WO2019142589A1 - Insulator, and stator and motor comprising said insulator - Google Patents

Insulator, and stator and motor comprising said insulator Download PDF

Info

Publication number
WO2019142589A1
WO2019142589A1 PCT/JP2018/047014 JP2018047014W WO2019142589A1 WO 2019142589 A1 WO2019142589 A1 WO 2019142589A1 JP 2018047014 W JP2018047014 W JP 2018047014W WO 2019142589 A1 WO2019142589 A1 WO 2019142589A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
insulator
spacer
winding portion
stator
Prior art date
Application number
PCT/JP2018/047014
Other languages
French (fr)
Japanese (ja)
Inventor
菱田 光起
博 米田
浩勝 国友
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019142589A1 publication Critical patent/WO2019142589A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/10Applying solid insulation to windings, stators or rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure

Definitions

  • the present invention relates to an insulator around which a coil is wound, a stator provided with the same, and a motor.
  • Patent Document 1 discloses a configuration in which a step or an inclination is provided inside an end of a cylindrical body of an insulating coil bobbin on which a coil is wound or a ridge portion provided at both ends of the cylindrical body to realize an aligned winding coil. Proposed. Further, according to Patent Document 2, a holding groove for holding a wound coil is provided on a side surface of an insulator which is attached to a tooth and which insulates the coil from the tooth. An arrangement for realizing a coil is disclosed.
  • the above-mentioned insulator and coil bobbin are formed by molding a resin material using a mold.
  • the motor performance varies depending on the user's specifications, even if the same stator core and teeth are used, the wire diameter and the number of turns of the coil are changed to adjust the current value etc. supplied to the coil, and the motor performance is adjusted to the individual specifications. Often included.
  • the present invention has been made in view of the foregoing, and an object thereof is to provide an insulator capable of aligning wound coils even when the wire diameter and the number of turns of the coil are changed.
  • a spacer formed separately from the coil winding portion is attached to the radial end of the coil winding portion.
  • the insulator according to the present invention covers the axial end face of the tooth projecting from the core segment and at least a part of both side surfaces in the circumferential direction, and a coil winding portion on which a coil constituted by a winding is wound;
  • a first ridge portion having a coil introduction groove which is continuously provided on one of a tooth base end side and a tooth tip end side of a winding portion and guides the coil to the coil winding portion, and the coil winding portion
  • the distance between the end of the first layer of the coil and the first or second ridge located at the end of the coil winding can be easily adjusted, and the coil can be aligned.
  • the difference between the radial length of the coil winding portion and the radial thickness of the spacer is equal to n times the wire diameter of the coil (n is an integer, the number of turns of the first layer of the coil) Is preferred.
  • the radial length of the portion on which the coil is actually wound and the radial length of the first layer of the coil coincide with each other, so the coils are surely aligned and wound.
  • the coil is wound obliquely with respect to the coil winding portion, and the radial thickness of the spacer is the final circumference of the first layer of the coil wound around the coil winding portion. It is preferable to change on the coil winding part according to the planned winding position.
  • the first or second end of the first layer of the coil and the end of the coil winding portion are positioned.
  • the distance to the buttocks can be easily adjusted, and the coils can be aligned and wound.
  • the spacer may be composed of another wire member wound around the coil winding portion and different from the coil.
  • the spacer can be attached using the winding device used in the winding process of the coil, the manufacturing cost of the insulator can be reduced.
  • the spacer may be integrally formed with the first ridge or the second ridge.
  • the spacer is preferably formed of a single-layer resin film having a predetermined thickness or a laminate formed by laminating a plurality of the resin films.
  • the overall thickness of the spacer is simply adjusted, and in the coil winding portion, the radial length of the portion where the coil is actually wound and the radial length of the first layer of the coil Can be matched. This allows the coil to be reliably aligned and wound.
  • the coils of the second and subsequent layers can be aligned in the axial direction.
  • the surface of the coil winding portion is preferably a smooth surface.
  • the insulator is provided on each of axial end faces of the teeth of the core segment, and a stator segment formed by winding a coil formed of a winding around the coil winding portion of the insulator A plurality of the stator segments are connected in an annular shape, and the teeth project radially inward of the annular ring.
  • the coil space factor in the stator can be increased.
  • the coil is aligned and wound around the coil winding portion.
  • a space between the teeth adjacent in the circumferential direction is configured as a slot for accommodating the coil, and an insulating paper for insulating the core segment and the tooth from the coil is covered in the slot so as to cover the side surface of the tooth And it is preferable to arrange
  • the insulator is provided on each of the axial end faces of the teeth of the core segment, and a plurality of stator segments in which a coil made of a winding is wound on the coil winding portion of the insulator
  • a stator including a plurality of stator segments connected in an annular shape, the stator including a configuration in which the teeth project radially inward of the annular ring, and a predetermined distance from the stator radially inward of the stator
  • at least a rotor including an open rotational shaft.
  • the coil space factor in the stator can be increased, and the efficiency of the motor can be improved.
  • an aligned winding coil can be realized even when coils having different wire diameters are wound.
  • FIG. 1 is a top view of the motor according to the first embodiment.
  • FIG. 2 is an equivalent circuit diagram of the motor shown in FIG.
  • FIG. 3 is a schematic view of a stator.
  • FIG. 4A is a perspective view showing a portion surrounded by a broken line shown in FIG.
  • FIG. 4B is a side view of the structure shown in FIG. 4A as viewed in the radial direction.
  • FIG. 4C is a side view of the structure shown in FIG. 4A as viewed from the circumferential direction.
  • FIG. 5A is a schematic cross-sectional view of the main part of the insulator on which the coil according to the first embodiment is wound.
  • FIG. 5A is a schematic cross-sectional view of the main part of the insulator on which the coil according to the first embodiment is wound.
  • FIG. 5B is a schematic view of main parts of another insulator around which the coil according to the first embodiment is wound, viewed from the axial direction.
  • FIG. 5C is a schematic cross-sectional view of the structure shown in FIG. 5B.
  • FIG. 6 is a schematic cross-sectional view of the main part of the insulator according to the first modification.
  • FIG. 7A is a schematic cross-sectional view of the main parts of an insulator according to a second modification.
  • FIG. 7B is a schematic cross-sectional view of the main parts of another insulator according to Modification 2.
  • FIG. 8A is a perspective view showing the main parts of an insulator according to a third modification.
  • FIG. 8B is a perspective view of a spacer according to a third modification.
  • FIG. 9A is a perspective view showing the main part of the insulator according to the second embodiment.
  • FIG. 9B is a perspective view of a spacer according to Embodiment 2.
  • FIG. 10A is a schematic cross-sectional view of main parts of an insulator on which a coil according to a second embodiment is wound.
  • FIG. 10B is an enlarged view of a portion surrounded by a broken line in FIG. 10A.
  • FIG. 1 shows a top view showing a motor according to this embodiment
  • FIG. 2 shows an equivalent circuit diagram of the motor shown in FIG. 1
  • FIG. 3 shows a schematic diagram of a stator
  • the stator 4 is a shaft 2
  • FIGS. 1 and 3 show a schematic diagram of a stator
  • the stator 4 is a shaft 2
  • FIGS. 1 and 3 illustrate a schematic diagram of some components and their functions.
  • the frame and the bus bar are not shown.
  • the insulator 5 is not shown.
  • the exterior body which accommodates the stator 4 is not shown in figure.
  • the shape of the exterior body is, for example, a cylinder made of metal, a substantially rectangular parallelepiped, a substantially rectangular parallelepiped, a polygonal columnar body or the like, and is appropriately selected according to the specification of the motor 1.
  • the components shown in the drawings are also simplified.
  • the insulator 5 shown in FIG. 1 is partially different from the actual shape, and the coils U1 to W4 and their lead terminals 71 shown in FIG.
  • the shape of the is very different.
  • the symbol + indicates the winding start of the coil
  • the symbol ⁇ indicates the winding end of the coil.
  • the longitudinal direction of the shaft 2 may be referred to as an axial direction
  • the radial direction of the stator 4 may be referred to as a radial direction
  • the circumferential direction of the stator 4 may be referred to as a circumferential direction.
  • the side on which the lead terminals 71 of the coils U1 to W4 are provided is referred to as "upper” and the opposite side is referred to as “lower”
  • the side on which the rotor is provided may be referred to as "inside” and the opposite side, that is, the side of the stator core 40 may be referred to as "outside”.
  • the lamination direction of the magnetic steel sheets to be described later and the above axial direction are the same direction and are synonymous.
  • teeth plural type of teeth
  • the plurality of teeth projecting in the center direction of the annular stator core is referred to as teeth (a plurality of teeth).
  • teeth a plurality of teeth
  • one tooth is described as a tooth 42.
  • a plurality of teeth in the core segment 41 described later is referred to as teeth.
  • one tooth portion of the plurality of tooth portions in the core segment 41 is described as a tooth 42.
  • the motor 1 includes a rotor 3 having a shaft 2 which is a rotation shaft of the motor 1, a stator 4 and coils U1 to W4 inside an outer body (not shown).
  • the rotor 3 includes a shaft 2 and magnets 31 in which N poles and S poles are alternately disposed along the outer peripheral direction of the shaft 2 so as to face the stator 4.
  • a neodymium magnet is used as the magnet 31 used for the rotor 3.
  • the material, shape, and material of the neodymium magnet can be appropriately changed according to the output of the motor.
  • the rotor 3 is disposed radially inward of the stator 4 at a constant distance from the stator 4.
  • the stator 4 is a cylindrical body configured by connecting a plurality of stator segments 40a in an annular shape.
  • the insulators 5 are respectively attached to the teeth 42 of the core segment 41 from the upper and lower end faces in the axial direction, and an insulator such as insulating paper 6 is attached between the insulators 5 Windings are wound around the coil winding portion 50 and the arrangement portion of the insulator such as the insulating paper 6 (see FIGS. 4A to 4C) to constitute, for example, the coil U1.
  • the external appearance of the stator segment 40a configured as described above is a columnar body having a substantially sectoral cross-sectional shape.
  • the stator 4 and the stator segment 40 a have a plurality of core segments 41 and teeth 42 projecting radially inward from the inner circumferences of the core segments 41.
  • the core segment 41 is formed by punching a magnetic steel sheet containing silicon or the like as a core segment sheet which forms a part of a substantially annular stator core sheet. It is a layered product which laminated this board (core segment sheet) in multiple layers.
  • the appearance of the core segment 41 configured as described above is a columnar body having a cross-sectional shape that is a piece-like shape that constitutes a part of a substantially annular stator core sheet.
  • the stacking direction of the plate is a normal direction to the plate surface of the plate.
  • the core segment 41 has a yoke portion 41c and a tooth 42 projecting from a substantially central portion of the yoke portion 41c.
  • the core segment 41 has a recess 41a formed on one side of the yoke portion 41c located in the circumferential direction, and a protrusion 41b formed on the other side. Both the recess 41a and the protrusion 41b have an axis in each side. It is formed extending in the entire direction. Focusing on one core segment 41, the convex portion 41b of the core segment 41 adjacent in the circumferential direction fits into the concave portion 41a of the core segment 41, and the convex portion 41b of the core segment 41 extends in the circumferential direction. On the other hand, they are fitted and connected to the recesses 41 a of the adjacent core segments 41.
  • the annularly shaped stator core 40 is configured by the core segments 41 adjacent in the circumferential direction being fitted and connected as described above.
  • interval of the tooth 42 adjacent to the circumferential direction comprises the slot 43.
  • the stator 4 has 12 coils U1 to W4. These coils are attached to each tooth 42 through the insulator 5 and the insulating paper 6 (see FIGS. 4A to 4C). As viewed from the direction, they are disposed in each slot 43.
  • the coils U1 to W4 are each composed of a winding having a circular cross section made of a metal material such as copper with an insulating film applied on the surface, and wound in parallel with the insulator 5 by multilayer winding. It is done.
  • the multi-layer winding refers to a state in which the coil 7 is wound around the insulator 5 in a plurality of layers.
  • circuit means “circular” including processing tolerance of the winding and deformation of the winding when wound around the tooth 42, and the same applies to the following description. Further, in the following description, when one of the coils U1 to W4 is taken up to describe a structure or the like without specifying the coil U1 to W4, the coil 7 is called.
  • the coils U1 to U4, V1 to V4, and W1 to W4 are connected in series, and three phases of U, V, and W phases are star-connected.
  • three U-, V- and W-phase currents having a phase difference of 120 ° in electrical angle with each other are supplied to coils U1 to U4, V1 to V4 and W1 to W4, respectively, and excited to generate a rotating magnetic field.
  • a torque is generated in the rotor 3 by the rotating magnetic field, and the shaft 2 is supported by a bearing (not shown) and rotated.
  • the number of magnetic poles of the rotor 3 is ten in total: five N poles and five S poles facing the stator 4 and the number of slots 43 is twelve, but in particular The present invention is not limited to the above, and may be applied to other combinations of the number of magnetic poles and the number of slots.
  • FIGS. 4A to 4C respectively show a perspective view of a portion surrounded by a broken line in FIG. 1, and a side view seen from the radial direction and the circumferential direction. Note that the illustration of the coil 7 is omitted in FIGS. 4A to 4C for the convenience of description. Further, the insulating paper 6 sandwiched and attached between the insulator 5 and the core segment 41 and the tooth 42 is also illustrated, but shows the state before being folded so as to be accommodated in the slot 43.
  • insulators 5 having the same shape are respectively attached to the teeth 42 projecting from one core segment 41 from the upper and lower end faces in the axial direction, respectively.
  • the insulating paper 6 is sandwiched between the tooth 42 and the insulator 5.
  • the insulators 5 are provided so as to cover both axial end surfaces of the tooth 42 and portions near the both end surfaces.
  • the insulator 5 is an insulating member formed by molding an insulating resin material, and is formed at one end of the coil winding portion 50 on which the coil 7 (see FIGS. 5A to 5C) is wound, and at one end of the coil winding portion 50. It has a first collar 51 and a second collar 52 formed at the other end.
  • the first collar 51 is mounted on the core segment 41 side
  • the second collar 52 is mounted on the tip of the tooth 42 located radially inward of the stator 4.
  • the coil introduction groove 53 is formed in the first collar portion 51, and when the coil is wound around the coil winding portion 50, the winding constituting the coil 7 is the coil introduction groove 53.
  • the winding start portion is guided to the coil winding portion 50 in contact with the inner surface 51a (hereinafter referred to as the inner surface 51a of the first collar portion 51) facing the second collar portion 52 in the first collar portion 51.
  • the winding start portion of the coil 7 refers to the vicinity of the first turn of the first layer coil wound around the coil winding portion 50 in the coil 7.
  • the outer peripheral surfaces 50a and 50b covering both end surfaces in the axial direction of the tooth 42 respectively extend in the axial direction of the tooth 42 from the first collar portion 51 toward the second collar portion 52. It is formed to be monotonously inclined so that the height from the upper side surface or the lower side surface in the axial direction is high. By doing so, it becomes easy to align the coil 7 with the coil winding portion 50. Further, among the outer peripheral surfaces of the coil winding portion 50, surfaces 50c, 50d covering both circumferential end surfaces of the tooth 42 are formed to be orthogonal to the axial upper end surface of the tooth 42, respectively.
  • the outer circumferential surfaces 50a to 50d may be referred to as the surface of the coil winding portion 50.
  • perpendicular means “perpendicular” including the processing tolerance of the insulator 5, the processing tolerance of the tooth 42, and the assembly tolerance when attaching the insulator 5 to the tooth 42
  • parallel means the insulator 5 It means “parallel” including the processing tolerance of and the assembly tolerance at the time of attaching the insulator 5 to the tooth 42, and the same applies to the following description.
  • the inner surface 51 a of the first flange portion 51 is a surface provided parallel to a surface orthogonal to the axial upper end surface or the axial lower end surface of the tooth 42.
  • a spacer 54 is attached to the corner of the.
  • the spacer 54 is formed separately from the insulator main body 5a (see FIGS. 5A to 5C) including the first ridge 51 and the second ridge 52 including the coil winding portion 50 and the coil introduction groove 53. It is attached to the rotary unit 50.
  • the portion integrally formed including the coil winding portion 50 is referred to as the insulator main body 5a.
  • the insulator main body 5a is collectively molded of an insulating resin material. The structure of the spacer 54 will be described in detail later.
  • the insulator 5 has a function to electrically insulate the core segment 41 and the tooth 42 from the coil 7 together with the insulating paper 6. Further, the insulator 5 has a function of stably maintaining the alignment winding of the coil 7 described later.
  • the insulating paper 6 is impregnated with, for example, an insulating oil, so as to cover both side surfaces of the tooth 42 in the circumferential direction, and in the axial direction with the first and second flange portions 51, 52 of the insulator 5, respectively. It is arranged so as to partially overlap. Further, although not shown, the insulating paper 6 is folded so as to cover the inside of the slot 43 when assembling the motor 1. As a result, the core segment 41 and the tooth 42 and the coil 7 can be electrically isolated from each other, and the core segment 41 and the tooth 42 adjacent in the circumferential direction can be electrically isolated.
  • FIG. 5A is a cross-sectional schematic view of the main part of the insulator on which the coil according to the present embodiment is wound
  • FIG. 5B is an axial view of the main part of another insulator on which the coil according to the present embodiment is wound.
  • FIG. 5C shows a cross-sectional schematic view of the structure of FIG. 5B.
  • the insulator 5 shown in FIGS. 5A to 5C is the same as that shown in FIGS. 4A to 4C, the structure of the insulator 5 is simplified and shown in FIGS. 5A to 5C for the convenience of description.
  • the part extended outside through the coil introduction groove 53 among the coil introduction groove 53 and the coil 7 is abbreviate
  • the coil 7 is wound around the coil winding unit 50, and the spacer 54 is mounted on the coil winding unit 50 in a state of being lined with the coil 7.
  • the spacer 54 is a C-shaped (see FIG. 8B) insulating member formed by molding an insulating resin material. Further, the spacer 54 mounted on the coil winding portion 50 is disposed along the root of the second flange 52 with respect to the outer peripheral surfaces 50a to 50c, and the spacer 54 with respect to the outer peripheral surface 50d. Because of the notches, they are not disposed entirely but only partially along the root of the second flange 52. The spacer 54 may be disposed along the root of the second ridge 52 with respect to three continuous surfaces among the outer peripheral surfaces 50a to 50d.
  • the spacers 54 may be mounted on the respective insulators 5.
  • the spacer 54 is positioned and attached to the coil winding portion 50 and fixed to the surface of the coil winding portion 50.
  • an adhesive, a fastening member such as a screw, or another fixing member such as a pin can be used.
  • the winding which comprises the coil 7 forms an insulating film in the surface of the electric wire which consists of copper etc.
  • the wire diameter of the coil 7 means the wire diameter including the thickness of the insulating film. Therefore, the wire diameter of the coil 7 shown in FIGS. 5A to 5C is a value obtained by adding twice the thickness of the insulating film to the wire diameter of the wire.
  • the inclination angle of the coil 7 is small because the wire diameter is small
  • L is small, as shown in FIG. 5A, the radial thickness L1 of the spacer 54 is constant over the outer peripheral surfaces 50a to 50c of the coil winding portion 50 to which the spacer 54 is attached.
  • the difference between the radial length L2 of the coil winding portion 50 and the radial thickness L1 of the spacer 54 is n times the wire diameter of the coil 7 (n is an integer, The number of turns in the first layer can be made.
  • the case where the wire diameter of the coil 7 is less than 1 mm means the case where the wire diameter of the coil 7 is small, for example, it is not specifically limited to this. Further, in the present specification, “constant” means constant including processing tolerance of the spacer 54.
  • the thickness L1 in the radial direction of the spacer 54 is not constant, and may be changed on the outer circumferential surface 50a. The reason is described below.
  • the winding of the coil 7 is bent at the outlet of the coil introduction groove 53, and the winding is inclined. It is wound around the outer peripheral surface 50a. Therefore, the distance between the final periphery of the first layer of the coil 7 and the second ridge portion 52 is not constant, and changes on the outer peripheral surface 50 a of the coil winding portion 50.
  • the radial thickness L1 changes in accordance with the change in the distance. That is, the thickness L 1 in the radial direction of the spacer 54 changes in accordance with the planned winding position of the final circumference of the first layer of the coil 7 with respect to the coil winding portion 50.
  • the difference between the radial length L2 of the coil winding portion 50 and the radial thickness L1 of the spacer 54 is always equal to the diameter of the wire diameter of the coil 7 in the winding direction of the coil winding portion 50. It is made to be n times. Similarly, the thickness L1 in the radial direction of the spacer 54 also changes on the outer circumferential surface 50b.
  • the insulator 5 covers the axial end face of the tooth 42 protruding from the core segment 41 and at least a part of both side surfaces in the circumferential direction, and the coil 7 formed of a winding is wound
  • a first winding portion having a coil winding portion 50 to be wound and a coil introduction groove 53 continuously provided on the base end side of the tooth 42 in the coil winding portion 50 and guiding the coil 7 to the coil winding portion 50 51 and a second flange 52 provided continuously on the tip end side of the tooth 42 in the coil winding part 50.
  • the spacer 54 is attached to the coil winding portion 50 in a state of being aligned with the coil 7. Specifically, the spacer 54 is attached to the corner between the inner surface 52 a of the second flange 52 and the coil winding unit 50.
  • interval of the last periphery of 1st layer of the coil 7 and the 2nd collar part 52 can be adjusted simply, and the coil 7 can be made into an alignment winding.
  • the width of the holding groove of the coil provided in the insulator is changed, or As disclosed in Document 1, it is not necessary to change the width or the inclination angle of the step provided in the insulator. That is, the surface of the coil winding portion 50 may be a smooth surface, and only by changing the spacer 54, the insulator main body 5a having the same shape can be used. As a result, it is possible to suppress an increase in the manufacturing cost of the insulator 5 and to reduce the development cost when developing various motors.
  • the shape of the spacer 54 is set such that the difference between the radial length L2 of the coil winding portion 50 and the radial thickness L1 of the spacer 54 is n times the wire diameter of the coil 7. That is, the spacer 54 is formed so that the radial length of the coil winding portion 50 on which the coil 7 is actually wound matches the radial length of the first layer of the coil 7 and the coil winding portion It is attached to 50. By this, the coil 7 can be reliably wound in alignment. Further, the thickness L1 in the radial direction of the spacer 54 corresponds to the planned winding position of the final circumference of the first layer of the coil 7 on the outer peripheral surfaces 50a and 50b which are both axial end surfaces of the coil winding portion 50. It is changing.
  • the difference between the radial length L2 of the coil winding portion 50 and the radial thickness L1 of the spacer 54 over the entire circumferential direction of the coil winding portion 50 is n times the wire diameter of the coil 7
  • the coil 7 can be reliably wound in alignment.
  • the insulator 5 according to the present embodiment to, for example, the stator 4 of the motor 1 shown in FIG. 1, alignment winding of the coil 7 can be achieved, and a dead space in which the coil 7 in the coil winding unit 50 is not wound. Can be reduced.
  • the space factor of the coil 7 in the slot 43 can be increased, and the efficiency of the motor 1 can be improved.
  • the space factor of the coil 7 can be further increased by making the radial thickness L 1 of the spacer 51 smaller than the wire diameter of the coil 7.
  • FIG. 6 shows a schematic cross-sectional view of the main part of the insulator according to the present modification.
  • the structure of the insulator 5 is shown in a simplified manner in FIG.
  • the part extended outside through the coil introduction groove 53 among the coil introduction groove 53 and the coil 7 is abbreviate
  • the spacer 54 is an insulating member formed by molding an insulating resin, while in the present modification, the spacer 55 is formed of another linear member different from the coil 7. Differ in that they By forming the wire member around the coil winding portion 50 to form the spacer 55, the spacer 54 does not have to be formed separately, so the manufacturing cost of the insulator 5 can be further reduced. In addition, when winding the spacer 55 around the coil winding portion 50, an existing winding device can be used, and can be shared with the winding device of the coil 7.
  • the thickness of the spacer 55 in the radial direction can be set to a desired value, and the coil 7 can be wound in alignment. Further, as described above, even in the case where the coil 7 is wound diagonally with respect to the coil winding portion 50, the spacer 55 of the present modification can cope with it. Furthermore, since the insulating film is provided also on the spacer 55, insulation can be maintained between the tooth 42 and the coil 7 or in the winding of the coil 7 adjacent in the circumferential direction.
  • the spacer 55 may be a wire made of an insulating material if it can be wound by an existing winding device.
  • the winding constituting the spacer 55 is introduced into the coil winding portion 50 through the spacer introduction groove 531 provided in the second flange portion 52. Further, the winding end portion of the spacer 55 is also drawn out through the spacer introducing groove 531 or a spacer introducing groove (not shown) provided separately, and the width of the winding can be adjusted. A special member or adhesive for fixing the end portion outside the coil winding portion 50 can be eliminated.
  • FIG. 7A shows a cross-sectional schematic view of the main part of the insulator according to this modification
  • FIG. 7B shows a cross-sectional schematic view of the main part of another insulator according to this modification.
  • the structure of the insulator 5 is simplified and illustrated in FIGS. 7A and 7B. Further, in FIGS. 7A and 7B, a portion of the coil introducing groove 53 and the coil 7 extending to the outside through the coil introducing groove 53 is not shown.
  • the spacer 54 is attached to the corner between the inner surface 52a of the second flange 52 and the coil winding portion 50, while in the present modification, the spacer 56a is the second It differs in that it is integrally formed with a part of the collar 52 or the spacer 56 b is integrally formed with the second collar 52 itself.
  • the spacers 56a and 56b have such a configuration, the difference between the radial length L2 of the coil winding portion 50 and the radial thickness of the spacers 56a and 56b can be reliably made n of the wire diameter of the coil 7 It can be doubled. Thereby, the coil 7 can be wound in alignment with the coil winding portion 50.
  • the spacer 56a shown to FIG. 7A can be mounted
  • the spacer 56b shown in FIG. The insulator 5 may be attached to the tooth 42 after the spacer 56b is attached to the insulator main body 5a.
  • FIG. 8A shows a perspective view of the main part of the insulator according to this modification
  • FIG. 8B shows a perspective view of the spacer.
  • illustration of the insulating paper 6 is abbreviate
  • the spacer 54 is attached to the corner between the inner surface 52a of the second flange 52 and the surface of the coil winding portion 50, while in this modification, the first ridge is attached.
  • the difference is that a spacer 57 is attached to a corner portion between the inner surface 51a of the first collar portion 51 and the surface of the coil winding portion 50 in contact with the portion 51a.
  • the spacer 57 is a C-shaped insulating member in which a portion corresponding to the coil introduction groove 53 is cut out.
  • Such a spacer 57 may be attached to the coil winding portion 50, and also in the case of this modification, the radial length L2 of the coil winding portion 50 can be adjusted by adjusting the radial thickness of the spacer 57. And the radial thickness of the spacer 57 can be n times the wire diameter of the coil 7. This allows the coil 7 to be aligned and wound.
  • the spacer 55 shown in the first modification may be attached to the corner between the inner surface 51 a of the first flange 51 and the surface of the coil winding unit 50.
  • the spacer introduction groove 531 is provided in the first ridge 51 separately from the coil introduction groove 53.
  • the spacers 56a and 56b shown in the second modification may be integrally formed with the first collar portion 51.
  • the spacer (film spacer) 57 may be formed by punching or cutting an insulating resin film having a predetermined thickness.
  • a spacer is obtained by attaching a laminated body in which a spacer (film spacer) 57 made of a resin film of the same shape is laminated in a single layer or a plurality of spacers (film spacers) 57 is laminated to one type of insulator main body 5a.
  • the entire thickness of the coil 57 can be simply adjusted, and the difference between the radial length L2 of the coil winding portion 50 and the radial thickness of the spacer 57 can be n times the wire diameter of the coil 7.
  • the coil 7 can be reliably aligned by winding so that the radial length of the coil winding portion 50 where the coil 7 is actually wound matches the radial length of the first layer of the coil 7. can do.
  • the spacer (film spacer) 57 does not have to be formed individually according to the wire diameter and the number of turns of the coil 7, the manufacturing cost of the insulator 5 can be further reduced.
  • Such a spacer (film spacer) 57 may be attached to a corner between the inner surface 52 a of the second flange 52 and the surface of the coil winding unit 50.
  • the material of the spacer (film spacer) 57 is preferably acrylic, polyimide, nylon or polypropylene, from the viewpoint of having insulation properties and facilitating processing.
  • FIG. 9A shows a perspective view of the main part of the insulator according to the present embodiment
  • FIG. 9B shows a perspective view of the spacer.
  • FIG. 10A shows a cross-sectional schematic view of the main part of the insulator around which the coil is wound
  • FIG. 10B shows an enlarged view of a portion surrounded by a broken line in FIG. 10A.
  • FIG. 9A to 10B the structure of the insulator 5 is simplified and illustrated for convenience of the description.
  • illustration of the insulating paper 6 is omitted.
  • FIG. 10A the part extended outside through the coil introducing groove 53 among the coil introducing groove 53 and the coil 7 is not shown.
  • the spacer 54 is attached to the corner between the inner surface 52a of the second flange 52 and the surface of the coil winding portion 50, while in the configuration shown in the present embodiment, The difference is that spacers 58, 581 are attached to the corner between the inner surface 51a of the first collar 51 and the surface of the coil winding portion 50 in contact with the first collar 51.
  • a plate-like insulating member 58b (hereinafter simply referred to as a plate-like member 58b) is integrally formed at a central portion of a U-shaped insulating member 58a (hereinafter simply referred to as a U-shaped member 58a). It is formed.
  • the U-shaped member 58 a of the spacer 58 is attached to the outer circumferential surfaces 50 a, 50 c, 50 d of the surface of the coil winding portion 50.
  • the plate-like member 58 b is in contact with the bottom of the coil introduction groove 53, and extends into the inside thereof and is mounted on the coil winding portion 50.
  • the plate-like member 58a it is preferable to increase the circumferential width and radial thickness of the plate-like member 58a to such an extent that it does not act as a barrier when the winding of the coil 7 is passed through the coil introduction groove 53.
  • the ease of handling the spacer 58 and the fixing stability to the coil winding portion 50 can be further improved.
  • the coil introduction groove 53 is provided on the upper side in the axial direction of the first collar 51, but if the coil introduction groove 53 is also provided on the lower side in the axial direction, The plate-like member of the spacer 581 extends inside the coil introduction groove 53 located on the lower side in the axial direction.
  • the U-shaped member 58a and the plate member 58b both have the same thickness. Therefore, when the spacer 58 is attached to the coil winding portion 50, the axial height H of the spacer 58 is constant throughout the spacer 58, with the surface of the coil winding portion 50 as a reference surface. Similarly, the axial height of the spacer 581 is also constant throughout the spacer 581. Moreover, as shown to FIG. 10B, this height H is set so that the relationship of the following formula
  • the heights of the coil 7 in the axial direction need to be matched. If the heights are greatly different, winding distortion of the coil 7 occurs, and it becomes impossible to realize aligned winding.
  • the first winding which is the winding start, is between the final circumference of the first layer of the coil 7 and the first or second flange 51 or 52 in the vicinity thereof. Depressed, the axial height may be different from the other circumferential windings.
  • the first turn winding is axially lower than the predetermined position.
  • the second layer of the coil can be aligned and wound easily.
  • the axial height H of the spacer 58 is defined so as to satisfy the relationship of the equation (1), in the second layer of the coil 7, the first turn winding and the second turn winding have the same height.
  • the second layer of the coil can be reliably aligned and wound.
  • the relationship of Formula (1) is materialized including the process tolerance of the spacer 58, and the process tolerance of the coil 7.
  • the height H may be within a predetermined range.
  • the radial thickness of the U-shaped member 58 a is preferably equal to r, which is a half value of the wire diameter of the coil 7.
  • the radial thickness of the U-shaped member 58 a is defined equal to the above half value r, the difference between the radial length L 2 of the coil winding portion 50 and the radial thickness of the spacer 58 is the coil 7 It may not be n times the wire diameter of In that case, the radial thickness of the spacer 58 is defined with priority given to the latter relationship.
  • the height in the axial direction of the spacer 54 is the formula ( The relationship of 1) may be satisfied. Also in this case, in the second layer of the multilayer wound coil 7, it is possible to eliminate the step between the first and second turns, or the step between the last and the previous turn. The coil 7 can be reliably wound in alignment.
  • the example in which the coil 7 is started to be wound from the first ridge portion 51 located on the core segment 41 side which is the base end side of the tooth 42 has been described.
  • the winding may start from the second ridge 52 located on the tip side of the tooth 42.
  • the coil introduction groove 53 is provided in the second flange 52.
  • the coil 7 is formed of a winding having a circular cross section
  • the invention is not particularly limited thereto.
  • the coil 7 having a square cross section may be used.
  • the insulator 5 is what is called a division type insulator and showed the example mounted
  • the coil winding part 50 is cylindrical shape,
  • the integral structure which covers the whole outer peripheral surface of the tooth 42 may be sufficient.
  • the stator 4 has a structure in which the tooth 42 is attached to the core segment 41 later, the insulator 5 having this integrated structure may be used.
  • the insulators 5 mounted from the upper and lower sides of one tooth may not have the same shape.
  • the kind of insulator 5 can be decreased by using the thing of the same shape as insulator 5 with which one tooth is mounted from the upper and lower sides, and manufacturing cost etc. can be reduced.
  • the outer circumferential surfaces 50 a and 50 b of the coil winding portion 50 may be provided substantially parallel to the axial upper end surface of the tooth 42. Further, the inner surface 51 a of the first flange 51 may be provided so as to be inclined radially outward with a surface orthogonal to the axial upper end surface or the axial lower end surface of the tooth 42 as a reference surface.
  • the insulator 5 in the first and second embodiments including the first to third modifications can be applied to the case where the coil 7 is wound in a single layer or in a multilayer.
  • the insulator 5 is attached to the tooth 42 of the core segment 41, and the coil 7 is wound around the coil winding portion 50 to form the stator segment 40a. May be attached to each of the teeth 42 of the annular stator core, and the coil winding portion 50 may be wound with the coil 7.
  • the annular stator core said here is comprised laminating
  • the annular stator core has a plurality of teeth (so-called teeth).
  • each core segment 41 has one tooth (so-called tooth)
  • a plurality of teeth are provided. You may employ the aspect which it has.
  • the motor 1 in the present specification is described for use in an inner rotor type motor, but it goes without saying that the insulator 5 of this embodiment can be applied to another type of motor.
  • two concave grooves are provided at the tip (radially inner end) of the tooth 42.
  • the concave grooves are also referred to as supplemental grooves in, for example, US Pat. No. 6,104,117 and Japanese Patent Application Laid-Open No. 10-42531.
  • the effect of the auxiliary groove suppresses cogging torque and torque ripple in the rotational operation of the rotor 3 of the motor 1, and contributes to the reduction of vibration and noise in the characteristics of the motor.
  • the winding in Embodiment 1, 2 is also called winding electric wire, and is marketed.
  • the conductor portion of the winding or the wire for winding includes copper or aluminum containing unavoidable impurities.
  • the unavoidable impurities mean a trace amount of impurity elements which can not be avoided to be mixed into copper and aluminum during the manufacturing process.
  • unavoidable impurities include As, Bi, Sb, Pb, Fe, S, oxygen and the like.
  • unavoidable impurities are Si, Mn, Ti, V, Zr, Fe, Cu and the like.
  • the conductor portion of the winding is covered with an insulating layer of insulating resin.
  • the insulating resin for example, a polyimide, a polyamideimide, a polyesterimide, a polyesteramide imide, a polyamide, a polyhydantoin, a polyurethane, a polyacetal, an epoxy resin and the like are appropriately selected according to the specification of the motor 1.
  • the cross-sectional shape of the winding may be various, such as approximately square or approximately rectangular.
  • the material component of the magnet 31 in the first embodiment contains at least one of Sc, Y and a lanthanoid element, Fe or Fe and Co, and B.
  • the magnet 31 is a rare earth sintered magnet, and is so-called neodymium sintered magnet or neodymium sintered magnet or the like.
  • the surface layer of the rare earth sintered magnet is provided with a rust prevention film (rust prevention layer) for rust prevention.
  • the insulator according to the present invention can realize aligned winding coils corresponding to coils with different wire diameters and winding numbers, and therefore is useful for application to a motor or the like that requires high efficiency.
  • Reference Signs List 1 motor 2 shaft 3 rotor 4 stator 5 insulator 6 insulating paper 7 coil 31 magnet 40 stator core 40 a stator segment 41 core segment 41 c yoke portion 42 tooth (tooth) 43 slot 50 coil winding portion 51 first ridge portion 51a inner surface of first ridge portion 51 second ridge portion 53 coil introduction groove 531 spacer introduction groove 54 spacer 55 spacer (string member) 56a spacer 56b spacer 57 spacer (film spacer) 58 spacer 58a U-shaped member 58b plate-like member 581 spacers U1 to W4 coil

Abstract

This insulator 5 comprises: a coil-winding unit 50 on which a coil 7 is wound; a first flange part 51 provided on a core segment 41 side of the coil winding unit 50, the first flange part 51 having a coil introduction groove 53 that guides the coil 7 in the coil-winding unit 50; and a second flange part 52 provided on the tip side of a tooth 42 of the coil-winding unit 50. A spacer 54 for aligning the coil 7 is mounted on the coil-winding unit 50, and is placed in a state in line with the coil 7.

Description

インシュレータ及びそれを備えたステータ、モータInsulator, stator provided with the same, motor
 本発明は、コイルが巻回されるインシュレータ及びそれを備えたステータ、モータに関する。 The present invention relates to an insulator around which a coil is wound, a stator provided with the same, and a motor.
 近年、産業、車載用途でモータの需要は高まっている。その中で、モータの効率向上、低コスト化が要望されている。 In recent years, the demand for motors has increased in industrial and automotive applications. Among them, there is a demand for improvement in motor efficiency and cost reduction.
 モータの効率向上手法の一つとして、ステータのスロット内に配置されるコイルの占積率を向上させることが知られている。コイルの占積率を向上させることで、モータの駆動時に、コイルに流れる電流に起因する損失を抑制できる。 It is known to improve the space factor of the coils disposed in the slots of the stator as one method of improving the efficiency of the motor. By improving the space factor of the coil, it is possible to suppress the loss due to the current flowing through the coil when the motor is driven.
 コイルの占積率を向上させる構造として、ステータのティース(teeth)にコイルが整列して巻回された状態である、いわゆる整列巻きコイルが一般に知られており、これを実現するために種々の構成が提案されている(例えば、特許文献1~4参照)。例えば、特許文献1には、コイルが巻回される絶縁コイルボビンの筒体の端部あるいは筒体の両端に設けられた鍔部の内側に段差または傾斜を設けて整列巻きコイルを実現する構成が提案されている。また、特許文献2には、ティース(teeth)に装着され、コイルとティース(teeth)とを絶縁するためのインシュレータの側面に、巻回されたコイルを保持するための保持溝を設けて整列巻きコイルを実現する構成が開示されている。 As a structure for improving the space factor of the coil, a so-called aligned winding coil is generally known, in which the coil is in a state of being aligned and wound around the teeth of the stator. Configurations have been proposed (see, for example, Patent Documents 1 to 4). For example, Patent Document 1 discloses a configuration in which a step or an inclination is provided inside an end of a cylindrical body of an insulating coil bobbin on which a coil is wound or a ridge portion provided at both ends of the cylindrical body to realize an aligned winding coil. Proposed. Further, according to Patent Document 2, a holding groove for holding a wound coil is provided on a side surface of an insulator which is attached to a tooth and which insulates the coil from the tooth. An arrangement for realizing a coil is disclosed.
特開平11-122855号公報Japanese Patent Application Laid-Open No. 11-122855 特開2006-115565号公報JP, 2006-115565, A 米国特許第6356001号明細書U.S. Pat. No. 6,356,001 国際公開第2011/118357号WO 2011/118357
 ところで、一般に、金型を用いて樹脂材料を成形することにより、上記のインシュレータやコイルボビンは形成される。一方、モータ性能はユーザーの仕様によって異なるため、同じステータコアやティースを用いても、コイルの線径や巻き数を変えてコイルに流す電流値等を調整し、モータの性能を個別の仕様に合わせ込む場合が多い。 By the way, generally, the above-mentioned insulator and coil bobbin are formed by molding a resin material using a mold. On the other hand, since the motor performance varies depending on the user's specifications, even if the same stator core and teeth are used, the wire diameter and the number of turns of the coil are changed to adjust the current value etc. supplied to the coil, and the motor performance is adjusted to the individual specifications. Often included.
 しかし、特許文献1や2に開示された従来の構成では、コイルの線径に合わせて保持溝の幅を変更したり、段差の幅や傾斜の角度を変更したりする必要があり、その度に金型を作り直してインシュレータを形成するため、コスト上昇の要因となっていた。 However, in the conventional configurations disclosed in Patent Documents 1 and 2, it is necessary to change the width of the holding groove or to change the width of the step or the inclination angle in accordance with the wire diameter of the coil. In order to form an insulator by re-creating a mold, it has been a factor of cost increase.
 本発明はかかる点に鑑みてなされたもので、その目的は、コイルの線径や巻回数が変更された場合にも巻回されたコイルを整列巻きにできるインシュレータを提供することにある。 The present invention has been made in view of the foregoing, and an object thereof is to provide an insulator capable of aligning wound coils even when the wire diameter and the number of turns of the coil are changed.
 上記の目的を達成するために、本発明に係るインシュレータは、コイル巻回部の径方向端部に、コイル巻回部と別体に形成されたスペーサを装着するようにした。本発明に係るインシュレータは、コアセグメントから突出するトゥースの軸方向端面と少なくとも周方向両側面の一部とを覆い、巻線で構成されたコイルが巻回されるコイル巻回部と、該コイル巻回部のトゥース基端側またはトゥース先端側の一方に連続して設けられ、前記コイルを前記コイル巻回部に案内するコイル導入溝を有する第1鍔部と、前記コイル巻回部の前記トゥース基端側または前記トゥース先端側の他方に連続して設けられた第2鍔部とを備えたインシュレータであって、前記コイルを整列させるためのスペーサが前記コイル巻回部に装着され、前記コイルに並んだ状態で配置されていることを特徴とする。 In order to achieve the above object, in the insulator according to the present invention, a spacer formed separately from the coil winding portion is attached to the radial end of the coil winding portion. The insulator according to the present invention covers the axial end face of the tooth projecting from the core segment and at least a part of both side surfaces in the circumferential direction, and a coil winding portion on which a coil constituted by a winding is wound; A first ridge portion having a coil introduction groove which is continuously provided on one of a tooth base end side and a tooth tip end side of a winding portion and guides the coil to the coil winding portion, and the coil winding portion An insulator provided with a second ridge portion continuously provided on the other of the tooth base end side and the tooth tip end side, wherein a spacer for aligning the coil is attached to the coil winding portion, It is characterized in that it is disposed in line with the coil.
 この構成によれば、コイルの1層目の端部とコイル巻回部の端部に位置する第1または第2鍔部との間隔を簡便に調整でき、コイルを整列巻きにすることができる。 According to this configuration, the distance between the end of the first layer of the coil and the first or second ridge located at the end of the coil winding can be easily adjusted, and the coil can be aligned. .
 前記コイル巻回部の径方向の長さと前記スペーサの径方向の厚さとの差が、前記コイルの線径のn倍(nは整数で、前記コイルの1層目の巻回数)に等しいことが好ましい。 The difference between the radial length of the coil winding portion and the radial thickness of the spacer is equal to n times the wire diameter of the coil (n is an integer, the number of turns of the first layer of the coil) Is preferred.
 この構成によれば、コイル巻回部において、コイルが実際に巻回される部分の径方向の長さと、コイルの1層目の径方向の長さとが一致するため、確実にコイルを整列巻きにすることができる。 According to this configuration, in the coil winding portion, the radial length of the portion on which the coil is actually wound and the radial length of the first layer of the coil coincide with each other, so the coils are surely aligned and wound. Can be
 前記コイルは、前記コイル巻回部に対して斜めに巻回されており、前記スペーサの径方向の厚さは、前記コイル巻回部に巻回される前記コイルの1層目の最終周の巻回予定位置に応じて、前記コイル巻回部上で変化していることが好ましい。 The coil is wound obliquely with respect to the coil winding portion, and the radial thickness of the spacer is the final circumference of the first layer of the coil wound around the coil winding portion. It is preferable to change on the coil winding part according to the planned winding position.
 この構成によれば、コイルがコイル巻回部に対して斜めに巻回されている場合にも、コイルの1層目の端部とコイル巻回部の端部に位置する第1または第2鍔部との間隔を簡便に調整でき、コイルを整列巻きにすることができる。 According to this configuration, even when the coil is wound obliquely to the coil winding portion, the first or second end of the first layer of the coil and the end of the coil winding portion are positioned. The distance to the buttocks can be easily adjusted, and the coils can be aligned and wound.
 前記スペーサは、前記コイル巻回部に巻回された、前記コイルと異なる別の線条部材で構成されていてもよい。 The spacer may be composed of another wire member wound around the coil winding portion and different from the coil.
 この構成によれば、コイルの巻回工程で用いられる巻線装置を使用してスペーサを装着できるため、インシュレータの製造コストを低減できる。 According to this configuration, since the spacer can be attached using the winding device used in the winding process of the coil, the manufacturing cost of the insulator can be reduced.
 前記スペーサは前記第1鍔部または前記第2鍔部と一体形成されていてもよい。 The spacer may be integrally formed with the first ridge or the second ridge.
 前記スペーサは、所定の厚みを有する単層の樹脂フィルム、または前記樹脂フィルムを複数積層してなる積層体で構成されているのが好ましい。 The spacer is preferably formed of a single-layer resin film having a predetermined thickness or a laminate formed by laminating a plurality of the resin films.
 この構成によれば、スペーサの全体の厚みを簡便に調整して、コイル巻回部において、コイルが実際に巻回される部分の径方向の長さとコイルの1層目の径方向の長さとを一致させることができる。このことにより、コイルを確実に整列巻きにすることができる。 According to this configuration, the overall thickness of the spacer is simply adjusted, and in the coil winding portion, the radial length of the portion where the coil is actually wound and the radial length of the first layer of the coil Can be matched. This allows the coil to be reliably aligned and wound.
 前記スペーサの軸方向の高さHはスペーサの全体に亘り一定であることが好ましく、前記コイルの線径の半値をrとするとき、前記高さHは、H=r(1+tan30°)の関係を満たすことがさらに好ましい。また、軸方向だけでなくコイル巻回部の全周にあってもよい。 The axial height H of the spacer is preferably constant throughout the spacer, and when the half value of the wire diameter of the coil is r, the height H has a relationship of H = r (1 + tan 30 °) It is further preferable that Also, it may be located not only in the axial direction but also around the entire circumference of the coil winding portion.
 この構成によれば、コイルを多層巻きするときに、2層目以降のコイルを軸方向で整列させることができる。 According to this configuration, when the coil is wound in multiple layers, the coils of the second and subsequent layers can be aligned in the axial direction.
 前記コイル巻回部の表面は、平滑面であることが好ましい。 The surface of the coil winding portion is preferably a smooth surface.
 この構成によれば、異なる線径や巻回数を有するコイルに対して、同じインシュレータを使用できるため、コストを低減することができる。 According to this configuration, since the same insulator can be used for coils having different wire diameters and the number of turns, cost can be reduced.
 本発明に係るステータは、前記インシュレータを前記コアセグメントの前記トゥースの軸方向端面の各々に具備し、前記インシュレータの前記コイル巻回部に、巻線からなるコイルが巻装されてなるステータセグメントを複数個備え、複数個の前記ステータセグメントを円環形状に接続し、円環の径方向内側に前記トゥースが突出する構成としたことを特徴とする。 In the stator according to the present invention, the insulator is provided on each of axial end faces of the teeth of the core segment, and a stator segment formed by winding a coil formed of a winding around the coil winding portion of the insulator A plurality of the stator segments are connected in an annular shape, and the teeth project radially inward of the annular ring.
 この構成によれば、ステータでのコイル占積率を高めることができる。 According to this configuration, the coil space factor in the stator can be increased.
 前記コイルは前記コイル巻回部に整列巻きされていることが好ましい。 It is preferable that the coil is aligned and wound around the coil winding portion.
 周方向に隣り合う前記トゥースの間が前記コイルを収容するスロットとして構成され、前記スロット内に、前記コアセグメント及び前記トゥースと前記コイルとを絶縁する絶縁紙が、前記トゥースの側面を覆うようにかつ、前記インシュレータの前記第1及び第2鍔部と軸方向で一部重なるように配置されていることが好ましい。 A space between the teeth adjacent in the circumferential direction is configured as a slot for accommodating the coil, and an insulating paper for insulating the core segment and the tooth from the coil is covered in the slot so as to cover the side surface of the tooth And it is preferable to arrange | position so that it may overlap with the said 1st and 2nd collar part of the said insulator in an axial direction.
 この構成によればステータの周方向に隣り合うトゥースの間を確実に電気的に絶縁できる。 According to this configuration, electrical insulation can be reliably made between the teeth adjacent in the circumferential direction of the stator.
 本発明のモータは、前記インシュレータを前記コアセグメントの前記トゥースの軸方向端面の各々に具備し、前記インシュレータの前記コイル巻回部に、巻線からなるコイルが巻装されてなるステータセグメントを複数個備え、複数個の前記ステータセグメントを円環形状に接続し、円環の径方向内側に前記トゥースが突出する構成を含むステータと、該ステータの径方向内側に、前記ステータと所定の間隔をあけて配設された回転軸を含むロータと、を少なくとも備えることを特徴とする。 In the motor according to the present invention, the insulator is provided on each of the axial end faces of the teeth of the core segment, and a plurality of stator segments in which a coil made of a winding is wound on the coil winding portion of the insulator A stator including a plurality of stator segments connected in an annular shape, the stator including a configuration in which the teeth project radially inward of the annular ring, and a predetermined distance from the stator radially inward of the stator And at least a rotor including an open rotational shaft.
 この構成によれば、ステータでのコイル占積率を高められ、モータの効率を向上させることができる。 According to this configuration, the coil space factor in the stator can be increased, and the efficiency of the motor can be improved.
 以上説明したように、本発明によれば、異なる線径を有するコイルを巻回した場合にも、整列巻きコイルを実現することができる。 As described above, according to the present invention, an aligned winding coil can be realized even when coils having different wire diameters are wound.
図1は、実施形態1に係るモータの上面図である。FIG. 1 is a top view of the motor according to the first embodiment. 図2は、図1に示すモータの等価回路図である。FIG. 2 is an equivalent circuit diagram of the motor shown in FIG. 図3は、ステータの概略模式図である。FIG. 3 is a schematic view of a stator. 図4Aは、図1に示す破線で囲まれた部分を示す斜視図である。FIG. 4A is a perspective view showing a portion surrounded by a broken line shown in FIG. 図4Bは、図4Aに示す構造を径方向から見た側面図である。FIG. 4B is a side view of the structure shown in FIG. 4A as viewed in the radial direction. 図4Cは、図4Aに示す構造を周方向から見た側面図である。FIG. 4C is a side view of the structure shown in FIG. 4A as viewed from the circumferential direction. 図5Aは、実施形態1に係るコイルが巻回されたインシュレータの要部の断面模式図である。FIG. 5A is a schematic cross-sectional view of the main part of the insulator on which the coil according to the first embodiment is wound. 図5Bは、実施形態1に係るコイルが巻回された別のインシュレータの要部を軸方向から見た模式図である。FIG. 5B is a schematic view of main parts of another insulator around which the coil according to the first embodiment is wound, viewed from the axial direction. 図5Cは、図5Bに示す構造の断面模式図である。FIG. 5C is a schematic cross-sectional view of the structure shown in FIG. 5B. 図6は、変形例1に係るインシュレータの要部の断面模式図である。FIG. 6 is a schematic cross-sectional view of the main part of the insulator according to the first modification. 図7Aは、変形例2に係るインシュレータの要部の断面模式図である。FIG. 7A is a schematic cross-sectional view of the main parts of an insulator according to a second modification. 図7Bは、変形例2に係る別のインシュレータの要部の断面模式図である。FIG. 7B is a schematic cross-sectional view of the main parts of another insulator according to Modification 2. 図8Aは、変形例3に係るインシュレータの要部を示す斜視図である。FIG. 8A is a perspective view showing the main parts of an insulator according to a third modification. 図8Bは、変形例3に係るスペーサの斜視図である。FIG. 8B is a perspective view of a spacer according to a third modification. 図9Aは、実施形態2に係るインシュレータの要部を示す斜視図である。FIG. 9A is a perspective view showing the main part of the insulator according to the second embodiment. 図9Bは、実施形態2に係るスペーサの斜視図である。FIG. 9B is a perspective view of a spacer according to Embodiment 2. 図10Aは、実施形態2に係るコイルが巻回されたインシュレータの要部の断面模式図である。FIG. 10A is a schematic cross-sectional view of main parts of an insulator on which a coil according to a second embodiment is wound. 図10Bは、図10Aにおける破線で囲まれた部分の拡大図である。FIG. 10B is an enlarged view of a portion surrounded by a broken line in FIG. 10A.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでは全くない。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. The following description of the preferred embodiments is merely exemplary in nature and is in no way intended to limit the invention, its applications or its uses.
 (実施形態1)
 [モータ及びステータの構成]
 図1は、本実施形態に係るモータを示す上面図を示し、図2は、図1に示すモータの等価回路図を示し、図3はステータの概略模式図を示し、ステータ4をシャフト2の軸方向から見た図を示している。なお、説明の便宜上、図1及び3において、一部の構成部品やその機能については図示及びその説明を省略する。例えば、フレームやバスバー等は図示していない。また、図3において、インシュレータ5は図示していない。また、ステータ4を収容する外装体は、図示していない。この外装体の形状は、例えば、金属からなる円筒、略直方体、略長方体、多角形の柱状体などであり、モータ1の仕様に応じて適宜選択される。また、図示した構成部品についても簡略化しており、例えば、図1に示すインシュレータ5は、実際の形状と一部異なっており、図3に示すコイルU1~W4及びこれらのリード端子71は、実際の形状とは大きく異なっている。また、図2において、符号+はコイルの巻き始めを、符号-はコイルの巻き終わりをそれぞれ示している。
(Embodiment 1)
[Configuration of motor and stator]
1 shows a top view showing a motor according to this embodiment, FIG. 2 shows an equivalent circuit diagram of the motor shown in FIG. 1, FIG. 3 shows a schematic diagram of a stator, and the stator 4 is a shaft 2 The figure seen from the axial direction is shown. Note that, for convenience of explanation, in FIGS. 1 and 3, illustration and description of some components and their functions are omitted. For example, the frame and the bus bar are not shown. Further, in FIG. 3, the insulator 5 is not shown. Moreover, the exterior body which accommodates the stator 4 is not shown in figure. The shape of the exterior body is, for example, a cylinder made of metal, a substantially rectangular parallelepiped, a substantially rectangular parallelepiped, a polygonal columnar body or the like, and is appropriately selected according to the specification of the motor 1. The components shown in the drawings are also simplified. For example, the insulator 5 shown in FIG. 1 is partially different from the actual shape, and the coils U1 to W4 and their lead terminals 71 shown in FIG. The shape of the is very different. Further, in FIG. 2, the symbol + indicates the winding start of the coil, and the symbol − indicates the winding end of the coil.
 以降の説明において、シャフト2の長手方向を軸方向と呼び、ステータ4の半径方向を径方向と呼び、ステータ4の円周方向を周方向と呼ぶことがある。また、軸方向において、コイルU1~W4のリード端子71が設けられた側を「上」と、その反対側を「下」と呼び、径方向において、ステータ4の中心側、つまり、シャフト2及びロータが設けられた側を「内」と、その反対側、つまり、ステータコア40側を「外」と呼ぶことがある。 In the following description, the longitudinal direction of the shaft 2 may be referred to as an axial direction, the radial direction of the stator 4 may be referred to as a radial direction, and the circumferential direction of the stator 4 may be referred to as a circumferential direction. Further, in the axial direction, the side on which the lead terminals 71 of the coils U1 to W4 are provided is referred to as "upper" and the opposite side is referred to as "lower", and in the radial direction, the center side of the stator 4, that is, the shaft 2 and The side on which the rotor is provided may be referred to as "inside" and the opposite side, that is, the side of the stator core 40 may be referred to as "outside".
 なお、後述する電磁鋼板の積層する方向と、上記の軸方向とは、同方向であり、同義である。 In addition, the lamination direction of the magnetic steel sheets to be described later and the above axial direction are the same direction and are synonymous.
 なお、以降の説明において、ティース(teeth:toothの複数型)又はトゥース(tooth)という用語を使い分けて記す。円環状のステータコアの中心方向に突出する複数の歯部は、ティース(teeth:toothの複数型)と記す。また、ステータコア40の複数の歯部のうち、一つの歯部については、トゥース42と記す。同じく、後述するコアセグメント41における、複数の歯部は、ティースと記す。また、コアセグメント41における、複数の歯部のうち、一つの歯部については、トゥース42と記す。ちなみに、前述の特許文献3、特許文献4などは、ティース及びトゥースという語句の使い分けを記した公知文献である。 In the following description, the term teeth (plural type of teeth) or tooth will be used selectively. The plurality of teeth projecting in the center direction of the annular stator core is referred to as teeth (a plurality of teeth). Further, among the plurality of teeth of the stator core 40, one tooth is described as a tooth 42. Similarly, a plurality of teeth in the core segment 41 described later is referred to as teeth. Further, one tooth portion of the plurality of tooth portions in the core segment 41 is described as a tooth 42. Incidentally, the above-mentioned Patent Document 3 and Patent Document 4 etc. are known documents in which usage of the words "tooth" and "tooth" is described.
 モータ1は、図示しない外装体の内部に、モータ1の回転軸であるシャフト2を有するロータ3と、ステータ4と、コイルU1~W4と、を備えている。 The motor 1 includes a rotor 3 having a shaft 2 which is a rotation shaft of the motor 1, a stator 4 and coils U1 to W4 inside an outer body (not shown).
 ロータ3は、シャフト2と、ステータ4に対向してN極、S極がシャフト2の外周方向に沿って交互に配置された磁石31とを含んでいる。なお、本実施形態で、ロータ3に用いられる磁石31としてネオジム磁石を使用しているが、その材料や形状や材質については、モータの出力等に応じて適宜変更しうる。また、軸方向から見て、ロータ3は、ステータ4の径方向内側に、ステータ4と一定の間隔をあけて配設されている。 The rotor 3 includes a shaft 2 and magnets 31 in which N poles and S poles are alternately disposed along the outer peripheral direction of the shaft 2 so as to face the stator 4. In the present embodiment, a neodymium magnet is used as the magnet 31 used for the rotor 3. However, the material, shape, and material of the neodymium magnet can be appropriately changed according to the output of the motor. Further, when viewed from the axial direction, the rotor 3 is disposed radially inward of the stator 4 at a constant distance from the stator 4.
 ステータ4は、複数のステータセグメント40aを円環状に連結して構成する円筒形状体である。このステータセグメント40aは、コアセグメント41のトゥース42に軸方向の上下の両端面各々から、インシュレータ5をそれぞれ装着し、更に各インシュレータ5間には絶縁紙6等の絶縁体を装着し、インシュレータ5のコイル巻回部50及び絶縁紙6等の絶縁体の配置部分(図4A~図4C参照)には、巻線を巻回して例えばコイルU1を構成する。上述のように構成したステータセグメント40aの外観は、断面形状を略扇形とする柱状体である。 The stator 4 is a cylindrical body configured by connecting a plurality of stator segments 40a in an annular shape. In the stator segment 40a, the insulators 5 are respectively attached to the teeth 42 of the core segment 41 from the upper and lower end faces in the axial direction, and an insulator such as insulating paper 6 is attached between the insulators 5 Windings are wound around the coil winding portion 50 and the arrangement portion of the insulator such as the insulating paper 6 (see FIGS. 4A to 4C) to constitute, for example, the coil U1. The external appearance of the stator segment 40a configured as described above is a columnar body having a substantially sectoral cross-sectional shape.
 ステータ4及びステータセグメント40aは、複数のコアセグメント41と、コアセグメント41のそれぞれの内周から径方向内側に突出するトゥース42とを有している。このコアセグメント41は、ケイ素等を含有した電磁鋼板を、略円環状のステータコア板体(stator core sheet)のうち、その一部分を構成する個片形状とする板体(core segment sheet)として打ち抜き、この板体(core segment sheet)を複数層積層した積層体である。上述のように構成したコアセグメント41の外観は、断面形状を、略円環状のステータコア板体(stator core sheet)の一部分を構成する個片形状とする柱状体である。板体の積層方向は、板体の板面に対して法線方向である。このコアセグメント41は、ヨーク部41cと、このヨーク部41cの略中央部から突出するトゥース42とを有する。 The stator 4 and the stator segment 40 a have a plurality of core segments 41 and teeth 42 projecting radially inward from the inner circumferences of the core segments 41. The core segment 41 is formed by punching a magnetic steel sheet containing silicon or the like as a core segment sheet which forms a part of a substantially annular stator core sheet. It is a layered product which laminated this board (core segment sheet) in multiple layers. The appearance of the core segment 41 configured as described above is a columnar body having a cross-sectional shape that is a piece-like shape that constitutes a part of a substantially annular stator core sheet. The stacking direction of the plate is a normal direction to the plate surface of the plate. The core segment 41 has a yoke portion 41c and a tooth 42 projecting from a substantially central portion of the yoke portion 41c.
 そして、コアセグメント41は周方向に位置するヨーク部41cの一方の側面に凹部41aが、他方の側面に凸部41bがそれぞれ形成されており、凹部41a,凸部41bともに、各側面において、軸方向全体にわたって延びて形成されている。一つのコアセグメント41に着目すると、このコアセグメント41の凹部41aに、周方向の一方で隣接するコアセグメント41の凸部41bが嵌合し、このコアセグメント41の凸部41bが、周方向の他方で隣接するコアセグメント41の凹部41aに嵌合してそれぞれ連結している。このように周方向に隣り合うコアセグメント41がそれぞれ嵌合して連結することにより、円環形状のステータコア40が構成される。 The core segment 41 has a recess 41a formed on one side of the yoke portion 41c located in the circumferential direction, and a protrusion 41b formed on the other side. Both the recess 41a and the protrusion 41b have an axis in each side. It is formed extending in the entire direction. Focusing on one core segment 41, the convex portion 41b of the core segment 41 adjacent in the circumferential direction fits into the concave portion 41a of the core segment 41, and the convex portion 41b of the core segment 41 extends in the circumferential direction. On the other hand, they are fitted and connected to the recesses 41 a of the adjacent core segments 41. The annularly shaped stator core 40 is configured by the core segments 41 adjacent in the circumferential direction being fitted and connected as described above.
 図1,3に示すように、コアセグメント41を連結して、円環形状のステータコア40を構成することにより、ステータコア40の内周に沿って等間隔にトゥース42が配置される。また、周方向に隣り合うトゥース42の各間隔はスロット43を構成している。 As shown in FIGS. 1 and 3, by connecting the core segments 41 to constitute the annular stator core 40, the teeth 42 are arranged at equal intervals along the inner periphery of the stator core 40. Moreover, each space | interval of the tooth 42 adjacent to the circumferential direction comprises the slot 43. As shown in FIG.
 また、ステータ4は、12個のコイルU1~W4を有しており、これらのコイルはインシュレータ5及び絶縁紙6(図4A~図4C参照)を介して各トゥース42に対して装着され、軸方向から見て、各スロット43内に配置されている。なお、図示しないが、コイルU1~W4は、表面に絶縁皮膜が施された銅等の金属材料からなる断面が円形の巻線で構成され、インシュレータ5に対して整列巻きかつ多層巻きで巻回されている。なお、多層巻きとは、インシュレータ5に対してコイル7が複数層巻回された状態をいう。また、「円形」とは巻線の加工公差やトゥース42に巻回したときの巻線の変形を含んで「円形」という意味であり、以降の説明においても同様である。また、以降の説明において、コイルU1~W4を特定せずに、一つを取り上げて構造等を説明する場合にはコイル7と呼ぶこととする。 In addition, the stator 4 has 12 coils U1 to W4. These coils are attached to each tooth 42 through the insulator 5 and the insulating paper 6 (see FIGS. 4A to 4C). As viewed from the direction, they are disposed in each slot 43. Although not shown, the coils U1 to W4 are each composed of a winding having a circular cross section made of a metal material such as copper with an insulating film applied on the surface, and wound in parallel with the insulator 5 by multilayer winding. It is done. The multi-layer winding refers to a state in which the coil 7 is wound around the insulator 5 in a plurality of layers. Further, "circular" means "circular" including processing tolerance of the winding and deformation of the winding when wound around the tooth 42, and the same applies to the following description. Further, in the following description, when one of the coils U1 to W4 is taken up to describe a structure or the like without specifying the coil U1 to W4, the coil 7 is called.
 図2に示すように、コイルU1~U4,V1~V4,W1~W4はそれぞれ直列に接続されており、U,V,W相の3相がスター結線されている。また、互いに電気角で120°の位相差を有するU,V,W相の3相の電流がそれぞれコイルU1~U4,V1~V4,W1~W4に供給されて励磁され、回転磁界が発生する。この回転磁界により、ロータ3にトルクが発生し、シャフト2が図示しない軸受に支持されて回転する。 As shown in FIG. 2, the coils U1 to U4, V1 to V4, and W1 to W4 are connected in series, and three phases of U, V, and W phases are star-connected. In addition, three U-, V- and W-phase currents having a phase difference of 120 ° in electrical angle with each other are supplied to coils U1 to U4, V1 to V4 and W1 to W4, respectively, and excited to generate a rotating magnetic field. . A torque is generated in the rotor 3 by the rotating magnetic field, and the shaft 2 is supported by a bearing (not shown) and rotated.
 なお、本実施形態において、ロータ3の磁極数は、ステータ4に対向するN極が5個、S極が5個の計10極であり、スロット43の数は12個であるが、特にこれに限定されるものではなく、その他の磁極数とスロット数との組合せについても適用できる。 In the present embodiment, the number of magnetic poles of the rotor 3 is ten in total: five N poles and five S poles facing the stator 4 and the number of slots 43 is twelve, but in particular The present invention is not limited to the above, and may be applied to other combinations of the number of magnetic poles and the number of slots.
 [ステータセグメントの要部の構成]
 図4A~4Cは、図1における破線で囲まれた部分の斜視図、径方向及び周方向から見た側面図をそれぞれ示す。なお、説明の便宜上、図4A~4Cにおいて、コイル7の図示を省略している。また、インシュレータ5とコアセグメント41及びトゥース42とに挟み込まれて取り付けられた絶縁紙6も図示しているが、スロット43内に収容されるように折り曲げられる前の状態を示している。
[Configuration of main part of stator segment]
4A to 4C respectively show a perspective view of a portion surrounded by a broken line in FIG. 1, and a side view seen from the radial direction and the circumferential direction. Note that the illustration of the coil 7 is omitted in FIGS. 4A to 4C for the convenience of description. Further, the insulating paper 6 sandwiched and attached between the insulator 5 and the core segment 41 and the tooth 42 is also illustrated, but shows the state before being folded so as to be accommodated in the slot 43.
 図4A~4Cに示すように、一つのコアセグメント41から突出するトゥース42に対し、軸方向の上下の両端面各々から同じ形状を有するインシュレータ5がそれぞれ装着されており、また、コアセグメント41及びトゥース42とインシュレータ5との間に絶縁紙6が挟み込まれている。このように、インシュレータ5は、トゥース42の軸方向両端面と、この両端面近傍部分を覆うように設けられている。 As shown in FIGS. 4A to 4C, insulators 5 having the same shape are respectively attached to the teeth 42 projecting from one core segment 41 from the upper and lower end faces in the axial direction, respectively. The insulating paper 6 is sandwiched between the tooth 42 and the insulator 5. As described above, the insulators 5 are provided so as to cover both axial end surfaces of the tooth 42 and portions near the both end surfaces.
 インシュレータ5は、絶縁性樹脂材料を成形してなる絶縁部材であり、コイル7(図5A~5C参照)が巻装されるコイル巻回部50と、コイル巻回部50の一端に形成された第1鍔部51と、他端に形成された第2鍔部52とを有している。本実施形態では、第1鍔部51はコアセグメント41側に装着されており、第2鍔部52はステータ4の径方向内側に位置するトゥース42の先端に装着されている。また、第1鍔部51には、コイル導入溝53が形成されており、コイル巻回部50にコイルが巻回される際には、コイル7を構成する巻線は、コイル導入溝53を通り、巻き始め部分が第1鍔部51における第2鍔部52に対向する内面51a(以下、第1鍔部51の内面51aという)に接してコイル巻回部50に案内される。なお、本明細書において、コイル7の巻き始め部分とは、コイル7における、コイル巻回部50に巻回された1層目のコイルの1周目近傍をいう。 The insulator 5 is an insulating member formed by molding an insulating resin material, and is formed at one end of the coil winding portion 50 on which the coil 7 (see FIGS. 5A to 5C) is wound, and at one end of the coil winding portion 50. It has a first collar 51 and a second collar 52 formed at the other end. In the present embodiment, the first collar 51 is mounted on the core segment 41 side, and the second collar 52 is mounted on the tip of the tooth 42 located radially inward of the stator 4. In addition, the coil introduction groove 53 is formed in the first collar portion 51, and when the coil is wound around the coil winding portion 50, the winding constituting the coil 7 is the coil introduction groove 53. As a result, the winding start portion is guided to the coil winding portion 50 in contact with the inner surface 51a (hereinafter referred to as the inner surface 51a of the first collar portion 51) facing the second collar portion 52 in the first collar portion 51. In the present specification, the winding start portion of the coil 7 refers to the vicinity of the first turn of the first layer coil wound around the coil winding portion 50 in the coil 7.
 コイル巻回部50の外周面のうち、トゥース42の軸方向の両端面各々を覆う外周面50a,50bは、それぞれ、第1鍔部51から第2鍔部52に向けてトゥース42の軸方向上側面あるいは軸方向下側面からの高さが高くなるように単調に傾斜させて形成している。このようにすることで、コイル巻回部50に対してコイル7を整列巻きにすることが容易となる。また、コイル巻回部50の外周面のうち、トゥース42の周方向両端面を覆う表面50c,50dは、それぞれ、トゥース42の軸方向上端面に対して直交するように形成されている。なお、以降の説明において、上記の外周面50a~50dをコイル巻回部50の表面と呼ぶことがある。また、「直交」とはインシュレータ5の加工公差やトゥース42の加工公差、またインシュレータ5をトゥース42に装着する際の組立公差を含んで「直交」という意味であり、「平行」とはインシュレータ5の加工公差やトゥース42にインシュレータ5を装着する際の組立公差を含んで「平行」という意味であり、以降の説明においても同様である。 Of the outer peripheral surface of the coil winding portion 50, the outer peripheral surfaces 50a and 50b covering both end surfaces in the axial direction of the tooth 42 respectively extend in the axial direction of the tooth 42 from the first collar portion 51 toward the second collar portion 52. It is formed to be monotonously inclined so that the height from the upper side surface or the lower side surface in the axial direction is high. By doing so, it becomes easy to align the coil 7 with the coil winding portion 50. Further, among the outer peripheral surfaces of the coil winding portion 50, surfaces 50c, 50d covering both circumferential end surfaces of the tooth 42 are formed to be orthogonal to the axial upper end surface of the tooth 42, respectively. In the following description, the outer circumferential surfaces 50a to 50d may be referred to as the surface of the coil winding portion 50. Also, “perpendicular” means “perpendicular” including the processing tolerance of the insulator 5, the processing tolerance of the tooth 42, and the assembly tolerance when attaching the insulator 5 to the tooth 42, and “parallel” means the insulator 5 It means “parallel” including the processing tolerance of and the assembly tolerance at the time of attaching the insulator 5 to the tooth 42, and the same applies to the following description.
 第1鍔部51の内面51aは、トゥース42の軸方向上端面または軸方向下端面と直交する面と平行に設けられた面である。 The inner surface 51 a of the first flange portion 51 is a surface provided parallel to a surface orthogonal to the axial upper end surface or the axial lower end surface of the tooth 42.
 コイル巻回部50に、具体的にはコイル巻回部50の表面と第2鍔部52における第1鍔部51との対向面(以下、第2鍔部52の内面52aという)との間のコーナー部にスペーサ54が装着されている。スペーサ54は、コイル巻回部50とコイル導入溝53を含む第1鍔部51と第2鍔部52とからなるインシュレータ本体5a(図5A~5C参照)とは別体で形成され、コイル巻回部50に装着されている。なお、第1及び/または第2鍔部51,52をコイル巻回部50と別体で形成する場合には、コイル巻回部50を含んで一体に形成された部分をインシュレータ本体5aと呼ぶこともある。また、特に断らない限り、インシュレータ本体5aは絶縁性樹脂材料で一括成形されてなる。なお、スペーサ54の構造については後で詳述する。 More specifically, between the surface of the coil winding portion 50 and the opposing surface of the first ridge portion 51 of the second ridge portion 52 (hereinafter referred to as the inner surface 52 a of the second ridge portion 52). A spacer 54 is attached to the corner of the. The spacer 54 is formed separately from the insulator main body 5a (see FIGS. 5A to 5C) including the first ridge 51 and the second ridge 52 including the coil winding portion 50 and the coil introduction groove 53. It is attached to the rotary unit 50. When the first and / or second flanges 51 and 52 are formed separately from the coil winding portion 50, the portion integrally formed including the coil winding portion 50 is referred to as the insulator main body 5a. Sometimes. Further, unless otherwise specified, the insulator main body 5a is collectively molded of an insulating resin material. The structure of the spacer 54 will be described in detail later.
 インシュレータ5は、絶縁紙6とともに、コアセグメント41及びトゥース42とコイル7とを電気的に絶縁する機能を有している。また、インシュレータ5は、後述するコイル7の整列巻きを安定して維持する機能を有している。 The insulator 5 has a function to electrically insulate the core segment 41 and the tooth 42 from the coil 7 together with the insulating paper 6. Further, the insulator 5 has a function of stably maintaining the alignment winding of the coil 7 described later.
 絶縁紙6は、例えば、絶縁性の油が含浸されており、トゥース42の周方向の両側面を覆うように、また、インシュレータ5の第1及び第2鍔部51,52と軸方向でそれぞれ一部重なるように配設されている。また、図示しないが、モータ1を組み立てるにあたって、絶縁紙6は、それぞれ折り曲げられて、スロット43内を覆うように配設されている。このことにより、コアセグメント41及びトゥース42とコイル7とを電気的に絶縁するとともに、周方向に隣り合うコアセグメント41及びトゥース42間を電気的に絶縁できる。 The insulating paper 6 is impregnated with, for example, an insulating oil, so as to cover both side surfaces of the tooth 42 in the circumferential direction, and in the axial direction with the first and second flange portions 51, 52 of the insulator 5, respectively. It is arranged so as to partially overlap. Further, although not shown, the insulating paper 6 is folded so as to cover the inside of the slot 43 when assembling the motor 1. As a result, the core segment 41 and the tooth 42 and the coil 7 can be electrically isolated from each other, and the core segment 41 and the tooth 42 adjacent in the circumferential direction can be electrically isolated.
 [インシュレータの要部の構成]
 図5Aは、本実施形態に係るコイルが巻回されたインシュレータの要部の断面模式図を、図5Bは、本実施形態に係るコイルが巻回された別のインシュレータの要部を軸方向から見た模式図を、図5Cは、図5Bの構造での断面模式図をそれぞれ示す。なお、図5A~5Cに示すインシュレータ5は、図4A~4Cに示すのと同じであるが、説明の便宜上、図5A~5Cにおいて、インシュレータ5の構造は簡略化して図示している。また、図5A,5Cにおいて、コイル導入溝53及びコイル7のうちコイル導入溝53を通って外部に延びる部分は図示を省略している。
[Configuration of main part of insulator]
FIG. 5A is a cross-sectional schematic view of the main part of the insulator on which the coil according to the present embodiment is wound, and FIG. 5B is an axial view of the main part of another insulator on which the coil according to the present embodiment is wound. FIG. 5C shows a cross-sectional schematic view of the structure of FIG. 5B. Although the insulator 5 shown in FIGS. 5A to 5C is the same as that shown in FIGS. 4A to 4C, the structure of the insulator 5 is simplified and shown in FIGS. 5A to 5C for the convenience of description. Moreover, in FIG. 5A, 5C, the part extended outside through the coil introduction groove 53 among the coil introduction groove 53 and the coil 7 is abbreviate | omitting illustration.
 図5A~5Cに示すように、コイル巻回部50にコイル7が巻回されており、コイル7に並んだ状態でスペーサ54が装着されてコイル巻回部50に配置されている。 As shown in FIGS. 5A to 5C, the coil 7 is wound around the coil winding unit 50, and the spacer 54 is mounted on the coil winding unit 50 in a state of being lined with the coil 7.
 スペーサ54は、絶縁性樹脂材料を成形してなる、C字形状(図8B参照)の絶縁部材である。また、コイル巻回部50に装着されたスペーサ54は、外周面50a~50cに対しては第2鍔部52の根元に沿って全体に配設され、外周面50dに対しては、スペーサ54の切り欠きがあるため全体に配置されず第2鍔部52の根元に沿って一部のみに配設されている。なお、スペーサ54は、外周面50a~50dのうち、連続する3つの面に対して第2鍔部52の根元に沿って全体に配設されていればよい。また、インシュレータ5がトゥース42の軸方向の上下の両端面各々から装着される分割タイプであれば、各々のインシュレータ5にスペーサ54を装着してもよい。また、図示しないが、スペーサ54はコイル巻回部50に位置決めして装着され、コイル巻回部50の表面に固定されている。スペーサ54の固定にあたっては、接着剤やねじ等の締結部材、あるいはピン等その他の固定部材を用いることができる。 The spacer 54 is a C-shaped (see FIG. 8B) insulating member formed by molding an insulating resin material. Further, the spacer 54 mounted on the coil winding portion 50 is disposed along the root of the second flange 52 with respect to the outer peripheral surfaces 50a to 50c, and the spacer 54 with respect to the outer peripheral surface 50d. Because of the notches, they are not disposed entirely but only partially along the root of the second flange 52. The spacer 54 may be disposed along the root of the second ridge 52 with respect to three continuous surfaces among the outer peripheral surfaces 50a to 50d. Further, if the insulators 5 are of the division type mounted from the upper and lower end surfaces in the axial direction of the tooth 42, the spacers 54 may be mounted on the respective insulators 5. Although not shown, the spacer 54 is positioned and attached to the coil winding portion 50 and fixed to the surface of the coil winding portion 50. In fixing the spacer 54, an adhesive, a fastening member such as a screw, or another fixing member such as a pin can be used.
 なお、コイル7を構成する巻線は、銅等からなる電線の表面に絶縁皮膜を形成してなるのが一般的である。よって、コイル7の線径という場合には、絶縁皮膜の厚みも含めた線径をいう。従って、図5A~5Cに示すコイル7の線径は、電線の線径に絶縁皮膜の厚みの2倍を加えた値となる。 In addition, it is general that the winding which comprises the coil 7 forms an insulating film in the surface of the electric wire which consists of copper etc. FIG. Therefore, the wire diameter of the coil 7 means the wire diameter including the thickness of the insulating film. Therefore, the wire diameter of the coil 7 shown in FIGS. 5A to 5C is a value obtained by adding twice the thickness of the insulating film to the wire diameter of the wire.
 コイル7がコイル巻回部50に対して軸方向に直交して巻回されるか、傾斜して巻回される場合においても、コイル7の線径が小さいため等により巻回される傾斜角度が小さい場合は、図5Aに示すように、スペーサ54が装着されるコイル巻回部50の外周面50a~50cにわたって、スペーサ54の径方向の厚さL1は一定である。このようにすることで、コイル巻回部50の径方向の長さL2とスペーサ54の径方向の厚さL1との差がコイル7の線径のn倍(nは整数で、コイル7の1層目の巻回数)とすることができる。なお、コイル7の線径が小さい場合とは、例えば、コイル7の線径が1mm未満の場合をいうが特にこれに限定されない。また、本明細書において「一定」とは、スペーサ54の加工公差を含んで一定という意味である。 In the case where the coil 7 is wound orthogonally to the coil winding portion 50 in the axial direction, or when the coil 7 is wound with an inclination, the inclination angle of the coil 7 is small because the wire diameter is small When L is small, as shown in FIG. 5A, the radial thickness L1 of the spacer 54 is constant over the outer peripheral surfaces 50a to 50c of the coil winding portion 50 to which the spacer 54 is attached. By doing this, the difference between the radial length L2 of the coil winding portion 50 and the radial thickness L1 of the spacer 54 is n times the wire diameter of the coil 7 (n is an integer, The number of turns in the first layer can be made. In addition, although the case where the wire diameter of the coil 7 is less than 1 mm means the case where the wire diameter of the coil 7 is small, for example, it is not specifically limited to this. Further, in the present specification, “constant” means constant including processing tolerance of the spacer 54.
 また、図5B,5Cに示すように、スペーサ54の径方向の厚さL1は一定ではなく、外周面50a上で変化してもよい。この理由を以下に述べる。 Further, as shown in FIGS. 5B and 5C, the thickness L1 in the radial direction of the spacer 54 is not constant, and may be changed on the outer circumferential surface 50a. The reason is described below.
 コイル導入溝53を通してコイル7がコイル巻回部50に巻き回されるときに、コイル導入溝53の出口でコイル7の巻線が曲げられて、巻線が傾斜してコイル巻回部50の外周面50aに巻き回される。このため、コイル7の1層目の最終周と第2鍔部52との間隔は一定ではなく、コイル巻回部50の外周面50a上で変化している。スペーサ54は、この間隔の変化に応じて径方向の厚さL1が変化している。つまり、スペーサ54の径方向の厚さL1は、コイル巻回部50に対するコイル7の1層目の最終周の巻回予定位置に応じて変化している。このようにすることで、コイル巻回部50の径方向の長さL2とスペーサ54の径方向の厚さL1との差が、コイル巻回部50の周回方向で常にコイル7の線径のn倍となるようにしている。なお、同様に、外周面50b上でも、スペーサ54の径方向の厚さL1は変化している。 When the coil 7 is wound around the coil winding portion 50 through the coil introduction groove 53, the winding of the coil 7 is bent at the outlet of the coil introduction groove 53, and the winding is inclined. It is wound around the outer peripheral surface 50a. Therefore, the distance between the final periphery of the first layer of the coil 7 and the second ridge portion 52 is not constant, and changes on the outer peripheral surface 50 a of the coil winding portion 50. In the spacer 54, the radial thickness L1 changes in accordance with the change in the distance. That is, the thickness L 1 in the radial direction of the spacer 54 changes in accordance with the planned winding position of the final circumference of the first layer of the coil 7 with respect to the coil winding portion 50. By doing this, the difference between the radial length L2 of the coil winding portion 50 and the radial thickness L1 of the spacer 54 is always equal to the diameter of the wire diameter of the coil 7 in the winding direction of the coil winding portion 50. It is made to be n times. Similarly, the thickness L1 in the radial direction of the spacer 54 also changes on the outer circumferential surface 50b.
 [効果等]
 以上説明したように、本実施形態に係るインシュレータ5は、コアセグメント41から突出するトゥース42の軸方向端面と少なくとも周方向両側面の一部とを覆い、巻線で構成されたコイル7が巻回されるコイル巻回部50と、コイル巻回部50におけるトゥース42の基端側に連続して設けられ、コイル7をコイル巻回部50に案内するコイル導入溝53を有する第1鍔部51と、コイル巻回部50におけるトゥース42の先端側に連続して設けられた第2鍔部52とを備えている。
[Effects, etc.]
As described above, the insulator 5 according to the present embodiment covers the axial end face of the tooth 42 protruding from the core segment 41 and at least a part of both side surfaces in the circumferential direction, and the coil 7 formed of a winding is wound A first winding portion having a coil winding portion 50 to be wound and a coil introduction groove 53 continuously provided on the base end side of the tooth 42 in the coil winding portion 50 and guiding the coil 7 to the coil winding portion 50 51 and a second flange 52 provided continuously on the tip end side of the tooth 42 in the coil winding part 50.
 インシュレータ5は、コイル7に並んだ状態でスペーサ54がコイル巻回部50に装着されている。具体的には、第2鍔部52の内面52aとコイル巻回部50との間のコーナー部にスペーサ54が装着されている。 In the insulator 5, the spacer 54 is attached to the coil winding portion 50 in a state of being aligned with the coil 7. Specifically, the spacer 54 is attached to the corner between the inner surface 52 a of the second flange 52 and the coil winding unit 50.
 このことにより、コイル7の1層目の最終周と第2鍔部52との間隔を簡便に調整でき、コイル7を整列巻きにすることができる。また、異なる線径または巻回数を有するコイル7をインシュレータ5に巻回するにあたって、特許文献2に開示されたように、インシュレータに設けられたコイルの保持溝の幅を変更したり、あるいは、特許文献1に開示されたように、インシュレータに設けられた段差の幅や傾斜の角度を変更したりする必要がない。つまり、コイル巻回部50の表面は平滑な面のままでよく、スペーサ54を変更するだけで、同じ形状のインシュレータ本体5aを使用することができる。これにより、インシュレータ5の製造コストが上昇するのを抑制でき、また、種々のモータを開発する際の開発コストを低減できる。 By this, the space | interval of the last periphery of 1st layer of the coil 7 and the 2nd collar part 52 can be adjusted simply, and the coil 7 can be made into an alignment winding. Also, when winding the coil 7 having a different wire diameter or the number of turns around the insulator 5, as disclosed in Patent Document 2, the width of the holding groove of the coil provided in the insulator is changed, or As disclosed in Document 1, it is not necessary to change the width or the inclination angle of the step provided in the insulator. That is, the surface of the coil winding portion 50 may be a smooth surface, and only by changing the spacer 54, the insulator main body 5a having the same shape can be used. As a result, it is possible to suppress an increase in the manufacturing cost of the insulator 5 and to reduce the development cost when developing various motors.
 また、コイル巻回部50の径方向の長さL2とスペーサ54の径方向の厚さL1との差がコイル7の線径のn倍となるようにスペーサ54の形状が設定されている。つまり、コイル7が実際に巻回されるコイル巻回部50の径方向の長さと、コイル7の1層目の径方向の長さとが一致するようにスペーサ54が形成されてコイル巻回部50に装着されている。このことにより、確実にコイル7を整列巻きにすることができる。また、スペーサ54の径方向の厚さL1は、コイル巻回部50の軸方向両端面である外周面50a,50b上でのコイル7の1層目の最終周の巻回予定位置に応じて変化している。このことにより、コイル巻回部50の周回方向全体にわたって、コイル巻回部50の径方向の長さL2とスペーサ54の径方向の厚さL1との差をコイル7の線径のn倍とすることができ、確実にコイル7を整列巻きにすることができる。 The shape of the spacer 54 is set such that the difference between the radial length L2 of the coil winding portion 50 and the radial thickness L1 of the spacer 54 is n times the wire diameter of the coil 7. That is, the spacer 54 is formed so that the radial length of the coil winding portion 50 on which the coil 7 is actually wound matches the radial length of the first layer of the coil 7 and the coil winding portion It is attached to 50. By this, the coil 7 can be reliably wound in alignment. Further, the thickness L1 in the radial direction of the spacer 54 corresponds to the planned winding position of the final circumference of the first layer of the coil 7 on the outer peripheral surfaces 50a and 50b which are both axial end surfaces of the coil winding portion 50. It is changing. Thus, the difference between the radial length L2 of the coil winding portion 50 and the radial thickness L1 of the spacer 54 over the entire circumferential direction of the coil winding portion 50 is n times the wire diameter of the coil 7 The coil 7 can be reliably wound in alignment.
 また、本実施形態に係るインシュレータ5を、例えば、図1に示すモータ1のステータ4に適用することで、コイル7の整列巻きが図れ、コイル巻回部50におけるコイル7が巻回されないデッドスペースを低減できる。このことにより、スロット43内でのコイル7の占積率を高められ、モータ1の効率を向上させることができる。なお、スペーサ51の径方向の厚さL1を、コイル7の線径よりも小さくすることで、コイル7の占積率をさらに高めることができる。 In addition, by applying the insulator 5 according to the present embodiment to, for example, the stator 4 of the motor 1 shown in FIG. 1, alignment winding of the coil 7 can be achieved, and a dead space in which the coil 7 in the coil winding unit 50 is not wound. Can be reduced. By this, the space factor of the coil 7 in the slot 43 can be increased, and the efficiency of the motor 1 can be improved. The space factor of the coil 7 can be further increased by making the radial thickness L 1 of the spacer 51 smaller than the wire diameter of the coil 7.
 <変形例1>
 図6は、本変形例に係るインシュレータの要部の断面模式図を示す。説明の便宜上、図6において、インシュレータ5の構造は簡略化して図示している。また、図6において、コイル導入溝53及びコイル7のうちコイル導入溝53を通って外部に延びる部分は、図示を省略している。
<Modification 1>
FIG. 6 shows a schematic cross-sectional view of the main part of the insulator according to the present modification. For convenience of explanation, the structure of the insulator 5 is shown in a simplified manner in FIG. Moreover, in FIG. 6, the part extended outside through the coil introduction groove 53 among the coil introduction groove 53 and the coil 7 is abbreviate | omitting illustration.
 実施形態1に示す構成では、スペーサ54が絶縁性樹脂を成形してなる絶縁部材であったのに対し、本変形例では、スペーサ55が、コイル7とは異なる別の線条部材で構成されている点で異なる。線条部材をコイル巻回部50に巻き回してスペーサ55とすることで、スペーサ54を個別に成形しなくて済むため、インシュレータ5の製造コストをさらに低減できる。また、スペーサ55をコイル巻回部50に巻き回すにあたっては、既存の巻線装置を用いることができ、コイル7の巻線装置と共用化できる。また、スペーサ55の線径や巻回数を調整することで、スペーサ55の径方向の厚みを所望の値に設定して、コイル7を整列巻きにすることができる。また、前述したように、コイル7がコイル巻回部50に対して斜めに巻回される場合にも、本変形例のスペーサ55は対応可能である。さらに、スペーサ55にも絶縁皮膜が設けられているため、トゥース42とコイル7との間、あるいは周方向に隣り合うコイル7巻での絶縁を維持できる。なお、既存の巻線装置で巻回できるのであれば、スペーサ55を、絶縁材料からなる線材としてもよい。 In the configuration shown in the first embodiment, the spacer 54 is an insulating member formed by molding an insulating resin, while in the present modification, the spacer 55 is formed of another linear member different from the coil 7. Differ in that they By forming the wire member around the coil winding portion 50 to form the spacer 55, the spacer 54 does not have to be formed separately, so the manufacturing cost of the insulator 5 can be further reduced. In addition, when winding the spacer 55 around the coil winding portion 50, an existing winding device can be used, and can be shared with the winding device of the coil 7. In addition, by adjusting the wire diameter and the number of turns of the spacer 55, the thickness of the spacer 55 in the radial direction can be set to a desired value, and the coil 7 can be wound in alignment. Further, as described above, even in the case where the coil 7 is wound diagonally with respect to the coil winding portion 50, the spacer 55 of the present modification can cope with it. Furthermore, since the insulating film is provided also on the spacer 55, insulation can be maintained between the tooth 42 and the coil 7 or in the winding of the coil 7 adjacent in the circumferential direction. The spacer 55 may be a wire made of an insulating material if it can be wound by an existing winding device.
 また、図示しないが、スペーサ55を構成する巻線は、第2鍔部52に設けられたスペーサ導入溝531を通してコイル巻回部50に導入される。また、スペーサ55の巻き終わり部分もスペーサ導入溝531または別に設けられたスペーサ導入溝(図示せず)を通して外部に引き出され、巻かれる幅を調整できる他、余分なスペーサ55の巻き始め部分や巻き終わり部分をコイル巻回部50の外部で固定するための特別な部材や接着剤を不要とすることができる。 Further, although not shown, the winding constituting the spacer 55 is introduced into the coil winding portion 50 through the spacer introduction groove 531 provided in the second flange portion 52. Further, the winding end portion of the spacer 55 is also drawn out through the spacer introducing groove 531 or a spacer introducing groove (not shown) provided separately, and the width of the winding can be adjusted. A special member or adhesive for fixing the end portion outside the coil winding portion 50 can be eliminated.
 <変形例2>
 図7Aは、本変形例に係るインシュレータの要部の断面模式図を示し、図7Bは、本変形例に係る別のインシュレータの要部の断面模式図を示す。説明の便宜上、図7A,7Bにおいて、インシュレータ5の構造は簡略化して図示している。また、図7A,7Bにおいて、コイル導入溝53及びコイル7のうちコイル導入溝53を通って外部に延びる部分は、図示を省略している。
<Modification 2>
FIG. 7A shows a cross-sectional schematic view of the main part of the insulator according to this modification, and FIG. 7B shows a cross-sectional schematic view of the main part of another insulator according to this modification. For convenience of explanation, the structure of the insulator 5 is simplified and illustrated in FIGS. 7A and 7B. Further, in FIGS. 7A and 7B, a portion of the coil introducing groove 53 and the coil 7 extending to the outside through the coil introducing groove 53 is not shown.
 実施形態1に示す構成では、第2鍔部52の内面52aとコイル巻回部50との間のコーナー部にスペーサ54を装着させているのに対し、本変形例では、スペーサ56aが第2鍔部52の一部と一体形成されているか、または、スペーサ56bが第2鍔部52自体と一体形成されている点で異なる。 In the configuration shown in the first embodiment, the spacer 54 is attached to the corner between the inner surface 52a of the second flange 52 and the coil winding portion 50, while in the present modification, the spacer 56a is the second It differs in that it is integrally formed with a part of the collar 52 or the spacer 56 b is integrally formed with the second collar 52 itself.
 スペーサ56a,56bをこのような構成とすることで、コイル巻回部50の径方向の長さL2とスペーサ56a,56bの径方向の厚みとの差を、確実にコイル7の線径のn倍とすることができる。これにより、コイル巻回部50に対してコイル7を整列巻きにすることができる。なお、インシュレータ5が分割タイプである場合に、図7Aに示すスペーサ56aは容易に装着できる。また、別体で形成されたインシュレータ本体5a(この場合は、コイル巻回部50及び第1鍔部51)がトゥース42に装着された後から、図7Bに示すスペーサ56bをトゥース42の先端部に装着してもよいし、インシュレータ本体5aにスペーサ56bを装着してから、インシュレータ5をトゥース42に装着するようにしてもよい。 By making the spacers 56a and 56b have such a configuration, the difference between the radial length L2 of the coil winding portion 50 and the radial thickness of the spacers 56a and 56b can be reliably made n of the wire diameter of the coil 7 It can be doubled. Thereby, the coil 7 can be wound in alignment with the coil winding portion 50. In addition, when the insulator 5 is a division | segmentation type, the spacer 56a shown to FIG. 7A can be mounted | worn easily. In addition, after the separately formed insulator main body 5a (in this case, the coil winding portion 50 and the first ridge portion 51) is attached to the tooth 42, the spacer 56b shown in FIG. The insulator 5 may be attached to the tooth 42 after the spacer 56b is attached to the insulator main body 5a.
 <変形例3>
 図8Aは、本変形例に係るインシュレータの要部の斜視図を示し、図8Bは、スペーサの斜視図を示す。なお、説明の便宜上、図8Aにおいて、絶縁紙6の図示を省略している。実施形態1に示す構成では、第2鍔部52の内面52aとコイル巻回部50の表面との間のコーナー部にスペーサ54を装着しているのに対し、本変形例では、第1鍔部51aに接して、第1鍔部51の内面51aとコイル巻回部50の表面との間のコーナー部にスペーサ57を装着している点で異なる。また、スペーサ57は、コイル導入溝53に対応する部分が切り欠かれてなるC字形状の絶縁部材である。
<Modification 3>
FIG. 8A shows a perspective view of the main part of the insulator according to this modification, and FIG. 8B shows a perspective view of the spacer. In addition, illustration of the insulating paper 6 is abbreviate | omitted in FIG. 8A for convenience of explanation. In the configuration shown in the first embodiment, the spacer 54 is attached to the corner between the inner surface 52a of the second flange 52 and the surface of the coil winding portion 50, while in this modification, the first ridge is attached. The difference is that a spacer 57 is attached to a corner portion between the inner surface 51a of the first collar portion 51 and the surface of the coil winding portion 50 in contact with the portion 51a. The spacer 57 is a C-shaped insulating member in which a portion corresponding to the coil introduction groove 53 is cut out.
 このようなスペーサ57をコイル巻回部50に装着してもよく、本変形例の場合も、スペーサ57の径方向の厚みを調整することで、コイル巻回部50の径方向の長さL2とスペーサ57の径方向の厚みとの差をコイル7の線径のn倍にすることができる。このことにより、コイル7を整列巻きにすることができる。 Such a spacer 57 may be attached to the coil winding portion 50, and also in the case of this modification, the radial length L2 of the coil winding portion 50 can be adjusted by adjusting the radial thickness of the spacer 57. And the radial thickness of the spacer 57 can be n times the wire diameter of the coil 7. This allows the coil 7 to be aligned and wound.
 なお、変形例1に示すスペーサ55を第1鍔部51の内面51aとコイル巻回部50の表面との間のコーナー部に装着するようにしてもよい。その場合は、スペーサ導入溝531は、コイル導入溝53とは別に第1鍔部51に設けられる。また、変形例2に示すスペーサ56a,56bを第1鍔部51と一体成形するようにしてもよい。 The spacer 55 shown in the first modification may be attached to the corner between the inner surface 51 a of the first flange 51 and the surface of the coil winding unit 50. In that case, the spacer introduction groove 531 is provided in the first ridge 51 separately from the coil introduction groove 53. Further, the spacers 56a and 56b shown in the second modification may be integrally formed with the first collar portion 51.
 なお、所定の厚みの絶縁性樹脂フィルムを打ち抜くか、切り取るかしてスペーサ(フィルムスペーサ)57を形成してもよい。1種類のインシュレータ本体5aに対して、同じ形状の樹脂フィルムからなるスペーサ(フィルムスペーサ)57を単層で、またはスペーサ(フィルムスペーサ)57を複数積層してなる積層体を装着することで、スペーサ57の全体の厚みを簡便に調整して、コイル巻回部50の径方向の長さL2とスペーサ57の径方向の厚みとの差をコイル7の線径のn倍にすることができる。つまり、コイル7が実際に巻回されるコイル巻回部50の径方向の長さと、コイル7の1層目の径方向の長さとが一致するようにして、確実にコイル7を整列巻きにすることができる。また、コイル7の線径や巻回数に応じて、スペーサ(フィルムスペーサ)57を個別に成形しなくて済むため、インシュレータ5の製造コストをさらに低減できる。このようなスペーサ(フィルムスペーサ)57は第2鍔部52の内面52aとコイル巻回部50の表面との間のコーナー部に装着されていてもよい。なお、スペーサ(フィルムスペーサ)57の厚みが使用されるコイル7の線径よりも小さいと、コイル巻回部50の径方向の長さL2とスペーサ57の径方向の厚みとの差をより細かく調整しやすくなる。また、絶縁性を有し、加工を容易に行えるという点から、スペーサ(フィルムスペーサ)57の材質は、アクリルやポリイミドやナイロンあるいはポリプロピレンであることが好ましい。 Alternatively, the spacer (film spacer) 57 may be formed by punching or cutting an insulating resin film having a predetermined thickness. A spacer is obtained by attaching a laminated body in which a spacer (film spacer) 57 made of a resin film of the same shape is laminated in a single layer or a plurality of spacers (film spacers) 57 is laminated to one type of insulator main body 5a. The entire thickness of the coil 57 can be simply adjusted, and the difference between the radial length L2 of the coil winding portion 50 and the radial thickness of the spacer 57 can be n times the wire diameter of the coil 7. In other words, the coil 7 can be reliably aligned by winding so that the radial length of the coil winding portion 50 where the coil 7 is actually wound matches the radial length of the first layer of the coil 7. can do. In addition, since the spacer (film spacer) 57 does not have to be formed individually according to the wire diameter and the number of turns of the coil 7, the manufacturing cost of the insulator 5 can be further reduced. Such a spacer (film spacer) 57 may be attached to a corner between the inner surface 52 a of the second flange 52 and the surface of the coil winding unit 50. If the thickness of the spacer (film spacer) 57 is smaller than the wire diameter of the coil 7 used, the difference between the radial length L2 of the coil winding portion 50 and the radial thickness of the spacer 57 is made finer It becomes easy to adjust. The material of the spacer (film spacer) 57 is preferably acrylic, polyimide, nylon or polypropylene, from the viewpoint of having insulation properties and facilitating processing.
 (実施形態2)
 図9Aは、本実施形態に係るインシュレータの要部の斜視図を示し、図9Bは、スペーサの斜視図を示す。図10Aは、コイルが巻回されたインシュレータの要部の断面模式図を示し、図10Bは、図10Aにおける破線で囲まれた部分の拡大図を示す。なお、説明の便宜上、図9A~10Bにおいて、インシュレータ5の構造は簡略化して図示している。また、図9Aにおいて、絶縁紙6の図示を省略している。また、図10Aにおいて、コイル導入溝53及びコイル7のうちコイル導入溝53を通って外部に延びる部分は、図示を省略している。
Second Embodiment
FIG. 9A shows a perspective view of the main part of the insulator according to the present embodiment, and FIG. 9B shows a perspective view of the spacer. FIG. 10A shows a cross-sectional schematic view of the main part of the insulator around which the coil is wound, and FIG. 10B shows an enlarged view of a portion surrounded by a broken line in FIG. 10A. 9A to 10B, the structure of the insulator 5 is simplified and illustrated for convenience of the description. Further, in FIG. 9A, illustration of the insulating paper 6 is omitted. Moreover, in FIG. 10A, the part extended outside through the coil introducing groove 53 among the coil introducing groove 53 and the coil 7 is not shown.
 実施形態1に示す構成では、スペーサ54を第2鍔部52の内面52aとコイル巻回部50の表面との間のコーナー部に装着しているのに対し、本実施形態に示す構成では、第1鍔部51に接して、第1鍔部51の内面51aとコイル巻回部50の表面との間のコーナー部にスペーサ58,581を装着している点で異なる。また、スペーサ58,581は、U字形状の絶縁部材58a(以下、単にU字状部材58aという)の中央部に板状の絶縁部材58b(以下、単に板状部材58bという)が一体的に形成されてなる。また、スペーサ58のうちU字状部材58aは、コイル巻回部50の表面のうち外周面50a,50c,50dにかけて装着されている。また、板状部材58bは、コイル導入溝53の底部に接する一方、その内部に延びてコイル巻回部50に装着されている。板状部材58bを設けることにより、スペーサ58のハンドリングが容易になるとともに、コイル巻回部50に対してスペーサ58を固定しやすくなる。また、板状部材58bをコイル導入溝53の内部に設けることにより、コイル7をコイル巻回部50に巻回するときに影響を及ぼさずに済む。コイル7の巻線をコイル導入溝53に通す際の障壁にならない程度で、板状部材58aの周方向の幅及び径方向の厚みを大きく取るのが好ましい。スペーサ58のハンドリングの容易性及びコイル巻回部50への固定安定性をさらに向上できる。なお、図9Aに示すインシュレータ5において、コイル導入溝53は第1鍔部51における軸方向上側に設けられているが、軸方向下側にも同じくコイル導入溝53が設けられている場合は、スペーサ581の板状部材は、軸方向下側に位置するコイル導入溝53の内部に延びている。 In the configuration shown in the first embodiment, the spacer 54 is attached to the corner between the inner surface 52a of the second flange 52 and the surface of the coil winding portion 50, while in the configuration shown in the present embodiment, The difference is that spacers 58, 581 are attached to the corner between the inner surface 51a of the first collar 51 and the surface of the coil winding portion 50 in contact with the first collar 51. In the spacers 58 and 581, a plate-like insulating member 58b (hereinafter simply referred to as a plate-like member 58b) is integrally formed at a central portion of a U-shaped insulating member 58a (hereinafter simply referred to as a U-shaped member 58a). It is formed. Further, the U-shaped member 58 a of the spacer 58 is attached to the outer circumferential surfaces 50 a, 50 c, 50 d of the surface of the coil winding portion 50. The plate-like member 58 b is in contact with the bottom of the coil introduction groove 53, and extends into the inside thereof and is mounted on the coil winding portion 50. By providing the plate-like member 58 b, the handling of the spacer 58 is facilitated, and the spacer 58 can be easily fixed to the coil winding portion 50. Further, by providing the plate-like member 58 b inside the coil introducing groove 53, the coil 7 can be prevented from being affected when wound around the coil winding portion 50. It is preferable to increase the circumferential width and radial thickness of the plate-like member 58a to such an extent that it does not act as a barrier when the winding of the coil 7 is passed through the coil introduction groove 53. The ease of handling the spacer 58 and the fixing stability to the coil winding portion 50 can be further improved. In the insulator 5 shown in FIG. 9A, the coil introduction groove 53 is provided on the upper side in the axial direction of the first collar 51, but if the coil introduction groove 53 is also provided on the lower side in the axial direction, The plate-like member of the spacer 581 extends inside the coil introduction groove 53 located on the lower side in the axial direction.
 また、U字状部材58aと板状部材58bはともに同じ厚みを有している。よって、スペーサ58がコイル巻回部50に装着された場合、コイル巻回部50の表面を基準面として、スペーサ58の軸方向の高さHはスペーサ58の全体に亘り一定となる。同様に、スペーサ581の軸方向の高さもスペーサ581の全体に亘り一定となる。また、図10Bに示すように、この高さHは以下の式(1)の関係を満たすように設定されている。 Further, the U-shaped member 58a and the plate member 58b both have the same thickness. Therefore, when the spacer 58 is attached to the coil winding portion 50, the axial height H of the spacer 58 is constant throughout the spacer 58, with the surface of the coil winding portion 50 as a reference surface. Similarly, the axial height of the spacer 581 is also constant throughout the spacer 581. Moreover, as shown to FIG. 10B, this height H is set so that the relationship of the following formula | equation (1) may be satisfy | filled.
 H=r(1+tan30°) ・・・(1) (rはコイル7の線径Rの半値) H = r (1 + tan 30 °) (1) (r is half of the wire diameter R of the coil 7)
 コイル7を整列巻きかつ多層巻きとするためには、前述したとおり、スペーサ54等を用いて、コイル7の径方向の長さと実際にコイル7が巻回されるコイル巻回部50の径方向の長さとを合わせるだけでなく、同じ層内でのコイル7の巻線の位置、つまり、軸方向でのコイル7の高さも合わせる必要がある。この高さが大きく異なるとコイル7の巻き乱れが生じて整列巻きを実現できなくなるからである。特に、コイル7の2層目において、巻き始めにあたる1周目の巻線は、コイル7の1層目の最終周と、その近傍にある第1または第2鍔部51,52との間に落ち込んで、軸方向の高さがその他の周の巻線と異なることがある。 As described above, in order to make the coil 7 be wound in alignment and in multiple layers, the radial length of the coil 7 and the radial direction of the coil winding portion 50 where the coil 7 is actually wound using the spacer 54 etc. Not only the length of the coil 7 but also the positions of the windings of the coil 7 in the same layer, that is, the heights of the coil 7 in the axial direction need to be matched. If the heights are greatly different, winding distortion of the coil 7 occurs, and it becomes impossible to realize aligned winding. In particular, in the second layer of the coil 7, the first winding, which is the winding start, is between the final circumference of the first layer of the coil 7 and the first or second flange 51 or 52 in the vicinity thereof. Depressed, the axial height may be different from the other circumferential windings.
 本実施形態では、スペーサ58の軸方向の高さHを上記の半値rよりも大きくすることで、コイル7の2層目において、1周目の巻線が所定の位置よりも軸方向下側に大きく落ち込むことがなくなり、コイルの2層目を整列して巻き回しやすくなる。特に、式(1)の関係を満たすようにスペーサ58の軸方向の高さHを規定すると、コイル7の2層目において、1周目の巻線と2周目の巻線とを同じ高さとすることができ、確実にコイルの2層目を整列して巻回することができる。 In the present embodiment, by making the axial height H of the spacer 58 larger than the above-mentioned half value r, in the second layer of the coil 7, the first turn winding is axially lower than the predetermined position. The second layer of the coil can be aligned and wound easily. In particular, when the axial height H of the spacer 58 is defined so as to satisfy the relationship of the equation (1), in the second layer of the coil 7, the first turn winding and the second turn winding have the same height. The second layer of the coil can be reliably aligned and wound.
 その結果、図10Aに示すように、コイル7の3層目以降も各周の巻線の高さが揃うようになり、多層巻きかつ整列巻きのコイル7を確実に実現できる。 As a result, as shown in FIG. 10A, the heights of the windings around each of the third and subsequent layers of the coil 7 become uniform, and a multilayer wound and aligned coil 7 can be realized with certainty.
 なお、式(1)の関係は、スペーサ58の加工公差やコイル7の加工公差も含んで成立している。つまり、式(1)において、右辺と左辺とは完全に同じ値でなくてもよい。例えば、式(2)に示すように、高さHは所定の範囲内にあればよい。 In addition, the relationship of Formula (1) is materialized including the process tolerance of the spacer 58, and the process tolerance of the coil 7. FIG. That is, in the equation (1), the right side and the left side may not be completely the same value. For example, as shown in equation (2), the height H may be within a predetermined range.
 0.9r(1+tan30°)< H <1.1r(1+tan30°) ・・・(2) 0.9 r (1 + tan 30 °) <H <1.1 r (1 + tan 30 °) (2)
 なお、式(2)の関係はあくまでも例示であり、コイル7の線径や層数等によって修正されうる。 In addition, the relationship of Formula (2) is an illustration to the last, and it can correct | amend by the wire diameter of the coil 7, the number of layers, etc.
 なお、U字状部材58aの径方向の厚さはコイル7の線径の半値であるrに等しいことが好ましい。このような関係を満たすことで、コイル7の2層目において、1周目の巻線が第1鍔部51に当接して、コイル7を確実に整列巻きにすることができる。なお、この場合の「等しい」とは、スペーサ58の加工公差やコイル7の加工公差を含んで等しい。ただし、U字状部材58aの径方向の厚さを上記の半値rに等しく規定すると、コイル巻回部50の径方向の長さL2とスペーサ58の径方向の厚さとの差が、コイル7の線径のn倍にならないこともありうる。その場合は、後者の関係を優先して、スペーサ58の径方向の厚さは規定される。 The radial thickness of the U-shaped member 58 a is preferably equal to r, which is a half value of the wire diameter of the coil 7. By satisfying such a relationship, in the second layer of the coil 7, the first turn winding abuts on the first collar portion 51, and the coil 7 can be reliably aligned and wound. Note that "equal" in this case is equal including the processing tolerance of the spacer 58 and the processing tolerance of the coil 7. However, when the radial thickness of the U-shaped member 58 a is defined equal to the above half value r, the difference between the radial length L 2 of the coil winding portion 50 and the radial thickness of the spacer 58 is the coil 7 It may not be n times the wire diameter of In that case, the radial thickness of the spacer 58 is defined with priority given to the latter relationship.
 また、実施形態1に示すように、第2鍔部52の内面52aとコイル巻回部50との間のコーナー部にスペーサ54を装着する場合に、スペーサ54の軸方向の高さが式(1)の関係を満たすようにしてもよい。この場合にも、多層巻きのコイル7の2層目において、1周目と2周目との間の段差、または最終周とその一つ前の周との間の段差をなくすことができ、確実にコイル7を整列巻きにすることができる。 Further, as shown in the first embodiment, when the spacer 54 is attached to the corner between the inner surface 52a of the second flange 52 and the coil winding portion 50, the height in the axial direction of the spacer 54 is the formula ( The relationship of 1) may be satisfied. Also in this case, in the second layer of the multilayer wound coil 7, it is possible to eliminate the step between the first and second turns, or the step between the last and the previous turn. The coil 7 can be reliably wound in alignment.
 (その他の実施形態)
 変形例1~3を含む実施形態1,2において、コイル7をトゥース42の基端側であるコアセグメント41側に位置する第1鍔部51から巻き始める例について説明したが、特にこれに限定されず、トゥース42の先端側に位置する第2鍔部52から巻き始めてもよい。この場合は、第2鍔部52にコイル導入溝53が設けられることになる。また、コイル7が断面円形の巻線からなる例について説明したが、特にこれに限定されず、例えば、断面が四角形の巻線からなるコイル7であってもよい。また、コイル7の巻回方法については特に限定されず、一般的なノズル巻線方法やフライヤー巻線方法等を用いることができる。
(Other embodiments)
In the first and second embodiments including the first to third modifications, the example in which the coil 7 is started to be wound from the first ridge portion 51 located on the core segment 41 side which is the base end side of the tooth 42 has been described. Alternatively, the winding may start from the second ridge 52 located on the tip side of the tooth 42. In this case, the coil introduction groove 53 is provided in the second flange 52. In addition, although an example in which the coil 7 is formed of a winding having a circular cross section has been described, the invention is not particularly limited thereto. For example, the coil 7 having a square cross section may be used. Moreover, it does not specifically limit about the winding method of the coil 7, A general nozzle winding method, a flyer winding method, etc. can be used.
 また、インシュレータ5が、いわゆる分割タイプのインシュレータであり、トゥース42の軸方向上下方向からそれぞれ装着される例を示したが、特にこれに限定されず、コイル巻回部50が筒形状であり、トゥース42の全外周面を覆う一体構造であってもよい。例えば、ステータ4が、コアセグメント41に後からトゥース42を装着する構造である場合は、この一体構造のインシュレータ5を用いてもよい。また、一つのトゥースに上下から装着されるインシュレータ5は同じ形状でなくてもよい。なお、一つのトゥースに上下から装着されるインシュレータ5として同じ形状のものを用いることで、インシュレータ5の種類を少なくでき、製造コスト等を低減できる。 Moreover, although the insulator 5 is what is called a division type insulator and showed the example mounted | worn from the axial direction up-down direction of the tooth 42 respectively, it is not specifically limited to this, The coil winding part 50 is cylindrical shape, The integral structure which covers the whole outer peripheral surface of the tooth 42 may be sufficient. For example, when the stator 4 has a structure in which the tooth 42 is attached to the core segment 41 later, the insulator 5 having this integrated structure may be used. Moreover, the insulators 5 mounted from the upper and lower sides of one tooth may not have the same shape. In addition, the kind of insulator 5 can be decreased by using the thing of the same shape as insulator 5 with which one tooth is mounted from the upper and lower sides, and manufacturing cost etc. can be reduced.
 なお、コイル巻回部50の外周面50a,50bはそれぞれ、トゥース42の軸方向上端面と略平行に設けられていてもよい。また、第1鍔部51の内面51aは、トゥース42の軸方向上端面または軸方向下端面と直交する面を基準面として径方向外側に傾斜するように設けられていてもよい。 The outer circumferential surfaces 50 a and 50 b of the coil winding portion 50 may be provided substantially parallel to the axial upper end surface of the tooth 42. Further, the inner surface 51 a of the first flange 51 may be provided so as to be inclined radially outward with a surface orthogonal to the axial upper end surface or the axial lower end surface of the tooth 42 as a reference surface.
 また、変形例1~3を含む実施形態1,2におけるインシュレータ5は、コイル7が1層巻きまたは多層巻きの場合に適用できることは言うまでもない。 Further, it goes without saying that the insulator 5 in the first and second embodiments including the first to third modifications can be applied to the case where the coil 7 is wound in a single layer or in a multilayer.
 また、実施形態1において、インシュレータ5をコアセグメント41のトゥース42に装着し、コイル巻回部50にコイル7を巻き回して、ステータセグメント40aを構成する態様を説明したが、本発明のインシュレータ5を、円環状のステータコアのトゥース42の各々に装着し、コイル巻回部50にコイル7を巻き回す態様を採用しても良い。なお、ここで言う円環状のステータコアとは、電磁鋼板を円環状に打ち抜いた板体を積層して構成するものである。また、この円環状のステータコアは、複数の歯部(所謂、ティース(teeth))を有するものである。 In the first embodiment, the insulator 5 is attached to the tooth 42 of the core segment 41, and the coil 7 is wound around the coil winding portion 50 to form the stator segment 40a. May be attached to each of the teeth 42 of the annular stator core, and the coil winding portion 50 may be wound with the coil 7. In addition, the annular stator core said here is comprised laminating | stacking the board which pierce | punched the electromagnetic steel plate in annular shape. The annular stator core has a plurality of teeth (so-called teeth).
 また、実施形態1において、コアセグメント41毎に一つの歯部(所謂、トゥース(tooth))を有する態様を説明したが、コアセグメント41毎に複数の歯部(所謂、ティース(teeth))を有する態様を採用しても良い。 Also, in the first embodiment, an aspect in which each core segment 41 has one tooth (so-called tooth) has been described. However, for each core segment 41, a plurality of teeth (so-called teeth) are provided. You may employ the aspect which it has.
 本願明細書におけるモータ1は、インナーロータ型のモータに用いる場合について説明するものであるが、別の種類のモータに対して本実施形態のインシュレータ5を適用できることは言うまでもない。 The motor 1 in the present specification is described for use in an inner rotor type motor, but it goes without saying that the insulator 5 of this embodiment can be applied to another type of motor.
 また、図3に示すように、トゥース42の先端(径方向内側の端部)には、凹状の溝を2つ具備する。この凹状の溝は、米国特許第6104117号明細書、特開平10-42531号公報等では、補助溝(supplemental grooves)とも呼称される。この補助溝の効果は、モータ1のロータ3の回転動作におけるコギングトルク及びトルクリップルを抑制し、モータの特性においては、低振動化・低騒音化等に寄与する。 Further, as shown in FIG. 3, two concave grooves are provided at the tip (radially inner end) of the tooth 42. The concave grooves are also referred to as supplemental grooves in, for example, US Pat. No. 6,104,117 and Japanese Patent Application Laid-Open No. 10-42531. The effect of the auxiliary groove suppresses cogging torque and torque ripple in the rotational operation of the rotor 3 of the motor 1, and contributes to the reduction of vibration and noise in the characteristics of the motor.
 また、実施形態1,2における巻線は、巻線用電線とも呼称され、市販されるものである。巻線又は巻線用電線の導体部には、不可避不純物を含む銅又はアルミニウムを含む。ここで、不可避不純物とは、製造工程中に、銅、アルミニウムへの混入が避けられない微量の不純物元素のことを意味する。銅の場合には、不可避不純物は、As、Bi、Sb、Pb、Fe、S、酸素などである。アルミニウムの場合には、不可避不純物は、Si、Mn、Ti、V、Zr、Fe、Cuなどである。巻線の導体部は、絶縁性樹脂による絶縁層にて被覆される。絶縁性樹脂は、例えば、ポリイミド、ポリアミドイミド、ポリエステルイミド、ポリエステルアミドイミド、ポリアミド、ポリヒダントイン、ポリウレタン、ポリアセタール、エポキシ樹脂等がモータ1の仕様に応じて適宜選択される。巻線の断面形状は、本実施形態における円形のほか、略正方形、略長方形など多様である。 Moreover, the winding in Embodiment 1, 2 is also called winding electric wire, and is marketed. The conductor portion of the winding or the wire for winding includes copper or aluminum containing unavoidable impurities. Here, the unavoidable impurities mean a trace amount of impurity elements which can not be avoided to be mixed into copper and aluminum during the manufacturing process. In the case of copper, unavoidable impurities include As, Bi, Sb, Pb, Fe, S, oxygen and the like. In the case of aluminum, unavoidable impurities are Si, Mn, Ti, V, Zr, Fe, Cu and the like. The conductor portion of the winding is covered with an insulating layer of insulating resin. As the insulating resin, for example, a polyimide, a polyamideimide, a polyesterimide, a polyesteramide imide, a polyamide, a polyhydantoin, a polyurethane, a polyacetal, an epoxy resin and the like are appropriately selected according to the specification of the motor 1. In addition to the circular shape in the present embodiment, the cross-sectional shape of the winding may be various, such as approximately square or approximately rectangular.
 また、実施形態1における磁石31の材料成分には、Sc、Y及びランタノイド系元素のうち少なくとも1種と、Fe又はFe及びCoと、Bとを含むものである。具体的には、磁石31は希土類焼結磁石であり、所謂、ネオジム焼結磁石又はネオジウム焼結磁石などと呼称されるものである。この希土類焼結磁石の表層には、防錆のための防錆膜(防錆層)を具備する。 Further, the material component of the magnet 31 in the first embodiment contains at least one of Sc, Y and a lanthanoid element, Fe or Fe and Co, and B. Specifically, the magnet 31 is a rare earth sintered magnet, and is so-called neodymium sintered magnet or neodymium sintered magnet or the like. The surface layer of the rare earth sintered magnet is provided with a rust prevention film (rust prevention layer) for rust prevention.
 本発明に係るインシュレータは、異なる線径や巻回数のコイルに対応して整列巻きコイルを実現することができるため、高効率が要求されるモータ等に適用する上で有用である。 INDUSTRIAL APPLICABILITY The insulator according to the present invention can realize aligned winding coils corresponding to coils with different wire diameters and winding numbers, and therefore is useful for application to a motor or the like that requires high efficiency.
1   モータ
2   シャフト
3   ロータ
4   ステータ
5   インシュレータ
6   絶縁紙
7   コイル
31  磁石
40  ステータコア
40a ステータセグメント
41  コアセグメント
41c ヨーク部
42  トゥース(tooth)
43  スロット
50  コイル巻回部
51  第1鍔部
51a 第1鍔部51の内面
52  第2鍔部
53  コイル導入溝
531 スペーサ導入溝
54  スペーサ
55  スペーサ(線条部材)
56a スペーサ
56b スペーサ
57  スペーサ(フィルムスペーサ)
58  スペーサ
58a U字状の部材
58b 板状部材
581 スペーサ
U1~W4 コイル
Reference Signs List 1 motor 2 shaft 3 rotor 4 stator 5 insulator 6 insulating paper 7 coil 31 magnet 40 stator core 40 a stator segment 41 core segment 41 c yoke portion 42 tooth (tooth)
43 slot 50 coil winding portion 51 first ridge portion 51a inner surface of first ridge portion 51 second ridge portion 53 coil introduction groove 531 spacer introduction groove 54 spacer 55 spacer (string member)
56a spacer 56b spacer 57 spacer (film spacer)
58 spacer 58a U-shaped member 58b plate-like member 581 spacers U1 to W4 coil

Claims (13)

  1.  コアセグメントから突出するトゥースの軸方向端面と少なくとも周方向両側面の一部とを覆い、巻線で構成されたコイルが巻回されるコイル巻回部と、該コイル巻回部のトゥース基端側またはトゥース先端側の一方に連続して設けられ、前記コイルを前記コイル巻回部に案内するコイル導入溝を有する第1鍔部と、前記コイル巻回部の前記トゥース基端側または前記トゥース先端側の他方に連続して設けられた第2鍔部とを備えたインシュレータであって、
     前記コイルを整列させるためのスペーサが前記コイル巻回部に装着され、前記コイルに並んだ状態で配置されていることを特徴とするインシュレータ。
    A coil winding portion covering an axial end face of the tooth protruding from the core segment and at least a part of both circumferential side surfaces and in which a coil constituted by a winding is wound; and a tooth base end of the coil winding portion A first ridge portion continuously provided on one side of the side or the tip end of the tooth and having a coil introduction groove for guiding the coil to the coil winding portion, the tooth base end side of the coil winding portion or the tooth An insulator provided with a second flange portion provided continuously to the other on the tip side,
    An insulator characterized in that a spacer for aligning the coil is attached to the coil winding portion and arranged in parallel to the coil.
  2.  請求項1に記載のインシュレータにおいて、
     前記コイル巻回部の径方向の長さと前記スペーサの径方向の厚さとの差が、前記コイルの線径のn倍(nは整数で、前記コイルの1層目の巻回数)に等しいことを特徴とするインシュレータ。
    In the insulator according to claim 1,
    The difference between the radial length of the coil winding portion and the radial thickness of the spacer is equal to n times the wire diameter of the coil (n is an integer, the number of turns of the first layer of the coil) Insulator characterized by
  3.  請求項1に記載のインシュレータにおいて、
     前記コイルは、前記コイル巻回部に対して斜めに巻回されており、
     前記スペーサの径方向の厚さは、前記コイル巻回部に巻回される前記コイルの1層目の最終周の巻回予定位置に応じて、前記コイル巻回部上で変化していることを特徴とするインシュレータ。
    In the insulator according to claim 1,
    The coil is wound obliquely to the coil winding portion,
    The thickness in the radial direction of the spacer is changed on the coil winding portion in accordance with the planned winding position of the final circumference of the first layer of the coil wound on the coil winding portion. Insulator characterized by
  4.  請求項1に記載のインシュレータにおいて、
     前記スペーサは、前記コイル巻回部に巻回された、前記コイルと異なる別の線条部材で構成されていることを特徴とするインシュレータ。
    In the insulator according to claim 1,
    The insulator is characterized in that the spacer is wound around the coil winding portion, and is formed of another wire member different from the coil.
  5.  請求項1に記載のインシュレータにおいて、
     前記スペーサは前記第1鍔部または前記第2鍔部と一体形成されていることを特徴とするインシュレータ。
    In the insulator according to claim 1,
    The insulator is characterized in that the spacer is integrally formed with the first ridge or the second ridge.
  6.  請求項1に記載のインシュレータにおいて、
     前記スペーサは、所定の厚みを有する単層の樹脂フィルム、または前記樹脂フィルムを複数積層してなる積層体で構成されていることを特徴とするインシュレータ。
    In the insulator according to claim 1,
    The insulator is characterized in that the spacer is a single layer resin film having a predetermined thickness, or a laminate formed by laminating a plurality of the resin films.
  7.  請求項1に記載のインシュレータにおいて、
     前記スペーサの軸方向の高さHはスペーサの全体に亘り一定であることを特徴とするインシュレータ。
    In the insulator according to claim 1,
    An insulator characterized in that the axial height H of the spacer is constant throughout the spacer.
  8.  請求項1に記載のインシュレータにおいて、
     前記スペーサの軸方向の高さHはスペーサの全体に亘り一定であり、かつ
     前記コイルの線径の半値をrとするとき、
     前記高さHは、H=r(1+tan30°)の関係を満たすことを特徴とするインシュレータ。
    In the insulator according to claim 1,
    The axial height H of the spacer is constant over the entire spacer, and when the half value of the wire diameter of the coil is r,
    An insulator characterized in that the height H satisfies the relationship H = r (1 + tan 30 °).
  9.  請求項1に記載のインシュレータにおいて、
     前記コイル巻回部の表面は、平滑面であることを特徴とするインシュレータ。
    In the insulator according to claim 1,
    An insulator characterized in that a surface of the coil winding portion is a smooth surface.
  10.  請求項1に記載のインシュレータを前記コアセグメントの前記トゥースの軸方向端面の各々に具備し、前記インシュレータの前記コイル巻回部に、前記コイルが巻装されてなるステータセグメントを複数個備え、
     複数個の前記ステータセグメントを円環形状に接続し円環の径方向内側に前記トゥースが突出する構成としたことを特徴とするステータ。
    The insulator according to claim 1 is provided on each of axial end faces of the teeth of the core segment, and the coil winding portion of the insulator is provided with a plurality of stator segments formed by winding the coil.
    A stator characterized in that a plurality of the stator segments are connected in an annular shape, and the teeth project radially inward of the annular ring.
  11.  請求項1に記載のインシュレータを前記コアセグメントの前記トゥースの軸方向端面の各々に具備し、前記インシュレータの前記コイル巻回部に、前記コイルが巻装されてなるステータセグメントを複数個備え、
     複数個の前記ステータセグメントを円環形状に接続し円環の径方向内側に前記トゥースが突出する構成を含み、
     前記コイルは前記コイル巻回部に整列巻きされていることを特徴とするステータ。
    The insulator according to claim 1 is provided on each of axial end faces of the teeth of the core segment, and the coil winding portion of the insulator is provided with a plurality of stator segments formed by winding the coil.
    Including a configuration in which a plurality of the stator segments are connected in an annular shape, and the teeth project radially inward of the annular ring,
    The stator is characterized in that the coils are wound in alignment around the coil winding portion.
  12.  請求項1に記載のインシュレータを前記コアセグメントの前記トゥースの軸方向端面の各々に具備し、前記インシュレータの前記コイル巻回部に、前記コイルが巻装されてなるステータセグメントを複数個備え、
     複数個の前記ステータセグメントを円環形状に接続し円環の径方向内側に前記トゥースが突出する構成を含み、
     周方向に隣り合う前記トゥースの間が前記コイルを収容するスロットとして構成され、
     前記スロット内に、前記コアセグメント及び前記トゥースと前記コイルとを絶縁する絶縁紙が、前記トゥースの側面を覆うようにかつ、前記インシュレータの前記第1及び第2鍔部と軸方向で一部重なるように配置されていることを特徴とするステータ。
    The insulator according to claim 1 is provided on each of axial end faces of the teeth of the core segment, and the coil winding portion of the insulator is provided with a plurality of stator segments formed by winding the coil.
    Including a configuration in which a plurality of the stator segments are connected in an annular shape, and the teeth project radially inward of the annular ring,
    Between the teeth adjacent in the circumferential direction is configured as a slot for receiving the coil,
    In the slot, an insulating paper for insulating the core segment and the tooth from the coil is partially overlapped in the axial direction with the first and second ridges of the insulator so as to cover the side surface of the tooth. A stator characterized in that it is arranged.
  13.  請求項1に記載のインシュレータを前記コアセグメントの前記トゥースの軸方向端面の各々に具備し、前記インシュレータの前記コイル巻回部に、前記コイルが巻装されてなるステータセグメントを複数個備え、複数個の前記ステータセグメントを円環形状に接続し円環の径方向内側に前記トゥースが突出する構成を含むステータと、
     該ステータの径方向内側に、前記ステータと所定の間隔をあけて配設された回転軸を含むロータと、を少なくとも備えることを特徴とするモータ。
    The insulator according to claim 1 is provided on each of axial end faces of the tooth of the core segment, and a plurality of stator segments including the coil wound around the coil winding portion of the insulator are provided. A stator including a configuration in which a plurality of the stator segments are connected in an annular shape, and the teeth project radially inward of the annular ring;
    A motor comprising at least a rotor including a rotating shaft disposed radially inward of the stator at a predetermined distance from the stator.
PCT/JP2018/047014 2018-01-19 2018-12-20 Insulator, and stator and motor comprising said insulator WO2019142589A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-007177 2018-01-19
JP2018007177 2018-01-19

Publications (1)

Publication Number Publication Date
WO2019142589A1 true WO2019142589A1 (en) 2019-07-25

Family

ID=67301282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047014 WO2019142589A1 (en) 2018-01-19 2018-12-20 Insulator, and stator and motor comprising said insulator

Country Status (1)

Country Link
WO (1) WO2019142589A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154115U (en) * 1980-04-16 1981-11-18
JP2000341896A (en) * 1999-05-25 2000-12-08 Mitsubishi Electric Corp Rotating machine
JP2001095188A (en) * 1999-09-27 2001-04-06 Daikin Ind Ltd Insulator for motor
JP2008206322A (en) * 2007-02-21 2008-09-04 Mitsubishi Electric Corp Armature insulating sheet and armature
JP2012015290A (en) * 2010-06-30 2012-01-19 Tdk Corp Bobbin coil and coil component
JP2017093115A (en) * 2015-11-09 2017-05-25 三菱電機株式会社 Stator for rotary electric machine
WO2017175508A1 (en) * 2016-04-07 2017-10-12 三菱電機株式会社 Magnetic pole, magnetic pole manufacturing method, and stator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154115U (en) * 1980-04-16 1981-11-18
JP2000341896A (en) * 1999-05-25 2000-12-08 Mitsubishi Electric Corp Rotating machine
JP2001095188A (en) * 1999-09-27 2001-04-06 Daikin Ind Ltd Insulator for motor
JP2008206322A (en) * 2007-02-21 2008-09-04 Mitsubishi Electric Corp Armature insulating sheet and armature
JP2012015290A (en) * 2010-06-30 2012-01-19 Tdk Corp Bobbin coil and coil component
JP2017093115A (en) * 2015-11-09 2017-05-25 三菱電機株式会社 Stator for rotary electric machine
WO2017175508A1 (en) * 2016-04-07 2017-10-12 三菱電機株式会社 Magnetic pole, magnetic pole manufacturing method, and stator

Similar Documents

Publication Publication Date Title
JP5306411B2 (en) Rotating electric machine
KR101475521B1 (en) Armature laminations
JP7209264B2 (en) Insulators and stators and motors equipped with them
JP2009153367A (en) Stator for rotary electric machine, and rotary electric machine
JP7289102B2 (en) Insulators and stators and motors equipped with them
WO2020121806A1 (en) Stator, and motor using the same
US11277048B2 (en) Insulator, and stator and motor comprising same
WO2019142693A1 (en) Insulator, and stator and motor comprising same
JP6640910B2 (en) Rotating electric machine
WO2019142589A1 (en) Insulator, and stator and motor comprising said insulator
WO2019142723A1 (en) Insulator, and stator and motor comprising same
WO2019146451A1 (en) Insulator, stator provided with same, and motor
WO2019117207A1 (en) Insulator and stator and motor equipped with same
WO2019146450A1 (en) Insulator, stator provided with same, and motor
WO2019142584A1 (en) Insulator, and stator and motor comprising same
WO2019117154A1 (en) Insulator, and stator and motor comprising said insulator
WO2019142754A1 (en) Insulator, and stator and motor provided with said insulator
JP2008092636A (en) Motor core
WO2019148063A1 (en) Stepped stator for an electric motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP