WO2020121553A1 - 気液混合装置、および気液混合装置を備える排ガス脱硫装置 - Google Patents

気液混合装置、および気液混合装置を備える排ガス脱硫装置 Download PDF

Info

Publication number
WO2020121553A1
WO2020121553A1 PCT/JP2019/020490 JP2019020490W WO2020121553A1 WO 2020121553 A1 WO2020121553 A1 WO 2020121553A1 JP 2019020490 W JP2019020490 W JP 2019020490W WO 2020121553 A1 WO2020121553 A1 WO 2020121553A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
cleaning liquid
liquid
discharge port
port
Prior art date
Application number
PCT/JP2019/020490
Other languages
English (en)
French (fr)
Inventor
良三 佐々木
覚 杉田
直之 善積
剛之 宮地
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Publication of WO2020121553A1 publication Critical patent/WO2020121553A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge

Definitions

  • the present disclosure provides a gas-liquid mixing device for injecting a mixed fluid (cleaning liquid containing fine bubbles) into a liquid pool in an absorption tower that brings exhaust gas discharged from a combustion device into contact with the cleaning liquid, and the gas-liquid mixing device.
  • the present invention relates to an exhaust gas desulfurization device.
  • exhaust gas emitted from a combustion engine such as a boiler contains atmospheric pollutants such as SO x (sulfur oxide).
  • SO x sulfur oxide
  • As a method for reducing SO x contained in the exhaust gas there is a wet desulfurization method in which SO 2 or the like is absorbed and removed by an absorbing solution such as an alkaline aqueous solution or an absorbent slurry.
  • the cleaning liquid stored in the liquid pool contains reaction products such as sulfite generated by SO 2 absorbed from the exhaust gas, the cleaning liquid stored in the liquid pool needs to be removed in order to remove the reaction product. Oxidizing a gas containing oxygen such as air may oxidize a reaction product.
  • Patent Document 1 discloses a gas-liquid mixing device including an injection nozzle configured to inject a mixed fluid of a gas containing oxygen and a cleaning liquid from a discharge port into a liquid pool.
  • the injection nozzle is provided with a throttle part in the middle of the flow path of the cleaning liquid, and the negative pressure region is generated by contracting the cleaning liquid flowing in the flow path by the contraction part. Due to the suction force generated in the negative pressure region, the gas supplied via the branch pipe to the downstream side of the throttle portion of the flow path is sucked. Further, the injection nozzle shears and atomizes the gas sucked by the cleaning liquid flowing through the cleaning liquid flow path to generate a mixed fluid (cleaning liquid containing fine bubbles) and eject the mixed fluid from the discharge port. Is becoming
  • the proportion of gas (bubbles) contained in the mixed fluid discharged from the discharge port is too small, the amount of oxygen used to oxidize the cleaning fluid will be insufficient, so the oxidation of the cleaning fluid by the mixed fluid in the liquid pool will be insufficient. There is a risk that Further, if the proportion of the gas contained in the mixed fluid discharged from the discharge port is too large, the shearing of the gas by the cleaning liquid may be insufficient, and the effect of making the gas (bubbles) smaller may be attenuated. When the size reduction of the gas (air bubbles) is attenuated and the size of the air bubbles is increased, the contact area between the gas and the cleaning liquid is reduced.
  • the buoyancy of the bubble increases accordingly, so that the period during which the bubble can stay in the cleaning liquid stored in the liquid pool, that is, the period during which the bubble can oxidize the cleaning liquid, becomes shorter. Therefore, there is a possibility that the cleaning liquid may not be sufficiently oxidized by the mixed fluid in the liquid pool.
  • an object of at least one embodiment of the present invention is to provide a gas-liquid mixing device capable of preventing insufficient oxidation of the cleaning liquid by the mixed fluid in the liquid pool. is there.
  • the gas-liquid mixing device is A gas configured to inject a gas containing oxygen and the cleaning liquid into a liquid pool portion for storing the cleaning liquid in an absorption tower configured to bring the cleaning liquid into gas-liquid contact with the exhaust gas discharged from the combustion device.
  • a liquid mixing device A cleaning liquid introducing port for defining the first flow path inside and introducing the cleaning liquid into the first flow path, and a flow direction of the cleaning liquid introduced from the cleaning liquid introduction port and flowing through the first flow path And a gas inlet for introducing the gas into the first flow path along a direction orthogonal to each other, and a mixture of the cleaning liquid introduced from the cleaning liquid inlet and the gas introduced from the gas inlet.
  • a first tubular portion having a discharge port for discharging a fluid A narrowing portion provided on the upstream side in the flow direction of the cleaning liquid rather than a confluence portion where the cleaning liquid introduced from the cleaning liquid introduction port and the gas introduced from the gas introduction port merge. Equipped with When the inner diameter of the discharge port is D1 and the inner diameter of the gas introduction port is D2, The condition of 0.5 ⁇ D2/D1 ⁇ 0.8 is satisfied.
  • the condition of 0.5 ⁇ D2/D1 ⁇ 0.8 is satisfied. ..
  • the inner diameter D2 of the gas introduction port is larger than the inner diameter D1 of the discharge port by a predetermined value or more, the first cylindrical portion satisfying the condition of 0.5 ⁇ D2/D1 It is possible to reduce the pressure loss in the gas introduction line for sending the gas to the first flow path via the gas, and to include oxygen in the mixed fluid introduced from the gas introduction port to the first flow path and discharged from the discharge port. It is possible to prevent the proportion of gas from becoming too small.
  • the first tubular portion satisfying the condition of D2/D1 ⁇ 0.8 is It is possible to prevent the proportion of the gas containing oxygen in the mixed fluid introduced into the first flow path and discharged from the discharge port from becoming excessive. Therefore, according to the above configuration, since the condition of 0.5 ⁇ D2/D1 ⁇ 0.8 is satisfied, oxygen is contained in the mixed fluid introduced from the gas introduction port to the first flow path and discharged from the discharge port. It is possible to prevent the proportion of the gas from becoming excessively large or excessively small, and thus it is possible to prevent insufficient oxidation due to the mixed fluid in the liquid pool.
  • the gas-liquid mixing device described in (1) above defines a second flow path communicating with the gas introduction port inside and introduces the gas into the gas introduction port.
  • a second tubular portion extending in the direction and having a second gas introduction port for introducing the gas into the second flow path; and the cleaning liquid from the cleaning liquid introduction port to the first flow path.
  • the cleaning liquid introduction side fastening portion provided projectingly, the gas introduction line for sending the gas from the second gas introduction port to the second flow path, and the second tubular portion are fixed by the second fastening device.
  • a gas introduction side fastening portion provided so as to project from the outer periphery of the second tubular portion is further provided, and when the length from the throttle portion to the central axis of the gas introduction port is L, 0
  • the condition of 8 ⁇ L/D1 ⁇ 1.3 is satisfied.
  • the ratio of the length L from the throttle portion to the central axis of the gas inlet to the inner diameter D1 of the discharge port satisfies the condition of L/D1 ⁇ 1.3.
  • the length L from the throttle portion to the central axis of the gas introduction port is large, the contraction flow generated by the throttle portion is recovered by that amount, so that the gas (bubble) miniaturization effect tends to be attenuated. ..
  • the condition of L/D1 ⁇ 1.3 since the condition of L/D1 ⁇ 1.3 is satisfied, attenuation of the gas (bubble) miniaturization effect is small, and the miniaturization effect can be exhibited.
  • the gas-liquid mixing device according to (2) further satisfies the condition of 0.9 ⁇ L/D1.
  • the ratio of the length L from the narrowed portion to the central axis of the gas introduction port with respect to the inner diameter D1 of the discharge port satisfies the condition of 0.9 ⁇ L/D1. It is possible to more reliably prevent the side fastening portion and the gas introduction side fastening portion from interfering with each other, and it is possible to increase the distance between the washing liquid introduction side fastening portion and the gas introduction side fastening portion, so that the washing liquid introduction It is possible to easily perform a fastening operation for fastening other components such as piping to the side fastening portion or the gas introduction side fastening portion.
  • the inner diameter D1 of the discharge port is 150 mm or more and 270 mm or less.
  • the inner diameter D1 of the discharge port is 150 mm or more and 270 mm or less and satisfies the above condition of 0.5 ⁇ D2/D1 ⁇ 0.8. In this case, insufficient oxidation of the liquid pool due to the mixed fluid can be more reliably prevented.
  • the first tubular portion extends along a central axis of the discharge port.
  • the gas-liquid mixing device is a discharge port side fastening portion for fixing to a side wall that defines at least a part of the liquid pool portion of the absorption tower, and is more than the joining portion of the first tubular portion.
  • the discharge port-side fastening portion is provided so as to project from the outer periphery on the downstream side in the flow direction of the cleaning liquid along the direction orthogonal to the central axis of the discharge port.
  • the gas-liquid mixing device projects from the outer periphery on the downstream side in the flow direction of the cleaning liquid with respect to the merging portion of the first tubular portion along the direction orthogonal to the central axis of the discharge port.
  • a discharge port side fastening portion is provided.
  • the gas-liquid mixing device can fix the position of the first tubular portion with respect to the side wall by fixing the discharge port side fastening portion to the side wall.
  • the exhaust gas desulfurization device is An exhaust gas desulfurization device for desulfurizing exhaust gas discharged from a combustion device, An absorption tower configured to bring a cleaning liquid into gas-liquid contact with the exhaust gas introduced into the inside, and an absorption tower defining a liquid pool portion for storing the cleaning liquid therein,
  • the gas-liquid mixing device according to any one of (1) to (4) above.
  • the absorption tower is configured so that the cleaning liquid of the exhaust gas introduced therein is brought into gas-liquid contact, and further defines the liquid pool portion for storing the cleaning liquid therein. ..
  • the gas-liquid mixing device causes a sufficient oxidizing reaction with respect to the cleaning liquid stored in the liquid pool of the absorption tower by the mixed fluid discharged from the discharge port of the first tubular part to the liquid pool of the absorption tower. be able to.
  • the first tubular portion extends along a central axis of the discharge port
  • the gas-liquid mixing device includes: A discharge port side fastening portion provided so as to project from an outer periphery on the downstream side in the flow direction of the cleaning liquid with respect to the confluent portion of the first tubular portion along a direction orthogonal to the central axis of the discharge port;
  • the absorption tower is a side wall that defines at least a part of the liquid reservoir, and a side wall having an insertion hole through which a tip including the discharge port of the first tubular portion is inserted, and the discharge port.
  • the ejection port side fastening portion is a tubular projection portion and an injection nozzle fastening portion that is provided so as to project from the tip of the tubular projection portion along a direction orthogonal to the extending direction of the tubular projection portion.
  • the injection nozzle fastening portion is configured to be fixed by the third fastening device.
  • the discharge port side fastening portion of the gas-liquid mixing device absorbs with the tip including the discharge port of the first tubular portion being inserted into the insertion hole formed in the side wall of the absorption tower. It is fixed to the injection nozzle fastening portion of the tower by the third fastening device.
  • the first tubular portion extends along the central axis of the discharge port.
  • the cylindrical protrusion of the absorption tower extends along the direction inclined from the horizontal plane by the same angle as the inclination angle ⁇ of the central axis of the discharge port from the horizontal plane. That is, the tubular protruding portion of the absorption tower extends along the same direction as the central axis of the discharge port when the first tubular portion is installed.
  • the first tubular portion extends along a direction orthogonal to the extending direction of the first tubular portion and a discharge port side fastening portion extending along a direction orthogonal to the extending direction of the first tubular portion, and along a direction orthogonal to the extending direction of the tubular protruding portion.
  • a gas-liquid mixing device capable of preventing insufficient oxidation of the cleaning liquid due to the mixed fluid in the liquid reservoir.
  • FIG. 6 is a graph for explaining the action of the gas-liquid mixing device according to one embodiment, in which the ratio of the inner diameter of the gas introduction port to the inner diameter of the discharge port, and the efficiency of the oxidation reaction by the mixed fluid in the liquid pool, It is a graph which shows the relationship of.
  • 3 is a graph showing the relationship between the gas refining effect and It is a fragmentary sectional view showing roughly the neighborhood of the portion where an injection nozzle is fixed in an absorption tower.
  • expressions such as “identical”, “equal”, and “homogeneous” that indicate that they are in the same state are not limited to a state in which they are exactly equal to each other. It also represents the existing state.
  • the representation of a shape such as a quadrangle or a cylinder does not only represent a shape such as a quadrangle or a cylinder in a geometrically strict sense, but also an uneven portion or a chamfer within a range in which the same effect can be obtained.
  • the shape including parts and the like is also shown.
  • the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one element are not exclusive expressions excluding the existence of other elements. Note that the same configurations are denoted by the same reference numerals, and description thereof may be omitted.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an exhaust gas desulfurization apparatus according to one embodiment.
  • the exhaust gas desulfurization device is a device for desulfurizing exhaust gas discharged from the combustion device.
  • the combustion device is, for example, an engine such as a diesel engine, a gas turbine engine or a steam turbine engine, or a boiler.
  • the exhaust gas desulfurization apparatus 1 includes an absorption tower 2 configured to bring a cleaning liquid into gas-liquid contact with the exhaust gas introduced therein, and a gas-liquid mixing device 4.
  • the absorption tower 2 is configured to bring the cleaning liquid into gas-liquid contact with the exhaust gas introduced therein.
  • the absorption tower 2 as shown in FIG. 1, is configured to spray the cleaning liquid onto the exhaust gas introduced therein, thereby forming a gas-liquid contact between the exhaust gas and the cleaning liquid.
  • the contact portion 21A and the liquid pool portion 21B located below the gas-liquid contact portion and storing the cleaning liquid that has absorbed SO x in the exhaust gas at the gas-liquid contact portion 21A are configured to be defined therein. ..
  • examples of the cleaning liquid include a liquid containing an alkaline agent and seawater.
  • examples of the alkaline agent include CaCO 3 , NaOH, Ca(OH) 2 , NaHCO 3 , and Na 2 CO 3, and it is also possible to use alkali reduced in volume to a high concentration.
  • the absorption tower 2 includes an absorption tower main body portion 22 that internally defines an internal space 21 including the gas-liquid contact portion 21A and the liquid pool portion 21B described above, and an absorption tower main body portion 22.
  • An exhaust gas introducing unit 23 for introducing exhaust gas into the tower main body 22 and an exhaust gas discharging unit 24 for exhausting exhaust gas from the absorption tower main body 22 are provided.
  • a direction in which the absorption tower main body 22 and the exhaust gas introducing portion 23 are adjacent to each other is a first direction
  • an exhaust gas introducing portion 23 side in the first direction is one side
  • an exhaust gas discharging portion 24 side in the first direction Is defined as the other side.
  • the exhaust gas inlet 251 communicating with the internal space 21 (lower internal space 21C) is formed in the first side wall 25 which is the one side wall in the first direction of the absorption tower body 22.
  • the second side wall 26, which is the other side wall in the first direction of the absorption tower body 22, has an exhaust gas outlet communicating with the internal space 21 (upper internal space 21D) at a position higher than the exhaust gas inlet 251. 261 is formed.
  • Each of the first side wall 25 and the second side wall 26 extends along a second direction orthogonal to the first direction in a top view and defines at least a part of the internal space 21 including the liquid reservoir 21B. There is.
  • Exhaust gas introduced from the combustion device (not shown) into the exhaust gas introducing portion 23 is introduced into the internal space 21 (lower internal space 21C) via the exhaust gas introducing port 251 after passing through the exhaust gas introducing portion 23.
  • the exhaust gas introduced into the internal space 21 flows in the lower internal space 21C from the first side wall 25 located on one side toward the second side wall 26 located on the other side, and then flows while rising in the internal space 21. To go.
  • the exhaust gas that has risen to the upper internal space 21D flows from the first side wall 25 toward the second side wall 26, and then is discharged to the exhaust gas discharge portion 24 via the exhaust gas discharge port 261.
  • the gas-liquid contact portion 21A located above the lower internal space 21C of the absorption tower body 22 and below the upper internal space 21D has the internal space 21 described above.
  • a spraying device 28 for spraying the cleaning liquid is arranged.
  • the spraying device 28 sprays the cleaning liquid onto the exhaust gas passing through the gas-liquid contact portion 21A and brings the cleaning liquid into gas-liquid contact with each other to absorb and remove SO x (including SO 2 ) contained in the exhaust gas.
  • SO x including SO 2
  • the spraying device 28 includes a water spray pipe 281 extending along the first direction in the internal space 21 of the absorption tower body 22, and a plurality of water spray nozzles 282 provided in the water spray pipe 281. And, including.
  • the water spray nozzle 282 is configured to spray the cleaning liquid toward the downstream side in the flow direction of the exhaust gas, that is, toward the upper side in the vertical direction.
  • the sprinkler nozzle 282 is adapted to eject the cleaning liquid in a liquid column shape. That is, the illustrated absorption tower 2 is a liquid column type absorption tower.
  • the absorption tower 2 is not limited to the liquid column type described above as long as it is configured to bring the cleaning liquid into gas-liquid contact with the exhaust gas introduced therein.
  • the absorption tower 2 is a grid-type absorption tower that includes a packed bed that is filled with a filling material that promotes gas-liquid contact in the internal space 21, or a spray-type absorption tower that includes a water spray nozzle 282 that radially sprays the cleaning liquid. It may be an absorption tower or the like.
  • the water sprinkler 281 may extend along a direction orthogonal to the first direction in a top view. Further, the water spray nozzle 282 may be configured to spray the cleaning liquid downward in the vertical direction.
  • Exhaust gas that has passed through the gas-liquid contact portion 21A contains a large amount of water.
  • a mist eliminator 27 is arranged downstream of the gas-liquid contact portion 21A in the flow direction of the exhaust gas.
  • the mist eliminator 27 is configured to remove water from the exhaust gas passing through the mist eliminator 27.
  • the exhaust gas that has passed through the mist eliminator 27 is discharged to the outside of the absorption tower 2.
  • the mist eliminator 27 is arranged in the exhaust gas discharge part 24 and extends along the vertical direction so as to separate the upstream side and the downstream side in the exhaust gas flow direction in the exhaust gas discharge part 24. There is. Note that the mist eliminator 27 may be arranged in the upper internal space 21D and extend along the horizontal direction. Further, the mist eliminator 27 may have a multi-stage configuration.
  • the liquid pool portion 21B is configured to store the sprayed cleaning liquid that has been sprayed with respect to the exhaust gas guided to the internal space 21.
  • the liquid reservoir 21B is provided such that the liquid surface is located below the lower internal space 21C and at a position lower than the exhaust gas inlet 251.
  • the cleaning liquid stored in the liquid pool 21B contains a reaction product generated by SO x absorbed from the exhaust gas.
  • the reaction product include a sulfite salt produced by absorption of SO 2 into the cleaning liquid.
  • the second side wall 26 has a cleaning liquid outlet 262 for extracting the cleaning liquid stored in the liquid pool 21B to the outside at a position near the bottom surface 211 of the liquid pool 21B in the vertical direction. It is open.
  • the cleaning liquid outlet 262 communicates with the liquid reservoir 21B.
  • the exhaust gas desulfurization apparatus 1 includes, as shown in FIG. 1, a cleaning liquid circulation line 7 configured to send the cleaning liquid stored in the liquid pool 21 ⁇ /b>B to the spraying device 28, and the absorption tower 2. And a cleaning liquid supply line 8 configured to supply the cleaning liquid to the liquid reservoir 21B from outside.
  • the cleaning liquid circulation line 7 sends the cleaning liquid to the spray pipe 281 from the cleaning liquid outlet 262, which is provided in the middle of the cleaning liquid circulation line 7, and at least one pipe 71 that connects the cleaning liquid outlet 262 and the water spray pipe 281 described above.
  • a cleaning liquid circulation pump 72 for. That is, at least a part of the cleaning liquid sprayed from the spraying device 28 and stored in the liquid pool portion 21B is pressure-fed by the cleaning liquid circulating pump 72, passes through the cleaning liquid circulating line 7, and is sent to the spraying device 28.
  • the cleaning liquid supply line 8 includes a cleaning liquid storage tank 81 provided outside the absorption tower 2, and at least one pipe 82 that connects the cleaning liquid storage tank 81 and the liquid reservoir 21B.
  • the cleaning liquid is sent from the cleaning liquid storage tank 81 to the liquid reservoir 21B through the cleaning liquid supply line 8.
  • the gas-liquid mixing device 4 is configured to inject a mixed fluid MF of a gas containing oxygen such as air and a cleaning liquid into the liquid pool 21 B of the absorption tower 2 to inject the liquid. And a cleaning liquid introduction line 41 configured to send the cleaning liquid to the injection nozzle 5, and a gas introduction line 42 configured to send a gas containing oxygen to the injection nozzle 5.
  • the gas-liquid mixing device 4 injects the mixed fluid MF from the injection nozzle 5 to the liquid pool 21B and distributes the mixed fluid MF to the cleaning liquid stored in the liquid pool 21B, whereby the reaction product is generated by the mixed fluid MF. Is oxidized to produce an oxidation product. Examples of the oxidation product include gypsum.
  • the exhaust gas desulfurization apparatus 1 is, as shown in FIG. 1, a cleaning liquid discharge line 9 configured to discharge a cleaning liquid containing an oxidation product (gypsum) stored in the liquid pool 21B.
  • the cleaning liquid discharge line 9 is configured to discharge the cleaning liquid via the cleaning liquid circulation line 7 connected to the liquid reservoir 21B. More specifically, the cleaning liquid discharge line 9 is branched from the branch portion 73 of the cleaning liquid circulation line 7 and is connected to a device 91 provided outside the absorption tower 2, and the branch portion 73 of the cleaning liquid circulation line 7 is connected to the device 91.
  • the cleaning solution containing the oxidation product is sent to the.
  • the device 91 include a dehydrator (separator) that dehydrates water from a cleaning liquid containing an oxidation product, a storage tank for temporarily storing the cleaning liquid, and the like.
  • the cleaning liquid introduction line 41 is branched from the cleaning liquid circulation line 7 at a branch portion 44 located downstream of the branch portion 73 in the flow direction of the cleaning liquid.
  • the cleaning liquid circulation pump 72 described above is configured to send a part of the cleaning liquid from the cleaning liquid outlet 262 to the injection nozzle 5 via the branch portion 44.
  • one end of the gas introduction line 42 is connected to the injection nozzle 5, and the other end is open to the atmosphere at a position above the liquid surface of the liquid reservoir 21B.
  • FIG. 2 is a schematic cross-sectional view of the injection nozzle for explaining the function of the injection nozzle in the embodiment.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of the injection nozzle according to the embodiment.
  • the injection nozzle 5 includes a first tubular portion 52, a throttle portion 53, and a second tubular portion 54.
  • the first tubular portion 52 is formed into a tubular shape that defines the first flow passage 55 inside.
  • a cleaning liquid introduction port 56 for introducing the cleaning liquid into the first flow passage 55, and a direction perpendicular to the flow direction of the cleaning liquid introduced from the cleaning liquid introduction port 56 and flowing through the first flow passage 55.
  • a gas introduction port 57 for introducing the gas into the first flow path 55 and the discharge port 51 described above are formed along the direction.
  • the discharge port 51 is provided to discharge the mixed fluid MF of the cleaning liquid introduced from the cleaning liquid introduction port 56 and the gas introduced from the gas introduction port 57.
  • the first tubular portion 52 has a length direction along the direction in which the central axis CA of the discharge port 51 extends.
  • the cleaning liquid inlet 56 described above is opened at one end in the length direction of the first tubular portion 52, and the above-mentioned discharge port 51 is opened at the other end in the length direction of the first tubular portion 52.
  • the above-described gas introduction port 57 is opened on the outer periphery of the first tubular portion 52.
  • the cleaning liquid sent from the cleaning liquid introduction line 41 into the first flow path 55 through the cleaning liquid introduction port 56 is discharged from the cleaning liquid introduction port 56 in the direction along the direction in which the central axis CA extends through the first flow path 55. It flows toward the discharge port 51.
  • the second tubular portion 54 internally defines a second flow path 58 that communicates with the gas introduction port 57, and at the same time, introduces the gas in the gas introduction port 57 (flow of the cleaning liquid).
  • a second gas introduction port 59 is formed extending along a direction (perpendicular to the direction) for introducing gas into the second flow path 58.
  • the second tubular portion 54 is orthogonal to the direction in which the central axis CA2 of the gas introduction port 57 extends, that is, the direction in which the central axis CA of the discharge port 51 extends. It has a length direction along the direction.
  • One end in the length direction of the second tubular portion 54 is integrally connected to the outer circumference of the first tubular portion 52. That is, the first tubular portion 52 and the second tubular portion 54 are integrally formed.
  • the above-mentioned second gas introduction port 59 is opened at the other end in the length direction of the second tubular portion 54.
  • the gas sent from the gas introduction line 42 into the second flow path 58 through the second gas introduction port 59 passes through the second flow path 58, and then inside the first flow path 55 through the gas introduction port 57. Sent to.
  • the gas sent into the first flow channel 55 merges with the cleaning liquid at the merge section 60.
  • the throttle unit 53 is provided on the upstream side of the confluence unit 60 in the flow direction of the cleaning liquid.
  • the narrowed portion 53 has a contraction flow forming opening 61 through which the cleaning liquid flows, and the cross-sectional area of which is sharply reduced as compared with the upstream side and the downstream side in the flow direction of the cleaning liquid.
  • the throttle portion 53 is configured to generate a negative pressure region 62 (see FIG. 2) on the downstream side of the throttle portion 53 in the flow direction of the cleaning liquid by contracting the cleaning liquid through the contraction forming port 61.
  • the injection nozzle 5 sucks the gas from the gas inlet 57 by the suction force generated in the negative pressure region 62.
  • a pump (not shown) for sending gas to the first flow path 55 is provided in the gas introduction line 42, and the pump is provided. Therefore, the amount of gas sent to the first flow channel 55 may be increased.
  • the throttle portion 53 is configured separately from the first tubular portion 52.
  • the narrowed portion 53 may be formed integrally with the first tubular portion 52.
  • the narrowed portion 53 may be provided so as to project from the inner peripheral surface of the first tubular portion 52 that defines the first flow path 55.
  • the jet nozzle 5 shears and atomizes the gas sent to the first flow passage 55 by the cleaning liquid flowing through the first flow passage 55 to generate a mixed fluid MF (cleaning liquid containing fine bubbles inside). Further, the ejection nozzle 5 is adapted to eject the mixed fluid MF generated in the ejection nozzle 5 from the ejection port 51.
  • FIG. 4 is a graph for explaining the operation performed by the gas-liquid mixing device according to one embodiment, which is a ratio of the inner diameter of the gas introduction port to the inner diameter of the discharge port and the oxidation reaction by the mixed fluid in the liquid pool.
  • 3 is a graph showing the relationship between the efficiency of and.
  • the ratio (D2/D1) of the inner diameter D2 of the gas inlet 57 to the inner diameter D1 of the outlet 51 is 0.8 or more
  • the inner diameter D2 of the gas inlet 57 is large.
  • the flow rate of the gas G introduced from the gas introduction port 57 into the first flow path 55 increases, and as a result, the ratio OA of the gas G in the mixed fluid MF discharged from the discharge port 51 increases. If the ratio OA of the gas G in the mixed fluid MF discharged from the discharge port 51 becomes excessively large, the effect of making the gas G (bubbles) smaller may be attenuated.
  • the buoyancy of the bubbles increases as the size of the bubbles increases, so that the bubbles can stay in the cleaning liquid stored in the liquid pool 21B, that is, The period during which the cleaning liquid can be oxidized becomes shorter. Therefore, if the ratio OA of the gas G in the mixed fluid MF becomes excessively large, the efficiency EO of the oxidation reaction by the mixed fluid MF in the liquid pool 21B may decrease.
  • the above-described injection nozzle 5 (gas-liquid mixing device 4) defines the above-described first flow path 55 inside, and the above-described first tubular portion 52, The diaphragm unit 53 described above is provided. Then, when the inner diameter of the discharge port 51 described above is D1 and the inner diameter of the gas introduction port 57 described above is D2, the condition of 0.5 ⁇ D2/D1 ⁇ 0.8 is satisfied.
  • the condition of 0.5 ⁇ D2/D1 ⁇ 0.8 is satisfied. ..
  • the first tubular portion 52 satisfying the condition of 0.5 ⁇ D2/D1 is gas.
  • the pressure loss ⁇ P in the gas introduction line 42 for sending the gas G to the first flow path 55 through the introduction port 57 can be reduced, and the pressure loss ⁇ P is introduced from the gas introduction port 57 into the first flow path 55 and discharged. It is possible to prevent the ratio OA of the gas G in the mixed fluid MF discharged from 51 from becoming too small.
  • the first tubular portion 52 satisfying the condition of D2/D1 ⁇ 0.8 is gas. It is possible to prevent the ratio of the gas G in the mixed fluid MF introduced from the introduction port 57 to the first flow path 55 and discharged from the discharge port 51 from becoming excessive. Therefore, according to the above configuration, since the condition of 0.5 ⁇ D2/D1 ⁇ 0.8 is satisfied, the mixed fluid MF introduced from the gas introduction port 57 to the first flow path 55 and discharged from the discharge port 51. It is possible to prevent the ratio of the gas G in (1) to be too large or too small, and to prevent insufficient oxidation by the mixed fluid MF in the liquid pool 21B.
  • FIG. 5 is a graph for explaining the action of the gas-liquid mixing device according to one embodiment, which is a ratio of the length from the narrowed portion to the central axis of the gas inlet to the inner diameter of the outlet and the gas inlet. It is a graph which shows the relation with the atomization effect of the gas introduced from the mouth.
  • the narrowed portion 53 causes the same. Since the contracted flow is restored, the atomization effect of the gas G (air bubbles) tends to be attenuated. In particular, when L/D1 is 1.3 or more, the miniaturization effect of the gas G (air bubbles) is significantly attenuated, so that the oxidation by the mixed fluid MF containing the gas G in the liquid pool 21B becomes insufficient. There is a risk. Further, if the ratio (L/D1) of the length from the narrowed portion 53 to the central axis CA2 of the gas introduction port 57 to the inner diameter D1 of the discharge port 51 is small, the miniaturization effect can be enhanced accordingly.
  • FIG. 6 is a partial cross-sectional view schematically showing the vicinity of a portion of the absorption tower where the injection nozzle is fixed.
  • a method of mounting the injection nozzle 5 will be described with reference to FIG.
  • the tip of the first tubular portion 52 having the ejection port 51 of the injection nozzle 5 formed therein is inserted into the insertion hole 252 formed so as to penetrate the first side wall 25.
  • the jet nozzle 5 includes a discharge port side fastening portion 63, as shown in FIG.
  • the first tubular portion 52 extends along the central axis CA of the ejection port 51, and the ejection port 51 is formed at one end in the extending direction.
  • the ejection port side fastening portion 63 is provided so as to project from the outer periphery of the first tubular portion 52 along a direction orthogonal to the central axis CA of the ejection port 51.
  • the discharge port side fastening portion 63 is provided on the outer periphery of the first tubular portion 52 downstream of the connection portion with the second tubular portion 54 and the merging portion 60 in the flow direction of the cleaning liquid.
  • the absorption tower 2 further includes a cylindrical protruding portion 29 and a jet nozzle fastening portion 30.
  • the cylindrical protruding portion 29 extends along the direction inclined by the inclination angle ⁇ from the horizontal plane.
  • the side wall 25 is provided so as to project outward from the peripheral portion of the insertion hole 252.
  • the injection nozzle fastening portion 30 is provided so as to project from the tip of the tubular protruding portion 29 along a direction orthogonal to the extending direction of the tubular protruding portion 29.
  • the injection nozzle 5 is fixed to the first side wall 25.
  • the discharge port side fastening portion 63 of the jet nozzle 5 is fixed to the jet nozzle fastening portion 30 of the absorption tower 2 by a fastening device 66 (66A).
  • the fastening device 66A (third fastening device) includes a bolt 67 (67A) and a nut 68 (68A).
  • the bolt 67 (67A) includes a shaft portion 671 having a threaded portion formed on at least a part of the outer peripheral surface thereof, and a head portion 672 formed at a base end portion of the shaft portion 671 having a diameter larger than that of the shaft portion 671.
  • the shaft portion 671 is inserted from one side in the extending direction of the tubular protruding portion 29 into the through holes 631 and 301 formed in the discharge port side fastening portion 63 and the injection nozzle fastening portion 30, and the tubular portion 671 is inserted.
  • the tip of the shaft portion 671 that is inserted into the other side in the extending direction of the protruding portion 29 is screwed into the nut 68A to fix the injection nozzle 5 to the first side wall 25.
  • the gas introduction line 42 is connected to the injection nozzle 5.
  • the injection nozzle 5 has a gas introduction side provided so as to project from the outer periphery of the end of the second tubular portion 54 where the second gas introduction port 59 is formed.
  • the fastening unit 64 is further included.
  • the gas introduction line 42 includes a gas introduction pipe 47 extending along the extending direction of the second tubular portion 54.
  • the gas introduction pipe 47 includes a gas downstream-side fastening portion 48 that is provided so as to project from the outer circumference of the end portion where the opening communicating with the second gas introduction port 59 is formed.
  • the gas downstream side fastening portion 48 of the gas introduction pipe 47 is fixed to the gas introduction side fastening portion 64 of the injection nozzle 5 by a fastening device 66 (66B).
  • the fastening device 66B (second fastening device) includes a bolt 67B having a configuration similar to the bolt 67A, and a nut 68B having a configuration similar to the nut 68A.
  • the bolt 67 ⁇ /b>B has the nut 68 ⁇ /b>B screwed into the tip of the shaft portion 671 inserted into the through holes 641 and 481 formed in the gas introduction side fastening portion 64 and the gas downstream side fastening portion 48, whereby the first nozzle of the injection nozzle 5 is screwed.
  • the gas introducing pipe 47 is fixed to the two tubular portions 54.
  • the cleaning liquid introduction line 41 is connected to the injection nozzle 5.
  • the cleaning liquid introduction line 41 and the injection nozzle 5 may be connected at the same time as the gas introduction line 42 and the injection nozzle 5 are connected, or may be connected before or after the connection between the gas introduction line 42 and the injection nozzle 5. Good.
  • the injection nozzle 5 further includes a cleaning liquid introduction side fastening portion 65 provided so as to project from the outer periphery of the end of the first tubular portion 52 where the cleaning liquid introduction port 56 is formed.
  • the cleaning liquid introduction line 41 includes a cleaning liquid introduction pipe 45 extending along the direction in which the first tubular portion 52 extends.
  • the cleaning liquid introducing pipe 45 is provided with a cleaning liquid downstream side fastening portion provided so as to project from the outer periphery of the end portion where the opening 451 communicating with the cleaning liquid introducing port 56 with the narrowed portion 53 interposed therebetween is formed. 46 is provided.
  • the cleaning liquid downstream side fastening portion 46 of the cleaning liquid introduction pipe 45 is fixed to the cleaning liquid introduction side fastening portion 65 of the injection nozzle 5 by a fastening device 66C (first fastening device).
  • the fastening device 66C includes a bolt 67C having a configuration similar to the bolt 67A, and a nut 68C having a configuration similar to the nut 68A.
  • the bolt 67C is configured such that the nut 68C is screwed onto the tip of the shaft portion 671 inserted into the through holes 651 and 461 formed in the cleaning liquid introduction side fastening portion 65 and the cleaning liquid downstream side fastening portion 46, whereby the first tubular portion is formed.
  • the cleaning liquid introduction pipe 45 is fixed to the first tubular portion 52 of the injection nozzle 5 with the narrowed portion 53 sandwiched between the 52 and the cleaning liquid introduction pipe 45.
  • the cleaning liquid introduction side fastening portion 65 and the gas introduction side fastening portion 64 described above may interfere with each other.
  • the cleaning liquid introduction side fastening portion 65 extends along a direction orthogonal to the central axis CA, and the gas introduction side fastening portion 64 is orthogonal to the central axis CA2 (orthogonal to the central axis CA).
  • the cleaning liquid introducing side fastening portion 65 extends along the direction orthogonal to the extending direction of the gas introducing side fastening portion 64, the cleaning liquid introducing side fastening portion 65 and the gas introducing side fastening portion 64 interfere with each other. easy.
  • the injection nozzle 5 (gas-liquid mixing device 4) described above includes the second tubular portion 54 described above, the cleaning liquid introduction side fastening portion 65 described above, and the gas introduction side fastening portion 64 described above. , Are further provided.
  • the injection nozzle 5 (gas-liquid mixing device 4) described above has 0.8 ⁇ L. The condition of /D1 ⁇ 1.3 is satisfied.
  • the ratio of the length L from the narrowed portion 53 to the central axis CA2 of the gas inlet 57 to the inner diameter D1 of the discharge port 51 satisfies the condition of L/D1 ⁇ 1.3.
  • the condition of L/D1 ⁇ 1.3 is satisfied, so that the miniaturization effect of the gas G (air bubbles) is less attenuated and the miniaturization effect can be exhibited.
  • the above-mentioned injection nozzle 5 (gas-liquid mixing apparatus 4) satisfies the condition of 0.8 ⁇ L/D1 ⁇ 1.3.
  • the invention can be carried out simultaneously with the invention satisfying the condition of ⁇ D2/D1 ⁇ 0.8, and can be carried out independently of the above invention.
  • the above-mentioned injection nozzle 5 (gas-liquid mixing device 4) further satisfies the condition of 0.9 ⁇ L/D1.
  • the ratio of the length L from the narrowed portion 53 to the central axis CA2 of the gas introduction port 57 to the inner diameter D1 of the discharge port 51 satisfies the condition of 0.9 ⁇ L/D1. Interference between the fastening portion 65 and the above-described gas introduction side fastening portion 64 can be more reliably prevented.
  • the distance between the cleaning liquid introduction side fastening portion 65 and the gas introduction side fastening portion 64 can be increased, fastening work for fastening other components such as pipes to the cleaning liquid introduction side fastening portion 65 and the gas introduction side fastening portion 64. Can be done easily.
  • the above-described inner diameter D1 of the discharge port 51 is 150 mm or more and 270 mm or less. Further, the condition of 0.5 ⁇ D2/D1 ⁇ 0.8 described above is satisfied. In this case, the present inventors confirmed that the efficiency EO of the oxidation reaction by the mixed fluid MF is good. According to the above configuration, it is possible to more reliably prevent insufficient oxidation by the mixed fluid MF in the liquid reservoir 21B.
  • the injection nozzle 5 (gas-liquid mixing device 4) described above is fixed to the side wall (such as the first side wall 25) that defines at least a part of the liquid pool 21B of the absorption tower 2.
  • the discharge port side fastening portion 63 is provided.
  • the discharge port side fastening portion 63 is in the flow direction of the cleaning liquid more than the connecting portion of the first tubular portion 52 extending along the central axis CA of the discharge outlet 51 with the second tubular portion 54 and the merging portion 60. It is provided on the outer circumference on the downstream side.
  • the ejection port side fastening portion 63 is provided so as to project from the outer periphery of the first tubular portion 52 along the direction orthogonal to the central axis CA of the ejection port 51.
  • the injection nozzle 5 (gas-liquid mixing device 4) is arranged in a direction orthogonal to the central axis CA of the discharge port 51 from the outer periphery on the downstream side in the flow direction of the cleaning liquid with respect to the confluence portion 60 of the first tubular portion 52.
  • the discharge port side fastening portion 63 is provided so as to project along.
  • the injection nozzle 5 (gas-liquid mixing device 4) can fix the position of the first tubular portion 52 with respect to the side wall by fixing the discharge port side fastening portion 63 to the side wall.
  • An exhaust gas desulfurization device 1 includes the absorption tower 2 described above and the gas-liquid mixing device 4 described above.
  • the absorption tower 2 is configured to bring the cleaning liquid into gas-liquid contact with the exhaust gas introduced therein, and also defines the liquid reservoir 21B for storing the cleaning liquid therein.
  • the gas-liquid mixing device 4 uses the mixed fluid MF discharged from the discharge port 51 of the first tubular portion 52 to the liquid pool 21B of the absorption tower 2 with respect to the cleaning liquid stored in the liquid pool 21B of the absorption tower 2. Sufficient oxidation reaction can occur.
  • the above-mentioned injection nozzle 5 (gas-liquid mixing device 4) includes the above-mentioned first tubular portion 52 and the above-mentioned discharge port side fastening portion 63.
  • the above-mentioned absorption tower 2 contains the above-mentioned cylindrical projection part 29 and the above-mentioned injection nozzle fastening part 30.
  • the injection nozzle 5 (in the state where the tip including the discharge port 51 of the first tubular portion 52 is inserted into the insertion hole 252 formed in the sidewall (the first sidewall 25 or the like) of the absorption tower 2 ( The discharge port side fastening portion 63 of the gas-liquid mixing device 4) is fixed to the injection nozzle fastening portion 30 of the absorption tower 2 by the fastening device 66A (third fastening device).
  • the first tubular portion 52 extends along the central axis CA of the ejection port 51.
  • the cylindrical protrusion 29 of the absorption tower 2 extends along the direction inclined from the horizontal plane by the same angle as the inclination angle ⁇ of the central axis CA of the discharge port 51 from the horizontal plane.
  • the cylindrical protruding portion 29 of the absorption tower 2 extends along the same direction as the central axis CA of the discharge port 51 when the first cylindrical portion 52 is installed.
  • the first tubular portion 52 is orthogonal to the extending direction of the tubular protruding portion 29 and the discharge port side fastening portion 63 extending along the direction orthogonal to the extending direction of the first tubular portion 52.
  • the present invention is not limited to the above-described embodiment, and includes a form in which the above-described embodiment is modified and a form in which these forms are appropriately combined.
  • the exhaust gas discharge part 24 is provided on the opposite side of the exhaust gas main body part 22 from the exhaust gas introduction part 23 in the first direction. It may be provided on the same side. Further, the exhaust gas discharge part 24 may be provided so as to be adjacent to the absorption tower main body part 22 in the second direction orthogonal to the first direction in a top view.

Abstract

排ガスに洗浄液を気液接触させる吸収塔における洗浄液を貯留するための液だまり部に、酸素を含む気体および洗浄液を噴射するように構成される気液混合装置であって、第1流路を内部に画定し、洗浄液を第1流路に導入するための洗浄液導入口、洗浄液導入口から導入されて第1流路を流れる洗浄液の流れ方向に対して直交する方向に沿って気体を第1流路に導入するための気体導入口、および洗浄液と気体との混合流体を吐出する吐出口、が形成された第1筒状部と、洗浄液導入口から導入された洗浄液と気体導入口から導入された気体とが合流する合流部よりも洗浄液の流れ方向における上流側に設けられる絞り部と、を備え、吐出口の内径をD1、気体導入口の内径をD2とした際に、0.5<D2/D1<0.8の条件を満たす気液混合装置。

Description

気液混合装置、および気液混合装置を備える排ガス脱硫装置
 本開示は、燃焼装置から排出される排ガスに洗浄液を接触させる吸収塔における液だまり部に、混合流体(微細気泡を含む洗浄液)を噴射するための気液混合装置、および該気液混合装置を備える排ガス脱硫装置に関する。
 例えばボイラなどの燃焼機関から排出される排ガスには、SO(硫黄酸化物)などの大気汚染物質が含まれている。排ガスに含まれるSOを低減するための方法には、アルカリ水溶液や吸収剤スラリーなどの吸収液でSOなどを吸収除去する湿式の脱硫方法などがある。
 上記湿式の脱硫方法を用いる排ガス脱硫装置には、吸収塔内を流れる排ガスに洗浄液を噴霧することで、排ガスと洗浄液とを接触させる気液接触部と、気液接触部の下方に位置し、噴霧後の洗浄液を貯留するための液だまり部と、を内部に画定する吸収塔を備えるものがある(例えば特許文献1参照)。排ガスと洗浄液とが接触することで、排ガスに含まれるSOが洗浄液に吸収される。SOを吸収した洗浄液は液だまり部に貯留される。
 液だまり部に貯留された洗浄液には、排ガスから吸収したSOにより生じる亜硫酸塩などの反応生成物が含まれるので、該反応生成物を除去するために、液だまり部に貯留される洗浄液に空気などの酸素を含む気体を行き渡らせて、反応生成物を酸化させることが行われることがある。
 特許文献1には、上記酸素を含む気体と洗浄液との混合流体を吐出口から液だまり部に噴射するように構成される噴射ノズル、を含む気液混合装置が開示されている。上記噴射ノズルは、洗浄液の流路の途中に絞り部が設けられており、該絞り部により上記流路を流れる洗浄液を縮流することで負圧領域を発生させる。上記負圧領域に生じる吸引力により、上記流路の絞り部よりも下流側に分岐配管を介して供給される気体が吸引される。また、噴射ノズルは、上記洗浄液の流路を流れる洗浄液によって吸引された気体をせん断、微細化して混合流体(微細気泡を含む洗浄液)を生成するとともに、該混合流体を吐出口から噴射するようになっている。
特許第5046755号公報
 吐出口から吐出される混合流体に含まれる気体(気泡)の割合が過小であると、洗浄液の酸化に用いる酸素の量が不足するため、液だまり部での混合流体による洗浄液の酸化が不十分となる虞がある。また、吐出口から吐出される混合流体に含まれる気体の割合が過大であると、洗浄液による気体のせん断が不十分となり、気体(気泡)の微細化効果が減衰する虞がある。気体(気泡)の微細化効果が減衰して気泡のサイズが大きくなると、気体と洗浄液との接触面積が減少する。また、気泡のサイズが大きくなると、その分だけ気泡の浮力が大きくなるので、気泡が液だまり部に貯留される洗浄液中に滞在できる期間、すなわち、気泡が洗浄液を酸化できる期間が短くなる。このため、液だまり部での混合流体による洗浄液の酸化が不十分となる虞がある。
 上述した事情に鑑みて、本発明の少なくとも一実施形態の目的は、液だまり部での混合流体による洗浄液の酸化が不十分となることを防止することができる気液混合装置を提供することにある。
(1)本発明の少なくとも一実施形態にかかる気液混合装置は、
 燃焼装置から排出される排ガスに洗浄液を気液接触させるように構成される吸収塔における上記洗浄液を貯留するための液だまり部に、酸素を含む気体および上記洗浄液を噴射するように構成される気液混合装置であって、
 第1流路を内部に画定するとともに、上記洗浄液を上記第1流路に導入するための洗浄液導入口、上記洗浄液導入口から導入されて上記第1流路を流れる上記洗浄液の流れ方向に対して直交する方向に沿って上記気体を上記第1流路に導入するための気体導入口、および、上記洗浄液導入口から導入された上記洗浄液と上記気体導入口から導入された上記気体との混合流体を吐出する吐出口、が形成された第1筒状部と、
 上記洗浄液導入口から導入された上記洗浄液と上記気体導入口から導入された上記気体とが合流する合流部よりも上記洗浄液の流れ方向における上流側に設けられる絞り部と、
を備え、
 上記吐出口の内径をD1、上記気体導入口の内径をD2とした際に、
 0.5<D2/D1<0.8の条件を満たす。
 上記(1)の構成によれば、第1筒状部における吐出口の内径をD1、気体導入口の内径をD2とした際に、0.5<D2/D1<0.8の条件を満たす。第1に、0.5<D2/D1の条件を満たす第1筒状部は、気体導入口の内径D2が吐出口の内径D1と比べて所定以上の大きさであるため、気体導入口を介して第1流路に気体を送るための気体導入ラインでの圧力損失を低減することができ、気体導入口から第1流路に導入されて吐出口から吐出される混合流体における酸素を含む気体の割合が過小になることを防止することができる。第2に、D2/D1<0.8の条件を満たす第1筒状部は、気体導入口の内径D2が吐出口の内径D1と比べて所定以下の大きさであるため、気体導入口から第1流路に導入されて吐出口から吐出される混合流体における酸素を含む気体の割合が過大になることを防止することができる。よって、上記の構成によれば、0.5<D2/D1<0.8の条件を満たすので、気体導入口から第1流路に導入されて吐出口から吐出される混合流体における酸素を含む気体の割合が過大や過小となることを防止することができ、ひいては液だまり部における混合流体による酸化が不十分となることを防止することができる。
(2)幾つかの実施形態では、上記(1)に記載の気液混合装置は、上記気体導入口に連通する第2流路を内部に画定するとともに、上記気体導入口における上記気体の導入方向に沿って延在し、上記気体を上記第2流路に導入するための第2気体導入口が形成された第2筒状部と、上記洗浄液を上記洗浄液導入口から上記第1流路に送るための洗浄液導入ラインと、上記第1筒状部と、を第1締結装置により固定するために上記第1筒状部の上記合流部よりも上記洗浄液の流れ方向における上流側の外周から突出して設けられる洗浄液導入側締結部と、上記気体を上記第2気体導入口から上記第2流路に送るための気体導入ラインと、上記第2筒状部と、を第2締結装置により固定するために上記第2筒状部の外周から突出して設けられる気体導入側締結部と、をさらに備え、上記絞り部から上記気体導入口の中心軸までの長さをLとした際に、0.8<L/D1<1.3の条件を満たす。
 上記(2)の構成によれば、絞り部から気体導入口の中心軸までの長さをLとした際に、0.8<L/D1<1.3の条件を満たす。第1に、吐出口の内径D1に対する絞り部から気体導入口の中心軸までの長さLの比が0.8<L/D1の条件を満たすので、上述した洗浄液導入側締結部と上述した気体導入側締結部とが干渉することを防止することができる。
 第2に、吐出口の内径D1に対する絞り部から気体導入口の中心軸までの長さLの比がL/D1<1.3の条件を満たす。ここで、絞り部から気体導入口の中心軸までの長さLが大きいと、その分だけ絞り部により生じた縮流が回復するため、気体(気泡)の微細化効果が減衰する傾向にある。上記の構成によれば、L/D1<1.3の条件を満たすため、気体(気泡)の微細化効果の減衰が少なく、上記微細化効果を発揮させることができる。
(3)幾つかの実施形態では、上記(2)に記載の気液混合装置は、0.9<L/D1の条件をさらに満たす。
 上記(3)の構成によれば、吐出口の内径D1に対する絞り部から気体導入口の中心軸までの長さLの比が0.9<L/D1の条件を満たすので、上述した洗浄液導入側締結部と上述した気体導入側締結部とが干渉することをより確実に防止することができるとともに、洗浄液導入側締結部と気体導入側締結部との間の間隔を大きくできるので、洗浄液導入側締結部や気体導入側締結部に配管などの他の部品を締結する締結作業を容易に行うことができる。
(4)幾つかの実施形態では、上記(1)~(3)の何れかに記載の気液混合装置において、上記吐出口の内径D1は、150mm以上270mm以下である。
 上記(4)の構成によれば、吐出口の内径D1は、150mm以上270mm以下であり、且つ、上述した0.5<D2/D1<0.8の条件を満たす。この場合には、液だまり部における混合流体による酸化が不十分となることをより確実に防止することができる。
(5)幾つかの実施形態では、上記(1)~(4)の何れかに記載の気液混合装置において、上記第1筒状部は、上記吐出口の中心軸に沿って延在し、上記気液混合装置は、上記吸収塔の上記液だまり部の少なくとも一部を画定する側壁に固定するための吐出口側締結部であって、上記第1筒状部の上記合流部よりも上記洗浄液の流れ方向における下流側の外周から上記吐出口の上記中心軸に直交する方向に沿って突出して設けられる吐出口側締結部をさらに備える。
 上記(5)の構成によれば、気液混合装置は、第1筒状部の合流部よりも洗浄液の流れ方向における下流側の外周から吐出口の中心軸に直交する方向に沿って突出して設けられる吐出口側締結部を備える。気液混合装置は、吐出口側締結部を上記側壁に固定することで、側壁に対する第1筒状部の位置を固定することができる。
(6)本発明の少なくとも一実施形態にかかる排ガス脱硫装置は、
 燃焼装置から排出される排ガスを脱硫するための排ガス脱硫装置であって、
 内部に導入される上記排ガスに洗浄液を気液接触させるように構成される吸収塔であって、上記洗浄液を貯留するための液だまり部を内部に画定する吸収塔と、
 上記(1)~(4)の何れかに記載の気液混合装置と、を備える。
 上記(6)の構成によれば、吸収塔は、内部に導入される排ガスの洗浄液を気液接触させるように構成され、且つ、洗浄液を貯留するための液だまり部を内部に画定している。気液混合装置は、第1筒状部の吐出口から吸収塔の液だまり部に吐出される混合流体により、吸収塔の液だまり部に貯留される洗浄液に対して十分な酸化反応を生じさせることができる。
(7)幾つかの実施形態では、上記(6)に記載の排ガス脱硫装置において、上記第1筒状部は、上記吐出口の中心軸に沿って延在し、上記気液混合装置は、上記第1筒状部の上記合流部よりも上記洗浄液の流れ方向における下流側の外周から上記吐出口の上記中心軸に直交する方向に沿って突出して設けられる吐出口側締結部をさらに備え、上記吸収塔は、上記液だまり部の少なくとも一部を画定する側壁であって、上記第1筒状部の上記吐出口を含む先端が挿通される挿通孔が形成された側壁と、上記吐出口の上記中心軸の水平面からの傾斜角度をθとした際に、水平面から上記傾斜角度θだけ傾斜した方向に沿って、上記側壁の上記挿通孔の周縁部から上記側壁の外側に突出して設けられる筒状突出部と、上記筒状突出部の先端から上記筒状突出部の延在する方向に直交する方向に沿って突出して設けられる噴射ノズル用締結部であって、上記吐出口側締結部が第3締結装置により固定されるように構成される噴射ノズル用締結部と、をさらに含む。
 上記(7)の構成によれば、吸収塔の側壁に形成された挿通孔に第1筒状部の吐出口を含む先端を挿通した状態で、気液混合装置の吐出口側締結部が吸収塔の噴射ノズル用締結部に第3締結装置により固定される。ここで、第1筒状部は、吐出口の中心軸に沿って延在している。吸収塔の筒状突出部は、吐出口の中心軸の水平面からの傾斜角度θと同じ角度だけ水平面から傾斜した方向に沿って延在している。つまり、吸収塔の筒状突出部は、第1筒状部が設置された際の吐出口の中心軸と同じ方向に沿って延在している。第1筒状部は、第1筒状部の延在する方向に直交する方向に沿って延在する吐出口側締結部と、筒状突出部の延在する方向に直交する方向に沿って延在する噴射ノズル用締結部と、を第3締結装置により固定することで、吐出口の中心軸の水平面からの傾斜角度θをそのまま設置角度とすることができる。よって、上記の構成によれば、第1筒状部の設置角度の調整作業をなくし、第1筒状部の取付け作業を容易にすることができる。
 本発明の少なくとも一実施形態によれば、液だまり部での混合流体による洗浄液の酸化が不十分となることを防止することができる気液混合装置が提供される。
一実施形態にかかる排ガス脱硫装置の概略構成を示す断面図である。 一実施形態における噴射ノズルの機能を説明するための噴射ノズルの概略断面図である。 一実施形態における噴射ノズルの概略構成を示す断面図である。 一実施形態にかかる気液混合装置が奏する作用を説明するためのグラフであって、吐出口の内径に対する気体導入口の内径の比と、液だまり部での混合流体による酸化反応の効率と、の関係を示すグラフである。 一実施形態にかかる気液混合装置が奏する作用を説明するためのグラフであって、吐出口の内径に対する絞り部から気体導入口の中心軸までの長さの比と、気体導入口から導入される気体の微細化効果と、の関係を示すグラフである。 吸収塔における噴射ノズルが固定される部分近傍を概略的に示す部分断面図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 なお、同様の構成については同じ符号を付し説明を省略することがある。
 図1は、一実施形態にかかる排ガス脱硫装置の概略構成を示す断面図である。排ガス脱硫装置は、燃焼装置から排出される排ガスを脱硫するための装置である。上記燃焼装置は、例えば、ディーゼルエンジン、ガスタービンエンジン又は蒸気タービンエンジンなどのエンジンやボイラなどである。
 排ガス脱硫装置1は、図1に示されるように、内部に導入される排ガスに洗浄液を気液接触させるように構成される吸収塔2と、気液混合装置4と、を備える。
 吸収塔2は、内部に導入される排ガスに洗浄液を気液接触させるように構成される。図示される実施形態では、吸収塔2は、図1に示されるように、内部に導入される排ガスに洗浄液を噴霧することで、排ガスと洗浄液とを気液接触させるように構成される気液接触部21A、および気液接触部よりも下方に位置し、気液接触部21Aで排ガス中のSOを吸収した洗浄液が貯留される液だまり部21B、を内部に画定するように構成される。ここで、洗浄液としては、アルカリ剤を含む液体や海水などが挙げられる。また、アルカリ剤としては、CaCO、NaOH、Ca(OH)、NaHCO、NaCOなどが挙げられ、高濃度に減容化されたアルカリを用いることもできる。
 より詳細には、吸収塔2は、図1に示されるように、上述した気液接触部21Aおよび上述した液だまり部21Bを含む内部空間21を内部に画定する吸収塔本体部22と、吸収塔本体部22に排ガスを導入するための排ガス導入部23と、吸収塔本体部22から排ガスを排出するための排ガス排出部24と、を備える。図1に示されるように、吸収塔本体部22と排ガス導入部23とが隣接する方向を第1方向、第1方向における排ガス導入部23側を一方側、第1方向における排ガス排出部24側を他方側、と定義する。
 図1に示されるように、吸収塔本体部22の上記第1方向における一方側の側壁である第1側壁25には、内部空間21(下方側内部空間21C)と連通する排ガス導入口251が形成されている。吸収塔本体部22の上記第1方向における他方側の側壁である第2側壁26には、排ガス導入口251よりも高い位置に、内部空間21(上方側内部空間21D)と連通する排ガス排出口261が形成されている。第1側壁25および第2側壁26の夫々は、上面視において第1方向に直交する第2方向に沿って延在するとともに、液だまり部21Bを含む内部空間21の少なくとも一部を画定している。
 燃焼装置(不図示)から排ガス導入部23に導入された排ガスは、排ガス導入部23を通過した後、排ガス導入口251を介して内部空間21(下方側内部空間21C)に導入される。内部空間21に導入された排ガスは、下方側内部空間21Cを一方側に位置する第1側壁25から他方側に位置する第2側壁26に向かって流れた後、内部空間21を上昇しながら流れていく。上方側内部空間21Dまで上昇した排ガスは、第1側壁25から第2側壁26に向かって流れた後、排ガス排出口261を介して排ガス排出部24に排出される。
 図1に示されるように、吸収塔本体部22の下方側内部空間21Cよりも上方、且つ、上方側内部空間21Dよりも下方に位置する気液接触部21Aには、内部空間21に上述した洗浄液を散布するための散布装置28が配置されている。散布装置28は、気液接触部21Aを通過する排ガスに対して洗浄液を散布し、排ガスと洗浄液とを気液接触させることで、排ガス中に含まれるSO(SOを含む)を吸収除去するように構成される。
 散布装置28は、図1に示されるように、吸収塔本体部22の内部空間21において上記第1方向に沿って延在する散水管281と、散水管281に設けられた複数の散水ノズル282と、を含む。散水ノズル282は、排ガスの流れ方向における下流側に向かって、すなわち、鉛直方向における上方に向かって、洗浄液を散布するように構成される。図示される実施形態では、散水ノズル282は、洗浄液を液柱状に噴射するようになっている。つまり、図示される吸収塔2は、液柱式の吸収塔である。
 なお、吸収塔2は、内部に導入される排ガスに洗浄液を気液接触させるように構成されていればよく、上述した液柱式に限定されない。例えば、吸収塔2は、内部空間21に気液接触を促進させるための充填材が充填される充填層を備えるグリッド式の吸収塔や、洗浄液を放射状に噴霧する散水ノズル282を備えるスプレー式の吸収塔などであってもよい。また、散水管281は、上面視において上記第1方向に直交する方向に沿って延在してもよい。また、散水ノズル282は、鉛直方向における下方に向かって、洗浄液を散布するように構成されていてもよい。
 気液接触部21Aを通過した排ガスには、水分が多く含まれる。気液接触部21Aよりも排ガスの流れ方向における下流側には、ミストエリミネータ27が配置されている。ミストエリミネータ27は、ミストエリミネータ27を通過する排ガスから水分を除去するように構成される。ミストエリミネータ27を通過した排ガスは、吸収塔2の外部に排出される。
 図示される実施形態では、ミストエリミネータ27は、排ガス排出部24に配置され、排ガス排出部24に排ガスの流れ方向における上流側と下流側とを隔てるように、鉛直方向に沿って延在している。なお、ミストエリミネータ27は、上方側内部空間21Dに配置されて、水平方向に沿って延在してもよい。また、ミストエリミネータ27は、多段構成であってもよい。
 液だまり部21Bは、内部空間21に導かれた排ガスに対して散布された散布済みの洗浄液が貯留されるように構成される。図示される実施形態では、液だまり部21Bは、下方側内部空間21Cの下方、且つ排ガス導入口251よりも低い位置に、液面が位置するように設けられる。液だまり部21Bに貯留される洗浄液には、排ガスから吸収したSOにより生じた反応生成物が含まれる。ここで、反応生成物としては、SOが洗浄液に吸収されることで生成される亜硫酸塩などが挙げられる。
 図1に示されるように、第2側壁26には、鉛直方向における液だまり部21Bの底面211近傍の位置に、液だまり部21Bに貯留される洗浄液を外部に抜き出すための洗浄液抜出口262が開口している。洗浄液抜出口262は、液だまり部21Bに連通している。
 図示される実施形態では、排ガス脱硫装置1は、図1に示されるように、液だまり部21Bに貯留された洗浄液を散布装置28に送るように構成される洗浄液循環ライン7と、吸収塔2の外部から液だまり部21Bに洗浄液を供給するように構成される洗浄液供給ライン8と、をさらに備える。
 洗浄液循環ライン7は、上述した洗浄液抜出口262および上述した散水管281を接続する少なくとも一つの配管71と、洗浄液循環ライン7の途中に設けられる、洗浄液抜出口262から散水管281に洗浄液を送るための洗浄液循環ポンプ72と、を含む。つまり、散布装置28から散布されて液だまり部21Bに貯留された洗浄液の少なくとも一部は、洗浄液循環ポンプ72により圧送されて、洗浄液循環ライン7を通り、散布装置28に送られる。
 洗浄液供給ライン8は、吸収塔2の外部に設けられる洗浄液貯留タンク81と、洗浄液貯留タンク81と液だまり部21Bとを接続する少なくとも一つの配管82と、を含む。洗浄液は、洗浄液貯留タンク81から液だまり部21Bに、洗浄液供給ライン8を通って送られる。
 気液混合装置4は、図1に示されるように、例えば空気などの酸素を含む気体と洗浄液との混合流体MFを吸収塔2の液だまり部21Bに噴射するように構成される噴射ノズル5と、噴射ノズル5に洗浄液を送るように構成される洗浄液導入ライン41と、噴射ノズル5に酸素を含む気体を送るように構成される気体導入ライン42と、を含む。気液混合装置4は、噴射ノズル5から液だまり部21Bに混合流体MFを噴射し、液だまり部21Bに貯留される洗浄液に混合流体MFを行き渡らせることで、混合流体MFにより上記反応生成物を酸化させて、酸化生成物を生成する。酸化生成物としては、石膏などが挙げられる。
 図示される実施形態では、排ガス脱硫装置1は、図1に示されるように、液だまり部21Bに貯留される酸化生成物(石膏)を含む洗浄液を排出するように構成される洗浄液排出ライン9をさらに備える。図1に示される実施形態では、洗浄液排出ライン9は、液だまり部21Bに接続される洗浄液循環ライン7を介して洗浄液を排出するように構成される。より詳細には、洗浄液排出ライン9は、洗浄液循環ライン7の分岐部73から分岐し、吸収塔2の外部に設けられる装置91に接続されており、洗浄液循環ライン7の分岐部73から装置91に酸化生成物を含む洗浄液を送るようになっている。装置91としては、酸化生成物を含む洗浄液から水分を脱水する脱水機(分離機)や洗浄液を一時的に貯留するための貯留タンクなどが挙げられる。
 図1に示される実施形態では、洗浄液導入ライン41は、分岐部73よりも洗浄液の流れ方向における下流側に位置する分岐部44で、洗浄液循環ライン7から分岐している。上述した洗浄液循環ポンプ72は、洗浄液の一部を洗浄液抜出口262から分岐部44を介して噴射ノズル5に送るようになっている。
 図示される実施形態では、気体導入ライン42は、噴射ノズル5に一端が接続され、他端が液だまり部21Bの液面よりも上方の位置で大気開放している。
 図2は、一実施形態における噴射ノズルの機能を説明するための噴射ノズルの概略断面図である。図3は、一実施形態における噴射ノズルの概略構成を示す断面図である。噴射ノズル5は、図2、3に示されるように、第1筒状部52と、絞り部53と、第2筒状部54と、を含む。
 第1筒状部52は、図2、3に示されるように、第1流路55を内部に画定する筒状に形成されている。第1筒状部52には、洗浄液を第1流路55に導入するための洗浄液導入口56、洗浄液導入口56から導入されて第1流路55を流れる洗浄液の流れ方向に対して直交する方向に沿って上記気体を第1流路55に導入するための気体導入口57および上述した吐出口51が形成されている。吐出口51は、洗浄液導入口56から導入された洗浄液と、気体導入口57から導入された気体と、の混合流体MFを吐出するために設けられている。
 図2、3に示される実施形態では、第1筒状部52は、吐出口51の中心軸CAの延在する方向に沿って長さ方向を有している。第1筒状部52の長さ方向における一端に上述した洗浄液導入口56が開口し、第1筒状部52の長さ方向における他端に上述した吐出口51が開口している。第1筒状部52の外周には、上述した気体導入口57が開口している。洗浄液導入ライン41から洗浄液導入口56を介して第1流路55内に送られた洗浄液は、第1流路55を中心軸CAの延在する方向に沿った方向に、洗浄液導入口56から吐出口51に向かって流れる。
 第2筒状部54は、図2、3に示されるように、気体導入口57に連通する第2流路58を内部に画定するとともに、気体導入口57における気体の導入方向(洗浄液の流れ方向に対して直交する方向)に沿って延在し、気体を第2流路58に導入するための第2気体導入口59が形成されている。
 図2、3に示される実施形態では、第2筒状部54は、気体導入口57の中心軸CA2の延在する方向、すなわち、吐出口51の中心軸CAの延在する方向に直交する方向に沿って長さ方向を有している。第2筒状部54の長さ方向における一端は、第1筒状部52の外周に一体的に接続されている。つまり、第1筒状部52と第2筒状部54は、一体的に形成されている。第2筒状部54の長さ方向における他端に上述した第2気体導入口59が開口している。気体導入ライン42から第2気体導入口59を介して第2流路58内に送られた気体は、第2流路58を通った後、気体導入口57を介して第1流路55内に送られる。第1流路55内に送られた気体は、合流部60において洗浄液と合流する。
 絞り部53は、図2、3に示されるように、合流部60よりも洗浄液の流れ方向における上流側に設けられている。絞り部53は、内部を洗浄液が流れるとともに、洗浄液の流れ方向における上流側および下流側に比べて、断面積が急激に縮小する縮流形成口61が開口している。絞り部53は、縮流形成口61により洗浄液を縮流することで、絞り部53よりも洗浄液の流れ方向における下流側に負圧領域62(図2参照)を発生させるように構成される。噴射ノズル5は、負圧領域62に生じる吸引力により、気体導入口57から気体を吸引する。なお、上記吸引力のみでは第1流路55に送られる気体の量が不足する場合には、第1流路55に気体を送るための不図示のポンプを気体導入ライン42に設け、該ポンプにより第1流路55に送られる気体の量を増量してもよい。
 図2、3に示される実施形態では、絞り部53は、第1筒状部52とは別体に構成されている。他の実施形態では、絞り部53は、第1筒状部52と一体的に形成されていてもよい。例えば、絞り部53は、第1筒状部52の第1流路55を区画する内周面から突出して設けられていてもよい。
 噴射ノズル5は、第1流路55を流れる洗浄液によって、第1流路55に送られた気体をせん断、微細化して混合流体MF(微細気泡を内部に含む洗浄液)を生成する。また、噴射ノズル5は、噴射ノズル5内で生成された混合流体MFを吐出口51から噴射するようになっている。
 図4は、一実施形態にかかる気液混合装置が奏する作用を説明するためのグラフであって、吐出口の内径に対する気体導入口の内径の比と、液だまり部での混合流体による酸化反応の効率と、の関係を示すグラフである。
 図4に示されるように、吐出口51の内径D1(図3参照)に対する気体導入口57の内径D2(図3参照)の比(D2/D1)が0.5以下であると、気体導入口57の内径D2が小さいため、気体導入ライン42における酸素を含む気体Gの圧力損失ΔPが大きくなる。気体導入ライン42における気体Gの圧力損失ΔPが大きいと、気体導入口57から第1流路55に導入される酸素を含む気体Gの流量が少なくなり、結果として吐出口51から吐出される混合流体MFにおける気体Gの割合OAが過小になる。吐出口51から吐出される混合流体MFにおける気体Gの割合OAが過小になると、洗浄液の酸化反応に用いる酸素が不足するため、液だまり部21Bにおける混合流体MFによる酸化反応の効率EOが低下する虞がある。
 また、図4に示されるように、吐出口51の内径D1に対する気体導入口57の内径D2の比(D2/D1)が0.8以上であると、気体導入口57の内径D2が大きいため、気体導入口57から第1流路55に導入される気体Gの流量が多くなり、結果として吐出口51から吐出される混合流体MFにおける気体Gの割合OAが大きくなる。吐出口51から吐出される混合流体MFにおける気体Gの割合OAが過大になると、気体G(気泡)の微細化効果が減衰する虞がある。気体G(気泡)の微細化効果が減衰すると、気泡のサイズが大きくなる分だけ気泡の浮力が大きくなるので、気泡が液だまり部21Bに貯留される洗浄液中に滞在できる期間、すなわち、気泡が洗浄液を酸化できる期間が短くなる。よって、混合流体MFにおける気体Gの割合OAが過大になると、液だまり部21Bにおける混合流体MFによる酸化反応の効率EOが低下する虞がある。
 上述したように、幾つかの実施形態では、上述した噴射ノズル5(気液混合装置4)は、上述した第1流路55を内部に画定するとともに、上述した第1筒状部52と、上述した絞り部53と、を備える。そして、上述した吐出口51の内径をD1、上述した気体導入口57の内径をD2とした際に、0.5<D2/D1<0.8の条件を満たす。
 上記の構成によれば、第1筒状部52における吐出口51の内径をD1、気体導入口57の内径をD2とした際に、0.5<D2/D1<0.8の条件を満たす。第1に、0.5<D2/D1の条件を満たす第1筒状部52は、気体導入口57の内径D2が吐出口51の内径D1と比べて所定以上の大きさであるため、気体導入口57を介して第1流路55に気体Gを送るための気体導入ライン42での圧力損失ΔPを低減することができ、気体導入口57から第1流路55に導入されて吐出口51から吐出される混合流体MFにおける気体Gの割合OAが過小になることを防止することができる。
 第2に、D2/D1<0.8の条件を満たす第1筒状部52は、気体導入口57の内径D2が吐出口51の内径D1と比べて所定以下の大きさであるため、気体導入口57から第1流路55に導入されて吐出口51から吐出される混合流体MFにおける気体Gの割合が過大になることを防止することができる。よって、上記の構成によれば、0.5<D2/D1<0.8の条件を満たすので、気体導入口57から第1流路55に導入されて吐出口51から吐出される混合流体MFにおける気体Gの割合が過大や過小となることを防止することができ、ひいては液だまり部21Bにおける混合流体MFによる酸化が不十分となることを防止することができる。
 図5は、一実施形態にかかる気液混合装置が奏する作用を説明するためのグラフであって、吐出口の内径に対する絞り部から気体導入口の中心軸までの長さの比と、気体導入口から導入される気体の微細化効果と、の関係を示すグラフである。
 図5に示されるように、吐出口51の内径D1に対する絞り部53から気体導入口57の中心軸CA2までの長さの比(L/D1)が大きいと、その分だけ絞り部53により生じた縮流が回復するため、気体G(気泡)の微細化効果が減衰する傾向にある。特に、L/D1が1.3以上であると、気体G(気泡)の微細化効果の減衰が顕著であるため、液だまり部21Bにおける気体Gを含む混合流体MFによる酸化が不十分となる虞がある。また、吐出口51の内径D1に対する絞り部53から気体導入口57の中心軸CA2までの長さの比(L/D1)が小さいと、その分だけ微細化効果を高めることができる。
 図6は、吸収塔における噴射ノズルが固定される部分近傍を概略的に示す部分断面図である。以下、図6に基づいて、噴射ノズル5の取付方法を説明する。
 まず、第1側壁25を貫通するように形成された挿通孔252に、噴射ノズル5の吐出口51が形成された第1筒状部52の先端を挿通する。
 噴射ノズル5は、図6に示されるように、吐出口側締結部63を含む。第1筒状部52は、吐出口51の中心軸CAに沿って延在しており、延在方向における一端に吐出口51が形成されている。吐出口側締結部63は、第1筒状部52の外周から吐出口51の中心軸CAに直交する方向に沿って突出して設けられている。吐出口側締結部63は、第1筒状部52の、第2筒状部54との接続部や合流部60よりも洗浄液の流れ方向における下流側の外周に設けられている。
 吸収塔2は、図6に示されるように、筒状突出部29と、噴射ノズル用締結部30と、をさらに含む。筒状突出部29は、図6に示されるように、吐出口51の中心軸CAの水平面からの傾斜角度をθとした際に、水平面から傾斜角度θだけ傾斜した方向に沿って、第1側壁25の挿通孔252の周縁部から外側に突出して設けられている。噴射ノズル用締結部30は、筒状突出部29の先端から筒状突出部29の延在する方向に直交する方向に沿って突出して設けられている。
 次に、第1側壁25に噴射ノズル5を固定する。噴射ノズル5の吐出口側締結部63は、吸収塔2の噴射ノズル用締結部30に締結装置66(66A)により固定される。図示される実施形態では、締結装置66A(第3締結装置)は、ボルト67(67A)と、ナット68(68A)と、を含む。
 ボルト67(67A)は、少なくとも外周面の一部にねじ部が形成された軸部671と、軸部671の基端部において軸部671よりも大径に形成された頭部672と、を備える。吐出口側締結部63と噴射ノズル用締結部30には、筒状突出部29の延在する方向に沿ってボルト67Aの軸部671が挿通可能な貫通孔631、301が形成されている。ボルト67Aは、筒状突出部29の延在する方向における一方側から、吐出口側締結部63および噴射ノズル用締結部30に形成された貫通孔631、301に軸部671が挿通され、筒状突出部29の延在する方向における他方側に挿通した軸部671の先端が、ナット68Aに螺合することで、第1側壁25に噴射ノズル5を固定する。
 第1側壁25に噴射ノズル5を固定した後に、噴射ノズル5に気体導入ライン42を接続する。図示される実施形態では、噴射ノズル5は、図6に示されるように、第2筒状部54の、第2気体導入口59が形成された端部の外周から突出して設けられる気体導入側締結部64をさらに含む。気体導入ライン42は、第2筒状部54の延在する方向に沿って延在する気体導入管47を含む。気体導入管47は、第2気体導入口59に連通する開口が形成された端部の外周から突出して設けられる気体下流側締結部48を備える。気体導入管47の気体下流側締結部48は、噴射ノズル5の気体導入側締結部64に締結装置66(66B)により固定される。
 図示される実施形態では、締結装置66B(第2締結装置)は、ボルト67Aと同様の構成を備えるボルト67Bと、ナット68Aと同様の構成を備えるナット68Bと、を含む。ボルト67Bは、気体導入側締結部64および気体下流側締結部48に形成された貫通孔641、481に挿通された軸部671の先端にナット68Bが螺合することで、噴射ノズル5の第2筒状部54に気体導入管47を固定する。
 第1側壁25に噴射ノズル5を固定した後に、噴射ノズル5に洗浄液導入ライン41を接続する。洗浄液導入ライン41と噴射ノズル5との接続は、気体導入ライン42と噴射ノズル5との接続と同時に行ってもよいし、気体導入ライン42と噴射ノズル5との接続よりも前や後に行ってもよい。
 噴射ノズル5は、図6に示されるように、第1筒状部52の、洗浄液導入口56が形成された端部の外周から突出して設けられる洗浄液導入側締結部65をさらに含む。洗浄液導入ライン41は、第1筒状部52の延在する方向に沿って延在する洗浄液導入管45を含む。洗浄液導入管45は、図6に示されるように、洗浄液導入口56との間に絞り部53を挟んで連通する開口451が形成された端部の外周から突出して設けられる洗浄液下流側締結部46を備える。図6に示されるように、洗浄液導入管45の洗浄液下流側締結部46は、噴射ノズル5の洗浄液導入側締結部65に締結装置66C(第1締結装置)により固定される。
 図示される実施形態では、締結装置66Cは、ボルト67Aと同様の構成を備えるボルト67Cと、ナット68Aと同様の構成を備えるナット68Cと、を含む。ボルト67Cは、洗浄液導入側締結部65および洗浄液下流側締結部46に形成された貫通孔651、461に挿通された軸部671の先端にナット68Cが螺合することで、第1筒状部52と洗浄液導入管45との間に絞り部53を挟んだ状態で、噴射ノズル5の第1筒状部52に洗浄液導入管45を固定する。
 上述したように、吐出口51の内径D1に対する絞り部53から気体導入口57の中心軸CA2までの長さの比(L/D1)が小さいと、その分だけ微細化効果を高めることができる。しかし、絞り部53から気体導入口57の中心軸CA2までの長さLが短いと、上述した洗浄液導入側締結部65と上述した気体導入側締結部64とが干渉する虞がある。図示される実施形態では、洗浄液導入側締結部65は、中心軸CAに直交する方向に沿って延在し、気体導入側締結部64は、中心軸CA2(中心軸CAに直交)に直交する方向に沿って延在している。つまり、洗浄液導入側締結部65は、気体導入側締結部64の延在する方向に直交する方向に沿って延在するため、洗浄液導入側締結部65と気体導入側締結部64の干渉が生じ易い。
 幾つかの実施形態では、上述した噴射ノズル5(気液混合装置4)は、上述した第2筒状部54と、上述した洗浄液導入側締結部65と、上述した気体導入側締結部64と、をさらに備える。上述した噴射ノズル5(気液混合装置4)は、吐出口51の内径をD1、絞り部53から気体導入口57の中心軸CA2までの長さをLとした際に、0.8<L/D1<1.3の条件を満たす。
 上記の構成によれば、吐出口51の内径をD1、絞り部53から気体導入口57の中心軸CA2までの長さをLとした際に、0.8<L/D1<1.3の条件を満たす。第1に、吐出口51の内径D1に対する絞り部53から気体導入口57の中心軸CA2までの長さLの比が0.8<L/D1の条件を満たすので、上述した洗浄液導入側締結部65と上述した気体導入側締結部64とが干渉することを防止することができる。
 第2に、吐出口51の内径D1に対する絞り部53から気体導入口57の中心軸CA2までの長さLの比がL/D1<1.3の条件を満たす。ここで、絞り部53から気体導入口57の中心軸CA2までの長さLが大きいと、その分だけ絞り部53により生じた縮流が回復するため、気体G(気泡)の微細化効果が減衰する傾向にある。上記の構成によれば、L/D1<1.3の条件を満たすため、気体G(気泡)の微細化効果の減衰が少なく、上記微細化効果を発揮させることができる。
 なお、上述した噴射ノズル5(気液混合装置4)が0.8<L/D1<1.3の条件を満たす本発明は、上述した噴射ノズル5(気液混合装置4)が0.5<D2/D1<0.8の条件を満たす発明と同時に実施可能であり、また、上記発明とは別に独立して実施可能である。
 幾つかの実施形態では、上述した噴射ノズル5(気液混合装置4)は、0.9<L/D1の条件をさらに満たす。この場合には、吐出口51の内径D1に対する絞り部53から気体導入口57の中心軸CA2までの長さLの比が0.9<L/D1の条件を満たすので、上述した洗浄液導入側締結部65と上述した気体導入側締結部64とが干渉することをより確実に防止することができる。また、洗浄液導入側締結部65と気体導入側締結部64との間の間隔を大きくできるので、洗浄液導入側締結部65や気体導入側締結部64に配管などの他の部品を締結する締結作業を容易に行うことができる。
 幾つかの実施形態では、上述した吐出口51の内径D1は、150mm以上270mm以下である。また、上述した0.5<D2/D1<0.8の条件を満たす。この場合には、本発明者らは、混合流体MFによる酸化反応の効率EOが良好であることを確認した。上記の構成によれば、液だまり部21Bにおける混合流体MFによる酸化が不十分となることをより確実に防止することができる。
 幾つかの実施形態では、上述した噴射ノズル5(気液混合装置4)は、吸収塔2の液だまり部21Bの少なくとも一部を画定する側壁(第1側壁25など)に固定するための上述した吐出口側締結部63を備える。吐出口側締結部63は、吐出口51の中心軸CAに沿って延在する第1筒状部52の、第2筒状部54との接続部や合流部60よりも洗浄液の流れ方向における下流側の外周に設けられている。吐出口側締結部63は、第1筒状部52の上記外周から吐出口51の中心軸CAに直交する方向に沿って突出して設けられている。この場合には、噴射ノズル5(気液混合装置4)は、第1筒状部52の合流部60よりも洗浄液の流れ方向における下流側の外周から吐出口51の中心軸CAに直交する方向に沿って突出して設けられる吐出口側締結部63を備える。噴射ノズル5(気液混合装置4)は、吐出口側締結部63を上記側壁に固定することで、側壁に対する第1筒状部52の位置を固定することができる。
 幾つかの実施形態にかかる排ガス脱硫装置1は、上述した吸収塔2と、上述した気液混合装置4と、を備える。上記の構成によれば、吸収塔2は、内部に導入される排ガスに洗浄液を気液接触させるように構成され、且つ、洗浄液を貯留するための液だまり部21Bを内部に画定している。気液混合装置4は、第1筒状部52の吐出口51から吸収塔2の液だまり部21Bに吐出される混合流体MFにより、吸収塔2の液だまり部21Bに貯留される洗浄液に対して十分な酸化反応を生じさせることができる。
 幾つかの実施形態では、上述した噴射ノズル5(気液混合装置4)は、上述した第1筒状部52と、上述した吐出口側締結部63と、を含む。そして、上述した吸収塔2は、上述した筒状突出部29と、上述した噴射ノズル用締結部30と、を含む。
 上記の構成によれば、吸収塔2の側壁(第1側壁25など)に形成された挿通孔252に第1筒状部52の吐出口51を含む先端を挿通した状態で、噴射ノズル5(気液混合装置4)の吐出口側締結部63が吸収塔2の噴射ノズル用締結部30に締結装置66A(第3締結装置)により固定される。ここで、第1筒状部52は、吐出口51の中心軸CAに沿って延在している。吸収塔2の筒状突出部29は、吐出口51の中心軸CAの水平面からの傾斜角度θと同じ角度だけ水平面から傾斜した方向に沿って延在している。つまり、吸収塔2の筒状突出部29は、第1筒状部52が設置された際の吐出口51の中心軸CAと同じ方向に沿って延在する。第1筒状部52は、第1筒状部52の延在する方向に直交する方向に沿って延在する吐出口側締結部63と、筒状突出部29の延在する方向に直交する方向に沿って延在する噴射ノズル用締結部30と、を締結装置66Aにより固定することで、吐出口51の中心軸CAの水平面からの傾斜角度θをそのまま設置角度とすることができる。よって、上記の構成によれば、第1筒状部52の設置角度の調整作業をなくし、第1筒状部52の取付け作業を容易にすることができる。
 本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 例えば、上述した幾つかの実施形態では、排ガス排出部24は、第1方向において、吸収塔本体部22を挟んで排ガス導入部23とは反対側に設けられていたが、排ガス導入部23と同じ側に設けられていてもよい。また、排ガス排出部24は、上面視において第1方向に直交する第2方向において、吸収塔本体部22に隣接するように設けられていてもよい。
1     排ガス脱硫装置
2     吸収塔
21    内部空間
211   底面
21A   気液接触部
21B   液だまり部
21C   下方側内部空間
21D   上方側内部空間
22    吸収塔本体部
23    排ガス導入部
24    排ガス排出部
25    第1側壁
251   排ガス導入口
252   挿通孔
26    第2側壁
261   排ガス排出口
262   洗浄液抜出口
27    ミストエリミネータ
28    散布装置
281   散水管
282   散水ノズル
29    筒状突出部
30    噴射ノズル用締結部
301   貫通孔
4     気液混合装置
41    洗浄液導入ライン
42    気体導入ライン
44    分岐部
45    洗浄液導入管
451   開口
46    洗浄液下流側締結部
461   貫通孔
47    気体導入管
48    気体下流側締結部
481   貫通孔
5     噴射ノズル
51    吐出口
52    第1筒状部
53    絞り部
54    第2筒状部
55    第1流路
56    洗浄液導入口
57    気体導入口
58    第2流路
59    第2気体導入口
60    合流部
61    縮流形成口
62    負圧領域
63    吐出口側締結部
631   貫通孔
64    気体導入側締結部
641   貫通孔
65    洗浄液導入側締結部
651   貫通孔
66,66A~66C 締結装置
671   軸部
672   頭部
67、67A~67C ボルト
68、68A~68C ナット
7     洗浄液循環ライン
71    配管
72    洗浄液循環ポンプ
73    分岐部
8     洗浄液供給ライン
81    洗浄液貯留タンク
82    配管
9     洗浄液排出ライン
91    装置
CA    吐出口の中心軸
CA2   気体導入口の中心軸
D1    吐出口の内径
D2    気体導入口の内径
EO    酸化反応の効率
G     気体
L     絞り部から気体導入口の中心軸までの長さ
MF    混合流体
OA    混合流体における気体の割合

Claims (7)

  1.  燃焼装置から排出される排ガスに洗浄液を気液接触させるように構成される吸収塔における前記洗浄液を貯留するための液だまり部に、酸素を含む気体および前記洗浄液を噴射するように構成される気液混合装置であって、
     第1流路を内部に画定するとともに、前記洗浄液を前記第1流路に導入するための洗浄液導入口、前記洗浄液導入口から導入されて前記第1流路を流れる前記洗浄液の流れ方向に対して直交する方向に沿って前記気体を前記第1流路に導入するための気体導入口、および、前記洗浄液導入口から導入された前記洗浄液と前記気体導入口から導入された前記気体との混合流体を吐出する吐出口、が形成された第1筒状部と、
     前記洗浄液導入口から導入された前記洗浄液と前記気体導入口から導入された前記気体とが合流する合流部よりも前記洗浄液の流れ方向における上流側に設けられる絞り部と、
    を備え、
     前記吐出口の内径をD1、前記気体導入口の内径をD2とした際に、
     0.5<D2/D1<0.8の条件を満たす
    気液混合装置。
  2.  前記気液混合装置は、
     前記気体導入口に連通する第2流路を内部に画定するとともに、前記気体導入口における前記気体の導入方向に沿って延在し、前記気体を前記第2流路に導入するための第2気体導入口が形成された第2筒状部と、
     前記洗浄液を前記洗浄液導入口から前記第1流路に送るための洗浄液導入ライン、および前記第1筒状部を第1締結装置により固定するために、前記第1筒状部の前記合流部よりも前記洗浄液の流れ方向における上流側の外周から突出して設けられる洗浄液導入側締結部と、
     前記気体を前記第2気体導入口から前記第2流路に送るための気体導入ライン、および前記第2筒状部を第2締結装置により固定するために、前記第2筒状部の外周から突出して設けられる気体導入側締結部と、をさらに備え、
     前記絞り部から前記気体導入口の中心軸までの長さをLとした際に、
     0.8<L/D1<1.3の条件を満たす
    請求項1に記載の気液混合装置。
  3.  0.9<L/D1の条件をさらに満たす
    請求項2に記載の気液混合装置。
  4.  前記吐出口の内径D1は、150mm以上270mm以下である
    請求項1乃至3の何れか1項に記載の気液混合装置。
  5.  前記第1筒状部は、前記吐出口の中心軸に沿って延在し、
     前記気液混合装置は、前記吸収塔の前記液だまり部の少なくとも一部を画定する側壁に固定するための吐出口側締結部であって、前記第1筒状部の前記合流部よりも前記洗浄液の流れ方向における下流側の外周から前記吐出口の前記中心軸に直交する方向に沿って突出して設けられる吐出口側締結部をさらに備える
    請求項1乃至4の何れか1項に記載の気液混合装置。
  6.  燃焼装置から排出される排ガスを脱硫するための排ガス脱硫装置であって、
     内部に導入される前記排ガスに洗浄液を気液接触させるように構成される吸収塔であって、前記洗浄液を貯留するための液だまり部を内部に画定する吸収塔と、
     請求項1乃至4の何れか1項に記載の気液混合装置と、を備える
    排ガス脱硫装置。
  7.  前記第1筒状部は、前記吐出口の中心軸に沿って延在し、
     前記気液混合装置は、前記第1筒状部の前記合流部よりも前記洗浄液の流れ方向における下流側の外周から前記吐出口の前記中心軸に直交する方向に沿って突出して設けられる吐出口側締結部をさらに備え、
     前記吸収塔は、
     前記液だまり部の少なくとも一部を画定する側壁であって、前記第1筒状部の前記吐出口を含む先端が挿通される挿通孔が形成された側壁と、
     前記吐出口の前記中心軸の水平面からの傾斜角度をθとした際に、水平面から前記傾斜角度θだけ傾斜した方向に沿って、前記側壁の前記挿通孔の周縁部から前記側壁の外側に突出して設けられる筒状突出部と、
     前記筒状突出部の先端から前記筒状突出部の延在する方向に直交する方向に沿って突出して設けられる噴射ノズル用締結部であって、前記吐出口側締結部が第3締結装置により固定されるように構成される噴射ノズル用締結部と、をさらに含む
    請求項6に記載の排ガス脱硫装置。
PCT/JP2019/020490 2018-12-11 2019-05-23 気液混合装置、および気液混合装置を備える排ガス脱硫装置 WO2020121553A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018231387A JP6559873B1 (ja) 2018-12-11 2018-12-11 気液混合装置、および気液混合装置を備える排ガス脱硫装置
JP2018-231387 2018-12-11

Publications (1)

Publication Number Publication Date
WO2020121553A1 true WO2020121553A1 (ja) 2020-06-18

Family

ID=67614833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020490 WO2020121553A1 (ja) 2018-12-11 2019-05-23 気液混合装置、および気液混合装置を備える排ガス脱硫装置

Country Status (3)

Country Link
JP (1) JP6559873B1 (ja)
TW (1) TWI707720B (ja)
WO (1) WO2020121553A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113144834A (zh) * 2021-05-13 2021-07-23 王成 一种用于废气净化的低温等离子脱硫脱硝处理装置
CN117065525B (zh) * 2023-10-11 2023-12-29 山西紫罗蓝新材料科技有限公司 一种降膜吸收塔

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148729U (ja) * 1988-03-31 1989-10-16
WO2000009243A1 (fr) * 1998-08-11 2000-02-24 Mitsubishi Heavy Industries, Ltd. Installation de desulfuration des gaz de combustion de type sature
JP2002210326A (ja) * 2000-11-17 2002-07-30 Mitsubishi Heavy Ind Ltd 湿式排煙脱硫装置、及び、湿式排煙脱硫方法
JP2010000420A (ja) * 2008-06-18 2010-01-07 Kumamoto Univ マイクロバブル発生装置とその発生方法並びにマイクロバブル発生弁
JP2012005978A (ja) * 2010-06-25 2012-01-12 Mitsubishi Heavy Ind Ltd 噴霧装置及び水銀除去システム
JP5046755B2 (ja) * 2007-06-27 2012-10-10 三菱重工業株式会社 気液接触装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993023340A1 (en) * 1992-05-14 1993-11-25 Idec Izumi Corporation Method and apparatus for dissolving a gas into and mixing the same with a liquid
TW461349U (en) * 2000-11-24 2001-10-21 Great Univer Technology Co Ltd Device for adequately mixing gas and liquid
TWI458559B (zh) * 2011-02-09 2014-11-01 China Steel Corp 氣液混合式噴嘴裝置
CN203316296U (zh) * 2013-04-24 2013-12-04 宇宙电路板设备(深圳)有限公司 气液混合型喷嘴
CN204485144U (zh) * 2015-03-25 2015-07-22 天广消防(天津)有限公司 压缩气体泡沫灭火系统气液比例混合发泡器
CN204563382U (zh) * 2015-03-27 2015-08-19 江苏金博消防器材有限公司 一种气液混合器
KR20190026978A (ko) * 2017-03-28 2019-03-13 미츠비시 히타치 파워 시스템즈 가부시키가이샤 선박용 탈황 장치 및 선박

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148729U (ja) * 1988-03-31 1989-10-16
WO2000009243A1 (fr) * 1998-08-11 2000-02-24 Mitsubishi Heavy Industries, Ltd. Installation de desulfuration des gaz de combustion de type sature
JP2002210326A (ja) * 2000-11-17 2002-07-30 Mitsubishi Heavy Ind Ltd 湿式排煙脱硫装置、及び、湿式排煙脱硫方法
JP5046755B2 (ja) * 2007-06-27 2012-10-10 三菱重工業株式会社 気液接触装置
JP2010000420A (ja) * 2008-06-18 2010-01-07 Kumamoto Univ マイクロバブル発生装置とその発生方法並びにマイクロバブル発生弁
JP2012005978A (ja) * 2010-06-25 2012-01-12 Mitsubishi Heavy Ind Ltd 噴霧装置及び水銀除去システム

Also Published As

Publication number Publication date
TWI707720B (zh) 2020-10-21
TW202021659A (zh) 2020-06-16
JP2020093192A (ja) 2020-06-18
JP6559873B1 (ja) 2019-08-14

Similar Documents

Publication Publication Date Title
US9550145B2 (en) Exhaust gas treatment apparatus, ship, and exhaust gas treatment method
KR101570466B1 (ko) 배기 가스 처리 장치
JP3854481B2 (ja) 湿式排煙脱硫装置、及び、湿式排煙脱硫方法
WO2020121553A1 (ja) 気液混合装置、および気液混合装置を備える排ガス脱硫装置
JP6108427B2 (ja) 尿素水噴射ノズル
TWI494153B (zh) 脫硫裝置
WO2020121554A1 (ja) 気液混合装置、および気液混合装置を備える排ガス脱硫装置
JP3073972B2 (ja) 排煙脱硫装置
TWI444334B (zh) 曝氣裝置及具備有該裝置的海水排煙脫硫裝置以及曝氣裝置之細縫晶析物的溶解除去方法
WO2020121552A1 (ja) 排ガス脱硫装置
JP5289668B2 (ja) 湿式排煙脱硫装置
WO2018159557A1 (ja) 船舶用脱硫装置及び該船舶用脱硫装置を搭載した船舶
WO2020149228A1 (ja) 液柱式吸収塔の改造方法および液柱式吸収塔
KR101928669B1 (ko) 탈황반응을 향상시키는 습식 배연탈황 설비
JPH11207145A (ja) 排煙脱硫装置の空気吹込み装置
TWI802860B (zh) 脫硫裝置的吸收塔
JP3842706B2 (ja) 湿式排煙脱硫装置と方法
JP7390784B2 (ja) ドレン排出装置
JP2023152538A (ja) 船舶用脱硫装置
KR20190076318A (ko) 선박 배기가스 처리장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894569

Country of ref document: EP

Kind code of ref document: A1