The conductor wire 41 is wound around the conductor wire winding portion 52 in n layers (n is an integer of 2 or more), and the conductor wire 41 of the i-th layer (i is an integer of 2 or more and i≦n) is the first wire. At the end face 52a, it is rewound from the conducting wire 41 of the (i-1)th layer and wound on the conducting wire 41 of the (i-1)th layer at an angle different from the cross angle ε. The i-th conductor wire 41 is supported on the end surface 41b of the (i-1)-th conductor wire 41 so that the i-th conductor wire 41 forms an inclination angle θ with the (i-1)-th conductor wire. It is wound.
 このように導線41を導線巻回部52に巻回することで、複数の突起60に保持され、径方向と傾斜角θをなして整列巻きされた1層目の導線411の端面41bを支持部として2層目の導線412がクロス部42で巻き乱れることなく1層目の導線411の上に整列巻きされる。同様に、整列巻きされた(i-1)層目の導線41の端面41bを支持部としてi層目の導線41がクロス部4iで巻き乱れることなく(i-1)層目の導線41の上に整列巻きされる。以上のように、インシュレータ50に整列巻きかつ多層巻きされたコイル40を安定して実現できる。 By winding the conductive wire 41 around the conductive wire winding portion 52 in this manner, the end surface 41b of the first-layer conductive wire 411 that is held by the plurality of protrusions 60 and is aligned and wound at an inclination angle θ with the radial direction is supported. As a part, the conductor wire 412 of the second layer is aligned and wound on the conductor wire 411 of the first layer without being disturbed by the cross portion 42. Similarly, the end face 41b of the (i-1)-th layer conductive wire 41 wound in a line is used as a supporting portion, and the i-th layer conductive wire 41 is not disturbed at the cross portion 4i and It is rolled up on top. As described above, it is possible to stably realize the coil 40 that is alignedly wound around the insulator 50 and wound in multiple layers.
 第1端面52aと第1側面52cとのコーナー部52e1に設けられた突起60と、第1側面52cと第2端面52bとのコーナー部52e2に設けられた突起60とは、それぞれに設けられた凸状の曲面である第2面60bが互いに同じ方向、この場合は径方向内側を向いている。 The projection 60 provided on the corner portion 52e1 between the first end surface 52a and the first side surface 52c and the projection 60 provided on the corner portion 52e2 between the first side surface 52c and the second end surface 52b are provided respectively. The second surfaces 60b, which are convex curved surfaces, face the same direction as each other, in this case, the radially inner side.
 このようにすることで、クロス部4iの位置を確実に第1端面52aの上に定めることができる。 By doing so, the position of the cross portion 4i can be reliably determined on the first end surface 52a.
 本実施形態に係るモータ1000は、ステータ100と、ステータ100と所定の間隔をあけて設けられたロータ200と、を少なくとも備え、導線41はインシュレータ50に整列巻きかつ多層巻きされている。 The motor 1000 according to the present embodiment includes at least a stator 100 and a rotor 200 provided at a predetermined distance from the stator 100, and the conductive wire 41 is wound around the insulator 50 in a line and in multiple layers.
 本実施形態によれば、導線巻回部50に設けられた複数の突起60によって、導線41がインシュレータ50に整列巻きかつ多層巻きされている。このことにより、スロット30内でのコイル40の占積率を高めることができ、高効率のモータ1000を実現できる。 According to the present embodiment, the conductor wire 41 is aligned and wound in multiple layers around the insulator 50 by the plurality of protrusions 60 provided on the conductor wire winding portion 50. As a result, the space factor of the coil 40 in the slot 30 can be increased, and the highly efficient motor 1000 can be realized.
 なお、本実施形態において、突起60は各コーナー部52e1~52e4からそれぞれ隣接する面にかかるように延びて設けられているが、特にこれに限られず、例えば、図11に示すように、突起60は各コーナー部52e1~52e4のみに設けられるようにしてもよい。この場合も、1層目の導線411は、第1端面52aに対してクロス角εで傾斜して巻回されるとともに、突起60の第1面60aに支持されて導線巻回部52の表面に整列巻きされる。 In the present embodiment, the protrusion 60 is provided so as to extend from each of the corner portions 52e1 to 52e4 so as to cover the adjacent surface, but the present invention is not limited to this, and the protrusion 60 may be, for example, as shown in FIG. May be provided only in each of the corner portions 52e1 to 52e4. Also in this case, the first-layer conductive wire 411 is wound while being inclined at the cross angle ε with respect to the first end surface 52a, and is supported by the first surface 60a of the protrusion 60 to be the surface of the conductive wire winding portion 52. It is lined up and wound.
 <変形例>
 図12~図15は、本変形例に係る第1~第4のインシュレータの模式図を示す。なお、各図において、(a)図は軸方向上側から見た斜視図を、(b)図は軸方向下側から見た斜視図を示している。また、図12~図15において、実施形態1と同様の箇所は同一の符号を付して詳細な説明を省略する。
<Modification>
12 to 15 are schematic diagrams of the first to fourth insulators according to this modification. In each drawing, (a) is a perspective view seen from the upper side in the axial direction, and (b) is a perspective view seen from the lower side in the axial direction. 12 to 15, the same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 実施形態1に示す構成では、突起60が各コーナー部52e1~52e4に設けられていたのに対し、本変形例に示す構成では、それ以外の箇所、例えば、第1側面52cや第2側面52d等にも突起61が設けられている点で異なる。 In the configuration shown in the first embodiment, the projection 60 is provided on each of the corner portions 52e1 to 52e4, whereas in the configuration shown in the present modification, the other portions, for example, the first side surface 52c and the second side surface 52d. Etc. are different in that the protrusions 61 are also provided.
 例えば、図12に示すように、第1側面52c及び第2側面52dには、複数の突起61が、径方向に互いに間隔Zをあけて、かつ第1鍔部51の内面51bと互いに平行になるように設けられていてもよい。具体的には、コーナー部52e1からコーナー部52e2にかけて直線的に延びるように複数の突起61が第1側面52cに設けられていてもよい。また、コーナー部52e3からコーナー部52e4にかけて直線的に延びるように複数の突起61が第2側面52dに設けられていてもよい。 For example, as shown in FIG. 12, on the first side surface 52c and the second side surface 52d, a plurality of protrusions 61 are arranged at intervals Z in the radial direction and parallel to the inner surface 51b of the first flange portion 51. May be provided. Specifically, the plurality of protrusions 61 may be provided on the first side surface 52c so as to extend linearly from the corner portion 52e1 to the corner portion 52e2. Further, a plurality of protrusions 61 may be provided on the second side surface 52d so as to extend linearly from the corner portion 52e3 to the corner portion 52e4.
 また、図13に示すように、図12に示す構成に加えて、第2端面52bに、複数の突起62が径方向に互いに間隔Zをあけて、かつ第1鍔部51の内面51bと互いに平行になるように設けられていてもよい。具体的には、コーナー部52e2からコーナー部52e3にかけて直線的に延びるように複数の突起62が第2端面52bに設けられていてもよい。図13に示す構成では、コーナー部52e1からコーナー部52e3にかけて連続して延びるように突起62が設けられている。 Further, as shown in FIG. 13, in addition to the configuration shown in FIG. 12, a plurality of protrusions 62 are radially spaced apart from each other on the second end surface 52b and are spaced apart from each other by the inner surface 51b of the first flange portion 51. It may be provided so as to be parallel. Specifically, a plurality of protrusions 62 may be provided on the second end surface 52b so as to extend linearly from the corner portion 52e2 to the corner portion 52e3. In the configuration shown in FIG. 13, the protrusion 62 is provided so as to continuously extend from the corner portion 52e1 to the corner portion 52e3.
 さらに、図14に示すように、図13に示す構成に加えて、第1端面52aに、複数の突起63が径方向に互いに間隔Zをあけて設けられていてもよい。具体的には、コーナー部52e4からコーナー部52e1にかけて直線的に延びるように突起63が第1端面52bに設けられていてもよい。また、図14に示す構成において、第1端面52aに設けられた複数の突起63は、径方向と直交する方向に対してクロス角εで傾斜するように、かつ径方向に互いに間隔Zをあけてそれぞれ設けられている。 Further, as shown in FIG. 14, in addition to the configuration shown in FIG. 13, a plurality of protrusions 63 may be provided on the first end surface 52a at intervals Z in the radial direction. Specifically, the protrusion 63 may be provided on the first end surface 52b so as to extend linearly from the corner portion 52e4 to the corner portion 52e1. In addition, in the configuration shown in FIG. 14, the plurality of protrusions 63 provided on the first end surface 52a are inclined at a cross angle ε with respect to the direction orthogonal to the radial direction and are spaced apart from each other by a distance Z in the radial direction. Are provided respectively.
 図12~図14に示すインシュレータ50をステータ100に適用することで、実施形態1と同様の効果を奏することができる。また、コーナー部52e1~52e4以外の導線巻回部52の表面に連続して延びる複数の突起61~63を設けることで、導線41の巻回位置を確実に定めることができ、導線41を安定して整列巻きにすることができる。 By applying the insulator 50 shown in FIGS. 12 to 14 to the stator 100, the same effect as that of the first embodiment can be obtained. In addition, by providing a plurality of continuously extending projections 61 to 63 on the surface of the conductive wire winding portion 52 other than the corner portions 52e1 to 52e4, the winding position of the conductive wire 41 can be reliably determined and the conductive wire 41 can be stabilized. It can be rolled into a line.
 なお、図14に示す構成に代えて、図15に示すように、第1及び第2端面52a,52bと第1及び第2側面52c,52dとに設けられた突起64をそれぞれ延在方向に関して不連続となるように構成してもよい。 Instead of the configuration shown in FIG. 14, as shown in FIG. 15, the protrusions 64 provided on the first and second end faces 52a, 52b and the first and second side faces 52c, 52d are respectively extended in the extending direction. You may comprise so that it may become discontinuous.
 つまり、第1側面52c及び第2側面52dには、複数の突起64が、径方向及び軸方向にそれぞれ互いに間隔をあけて設けられている。また、第2端面52bには、複数の突起64が、径方向及び周方向にそれぞれ互いに間隔をあけて設けられている。第1端面52aには、複数の突起64が、径方向及び周方向にそれぞれ互いに間隔をあけて設けられている。なお、各面52a~52dにそれぞれ設けられた突起64の径方向の間隔は上記の間隔Zである。 That is, the plurality of protrusions 64 are provided on the first side surface 52c and the second side surface 52d at intervals in the radial direction and the axial direction, respectively. A plurality of protrusions 64 are provided on the second end surface 52b at intervals in the radial direction and the circumferential direction. A plurality of protrusions 64 are provided on the first end surface 52a at intervals in the radial direction and the circumferential direction, respectively. The interval between the protrusions 64 provided on each of the surfaces 52a to 52d in the radial direction is the above-mentioned interval Z.
 図15に示すインシュレータ50をステータ100に適用する場合も、実施形態1と同様の効果を奏することができる。また、図示しないが、図12及び図13に示す構成に図15に示す突起64の形状を適用するようにしてもよい。 Also when the insulator 50 shown in FIG. 15 is applied to the stator 100, the same effect as that of the first embodiment can be obtained. Although not shown, the shape of the protrusion 64 shown in FIG. 15 may be applied to the configurations shown in FIGS. 12 and 13.
 (実施形態2)
 図16は、本実施形態に係るインシュレータの模式図を示し、図17は、軸方向上側から見たステータの要部の模式図を示す。なお、図16において、破線で囲まれた部分の拡大図をあわせて図示している。また、図16において、実施形態1と同様の箇所は同一の符号を付して詳細な説明を省略する。また、図17において、導線41のうち1層目の導線411のみを図示している。
(Embodiment 2)
FIG. 16 shows a schematic diagram of the insulator according to the present embodiment, and FIG. 17 shows a schematic diagram of a main part of the stator as seen from the axial upper side. Note that, in FIG. 16, an enlarged view of a portion surrounded by a broken line is also shown. Further, in FIG. 16, the same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. Further, in FIG. 17, only the first-layer conductive wire 411 among the conductive wires 41 is shown.
 実施形態1に示す構成では、第1端面52aと第1側面52cとのコーナー部52e1に設けられた突起60と、第1側面52cと第2端面52bとのコーナー部52e2に設けられた突起60とは、それぞれに設けられた第2面60bがいずれも径方向内側を向いている。 In the configuration shown in the first embodiment, the protrusion 60 provided on the corner 52e1 between the first end face 52a and the first side face 52c and the protrusion 60 provided on the corner 52e2 between the first side face 52c and the second end face 52b. Means that the second surfaces 60b provided on each of them face inward in the radial direction.
 一方、図16に示す本実施形態の構成では、第1端面52aと第1側面52cとのコーナー部52e1に設けられた突起60は、第2面60bが径方向内側を向いているのに対し、第1側面52cと第2端面52bとのコーナー部52e2に設けられた突起60は、第2面60bが径方向外側を向いている。つまり、前者の突起60と後者の突起60とでは、それぞれに設けられた第2面60bが互いに反対の方向を向いている。 On the other hand, in the configuration of the present embodiment shown in FIG. 16, the protrusion 60 provided at the corner portion 52e1 between the first end face 52a and the first side face 52c has the second face 60b facing inward in the radial direction. The second surface 60b of the projection 60 provided on the corner portion 52e2 between the first side surface 52c and the second end surface 52b is oriented radially outward. That is, in the former projection 60 and the latter projection 60, the second surfaces 60b provided on the projections 60 face in opposite directions.
 モータ1000の設計仕様によっては、クロス部4iを導線巻回部52の第1端面52aと異なる面上に設けることも要求される。しかし、実施形態1に示す構成では、クロス部4iを第1端面52a以外に設けることは難しかった。 Depending on the design specifications of the motor 1000, it is also required to provide the cross portion 4i on a surface different from the first end surface 52a of the wire winding portion 52. However, in the configuration shown in the first embodiment, it is difficult to provide the cross portion 4i on a portion other than the first end surface 52a.
 一方、本実施形態によれば、クロス部4iを第1端面52aの上だけでなく第2端面52bの上にも設けることができる。つまり、導線41は、第2端面52bでもj層目(jは整数で、1≦j≦n-1)から(j+1)層目に巻き替わり、クロス部4iが第2端面52bの上にも設けられる。このことにより、ステータ100,ひいてはモータ1000の設計自由度が向上できる。なお、この場合、例えば、図17に示すように、第2端面52b上で1層目の導線411が径方向と直交する方向に対してクロス角εをなすように巻回されていてもよい。 On the other hand, according to this embodiment, the cross portion 4i can be provided not only on the first end surface 52a but also on the second end surface 52b. That is, the conductive wire 41 is also rewound from the j-th layer (j is an integer, 1≦j≦n−1) to the (j+1)-th layer on the second end face 52b, and the cross portion 4i is also on the second end face 52b. It is provided. As a result, the degree of freedom in designing the stator 100 and thus the motor 1000 can be improved. In this case, for example, as shown in FIG. 17, the first-layer conductive wire 411 may be wound on the second end surface 52b so as to form a cross angle ε with respect to the direction orthogonal to the radial direction. ..
 (実施形態3)
 図18Aは、本実施形態に係るステータの要部の断面模式図を、図18Bは比較のためのステータの要部の断面模式図をそれぞれ示している。なお、説明の便宜上、図18A,18Bにおいて、突起60の図示を省略している。また、実施形態1と同様の箇所は同一の符号を付して詳細な説明を省略する。
(Embodiment 3)
FIG. 18A is a schematic sectional view of a main part of a stator according to the present embodiment, and FIG. 18B is a schematic sectional view of a main part of a stator for comparison. 18A and 18B, the protrusion 60 is not shown for convenience of description. Further, the same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 図18Aに示す本実施形態の構成は、導線巻回部52の径方向内側端部に、1層目の導線411のk巻き目(kは1層目の導線411の巻回数)が配置される予定の部分に所定の高さの段差52fが設けられている点で図18Bに示す実施形態1の構成と異なる。なお、段差52fは導線巻回部52の表面に連続して、つまり第1及び第2端面52a,52bと第1及び第2側面52c,5dのいずれにも設けられている。また、段差52fには1層目の導線411が巻回されていない。 In the configuration of the present embodiment shown in FIG. 18A, the k-th winding of the first-layer conductive wire 411 (k is the number of windings of the first-layer conductive wire 411) is arranged at the radially inner end of the conductive-wire winding portion 52. The difference from the configuration of the first embodiment shown in FIG. 18B is that a step 52f having a predetermined height is provided in a portion to be cut. The step 52f is provided continuously to the surface of the conductive wire winding portion 52, that is, on both the first and second end surfaces 52a and 52b and the first and second side surfaces 52c and 5d. Further, the conductor wire 411 of the first layer is not wound around the step 52f.
 本実施形態によれば、コイル40の内部を通過する磁束に起因して導線41に渦電流が流れ、モータ1000のエネルギーロスが生じるのを抑制できる。このことについてさらに説明する。 According to the present embodiment, it is possible to suppress the generation of energy loss in the motor 1000 due to the eddy current flowing in the conductor 41 due to the magnetic flux passing through the inside of the coil 40. This will be further described.
 図18Bに示すように、導線41に電流が流れると、コイル40の内部、つまり、分割ヨーク21及びトゥース10の内部を通るように磁束が発生し、トゥース10の径方向内側端部では、磁束の一部が導線41に漏れ出すことがある。この漏れ磁束がトゥース10に近い側の導線41、例えば、1層目の導線411に渦電流を発生させエネルギーロスが生じる原因となる。 As shown in FIG. 18B, when a current flows through the conductive wire 41, a magnetic flux is generated so as to pass through the inside of the coil 40, that is, the inside of the split yoke 21 and the tooth 10, and the magnetic flux is generated at the radially inner end portion of the tooth 10. May partially leak to the conductor 41. This leakage magnetic flux causes an eddy current in the conducting wire 41 near the tooth 10, for example, the conducting wire 411 of the first layer, which causes energy loss.
 一方、本実施形態によれば、図18Aに示すように、漏れ磁束が通過する導線41、つまり、1層目の導線411のうち径方向内側に位置するk巻き目に相当する部分に所定の高さの段差52fを設けることで、当該部分に1層目の導線411が巻回されないようにする。このことにより、漏れ磁束が導線41を通過するのを防止して、渦電流の発生、ひいてはモータ1000のエネルギーロスが生じるのを抑制できる。 On the other hand, according to the present embodiment, as shown in FIG. 18A, the conductor 41 through which the leakage magnetic flux passes, that is, the portion corresponding to the k-th winding located on the radially inner side of the conductor 411 of the first layer is predetermined. By providing the height difference 52f, the conductor wire 411 of the first layer is prevented from being wound around the portion. As a result, it is possible to prevent the leakage magnetic flux from passing through the conductive wire 41, and suppress the generation of eddy current and eventually the energy loss of the motor 1000.
 なお、段差52fは1層目の導線411の(k-1)巻き目とk巻き目とに跨がって設けられていてもよい。また、2層目の導線412の1巻き目が巻回される予定の部分にまで延びて段差52fが設けられていてもよい。段差52fの高さと径方向の長さとは、導線41に流れる渦電流の低減度合いとコイル40の占積率の低下との兼ね合いに応じて、適宜変更されうる。 The step 52f may be provided across the (k−1)th turn and the kth turn of the first-layer conductor wire 411. Further, the step 52f may be provided so as to extend to a portion where the first winding of the second layer conductive wire 412 is to be wound. The height and the radial length of the step 52f can be appropriately changed depending on the balance between the reduction degree of the eddy current flowing through the conductor 41 and the reduction of the space factor of the coil 40.
 なお、分割ヨーク21に近い側での漏れ磁束の影響は小さいため、渦電流の発生を抑制するためには、導線41を第1鍔部51の内面51bに当接するように導線巻回部52に当接するのが好ましい。 Since the influence of the leakage magnetic flux on the side close to the split yoke 21 is small, in order to suppress the generation of the eddy current, the conductor wire winding portion 52 is arranged so that the conductor wire 41 contacts the inner surface 51b of the first collar portion 51. It is preferable to abut.
 (実施形態4)
 図19Aは、本実施形態に係るステータの要部の断面模式図を示し、図19Bは比較のためのステータの要部の断面模式図をそれぞれ示している。なお、説明の便宜上、図19A,19Bにおいて、突起60の図示を省略している。また、実施形態1と同様の箇所は同一の符号を付して詳細な説明を省略する。
(Embodiment 4)
FIG. 19A shows a schematic sectional view of a main part of a stator according to the present embodiment, and FIG. 19B shows a schematic sectional view of a main part of a stator for comparison. Note that, for convenience of description, the projection 60 is omitted in FIGS. 19A and 19B. Further, the same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 図19Bに示す構成では、周方向で互いに隣り合うインシュレータ50のうち、一方のインシュレータ50に巻回された導線41と、他方のインシュレータ50に巻回された導線41とで、その形状が対称となるようにそれぞれが巻回されている。 In the configuration illustrated in FIG. 19B, among the insulators 50 adjacent to each other in the circumferential direction, the conductor wire 41 wound around one insulator 50 and the conductor wire 41 wound around the other insulator 50 have symmetrical shapes. Each is wound so that.
 一方、図19Aに示す本実施形態の構成では、周方向で互いに隣り合うインシュレータ50のうち、一方のインシュレータ50に巻回された導線41と、他方のインシュレータ50に巻回された導線41とで、その形状が非対称となるようにそれぞれが巻回されている。 On the other hand, in the configuration of the present embodiment shown in FIG. 19A, among the insulators 50 adjacent to each other in the circumferential direction, the conductor wire 41 wound around one insulator 50 and the conductor wire 41 wound around the other insulator 50. , Each is wound so that its shape is asymmetric.
 各々の導線41を図19Aに示す巻回形状とすることで、コイル40の占積率を高めることができる。このことについてさらに説明する。 The space factor of the coil 40 can be increased by forming each conductive wire 41 into the winding shape shown in FIG. 19A. This will be further described.
 通常、複数のインシュレータ50に導線41をそれぞれ巻回するにあたって、巻回工程を標準化し、また、ステータ100の組立工程を簡素化するために、周方向に互いに隣り合うコイル40において、互いに対向する面が対称となるように導線41が巻回される。 Usually, when winding the conductor wire 41 around each of the plurality of insulators 50, in order to standardize the winding process and to simplify the assembly process of the stator 100, the coils 40 adjacent to each other in the circumferential direction face each other. The conductive wire 41 is wound so that the planes are symmetrical.
 このように巻回された一組のコイル40において、コイル40同士の干渉を抑制するために、また,互いの絶縁距離を確保するために、周方向に互いに隣り合うコイル40及びこれらが装着されるティース10の間隔を所定値以上にあけて配置する必要がある。 In the set of coils 40 wound in this way, the coils 40 adjacent to each other in the circumferential direction and the coils 40 are mounted in the circumferential direction in order to suppress interference between the coils 40 and to secure an insulation distance between them. It is necessary to arrange the teeth 10 to be spaced apart by a predetermined value or more.
 しかし、コイル40のサイズや導線41の巻回数によっては、当該間隔が大きくなりすぎてスロット30内で導線41に占有されない非有効空間が大きくなる場合があった。 However, depending on the size of the coil 40 and the number of windings of the conductive wire 41, the gap may become too large and the non-effective space not occupied by the conductive wire 41 in the slot 30 may increase.
 一方、本実施形態によれば、周方向に互いに隣り合うインシュレータ50にそれぞれ巻回された導線41の巻回形状を非対称とすることで、周方向に互いに隣り合うコイル40の絶縁距離を確保しつつ、上記の非有効空間を低減して、コイル40の占積率を高めることができる。 On the other hand, according to the present embodiment, the insulating shape of the coils 40 adjacent to each other in the circumferential direction is ensured by making the winding shapes of the conductor wires 41 wound around the insulators 50 adjacent to each other in the circumferential direction asymmetric. At the same time, the non-effective space can be reduced and the space factor of the coil 40 can be increased.
 なお、周方向に互いに隣り合うインシュレータ50にそれぞれ巻回された導線41において、それぞれの導線41のl巻き目(lは整数で、1≦l≦k;kは1層目の導線の巻回数)の巻回形状を非対称とすることで、非有効空間の低減度合いをより高められるとともに、コイル40の設計の自由度を向上できる。例えば、図18Aに示すように、紙面で左側に位置する導線41の3巻き目及び4巻き目をそれぞれ7層としているのに対し、紙面で右側に位置する導線41では3巻き目を6層、4巻き目を5層とすることで、非有効空間の低減度合いを高め、かつ2つのコイル40間の絶縁距離も確保している。ただし、導線41の巻回形状は特にこれに限定されず、コイル40のサイズや導線41の層数、巻回数等に応じて適宜変更されうる。 In the conductor wires 41 respectively wound around the insulators 50 adjacent to each other in the circumferential direction, the 1st turn of each conductor wire 41 (l is an integer, 1≦l≦k; k is the number of turns of the first-layer conductor wire). By making the winding shape a) asymmetric, the degree of reduction of the non-effective space can be further increased and the degree of freedom in designing the coil 40 can be improved. For example, as shown in FIG. 18A, while the third and fourth windings of the conducting wire 41 located on the left side of the paper surface are 7 layers, respectively, the conducting wire 41 located on the right side of the paper surface has the third winding of 6 layers. By making the fourth turn 5 layers, the degree of reduction of the ineffective space is increased and the insulation distance between the two coils 40 is secured. However, the winding shape of the conductive wire 41 is not particularly limited to this, and may be appropriately changed depending on the size of the coil 40, the number of layers of the conductive wire 41, the number of windings, and the like.
 (その他の実施形態)
 実施形態1~4において、インシュレータ50に巻回された導線41において、l巻き目と(l+1)巻き目との間や(i-1)層目やi層目との間、つまり周方向及び/または径方向で互いに隣り合う導線41の間に、図20に示すように、導線41で発生した熱を外部に放散するための放熱材70が充填されていてもよい。
(Other embodiments)
In the first to fourth embodiments, in the conductive wire 41 wound around the insulator 50, between the l-th winding and the (l+1)-th winding, or between the (i-1)-th layer and the i-th layer, that is, in the circumferential direction and As shown in FIG. 20, a heat radiating material 70 for radiating the heat generated in the conductive wire 41 to the outside may be filled between the conductive wires 41 adjacent to each other in the radial direction.
 ステータ100をこのように構成することで、ステータ100の温度上昇が抑制され、モータ1000の効率を向上できる。 By configuring the stator 100 in this way, the temperature rise of the stator 100 can be suppressed and the efficiency of the motor 1000 can be improved.
 また、実施形態1において、導線41のインシュレータ50に巻回するにあたってワーク回転方式を用いるようにしたが、また、コイル7の巻回方法については特に限定されない。 In the first embodiment, the work rotating method is used to wind the conductor wire 41 around the insulator 50, but the winding method of the coil 7 is not particularly limited.
 例えば、保持台2100を固定して、保持台2100の回りをノズル2200が移動する、いわゆる導線回転方式で導線41をインシュレータ50に巻回させるようにしてもよい。この場合には、ヨーク20は分割ヨーク21を周方向で接続する構成でなくてもよく、電磁鋼板を円環状に打ち抜き加工し、かつ打ち抜き加工後の電磁鋼板を積層してヨーク20を構成してもよい。また、ヨーク20を円環状に形成した後に、複数のティース10をそれぞれヨーク20の内周に接続するようにしてもよい。 For example, the holding base 2100 may be fixed, and the conductor 41 may be wound around the insulator 50 by a so-called conducting wire rotation method in which the nozzle 2200 moves around the holding base 2100. In this case, the yoke 20 does not have to have a configuration in which the split yokes 21 are connected in the circumferential direction. May be. Alternatively, the plurality of teeth 10 may be connected to the inner circumference of the yoke 20 after the yoke 20 is formed in an annular shape.
 また、インシュレータ50は、トゥース10の軸方向上下方向からそれぞれ装着される、いわゆる分割タイプのインシュレータであってもよいし、トゥース10の全外周面を覆う一体構造であってもよい。 Also, the insulator 50 may be a so-called split type insulator that is mounted from above and below in the axial direction of the tooth 10, or may be an integral structure that covers the entire outer peripheral surface of the tooth 10.
 また、実施形態1~4におけるステータ100において、コイル40が1層巻きの導線41で構成されていてもよい。この場合においても、複数のインシュレータ50のそれぞれに、導線41が整列巻きで巻回される。 Further, in the stator 100 according to the first to fourth embodiments, the coil 40 may be composed of the conductor wire 41 wound in one layer. Also in this case, the conductor wire 41 is wound in a line around each of the plurality of insulators 50.
 なお、導線41の断面形状は、図6の(a),(b)図に示すように四角形でもよいし、図6の(c)図に示すように、四隅が面取りされた四角形でもよい。また、導線41の断面形状は、図6に示す形状に特に限定されず、例えば、辺Xが辺Yよりも長くなるようにしてもよい。 The cross-sectional shape of the conductor wire 41 may be a quadrangle as shown in FIGS. 6(a) and 6(b), or a quadrangle with chamfered four corners as shown in FIG. 6(c). Further, the cross-sectional shape of the conductive wire 41 is not particularly limited to the shape shown in FIG. 6, and for example, the side X may be longer than the side Y.
 また、トゥース10は、軸方向端部と軸方向中央部とで断面形状が異なっていてもよい。例えば、軸方向端部両端部、または上端部か下端部において、中央部よりも径方向と直交する方向の幅が狭くなるように、トゥース10の断面形状が連続的または段階的に変化していてもよい。インシュレータ50の導線巻回部52の内周面は、トゥース10の断面形状の変化に対応して変形されていてもよい。 Also, the tooth 10 may have different cross-sectional shapes at the axial end and the axial center. For example, the cross-sectional shape of the tooth 10 is continuously or stepwise changed so that the width in the direction orthogonal to the radial direction is narrower at the both ends of the axial end, or at the upper end or the lower end, than at the center. May be. The inner peripheral surface of the conductive wire winding portion 52 of the insulator 50 may be deformed in accordance with the change in the cross-sectional shape of the tooth 10.
 本発明のステータは、コイルの占積率を高めることができるため、高い効率が要求されるモータに適用する上で特に有用である。 Since the stator of the present invention can increase the space factor of the coil, it is particularly useful when applied to a motor that requires high efficiency.
10   ティース(トゥース)
20   ヨーク
21   分割ヨーク
30   スロット
40   コイル
41   導線
4i   クロス部
50   インシュレータ
51   第1鍔部
51a  導線案内溝
51b  第1鍔部51の内面
52   導線巻回部
52a  第1端面
52b  第2端面
52c  第1側面
52d  第2側面
52e1~52e4 コーナー部
52f  第1端面
53   第2鍔部
60~64 突起
60a  第1面
60b  第2面
70   放熱材
100  ステータ
110  ステータコア
200  ロータ
210  出力軸
220  磁石
411  1層目の導線
412  2層目の導線
413  3層目の導線
1000 モータ
10 Teeth (Tooth)
20 yoke 21 split yoke 30 slot 40 coil 41 conductor wire 4i cross portion 50 insulator 51 first flange portion 51a conductor wire guide groove 51b inner surface of the first flange portion 52 conductor wire winding portion 52a first end surface 52b second end surface 52c first side surface 52d Second side surfaces 52e1 to 52e4 Corner portion 52f First end surface 53 Second flange portion 60 to 64 Protrusion 60a First surface 60b Second surface 70 Heat dissipating material 100 Stator 110 Stator core 200 Rotor 210 Output shaft 220 Magnet 411 First-layer conducting wire 412 2nd layer conductor 413 3rd layer conductor 1000 Motor

Claims (12)

  1.  環状のヨークと、前記ヨークの周方向に所定の間隔をあけて配設されるとともに、前記ヨークの内周から前記ヨークの径方向に延びる複数のティースと、複数のティースのそれぞれに装着される複数のインシュレータと、断面が矩形状の導線で構成され、複数のインシュレータのそれぞれに巻回される複数のコイルと、を備えたステータであって、
     前記インシュレータは、
     前記導線が巻回される筒状の導線巻回部と、
     前記導線巻回部の一端に設けられ、前記導線を前記導線巻回部に案内する導線案内溝を有する第1鍔部と、
     前記導線巻回部の他端に設けられた第2鍔部と、を有し、
     前記導線巻回部は、
     前記導線案内溝の底面に連続する第1端面及び前記第1端面と前記ステータの軸方向で互いに対向する第2端面と、
     前記第1端面の周方向端辺から前記第2端面の周方向端辺にかけて設けられ、前記周方向で互いに対向する第1側面及び第2側面と、
     前記導線巻回部のコーナー部に少なくとも設けられ、前記径方向と直交する方向に対して所定の角度をなすように前記導線を前記第1端面に巻回させるための複数の突起と、を有し、
     前記複数の突起は、前記径方向に互いに所定の間隔をあけて設けられ、
     前記突起は、前記第1鍔部に対向する第1面と前記第2鍔部に対向する第2面とを有し、
     前記第1面及び前記第2面の少なくとも一方は、凸状の曲面を有することを特徴とするステータ。
    An annular yoke, a plurality of teeth that are arranged at a predetermined interval in the circumferential direction of the yoke, and extend in the radial direction of the yoke from the inner circumference of the yoke, and are attached to each of the plurality of teeth. A stator comprising a plurality of insulators, a plurality of coils each having a rectangular cross-section and being wound around each of the plurality of insulators,
    The insulator is
    A tubular conductor winding portion around which the conductor wire is wound,
    A first flange portion provided at one end of the conductor winding portion and having a conductor guide groove for guiding the conductor wire to the conductor winding portion;
    A second flange portion provided on the other end of the conductive wire winding portion,
    The conductive wire winding portion,
    A first end surface that is continuous with the bottom surface of the wire guide groove, and a second end surface that opposes the first end surface and the stator in the axial direction of the stator;
    A first side surface and a second side surface that are provided from a circumferential edge of the first end surface to a circumferential edge of the second end surface and that face each other in the circumferential direction;
    A plurality of protrusions which are provided at least at a corner portion of the conductor winding portion and which wind the conductor wire around the first end face so as to form a predetermined angle with respect to a direction orthogonal to the radial direction. Then
    The plurality of protrusions are provided at a predetermined interval from each other in the radial direction,
    The protrusion has a first surface facing the first collar portion and a second surface facing the second collar portion,
    At least one of the first surface and the second surface has a convex curved surface.
  2.  請求項1に記載のステータにおいて、
     前記第1端面と前記第1側面とのコーナー部に設けられた前記突起と、前記第1側面と前記第2端面とのコーナー部に設けられた前記突起とは、それぞれに設けられた前記凸状の曲面が互いに同じ方向を向いていることを特徴とするステータ。
    The stator according to claim 1,
    The protrusion provided at a corner portion between the first end surface and the first side surface and the protrusion provided at a corner portion between the first side surface and the second end surface are the protrusions provided respectively. A stator characterized in that the curved surfaces are in the same direction as each other.
  3.  請求項1に記載のステータにおいて、
     前記第1端面と前記第1側面とのコーナー部に設けられた前記突起と、前記第1側面と前記第2端面とのコーナー部に設けられた前記突起とは、それぞれに設けられた前記凸状の曲面が互いに反対の方向を向いていることを特徴とするステータ。
    The stator according to claim 1,
    The protrusion provided at a corner portion between the first end surface and the first side surface and the protrusion provided at a corner portion between the first side surface and the second end surface are the protrusions provided respectively. A stator characterized in that the curved surfaces are oriented in mutually opposite directions.
  4.  請求項1ないし3のいずれか1項に記載のステータにおいて、
     前記導線巻回部に巻回される1層目の導線は、前記複数の突起に支持されることで、少なくとも前記第1端面に前記所定の角度で巻回されるとともに、前記径方向と所定の傾斜角をなすように前記導線巻回部の表面に傾斜して巻回されていることを特徴とするステータ。
    The stator according to any one of claims 1 to 3,
    The first-layer conductor wire wound around the conductor wire winding portion is supported by the plurality of protrusions and is thereby wound around at least the first end surface at the predetermined angle and at the same time as the radial direction. The stator is wound so as to be inclined on the surface of the conductive wire winding portion so as to form an inclination angle of.
  5.  請求項4に記載のステータにおいて、
     前記導線は前記導線巻回部にn層巻き(nは2以上の整数)されており、
     i層目(iは2以上の整数で、かつi≦n)の導線は、前記第1端面において(i-1)層目の導線から巻き替わり、かつ前記(i-1)層目の導線の上に前記所定の角度と異なる角度で巻回されており、
     前記i層目の導線は、前記(i-1)層目の導線の端面に支持されることで、前記径方向と前記所定の傾斜角をなすように前記(i-1)層目の導線の上に巻回されていることを特徴とするステータ。
    The stator according to claim 4,
    The conductive wire is wound around the conductive wire in n layers (n is an integer of 2 or more),
    The conductor wire of the i-th layer (i is an integer of 2 or more, and i≦n) is rewound from the conductor wire of the (i-1)th layer on the first end face, and is the conductor wire of the (i-1)th layer. Is wound at an angle different from the above predetermined angle,
    The conductor wire of the i-th layer is supported by an end surface of the conductor wire of the (i-1)-th layer so as to form the predetermined inclination angle with the radial direction. A stator characterized by being wound on.
  6.  請求項5に記載のステータにおいて、
     前記導線は、前記第2端面でj層目(jは整数で、1≦j≦n-1)から(j+1)層目に巻き替わることを特徴とするステータ。
    The stator according to claim 5,
    The stator is characterized in that the conductive wire is rewound from the j-th layer (j is an integer, 1≤j≤n-1) to the (j+1)-th layer on the second end face.
  7.  請求項4ないし6のいずれか1項に記載のステータにおいて、
     前記導線巻回部の径方向内側端部には、前記1層目の導線の少なくともk巻き目(kは1層目の導線の巻回数)が配置される予定の部分に所定の高さの段差が設けられており、
     前記段差には少なくとも前記1層目の導線が巻回されていないことを特徴とするステータ。
    The stator according to any one of claims 4 to 6,
    At the radially inner end of the conductive wire winding portion, at least a k-th winding of the first-layer conductive wire (k is the number of windings of the first-layer conductive wire) is to be arranged at a predetermined height. There is a step,
    At least the conductor wire of the first layer is not wound around the step.
  8.  請求項1ないし7のいずれか1項に記載のステータにおいて、
     一のインシュレータに巻回された導線と、前記一のインシュレータと前記周方向に互いに隣り合う別のインシュレータに巻回された導線とは、巻回形状が非対称であることを特徴とするステータ。
    The stator according to any one of claims 1 to 7,
    A stator characterized in that a conducting wire wound around one insulator and a conducting wire wound around another insulator adjacent to the one insulator in the circumferential direction have asymmetric winding shapes.
  9.  請求項8に記載のステータにおいて、
     前記一のインシュレータに巻回された導線と、前記別のインシュレータに巻回された導線とは、それぞれのl巻き目(lは整数で、1≦l≦k;kは1層目の導線の巻回数)において巻回形状が非対称であることを特徴とするステータ。
    The stator according to claim 8,
    The conductor wire wound around the one insulator and the conductor wire wound around the other insulator are the 1st turns (l is an integer, 1≦l≦k; k is the lead wire of the first layer). A stator characterized in that the winding shape is asymmetric with respect to the number of windings.
  10.  請求項1ないし9のいずれか1項に記載のステータにおいて、
     一のインシュレータに巻回され、前記周方向または前記径方向で互いに隣り合う導線の間には、前記導線で発生した熱を外部に放散するための放熱材が充填されていることを特徴とするステータ。
    The stator according to any one of claims 1 to 9,
    A heat radiating material for radiating the heat generated in the conductors to the outside is filled between the conductors that are wound around one insulator and are adjacent to each other in the circumferential direction or the radial direction. Stator.
  11.  請求項1ないし10のいずれか1項に記載のステータにおいて、
     前記ヨークは、複数の分割ヨークが前記周方向で互いに接続されることで構成されており、
     前記ティースは前記複数の分割ヨークのそれぞれに配設されていることを特徴とするステータ。
    The stator according to any one of claims 1 to 10,
    The yoke is configured by connecting a plurality of split yokes to each other in the circumferential direction,
    The stator is characterized in that the teeth are arranged on each of the plurality of split yokes.
  12.  請求項1ないし11のいずれか1項に記載のステータと、
     前記ステータと所定の間隔をあけて設けられたロータと、を少なくとも備え、
     前記導線は前記インシュレータに整列巻きかつ多層巻きされていることを特徴とするモータ。
    A stator according to any one of claims 1 to 11,
    At least a rotor provided at a predetermined interval from the stator,
    The motor is characterized in that the conductor wire is wound around the insulator in a line and in multiple layers.
PCT/JP2019/046253 2018-12-13 2019-11-26 Stator, and motor using the same WO2020121806A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020559090A JP7394396B2 (en) 2018-12-13 2019-11-26 Stator and motor using it
CN201980074791.3A CN113039704B (en) 2018-12-13 2019-11-26 Stator and motor using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-233425 2018-12-13
JP2018233425 2018-12-13

Publications (1)

Publication Number Publication Date
WO2020121806A1 true WO2020121806A1 (en) 2020-06-18

Family

ID=71075480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046253 WO2020121806A1 (en) 2018-12-13 2019-11-26 Stator, and motor using the same

Country Status (3)

Country Link
JP (1) JP7394396B2 (en)
CN (1) CN113039704B (en)
WO (1) WO2020121806A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11336141B2 (en) 2019-03-27 2022-05-17 Yamada Manufacturing Co., Ltd. Insulator
WO2023162257A1 (en) * 2022-02-28 2023-08-31 株式会社Ihi Stator
WO2023234266A1 (en) * 2022-05-31 2023-12-07 株式会社デンソー Stator and rotary electric machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113872347B (en) * 2021-09-26 2024-02-02 河北新四达电机股份有限公司 Stator single tooth structure and assembled stator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273934A (en) * 1998-03-19 1999-10-08 Toyota Motor Corp Sealing material comprising gradient structure in filler concentration, and method for molding the same
JP2006042574A (en) * 2004-07-30 2006-02-09 Honda Motor Co Ltd Coil of rotating electric machine
JP2006115565A (en) * 2004-10-12 2006-04-27 Asmo Co Ltd Insulator, motor, and winding method of winding
JP2012039742A (en) * 2010-08-06 2012-02-23 Toyota Industries Corp Stator of rotary electric machine
JP2018038209A (en) * 2016-09-01 2018-03-08 日立オートモティブシステムズ株式会社 Stator of rotary electric machine and rotary electric machine including the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002209356A (en) * 2001-01-10 2002-07-26 Asmo Co Ltd Brushless motor
US7026739B2 (en) * 2003-05-23 2006-04-11 Honda Motor Co., Ltd Stator and insulating bobbin and a manufacturing method of the stator
JP2014014196A (en) * 2010-12-29 2014-01-23 Nippon Densan Corp Armature, insulator, and motor
JP5421396B2 (en) * 2012-01-13 2014-02-19 ファナック株式会社 Electric motor having an iron core having primary teeth and secondary teeth
JP5110212B1 (en) * 2012-01-31 2012-12-26 株式会社富士通ゼネラル Electric motor
WO2013157291A1 (en) * 2012-04-16 2013-10-24 三菱電機株式会社 Rotating electrical machine armature, insulator therefor, and coil winding device
US10498185B2 (en) * 2015-08-10 2019-12-03 Nidec Corporation Stator and motor
US10432041B2 (en) * 2015-11-04 2019-10-01 Mitsubishi Electric Corporation Stator, motor, compressor, and refrigerating and air-conditioning apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273934A (en) * 1998-03-19 1999-10-08 Toyota Motor Corp Sealing material comprising gradient structure in filler concentration, and method for molding the same
JP2006042574A (en) * 2004-07-30 2006-02-09 Honda Motor Co Ltd Coil of rotating electric machine
JP2006115565A (en) * 2004-10-12 2006-04-27 Asmo Co Ltd Insulator, motor, and winding method of winding
JP2012039742A (en) * 2010-08-06 2012-02-23 Toyota Industries Corp Stator of rotary electric machine
JP2018038209A (en) * 2016-09-01 2018-03-08 日立オートモティブシステムズ株式会社 Stator of rotary electric machine and rotary electric machine including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11336141B2 (en) 2019-03-27 2022-05-17 Yamada Manufacturing Co., Ltd. Insulator
WO2023162257A1 (en) * 2022-02-28 2023-08-31 株式会社Ihi Stator
WO2023234266A1 (en) * 2022-05-31 2023-12-07 株式会社デンソー Stator and rotary electric machine

Also Published As

Publication number Publication date
CN113039704A (en) 2021-06-25
CN113039704B (en) 2024-05-31
JP7394396B2 (en) 2023-12-08
JPWO2020121806A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
WO2020121806A1 (en) Stator, and motor using the same
JP5306411B2 (en) Rotating electric machine
KR960013951B1 (en) Slotless motor
US9601950B2 (en) Permanent magnet motor
US11404930B2 (en) Insulator, and stator and motor comprising same
US20150244233A1 (en) Stator of rotating electric machine
JP2019088139A (en) Stator and dynamoelectric machine
US11355984B2 (en) Insulator, and stator and motor comprising same
US11277048B2 (en) Insulator, and stator and motor comprising same
WO2021131575A1 (en) Coil, stator comprising same, and motor
JP5072502B2 (en) Rotating motor
JP2003009491A (en) Permanent magnet type brushless dc motor
JP2018137836A (en) Stator and rotary electric machine
WO2019142723A1 (en) Insulator, and stator and motor comprising same
JP7347965B2 (en) Stator used in rotating electrical machines
WO2022264588A1 (en) Motor
WO2022254806A1 (en) Rotating electric machine stator and rotating electric machine
WO2019146450A1 (en) Insulator, stator provided with same, and motor
JP2012090486A (en) Stator of rotary electric machine
WO2019146451A1 (en) Insulator, stator provided with same, and motor
WO2019142584A1 (en) Insulator, and stator and motor comprising same
WO2019142589A1 (en) Insulator, and stator and motor comprising said insulator
WO2019142754A1 (en) Insulator, and stator and motor provided with said insulator
JP2023129002A (en) Armature core, armature, and rotating electrical machine
JP2021126025A (en) Stator of rotary electric machine, rotary electric machine, and manufacturing method of the stator of the rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895254

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559090

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19895254

Country of ref document: EP

Kind code of ref document: A1