WO2020119617A1 - 一种三维结构复合材料及其制备方法和用途 - Google Patents

一种三维结构复合材料及其制备方法和用途 Download PDF

Info

Publication number
WO2020119617A1
WO2020119617A1 PCT/CN2019/123941 CN2019123941W WO2020119617A1 WO 2020119617 A1 WO2020119617 A1 WO 2020119617A1 CN 2019123941 W CN2019123941 W CN 2019123941W WO 2020119617 A1 WO2020119617 A1 WO 2020119617A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
gold
graphene
concentration
composite material
Prior art date
Application number
PCT/CN2019/123941
Other languages
English (en)
French (fr)
Inventor
张国平
韩飞
苏星宇
张愿
孙蓉
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2020119617A1 publication Critical patent/WO2020119617A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the invention relates to the field of three-dimensional structure composite materials, in particular to a three-dimensional structure composite material flexible conductor and a preparation method thereof.
  • the amount of conductive filler and the amount of polymer added must be strictly controlled, which makes the preparation The process requires more stringent conditions.
  • the conductive filler in the flexible conductor prepared by this method will slip during the application of external stress, it will cause the problem of reduced conductivity of the flexible conductor and a series of unstable performance during repeated use. problem.
  • the flexible conductor with a three-dimensional conductive network structure has become a research hotspot for flexible conductor preparation in recent years due to its advantages of low-cost manufacturing process, mechanical durability, conductive stability, and large-scale production.
  • the three-dimensional graphene network structure has become the primary material for flexible conductor preparation because of its large specific surface area, excellent electrical conductivity and good mechanical properties.
  • the purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art.
  • the present invention provides a stretchable flexible conductor based on a three-dimensional conductive network structure.
  • the stretchable flexible conductor solves the conductive stability under a large strain (stretchable) To 30% strain), the stability of conductivity under different deformations (such as tensile, bending and twisting transitions) and the stability of repeated use (which can withstand 1000 cycles of experiments under different deformations) and mass production problems.
  • the present invention provides a three-dimensional structure composite material, which uses polyurethane sponge as a matrix, and the surface and inside of the polyurethane sponge are coated with graphene, and the nickel layer and gold are sequentially coated on the graphene by chemical plating The layer is finally encapsulated by polydimethylsiloxane (PDMS).
  • PDMS polydimethylsiloxane
  • the pore size of the polyurethane sponge is 100 to 300 ⁇ m, and the thickness of the polyurethane sponge is 0.5 mm to 2 mm, preferably 0.8 mm to 1 mm.
  • the thickness of the nickel layer is 250-275 nm, such as 250 nm, 260 nm, 265 nm, 270 nm, 275 nm, etc., preferably 260 nm.
  • the thickness of the gold layer is 315-350 nm, such as 315 nm, 320 nm, 325 nm, 330 nm, 340 nm, 345 nm, 350 nm, etc., preferably 350 nm.
  • the three-dimensional structure composite material further includes an electrode.
  • the thickness of the polyurethane sponge (also referred to as a polyurethane sponge layer) is 0.5 mm to 2 mm, preferably 0.8 mm to 1 mm.
  • the length of the polyurethane sponge is 15 mm to 30 mm, preferably 20 mm to 25 mm.
  • the width of the polyurethane sponge is 5m-15mm, preferably 8mm-10mm.
  • the present invention provides a method for preparing a three-dimensional structure composite material according to the first aspect, the method includes the following steps:
  • the graphene sponge After the graphene sponge is soaked in the activation solution, it is placed in an electroless nickel plating solution, so that the graphene sponge is covered with a layer of nickel, and then the nickel-coated graphene sponge is placed in the replacement gold tank, Through the substitution reaction, the thickness of the nickel layer is reduced, and the sample is covered with the gold layer;
  • step (3) After rinsing and drying the sample in step (3), add an electrode, and infuse PDMS by vacuum infusion, and then solidify to obtain a three-dimensional structure composite flexible conductor.
  • the step (1) of the present invention prepares a graphene-coated polyurethane sponge, so that an insulator polyurethane sponge becomes a conductive three-dimensional structure, and a graphene sponge with good conductivity is obtained, thereby providing a good material for subsequent chemical plating.
  • the method of the present invention uses a polyurethane sponge as a base material, obtains a graphene sponge coated with graphene by immersing, absorbing and reducing several times, and then deposits a gold-nickel composite material layer on the surface of the graphene sponge by an electroless plating method, and finally passes PDMS is encapsulated by vacuum infusion to obtain a three-dimensional structure composite flexible conductor with good performance.
  • This method solves the problem of complex manufacturing process of flexible conductors.
  • the obtained flexible conductor has greater stretchability and good Features such as cycle stability and scalable production.
  • the method further includes performing step (1)' before step (1): the polyurethane sponge is washed with deionized water and absolute ethanol, and then dried.
  • the method for preparing a graphene-coated polyurethane sponge in step (1) includes the following steps:
  • the concentration of the graphene oxide solution in step (A) is 1g/L to 8g/L, for example, 1g/L, 1.5g/L, 2g/L, 2.5g/L, 3g/L, 3.5g /L, 4g/L, 4.5g/L, 5g/L, 5.5g/L, 6g/L, 6.5g/L, 7g/L, 7.5g/L or 8g/L, etc., preferably 3g/L to 5g /L.
  • the soaking time in step (A) is 2h to 6h, preferably 3h to 5h.
  • the reduction time in step (B) is 10 min to 20 min, preferably 10 min to 15 min.
  • the concentration of hydroiodic acid in step (B) is calibrated as follows: the volume ratio of hydroiodic acid to deionized water in the solution of graphene oxide is 1:1 to 5, preferably 1:1 to 2.
  • the temperature of the hydroiodic acid in step (B) is 50°C to 100°C, such as 50°C, 55°C, 60°C, 65°C, 70°C, 75°C, 80°C, 85°C, 90°C, 95 °C or 100 °C, etc., preferably 80 °C.
  • step (B) is carried out under water bath conditions, and the temperature of the water bath is 80°C to 90°C, preferably 85°C to 90°C.
  • the step (1) in the process of preparing the graphene-coated polyurethane sponge further includes the step of washing after the step (B) reduction and the step (C) before drying.
  • the process of preparing the graphene-coated polyurethane sponge in step (1) further includes the steps of repeating steps (A)-(C) in sequence after drying in step (C), and the number of repetitions is preferably 1 time ⁇ 7 times, for example, 1 time, 2 times, 3 times, 4 times, 5 times, 6 times or 7 times, preferably 3 times to 5 times, further preferably 4 times or 5 times.
  • the process of preparing the graphene-coated polyurethane sponge in step (1) further includes an operation of washing with deionized water at least once after repeating the last reduction step and before the drying step.
  • the activation solution in step (2) is a mixed solution of PdSO 4 and H 2 SO 4 .
  • the concentration of PdSO 4 in the activation solution is 5-30 ppm, such as 5 ppm, 10 ppm, 15 ppm, 20 ppm, 25 ppm, 30 ppm, etc., preferably 20 ppm.
  • the concentration of H 2 SO 4 in the activation solution is 5-20 mol/L, such as 5 mol/L, 12 mol/L, 15 mol/L, 18 mol/L, 20 mol/L, etc., preferably 13 mol/L.
  • the composition of the electroless nickel plating solution in step (2) is NiSO 4 ⁇ 6H 2 O, NaH 2 PO 2 (sodium hypophosphite) and Na 3 C 6 H 5 O 7 ⁇ 2H 2 O (sodium citrate dihydrate) mixed solution.
  • the concentration of NiSO 4 ⁇ 6H 2 O in the electroless nickel plating solution is 5-30 g/L, such as 5 g/L, 10 g/L, 15 g/L, 20 g/L, 25 g/L, 30 g/L, etc. Preferably 25g/L.
  • the concentration of NaH 2 PO 2 in the electroless nickel plating solution is 10-50 g/L, such as 10 g/L, 15 g/L, 20 g/L, 25 g/L, 30 g/L, 35 g/L, 40 g/L , 45g/L, 50g/L, etc., preferably 30g/L.
  • the concentration of Na 3 C 6 H 5 O 7 ⁇ 2H 2 O in the electroless nickel plating solution is 1-15 g/L, such as 1 g/L, 3 g/L, 5 g/L, 7 g/L, 9 g/L , 12g/L, 15g/L, etc., preferably 10g/L.
  • the pH of the electroless nickel plating solution is 1-7, such as 1, 2, 3, 4, 5, 6, 7, etc., preferably 4.5.
  • the temperature of the electroless nickel plating solution is 50-100°C, such as 50°C, 55°C, 60°C, 65°C, 70°C, 75°C, 80°C, 85°C, 90°C, 95°C, 100°C, etc. , Preferably 85°C.
  • the electroless nickel plating time is 1-10 min, such as 1 min, 2 min, 3 min, 4 min, 5 min, 6 min, 7 min, 8 min, 9 min, 10 min, etc., preferably 5 min.
  • the thickness of the nickel layer in the electroless nickel plating is 250-275 nm, such as 250 nm, 260 nm, 265 nm, 270 nm, 275 nm, etc., preferably 260 nm.
  • the solution composition is Na 3 Au(SO 3 ) 2 (sodium gold sulfite), Na 2 SO 3 (sodium sulfite) and N A mixed solution of (CH 2 PO 3 H 2 ) 3 (aminotrimethylphosphonic acid).
  • the concentration of Na 3 Au(SO 3 ) 2 in the replacement gold bath solution is 1-10 g/L, such as 1 g/L, 2 g/L, 3 g/L, 4 g/L, 5 g/L, 6 g/L , 7g/L, 8g/L, 9g/L, 10g/L, etc., preferably 3g/L.
  • the concentration of Na 2 SO 3 in the replacement gold bath solution is 10-50 g/L, such as 10 g/L, 15 g/L, 20 g/L, 25 g/L, 30 g/L, 35 g/L, 40 g/L , 45g/L, 50g/L, etc., preferably 35g/L.
  • the concentration of N(CH 2 PO 3 H 2 ) 3 in the replacement gold bath solution is 10-50g/L, such as 10g/L, 15g/L, 20g/L, 25g/L, 30g/L, 35g /L, 40g/L, 45g/L, 50g/L, etc., preferably 20g/L.
  • the pH of the replacement gold bath solution is 1-7, such as 1, 2, 3, 4, 5, 6, 7, etc., preferably 7.
  • the temperature of the replacement gold solution is 50-100°C, such as 50°C, 55°C, 60°C, 65°C, 70°C, 75°C, 80°C, 85°C, 90°C, 95°C, 100°C, etc. It is preferably 80°C.
  • the replacement gold reaction time is 1-30 min, such as 1 min, 5 min, 10 min, 15 min, 20 min, 25 min, 30 min, etc., preferably 20 min.
  • the solution composition is Na 3 Au(SO 3 ) 2 (sodium gold sulfite), Na 2 SO 3 (sodium sulfite), Na 3 C 6 H 5 O 7 ⁇ 2H 2 O (sodium citrate dihydrate) and CH 4 N 2 S (thiourea) mixed solution.
  • the concentration of Na 3 Au(SO 3 ) 2 in the reducing gold bath solution is 1-10 g/L, such as 1 g/L, 2 g/L, 3 g/L, 4 g/L, 5 g/L, 6 g/L , 7g/L, 8g/L, 9g/L, 10g/L, etc., preferably 2g/L.
  • the concentration of Na 2 SO 3 in the reducing gold bath solution is 10-50 g/L, such as 10 g/L, 15 g/L, 20 g/L, 25 g/L, 30 g/L, 35 g/L, 40 g/L , 45g/L, 50g/L, etc., preferably 20g/L.
  • the concentration of Na 3 C 6 H 5 O 7 ⁇ 2H 2 O in the reducing gold bath solution is 1-20 g/L, such as 1 g/L, 5 g/L, 10 g/L, 15 g/L, 20 g/L Etc., preferably 10 g/L.
  • the concentration of CH 4 N 2 S in the reducing gold bath solution is 0.1 to 2 g/L, such as 0.1 g/L, 0.3 g/L, 0.5 g/L, 0.8 g/L, 1.0 g/L, 1.2 g/L, 1.5g/L, 1.8g/L, 2.0g/L, etc., preferably 1g/L.
  • the pH of the reducing gold bath solution is 1-7, such as 1, 2, 3, 4, 5, 6, 7, etc., preferably 7.
  • the temperature of the reduced gold solution is 20-80°C, such as 20°C, 25°C, 30°C, 35°C, 40°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C, 75 °C, 80 °C, etc., preferably 50 °C.
  • the reaction time of the reduced gold is 5-50 min, such as 5 min, 10 min, 15 min, 20 min, 25 min, 30 min, 35 min, 40 min, 45 min, 50 min, etc., preferably 30 min.
  • the thickness of the gold layer in the composite material is 315-350 nm, such as 315 nm, 320 nm, 325 nm, 330 nm, 340 nm, 345 nm, 350 nm, etc., preferably 350 nm.
  • the thickness of the nickel layer is 250-275 nm, such as 250 nm, 260 nm, 265 nm, 270 nm, 275 nm, etc., preferably 260 nm.
  • the process of vacuum infusing PDMS and curing and packaging in step (4) is that after the electrodes of the obtained composite material are pasted with conductive silver paste on the electrodes, they are placed with grooves In the polytetrafluoroethylene mold, the PDMS (the ratio of dimethylsiloxane and curing agent is 10:1) is poured on the composite material, and it is placed in an oven and evacuated for 30 minutes. Take it out and finally cure it in a high-temperature oven to obtain a stretchable flexible conductor.
  • the PDMS the ratio of dimethylsiloxane and curing agent is 10:1
  • the material is encapsulated by PDMS under vacuum, and then cured, so that the flexible conductor not only has good encapsulation, but also has good stretchability and cycle stability.
  • the tensile strain reaches 30%.
  • the mass ratio of dimethylsilane and curing agent in step (4) is 20-5:1, for example 20:1, 18:1, 15:1, 12:1, 10:1, 8:1 Or 5:1 etc., preferably 10:1.
  • the placing time in the vacuum oven in step (4) is 5-40 min, such as 5 min, 10 min, 15 min, 20 min, 25 min, 30 min, 35 min, 40 min, etc., preferably 30 min.
  • the curing temperature in step (4) is 60°C to 90°C, such as 60°C, 65°C, 70°C, 75°C, 80°C, 85°C, 90°C, etc., preferably 70°C.
  • the curing time in step (4) is 1 to 5 hours, for example, 1 hour, 1.5 hours, 2 hours, 2.5 hours, 3 hours, 3.5 hours, 4 hours, 4.5 hours, 5 hours, etc., preferably 3 hours.
  • the third aspect of the present invention provides the use of the three-dimensional structure composite material of the present invention as a flexible conductor.
  • the present invention has the following beneficial effects:
  • the present invention first prepares a graphene sponge with good electrical conductivity on a polyurethane sponge with a three-dimensional skeleton material by repeated adsorption and reduction methods, and then deposits gold-nickel on the graphene sponge by chemical plating to obtain A composite material formed of nickel-graphene-coated polyurethane sponge, and then encapsulated by PDMS under vacuum environment and further cured to obtain a three-dimensional structure composite flexible conductor.
  • This three-dimensional structure composite flexible conductor has good stretchability (the maximum strain can be stretched up to 30%), and can maintain conductive stability under different deformations (three deformations of stretching, bending and twisting).
  • the three-dimensional structure composite material flexible conductor solves the problems that the flexible conductor has low tensile strain, low stability under different deformations, and poor stability for long-term use, and greatly improves the conductive performance.
  • the preparation method of the present invention is simple, and the cost is reduced from the raw materials.
  • the preparation method solves the problems of complex flexible conductor technology, high cost, and low conductivity and poor recycling of the flexible conductor prepared.
  • the preparation method can be applied to large-scale production.
  • the method of electroless plating is used in the present invention. Compared with the electroplating method, the obtained metal layer is more uniform, which can maintain good electrical conductivity even in the case of deformation.
  • Figure 1 is the SEM image of the gold layer on the surface of the three-dimensional structure composite flexible conductor
  • Figure 2 is a skeleton SEM image of a three-dimensional structure composite flexible conductor
  • Fig. 3 is an XRD diagram of a three-dimensional structure composite flexible conductor and a nickel-coated composite material during the preparation process.
  • FIG. 4 is a graph showing the relative resistance changes of the three-dimensional structure composite flexible conductor and the nickel-clad composite material obtained by the same encapsulation method during the tensile testing process respectively.
  • Figure 5 is a mapping diagram of the three-dimensional structural composite flexible conductor interface, showing the thickness of the gold layer and the nickel layer.
  • Fig. 6 is a graph showing the change of relative resistance of the three-dimensional structure composite flexible conductor after multiple bending and torsion tests.
  • the solution of the gold reduction tank is composed of 2g/L Na 3 Au(SO 3 ) 2 (gold sodium sulfite), 20g/L Na 2 SO 3 (sodium sulfite), 10 g/L Na 3 C 6 H 5 O 7 2H 2 O (sodium citrate dihydrate), 1 g/L CH 4 N 2 S (thiourea), and the pH of the solution is 7.
  • the reduction reaction temperature is 50°C
  • the reaction time is 30min
  • the gold layer is thickened by chemical plating, the thickness of the gold layer is 350nm;
  • the solution of the gold reduction tank is composed of 2g/L Na 3 Au(SO 3 ) 2 (gold sodium sulfite), 20g/L Na 2 SO 3 (sodium sulfite), 10 g/L Na 3 C 6 H 5 O 7 2H 2 O (sodium citrate dihydrate), 1 g/L CH 4 N 2 S (thiourea), and the pH of the solution is 7.
  • the reduction reaction temperature is 50°C
  • the reaction time is 30min
  • the gold layer is thickened by chemical plating, the thickness of the gold layer is 350nm;
  • the three-dimensional structure composite flexible conductor and the nickel-coated composite material were tested by X-ray diffraction method.
  • the test results are shown in Figure 3. According to the XRD results, it can be seen that the nickel surface has been plated with gold by the method of the present invention Floor.
  • Example 1 the relative resistance changes during the tensile test.
  • the experimental method is to perform tensile treatment on the test sample and test the resistance change at the same time.
  • Figure 4 for the experimental results.
  • the experimental results show that the resistance of the sample with only the nickel layer changes significantly, while the resistance of the sample with the gold layer is stable.
  • Example 6 Changes in relative resistance during bending and twisting
  • the experimental method is to bend and twist the test sample, and test the resistance change at the first and the thousandth time.
  • Figure 6 the experimental results show that the resistance change hardly changes with the increase of bending and twisting tests.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemically Coating (AREA)

Abstract

一种三维复合材料及其制备方法和用途。具体公开一种三维结构复合材料,以聚氨酯海绵为基质、在聚氨酯海绵表面和内部包覆石墨烯,并在石墨烯上通过化学镀方法依次包覆镍层和金层,最后通过聚二甲基硅氧烷封装而成。

Description

一种三维结构复合材料及其制备方法和用途 技术领域
本发明涉及三维结构复合材料领域,尤其涉及一种三维结构复合材料柔性导体及其制备方法。
背景技术
近年来,随着柔性智能可穿戴电子器件的迅速发展,柔性导电材料作为其重要的支撑材料也成为研究的热点。具有良好导电性和大应变下稳定性的可拉伸柔性导体在近年来的研究中被广泛应用于可拉伸天线、可拉伸晶体管、柔性超级电容器、电子皮肤和触摸屏,且柔性导体在未来智能器件的发展中也将会起到非常重要的作用。
因此,为了制备出高性能的可拉伸柔性导体,人们对于它的制备方法进行了广泛的研究,从近期报道的研究来看,其中一种简单直接而有效的方法是利用高导电的纳米材料(如石墨烯,碳纳米管,碳纳米纤维,金属纳米线等)和具有良好柔性的聚合物材料(如聚二甲基硅氧烷(PDMS),聚氨酯(PU)等),将纳米材料通过设计在聚合物材料的顶部或嵌入其中,就可以得到这种复合材料的柔性导体。但是,这种方法存在一定的缺陷,例如,为了在得到的柔性导体的机械性能和导电性能之间保持一个平衡,加入的导电填料的量和聚合物的量要严格控制,这也就使得制备过程中要求更加严苛的条件。另外,由于这种方法制备出来的柔性导体中的导电填料会在施加外部应力的过程中发生滑移,因此会在反复使用的过程中造成柔性导体导电率下降的问题以及一系列性能不稳定的问题。
为了解决上述问题,人们在研究中也引入了一些其他的制备方法来克服上述缺陷,例如,George M.Whitesides最早提出了在弹性体上通过预拉伸-释放 的过程引入周期性“波纹状”微结构可以赋予这种柔性导体良好的导电稳定性和较宽的可应变范围。但是在这种微结构制备在转移的过程相对较为复杂,不适合大规模的工业生产。
虽然上述技术都表明在可拉伸柔性导体方面的研究和应用中取得了一定的进展。但是面对如何制备具有较高可拉伸性,同时在大应变的形变下保持导电稳定性的高性能可拉伸柔性导体,仍然具有很大的挑战。
发明内容
有鉴于此,具有三维导电网络结构的柔性导体由于其低成本的制备过程、机械耐久性、导电稳定性和可大规模生产等优点而成为近年来柔性导体制备的研究热点。其中,三维石墨烯网络结构因为其大比表面积、优秀的导电性和良好的机械性能而成为柔性导体制备的首要考虑材料。
本发明的目的在于克服现有技术存在的缺点和不足,本发明提供一种基于三维导电网络结构的可拉伸柔性导体,该可拉伸柔性导体解决了大应变下导电稳定性(可拉伸至30%应变),不同形变下导电稳定性(如拉伸、弯曲和扭曲转态)以及反复使用稳定性(可承受不同形变下1000次循环实验)和大规模生产的问题。
本发明采用以下技术方案实现:
第一方面,本发明提供了一种三维结构复合材料,其以聚氨酯海绵为基质、并在聚氨酯海绵表面和内部包覆有石墨烯,并在石墨烯上通过化学镀依次包覆镍层和金层,最后通过聚二甲基硅氧烷(PDMS)封装而成。
在本案发明的技术方案中,聚氨酯海绵孔径大小为100~300μm,且聚氨酯海绵厚度为0.5mm~2mm,优选0.8mm~1mm。
在本案发明的技术方案中,镍层厚度为250~275nm,例如250nm、260nm、265nm、270nm、275nm等,优选260nm。
在本案发明的技术方案中,金层的厚度为315~350nm,例如315nm、320nm、325nm、330nm、340nm、345nm、350nm等,优选350nm。
在本发明的技术方案中,所述三维结构复合材料还包括电极。
作为本发明所述复合材料的优选技术方案,所述聚氨酯海绵(也称为聚氨酯海绵层)的厚度为0.5mm~2mm,优选0.8mm~1mm。
优选地,所述聚氨酯海绵的长度为15mm~30mm,优选20mm~25mm。
优选地,所述聚氨酯海绵的宽度为5m~15mm,优选8mm~10mm。
第二方面,本发明提供如第一方面所述的三维结构复合材料的制备方法,所述方法包括以下步骤:
(1)将聚氨酯海绵层置于氧化石墨烯的溶液中浸泡,然后用热氢碘酸将浸有氧化石墨烯的聚氨酯海绵进行还原,反复浸泡至反应完全,将其烘干,得到石墨烯海绵;
(2)将所述石墨烯海绵经过活化溶液浸泡后,放入化学镀镍溶液中,使石墨烯海绵被一层镍包覆,然后将被镍包覆的石墨烯海绵放入置换金槽,通过置换反应使镍层厚度减小,使样品被金层包覆;
(3)将上述样品冲洗后放入还原金槽,通过化学镀的方法使金层变厚;
(4)将步骤(3)所的样品冲洗干燥后,添加电极,并通过真空灌注PDMS,然后固化,制得三维结构复合材料柔性导体。
本发明步骤(1)制备石墨烯包覆的聚氨酯海绵,使得一个绝缘体聚氨酯海绵成为导电的三维结构,得到具有良好导电性的石墨烯海绵,从而为后续化学镀提供了良好的材料。
本发明的方法以聚氨酯海绵为基底材料,通过数次浸泡吸附并还原得到被石墨烯包覆的石墨烯海绵,然后通过化学镀方法,在石墨烯海绵表面沉积金-镍复合材料层,最后通过真空灌注PDMS对其进行封装,得到性能良好的三维结构复合材料柔性导体,该方法解决了柔性导体制备工艺复杂的问题,同时得到的可拉伸柔性导体具有较大的可拉伸性、良好的循环稳定性和可规模化生产等特点。
作为本发明所述方法的优选技术方案,所述方法还包括在步骤(1)之前进行步骤(1)’:将聚氨酯海绵用去离子水和无水乙醇进行清洗,然后烘干。
作为本发明所述方法的优选技术方案,步骤(1)所述制备石墨烯包覆的聚氨酯海绵的方法包括以下步骤:
(A)浸泡:将聚氨酯海绵置于氧化石墨烯的溶液中浸泡;
(B)还原:用热的氢碘酸对浸有氧化石墨烯的聚氨酯海绵进行还原;
(C)干燥,得到石墨烯包覆的聚氨酯海绵。
优选地,步骤(A)所述氧化石墨烯的溶液的浓度为1g/L~8g/L,例如1g/L、1.5g/L、2g/L、2.5g/L、3g/L、3.5g/L、4g/L、4.5g/L、5g/L、5.5g/L、6g/L、6.5g/L、7g/L、7.5g/L或8g/L等,优选3g/L~5g/L。
优选地,步骤(A)所述浸泡的时间为2h~6h,优选3h~5h。
优选地,步骤(B)所述还原的时间为10min~20min,优选10min~15min。
优选地,步骤(B)所述氢碘酸的浓度标定为:使氢碘酸与氧化石墨烯的溶 液中的去离子水的体积比为1:1~5,优选1:1~2。
优选地,步骤(B)所述氢碘酸的温度为50℃~100℃,例如50℃、55℃、60℃、65℃、70℃、75℃、80℃、85℃、90℃、95℃或100℃等,优选80℃。
优选地,步骤(B)所述还原在水浴条件下进行,水浴温度为80℃~90℃,优选85℃~90℃。
作为本发明所述方法的优选技术方案,步骤(1)制备石墨烯包覆的聚氨酯海绵的过程中,还包括在步骤(B)还原之后步骤(C)干燥之前进行洗涤的步骤。
优选地,步骤(1)制备石墨烯包覆的聚氨酯海绵的过程中,还包括在步骤(C)干燥之后,依次重复步骤(A)-(C)的步骤,重复的次数优选为1次~7次,例如优选1次、2次、3次、4次、5次、6次或7次,优选3次~5次,进一步优选4次或5次。
优选地,步骤(1)制备石墨烯包覆的聚氨酯海绵的过程中,还包括在重复最后一次的还原步骤之后干燥步骤之前进行去离子水清洗至少一次的操作。
作为本发明所述方法的优选技术方案,步骤(2)所述活化溶液组成为PdSO 4和H 2SO 4的混合溶液。
优选地,所述活化溶液中PdSO 4浓度为5~30ppm,例如5ppm、10ppm、15ppm、20ppm、25ppm、30ppm等,优选20ppm。
优选地,所述活化溶液中H 2SO 4浓度为5~20mol/L,例如5mol/L、12mol/L、15mol/L、18mol/L、20mol/L等,优选13mol/L。
作为本发明所述方法的优选技术方案,步骤(2)所述化学镀镍溶液组成为 NiSO 4·6H 2O,NaH 2PO 2(次磷酸钠)和Na 3C 6H 5O 7·2H 2O(二水柠檬酸钠)的混合溶液。
优选地,所述化学镀镍溶液中NiSO 4·6H 2O浓度为5~30g/L,例如5g/L、10g/L、15g/L、20g/L、25g/L、30g/L等,优选25g/L。
优选地,所述化学镀镍溶液中NaH 2PO 2浓度为10~50g/L,例如10g/L、15g/L、20g/L、25g/L、30g/L、35g/L、40g/L、45g/L、50g/L等,优选30g/L。
优选地,所述化学镀镍溶液中Na 3C 6H 5O 7·2H 2O浓度为1~15g/L,例如1g/L、3g/L、5g/L、7g/L、9g/L、12g/L、15g/L等,优选10g/L。
优选地,所述化学镀镍溶液pH为1~7,例如1、2、3、4、5、6、7等,优选4.5。
优选地,所述化学镀镍溶液温度为50~100℃,例如50℃、55℃、60℃、65℃、70℃、75℃、80℃、85℃、90℃、95℃、100℃等,优选85℃。
优选地,所述化学镀镍时间为1-10min,例如1min、2min、3min、4min、5min、6min、7min、8min、9min、10min等,优选5min。
优选地,所述化学镀镍中镍层厚度为250~275nm,例如250nm、260nm、265nm、270nm、275nm等,优选260nm。
作为本发明所述方法的优选技术方案,步骤(2)所述置换金槽溶液中,溶液组成为Na 3Au(SO 3) 2(亚硫酸金钠)、Na 2SO 3(亚硫酸钠)和N(CH 2PO 3H 2) 3(氨基三甲基膦酸)的混合溶液。
优选地,所述置换金槽溶液中Na 3Au(SO 3) 2浓度为1~10g/L,例如1g/L、2g/L、3g/L、4g/L、5g/L、6g/L、7g/L、8g/L、9g/L、10g/L等,优选3g/L。
优选地,所述置换金槽溶液中Na 2SO 3浓度为10~50g/L,例如10g/L、15g/L、20g/L、25g/L、30g/L、35g/L、40g/L、45g/L、50g/L等,优选35g/L。
优选地,所述置换金槽溶液中N(CH 2PO 3H 2) 3浓度为10~50g/L,例如10g/L、15g/L、20g/L、25g/L、30g/L、35g/L、40g/L、45g/L、50g/L等,优选20g/L。
优选地,所述置换金槽溶液pH为1~7,例如1、2、3、4、5、6、7等,优选7。
优选地,所述置换金溶液温度为50~100℃,例如50℃、55℃、60℃、65℃、70℃、75℃、80℃、85℃、90℃、95℃、100℃等,优选80℃。
优选地,所述置换金反应时间为1-30min,例如1min、5min、10min、15min、20min、25min、30min等,优选20min。
作为本发明所述方法的优选技术方案,步骤(3)所述还原金槽溶液中,溶液组成为Na 3Au(SO 3) 2(亚硫酸金钠),Na 2SO 3(亚硫酸钠),Na 3C 6H 5O 7·2H 2O(二水合柠檬酸钠)和CH 4N 2S(硫脲)的混合溶液。
优选地,所述还原金槽溶液中Na 3Au(SO 3) 2浓度为1~10g/L,例如1g/L、2g/L、3g/L、4g/L、5g/L、6g/L、7g/L、8g/L、9g/L、10g/L等,优选2g/L。
优选地,所述还原金槽溶液中Na 2SO 3浓度为10~50g/L,例如10g/L、15g/L、20g/L、25g/L、30g/L、35g/L、40g/L、45g/L、50g/L等,优选20g/L。
优选地,所述还原金槽溶液中Na 3C 6H 5O 7·2H 2O浓度为1~20g/L,例如1g/L、5g/L、10g/L、15g/L、20g/L等,优选10g/L。
优选地,所述还原金槽溶液中CH 4N 2S浓度为0.1~2g/L,例如0.1g/L、0.3g/L、0.5g/L、0.8g/L、1.0g/L、1.2g/L、1.5g/L、1.8g/L、2.0g/L等,优选1g/L。
优选地,所述还原金槽溶液pH为1~7,例如1、2、3、4、5、6、7等, 优选7。
优选地,所述还原金溶液温度为20~80℃,例如20℃、25℃、30℃、35℃、40℃、45℃、50℃、55℃、60℃、65℃、70℃、75℃、80℃等,优选50℃。
优选地,所述还原金反应时间为5-50min,例如5min、10min、15min、20min、25min、30min、35min、40min、45min、50min等,优选30min。
优选地,所述还原金反应之后,复合材料中金层的厚度为315~350nm,例如315nm、320nm、325nm、330nm、340nm、345nm、350nm等,优选350nm。且镍层的厚度为250~275nm,例如250nm、260nm、265nm、270nm、275nm等,优选260nm。
作为本发明所述方法的优选技术方案,步骤(4)所述真空灌注PDMS并固化封装的过程为,将得到的复合材料两端用导电银浆黏贴好电极之后,置于带有凹槽的聚四氟乙烯模具中,通过将配置好的PDMS(二甲基硅氧烷和固化剂的比例为10:1)浇筑在复合材料上,并将其置于烘箱中抽真空,放置30min后取出,最后在高温烘箱中固化,即得到可拉伸柔性导体。
此优选技术方案中,先采用真空下灌注PDMS的方式对材料进行封装,然后再进行固化,使柔性导体不仅具有良好的封装性,还具有很好的可拉伸性和循环稳定性,可拉伸应变达30%。
优选地,步骤(4)所述二甲基硅烷和固化剂的质量比为20~5:1,例如20:1、18:1、15:1、12:1、10:1、8:1或5:1等,优选10:1。
优选地,步骤(4)所述真空烘箱中放置时间为5~40min,例如5min、10min、15min、20min、25min、30min、35min、40min等,优选30min。
优选地,步骤(4)所述固化温度为60℃~90℃,例如60℃、65℃、70℃、 75℃、80℃、85℃、90℃等,优选70℃。
优选地,步骤(4)所述固化时间为1~5h,例如1h、1.5h、2h、2.5h、3h、3.5h、4h、4.5h、5h等,优选3h。
本发明第三个方面提供了本发明所述的三维结构复合材料作为柔性导体的用途。
与已有技术相比,本发明具有如下有益效果:
(1)本发明先在具有三维骨架材料的聚氨酯海绵上通过反复吸附还原方法制备出导电性良好的石墨烯海绵,然后通过化学镀的方法在石墨烯海绵上沉积金-镍,得到由金-镍-石墨烯包覆聚氨酯海绵形成的复合材料,再经过真空环境下灌注PDMS对其进行封装并进一步固化后得到三维结构复合材料柔性导体。这种三维结构复合材料柔性导体具有良好的可拉伸性(可拉伸最大应变达30%),能够在不同形变下保持导电稳定性(拉伸、弯曲和扭曲三种形变),本发明的三维结构复合材料柔性导体解决了柔性导体在拉伸应变不高、不同形变下稳定性不高、长时间使用稳定性不好的问题,大大提高了导电性能。
(2)本发明的制备方法简单,从原料上降低了成本,该制备方法解决了柔性导体工艺复杂,成本高,以及制备出的柔性导体导电性低和循环使用性较差的问题,这种制备方法可适用于大规模生产。
(3)本发明采用化学镀的方法,相比于电镀方法,得到的金属层更均匀,能够使得在形变的情况下也保持良好的导电性能。
附图说明
图1为三维结构复合材料柔性导体的表面金层SEM图;
图2为三维结构复合材料柔性导体的骨架SEM图;
图3为三维结构复合材料柔性导体,以及制备过程中镍包覆的复合材料的XRD图。
图4为三维结构复合材料柔性导体,以及制备过程中镍包覆的复合材料经过同样封装方式得到的材料分别的拉伸测试过程中相对电阻变化图。
图5三维结构复合材料柔性导体界面mapping图,展示了金层和镍层的厚度。
图6三维结构复合材料柔性导体经过多次弯曲和扭转测试过程中相对电阻变化图。
具体实施方式
申请人声明,本发明通过上述实施例来说明本发明的详细结构和工艺,但本发明并不局限于上述详细结构和工艺,即不意味着本发明必须依赖上述详细结构和工艺才能实施。所属技术领域的技术人员应该明白,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。实施例1制备三维结构Au-Ni复合材料柔性导体
(1)将聚氨酯海绵层用去离子水和无水乙醇反复清洗后,放入烘箱烘干,将其置于3g/L的氧化石墨烯的溶液中浸泡3h,然后用80℃氢碘酸将浸有氧化石墨烯的聚氨酯海绵在85℃水浴条件下进行还原10min,并洗涤,反复浸泡还原3次后,去离子水清洗至少一次,然后将石墨烯海绵在烘箱中烘干,得到具有良好导电性的石墨烯海绵;
(2)将所述导电性良好的石墨烯海绵经过包含20ppm PdSO 4和13mol/L H 2SO 4溶液的活化溶液浸泡后,放入包含25g/L NiSO 4·6H 2O,30g/L NaH 2PO 2(次磷酸钠)和10g/L Na 3C 6H 5O 7·2H 2O的pH值的4.5化学镀镍的溶液中,在85℃下,化学镀镍5min,使石墨烯海绵被一层薄薄的260nm厚的镍包覆,然后将被镍包覆的石墨烯海绵放入置换金槽,置换金槽溶液中,溶液组成为3g/L Na 3Au(SO 3) 2(亚硫酸金钠)、35g/L Na 2SO 3(亚硫酸钠)、20g/L N(CH 2PO 3H 2) 3(氨基三甲基膦酸),溶液pH为7。置换反应在80℃下进行,反应20分钟。通过置换反应使镍层厚度减小,使样品被金层包覆;
(3)将上述样品放入经过去离子水冲洗后放入还原金槽,还原金槽溶液组成为2g/L Na 3Au(SO 3) 2(亚硫酸金钠),20g/L Na 2SO 3(亚硫酸钠),10g/L Na 3C 6H 5O 7·2H 2O(二水合柠檬酸钠)、1g/L CH 4N 2S(硫脲),溶液pH为7。还原反应温度为50℃,反应30min,通过化学镀的方法使金层变厚,金层厚度为350nm;
(4)将样品取出后用去离子水反复冲洗干燥后,将得到的复合材料两端用导电银浆黏贴好电极之后,置于带有凹槽的聚四氟乙烯模具中,通过将配置好的PDMS(二甲基硅氧烷和固化剂的比例为10:1)在真空下浇筑在复合材料上,并将其置于烘箱中抽真空,放置30min后取出,最后在70℃高温烘箱中固化3h,即得到可拉伸柔性导体。
实施例2制备三维结构Au-Ni复合材料柔性导体
(1)将聚氨酯海绵层用去离子水和无水乙醇反复清洗后,放入烘箱烘干,将其置于5g/L的氧化石墨烯的溶液中浸泡5h,然后用80℃氢碘酸将浸有氧化石墨烯的聚氨酯海绵在90℃水浴条件下进行还原5min,并洗涤,反复浸泡还原 5次后,去离子水清洗至少一次,然后将石墨烯海绵在烘箱中烘干,得到具有良好导电性的石墨烯海绵;
(2)将所述导电性良好的石墨烯海绵经过包含20ppm PdSO 4和13mol/L H 2SO 4溶液的活化溶液浸泡后,放入包含25g/L NiSO 4·6H 2O,30g/L NaH 2PO 2(次磷酸钠)和10g/L Na 3C 6H 5O 7·2H 2O的pH值的4.5化学镀镍的溶液中,在85℃下,化学镀镍5min,使石墨烯海绵被一层薄薄的260nm厚的镍包覆,然后将被镍包覆的石墨烯海绵放入置换金槽,置换金槽溶液中,溶液组成为3g/L Na 3Au(SO 3) 2(亚硫酸金钠)、35g/L Na 2SO 3(亚硫酸钠)、20g/L N(CH 2PO 3H 2) 3(氨基三甲基膦酸),溶液pH为7。置换反应在80℃下进行,反应20分钟。通过置换反应使镍层厚度减小,使样品被金层包覆;
(3)将上述样品放入经过去离子水冲洗后放入还原金槽,还原金槽溶液组成为2g/L Na 3Au(SO 3) 2(亚硫酸金钠),20g/L Na 2SO 3(亚硫酸钠),10g/L Na 3C 6H 5O 7·2H 2O(二水合柠檬酸钠)、1g/L CH 4N 2S(硫脲),溶液pH为7。还原反应温度为50℃,反应30min,通过化学镀的方法使金层变厚,金层厚度为350nm;
(4)将样品取出后用去离子水反复冲洗干燥后,将得到的复合材料两端用导电银浆黏贴好电极之后,置于带有凹槽的聚四氟乙烯模具中,通过将配置好的PDMS(二甲基硅氧烷和固化剂的比例为10:1)在真空下浇筑在复合材料上,并将其置于烘箱中抽真空,放置30min后取出,最后在70℃高温烘箱中固化3h,即得到可拉伸柔性导体。
实施例3制备三维结构Ni材料柔性导体
(1)将聚氨酯海绵层用去离子水和无水乙醇反复清洗后,放入烘箱烘干, 将其置于5g/L的氧化石墨烯的溶液中浸泡5h,然后用80℃氢碘酸将浸有氧化石墨烯的聚氨酯海绵在90℃水浴条件下进行还原5min,并洗涤,反复浸泡还原5次后,去离子水清洗至少一次,然后将石墨烯海绵在烘箱中烘干,得到具有良好导电性的石墨烯海绵;
(2)将所述导电性良好的石墨烯海绵经过包含20ppm PdSO 4和13mol/L H 2SO 4溶液的活化溶液浸泡后,放入包含25g/L NiSO 4·6H 2O,30g/L NaH 2PO 2(次磷酸钠)和10g/L Na 3C 6H 5O 7·2H 2O的pH值的4.5化学镀镍的溶液中,在85℃下,化学镀镍5min,使石墨烯海绵被一层薄薄的260nm厚的镍包覆;
(3)将样品取出后用去离子水反复冲洗干燥后,将得到的复合材料两端用导电银浆黏贴好电极之后,置于带有凹槽的聚四氟乙烯模具中,通过将配置好的PDMS(二甲基硅氧烷和固化剂的比例为10:1)在真空下浇筑在复合材料上,并将其置于烘箱中抽真空,放置30min后取出,最后在70℃高温烘箱中固化3h,即得到可拉伸柔性导体。
实施例4通过是X射线衍射检测
通过X射线衍射法对三维结构复合材料柔性导体,以及制备过程中镍包覆的复合材料进行检测,检测结果见图3,根据XRD结果可以看出通过本发明的方法在镍表面已镀有金层。
实施例5拉伸测试过程中相对电阻变化
通过对实施例1和实施例3的结果进行拉伸测试过程中相对电阻变化,实验方法为对测试样品进行拉伸处理,同时测试电阻变化,检测拉伸应变0-30时,不同状态下的电阻性能,实验结果参见图4,实验结果可知仅具有镍层的样品电阻变化明显,而具有金层的样品电阻稳定。
实施例6弯曲和扭曲过程中相对电阻的变化
通过对实施例1和实施例3的结果进行拉伸测试过程中相对电阻变化,实验方法为对测试样品进行弯曲和扭曲处理,同时测试第一次和第一千次时电阻变化,实验结果参见图6,实验结果可知电阻变化随弯曲和扭曲测试的增加几乎不产生变化。

Claims (9)

  1. 一种三维结构复合材料,其特征在于,其以聚氨酯海绵为基质、并在聚氨酯海绵表面和内部包覆石墨烯,并在石墨烯上通过化学镀方法依次包覆镍层和金层,最后通过聚二甲基硅氧烷(PDMS)封装而成;
    优选地,聚氨酯海绵孔径大小为100~300μm,且聚氨酯海绵厚度为0.5mm~2mm,优选0.8mm~1mm;
    优选地,镍层厚度为250~275nm;
    优选地,金层的厚度为315~350nm。
  2. 根据权利要求1所述的三维结构复合材料的制备方法,其特征在于,包括如下步骤:
    (1)将聚氨酯海绵层置于氧化石墨烯的溶液中浸泡,然后用热氢碘酸将浸有氧化石墨烯的聚氨酯海绵进行还原,反复浸泡至反应完全,将其烘干,得到石墨烯海绵;
    (2)将所述石墨烯海绵经过活化溶液浸泡后,放入化学镀镍溶液中,使石墨烯海绵被一层镍包覆,然后将被镍包覆的石墨烯海绵放入置换金槽,通过置换反应使镍层厚度减小,使样品被金层包覆;
    (3)将上述样品冲洗后放入还原金槽,通过化学镀的方法使金层变厚;
    (4)将步骤(3)所的样品冲洗干燥后,添加电极,并通过真空灌注PDMS,然后固化,制得三维结构复合材料柔性导体。
  3. 根据权利要求2所述的三维结构复合材料的制备方法,其特征在于,步骤(1)所述制备石墨烯包覆的聚氨酯海绵的方法包括以下步骤:
    (A)浸泡:将聚氨酯海绵置于氧化石墨烯的溶液中浸泡;
    (B)还原:用热的氢碘酸对浸有氧化石墨烯的聚氨酯海绵进行还原;
    (C)干燥,得到石墨烯包覆的聚氨酯海绵。
  4. 一种权利要求2所述三维结构复合材料的制备方法,其特征在于,步骤(2)所述活化溶液组成为PdSO 4和H 2SO 4的混合溶液;
    优选地,活化溶液中PdSO 4浓度为5~30ppm;
    优选地,活化溶液中H 2SO 4浓度为5~20mol/L。
  5. 一种权利要求2所述三维结构复合材料的制备方法,其特征在于,步骤(2)中化学镀镍溶液组成为NiSO 4·6H 2O、NaH 2PO 2和Na 3C 6H 5O 7·2H 2O的混合溶液;
    优选地,化学镀镍溶液中NiSO 4·6H 2O浓度为5~30g/L;
    优选地,所述化学镀镍溶液中NaH 2PO 2浓度为10~50g/L;
    优选地,所述化学镀镍溶液中Na 3C 6H 5O 7·2H 2O浓度为1~15g/L;
    优选地,所述化学镀镍溶液pH为1~7;
    优选地,所述化学镀镍溶液温度为50~100℃。
  6. 根据权利要求4所述的制备方法,其特征在于,步骤(2)中所述置换金槽溶液组成为Na 3Au(SO 3) 2、Na 2SO 3和N(CH 2PO 3H 2) 3的混合溶液;
    优选地,所述置换金槽溶液中Na 3Au(SO 3) 2浓度为1~10g/L;
    优选地,所述置换金槽溶液中Na 2SO 3浓度为10~50g/L;
    优选地,所述置换金槽溶液中N(CH 2PO 3H 2) 3浓度为10~50g/L;
    优选地,所述置换金槽溶液pH为1~7;
    优选地,所述置换金溶液温度为50~100℃。
  7. 根据权利要求4所述的制备方法,其特征在于,步骤(3)所述还原金槽溶液中,溶液组成为Na 3Au(SO 3) 2,Na 2SO 3,Na 3C 6H 5O 7·2H 2O和CH 4N 2S的混合溶液;
    优选地,所述还原金槽溶液中Na 3Au(SO 3) 2浓度为1~10g/L;
    优选地,所述还原金槽溶液中Na 2SO 3浓度为10~50g/L;
    优选地,所述还原金槽溶液中Na 3C 6H 5O 7·2H 2O浓度为1~20g/L;
    优选地,所述还原金槽溶液中CH 4N 2S浓度为0.1~2g/L;
    优选地,所述还原金槽溶液pH为1~7;
    优选地,所述还原金溶液温度为20~80℃。
  8. 根据权利要求4所述的制备方法,其特征在于,步骤(4)所述真空灌注PDMS过程为,将得到的复合材料两端贴好电极之后,通过将配置好的PDMS进行浇筑,抽真空处理,在高温固化,即得到复合材料;
    优选地,所述配置好的PDMS为二甲基硅氧烷和固化剂的组合物,更优选地的二甲基硅氧烷和固化剂比例为5-15:1。
  9. 权利要求1所述的三维结构复合材料作为柔性导体的用途。
PCT/CN2019/123941 2018-12-12 2019-12-09 一种三维结构复合材料及其制备方法和用途 WO2020119617A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811520547.9A CN109749121A (zh) 2018-12-12 2018-12-12 一种三维结构复合材料及其制备方法和用途
CN201811520547.9 2018-12-12

Publications (1)

Publication Number Publication Date
WO2020119617A1 true WO2020119617A1 (zh) 2020-06-18

Family

ID=66403815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123941 WO2020119617A1 (zh) 2018-12-12 2019-12-09 一种三维结构复合材料及其制备方法和用途

Country Status (2)

Country Link
CN (1) CN109749121A (zh)
WO (1) WO2020119617A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109749121A (zh) * 2018-12-12 2019-05-14 中国科学院深圳先进技术研究院 一种三维结构复合材料及其制备方法和用途
CN110556472B (zh) * 2019-08-23 2022-08-09 太原理工大学 一种基于pdms材料的包覆型压力传感器及其制备方法
CN111375320B (zh) * 2020-03-11 2022-05-10 扬州大学 导电超疏水复合纤维膜、制备方法及其在油水分离中的应用
CN113527862A (zh) * 2020-04-17 2021-10-22 北京化工大学 一种基于液态金属的可拉伸导电复合材料及其制备方法
CN112927836B (zh) * 2021-01-26 2022-02-15 中国科学院兰州化学物理研究所 一种海绵复合导电弹性材料及其制备方法和在防静电领域的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104257367A (zh) * 2014-09-16 2015-01-07 苏州能斯达电子科技有限公司 一种可贴附柔性压力传感器及其制备方法
CN107655398A (zh) * 2017-09-13 2018-02-02 中国科学院深圳先进技术研究院 一种高灵敏度可拉伸柔性应变传感器及其制备方法
CN109749121A (zh) * 2018-12-12 2019-05-14 中国科学院深圳先进技术研究院 一种三维结构复合材料及其制备方法和用途

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105976896B (zh) * 2016-05-11 2017-10-10 中国科学院深圳先进技术研究院 一种柔性导体及其制备方法
CN107041113B (zh) * 2017-05-04 2019-02-12 哈尔滨工业大学 一种利用石墨烯海绵和聚二甲基硅氧烷进行复合制备高导电高电磁屏蔽柔性复合材料的方法
CN108822548B (zh) * 2018-06-19 2021-02-26 复旦大学 一种高度可拉伸高灵敏度的3d打印石墨烯基柔性传感器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104257367A (zh) * 2014-09-16 2015-01-07 苏州能斯达电子科技有限公司 一种可贴附柔性压力传感器及其制备方法
CN107655398A (zh) * 2017-09-13 2018-02-02 中国科学院深圳先进技术研究院 一种高灵敏度可拉伸柔性应变传感器及其制备方法
CN109749121A (zh) * 2018-12-12 2019-05-14 中国科学院深圳先进技术研究院 一种三维结构复合材料及其制备方法和用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAN, FEI ET AL.: "A Crack-Based Nickel@Graphene-Wrapped Polyurethane Sponge Ternary Hybrid Obtained by Electrodeposition for Highly Sensitive Wearable Strain Sensors", JOURNAL OF MATERIALS CHEMISTRY C, vol. 5, no. 39, 19 September 2017 (2017-09-19), XP055713535, ISSN: 2050-7526, DOI: 20200109144942A *
HAN, FEI ET AL.: "Fabrication of a Flexible and Stretchable Three-Dimensional Conductor Based on Au–Ni@Graphene Coated Polyurethane Sponge by Electroless Plating", JOURNAL OF MATERIALS CHEMISTRY C, vol. 6, no. 30, 10 July 2018 (2018-07-10), XP055713538, ISSN: 2050-7526, DOI: 20200109144523X *

Also Published As

Publication number Publication date
CN109749121A (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
WO2020119617A1 (zh) 一种三维结构复合材料及其制备方法和用途
CN107655398B (zh) 一种高灵敏度可拉伸柔性应变传感器及其制备方法
Cui et al. Highly conductive and ultra-durable electronic textiles via covalent immobilization of carbon nanomaterials on cotton fabric
Yun et al. Highly conductive and environmentally stable gold/graphene yarns for flexible and wearable electronics
CN109520410B (zh) 三维石墨烯泡沫柔性应变传感器及其制备方法
CN110165229B (zh) 一种石墨烯复合碳纤维纸及其制备方法和应用
CN102995395B (zh) 一种导电纺织品及其制作方法
CN105898981B (zh) 一种基于导电织物的可拉伸电极及其制备方法
CN106084268A (zh) 一种银纳米线/聚二甲基硅氧烷复合薄膜的制备方法
CN107313249A (zh) 一种聚酰亚胺/镍复合导电纤维及其制备方法
CN105484015A (zh) 一种层状复合屏蔽织物的制备方法
CN111171482A (zh) 碳纤维毡/银纳米线/聚偏氟乙烯复合材料的制备方法
CN105200761A (zh) 一种电磁屏蔽聚苯硫醚纤维无钯活化化学镀镍方法
CN108530657B (zh) 一种具有自愈合和超疏防水性能的高灵敏应变传感高分子及其制备方法
CN109473286B (zh) 一种可拉伸的纤维织物超级电容器及其制备方法
CN112556899A (zh) 一种柔性压力传感器及其制备方法
CN111411351A (zh) 高性能电驱动全氟磺酸ipmc柔性驱动器的制备方法
Zhou et al. Constructing robust and recyclable self-powered polysaccharide-based hydrogels by adjusting Zn 2+/Li+ bimetallic networks
He et al. An electrically stable and mechanically robust stretchable fiber conductor prepared by dip-coating silver nanowires on porous elastomer yarn
CN107034552B (zh) 石墨烯纤维及其制备方法
Zheng et al. Preparation and application of flexible conductive fabric based on silk
CN110634589B (zh) 一种聚多巴胺涂覆氧化石墨烯基三元人造珍珠层材料及其制备方法
CN107591540A (zh) 一种生物燃料电池阳极材料的制备方法
Xie et al. Multifunctional PDMS/Schiff base/SiO2 gel assisted fabrication of printed, stretchable and straight copper conductors
CN117188157B (zh) 一种基于铜金属-有机框架的压敏材料、制备方法及传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897075

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/03/2022).

122 Ep: pct application non-entry in european phase

Ref document number: 19897075

Country of ref document: EP

Kind code of ref document: A1