WO2019142754A1 - Insulator, and stator and motor provided with said insulator - Google Patents

Insulator, and stator and motor provided with said insulator Download PDF

Info

Publication number
WO2019142754A1
WO2019142754A1 PCT/JP2019/000835 JP2019000835W WO2019142754A1 WO 2019142754 A1 WO2019142754 A1 WO 2019142754A1 JP 2019000835 W JP2019000835 W JP 2019000835W WO 2019142754 A1 WO2019142754 A1 WO 2019142754A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
insulator
winding
stator
tooth
Prior art date
Application number
PCT/JP2019/000835
Other languages
French (fr)
Japanese (ja)
Inventor
菱田 光起
博 米田
浩勝 国友
祐一 吉川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019142754A1 publication Critical patent/WO2019142754A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure

Definitions

  • the present invention relates to an insulator around which a coil is wound, a stator provided with the same, and a motor.
  • Patent Document 1 discloses a configuration in which a step or an inclination is provided inside an end of a cylindrical body of an insulating coil bobbin on which a coil is wound or a ridge portion provided at both ends of the cylindrical body to realize an aligned winding coil. Proposed. Further, according to Patent Document 2, a holding groove for holding a wound coil is provided on a side surface of an insulator which is attached to a tooth and which insulates the coil from the tooth. An arrangement for realizing a coil is disclosed.
  • the above-mentioned insulator and coil bobbin are formed by molding a resin material using a mold.
  • the motor performance varies depending on the user's specifications, even if the same stator core and teeth are used, the wire diameter and the number of turns of the coil are changed to adjust the current value etc. supplied to the coil, and the motor performance is adjusted to the individual specifications. Often included.
  • the present invention has been made in view of the foregoing, and an object thereof is to provide an insulator capable of aligning wound coils even when the wire diameter of the coil is changed.
  • the surface treatment is applied to the surface of the coil winding portion around which the final circumference of the first layer coil is wound, and the final circumference is positioned and fixed. .
  • the insulator according to the present invention covers the axial end face of the tooth protruding from the core segment and at least a part of both circumferential side surfaces, and coil winding in which a coil constituted by a winding is wound.
  • a coil a first ridge portion having a coil introduction groove continuously provided on one of a tooth base end side and a tooth tip end side of the coil winding portion and guiding the coil to the coil winding portion;
  • An insulator comprising: a second ridge portion continuously provided on the other of the tooth base end side of the winding portion and the other end side of the tooth, wherein the surface of the coil winding portion near the second ridge portion Is provided with a positioning portion comprising an uneven portion for positioning and fixing the winding to the coil winding portion, the average length of the uneven portion being shorter than the wire diameter of the coil, the arithmetic of the uneven portion Average roughness is Being larger than the arithmetic mean roughness of the surface other than the positioning portion in the yl winding portion.
  • the final circumference of the coil can be positioned and fixed, and the coil can be aligned and wound with the winding wound around the final circumference as a position reference.
  • the aligned winding coil can be realized even when coils having different wire diameters are wound around the insulator.
  • the positioning portion is provided at a position not less than half of the wire diameter of the coil and several times or less of the wire diameter of the coil from the second flange toward the radially outer side.
  • the winding wound around the positioning portion can be securely fixed.
  • arithmetic mean roughness of the said uneven part comprised to the said positioning part is 10 micrometers or more and 100 micrometers or less.
  • the uneven portion provided in the positioning portion may be formed by blasting the surface of the coil winding portion.
  • the uneven portion may be formed by aluminum spraying on the surface of the coil winding portion, or the uneven portion may be formed by etching on the surface of the coil wound portion.
  • the uneven portion can be formed by a simple method, and an increase in the manufacturing cost of the insulator can be suppressed.
  • the final circumference of the first layer of the coil is positioned by the positioning portion, while being in contact with the final circumference of the first layer of the coil, the coil wound around the coil winding portion other than the positioning portion It is preferable that the winding is moved radially outward so that the first layer of the coil is aligned and wound.
  • the winding wound around other than the positioning portion sequentially moves radially outward so that the gap between the windings is eliminated by contacting the final circumference of the coil whose position is fixed.
  • the coil of the first layer can be alignedly wound on the coil winding portion.
  • the insulator is provided on each of axial end faces of the teeth of the core segment, and a stator segment formed by winding a coil formed of a winding around the coil winding portion of the insulator A plurality of the stator segments are connected in an annular shape, and the teeth project radially inward of the annular ring.
  • the coil space factor in the stator can be increased.
  • the coil is wound in multiple layers and aligned around the coil winding portion.
  • a space between the teeth adjacent in the circumferential direction is configured as a slot for accommodating the coil, and an insulating paper for insulating the core segment and the tooth from the coil is covered in the slot so as to cover the side surface of the tooth And it is preferable to arrange
  • the insulator is provided on each of the axial end faces of the teeth of the core segment, and a plurality of stator segments in which a coil made of a winding is wound on the coil winding portion of the insulator
  • a stator including a plurality of stator segments connected in an annular shape, the stator including a configuration in which the teeth project radially inward of the annular ring, and a predetermined distance from the stator radially inward of the stator
  • at least a rotor including an open rotational shaft.
  • the coil space factor in the stator can be increased, and the efficiency of the motor can be improved.
  • FIG. 1 is a top view of a motor according to an embodiment.
  • FIG. 2 is an equivalent circuit diagram of the motor shown in FIG.
  • FIG. 3 is a schematic view of a stator.
  • FIG. 4A is a perspective view showing a portion surrounded by a broken line shown in FIG.
  • FIG. 4B is a side view of the structure shown in FIG. 4A as viewed in the radial direction.
  • FIG. 4C is a side view of the structure shown in FIG. 4A as viewed from the circumferential direction.
  • FIG. 5A is a perspective view showing the main part of the insulator according to one embodiment.
  • FIG. 5B is a schematic view of the insulator as viewed from the axial direction.
  • FIG. 5C is a schematic cross-sectional view taken along line VC-VC in FIG. 5B.
  • FIG. 6 is a schematic view showing a process of aligning and winding coils on an insulator according to an embodiment.
  • FIG. 1 shows a top view showing a motor according to this embodiment
  • FIG. 2 shows an equivalent circuit diagram of the motor shown in FIG. 1
  • FIG. 3 shows a schematic diagram of a stator
  • the stator 4 is a shaft 2
  • FIGS. 1 and 3 show a schematic diagram of a stator
  • the stator 4 is a shaft 2
  • FIGS. 1 and 3 illustration and description of some components and their functions are omitted.
  • the frame and the bus bar are not shown.
  • the insulator 5 is not shown.
  • the exterior body which accommodates the stator 4 is not shown in figure.
  • the shape of the exterior body is, for example, a cylinder made of metal, a substantially rectangular parallelepiped, a substantially rectangular parallelepiped, a polygonal columnar body or the like, and is appropriately selected according to the specification of the motor 1.
  • the components shown in the drawings are also simplified.
  • the insulator 5 shown in FIG. 1 is partially different from the actual shape, and the coils U1 to W4 and their lead terminals 71 shown in FIG.
  • the shape of the is very different.
  • the symbol + indicates the winding start of the coil
  • the symbol ⁇ indicates the winding end of the coil.
  • the longitudinal direction of the shaft 2 may be referred to as an axial direction
  • the radial direction of the stator 4 may be referred to as a radial direction
  • the circumferential direction of the stator 4 may be referred to as a circumferential direction.
  • the side on which the lead terminals 71 of the coils U1 to W4 are provided is referred to as "upper” and the opposite side is referred to as “lower”
  • the side on which the rotor is provided may be referred to as "inside” and the opposite side, that is, the side of the stator core 40 may be referred to as "outside”.
  • the lamination direction of the magnetic steel sheets to be described later and the above axial direction are the same direction and are synonymous.
  • teeth plural type of teeth
  • the plurality of teeth projecting in the center direction of the annular stator core is referred to as teeth (a plurality of teeth).
  • teeth a plurality of teeth
  • one tooth is described as a tooth 42.
  • a plurality of teeth in the core segment 41 described later is referred to as teeth.
  • one tooth portion of the plurality of tooth portions in the core segment 41 is described as a tooth 42.
  • the motor 1 includes a rotor 3 having a shaft 2 which is a rotation shaft of the motor 1, a stator 4 and coils U1 to W4 inside an outer body (not shown).
  • the rotor 3 includes a shaft 2 and magnets 31 in which N poles and S poles are alternately disposed along the outer peripheral direction of the shaft 2 so as to face the stator 4.
  • a neodymium magnet is used as the magnet 31 used for the rotor 3.
  • the material, shape, and material of the neodymium magnet can be appropriately changed according to the output of the motor.
  • the rotor 3 is disposed radially inward of the stator 4 at a constant distance from the stator 4.
  • the stator 4 is a cylindrical body configured by connecting a plurality of stator segments 40a in an annular shape.
  • the insulators 5 are respectively attached to the teeth 42 of the core segment 41 from the upper and lower end faces in the axial direction, and an insulator such as insulating paper 6 is attached between the insulators 5 Windings are wound around the coil winding portion 50 and the arrangement portion of the insulator such as the insulating paper 6 (see FIGS. 4A to 4C) to constitute, for example, the coil U1.
  • the external appearance of the stator segment 40a configured as described above is a columnar body having a substantially sectoral cross-sectional shape.
  • the stator 4 and the stator segment 40 a have a plurality of core segments 41 and teeth 42 projecting radially inward from the inner circumferences of the core segments 41.
  • the core segment 41 is formed by punching a magnetic steel sheet containing silicon or the like as a core segment sheet which forms a part of a substantially annular stator core sheet. It is a layered product which laminated this board (core segment sheet) in multiple layers.
  • the appearance of the core segment 41 configured as described above is a columnar body having a cross-sectional shape that is a piece-like shape that constitutes a part of a substantially annular stator core sheet.
  • the stacking direction of the plate is a normal direction to the plate surface of the plate.
  • the core segment 41 has a yoke portion 41c and a tooth 42 projecting from a substantially central portion of the yoke portion 41c.
  • the core segment 41 has a recess 41a formed on one side of the yoke portion 41c located in the circumferential direction, and a protrusion 41b formed on the other side. Both the recess 41a and the protrusion 41b have an axis in each side. It is formed extending in the entire direction. Focusing on one core segment 41, the convex portion 41b of the core segment 41 adjacent in the circumferential direction fits into the concave portion 41a of the core segment 41, and the convex portion 41b of the core segment 41 extends in the circumferential direction. On the other hand, they are fitted and connected to the recesses 41 a of the adjacent core segments 41.
  • the annularly shaped stator core 40 is configured by the core segments 41 adjacent in the circumferential direction being fitted and connected as described above.
  • interval of the tooth 42 adjacent to the circumferential direction comprises the slot 43.
  • the stator 4 has 12 coils U1 to W4. These coils are attached to each tooth 42 through the insulator 5 and the insulating paper 6 (see FIGS. 4A to 4C). As viewed from the direction, they are disposed in each slot 43.
  • the coils U1 to W4 are each composed of a winding having a circular cross section made of a metal material such as copper with an insulating film applied on the surface, and wound in parallel with the insulator 5 by multilayer winding. It is done.
  • the multi-layer winding refers to a state in which the coil 7 is wound around the insulator 5 in a plurality of layers.
  • circuit means “circular” including processing tolerance of the winding and deformation of the winding when wound around the tooth 42, and the same applies to the following description. Further, in the following description, when one of the coils U1 to W4 is taken up to describe a structure or the like without specifying the coil U1 to W4, the coil 7 is called.
  • the coils U1 to U4, V1 to V4, and W1 to W4 are connected in series, and three phases of U, V, and W phases are star-connected.
  • three U-, V- and W-phase currents having a phase difference of 120 ° in electrical angle with each other are supplied to coils U1 to U4, V1 to V4 and W1 to W4, respectively, and excited to generate a rotating magnetic field.
  • a torque is generated in the rotor 3 by the rotating magnetic field, and the shaft 2 is supported by a bearing (not shown) and rotated.
  • the number of magnetic poles of the rotor 3 is ten in total: five N poles and five S poles facing the stator 4 and the number of slots 43 is twelve, but in particular The present invention is not limited to the above, and may be applied to other combinations of the number of magnetic poles and the number of slots.
  • FIGS. 4A to 4C respectively show a perspective view of a portion surrounded by a broken line in FIG. 1, and a side view seen from the radial direction and the circumferential direction. Note that the illustration of the coil 7 is omitted in FIGS. 4A to 4C for the convenience of description. Further, the insulating paper 6 sandwiched and attached between the insulator 5 and the core segment 41 and the tooth 42 is also illustrated, but shows the state before being folded so as to be accommodated in the slot 43.
  • insulators 5 having the same shape are respectively attached to the teeth 42 projecting from one core segment 41 from the upper and lower end faces in the axial direction, respectively.
  • the insulating paper 6 is sandwiched between the tooth 42 and the insulator 5.
  • the insulators 5 are provided so as to cover both axial end surfaces of the tooth 42 and portions near the both end surfaces.
  • the insulator 5 is an insulating member formed by molding an insulating resin material, and a coil winding portion 50 on which the coil 7 (see FIG. 6) is wound and a first portion formed at one end of the coil winding portion 50. It has a collar 51 and a second collar 52 formed at the other end.
  • the first collar 51 is mounted on the core segment 41 side
  • the second collar 52 is mounted on the tip of the tooth 42 located radially inward of the stator 4.
  • a coil introduction groove 53 (see FIGS.
  • the inner surface 51 a of the first flange portion 51 is a surface provided parallel to a surface orthogonal to the axial upper end surface or the axial lower end surface of the tooth 42.
  • the winding start portion of the coil 7 refers to the vicinity of the first turn of the first layer coil wound around the coil winding portion 50 in the coil 7.
  • a positioning portion 54 is formed on the outer peripheral surfaces 50a to 50d of the coil winding portion 50 (hereinafter may be simply referred to as the surface of the coil winding portion 50) by extending radially outward from the vicinity of the second flange 52. It is done. As described later, the positioning unit 54 is surface-treated so that the arithmetic average roughness Ra (see FIG. 5C) is larger than the surface of the coil winding unit 50 other than the positioning unit 54 (hereinafter referred to as the smooth surface unit 55). Is formed. In addition, coil winding unit 50 is, for example, 0. 0. to maintain electrical insulation between coil 7 and tooth 42. It is formed with a thickness of about several mm to 3 mm.
  • surfaces 50c, 50d covering both circumferential end surfaces of the tooth 42 are formed to be orthogonal to the axial upper end surface of the tooth 42.
  • the term “perpendicular” means “perpendicular” including the processing tolerance of the insulator 5, the processing tolerance of the tooth 42, and the assembly tolerance at the time of attaching the insulator 5 to the tooth 42. It means “parallel” including the processing tolerance of and the assembly tolerance at the time of attaching the insulator 5 to the tooth 42, and the same applies to the following description.
  • the insulator 5 has a function to electrically insulate the core segment 41 and the tooth 42 from the coil 7 together with the insulating paper 6. Further, the insulator 5 has a function of stably maintaining the alignment winding of the coil 7 described later.
  • the insulating paper 6 is impregnated with, for example, an insulating oil, so as to cover both side surfaces of the tooth 42 in the circumferential direction, and in the axial direction with the first and second flange portions 51, 52 of the insulator 5, respectively. It is arranged so as to partially overlap. Further, although not shown, the insulating paper 6 is folded so as to cover the inside of the slot 43 when assembling the motor 1. As a result, the core segment 41 and the tooth 42 and the coil 7 can be electrically isolated from each other, and the core segment 41 and the tooth 42 adjacent in the circumferential direction can be electrically isolated.
  • FIG. 5A shows a perspective view of the main part of the insulator according to the present embodiment
  • FIG. 5B shows a schematic view of the main part of the insulator around which the coil is wound, viewed from the axial direction
  • FIG. 5C shows FIG. The cross section schematic diagram in the VC-VC line in is shown.
  • the insulator 5 shown in FIGS. 5A to 5C is the same as that shown in FIGS. 4A to 4C, the structure of the insulator 5 is simplified and shown in FIGS. 5A to 5C for the convenience of description.
  • the second flange 52 that is, the lower end in the axial direction of the inner surface of the second flange 52, or the vicinity thereof is directed radially outward.
  • a positioning portion 54 is provided with a predetermined width W. As shown to FIG. 5C, it consists of the uneven part 54a formed randomly by the positioning part 54, and the uneven part 54a is formed so that arithmetic mean roughness Ra of the surface may be 2 micrometers or more and 200 micrometers or less.
  • the arithmetic mean roughness Ra ′ of the surface of the smooth surface portion 55 is smaller than the arithmetic mean roughness Ra of the concavo-convex portion 54a, and is about one to several hundredths of several tens of Ra. In, for example, Ra ′ is about 0.25 ⁇ m to 0.30 ⁇ m.
  • the average length L of the concavo-convex portion 54a is a value substantially equal to the arithmetic average roughness Ra, and the average length L is shorter than the wire diameter of the coil 7 wound around the coil winding portion 50. As shown in FIG.
  • the average length L is, for example, the average value of the distance between the convex portion and the convex portion adjacent to the convex portion 54a, or the distance between the concave portion and the concave portion adjacent to the concave It corresponds to the average value of Moreover, it is common that the winding which comprises the coil 7 forms an insulating film in the surface of the electric wire which consists of copper etc. FIG. Therefore, the wire diameter of the coil 7 means the wire diameter including the thickness of the insulating film. In the present embodiment, the wire diameter of the wire used for the coil 7 is about 0.3 mm to 2.3 mm, and the wire diameter of the coil 7 is twice the wire diameter of the wire and the wire diameter of the wire. It becomes a value.
  • the uneven portion 54a is formed.
  • Various methods can be used as surface treatment.
  • the surface of the coil winding portion 50 is covered with a protective material (not shown) except for the portion where the positioning portion 54 is formed.
  • the uneven portion 54a can be formed by blasting the surface not covered by the protective material.
  • Arithmetic mean roughness Ra of the unevenness 54 a can be set to a desired value by adjusting the average particle diameter, the spraying speed, the processing time, and the like of the abrasive to be sprayed.
  • the arithmetic average roughness Ra of the concavo-convex portion 54a can be made a relatively large value. For example, it is possible to set Ra to about several tens of ⁇ m to about 100 ⁇ m.
  • the concavo-convex portion 54 a by performing an etching process on the surface of the comment winding portion 50.
  • the "etching process" referred to here includes both so-called physical etching and chemical etching.
  • the uneven portion 54a can be formed by performing plasma etching using argon gas or the like on the surface of the coil winding portion 50 not covered with a protective material (not shown).
  • the uneven portion 54a can be formed by performing an etching process using a chemical solution on the surface of the coil winding portion 50 which is not covered by the protective material.
  • the uneven portion 54a can be formed by performing surface treatment using a chemical solution containing a strong acid such as concentrated hydrochloric acid or concentrated sulfuric acid.
  • a chemical solution containing a strong acid such as concentrated hydrochloric acid or concentrated sulfuric acid.
  • grooved part 54a is not specifically limited to these methods, According to the value of desired Ra, the material of the insulator 5, etc., another method can be suitably taken. Further, it goes without saying that the protective material is removed after the surface treatment for forming the concavo-convex portion 54a is performed.
  • FIG. 6 is a schematic view of a process in which the coils are wound in alignment on the insulator according to the present embodiment. In addition, in FIG. 6, the process in which the 1st layer of the coil 7 is wound is shown.
  • the coil 7 is first wound around the smooth surface portion 55. As shown in FIG. 6 (b), the winding process proceeds, and the winding of the final circumference of the coil 7 is also wound on the positioning portion 54 (FIG. 6 (c)).
  • the smooth surface portion 55 has a smooth surface to the extent that the coil 7 can move in the radial direction along the surface when the wound winding receives an external force in the radial direction. Therefore, the winding wound on the smooth surface portion 55 is movable radially outward along the surface of the smooth surface portion 55. At this time, the winding wound around the positioning portion 54 is fixed in position as described above.
  • the winding of the final circumference is wound on positioning portion 54, while the winding of the final circumference is positioned and fixed, the outermost of the windings wound on smooth surface portion 55 in the radial direction
  • the winding located at is subjected to a force so as to be pushed radially outward from the winding of the final circumference.
  • the winding wound on the smooth surface portion 55 sequentially moves so as to eliminate the gap between the windings, and the first layer coil 7 is alignedly wound on the coil winding portion 50.
  • the winding wound on the smooth surface portion 55 is moved radially outward in contact with the winding of the final circumference, alignment winding of the coil 7 becomes possible, so the smooth surface portion 55 can be obtained.
  • the coil 7 may not necessarily be wound with an offset as described above.
  • positioning part 54 is naturally formed in the winding arrangement plan position of the final circumference in coil winding part 50. If the radial length of the coil winding portion 50 is an integral multiple of the wire diameter of the coil 7, the positioning portion 54 is formed so as to extend radially outward from the root of the second flange portion 52. On the other hand, when the length in the radial direction of the coil winding portion 50 is different from an integral multiple of the wire diameter of the coil 7, the positioning portion 54 is formed at a position separated from the root of the second flange 52 by these differences. You may
  • the predetermined width W of the positioning portion 54 may be half or more of the wire diameter of the coil 7 to be wound. However, in order to correspond to the coils 7 of different wire diameters, it is preferable that the predetermined width W be equal to or greater than the maximum wire diameter of the coils 7 scheduled for use. Further, in consideration of the process margin and the like in the winding process, the predetermined width W is preferably equal to or less than the width of several turns of the coil 7. Therefore, it is preferable that the positioning portion 54 be provided at a position not less than half of the wire diameter of the coil 7 and several times or less of the wire diameter of the coil 7 radially outward from the second flange 52.
  • the insulator 5 covers the axial end surface of the tooth 42 projecting from the core segment 41 and a part of both side surfaces in the circumferential direction, and the coil 7 formed of a winding is wound.
  • a second flange portion 52 provided continuously on the tip side of the tooth 42 in the coil winding portion 50.
  • Positioning on the surface of the coil winding portion 50 is a winding wire of a final circumference extending radially outward from the vicinity of the root of the second ridge 52 corresponding to the winding end portion of the first layer coil 7 by a predetermined width W
  • a positioning portion 54 composed of an uneven portion 54a to be fixed.
  • a smooth surface portion 55 having a smooth surface to the extent that the winding of the coil 7 can be moved along the radial direction continuously to the positioning portion 54 is provided.
  • the insulator 5 is useful when the single-layer coil or the multilayer coil of two or more layers is aligned.
  • the width W of the positioning portion 54 it is possible to cope with the case where the wire diameter of the coil 7 to be wound is changed.
  • the width W of the positioning portion 54 is approximately several times the maximum wire diameter of the coil 7 scheduled to be used, all the coils 7 scheduled to be used can be accommodated. Therefore, even if the wire diameter of the coil 7 to be wound is changed, as disclosed in Patent Document 2, the width of the holding groove of the coil provided in the insulator is changed, or it is disclosed in Patent Document 1. As described above, it is not necessary to change the width and the inclination angle of the step provided in the insulator, and it is possible to suppress the increase in the manufacturing cost of the insulator 5.
  • the positioning portion 54 can be formed by performing a simple surface treatment, the manufacturing cost of the insulator 5 can be suppressed. Moreover, even if the wire diameter of the coil 7 is changed with respect to the core segment 41 and the tooth 42 of the same specification, one type of insulator 5 can be coped with, and the development cost when developing various motors It can be reduced.
  • the arithmetic average roughness Ra of the concavo-convex portion 54a is preferably 2 ⁇ m or more and 100 ⁇ m or less. Further, from the viewpoint of increasing the friction with the winding, the arithmetic mean roughness Ra of the concavo-convex portion 54a is preferably several tens of ⁇ m, for example, 30 ⁇ m or more, and taking account of ease of formation, arithmetic mean The roughness Ra is more preferably 30 ⁇ m or more and 100 ⁇ m or less.
  • the insulator 5 is what is called a division type insulator and showed the example mounted
  • the coil winding part 50 is cylindrical shape,
  • the integral structure which covers the whole outer peripheral surface of the tooth 42 may be sufficient.
  • the stator 4 has a structure in which the tooth 42 is attached to the core segment 41 later, the insulator 5 having this integrated structure may be used.
  • the insulators 5 mounted on the one tooth 42 from above and below may not have the same shape.
  • the kind of insulator 5 can be decreased by using the thing of the same shape as the insulator 5 with which one tooth 42 is mounted
  • the outer circumferential surfaces 50 a and 50 b of the coil winding portion 50 may be provided substantially parallel to the axial upper end surface of the tooth 42. Further, the inner surface 51 a of the first flange 51 may be provided so as to be inclined radially outward with a surface orthogonal to the axial upper end surface or the axial lower end surface of the tooth 42 as a reference surface.
  • the insulator 5 is mounted on the tooth 42 of the core segment 41, and the coil 7 is wound around the coil winding portion 50 to form the stator segment 40a.
  • a mode may be adopted in which each of the teeth 42 of the stator core is mounted and the coil 7 is wound around the coil winding portion 50.
  • the annular stator core said here is comprised laminating
  • the annular stator core has a plurality of teeth (so-called teeth).
  • the motor 1 of the above embodiment is described for use in an inner rotor type motor, but it goes without saying that the insulator 5 of this embodiment can be applied to another type of motor.
  • two concave grooves are provided at the tip (radially inner end) of the tooth 42.
  • the concave grooves are also referred to as supplemental grooves in, for example, US Pat. No. 6,104,117 and Japanese Patent Application Laid-Open No. 10-42531.
  • the effect of the auxiliary groove suppresses cogging torque and torque ripple in the rotational operation of the rotor 3 of the motor 1, and contributes to the reduction of vibration and noise in the characteristics of the motor.
  • the winding in the said embodiment is also called an electric wire for winding, and is marketed.
  • the conductor portion of the winding or the wire for winding includes copper or aluminum containing unavoidable impurities.
  • the unavoidable impurities mean a trace amount of impurity elements which can not be avoided to be mixed into copper and aluminum during the manufacturing process.
  • unavoidable impurities include As, Bi, Sb, Pb, Fe, S, oxygen and the like.
  • unavoidable impurities are Si, Mn, Ti, V, Zr, Fe, Cu and the like.
  • the conductor portion of the winding is covered with an insulating layer of insulating resin.
  • the insulating resin for example, a polyimide, a polyamideimide, a polyesterimide, a polyesteramide imide, a polyamide, a polyhydantoin, a polyurethane, a polyacetal, an epoxy resin and the like are appropriately selected according to the specification of the motor 1.
  • the cross-sectional shape of the winding may be various, such as approximately square or approximately rectangular.
  • the material component of the magnet 31 in the above embodiment includes at least one of Sc, Y and a lanthanoid element, Fe or Fe and Co, and B.
  • the magnet 31 is a rare earth sintered magnet, and is so-called neodymium sintered magnet or neodymium sintered magnet or the like.
  • the surface layer of the rare earth sintered magnet is provided with a rust prevention film (rust prevention layer) for rust prevention.
  • the insulator according to the present invention can realize an aligned winding coil corresponding to the wire diameter of a coil having a different wire diameter, and therefore is useful for application to a motor or the like that requires high efficiency.
  • Reference Signs List 1 motor 2 shaft 3 rotor 4 stator 5 insulator 6 insulating paper 7 coil 31 magnet 40 stator core 40 a stator segment 41 core segment 41 c yoke portion 42 tooth (tooth) 43 slot 50 coil winding portion 51 first ridge portion 51a inner surface of first ridge portion 51 second ridge portion 53 coil introduction groove 54 positioning portion 54a uneven portion 55 smooth surface portion U1 to W4 coil W radial direction of positioning portion 54 Width of

Abstract

An insulator 5 equipped with: a first flange part 51 provided on the core-segment 41 side of a coil winding part 50 around which a coil 7 is wound, the first flange part 51 having a coil introduction groove 53 for guiding the coil 7 to the coil winding part 50; and a second flange part 52 provided on the tooth 42 tip side. On the surface of the coil winding part 50, a positioning part 54 comprising a protruding/recessed part 54a is provided radially outward from the root of the second flange part 52. The average length of the protruding/recessed part 54a is less than the wire diameter of the coil 7, and the arithmetic average roughness Ra of the protruding/recessed part 54a is greater than the arithmetic average roughness Ra' of a smooth surface part 55, which is a portion of the coil winding part 50 other than the positioning part 54.

Description

インシュレータ及びそれを備えたステータ、モータInsulator, stator provided with the same, motor
 本発明は、コイルが巻回されるインシュレータ及びそれを備えたステータ、モータに関する。 The present invention relates to an insulator around which a coil is wound, a stator provided with the same, and a motor.
 近年、産業、車載用途でモータの需要は高まっている。その中で、モータの効率向上、低コスト化が要望されている。 In recent years, the demand for motors has increased in industrial and automotive applications. Among them, there is a demand for improvement in motor efficiency and cost reduction.
 モータの効率向上手法の一つとして、ステータのスロット内に配置されるコイルの占積率を向上させることが知られている。コイルの占積率を向上させることで、モータの駆動時に、コイルに流れる電流に起因する損失を抑制できる。 It is known to improve the space factor of the coils disposed in the slots of the stator as one method of improving the efficiency of the motor. By improving the space factor of the coil, it is possible to suppress the loss due to the current flowing through the coil when the motor is driven.
 コイルの占積率を向上させる構造として、ステータのティース(teeth)にコイルが整列して巻回された状態である、いわゆる整列巻きコイルが一般に知られており、これを実現するために種々の構成が提案されている(例えば、特許文献1~4参照)。例えば、特許文献1には、コイルが巻回される絶縁コイルボビンの筒体の端部あるいは筒体の両端に設けられた鍔部の内側に段差または傾斜を設けて整列巻きコイルを実現する構成が提案されている。また、特許文献2には、ティース(teeth)に装着され、コイルとティース(teeth)とを絶縁するためのインシュレータの側面に、巻回されたコイルを保持するための保持溝を設けて整列巻きコイルを実現する構成が開示されている。 As a structure for improving the space factor of the coil, a so-called aligned winding coil is generally known, in which the coil is in a state of being aligned and wound around the teeth of the stator. Configurations have been proposed (see, for example, Patent Documents 1 to 4). For example, Patent Document 1 discloses a configuration in which a step or an inclination is provided inside an end of a cylindrical body of an insulating coil bobbin on which a coil is wound or a ridge portion provided at both ends of the cylindrical body to realize an aligned winding coil. Proposed. Further, according to Patent Document 2, a holding groove for holding a wound coil is provided on a side surface of an insulator which is attached to a tooth and which insulates the coil from the tooth. An arrangement for realizing a coil is disclosed.
特開平11-122855号公報Japanese Patent Application Laid-Open No. 11-122855 特開2006-115565号公報JP, 2006-115565, A 米国特許第6356001号明細書U.S. Pat. No. 6,356,001 国際公開第2011/118357号WO 2011/118357
 ところで、一般に、金型を用いて樹脂材料を成形することにより、上記のインシュレータやコイルボビンは形成される。一方、モータ性能はユーザーの仕様によって異なるため、同じステータコアやティースを用いても、コイルの線径や巻き数を変えてコイルに流す電流値等を調整し、モータの性能を個別の仕様に合わせ込む場合が多い。 By the way, generally, the above-mentioned insulator and coil bobbin are formed by molding a resin material using a mold. On the other hand, since the motor performance varies depending on the user's specifications, even if the same stator core and teeth are used, the wire diameter and the number of turns of the coil are changed to adjust the current value etc. supplied to the coil, and the motor performance is adjusted to the individual specifications. Often included.
 しかし、特許文献1や2に開示された従来の構成では、コイルの線径に合わせて保持溝の幅を変更したり、段差の幅や傾斜の角度を変更したりする必要があり、その度に金型を作り直してインシュレータを形成するため、コスト上昇の要因となっていた。 However, in the conventional configurations disclosed in Patent Documents 1 and 2, it is necessary to change the width of the holding groove or to change the width of the step or the inclination angle in accordance with the wire diameter of the coil. In order to form an insulator by re-creating a mold, it has been a factor of cost increase.
 本発明はかかる点に鑑みてなされたもので、その目的は、コイルの線径が変更された場合にも巻回されたコイルを整列巻きにできるインシュレータを提供することにある。 The present invention has been made in view of the foregoing, and an object thereof is to provide an insulator capable of aligning wound coils even when the wire diameter of the coil is changed.
 上記の目的を達成するために、本発明に係るインシュレータは、1層目のコイルの最終周が巻回されるコイル巻回部の表面に表面処理を施し、最終周を位置決め固定するようにした。 In order to achieve the above object, in the insulator according to the present invention, the surface treatment is applied to the surface of the coil winding portion around which the final circumference of the first layer coil is wound, and the final circumference is positioned and fixed. .
 具体的には、本発明に係るインシュレータは、コアセグメントから突出するトゥースの軸方向端面と少なくとも周方向両側面の一部とを覆い、巻線で構成されたコイルが巻回されるコイル巻回部と、該コイル巻回部のトゥース基端側またはトゥース先端側の一方に連続して設けられ、前記コイルを前記コイル巻回部に案内するコイル導入溝を有する第1鍔部と、前記コイル巻回部の前記トゥース基端側または前記トゥース先端側の他方に連続して設けられた第2鍔部とを備えたインシュレータであって、前記第2鍔部近くの前記コイル巻回部の表面には、前記巻線を前記コイル巻回部に位置決め固定する凹凸部からなる位置決め部が設けられており、前記凹凸部の平均長さは前記コイルの線径よりも短く、前記凹凸部の算術平均粗さは前記コイル巻回部における前記位置決め部以外の表面の算術平均粗さよりも大きいことを特徴とする。 Specifically, the insulator according to the present invention covers the axial end face of the tooth protruding from the core segment and at least a part of both circumferential side surfaces, and coil winding in which a coil constituted by a winding is wound. A coil, a first ridge portion having a coil introduction groove continuously provided on one of a tooth base end side and a tooth tip end side of the coil winding portion and guiding the coil to the coil winding portion; An insulator comprising: a second ridge portion continuously provided on the other of the tooth base end side of the winding portion and the other end side of the tooth, wherein the surface of the coil winding portion near the second ridge portion Is provided with a positioning portion comprising an uneven portion for positioning and fixing the winding to the coil winding portion, the average length of the uneven portion being shorter than the wire diameter of the coil, the arithmetic of the uneven portion Average roughness is Being larger than the arithmetic mean roughness of the surface other than the positioning portion in the yl winding portion.
 この構成によれば、コイルの最終周を位置決め固定するとともに、最終周に巻回された巻線を位置基準としてコイルを整列巻きすることができる。また、位置決め部の幅や凹凸部の算術平均粗さを適切に選択することで、異なる線径を有するコイルをインシュレータに巻回した場合にも、整列巻きコイルを実現することができる。 According to this configuration, the final circumference of the coil can be positioned and fixed, and the coil can be aligned and wound with the winding wound around the final circumference as a position reference. In addition, by appropriately selecting the width of the positioning portion and the arithmetic average roughness of the concavo-convex portion, the aligned winding coil can be realized even when coils having different wire diameters are wound around the insulator.
 前記位置決め部は、前記第2鍔部から径方向外側に向けて前記コイルの線径の半分以上、前記コイルの線径の数倍以下の部位に設けられていることが好ましい。 It is preferable that the positioning portion is provided at a position not less than half of the wire diameter of the coil and several times or less of the wire diameter of the coil from the second flange toward the radially outer side.
 この構成によれば、位置決め部に巻回された巻線を確実に固定することができる。 According to this configuration, the winding wound around the positioning portion can be securely fixed.
 また、前記位置決め部に具備する前記凹凸部の算術平均粗さは10μm以上、100μm以下であることが好ましい。 Moreover, it is preferable that arithmetic mean roughness of the said uneven part comprised to the said positioning part is 10 micrometers or more and 100 micrometers or less.
 前記位置決め部に具備する前記凹凸部は、前記コイル巻回部の表面へのブラスト処理により形成されていてもよい。前記凹凸部は、前記コイル巻回部の表面へのアルミ溶射処理により形成されていてもよく、また、前記コイル巻回部の表面へのエッチング処理により前記凹凸部が形成されていてもよい。 The uneven portion provided in the positioning portion may be formed by blasting the surface of the coil winding portion. The uneven portion may be formed by aluminum spraying on the surface of the coil winding portion, or the uneven portion may be formed by etching on the surface of the coil wound portion.
 これらの構成によれば、簡便な方法で凹凸部を形成することができ、インシュレータの製造コスト上昇を抑制できる。 According to these configurations, the uneven portion can be formed by a simple method, and an increase in the manufacturing cost of the insulator can be suppressed.
 前記位置決め部により前記コイルの1層目の最終周が位置決めされる一方、前記コイルの1層目の最終周に当接することで、前記位置決め部以外の前記コイル巻回部に巻回された前記巻線が径方向外側に向かって移動して前記コイルの1層目が整列巻きされるように構成されていることが好ましい。 The final circumference of the first layer of the coil is positioned by the positioning portion, while being in contact with the final circumference of the first layer of the coil, the coil wound around the coil winding portion other than the positioning portion It is preferable that the winding is moved radially outward so that the first layer of the coil is aligned and wound.
 この構成によれば、位置決め部以外に巻回された巻線は、位置が固定されたコイルの最終周に当接することで、巻線間の隙間が無くなるように径方向外側に順次移動して、1層目のコイルをコイル巻回部に対して整列巻きすることができる。 According to this configuration, the winding wound around other than the positioning portion sequentially moves radially outward so that the gap between the windings is eliminated by contacting the final circumference of the coil whose position is fixed. The coil of the first layer can be alignedly wound on the coil winding portion.
 本発明に係るステータは、前記インシュレータを前記コアセグメントの前記トゥースの軸方向端面の各々に具備し、前記インシュレータの前記コイル巻回部に、巻線からなるコイルが巻装されてなるステータセグメントを複数個備え、複数個の前記ステータセグメントを円環形状に接続し、円環の径方向内側に前記トゥースが突出する構成としたことを特徴とする。 In the stator according to the present invention, the insulator is provided on each of axial end faces of the teeth of the core segment, and a stator segment formed by winding a coil formed of a winding around the coil winding portion of the insulator A plurality of the stator segments are connected in an annular shape, and the teeth project radially inward of the annular ring.
 この構成によれば、ステータでのコイル占積率を高めることができる。 According to this configuration, the coil space factor in the stator can be increased.
 前記コイルは前記コイル巻回部に多層巻きかつ整列巻きされていることが好ましい。 It is preferable that the coil is wound in multiple layers and aligned around the coil winding portion.
 周方向に隣り合う前記トゥースの間が前記コイルを収容するスロットとして構成され、前記スロット内に、前記コアセグメント及び前記トゥースと前記コイルとを絶縁する絶縁紙が、前記トゥースの側面を覆うようにかつ、前記インシュレータの前記第1及び第2鍔部と軸方向で一部重なるように配置されていることが好ましい。 A space between the teeth adjacent in the circumferential direction is configured as a slot for accommodating the coil, and an insulating paper for insulating the core segment and the tooth from the coil is covered in the slot so as to cover the side surface of the tooth And it is preferable to arrange | position so that it may overlap with the said 1st and 2nd collar part of the said insulator in an axial direction.
 この構成によればステータの周方向に隣り合うトゥースの間を確実に電気的に絶縁できる。 According to this configuration, electrical insulation can be reliably made between the teeth adjacent in the circumferential direction of the stator.
 本発明のモータは、前記インシュレータを前記コアセグメントの前記トゥースの軸方向端面の各々に具備し、前記インシュレータの前記コイル巻回部に、巻線からなるコイルが巻装されてなるステータセグメントを複数個備え、複数個の前記ステータセグメントを円環形状に接続し、円環の径方向内側に前記トゥースが突出する構成を含むステータと、該ステータの径方向内側に、前記ステータと所定の間隔をあけて配設された回転軸を含むロータと、を少なくとも備えることを特徴とする。 In the motor according to the present invention, the insulator is provided on each of the axial end faces of the teeth of the core segment, and a plurality of stator segments in which a coil made of a winding is wound on the coil winding portion of the insulator A stator including a plurality of stator segments connected in an annular shape, the stator including a configuration in which the teeth project radially inward of the annular ring, and a predetermined distance from the stator radially inward of the stator And at least a rotor including an open rotational shaft.
 この構成によれば、ステータでのコイル占積率を高められ、モータの効率を向上させることができる。 According to this configuration, the coil space factor in the stator can be increased, and the efficiency of the motor can be improved.
 以上説明したように、本発明によれば、異なる線径を有するコイルを巻回した場合にも、巻き乱れの発生を抑制して整列巻きコイルを実現することができる。 As described above, according to the present invention, even when coils having different wire diameters are wound, occurrence of winding disorder can be suppressed, and an aligned winding coil can be realized.
図1は、一実施形態に係るモータの上面図である。FIG. 1 is a top view of a motor according to an embodiment. 図2は、図1に示すモータの等価回路図である。FIG. 2 is an equivalent circuit diagram of the motor shown in FIG. 図3は、ステータの概略模式図である。FIG. 3 is a schematic view of a stator. 図4Aは、図1に示す破線で囲まれた部分を示す斜視図である。FIG. 4A is a perspective view showing a portion surrounded by a broken line shown in FIG. 図4Bは、図4Aに示す構造を径方向から見た側面図である。FIG. 4B is a side view of the structure shown in FIG. 4A as viewed in the radial direction. 図4Cは、図4Aに示す構造を周方向から見た側面図である。FIG. 4C is a side view of the structure shown in FIG. 4A as viewed from the circumferential direction. 図5Aは、一実施形態に係るインシュレータの要部を示す斜視図である。FIG. 5A is a perspective view showing the main part of the insulator according to one embodiment. 図5Bは、インシュレータを軸方向から見た模式図である。FIG. 5B is a schematic view of the insulator as viewed from the axial direction. 図5Cは、図5BにおけるVC-VC線での断面模式図である。FIG. 5C is a schematic cross-sectional view taken along line VC-VC in FIG. 5B. 図6は、一実施形態に係るインシュレータにコイルが整列巻きされる過程を示す模式図である。FIG. 6 is a schematic view showing a process of aligning and winding coils on an insulator according to an embodiment.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでは全くない。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. The following description of the preferred embodiments is merely exemplary in nature and is in no way intended to limit the invention, its applications or its uses.
 (実施形態)
 [モータ及びステータの構成]
 図1は、本実施形態に係るモータを示す上面図を示し、図2は、図1に示すモータの等価回路図を示し、図3はステータの概略模式図を示し、ステータ4をシャフト2の軸方向から見た図を示している。なお、説明の便宜上、図1及び3において、一部の構成部品やその機能については図示及びその説明を省略する。例えば、フレームやバスバー等は図示していない。また、図3において、インシュレータ5は図示していない。また、ステータ4を収容する外装体は、図示していない。この外装体の形状は、例えば、金属からなる円筒、略直方体、略長方体、多角形の柱状体などであり、モータ1の仕様に応じて適宜選択される。また、図示した構成部品についても簡略化しており、例えば、図1に示すインシュレータ5は、実際の形状と一部異なっており、図3に示すコイルU1~W4及びこれらのリード端子71は、実際の形状とは大きく異なっている。また、図2において、符号+はコイルの巻き始めを、符号-はコイルの巻き終わりをそれぞれ示している。
(Embodiment)
[Configuration of motor and stator]
1 shows a top view showing a motor according to this embodiment, FIG. 2 shows an equivalent circuit diagram of the motor shown in FIG. 1, FIG. 3 shows a schematic diagram of a stator, and the stator 4 is a shaft 2 The figure seen from the axial direction is shown. Note that, for convenience of explanation, in FIGS. 1 and 3, illustration and description of some components and their functions are omitted. For example, the frame and the bus bar are not shown. Further, in FIG. 3, the insulator 5 is not shown. Moreover, the exterior body which accommodates the stator 4 is not shown in figure. The shape of the exterior body is, for example, a cylinder made of metal, a substantially rectangular parallelepiped, a substantially rectangular parallelepiped, a polygonal columnar body or the like, and is appropriately selected according to the specification of the motor 1. The components shown in the drawings are also simplified. For example, the insulator 5 shown in FIG. 1 is partially different from the actual shape, and the coils U1 to W4 and their lead terminals 71 shown in FIG. The shape of the is very different. Further, in FIG. 2, the symbol + indicates the winding start of the coil, and the symbol − indicates the winding end of the coil.
 以降の説明において、シャフト2の長手方向を軸方向と呼び、ステータ4の半径方向を径方向と呼び、ステータ4の円周方向を周方向と呼ぶことがある。また、軸方向において、コイルU1~W4のリード端子71が設けられた側を「上」と、その反対側を「下」と呼び、径方向において、ステータ4の中心側、つまり、シャフト2及びロータが設けられた側を「内」と、その反対側、つまり、ステータコア40側を「外」と呼ぶことがある。 In the following description, the longitudinal direction of the shaft 2 may be referred to as an axial direction, the radial direction of the stator 4 may be referred to as a radial direction, and the circumferential direction of the stator 4 may be referred to as a circumferential direction. Further, in the axial direction, the side on which the lead terminals 71 of the coils U1 to W4 are provided is referred to as "upper" and the opposite side is referred to as "lower", and in the radial direction, the center side of the stator 4, that is, the shaft 2 and The side on which the rotor is provided may be referred to as "inside" and the opposite side, that is, the side of the stator core 40 may be referred to as "outside".
 なお、後述する電磁鋼板の積層する方向と、上記の軸方向とは、同方向であり、同義である。 In addition, the lamination direction of the magnetic steel sheets to be described later and the above axial direction are the same direction and are synonymous.
 なお、以降の説明において、ティース(teeth:toothの複数型)又はトゥース(tooth)という用語を使い分けて記す。円環状のステータコアの中心方向に突出する複数の歯部は、ティース(teeth:toothの複数型)と記す。また、ステータコア40の複数の歯部のうち、一つの歯部については、トゥース42と記す。同じく、後述するコアセグメント41における、複数の歯部は、ティースと記す。また、コアセグメント41における、複数の歯部のうち、一つの歯部については、トゥース42と記す。ちなみに、前述の特許文献3、特許文献4などは、ティース及びトゥースという語句の使い分けを記した公知文献である。 In the following description, the term teeth (plural type of teeth) or tooth will be used selectively. The plurality of teeth projecting in the center direction of the annular stator core is referred to as teeth (a plurality of teeth). Further, among the plurality of teeth of the stator core 40, one tooth is described as a tooth 42. Similarly, a plurality of teeth in the core segment 41 described later is referred to as teeth. Further, one tooth portion of the plurality of tooth portions in the core segment 41 is described as a tooth 42. Incidentally, the above-mentioned Patent Document 3 and Patent Document 4 etc. are known documents in which usage of the words "tooth" and "tooth" is described.
 モータ1は、図示しない外装体の内部に、モータ1の回転軸であるシャフト2を有するロータ3と、ステータ4と、コイルU1~W4と、を備えている。 The motor 1 includes a rotor 3 having a shaft 2 which is a rotation shaft of the motor 1, a stator 4 and coils U1 to W4 inside an outer body (not shown).
 ロータ3は、シャフト2と、ステータ4に対向してN極、S極がシャフト2の外周方向に沿って交互に配置された磁石31とを含んでいる。なお、本実施形態で、ロータ3に用いられる磁石31としてネオジム磁石を使用しているが、その材料や形状や材質については、モータの出力等に応じて適宜変更しうる。また、軸方向から見て、ロータ3は、ステータ4の径方向内側に、ステータ4と一定の間隔をあけて配設されている。 The rotor 3 includes a shaft 2 and magnets 31 in which N poles and S poles are alternately disposed along the outer peripheral direction of the shaft 2 so as to face the stator 4. In the present embodiment, a neodymium magnet is used as the magnet 31 used for the rotor 3. However, the material, shape, and material of the neodymium magnet can be appropriately changed according to the output of the motor. Further, when viewed from the axial direction, the rotor 3 is disposed radially inward of the stator 4 at a constant distance from the stator 4.
 ステータ4は、複数のステータセグメント40aを円環状に連結して構成する円筒形状体である。このステータセグメント40aは、コアセグメント41のトゥース42に軸方向の上下の両端面各々から、インシュレータ5をそれぞれ装着し、更に各インシュレータ5間には絶縁紙6等の絶縁体を装着し、インシュレータ5のコイル巻回部50及び絶縁紙6等の絶縁体の配置部分(図4A~図4C参照)には、巻線を巻回して例えばコイルU1を構成する。上述のように構成したステータセグメント40aの外観は、断面形状を略扇形とする柱状体である。 The stator 4 is a cylindrical body configured by connecting a plurality of stator segments 40a in an annular shape. In the stator segment 40a, the insulators 5 are respectively attached to the teeth 42 of the core segment 41 from the upper and lower end faces in the axial direction, and an insulator such as insulating paper 6 is attached between the insulators 5 Windings are wound around the coil winding portion 50 and the arrangement portion of the insulator such as the insulating paper 6 (see FIGS. 4A to 4C) to constitute, for example, the coil U1. The external appearance of the stator segment 40a configured as described above is a columnar body having a substantially sectoral cross-sectional shape.
 ステータ4及びステータセグメント40aは、複数のコアセグメント41と、コアセグメント41のそれぞれの内周から径方向内側に突出するトゥース42とを有している。このコアセグメント41は、ケイ素等を含有した電磁鋼板を、略円環状のステータコア板体(stator core sheet)のうち、その一部分を構成する個片形状とする板体(core segment sheet)として打ち抜き、この板体(core segment sheet)を複数層積層した積層体である。上述のように構成したコアセグメント41の外観は、断面形状を、略円環状のステータコア板体(stator core sheet)の一部分を構成する個片形状とする柱状体である。板体の積層方向は、板体の板面に対して法線方向である。このコアセグメント41は、ヨーク部41cと、このヨーク部41cの略中央部から突出するトゥース42とを有する。 The stator 4 and the stator segment 40 a have a plurality of core segments 41 and teeth 42 projecting radially inward from the inner circumferences of the core segments 41. The core segment 41 is formed by punching a magnetic steel sheet containing silicon or the like as a core segment sheet which forms a part of a substantially annular stator core sheet. It is a layered product which laminated this board (core segment sheet) in multiple layers. The appearance of the core segment 41 configured as described above is a columnar body having a cross-sectional shape that is a piece-like shape that constitutes a part of a substantially annular stator core sheet. The stacking direction of the plate is a normal direction to the plate surface of the plate. The core segment 41 has a yoke portion 41c and a tooth 42 projecting from a substantially central portion of the yoke portion 41c.
 そして、コアセグメント41は周方向に位置するヨーク部41cの一方の側面に凹部41aが、他方の側面に凸部41bがそれぞれ形成されており、凹部41a,凸部41bともに、各側面において、軸方向全体にわたって延びて形成されている。一つのコアセグメント41に着目すると、このコアセグメント41の凹部41aに、周方向の一方で隣接するコアセグメント41の凸部41bが嵌合し、このコアセグメント41の凸部41bが、周方向の他方で隣接するコアセグメント41の凹部41aに嵌合してそれぞれ連結している。このように周方向に隣り合うコアセグメント41がそれぞれ嵌合して連結することにより、円環形状のステータコア40が構成される。 The core segment 41 has a recess 41a formed on one side of the yoke portion 41c located in the circumferential direction, and a protrusion 41b formed on the other side. Both the recess 41a and the protrusion 41b have an axis in each side. It is formed extending in the entire direction. Focusing on one core segment 41, the convex portion 41b of the core segment 41 adjacent in the circumferential direction fits into the concave portion 41a of the core segment 41, and the convex portion 41b of the core segment 41 extends in the circumferential direction. On the other hand, they are fitted and connected to the recesses 41 a of the adjacent core segments 41. The annularly shaped stator core 40 is configured by the core segments 41 adjacent in the circumferential direction being fitted and connected as described above.
 図1,3に示すように、コアセグメント41を連結して、円環形状のステータコア40を構成することにより、ステータコア40の内周に沿って等間隔にトゥース42が配置される。また、周方向に隣り合うトゥース42の各間隔はスロット43を構成している。 As shown in FIGS. 1 and 3, by connecting the core segments 41 to constitute the annular stator core 40, the teeth 42 are arranged at equal intervals along the inner periphery of the stator core 40. Moreover, each space | interval of the tooth 42 adjacent to the circumferential direction comprises the slot 43. As shown in FIG.
 また、ステータ4は、12個のコイルU1~W4を有しており、これらのコイルはインシュレータ5及び絶縁紙6(図4A~図4C参照)を介して各トゥース42に対して装着され、軸方向から見て、各スロット43内に配置されている。なお、図示しないが、コイルU1~W4は、表面に絶縁皮膜が施された銅等の金属材料からなる断面が円形の巻線で構成され、インシュレータ5に対して整列巻きかつ多層巻きで巻回されている。なお、多層巻きとは、インシュレータ5に対してコイル7が複数層巻回された状態をいう。また、「円形」とは巻線の加工公差やトゥース42に巻回したときの巻線の変形を含んで「円形」という意味であり、以降の説明においても同様である。また、以降の説明において、コイルU1~W4を特定せずに、一つを取り上げて構造等を説明する場合にはコイル7と呼ぶこととする。 In addition, the stator 4 has 12 coils U1 to W4. These coils are attached to each tooth 42 through the insulator 5 and the insulating paper 6 (see FIGS. 4A to 4C). As viewed from the direction, they are disposed in each slot 43. Although not shown, the coils U1 to W4 are each composed of a winding having a circular cross section made of a metal material such as copper with an insulating film applied on the surface, and wound in parallel with the insulator 5 by multilayer winding. It is done. The multi-layer winding refers to a state in which the coil 7 is wound around the insulator 5 in a plurality of layers. Further, "circular" means "circular" including processing tolerance of the winding and deformation of the winding when wound around the tooth 42, and the same applies to the following description. Further, in the following description, when one of the coils U1 to W4 is taken up to describe a structure or the like without specifying the coil U1 to W4, the coil 7 is called.
 図2に示すように、コイルU1~U4,V1~V4,W1~W4はそれぞれ直列に接続されており、U,V,W相の3相がスター結線されている。また、互いに電気角で120°の位相差を有するU,V,W相の3相の電流がそれぞれコイルU1~U4,V1~V4,W1~W4に供給されて励磁され、回転磁界が発生する。この回転磁界により、ロータ3にトルクが発生し、シャフト2が図示しない軸受に支持されて回転する。 As shown in FIG. 2, the coils U1 to U4, V1 to V4, and W1 to W4 are connected in series, and three phases of U, V, and W phases are star-connected. In addition, three U-, V- and W-phase currents having a phase difference of 120 ° in electrical angle with each other are supplied to coils U1 to U4, V1 to V4 and W1 to W4, respectively, and excited to generate a rotating magnetic field. . A torque is generated in the rotor 3 by the rotating magnetic field, and the shaft 2 is supported by a bearing (not shown) and rotated.
 なお、本実施形態において、ロータ3の磁極数は、ステータ4に対向するN極が5個、S極が5個の計10極であり、スロット43の数は12個であるが、特にこれに限定されるものではなく、その他の磁極数とスロット数との組合せについても適用できる。 In the present embodiment, the number of magnetic poles of the rotor 3 is ten in total: five N poles and five S poles facing the stator 4 and the number of slots 43 is twelve, but in particular The present invention is not limited to the above, and may be applied to other combinations of the number of magnetic poles and the number of slots.
 [ステータセグメントの要部の構成]
 図4A~4Cは、図1における破線で囲まれた部分の斜視図、径方向及び周方向から見た側面図をそれぞれ示す。なお、説明の便宜上、図4A~4Cにおいて、コイル7の図示を省略している。また、インシュレータ5とコアセグメント41及びトゥース42とに挟み込まれて取り付けられた絶縁紙6も図示しているが、スロット43内に収容されるように折り曲げられる前の状態を示している。
[Configuration of main part of stator segment]
4A to 4C respectively show a perspective view of a portion surrounded by a broken line in FIG. 1, and a side view seen from the radial direction and the circumferential direction. Note that the illustration of the coil 7 is omitted in FIGS. 4A to 4C for the convenience of description. Further, the insulating paper 6 sandwiched and attached between the insulator 5 and the core segment 41 and the tooth 42 is also illustrated, but shows the state before being folded so as to be accommodated in the slot 43.
 図4A~4Cに示すように、一つのコアセグメント41から突出するトゥース42に対し、軸方向の上下の両端面各々から同じ形状を有するインシュレータ5がそれぞれ装着されており、また、コアセグメント41及びトゥース42とインシュレータ5との間に絶縁紙6が挟み込まれている。このように、インシュレータ5は、トゥース42の軸方向両端面と、この両端面近傍部分を覆うように設けられている。 As shown in FIGS. 4A to 4C, insulators 5 having the same shape are respectively attached to the teeth 42 projecting from one core segment 41 from the upper and lower end faces in the axial direction, respectively. The insulating paper 6 is sandwiched between the tooth 42 and the insulator 5. As described above, the insulators 5 are provided so as to cover both axial end surfaces of the tooth 42 and portions near the both end surfaces.
 インシュレータ5は、絶縁性樹脂材料を成形してなる絶縁部材であり、コイル7(図6参照)が巻装されるコイル巻回部50と、コイル巻回部50の一端に形成された第1鍔部51と、他端に形成された第2鍔部52とを有している。本実施形態では、第1鍔部51はコアセグメント41側に装着されており、第2鍔部52はステータ4の径方向内側に位置するトゥース42の先端に装着されている。また、第1鍔部51には、コイル導入溝53(図5A,5B参照)が形成されており、コイル巻回部50にコイルが巻回される際には、コイル7を構成する巻線は、コイル導入溝53を通り、巻き始め部分が第1鍔部51における第2鍔部52に対向する内面51a(以下、第1鍔部51の内面51aという、図5A,5B参照)に接してコイル巻回部50に案内される。第1鍔部51の内面51aは、トゥース42の軸方向上端面または軸方向下端面と直交する面と平行に設けられた面である。なお、本明細書において、コイル7の巻き始め部分とは、コイル7における、コイル巻回部50に巻回された1層目のコイルの1周目近傍をいう。 The insulator 5 is an insulating member formed by molding an insulating resin material, and a coil winding portion 50 on which the coil 7 (see FIG. 6) is wound and a first portion formed at one end of the coil winding portion 50. It has a collar 51 and a second collar 52 formed at the other end. In the present embodiment, the first collar 51 is mounted on the core segment 41 side, and the second collar 52 is mounted on the tip of the tooth 42 located radially inward of the stator 4. In addition, a coil introduction groove 53 (see FIGS. 5A and 5B) is formed in the first collar portion 51, and when the coil is wound around the coil winding portion 50, the winding constituting the coil 7 Is in contact with the inner surface 51a (hereinafter referred to as the inner surface 51a of the first collar 51, see FIGS. 5A and 5B) which passes through the coil introduction groove 53 and whose winding start portion faces the second collar 52 in the first collar 51. Is guided to the coil winding unit 50. The inner surface 51 a of the first flange portion 51 is a surface provided parallel to a surface orthogonal to the axial upper end surface or the axial lower end surface of the tooth 42. In the present specification, the winding start portion of the coil 7 refers to the vicinity of the first turn of the first layer coil wound around the coil winding portion 50 in the coil 7.
 コイル巻回部50の外周面50a~50d(以下、単にコイル巻回部50の表面と呼ぶことがある)には、第2鍔部52の近傍から径方向外側に延びて位置決め部54が形成されている。後述するように、位置決め部54は、位置決め部54以外のコイル巻回部50の表面(以下、平滑表面部55という)よりも算術平均粗さRa(図5C参照)が大きくなるように表面処理が施されて形成されている。また、コイル巻回部50は、コイル7とトゥース42との電気的絶縁を保つために、例えば、0.数mm~3mm程度の厚みで形成されている。 A positioning portion 54 is formed on the outer peripheral surfaces 50a to 50d of the coil winding portion 50 (hereinafter may be simply referred to as the surface of the coil winding portion 50) by extending radially outward from the vicinity of the second flange 52. It is done. As described later, the positioning unit 54 is surface-treated so that the arithmetic average roughness Ra (see FIG. 5C) is larger than the surface of the coil winding unit 50 other than the positioning unit 54 (hereinafter referred to as the smooth surface unit 55). Is formed. In addition, coil winding unit 50 is, for example, 0. 0. to maintain electrical insulation between coil 7 and tooth 42. It is formed with a thickness of about several mm to 3 mm.
 また、コイル巻回部50の外周面のうち、トゥース42の周方向両端面を覆う表面50c,50dは、トゥース42の軸方向上端面に対して直交するように形成されている。なお、「直交」とはインシュレータ5の加工公差やトゥース42の加工公差、またインシュレータ5をトゥース42に装着する際の組立公差を含んで「直交」という意味であり、「平行」とはインシュレータ5の加工公差やトゥース42にインシュレータ5を装着する際の組立公差を含んで「平行」という意味であり、以降の説明においても同様である。 Further, among the outer peripheral surfaces of the coil winding portion 50, surfaces 50c, 50d covering both circumferential end surfaces of the tooth 42 are formed to be orthogonal to the axial upper end surface of the tooth 42. The term “perpendicular” means “perpendicular” including the processing tolerance of the insulator 5, the processing tolerance of the tooth 42, and the assembly tolerance at the time of attaching the insulator 5 to the tooth 42. It means “parallel” including the processing tolerance of and the assembly tolerance at the time of attaching the insulator 5 to the tooth 42, and the same applies to the following description.
 インシュレータ5は、絶縁紙6とともに、コアセグメント41及びトゥース42とコイル7とを電気的に絶縁する機能を有している。また、インシュレータ5は、後述するコイル7の整列巻きを安定して維持する機能を有している。 The insulator 5 has a function to electrically insulate the core segment 41 and the tooth 42 from the coil 7 together with the insulating paper 6. Further, the insulator 5 has a function of stably maintaining the alignment winding of the coil 7 described later.
 絶縁紙6は、例えば、絶縁性の油が含浸されており、トゥース42の周方向の両側面を覆うように、また、インシュレータ5の第1及び第2鍔部51,52と軸方向でそれぞれ一部重なるように配設されている。また、図示しないが、モータ1を組み立てるにあたって、絶縁紙6は、それぞれ折り曲げられて、スロット43内を覆うように配設されている。このことにより、コアセグメント41及びトゥース42とコイル7とを電気的に絶縁するとともに、周方向に隣り合うコアセグメント41及びトゥース42間を電気的に絶縁できる。 The insulating paper 6 is impregnated with, for example, an insulating oil, so as to cover both side surfaces of the tooth 42 in the circumferential direction, and in the axial direction with the first and second flange portions 51, 52 of the insulator 5, respectively. It is arranged so as to partially overlap. Further, although not shown, the insulating paper 6 is folded so as to cover the inside of the slot 43 when assembling the motor 1. As a result, the core segment 41 and the tooth 42 and the coil 7 can be electrically isolated from each other, and the core segment 41 and the tooth 42 adjacent in the circumferential direction can be electrically isolated.
 [インシュレータの要部の構成]
 図5Aは、本実施形態に係るインシュレータの要部の斜視図を示し、図5Bは、コイルが巻回されたインシュレータの要部を軸方向から見た模式図を示し、図5Cは、図5BにおけるVC-VC線での断面模式図を示す。なお、図5A~5Cに示すインシュレータ5は、図4A~4Cに示すのと同じであるが、説明の便宜上、図5A~5Cにおいて、インシュレータ5の構造は簡略化して図示している。
[Configuration of main part of insulator]
FIG. 5A shows a perspective view of the main part of the insulator according to the present embodiment, FIG. 5B shows a schematic view of the main part of the insulator around which the coil is wound, viewed from the axial direction, and FIG. 5C shows FIG. The cross section schematic diagram in the VC-VC line in is shown. Although the insulator 5 shown in FIGS. 5A to 5C is the same as that shown in FIGS. 4A to 4C, the structure of the insulator 5 is simplified and shown in FIGS. 5A to 5C for the convenience of description.
 図5A~5Cに示すように、インシュレータ5のコイル巻回部50には、第2鍔部52、つまり、第2鍔部52の内面の軸方向下端、またはその近傍から径方向外側に向かって所定の幅Wで位置決め部54が設けられている。図5Cに示すように、位置決め部54ランダムに形成された凹凸部54aからなり、凹凸部54aは表面の算術平均粗さRaが2μm以上、200μm以下になるように形成されている。一方、平滑表面部55の表面の算術平均粗さRa’は、凹凸部54aの算術平均粗さRaよりも小さく、Raの数十分の1から数百分の1程度であり、本実施形態においては、例えば、Ra’は、0.25μm~0.30μm程度である。また、凹凸部54aの平均長さLは、算術平均粗さRaと同程度の値であり、コイル巻回部50に巻回されるコイル7の線径よりも平均長さLが短い。なお、図5Cに示すように、平均長さLは、例えば、凹凸部54aのうち、凸部とこれに隣接する凸部との間隔の平均値、あるいは凹部とこれに隣接する凹部との間隔の平均値に相当する。また、コイル7を構成する巻線は、銅等からなる電線の表面に絶縁皮膜を形成してなるのが一般的である。よって、コイル7の線径という場合には、絶縁皮膜の厚みも含めた線径をいう。本実施形態において、コイル7に使用される電線の線径は、0.3mm~2.3mm程度であり、コイル7の線径は、電線の線径に絶縁皮膜の厚みの2倍を加えた値となる。 As shown in FIGS. 5A to 5C, in the coil winding portion 50 of the insulator 5, the second flange 52, that is, the lower end in the axial direction of the inner surface of the second flange 52, or the vicinity thereof is directed radially outward. A positioning portion 54 is provided with a predetermined width W. As shown to FIG. 5C, it consists of the uneven part 54a formed randomly by the positioning part 54, and the uneven part 54a is formed so that arithmetic mean roughness Ra of the surface may be 2 micrometers or more and 200 micrometers or less. On the other hand, the arithmetic mean roughness Ra ′ of the surface of the smooth surface portion 55 is smaller than the arithmetic mean roughness Ra of the concavo-convex portion 54a, and is about one to several hundredths of several tens of Ra. In, for example, Ra ′ is about 0.25 μm to 0.30 μm. Further, the average length L of the concavo-convex portion 54a is a value substantially equal to the arithmetic average roughness Ra, and the average length L is shorter than the wire diameter of the coil 7 wound around the coil winding portion 50. As shown in FIG. 5C, the average length L is, for example, the average value of the distance between the convex portion and the convex portion adjacent to the convex portion 54a, or the distance between the concave portion and the concave portion adjacent to the concave It corresponds to the average value of Moreover, it is common that the winding which comprises the coil 7 forms an insulating film in the surface of the electric wire which consists of copper etc. FIG. Therefore, the wire diameter of the coil 7 means the wire diameter including the thickness of the insulating film. In the present embodiment, the wire diameter of the wire used for the coil 7 is about 0.3 mm to 2.3 mm, and the wire diameter of the coil 7 is twice the wire diameter of the wire and the wire diameter of the wire. It becomes a value.
 コイル巻回部50の表面に対して表面処理を行うことにより、凹凸部54aは形成される。表面処理として種々の方法を用いることができる。例えば、位置決め部54が形成される部分を除いてコイル巻回部50の表面を保護材(図示せず)で覆う。保護材に覆われていない表面に対してブラスト処理を行うことにより凹凸部54aを形成することができる。吹き付けられる研磨材の平均粒径や吹き付け速度や処理時間等を調整することにより、凹凸54aの算術平均粗さRaを所望の値とすることができる。また、保護材に覆われていないコイル巻回部50の表面に対してアルミ粒子を溶射して凹凸部54aを形成することができる。アルミ溶射処理を行うことで、凹凸部54aの算術平均粗さRaを比較的大きな値とすることができ、例えば、Raを数十μm~100μm程度とすることも可能である。 By performing surface treatment on the surface of the coil winding portion 50, the uneven portion 54a is formed. Various methods can be used as surface treatment. For example, the surface of the coil winding portion 50 is covered with a protective material (not shown) except for the portion where the positioning portion 54 is formed. The uneven portion 54a can be formed by blasting the surface not covered by the protective material. Arithmetic mean roughness Ra of the unevenness 54 a can be set to a desired value by adjusting the average particle diameter, the spraying speed, the processing time, and the like of the abrasive to be sprayed. In addition, it is possible to thermally spray the aluminum particles on the surface of the coil winding portion 50 not covered by the protective material to form the uneven portion 54a. By performing the aluminum spraying process, the arithmetic average roughness Ra of the concavo-convex portion 54a can be made a relatively large value. For example, it is possible to set Ra to about several tens of μm to about 100 μm.
 なお、コメント巻回部50の表面に対してエッチング処理を行うことにより、凹凸部54aを形成することも可能である。ここでいう「エッチング処理」には、いわゆる、物理エッチングと化学エッチングの両方が含まれる。物理エッチングの例として、図示しない保護材に覆われていないコイル巻回部50の表面に対してアルゴンガス等を用いたプラズマエッチングを行うことにより、凹凸部54aを形成することができる。また、化学エッチングの例として、保護材に覆われていないコイル巻回部50の表面に対して薬液を用いたエッチング処理を行うことにより、凹凸部54aを形成することができる。インシュレータ5の材質が、例えばポリアミド系樹脂であれば、濃塩酸や濃硫酸等の強酸を含む薬液を用いて表面処理を行うことで、凹凸部54aを形成することができる。なお、凹凸部54aの形成方法はこれらの手法に特に限定されず、所望のRaの値やインシュレータ5の材質等により適宜、他の方法を採りうる。また、凹凸部54aを形成するための表面処理が施された後に保護材が除去されることは言うまでもない。 It is also possible to form the concavo-convex portion 54 a by performing an etching process on the surface of the comment winding portion 50. The "etching process" referred to here includes both so-called physical etching and chemical etching. As an example of physical etching, the uneven portion 54a can be formed by performing plasma etching using argon gas or the like on the surface of the coil winding portion 50 not covered with a protective material (not shown). Further, as an example of the chemical etching, the uneven portion 54a can be formed by performing an etching process using a chemical solution on the surface of the coil winding portion 50 which is not covered by the protective material. If the material of the insulator 5 is, for example, a polyamide resin, the uneven portion 54a can be formed by performing surface treatment using a chemical solution containing a strong acid such as concentrated hydrochloric acid or concentrated sulfuric acid. In addition, the formation method of the uneven | corrugated | grooved part 54a is not specifically limited to these methods, According to the value of desired Ra, the material of the insulator 5, etc., another method can be suitably taken. Further, it goes without saying that the protective material is removed after the surface treatment for forming the concavo-convex portion 54a is performed.
 図6は、本実施形態に係るインシュレータにコイルが整列巻きされる過程の模式図を示す。なお、図6において、コイル7の1層目が巻回される過程を示している。 FIG. 6 is a schematic view of a process in which the coils are wound in alignment on the insulator according to the present embodiment. In addition, in FIG. 6, the process in which the 1st layer of the coil 7 is wound is shown.
 図6の(a)図に示すように、コイル7は、まず平滑表面部55に対して巻回される。図6の(b)図に示すように巻回工程を進めていき、さらに、位置決め部54にもコイル7の最終周の巻線が巻き回される(図6の(c)図)。 As shown in FIG. 6A, the coil 7 is first wound around the smooth surface portion 55. As shown in FIG. 6 (b), the winding process proceeds, and the winding of the final circumference of the coil 7 is also wound on the positioning portion 54 (FIG. 6 (c)).
 ここで、平滑表面部55の算術平均粗さRa’は、凹凸部54aの算術平均粗さRaよりも小さいため、巻線と平滑表面部55との間に生じる摩擦も、巻線と位置決め部54との間に生じる摩擦よりも小さくなる。つまり、平滑表面部55は、巻回された巻線が径方向に外力を受けた場合に、その表面に沿ってコイル7が径方向に移動可能な程度に平滑な表面を有している。従って、平滑表面部55に巻回された巻線は、平滑表面部55の表面に沿って径方向外側に移動可能である。このとき、位置決め部54に巻回された巻線は、前述の通り、位置が固定されている。よって、位置決め部54に最終周の巻線が巻回されるときに、最終周の巻線が位置決め固定される一方、平滑表面部55に巻回された巻線のうち、径方向で最も外側に位置する巻線は、最終周の巻線から径方向外側に押し込まれるように力を受ける。これによって、平滑表面部55に巻回された巻線は、巻線間の隙間が無くなるように順次移動して、1層目のコイル7がコイル巻回部50に対して整列巻きされる。なお、最終周の巻線に当接して、平滑表面部55に巻回された巻線が径方向外側に向かって移動することで、コイル7の整列巻きが可能となるため、平滑表面部55に巻回された巻線に対して径方向外側に外力が加わるような巻回条件であれば、必ずしも前述したようにオフセットを付けてコイル7を巻き回さなくてもよい。 Here, since the arithmetic mean roughness Ra ′ of the smooth surface portion 55 is smaller than the arithmetic mean roughness Ra of the concavo-convex portion 54 a, the friction generated between the winding and the smooth surface portion 55 also corresponds to the winding and the positioning portion It is smaller than the friction that occurs between it and 54. That is, the smooth surface portion 55 has a smooth surface to the extent that the coil 7 can move in the radial direction along the surface when the wound winding receives an external force in the radial direction. Therefore, the winding wound on the smooth surface portion 55 is movable radially outward along the surface of the smooth surface portion 55. At this time, the winding wound around the positioning portion 54 is fixed in position as described above. Therefore, when the winding of the final circumference is wound on positioning portion 54, while the winding of the final circumference is positioned and fixed, the outermost of the windings wound on smooth surface portion 55 in the radial direction The winding located at is subjected to a force so as to be pushed radially outward from the winding of the final circumference. As a result, the winding wound on the smooth surface portion 55 sequentially moves so as to eliminate the gap between the windings, and the first layer coil 7 is alignedly wound on the coil winding portion 50. In addition, since the winding wound on the smooth surface portion 55 is moved radially outward in contact with the winding of the final circumference, alignment winding of the coil 7 becomes possible, so the smooth surface portion 55 can be obtained. As long as an external force is applied to the winding wound in the radial direction with respect to the wound winding, the coil 7 may not necessarily be wound with an offset as described above.
 なお、最終周の巻線を位置決め固定する必要があるため、位置決め部54は、当然、コイル巻回部50における最終周の巻線配置予定位置に形成される。コイル巻回部50の径方向の長さがコイル7の線径の整数倍であれば、位置決め部54は、第2鍔部52の根元から径方向外側に延びて形成される。一方、コイル巻回部50の径方向の長さがコイル7の線径の整数倍と異なる場合は、第2鍔部52の根元からこれらの差分だけ離れた位置に位置決め部54を形成するようにしてもよい。 Since it is necessary to position and fix the winding of the final circumference, positioning part 54 is naturally formed in the winding arrangement plan position of the final circumference in coil winding part 50. If the radial length of the coil winding portion 50 is an integral multiple of the wire diameter of the coil 7, the positioning portion 54 is formed so as to extend radially outward from the root of the second flange portion 52. On the other hand, when the length in the radial direction of the coil winding portion 50 is different from an integral multiple of the wire diameter of the coil 7, the positioning portion 54 is formed at a position separated from the root of the second flange 52 by these differences. You may
 また、最終周の巻線を位置決め固定するためには、位置決め部54の所定の幅Wは、巻回されるコイル7の線径の半分以上であればよい。ただし、異なる線径のコイル7に対応するためには、所定の幅Wを、使用が予定されるコイル7のうちの最大線径以上にすることが好ましい。また、巻線工程での工程余裕度等を考慮すると、所定の幅Wは、コイル7の数巻き分の幅以下であることが好ましい。従って、位置決め部54は、第2鍔部52から径方向外側に向けてコイル7の線径の半分以上、コイル7の線径の数倍以下の部位に設けられているのが好ましい。 Further, in order to position and fix the winding of the final circumference, the predetermined width W of the positioning portion 54 may be half or more of the wire diameter of the coil 7 to be wound. However, in order to correspond to the coils 7 of different wire diameters, it is preferable that the predetermined width W be equal to or greater than the maximum wire diameter of the coils 7 scheduled for use. Further, in consideration of the process margin and the like in the winding process, the predetermined width W is preferably equal to or less than the width of several turns of the coil 7. Therefore, it is preferable that the positioning portion 54 be provided at a position not less than half of the wire diameter of the coil 7 and several times or less of the wire diameter of the coil 7 radially outward from the second flange 52.
 [効果等]
 以上説明したように、本実施形態に係るインシュレータ5は、コアセグメント41から突出するトゥース42の軸方向一端面と周方向両側面の一部とを覆い、巻線からなるコイル7が巻回されるコイル巻回部50と、コイル巻回部50におけるトゥース42の基端側に連続して設けられ、コイル7をコイル巻回部50に案内するコイル導入溝53を有する第1鍔部51と、コイル巻回部50におけるトゥース42の先端側に連続して設けられた第2鍔部52とを備えている。
[Effects, etc.]
As described above, the insulator 5 according to the present embodiment covers the axial end surface of the tooth 42 projecting from the core segment 41 and a part of both side surfaces in the circumferential direction, and the coil 7 formed of a winding is wound. A coil winding portion 50, and a first ridge portion 51 having a coil introduction groove 53 continuously provided on the base end side of the tooth 42 in the coil winding portion 50 and guiding the coil 7 to the coil winding portion 50; And a second flange portion 52 provided continuously on the tip side of the tooth 42 in the coil winding portion 50.
 コイル巻回部50の表面には、1層目のコイル7の巻き終わり部分に対応する第2鍔部52の根元近傍から径方向外側に所定の幅Wで延びる、最終周の巻線を位置決め固定する凹凸54a部からなる位置決め部54が設けられている。また、コイル巻回部50の表面には、位置決め部54に連続してコイル7の巻線が径方向に沿って移動可能な程度に平滑な表面を有する平滑表面部55が設けられている。 Positioning on the surface of the coil winding portion 50 is a winding wire of a final circumference extending radially outward from the vicinity of the root of the second ridge 52 corresponding to the winding end portion of the first layer coil 7 by a predetermined width W There is provided a positioning portion 54 composed of an uneven portion 54a to be fixed. Further, on the surface of the coil winding portion 50, a smooth surface portion 55 having a smooth surface to the extent that the winding of the coil 7 can be moved along the radial direction continuously to the positioning portion 54 is provided.
 これにより、コイル7の巻回時に、位置が固定された最終周の巻線から径方向外側に押し出されたコイル7が平滑表面部55に沿って移動することで、コイル7がコイル巻回部50に対して整列巻きされる。このように、1層巻きまたは2層以上の多層巻きのコイル7を整列巻きにする場合に、本実施形態に係るインシュレータ5は有用である。 Thus, when the coil 7 is wound, the coil 7 pushed radially outward from the final fixed winding whose position is fixed moves along the smooth surface portion 55, whereby the coil 7 is wound around the coil. It is aligned winding to 50. As described above, the insulator 5 according to the present embodiment is useful when the single-layer coil or the multilayer coil of two or more layers is aligned.
 また、位置決め部54の幅Wを適切に選択することで、巻回されるコイル7の線径が変更された場合にも対応可能である。例えば、位置決め部54の幅Wを、使用が予定されるコイル7の最大線径の数倍程度とすれば、使用予定のコイル7の全てに対応できる。よって、巻回されるコイル7の線径が変更されても、特許文献2に開示されたように、インシュレータに設けられたコイルの保持溝の幅を変更したり、特許文献1に開示されたように、インシュレータに設けられた段差の幅や傾斜の角度を変更したりする必要がなく、インシュレータ5の製造コストが上昇するのを抑制できる。さらに、簡便な表面処理を行うことで位置決め部54を形成できるため、インシュレータ5の製造コストを抑制できる。また、同じ仕様のコアセグメント41及びトゥース42に対して、コイル7の線径が変更された場合にも1種類のインシュレータ5で対応することができ、種々のモータを開発する際の開発コストを低減できる。 In addition, by appropriately selecting the width W of the positioning portion 54, it is possible to cope with the case where the wire diameter of the coil 7 to be wound is changed. For example, if the width W of the positioning portion 54 is approximately several times the maximum wire diameter of the coil 7 scheduled to be used, all the coils 7 scheduled to be used can be accommodated. Therefore, even if the wire diameter of the coil 7 to be wound is changed, as disclosed in Patent Document 2, the width of the holding groove of the coil provided in the insulator is changed, or it is disclosed in Patent Document 1. As described above, it is not necessary to change the width and the inclination angle of the step provided in the insulator, and it is possible to suppress the increase in the manufacturing cost of the insulator 5. Furthermore, since the positioning portion 54 can be formed by performing a simple surface treatment, the manufacturing cost of the insulator 5 can be suppressed. Moreover, even if the wire diameter of the coil 7 is changed with respect to the core segment 41 and the tooth 42 of the same specification, one type of insulator 5 can be coped with, and the development cost when developing various motors It can be reduced.
 (その他の実施形態)
 上記実施形態において、コイル7をトゥース42の基端側であるコアセグメント41側に位置する第1鍔部51から巻き始める例について説明したが、特にこれに限定されず、トゥース42の先端側に位置する第2鍔部52から巻き始めてもよい。この場合は、第2鍔部52にコイル導入溝53が設けられ、位置決め部54は第1鍔部51の根元近傍から所定の幅Wで形成されることになる。
(Other embodiments)
In the above embodiment, an example in which the coil 7 is started from the first ridge 51 located on the core segment 41 side which is the base end side of the tooth 42 has been described, but it is not particularly limited thereto. You may start winding from the 2nd ridge 52 located. In this case, the coil introduction groove 53 is provided in the second ridge 52, and the positioning portion 54 is formed with a predetermined width W from the vicinity of the root of the first ridge 51.
 なお、凹凸部54aを簡便に形成する観点からは、凹凸部54aの算術平均粗さRaは、2μm以上、100μm以下であることが好ましい。また、巻線との摩擦を大きくする観点からは、凹凸部54aの算術平均粗さRaは、数十μm、例えば、30μm以上であることが好ましく、形成の容易性を加味すれば、算術平均粗さRaは30μm以上、100μm以下であることがさらに好ましい。 From the viewpoint of easily forming the concavo-convex portion 54a, the arithmetic average roughness Ra of the concavo-convex portion 54a is preferably 2 μm or more and 100 μm or less. Further, from the viewpoint of increasing the friction with the winding, the arithmetic mean roughness Ra of the concavo-convex portion 54a is preferably several tens of μm, for example, 30 μm or more, and taking account of ease of formation, arithmetic mean The roughness Ra is more preferably 30 μm or more and 100 μm or less.
 また、コイル7の巻回方法については特に限定されず、一般的なノズル巻線方法やフライヤー巻線方法等を用いることができる。 Moreover, it does not specifically limit about the winding method of the coil 7, A general nozzle winding method, a flyer winding method, etc. can be used.
 また、インシュレータ5が、いわゆる分割タイプのインシュレータであり、トゥース42の軸方向上下方向からそれぞれ装着される例を示したが、特にこれに限定されず、コイル巻回部50が筒形状であり、トゥース42の全外周面を覆う一体構造であってもよい。例えば、ステータ4が、コアセグメント41に後からトゥース42を装着する構造である場合は、この一体構造のインシュレータ5を用いてもよい。また、一つのトゥース42に上下から装着されるインシュレータ5は同じ形状でなくてもよい。なお、一つのトゥース42に上下から装着されるインシュレータ5として同じ形状のものを用いることで、インシュレータ5の種類を少なくでき、製造コスト等を低減できる。 Moreover, although the insulator 5 is what is called a division type insulator and showed the example mounted | worn from the axial direction up-down direction of the tooth 42 respectively, it is not specifically limited to this, The coil winding part 50 is cylindrical shape, The integral structure which covers the whole outer peripheral surface of the tooth 42 may be sufficient. For example, when the stator 4 has a structure in which the tooth 42 is attached to the core segment 41 later, the insulator 5 having this integrated structure may be used. Further, the insulators 5 mounted on the one tooth 42 from above and below may not have the same shape. In addition, the kind of insulator 5 can be decreased by using the thing of the same shape as the insulator 5 with which one tooth 42 is mounted | worn from the upper and lower sides, and manufacturing cost etc. can be reduced.
 なお、コイル巻回部50の外周面50a,50bはそれぞれ、トゥース42の軸方向上端面と略平行に設けられていてもよい。また、第1鍔部51の内面51aは、トゥース42の軸方向上端面または軸方向下端面と直交する面を基準面として径方向外側に傾斜するように設けられていてもよい。 The outer circumferential surfaces 50 a and 50 b of the coil winding portion 50 may be provided substantially parallel to the axial upper end surface of the tooth 42. Further, the inner surface 51 a of the first flange 51 may be provided so as to be inclined radially outward with a surface orthogonal to the axial upper end surface or the axial lower end surface of the tooth 42 as a reference surface.
 また、上記実施形態において、インシュレータ5をコアセグメント41のトゥース42に装着し、コイル巻回部50にコイル7を巻き回して、ステータセグメント40aを構成する態様を説明したが、インシュレータ5を円環状のステータコアのトゥース42の各々に装着し、コイル巻回部50にコイル7を巻き回す態様を採用しても良い。なお、ここで言う円環状のステータコアとは、電磁鋼板を円環状に打ち抜いた板体を積層して構成するものである。また、この円環状のステータコアは、複数の歯部(所謂、ティース(teeth))を有するものである。 In the above embodiment, the insulator 5 is mounted on the tooth 42 of the core segment 41, and the coil 7 is wound around the coil winding portion 50 to form the stator segment 40a. A mode may be adopted in which each of the teeth 42 of the stator core is mounted and the coil 7 is wound around the coil winding portion 50. In addition, the annular stator core said here is comprised laminating | stacking the board which pierce | punched the electromagnetic steel plate in annular shape. The annular stator core has a plurality of teeth (so-called teeth).
 また、上記実施形態において、コアセグメント41毎に一つの歯部(所謂、トゥース(tooth))を有する態様を説明したが、コアセグメント41毎に複数の歯部(所謂、ティース(teeth))を有する態様を採用しても良い。 Further, in the above embodiment, an aspect in which one core (so-called tooth) is provided for each core segment 41 has been described, but a plurality of teeth (so-called teeth) are provided for each core segment 41. You may employ the aspect which it has.
 上記実施形態のモータ1は、インナーロータ型のモータに用いる場合について説明するものであるが、別の種類のモータに対して本実施形態のインシュレータ5を適用できることは言うまでもない。 The motor 1 of the above embodiment is described for use in an inner rotor type motor, but it goes without saying that the insulator 5 of this embodiment can be applied to another type of motor.
 また、図3に示すように、トゥース42の先端(径方向内側の端部)には、凹状の溝を2つ具備する。この凹状の溝は、米国特許第6104117号明細書、特開平10-42531号公報等では、補助溝(supplemental grooves)とも呼称される。この補助溝の効果は、モータ1のロータ3の回転動作におけるコギングトルク及びトルクリップルを抑制し、モータの特性においては、低振動化・低騒音化等に寄与する。 Further, as shown in FIG. 3, two concave grooves are provided at the tip (radially inner end) of the tooth 42. The concave grooves are also referred to as supplemental grooves in, for example, US Pat. No. 6,104,117 and Japanese Patent Application Laid-Open No. 10-42531. The effect of the auxiliary groove suppresses cogging torque and torque ripple in the rotational operation of the rotor 3 of the motor 1, and contributes to the reduction of vibration and noise in the characteristics of the motor.
 また、上記実施形態における巻線は、巻線用電線とも呼称され、市販されるものである。巻線又は巻線用電線の導体部には、不可避不純物を含む銅又はアルミニウムを含む。ここで、不可避不純物とは、製造工程中に、銅、アルミニウムへの混入が避けられない微量の不純物元素のことを意味する。銅の場合には、不可避不純物は、As、Bi、Sb、Pb、Fe、S、酸素などである。アルミニウムの場合には、不可避不純物は、Si、Mn、Ti、V、Zr、Fe、Cuなどである。巻線の導体部は、絶縁性樹脂による絶縁層にて被覆される。絶縁性樹脂は、例えば、ポリイミド、ポリアミドイミド、ポリエステルイミド、ポリエステルアミドイミド、ポリアミド、ポリヒダントイン、ポリウレタン、ポリアセタール、エポキシ樹脂等がモータ1の仕様に応じて適宜選択される。巻線の断面形状は、本実施形態における円形のほか、略正方形、略長方形など多様である。 Moreover, the winding in the said embodiment is also called an electric wire for winding, and is marketed. The conductor portion of the winding or the wire for winding includes copper or aluminum containing unavoidable impurities. Here, the unavoidable impurities mean a trace amount of impurity elements which can not be avoided to be mixed into copper and aluminum during the manufacturing process. In the case of copper, unavoidable impurities include As, Bi, Sb, Pb, Fe, S, oxygen and the like. In the case of aluminum, unavoidable impurities are Si, Mn, Ti, V, Zr, Fe, Cu and the like. The conductor portion of the winding is covered with an insulating layer of insulating resin. As the insulating resin, for example, a polyimide, a polyamideimide, a polyesterimide, a polyesteramide imide, a polyamide, a polyhydantoin, a polyurethane, a polyacetal, an epoxy resin and the like are appropriately selected according to the specification of the motor 1. In addition to the circular shape in the present embodiment, the cross-sectional shape of the winding may be various, such as approximately square or approximately rectangular.
 また、上記実施形態における磁石31の材料成分には、Sc、Y及びランタノイド系元素のうち少なくとも1種と、Fe又はFe及びCoと、Bとを含むものである。具体的には、磁石31は希土類焼結磁石であり、所謂、ネオジム焼結磁石又はネオジウム焼結磁石などと呼称されるものである。この希土類焼結磁石の表層には、防錆のための防錆膜(防錆層)を具備する。 Further, the material component of the magnet 31 in the above embodiment includes at least one of Sc, Y and a lanthanoid element, Fe or Fe and Co, and B. Specifically, the magnet 31 is a rare earth sintered magnet, and is so-called neodymium sintered magnet or neodymium sintered magnet or the like. The surface layer of the rare earth sintered magnet is provided with a rust prevention film (rust prevention layer) for rust prevention.
 本発明に係るインシュレータは、異なる線径のコイルの線径に対応して整列巻きコイルを実現することができるため、高効率が要求されるモータ等に適用する上で有用である。 The insulator according to the present invention can realize an aligned winding coil corresponding to the wire diameter of a coil having a different wire diameter, and therefore is useful for application to a motor or the like that requires high efficiency.
1   モータ
2   シャフト
3   ロータ
4   ステータ
5   インシュレータ
6   絶縁紙
7   コイル
31  磁石
40  ステータコア
40a ステータセグメント
41  コアセグメント
41c ヨーク部
42  トゥース(tooth)
43  スロット
50  コイル巻回部
51  第1鍔部
51a 第1鍔部51の内面
52  第2鍔部
53  コイル導入溝
54  位置決め部
54a 凹凸部
55  平滑表面部
U1~W4 コイル
W   位置決め部54の径方向の幅
Reference Signs List 1 motor 2 shaft 3 rotor 4 stator 5 insulator 6 insulating paper 7 coil 31 magnet 40 stator core 40 a stator segment 41 core segment 41 c yoke portion 42 tooth (tooth)
43 slot 50 coil winding portion 51 first ridge portion 51a inner surface of first ridge portion 51 second ridge portion 53 coil introduction groove 54 positioning portion 54a uneven portion 55 smooth surface portion U1 to W4 coil W radial direction of positioning portion 54 Width of

Claims (8)

  1.  コアセグメントから突出するトゥースの軸方向端面と少なくとも周方向両側面の一部とを覆い、巻線で構成されたコイルが巻回されるコイル巻回部と、該コイル巻回部のトゥース基端側またはトゥース先端側の一方に連続して設けられ、前記コイルを前記コイル巻回部に案内するコイル導入溝を有する第1鍔部と、前記コイル巻回部の前記トゥース基端側または前記トゥース先端側の他方に連続して設けられた第2鍔部とを備えたインシュレータであって、
     前記第2鍔部近くの前記コイル巻回部の表面には、前記巻線を前記コイル巻回部に位置決め固定する凹凸部からなる位置決め部が設けられており、
     前記凹凸部の平均長さは前記コイルの線径よりも短く、前記凹凸部の算術平均粗さは前記コイル巻回部における前記位置決め部以外の表面の算術平均粗さよりも大きいことを特徴とするインシュレータ。
    A coil winding portion covering an axial end face of the tooth protruding from the core segment and at least a part of both circumferential side surfaces and in which a coil constituted by a winding is wound; and a tooth base end of the coil winding portion A first ridge portion continuously provided on one side of the side or the tip end of the tooth and having a coil introduction groove for guiding the coil to the coil winding portion, the tooth base end side of the coil winding portion or the tooth An insulator provided with a second flange portion provided continuously to the other on the tip side,
    The surface of the coil winding portion near the second ridge portion is provided with a positioning portion formed of an uneven portion for positioning and fixing the winding on the coil winding portion,
    An average length of the uneven portion is shorter than a wire diameter of the coil, and an arithmetic average roughness of the uneven portion is larger than an arithmetic average roughness of a surface other than the positioning portion in the coil winding portion. Insulator.
  2.  請求項1に記載のインシュレータにおいて、
     前記位置決め部は、前記第2鍔部から径方向外側に向けて前記コイルの線径の半分以上、前記コイルの線径の数倍以下の部位に設けられていることを特徴とするインシュレータ。
    In the insulator according to claim 1,
    The insulator is characterized in that the positioning portion is provided at a position not less than half of the wire diameter of the coil and several times or less of the wire diameter of the coil in the radial direction outward from the second flange portion.
  3.  請求項1または2に記載のインシュレータにおいて、
     前記位置決め部に具備する前記凹凸部の算術平均粗さは10μm以上で、かつ100μm以下であることを特徴とするインシュレータ。
    In the insulator according to claim 1 or 2,
    An insulator characterized in that the arithmetic average roughness of the uneven portion provided in the positioning portion is 10 μm or more and 100 μm or less.
  4.  請求項1に記載のインシュレータにおいて、
     前記位置決め部により前記コイルの1層目の最終周が位置決めされる一方、前記コイルの1層目の最終周に当接することで、前記位置決め部以外の前記コイル巻回部に巻回された前記巻線が径方向外側に向かって移動して前記コイルの1層目が整列巻きされるように構成されていることを特徴とするインシュレータ。
    In the insulator according to claim 1,
    The final circumference of the first layer of the coil is positioned by the positioning portion, while being in contact with the final circumference of the first layer of the coil, the coil wound around the coil winding portion other than the positioning portion An insulator characterized in that a winding moves radially outward so that a first layer of the coil is aligned and wound.
  5.  請求項1に記載のインシュレータを前記コアセグメントの前記トゥースの軸方向端面の各々に具備し、前記インシュレータの前記コイル巻回部に、前記コイルが巻装されてなるステータセグメントを複数個備え、
     複数個の前記ステータセグメントを円環形状に接続し円環の径方向内側に前記トゥースが突出する構成としたことを特徴とするステータ。
    The insulator according to claim 1 is provided on each of axial end faces of the teeth of the core segment, and the coil winding portion of the insulator is provided with a plurality of stator segments formed by winding the coil.
    A stator characterized in that a plurality of the stator segments are connected in an annular shape, and the teeth project radially inward of the annular ring.
  6.  請求項1に記載のインシュレータを前記コアセグメントの前記トゥースの軸方向端面の各々に具備し、前記インシュレータの前記コイル巻回部に、前記コイルが巻装されてなるステータセグメントを複数個備え、
     複数個の前記ステータセグメントを円環形状に接続し円環の径方向内側に前記トゥースが突出する構成を含み、
     前記コイルは前記コイル巻回部に多層巻きかつ整列巻きされていることを特徴とするステータ。
    The insulator according to claim 1 is provided on each of axial end faces of the teeth of the core segment, and the coil winding portion of the insulator is provided with a plurality of stator segments formed by winding the coil.
    Including a configuration in which a plurality of the stator segments are connected in an annular shape, and the teeth project radially inward of the annular ring,
    A stator characterized in that the coil is wound in multiple layers and aligned around the coil winding portion.
  7.  請求項1に記載のインシュレータを前記コアセグメントの前記トゥースの軸方向端面の各々に具備し、前記インシュレータの前記コイル巻回部に、前記コイルが巻装されてなるステータセグメントを複数個備え、
     複数個の前記ステータセグメントを円環形状に接続し円環の径方向内側に前記トゥースが突出する構成を含み、
     周方向に隣り合う前記トゥースの間が前記コイルを収容するスロットとして構成され、
     前記スロット内に、前記コアセグメント及び前記トゥースと前記コイルとを絶縁する絶縁紙が、前記トゥースの側面を覆うようにかつ、前記インシュレータの前記第1及び第2鍔部と軸方向で一部重なるように配置されていることを特徴とするステータ。
    The insulator according to claim 1 is provided on each of axial end faces of the teeth of the core segment, and the coil winding portion of the insulator is provided with a plurality of stator segments formed by winding the coil.
    Including a configuration in which a plurality of the stator segments are connected in an annular shape, and the teeth project radially inward of the annular ring,
    Between the teeth adjacent in the circumferential direction is configured as a slot for receiving the coil,
    In the slot, an insulating paper for insulating the core segment and the tooth from the coil is partially overlapped in the axial direction with the first and second ridges of the insulator so as to cover the side surface of the tooth. A stator characterized in that it is arranged.
  8.  請求項1に記載のインシュレータを前記コアセグメントの前記トゥースの軸方向端面の各々に具備し、前記インシュレータの前記コイル巻回部に、前記コイルが巻装されてなるステータセグメントを複数個備え、複数個の前記ステータセグメントを円環形状に接続し円環の径方向内側に前記トゥースが突出する構成を含むステータと、
     該ステータの径方向内側に、前記ステータと所定の間隔をあけて配設された回転軸を含むロータと、を少なくとも備えることを特徴とするモータ。
    The insulator according to claim 1 is provided on each of axial end faces of the tooth of the core segment, and a plurality of stator segments including the coil wound around the coil winding portion of the insulator are provided. A stator including a configuration in which a plurality of the stator segments are connected in an annular shape, and the teeth project radially inward of the annular ring;
    A motor comprising at least a rotor including a rotating shaft disposed radially inward of the stator at a predetermined distance from the stator.
PCT/JP2019/000835 2018-01-19 2019-01-15 Insulator, and stator and motor provided with said insulator WO2019142754A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018007176 2018-01-19
JP2018-007176 2018-01-19

Publications (1)

Publication Number Publication Date
WO2019142754A1 true WO2019142754A1 (en) 2019-07-25

Family

ID=67301313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000835 WO2019142754A1 (en) 2018-01-19 2019-01-15 Insulator, and stator and motor provided with said insulator

Country Status (1)

Country Link
WO (1) WO2019142754A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926567Y2 (en) * 1976-02-05 1984-08-02 日本テクニカル株式会社 coil bobbin
JPS6365298U (en) * 1986-10-17 1988-04-30
JP2002171704A (en) * 2000-12-05 2002-06-14 Ebara Corp Salient pole concentrated winding motor
JP2013243836A (en) * 2012-05-21 2013-12-05 Mitsubishi Electric Corp Insulator of armature and armature

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926567Y2 (en) * 1976-02-05 1984-08-02 日本テクニカル株式会社 coil bobbin
JPS6365298U (en) * 1986-10-17 1988-04-30
JP2002171704A (en) * 2000-12-05 2002-06-14 Ebara Corp Salient pole concentrated winding motor
JP2013243836A (en) * 2012-05-21 2013-12-05 Mitsubishi Electric Corp Insulator of armature and armature

Similar Documents

Publication Publication Date Title
JP7209264B2 (en) Insulators and stators and motors equipped with them
WO2012081087A1 (en) Rotating electrical machine for vehicle, and method for manufacturing stator for use in rotating electrical machine
JP2009131051A (en) Dynamo electric machine
US20130241367A1 (en) Exciter of a rotary electric machine
JP4665454B2 (en) motor
JP7289102B2 (en) Insulators and stators and motors equipped with them
CN111316539B (en) Insulator, stator including the same, and motor including the same
WO2019142723A1 (en) Insulator, and stator and motor comprising same
WO2019142693A1 (en) Insulator, and stator and motor comprising same
WO2019142754A1 (en) Insulator, and stator and motor provided with said insulator
WO2019142584A1 (en) Insulator, and stator and motor comprising same
WO2019146451A1 (en) Insulator, stator provided with same, and motor
WO2019117154A1 (en) Insulator, and stator and motor comprising said insulator
WO2019146450A1 (en) Insulator, stator provided with same, and motor
WO2019117207A1 (en) Insulator and stator and motor equipped with same
WO2019142589A1 (en) Insulator, and stator and motor comprising said insulator
WO2022107713A1 (en) Motor and stator manufacturing method
JP2023129002A (en) Armature core, armature, and rotating electrical machine
JP2014193069A (en) Coreless motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19741375

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP