WO2020119642A1 - 多通道原子磁探测器 - Google Patents

多通道原子磁探测器 Download PDF

Info

Publication number
WO2020119642A1
WO2020119642A1 PCT/CN2019/124051 CN2019124051W WO2020119642A1 WO 2020119642 A1 WO2020119642 A1 WO 2020119642A1 CN 2019124051 W CN2019124051 W CN 2019124051W WO 2020119642 A1 WO2020119642 A1 WO 2020119642A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
magnetic detector
detection gas
atomic magnetic
gas chambers
Prior art date
Application number
PCT/CN2019/124051
Other languages
English (en)
French (fr)
Inventor
王帆
Original Assignee
中科知影(北京)科技有限公司
中国科学院生物物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科知影(北京)科技有限公司, 中国科学院生物物理研究所 filed Critical 中科知影(北京)科技有限公司
Priority to CA3122620A priority Critical patent/CA3122620C/en
Priority to EP19894816.8A priority patent/EP3896471A4/en
Priority to US17/312,722 priority patent/US11448712B2/en
Priority to JP2021533592A priority patent/JP7291328B2/ja
Priority to KR1020217021437A priority patent/KR102579722B1/ko
Publication of WO2020119642A1 publication Critical patent/WO2020119642A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0041Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration using feed-back or modulation techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0017Means for compensating offset magnetic fields or the magnetic flux to be measured; Means for generating calibration magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0047Housings or packaging of magnetic sensors ; Holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/022Measuring gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/24Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/26Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux using optical pumping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/323Detection of MR without the use of RF or microwaves, e.g. force-detected MR, thermally detected MR, MR detection via electrical conductivity, optically detected MR

Definitions

  • the embodiments of the present disclosure relate to an atomic magnetic detector, particularly a multi-channel atomic magnetic detector.
  • Optical pumping atom detection technology is a technology to measure the weak magnetic field by polarizing the atomic gas through the beam and using the magnetic effect of atomic spin. Since the 1990s, with the discovery of new physical effects of atomic spins, new manipulation principles and methods, especially in 2002, humans have been able to manipulate atomic spins to achieve spin-free exchange relaxation (Spin ExchangeRelaxation Free, Since the SERF) state, the research on the ultra-sensitive magnetic field measurement based on the precession of the atomic spin of the SERF state has attracted people's attention. This method can greatly surpass the sensitivity achieved by the existing related measurement methods, so that mankind has obtained a new tool for understanding the world.
  • the atomic magnetometer based on the original detection technology of optical pump (ie, atomic magnetic detector) can work at room temperature, without liquid helium cooling, small in size and light in weight, and can achieve low-cost mass production through semiconductor technology. Magnetocardiography, magnetocardiography and other weak magnetic detection in the fields of medicine, biology and materials have brought new dawn.
  • the SERF mechanism was first discovered by Professor Happer of Princeton University in 1973. In 2002, a group led by Professor Romalis of Princeton University demonstrated for the first time an atomic magnetometer based on the SERF principle. The single channel sensitivity reached 7fT/Hz1/2, and currently reached 0.16fT/Hz1/2, exceeding the best SQUID magnet The level that the meter can reach (0.91fT/Hz1/2).
  • Cikonation CN108459282A describes an atomic magnetometer/magnetic gradient meter, which includes a detection gas chamber, a laser light source, a modulation coil, and a detection device.
  • the excitation beam generated by the laser light source polarizes the alkali metal vapor in the detection gas chamber, and the modulation coil generates a modulated magnetic field of known strength to the alkali metal vapor.
  • the detection beam generated by the laser light source passes through the alkali metal vapor and is detected by the detection device, based on The modulated magnetic field obtains information on the strength or gradient of the magnetic field to be measured at the detection gas chamber.
  • only one detection gas chamber is included, that is, it is a single-channel detection.
  • At least one embodiment of the present disclosure provides a multi-channel atomic magnetic detector, including: at least one detection assembly, each detection assembly including: a plurality of detection gas chambers on the same plane; and a spectroscopic member for distributing The polarized beam of the light source reaches the plurality of detection gas chambers, wherein the plurality of detection gas chambers of each group of detection gas chambers are arranged symmetrically or axisymmetrically with respect to the center of the spectroscopic member.
  • the beam splitting member is used to distribute a polarized light beam from the same light source to each detection gas chamber in the detection assembly.
  • the plurality of detection gas chambers of each group of detection gas chambers are arranged axisymmetrically with respect to the spectroscopic member.
  • the beam splitting member distributes each polarized light beam of the plurality of polarized light beams from the plurality of light sources to the detection gas chambers of the plurality of detection gas chambers which are axisymmetric to each other, wherein each detection gas chamber receives at least A beam of polarized light.
  • At least a part of the detection gas chambers in the plurality of detection gas chambers may receive two polarized light beams or a broadened one polarized light beam.
  • the multi-channel atomic magnetic detector further includes a housing for accommodating the at least one detection assembly.
  • the light source is contained in the housing.
  • the light source is arranged outside the housing.
  • each detection assembly further includes a plurality of photodetectors, which are used to detect the information of the polarized light beam passing through the corresponding detection gas chamber, which is arranged behind the corresponding detection gas chamber on the optical path, and is also opposite Symmetrical or axisymmetrical to the center of the beam splitting member.
  • each detection assembly further includes a plurality of polarization devices for converting the polarized light beam into a circularly polarized light beam, which is disposed on the optical path between the beam splitting member and the corresponding detection gas chamber, and is also opposite to The beam splitting member is symmetrical in center or axis
  • each detection component includes a modulation coil, and multiple detection gas chambers of each detection component share the same set of modulation coils.
  • each detection assembly further includes multiple sets of modulation coils, and each set of modulation coils is disposed relative to each detection gas chamber, and is cooperatively controlled by a common controller.
  • the atomic magnetic detector includes two or more detection components, which are respectively arranged on planes parallel to and offset from each other.
  • the atomic magnetic detector includes two or more detection components, which are arranged on the same plane and are offset from each other parallel to the plane.
  • the splitting members of the two or more detection assemblies distribute a common polarized beam from a common light source to each detection gas chamber.
  • each detection gas cell of two or more detection assemblies uses light derived from a common polarized light beam, and therefore, it may be advantageous to reduce detection noise.
  • each detection assembly includes four detection gas chambers, which are evenly spaced relative to the light splitting member on the same plane and are symmetrically arranged in the center.
  • each detection assembly includes two detection gas chambers, which are arranged symmetrically with respect to the beam splitting member axis on the same plane.
  • each detection assembly includes four detection gas chambers, which are arranged symmetrically with respect to the beam splitting member axis on the same plane, wherein two detection gas chambers are adjacent to each other, and the other two detection gas chambers are adjacent to each other.
  • FIG. 1A shows a schematic block diagram of an atomic magnetic detector according to an embodiment of the present disclosure
  • FIG. 1B shows a schematic block diagram of an atomic magnetic detector according to another embodiment of the present disclosure
  • FIG. 2 shows a perspective view of the atomic magnetic detector shown in FIG. 1A;
  • FIG. 3 shows a perspective view of an atomic magnetic detector according to another embodiment of the present disclosure
  • FIG. 5 shows an atomic magnetic detector according to yet another embodiment of the present disclosure.
  • all miniaturized atomic magnetic detectors are single-channel magnetometers or magnetic gradiometers, which are limited by the size of the housing, the difficulty of processing, and the crosstalk of the modulation coil.
  • the density of the detection points is low, and it is difficult to perform high-density measurement.
  • each magnetometer or magnetic gradiometer uses an independent light source. Not only is the manufacturing cost per channel high, but the difference in light intensity and polarization between different light sources leads to a large difference in signal noise level between detectors. It is difficult to obtain good results when performing gradient calculation and noise reduction processing of nearby detectors.
  • a multi-channel atomic magnetic detector including: at least one detection assembly, each detection assembly including: a plurality of detection gas chambers on the same plane; and a beam splitting member for distributing light sources Polarized beams of light to the plurality of detection gas chambers, wherein the plurality of detection gas chambers of each group of detection gas chambers are arranged symmetrically or axisymmetrically with respect to the center of the spectroscopic member.
  • the atomic magnetic detector has a simple structure, high detection density, easy to suppress noise, and the relative positions of multiple detection gas chambers are fixed.
  • FIG. 1A shows a schematic block diagram of an atomic magnetic detector 100 according to an embodiment of the present disclosure.
  • FIG. 2 shows a perspective view of the atomic magnetic detector 100 shown in FIG. 1A.
  • the atomic magnetic detector 100 includes a detection assembly including a beam splitting member 110, a polarization device 120, a detection gas chamber 130, a photodetector 140, a modulation coil 150, and a magnetic field compensation coil 160 And a housing 170 that houses the spectroscopic member 110, the polarizing device 120, the detection gas chamber 130, the photodetector 140, the modulation coil 150, and the magnetic field compensation coil 160.
  • the atomic magnetic detector 100 may include multiple detection components, and the housing 170 accommodates the multiple detection components.
  • the four detection gas chambers 130 there are four detection gas chambers 130, the four detection gas chambers 130 are arranged on the same plane and symmetrically arranged with respect to the center of the spectroscopic member 110, and the four detection gas chambers 130 share the spectroscopic member 110.
  • the housing 170 of the atomic magnetic detector 100 includes a plurality of detection gas chambers 130, which effectively realizes multi-channel magnetic strength or magnetic gradient detection. Since the plurality of detection gas chambers 130 are symmetrically arranged around the center of the same light-splitting member 110 and receive the light from the light-splitting member 110, the detection density is significantly improved, and the relative positions of the plurality of detection gas chambers 130 in the atomic magnetic detector 100 are guaranteed Fixed and stable. In addition, the structural design of such a center-symmetrical arrangement is simple, and the assembly and manufacturing costs are low.
  • the atomic magnetic detector may further include a laser light source 180 (see FIG. 1A) and a collimating device 190 (see FIG. 1A).
  • the laser light source 180 is used to generate a polarized light beam having a specific wavelength and polarization characteristics as required, and the polarized light beam is incident on the beam splitting member 110 after processing such as collimation.
  • the light splitting member 110 distributes the received polarized light beams to each detection gas chamber 130 respectively.
  • one laser light source 180 generates a polarized light beam
  • the beam splitting member 110 distributes the polarized light beam to each detection gas chamber 130.
  • the four detection gas chambers 130 arranged symmetrically and evenly spaced around the center of the beam splitting member 110 share the same beam splitting member 110 to use the same polarized beam from the same light source. Therefore, compared with the case where multiple detection gas chambers 130 each use different polarized beams from different light sources, the influence of the difference in noise between the polarized beams on magnetic information detection is eliminated or reduced, and the noise reduction efficiency is improved, which is
  • the atomic magnetic detector 100 is particularly advantageous when it is based on magnetic gradient measurement, which improves the gradient noise reduction efficiency.
  • the atomic magnetic detector 100 includes a laser light source 180 disposed inside the housing 170, and the four detection gas chambers 130 share the same laser light source 180.
  • the number and cost of the laser light source 180 are reduced, the volume occupied by the atomic magnetic detector 100 is reduced and it has a higher detection density.
  • the laser light source 180 common to the plurality of detection gas chambers 130 is not limited to one.
  • multiple magnetic detector chambers 130 may share more than one (eg, two) laser light sources 180.
  • the atomic magnetic detector 100 may also include another spare laser light source 180.
  • the laser light source 180 may be provided outside the housing 170, as shown in FIG. 1B, and then the polarized light beam generated by the laser light source 180 is guided to the beam splitting member 110 through a light guide device such as an optical fiber.
  • a light guide device such as an optical fiber.
  • multiple detection gas chambers 130 share the beam splitting member 110 and receive polarized beams originating from the same polarized beam, so it is also beneficial to reduce the volume occupied by the atomic magnetic detector 100 and make it have a higher Detection density, and also helps to reduce detection noise.
  • the light splitting member 110 may be a pyramid-shaped prism having four 45° inclined planes. Each inclined plane faces one detection gas chamber 130, so that the beam splitting member 110 reflects the received polarized light beam propagating in the vertical direction into a plurality of polarized light beams propagating in the horizontal direction at right angles to the vertical direction and polarizes each The light beam is distributed to each corresponding detection gas chamber 130.
  • the detection gas chamber 130 contains alkali metal gas.
  • the polarized beam can be used to polarize alkali metal atoms, and can be used to detect the precession behavior of alkali metal atoms.
  • the modulation coil 150 is used to generate a modulation magnetic field of known intensity, which is superimposed with the detected magnetic field to act together on the polarized alkali metal atoms.
  • the polarized light beam used for detection passes through the detection gas chamber 130 to interact with alkali metal atoms, so that the polarization state of the light field of the polarized light beam changes.
  • each photodetector 140 is disposed behind each detection gas chamber 130 on the optical path, and is also symmetrical with respect to the center of the spectroscopic member 110.
  • the photodetectors 140 each receive and detect the polarized light beam passing through the corresponding detection gas chamber 130 to obtain information related to the magnetic field to be measured at the detection gas chamber 130, for example, magnetic strength information or magnetic gradient information.
  • each polarizing device 120 is disposed on the optical path between the beam splitting member 110 and the detection gas chamber 130 for converting the polarized light beam to be guided to the detection gas chamber 130 into a circularly polarized light beam.
  • the polarizing device 120 may be a quarter wave plate.
  • the four detection gas chambers 130 share a group of modulation coils 150.
  • a group of modulation coils 150 represents one or more pairs of modulation coils 150 that cooperate to produce an effective modulation magnetic field.
  • one set of modulation coils 150 may be a pair of individual coils, or it may be three pairs of coils arranged in three directions perpendicular to each other.
  • the four detection gas chambers 130 can share a set of modulation coils 150, which can reduce the use cost of the coils, and can also eliminate multiple modulations generated when each detection gas chamber 130 uses a separate modulation coil 150.
  • the crosstalk between the coils 150 allows the detection gas chambers 130 in the atomic magnetic detector 100 to be closer to each other.
  • the atomic magnetic detector 100 according to this embodiment has a high detection density and a small occupied volume.
  • the four detection gas chambers 130 do not necessarily share a set of modulation coils 150, and the present disclosure is not limited thereto.
  • the atomic magnetic detector 100 may have four sets of modulation coils for the four detection gas chambers 130 respectively. The four sets of modulation coils are cooperatively controlled by a common controller for multi-channel detection and reducing crosstalk.
  • the atomic magnetic detector 100 further includes four sets of magnetic compensation coils 160.
  • the atomic magnetic detector 100 further includes four sets of magnetic compensation coils 160.
  • Each group of magnetic compensation coils 160 is used to perform magnetic field compensation for each detection gas chamber 130 to cancel the ambient noise magnetic field.
  • the magnetic compensation coil 160 is three pairs of Helmholtz coils.
  • the modulation coil 150 can also be used as a compensation coil for magnetic field compensation without having to provide a separate magnetic compensation coil 160.
  • the four detection gas chambers 130 may share a set of magnetic compensation coils 160.
  • the number of detection gas chambers 130 is not limited to four, and it may also be three, five, six, etc., as long as they are arranged symmetrically with respect to the center of the spectroscopic member 110. In this embodiment, arranging the four detection gas chambers 130 at even intervals is advantageous in simplifying the structures of the spectroscopic member 110, the polarizing device 120, and the like.
  • the plurality of detection gas chambers 130 are arranged symmetrically in the center, and several detection gas chambers 130 of the plurality of detection gas chambers 130 may be adjacent to each other instead of being evenly spaced.
  • FIG. 3 shows a perspective view of an atomic magnetic detector 200 according to another embodiment of the present disclosure.
  • the atomic magnetic detector 200 includes a detection assembly including a spectroscopic member 210, a polarizing device 220, and a detection gas chamber 230.
  • the same or similar components as the atomic magnetic detector 100 according to the first embodiment will not be described in detail.
  • the atomic magnetic detector 200 may include multiple detection components, and the housing 270 houses the multiple detection components.
  • the atomic magnetic detector 200 has four detection gas chambers 230 arranged on the same plane, and the four detection gas chambers 230 are arranged symmetrically with respect to the spectroscopic member 210. Two of the detection gas chambers 230 are adjacent to each other, and the other two detection gas chambers 230 are adjacent to each other.
  • the housing 270 of the atomic magnetic detector 200 includes a plurality of detection gas chambers 230, which effectively realizes multi-channel magnetic strength or magnetic gradient detection. Since a plurality of detection gas chambers 230 are arranged axisymmetrically with respect to the same beam splitting member 210 and receive the beam splitting from the beam splitting member 210, the detection density is significantly improved, and multiple detection gas chambers 230 in the same atomic magnetic detector 200 are guaranteed The relative position is fixed and stable. In addition, this axisymmetric arrangement is simple in design and low in assembly and manufacturing costs.
  • the atomic magnetic detector 200 further includes a laser light source (not shown in FIG. 3) and a collimating device (not shown in FIG. 3).
  • the laser light source generates a polarized light beam
  • the light source interface is used to receive the polarized light beam collimated by the collimating device and transmit it to the beam splitting member 210.
  • the beam splitting member 210 divides the received polarized light beam into four beams and distributes them into two detection gas chambers 230 which are axially symmetric to each other, so that each detection gas chamber 230 receives one polarized light beam.
  • the beam splitting member 210 may also divide the polarized light beam emitted by the laser light source into two wide light beams and distribute the two wide light beams to both sides, so that each polarized light beam is simultaneously distributed to two on the same side Exploration gas chamber 230.
  • "wide beam” means a broadened beam
  • “wide polarized beam” means a broadened polarized beam.
  • the atomic magnetic detector 200 may also include two laser light sources and generate two polarized beams, each of the two polarized beams being distributed by the beam splitting member 210 to two probes that are axisymmetric to each other In the gas cell 230, each detection gas cell 230 receives a polarized beam.
  • the four detection gas chambers 230 arranged symmetrically with respect to the beam splitting member 210 receive all or part of the light from the same polarized beam of the same laser light source, thus reducing the number and cost of laser light sources and reducing the atomic magnetic detector
  • the required volume of 200 makes it have a higher detection density, and eliminates or reduces the noise difference between multiple light sources in the case of using respective laser light sources, and improves the noise reduction efficiency.
  • the four detection gas chambers 230 arranged symmetrically with respect to the beam splitting member 210 all receive light from the same polarized light beam of the same laser light source, the number and cost of laser light sources, and atoms
  • the volume required by the magnetic detector 200 is further reduced and the noise reduction efficiency is further improved.
  • the beam splitting member 210 may be a prism having two 45° inclined planes, each of which faces the adjacent two detection gas chambers 230, so that the beam splitting member 210 will receive the polarization propagating in the vertical direction
  • the light beam is reflected into a plurality of polarized light beams propagating in a horizontal direction at right angles to the vertical direction and distributes each polarized light beam to the corresponding detection gas chamber 230.
  • the detection gas chamber 230 contains alkali metal gas.
  • two adjacent detection gas chambers 230 located on the same side may share one polarization device 220.
  • the four detection gas chambers 230 share a set of modulation coils 250. Therefore, the use cost of the coils can be reduced, and crosstalk between the multiple modulation coils 250 generated when each detection gas chamber 230 uses a separate modulation coil 250 can be eliminated, so that the The detection gas chambers 230 may be closer to each other.
  • the atomic magnetic detector 200 according to this embodiment has a high detection density and a small occupied volume.
  • the number of detection gas chambers 230 is not limited to four, and it may be other numbers, for example, two or six, as long as they are arranged symmetrically with respect to the axis of the light source assembly.
  • the two adjacent detection gas chambers 230 located on one side may be integrated into one integrated detection gas chamber. That is, in this further embodiment, the two integral detection gas chambers are arranged symmetrically with respect to the light source assembly axis.
  • the atomic magnetic detector includes a light source that generates a beam of polarized light, and the beam splitting member distributes the polarized light beam to each integrated detection gas chamber, so that each detection gas chamber receives a beam of light The polarized light beam is transmitted to the two photodetectors located behind the integrated detection gas chamber through the corresponding integrated detection gas chamber. Therefore, each integrated detection gas chamber can realize detection at two points, which further improves the detection density.
  • the atomic magnetic detector may include two laser light sources and generate two polarized light beams that are polarized Each polarized light beam in the light beam is distributed by the beam splitting member 210 into the integrated detection gas chamber on both sides, so that each integrated detection gas chamber receives two polarized light beams, which respectively pass through the corresponding integrated detection gas chamber It is transmitted to the two photodetectors located behind the integrated detection gas chamber.
  • the atomic magnetic detector may further include another detection assembly in a different plane than the detection assembly in the atomic magnetic detector 100 or the detection assembly in the atomic magnetic detector 200 as described above.
  • FIG. 4 shows an atomic magnetic detector according to yet another embodiment of the present disclosure.
  • the atomic magnetic detector is similar to the atomic magnetic detector 100. The difference between the two is that in addition to the detection assembly 10 including the spectroscopic member 110, the polarization device 120, the detection gas chamber 130, the photodetector 140, the modulation coil 150, and the magnetic field compensation coil 160, the atomic magnetic detector also includes Another detection assembly 11 on another plane parallel to and offset from the detection assembly.
  • the other detection assembly 11 also includes a beam splitting member 111, a polarization device, a photodetector, a modulation coil 151, a compensation coil, and four detection gas chambers 131 arranged symmetrically with respect to the center of the light source assembly.
  • the four detection gas chambers 131 may be respectively arranged in alignment with the four detection gas chambers 130, but the present disclosure is not limited thereto. It should be understood that the detection components are not limited to two, but may be more, and each detection component does not have to be arranged the same.
  • the detection gas chambers in each detection assembly share the same laser light source. Therefore, the number and cost of laser light sources are further reduced, and the volume occupied by the atomic magnetic detector is reduced so that it has a higher detection density.
  • the two detection assemblies each have a light splitting member 110, 111, and the two light splitting members 110, 111 input the same polarized light beam of the same light source to each detection gas chamber 130, 131 in each set of detection assemblies.
  • the beam splitting member 110 of the detection assembly 10 that is ahead on the optical path may have a transflective property, which reflects a part of the received polarized light beam to each detection gas chamber 130 of the detection assembly 10 while allowing the reception The other part of the polarized light beam is transmitted to another beam splitting member 111.
  • the two detection assemblies 10, 11 each also have a set of modulation coils 150, 151.
  • the two sets of modulation coils 150, 151 are offset by a certain distance to avoid crosstalk.
  • the atomic magnetic detector may also be included in the same plane as the detection assembly in the atomic magnetic detector 100 or the detection assembly in the atomic magnetic detector 200 as described above and parallel to the plane Another detection module offset from each other.
  • FIG. 5 shows an atomic magnetic detector according to yet another embodiment of the present disclosure.
  • the atomic magnetic detector is similar to the atomic magnetic detector 100. The difference between the two is that in addition to the detection assembly 10 including the spectroscopic member 110, the polarization device 120, the detection gas chamber 130, the photodetector 140, the modulation coil 150, and the magnetic field compensation coil 160, the atomic magnetic detector also includes Another detection assembly 12 that is offset from each other on the same plane as the detection assembly and parallel to the plane.
  • the two detection assemblies 10, 12 may be the same or different.
  • each detection component 10, 12 shares the same laser light source. That is, the splitting members 110, 112, 113 of the two detection assemblies 10, 12 distribute a common polarized light beam from a common light source to each detection gas chamber. Specifically, the polarized light beam generated by the laser light source is split by the additional beam splitting member 113, and the generated light beam is incident on the beam splitting members 110, 112 in each group of detection assemblies 10, 12 and then distributed to each group through the beam splitting members 110, 112 Each of the detection assemblies 10, 12 detects the gas chamber. Therefore, the number and cost of laser light sources are further reduced, and the volume occupied by the atomic magnetic detector is reduced so that it has a higher detection density.
  • separate laser light sources may be used for the above two sets of detection assemblies 10 and 12, respectively.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一种多通道原子磁探测器(100),其包括至少一个探测组件,每个探测组件包括:在同一平面上的多个探测气室(130);以及分光构件(110),用于将来自光源(180)的偏振光束分配到所述探测组件中的每个探测气室(130),其中,每个探测组件的多个探测气室(130)相对于分光构件(110)中心对称或者轴对称布置。该多通道原子磁探测器(100)具有高的探测密度并且有利于降低噪声。

Description

多通道原子磁探测器
本申请要求于2018年12月10日递交的中国专利申请第201811503710.0号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种原子磁探测器,特别是一种多通道原子磁探测器。
背景技术
光泵原子探测技术是通过光束极化原子气体,利用原子自旋的磁效应实现对微弱磁场测量的技术。自上世纪90年代以来,随着原子自旋新的物理效应、新的操控原理与方法的发现,尤其是2002年人类开始能够操控原子自旋实现无自旋交换弛豫(Spin Exchange Relaxation Free,SERF)态以来,基于SERF态原子自旋的进动实现超高灵敏的磁场测量的研究开始被人们所关注。这种方法可以大幅超越现有相关测量手段实现的灵敏度,使得人类获得了认识世界的新工具。基于光泵原探测技术的原子磁力计(即,原子磁探测器)可以在室温环境下工作,无需液氦冷却,体积小重量轻,并可通过半导体工艺实现低成本的大批量生产,为脑磁图、心磁图及其他医学、生物、材料领域的弱磁探测带来了新的曙光。
SERF机制最早于1973年由普林斯顿大学Happer教授等人发现。2002年,普林斯顿大学Romalis教授领导的小组首次演示了基于SERF原理的原子磁力计,单通道灵敏度达到7fT/Hz1/2,并在目前达到了0.16fT/Hz1/2,超过了最好的SQUID磁力计可以达到的水平(0.91fT/Hz1/2)。
中国专利公开CN108459282A描述了一种原子磁强计/磁梯度计, 其包括探测气室、激光光源、调制线圈和检测装置。激光光源产生的激发光束使探测气室中的碱金属蒸气极化,调制线圈对碱金属蒸气产生已知强度的调制磁场,激光光源产生的探测光束经过碱金属蒸气后被检测装置检测,以基于调制磁场获得探测气室处的待测磁场强度或梯度信息。在单个的该原子磁强计/梯度计中,只包括一个探测气室,即其是单通道检测。
公开内容
本公开的至少一实施例提供一种多通道原子磁探测器,其包括:至少一个探测组件,每个探测组件包括:在同一平面上的多个探测气室;以及分光构件,用于分配来自光源的偏振光束到所述多个探测气室,其中,每组探测气室的多个探测气室相对于分光构件中心对称或者轴对称布置。
在一实施例中,所述分光构件用于将来自同一光源的一束偏振光束分配到所述探测组件中的每个探测气室。
在一实施例中,每组探测气室的多个探测气室相对于分光构件轴对称布置。并且,所述分光构件将来自多个光源的多束偏振光束中的每束偏振光束分别分配到多个探测气室中的彼此轴对称的探测气室中,其中,每个探测气室接收至少一束偏振光束。
进一步地,在一实施例中,多个探测气室中的至少一部分探测气室可以接收两束偏振光束或被展宽的一束宽偏振光束。
在一实施例中,所述多通道原子磁探测器还包括壳体,其用于容纳所述至少一个探测组件。
在一实施例中,所述光源容纳在壳体中。
在一实施例中,所述光源设置在壳体外。
在一实施例中,每个探测组件还包括多个光电检测器,其用于检测经过相应的探测气室的偏振光束的信息,其在光路上设置在相应的探测气室之后,并且也相对于分光构件中心对称或轴对称。
在一实施例中,每个探测组件还包括多个偏振器件,其用于将偏振光束转换成圆偏振光束,其在光路上设置在分光构件与相应的探测气室之间,并且也相对于分光构件中心对称或轴对称。
在一实施例中,每个探测组件包括调制线圈,每个探测组件的多个探测气室共用同一组调制线圈。
在该实施例中,由于多个探测气室共用一组调制线圈,因此,避免了使用多组调制线圈产生的串扰问题,并且减小了探测器的体积。
在另一实施例中,每个探测组件还包括多组调制线圈,每组调制线圈相对于每个探测气室设置,并且通过共同的控制器协同控制。
在该实施例中,多组调制线圈的协同控制有助于减小串扰。
在一实施例中,所述原子磁探测器包括两个或更多个探测组件,所述两个或更多个探测组件分别布置在彼此平行且彼此偏移的平面上。
在一实施例中,所述原子磁探测器包括两个或更多个探测组件,所述两个或更多个探测组件布置在同一平面上并且平行于所述平面彼此偏移。
在一实施例中,所述两个或更多个探测组件的分光构件将来自共同的光源的共同偏振光束分配到每个探测气室。
在该实施例中,两个或更多个探测组件的每个探测气室使用源自共同的偏振光束的光,因此,可以有利于降低探测噪声。
在一实施例中,每个探测组件包括四个探测气室,其在同一平面上相对于分光构件均匀间隔并且中心对称布置。
在一实施例中,每个探测组件包括两个探测气室,其在同一平面上相对于分光构件轴对称布置。
在一实施例中,每个探测组件包括四个探测气室,其在同一平面上相对于分光构件轴对称布置,其中,两个探测气室彼此邻近,另两个探测气室彼此邻近。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1A示出了根据本公开的一实施例的原子磁探测器的示意性框图;
图1B示出了根据本公开的另一实施例的原子磁探测器的示意性框图;
图2示出了图1A所示的原子磁探测器的透视图;
图3示出了根据本公开的另一实施例的原子磁探测器的透视图;
图4示出了根据本公开的又一实施例的原子磁探测器;
图5示出了根据本公开的再一实施例的原子磁探测器。
具体实施方式
下面,参照附图详细描述根据本公开的实施方式的原子磁探测器。为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。
因此,以下对结合附图提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。此外,为了清晰度和简洁性,可以省略对公知功能和结构的描述。
在下面的描述和权利要求中使用的术语和词语不限于其书目的意义,而是被公开人用于传达对本公开的清楚和一致的理解。因此,本 领域技术人员应当明白,本公开的各个实施例的以下描述仅用于说明目的,而不是为了限制由所附权利要求及其等同物限定的本公开的目的。
如在本公开中所使用的,“一个实施例”或“该实施例”的使用并不意味着在本公开的一个实施例中描述的特征只能用于该实施方式,而是一个实施方式的特征也可以被用于其他的实施方式或者与其他实施例中的特征相组合以获得再一个实施方式,而所有这些实施例都应落入本公开的保护范围内。
目前所有的小型化原子磁探测器均为单通道磁力计或者磁梯度计,受限于壳体尺寸、加工难度、调制线圈的串扰等因素,探测点密度低,难以进行高密度测量。此外,每个磁力计或磁梯度计使用独立的光源,不仅每通道制造成本高,而且不同光源之间的光强和偏振性差异导致探测器之间的信号本底噪声水平差异较大,在进行临近探测器的梯度计算和降噪处理时,难以获得很好的效果。
本公开的一些实施例提供一种多通道原子磁探测器,其包括:至少一个探测组件,每个探测组件包括:在同一平面上的多个探测气室;以及分光构件,用于分配来自光源的偏振光束到所述多个探测气室,其中,每组探测气室的多个探测气室相对于分光构件中心对称或者轴对称布置。
由于多个探测气室相对于分光构件中心对称或者轴对称布置并接收分光构件的分光,因此实现了多通道探测。该原子磁探测器结构简单、探测密度高、易于抑制噪声,并且多个探测气室的相对位置固定。
图1A示出了根据本公开的一实施例的原子磁探测器100的示意性框图。图2示出了图1A所示的原子磁探测器100的透视图。
如图1A、图2所示,原子磁探测器100包括一个探测组件,所述探测组件包括分光构件110、偏振器件120、探测气室130、光电检测器140、调制线圈150、磁场补偿线圈160以及壳体170,所述壳体 170容纳分光构件110、偏振器件120、探测气室130、光电检测器140、调制线圈150、和磁场补偿线圈160。需要说明的是,在其实施例中,原子磁探测器100可以包括多个探测组件,壳体170容纳该多个探测组件。
在本实施例中,探测气室130为四个,该四个探测气室130布置在同一平面上并且相对于分光构件110中心对称布置,并且该四个探测气室130共用分光构件110。
在本实施例中,原子磁探测器100的壳体170内包括多个探测气室130,有效实现了多通道的磁强或磁梯度探测。由于多个探测气室130围绕同一分光构件110中心对称布置并接收来自该分光构件110的分光,因此显著提高了探测密度,并保证原子磁探测器100内的多个探测气室130的相对位置的固定和稳定。此外,这种中心对称布置的结构设计简单、装配和制造成本低。
原子磁探测器还可以包括激光光源180(参见图1A)和准直器件190(参见图1A)。激光光源180用于根据需要产生具有特定波长和偏振特性的偏振光束,偏振光束经过诸如准直等处理入射到分光构件110。分光构件110则将所接收到的偏振光束分别分配到每个探测气室130中。在本示例中,一个激光光源180产生一束偏振光束,并且分光构件110将该束偏振光束分配到每个探测气室130。
在实施例中,围绕分光构件110中心对称布置并且均匀间隔的四个探测气室130共用同一分光构件110,以使用来自同一光源的同一束偏振光束。因此,与多个探测气室130各自使用来自不同光源的不同偏振光束的情况相比,消除或减小了偏振光束之间的噪声不同对磁信息探测的影响,提高了降噪效率,这在原子磁探测器100是基于磁梯度测量的情况下是特别有利的,提高了梯度降噪效率。
在本示例中,原子磁探测器100包括设置在壳体170内部的激光光源180,四个探测气室130共用同一激光光源180。在本示例中,由于多个探测气室130共用同一激光光源180,降低了激光光源180的使 用数量和成本,减小了原子磁探测器100所需占用的体积并使得其具有更高的探测密度。多个探测气室130共用的激光光源180不限于一个。例如,在一些示例中,多个磁探测器室130可以共用多于一个(例如两个)的激光光源180。并且,在一些示例中,除了一个激光光源180,原子磁探测器100还可以包括另外的备用的激光光源180。
在其他示例中,激光光源180可以设置在壳体170之外,如图1B所示,然后通过诸如光纤等光引导器件将激光光源180产生的偏振光束引导到分光构件110。在该示例中,多个探测气室130共用分光构件110,并接收源自同一束偏振光束的偏振光束,因此也有利于减小原子磁探测器100所需占用的体积并使得其具有更高的探测密度,并且也有利于降低探测噪声。
如图2所示,分光构件110可以为具有四个45°倾斜平面的、金字塔形的棱镜。每个倾斜平面面向一个探测气室130,使得分光构件110将接收的在垂直方向上传播的偏振光束反射为在与竖直方向呈直角的水平方向上传播的多个偏振光束并将每个偏振光束分配到每个相应的探测气室130。
探测气室130容纳碱金属气体。偏振光束可以用于使碱金属原子发生极化,并且可以用于探测碱金属原子的进动行为。调制线圈150用于产生已知强度的调制磁场,该已知强度的调制磁场与被探测磁场叠加以共同作用于极化的碱金属原子。用于探测的偏振光束通过探测气室130以与碱金属原子发生作用,使得该偏振光束的光场偏振态发生变化。
例如,在本实施例中,光电检测器140为四个。每个光电检测器140在光路上设置在每个探测气室130之后,并且也相对于分光构件110中心对称。光电检测器140各自接收并检测通过对应的探测气室130的偏振光束,以获得与探测气室130处的待测磁场相关的信息,例如,磁强信息或磁梯度信息。
此外,例如,偏振器件120为四个,每个偏振器件120在光路上 设置在分光构件110与探测气室130之间,用于将要引导到探测气室130的偏振光束转换为圆偏振光束。偏振器件120可以为四分之一波片。
在本实施例中,四个探测气室130共用一组调制线圈150。一组调制线圈150表示共同作用以产生有效调制磁场的一对或多对调制线圈150。例如,在本示例中,一组调制线圈150可以为一对单独的线圈,或者其可以为在三个彼此垂直的方向上布置的三对线圈。
四个探测气室130共用一组调制线圈150是有利的,这样可以降低线圈的使用成本,并且还可以消除在每个探测气室130各自使用单独的调制线圈150的情况下产生的多个调制线圈150之间的串扰,并且使得原子磁探测器100内的探测气室130可以更彼此靠近。相比于传统的单通道原子磁探测器,根据本实施例的原子磁探测器100的探测密度高,占用体积小。
此外,需要注意的是,四个探测气室130不必需共用一组调制线圈150,本公开不限于此。在其他示例中,原子磁探测器100可以具有四组调制线圈以分别用于四个探测气室130。该四组调制线圈通过共同的控制器协同控制以进行多通道探测并减小串扰。
根据本实施例,原子磁探测器100还包括四组磁补偿线圈160。为了清楚的目的,在图2中仅绘示出了围绕一个探测气室130设置的一组磁补偿线圈160,而省略了分别围绕另外三个探测气室设置的另外三组磁补偿线圈160。每组磁补偿线圈160分别用于对于每个探测气室130进行磁场补偿,以抵消环境噪声磁场。在本示例中,磁补偿线圈160为三对亥姆霍兹线圈。
另外,在其他实施例中,调制线圈150还可以用作补偿线圈以用于进行磁场补偿,而不必设置单独的磁补偿线圈160。在又一其他实施例中,四个探测气室130可以共用一组磁补偿线圈160。
需要说明的是,本领域技术人员应当理解,探测气室130的数量不限于4个,其还可以为3个、5个、6个等,只要其相对于分光构件 110中心对称布置。在本实施例中,均匀间隔地布置4个探测气室130有利于简化分光构件110和偏振器件120等的结构。
在另外的一实施例中,多个探测气室130中心对称布置,并且多个探测气室130中的几个探测气室130可以彼此邻近,而不是均匀间隔地布置。
图3示出了根据本公开的另一实施例的原子磁探测器200的透视图。
如图3所示,与图1A、图2所示的原子磁探测器100类似,原子磁探测器200包括一个探测组件,所述探测组件包括分光构件210、偏振器件220、探测气室230、光电检测器240、调制线圈250、磁补偿线圈260以及壳体270,所述壳体270容纳分光构件210、偏振器件220、探测气室230、光电检测器240、调制线圈250和磁补偿线圈260。为了避免混淆本公开的重要方面,将不再详细描述与根据第一实施例的原子磁探测器100相同或类似的部件。需要说明的是,在其实施例中,原子磁探测器200可以包括多个探测组件,壳体270容纳该多个探测组件。
与图2所示的原子磁探测器100不同的是,原子磁探测器200具有布置在同一平面上的四个探测气室230,该四个探测气室230相对于分光构件210轴对称布置,其中两个探测气室230彼此邻近,另两个探测气室230彼此邻近。
在本实施例中,原子磁探测器200的壳体270内包括多个探测气室230,有效实现了多通道的磁强或磁梯度探测。由于多个探测气室230相对于同一个分光构件210轴对称布置并接收来自该分光构件210的分光,因此显著提高了探测密度,并保证同一原子磁探测器200内的多个探测气室230的相对位置的固定和稳定。此外,这种轴对称布置的设计简单、装配和制造成本低。
与第一实施例中的原子磁探测器100类似,根据本实施例的原子磁探测器200还包括一个激光光源(图3中未示出)和准直器件(图3 中未示出)。该激光光源产生一束偏振光束,光源接口用于接收经由准直器件准直的该偏振光束并将其传输到分光构件210。分光构件210则将所接收的偏振光束分成四束光束并分配到彼此轴对称的两个探测气室230中,使得每个探测气室230接收到一束偏振光束。
在另外的示例中,分光构件210还可以将由激光光源发射的偏振光束分成两束宽光束并将该两束宽光束分别分配到两侧,从而每束偏振光束被同时分配到位于同一侧的两个探测气室230。在这里,“宽光束”表示经过展宽的光束,“宽偏振光束”表示经过展宽的偏振光束。
在又一另外示例中,原子磁探测器200也可以包括两个激光光源并且产生两束偏振光束,该两束偏振光束中的每束偏振光束被分光构件210分配到彼此轴对称的两个探测气室230中,使得每个探测气室230接收到一束偏振光束。
相对于分光构件210轴对称布置的四个探测气室230全部或部分地接收来源于同一激光光源的同一偏振光束的光,因此降低了激光光源的使用数量和成本,减小了原子磁探测器200所需占用的体积使得其具有更高的探测密度,并且消除或减小了在使用各自激光光源的情况下在多个光源之间的噪声差异,提高了降噪效率。优选地,在上述使用一个激光光源的示例中,相对于分光构件210轴对称布置的四个探测气室230均接收来源于同一激光光源的同一偏振光束的光,激光光源的数量和成本、原子磁探测器200所需占用的体积被进一步降低并且降噪效率被进一步提高。
如图3所示,分光构件210可以为具有两个45°倾斜平面的棱镜,该每个倾斜平面面向邻近的两个探测气室230,使得分光构件210将接收的在垂直方向上传播的偏振光束反射成在与竖直方向呈直角的水平方向上传播的多个偏振光束并将每个偏振光束分配到相应的探测气室230。
探测气室230容纳碱金属气体。光电检测器240为四个,每个光电检测器240在光路上设置在每个探测气室230之后,并且也相对于 分光构件210轴对称。偏振器件220为四个,每个偏振器件220在光路上设置在光源组件与探测气室230之间,用于将要引导到探测气室230的偏振光束转换为圆偏振光束。
在另外的示例中,位于同一侧的邻近的两个探测气室230可以共用一个偏振器件220。
在本实施例中,四个探测气室230共用一组调制线圈250。因此,可以降低线圈的使用成本,并且还可以消除在每个探测气室230各自使用单独的调制线圈250的情况下产生的多个调制线圈250之间的串扰,使得原子磁探测器200内的探测气室230可以更彼此靠近。相比于传统的单通道原子磁探测器,根据本实施例的原子磁探测器200的探测密度高,占用体积小。
需要说明的是,本领域技术人员应当理解,探测气室230的数量不限于4个,其还可以为其他数量,例如,2个、6个等,只要其相对于光源组件轴对称布置。
在另外一实施例中,也可以将上述位于一侧的邻近的两个探测气室230一体地合并成一个一体的探测气室。也就是说,在该另外的实施例中,两个一体的探测气室相对于光源组件轴对称布置。在该另外的实施例中,原子磁探测器包括一个光源,其产生一束偏振光,分光构件将偏振光束分别分配到每个一体的探测气室,使得每个探测气室接收到一束宽偏振光束,其通过相应的一体的探测气室被传输到位于该一体的探测气室后的两个光电检测器。因此,每个一体的探测气室可以实现两点处的探测,进一步提高了探测密度。
在将位于一侧的邻近的两个探测气室230一体地合并成一个一体的探测气室的其他示例中,原子磁探测器可以包括两个激光光源并且产生两束偏振光束,该两束偏振光束中的每束偏振光束被分光构件210分配到位于两侧的该一体的探测气室中,使得每个一体的探测气室接收到两束偏振光束,其分别通过相应的一体的探测气室被传输到位于该一体的探测气室后的两个光电检测器。
在另外的实施例中,原子磁探测器还可以包括在与如上所述的原子磁探测器100中的探测组件或原子磁探测器200中的探测组件在不同平面中的另外的一个探测组件。
图4示出了根据本公开的又一实施例的原子磁探测器。如图4所示,该原子磁探测器与原子磁探测器100类似。二者的不同之处在于,原子磁探测器除了包括分光构件110、偏振器件120、探测气室130、光电检测器140、调制线圈150和磁场补偿线圈160的一个探测组件10之外,还包括在与该探测组件平行且偏移的另一平面上的另外一个探测组件11。该另外一个探测组件11同样包括分光构件111、偏振器件、光电检测器、调制线圈151、补偿线圈和相对于光源组件中心对称布置的四个探测气室131。因此,原子磁探测器的探测密度进一步提高。该四个探测气室131可以与四个探测气室130分别对齐地布置,但本公开不限于此。应当理解的是,探测组件不限于两个,还可以为更多个,并且每个探测组件不必需相同地布置。
在本实施例中,每个探测组件中的探测气室共用同一激光光源。因此,进一步降低了激光光源的使用数量和成本,减小了原子磁探测器所需占用的体积使得其具有更高的探测密度。
此外,该两个探测组件各自具有一个分光构件110、111,该两个分光构件110、111将来同一光源的同一偏振光束入射到每组探测组件中的每个探测气室130、131。其中,在光路上在前的探测组件10的分光构件110可以具有半透半反性质,其将所接收的偏振光束的一部分反射到该探测组件10的每个探测气室130,同时允许所接收的偏振光束的另一部分透射到另一个分光构件111。
该两个探测组件10、11还各自具有一组调制线圈150、151。两组调制线圈150、151偏移一定距离以避免串扰。
在又一另外的实施例中,原子磁探测器还可以包括在与如上所述的原子磁探测器100中的探测组件或原子磁探测器200中的探测组件在同一平面中且平行于该平面彼此偏移的另外的一个探测组件。
图5示出了根据本公开的再一实施例的原子磁探测器。该原子磁探测器与原子磁探测器100类似。二者的不同之处在于,原子磁探测器除了包括分光构件110、偏振器件120、探测气室130、光电检测器140、调制线圈150和磁场补偿线圈160的一个探测组件10之外,还包括在与该探测组件在同一平面上且平行于该平面彼此偏移的另外一个探测组件12。该两个探测组件10、12可以相同或不同。
在本实施例中,每个探测组件10、12共用同一激光光源。也就是说,该两个探测组件10、12的分光构件110、112、113将来自共同的光源的共同偏振光束分配到每个探测气室。具体地,该激光光源产生的偏振光束被附加分光构件113分光,所产生的光束入射到每组探测组件10、12中的分光构件110、112,然后通过分光构件110、112被分配到每组探测组件10、12中的每个探测气室。因此,进一步降低了激光光源的使用数量和成本,减小了原子磁探测器所需占用的体积使得其具有更高的探测密度。
在其他示例中,上述两组探测组件10、12可以分别使用单独的激光光源。
本公开的范围并非由上述描述的实施方式来限定,而是由所附的权利要求书及其等价物来限定。

Claims (16)

  1. 一种多通道原子磁探测器,包括:
    至少一个探测组件,每个探测组件包括:
    在同一平面上的多个探测气室;以及
    分光构件,用于分配来自光源的偏振光束到所述多个探测气室,
    其中,每组探测气室的多个探测气室相对于分光构件中心对称或者轴对称布置。
  2. 根据权利要求1所述的多通道原子磁探测器,还包括:
    所述分光构件用于将来自同一光源的一束偏振光束分配到所述探测组件中的每个探测气室。
  3. 根据权利要求1所述的多通道原子磁探测器,其中,
    所述多个探测气室中的至少一部分探测气室接收到两束偏振光束或被展宽的一束宽偏振光束。
  4. 根据权利要求1所述的多通道原子磁探测器,还包括:
    壳体,其用于容纳所述至少一个探测组件。
  5. 根据权利要求4所述的多通道原子磁探测器,其中,
    所述光源容纳在壳体中。
  6. 根据权利要求4所述的多通道原子磁探测器,其中,
    所述光源设置在壳体外。
  7. 根据权利要求1所述的多通道原子磁探测器,其中,
    每个探测组件包括:
    多个光电检测器,用于检测经过相应的探测气室的偏振光束的信息,其在光路上设置在相应的探测气室之后,并且也相对于分光构件中心对称或轴对称。
  8. 根据权利要求1所述的多通道原子磁探测器,其中,
    每个探测组件包括:
    多个偏振器件,用于将偏振光束转换成圆偏振光束,其在光路上设置在分光构件与相应的探测气室之间,并且也相对于分光构件中心对称或轴对称。
  9. 根据权利要求1所述的多通道原子磁探测器,其中,
    每个探测组件包括:
    调制线圈,每个探测组件的多个探测气室共用同一组调制线圈。
  10. 根据权利要求1所述的多通道原子磁探测器,其中,
    每个探测组件包括:
    多组调制线圈,每组调制线圈相对于每个探测气室设置,并且通过共同的控制器协同控制。
  11. 根据权利要求1所述的多通道原子磁探测器,其中,
    所述原子磁探测器包括两个或更多个探测组件,所述两个或更多个探测组件分别布置在彼此平行且彼此偏移的不同平面上。
  12. 根据权利要求1所述的多通道原子磁探测器,其中,
    所述原子磁探测器包括两个或更多个探测组件,所述两个或更多个探测组件布置在同一平面上并且平行于所述平面彼此偏移。
  13. 根据权利要求11或12所述的多通道原子磁探测器,其中,
    所述两个或更多个探测组件的分光构件将来自共同的光源的共同偏振光束分配到每个探测气室。
  14. 根据权利要求1所述的多通道原子磁探测器,其中,
    每个探测组件包括四个探测气室,其在同一平面上相对于分光构件均匀间隔并且中心对称布置。
  15. 根据权利要求1所述的多通道原子磁探测器,其中,
    每个探测组件包括两个探测气室,其在同一平面上相对于分光构件轴对称布置。
  16. 根据权利要求1所述的多通道原子磁探测器,其中,
    每个探测组件包括四个探测气室,其在同一平面上轴对称布置在 分光构件的两侧,其中,一侧的两个探测气室彼此邻近,另一侧的两个探测气室彼此邻近。
PCT/CN2019/124051 2018-12-10 2019-12-09 多通道原子磁探测器 WO2020119642A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3122620A CA3122620C (en) 2018-12-10 2019-12-09 Multi-channel atomic magnetic detector
EP19894816.8A EP3896471A4 (en) 2018-12-10 2019-12-09 MULTI-CHANNEL ATOMIC MAGNETIC DETECTOR
US17/312,722 US11448712B2 (en) 2018-12-10 2019-12-09 Multi-channel atomic magnetic detector
JP2021533592A JP7291328B2 (ja) 2018-12-10 2019-12-09 マルチチャネル原子磁気検出器
KR1020217021437A KR102579722B1 (ko) 2018-12-10 2019-12-09 다중채널 원자 자기 검출기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811503710.0A CN111289924A (zh) 2018-12-10 2018-12-10 多通道原子磁探测器
CN201811503710.0 2018-12-10

Publications (1)

Publication Number Publication Date
WO2020119642A1 true WO2020119642A1 (zh) 2020-06-18

Family

ID=71025289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124051 WO2020119642A1 (zh) 2018-12-10 2019-12-09 多通道原子磁探测器

Country Status (7)

Country Link
US (1) US11448712B2 (zh)
EP (1) EP3896471A4 (zh)
JP (1) JP7291328B2 (zh)
KR (1) KR102579722B1 (zh)
CN (1) CN111289924A (zh)
CA (1) CA3122620C (zh)
WO (1) WO2020119642A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113093065A (zh) * 2021-03-23 2021-07-09 北京未磁科技有限公司 原子磁力计以及磁场检测设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120249132A1 (en) * 2011-04-01 2012-10-04 Seiko Epson Corporation Magnetic field measurement apparatus, magnetic field measurement system and magnetic field measurement method
JP2013079893A (ja) * 2011-10-05 2013-05-02 Seiko Epson Corp 磁気センサー装置及び磁気計測装置
CN103869265A (zh) * 2014-03-26 2014-06-18 北京大学 用于光泵磁力仪的原子磁传感器
CN206756173U (zh) * 2017-06-07 2017-12-15 中国工程物理研究院总体工程研究所 一种双气室核自旋陀螺仪
US20170363695A1 (en) * 2016-06-21 2017-12-21 Seiko Epson Corporation Magnetic field measuring device and method for manufacturing magnetic field measuring device
CN108459282A (zh) 2018-01-30 2018-08-28 中国科学院生物物理研究所 基于原子磁强计/磁梯度计的脑磁图检测装置及方法
CN108562861A (zh) * 2018-03-30 2018-09-21 上海通用卫星导航有限公司 一种用于磁梯度测量的对称式铯光泵磁力仪
CN108614224A (zh) * 2018-04-03 2018-10-02 北京航天控制仪器研究所 一种用于cpt磁力仪的气室工作温度自动标定系统及方法
CN209460386U (zh) * 2018-12-10 2019-10-01 中国科学院生物物理研究所 多通道原子磁探测器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104243A (ja) 1990-08-24 1992-04-06 Hitachi Ltd 分光画像装置
JP5005256B2 (ja) 2005-11-28 2012-08-22 株式会社日立ハイテクノロジーズ 磁場計測システム及び光ポンピング磁束計
DE102010020863B4 (de) * 2009-05-13 2016-04-14 Leibniz-Institut für Photonische Technologien e. V. Anordnung zur Rauschminderung bei optischen Magnetometern
US8212556B1 (en) 2010-01-12 2012-07-03 Sandia Corporation Atomic magnetometer
JP5415978B2 (ja) * 2010-01-29 2014-02-12 矢崎総業株式会社 光コネクタ装置
JP2011242324A (ja) * 2010-05-20 2011-12-01 Seiko Epson Corp セルユニット及び磁場測定装置
IL208258A (en) * 2010-09-20 2017-08-31 Israel Aerospace Ind Ltd Optical Magnetometer Sensors
US8941377B2 (en) 2012-02-10 2015-01-27 Canon Kabushiki Kaisha Optically pumped magnetometer and magnetic sensing method
JP6171355B2 (ja) 2013-01-21 2017-08-02 セイコーエプソン株式会社 磁場計測装置
JP6222974B2 (ja) 2013-04-25 2017-11-01 キヤノン株式会社 光ポンピング磁力計および磁気センシング方法
JP6494385B2 (ja) * 2014-07-16 2019-04-03 キヤノン株式会社 光画像撮像装置及びその制御方法
JP6391370B2 (ja) 2014-08-29 2018-09-19 キヤノン株式会社 光ポンピング磁力計及び磁気センシング方法
JP6597034B2 (ja) 2014-12-02 2019-10-30 セイコーエプソン株式会社 磁場計測方法及び磁場計測装置
JP5874808B2 (ja) 2014-12-22 2016-03-02 セイコーエプソン株式会社 磁場測定装置
JP6825237B2 (ja) * 2016-06-14 2021-02-03 セイコーエプソン株式会社 磁場計測装置、磁場計測装置の製造方法
JP2018004462A (ja) * 2016-07-04 2018-01-11 セイコーエプソン株式会社 磁場計測装置、磁場計測装置の調整方法、および磁場計測装置の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120249132A1 (en) * 2011-04-01 2012-10-04 Seiko Epson Corporation Magnetic field measurement apparatus, magnetic field measurement system and magnetic field measurement method
JP2013079893A (ja) * 2011-10-05 2013-05-02 Seiko Epson Corp 磁気センサー装置及び磁気計測装置
CN103869265A (zh) * 2014-03-26 2014-06-18 北京大学 用于光泵磁力仪的原子磁传感器
US20170363695A1 (en) * 2016-06-21 2017-12-21 Seiko Epson Corporation Magnetic field measuring device and method for manufacturing magnetic field measuring device
CN206756173U (zh) * 2017-06-07 2017-12-15 中国工程物理研究院总体工程研究所 一种双气室核自旋陀螺仪
CN108459282A (zh) 2018-01-30 2018-08-28 中国科学院生物物理研究所 基于原子磁强计/磁梯度计的脑磁图检测装置及方法
CN108562861A (zh) * 2018-03-30 2018-09-21 上海通用卫星导航有限公司 一种用于磁梯度测量的对称式铯光泵磁力仪
CN108614224A (zh) * 2018-04-03 2018-10-02 北京航天控制仪器研究所 一种用于cpt磁力仪的气室工作温度自动标定系统及方法
CN209460386U (zh) * 2018-12-10 2019-10-01 中国科学院生物物理研究所 多通道原子磁探测器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113093065A (zh) * 2021-03-23 2021-07-09 北京未磁科技有限公司 原子磁力计以及磁场检测设备

Also Published As

Publication number Publication date
JP7291328B2 (ja) 2023-06-15
CN111289924A (zh) 2020-06-16
CA3122620A1 (en) 2020-06-18
EP3896471A1 (en) 2021-10-20
KR20210100167A (ko) 2021-08-13
US20220018910A1 (en) 2022-01-20
KR102579722B1 (ko) 2023-09-15
JP2022512417A (ja) 2022-02-03
US11448712B2 (en) 2022-09-20
CA3122620C (en) 2023-09-12
EP3896471A4 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
US11262420B2 (en) Integrated gas cell and optical components for atomic magnetometry and methods for making and using
US10184796B2 (en) Chip-scale atomic gyroscope
CN108693488B (zh) 一种基于双抽运光束的无自旋交换弛豫原子自旋磁场测量装置
US20210041513A1 (en) Systems and methods having an optical magnetometer array with beam splitters
CN209460386U (zh) 多通道原子磁探测器
US9995800B1 (en) Atomic magnetometer with multiple spatial channels
US8212556B1 (en) Atomic magnetometer
US8605282B2 (en) Method and apparatus for high precision spectroscopy
CN109342980A (zh) 基于椭圆光的单光Mx原子磁力仪
CN111929622B (zh) 一种基于原子自旋效应的多通道梯度磁场测量装置
CN111044947B (zh) 一种用于脑磁测量的多通道serf原子磁力仪装置及应用方法
CN110579724A (zh) 一种多通道脉冲泵浦原子磁力传感装置
Bison et al. Optimization and performance of an optical cardiomagnetometer
WO2020119642A1 (zh) 多通道原子磁探测器
CN114601466A (zh) 一种单光束双通道的原子磁强计系统
US9541398B2 (en) Chip-scale atomic gyroscope
CN109521376A (zh) 基于微型原子气室的原子磁力仪
WO2015156841A1 (en) Chip-scale atomic gyroscope
CN209280902U (zh) 微型原子气室以及原子磁力仪
CN109613456A (zh) 一种全光学原子磁强计及方法
CN114966493B (zh) 一种小型化原子磁强计
CN115656896A (zh) 用于药物代谢研究的多通道serf原子磁力仪装置及方法
JP2012177585A (ja) 磁場測定装置およびセルアレイ
US20220175290A1 (en) System of quantum sensors for magnetoencephalography
CN115166607A (zh) 矢量磁力仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894816

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3122620

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021533592

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217021437

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019894816

Country of ref document: EP

Effective date: 20210712