WO2020119580A1 - 有机硅石墨复合热界面材料及其制备方法和应用 - Google Patents

有机硅石墨复合热界面材料及其制备方法和应用 Download PDF

Info

Publication number
WO2020119580A1
WO2020119580A1 PCT/CN2019/123447 CN2019123447W WO2020119580A1 WO 2020119580 A1 WO2020119580 A1 WO 2020119580A1 CN 2019123447 W CN2019123447 W CN 2019123447W WO 2020119580 A1 WO2020119580 A1 WO 2020119580A1
Authority
WO
WIPO (PCT)
Prior art keywords
optionally
thermal interface
interface material
graphite
organosilicon
Prior art date
Application number
PCT/CN2019/123447
Other languages
English (en)
French (fr)
Inventor
张保坦
孙蓉
朱朋莉
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2020119580A1 publication Critical patent/WO2020119580A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present application belongs to the technical field of thermal interface materials, and relates to an organic silicon graphite composite thermal interface material and a preparation method and application thereof.
  • 5G Fifth generation mobile communication
  • 5G is a new generation mobile communication system facing the needs of the information society in 2020. It has the characteristics of high spectrum utilization rate, large data flow, low network energy consumption, high reliability and short delay, etc. , Unmanned driving, telemedicine, artificial intelligence and other new technology application innovation foundations.
  • the breakthrough of 5G communication technology and the expansion of application scenarios will promote the revolutionary development of smart terminals and bring new opportunities to the development of the thermal interface material industry.
  • electronic devices especially power devices
  • every 10°C increase in temperature reduces the life of the device by 50%. Therefore, the problem of heat dissipation has become a critical issue that urgently needs to be solved for a new generation of electronic products.
  • thermal interface materials have played a key role in thermal management and become one of the key technologies affecting the future development of thermal management technology, which has aroused widespread concern.
  • Silicone thermal interface materials are mainstream materials used to transfer energy between heat-generating parts and heat-dissipating parts. They have good flexibility, electrical insulation and ductility, and are ideal for heat transfer materials in electronic equipment.
  • the silicone thermal conductive material in the related art is filled with high thermal conductive ceramic particles, such as aluminum oxide, zinc oxide, quartz powder, aluminum nitride, boron nitride, silicon carbide, etc. in the silicone, which has a low thermal conductivity (vertical Thermal conductivity is difficult to exceed 8W ⁇ m -1 ⁇ K -1 ), high density, high hardness and other problems.
  • CN102746670A discloses a heat dissipation interface material for high-power LED lamp packaging and a preparation method thereof.
  • the heat dissipation interface material is made of flexible AB two-component condensation type room temperature curing silicone resin as a matrix, adding dimethyl silicone oil and functionalization Graphene microchips are fully mixed as thermally conductive fillers.
  • CN107686699A discloses a thermally conductive interface material and a preparation method.
  • the thermally conductive interface material includes: a graphene composite interface material gasket, sprayed resin, and thermally conductive insulating powder; a mixture of sprayed resin and thermally conductive insulating powder, covering the graphene composite interface On the material gasket; it increases the insulation of the thermal interface material, but its thermal conductivity is still low and the density is too large to meet the application requirements.
  • the purpose of this application is to provide a silicone-graphite composite thermal interface material and its preparation method and application.
  • the silicone-graphite composite thermal interface material provided in this application has the advantages of high thermal conductivity, low density and good strength, and is particularly suitable for New energy vehicles, 5G communication equipment and other lightweight and high thermal conductivity application needs.
  • the present application provides an organosilicon graphite composite thermal interface material.
  • the organosilicon graphite composite thermal interface material includes a graphite skeleton having a honeycomb structure and an organosilicon material filled in the honeycomb structure.
  • the thermal interface material of the present application includes silicone and honeycomb graphite framework, which not only retains the softness of the silicone but also has good thermal conductivity of the graphite framework, the silicone material is filled in the honeycomb structure of the graphite framework, so that The thermal interface material has a higher longitudinal thermal conductivity at a lower packing density, and the honeycomb structure can further improve the tensile strength of the silicone material and extend its service life, especially in some harsh environments.
  • the graphite skeleton of the honeycomb structure realizes the integration of the heat conduction path, which can significantly reduce the contact thermal resistance of the heat conduction network channel between the powders in the traditional technology, and realize the vertical arrangement of the heat conduction path, greatly reducing
  • the amount of heat conductive material is used to obtain the light-weight and high heat conductive silicone graphite thermal interface material of the present application, which can effectively solve the heat dissipation problem of the application product.
  • the raw materials for preparing the silicone material include polyvinyl siloxane, a cross-linking agent, and a catalyst.
  • the mass ratio of the polyvinylsiloxane, crosslinking agent and catalyst is 100: (1-25): (0.01-2.5), for example, 100:2:0.05, 100:5:0.1, 100 :8:0.5, 100:10:1, 100:15:1.5, 100:20:2, etc.
  • the polyvinyl siloxane is linear polyvinyl siloxane, branched polyvinyl siloxane, dendritic polyvinyl siloxane or micro-crosslinked polyvinyl siloxane .
  • the molecular structure of the polyvinyl siloxane contains at least two aliphatic unsaturated double bonds.
  • the molecular structure of the polyvinyl siloxane contains at least two vinyl groups.
  • the viscosity of the polyvinylsiloxane is 300-500000 mPa ⁇ s, for example, 400 mPa ⁇ s, 500 mPa ⁇ s, 1000 mPa ⁇ s, 5000 mPa ⁇ s, 10000 mPa ⁇ s, 50000 mPa ⁇ s, 100,000 mPa ⁇ s, 400000mPa ⁇ s etc.
  • the cross-linking agent is any one or a combination of at least two of linear hydrogen-containing silicone oil, ring-shaped hydrogen-containing silicone resin or branched cross-linked hydrogen-containing silicone resin.
  • the molecular structure of the cross-linking agent contains at least two silicon-hydrogen bonds.
  • the viscosity of the cross-linking agent is 10-10000 mPa ⁇ s, such as 50 mPa ⁇ s, 100 mPa ⁇ s, 120 mPa ⁇ s, 150 mPa ⁇ s, 200 mPa ⁇ s, 250 mPa ⁇ s, 400 mPa ⁇ s, 500 mPa ⁇ s , 800mPa ⁇ s, 1000mPa ⁇ s, 1200mPa ⁇ s, 1500mPa ⁇ s, 1800mPa ⁇ s, 2000mPa ⁇ s, 2500mPa ⁇ s, 2800mPa ⁇ s, etc., optional 100-3000mPa ⁇ s.
  • the hydrogen content of the cross-linking agent is 0.02%-1.52%, such as 0.05%, 0.08%, 0.1%, 0.2%, 0.5%, 0.8%, 1.0%, 1.2%, 1.4%, 1.5% Wait.
  • the catalyst is any one or a combination of at least two of rare earth metal compounds, Group VIII metal compounds or metal complexes, Group VII metal compounds or metal complexes, and may be platinum series
  • Any one or a combination of at least two of the catalyst, the rhodium-based catalyst or the palladium-based catalyst may be selected as any one or a combination of at least two of the Speier catalyst, Karstedt catalyst or Wilkinson catalyst, and may be selected as the Speier catalyst.
  • the Pt content of the Speier catalyst is 100-5000 ppm, such as 200 ppm, 300 ppm, 500 ppm, 800 ppm, 1000 ppm, 2000 ppm, 3000 ppm, 4000 ppm, and the like.
  • the raw material for preparing the silicone material further includes an inhibitor and a surface treatment agent.
  • the mass ratio of the inhibitor and surface treatment agent to polyvinyl siloxane is (0.2-3.0):(0.5-8.0):100, for example, 0.5:1:100, 1:2:100, 1.5:3:100, 2:4:100, 2.5:6:100, etc.
  • the inhibitor is an alkynyl alcohol compound and/or polyvinyl silicone oil.
  • the surface treatment agent includes a vinyl silane coupling agent, an epoxy coupling agent, an acryloxy silane coupling agent, a phthalate coupling agent, a zirconate coupling agent, aluminum Either one or a combination of at least two of acid ester coupling agents or aluminate coupling agent hydrolysates, optionally ⁇ -methacryloxypropyltrimethoxysilane, 3-glycidyl Etheroxypropyltrimethoxysilane, 3-(2,3glycidoxy)propylmethyldiethoxysilane, 2-(3,4-epoxycyclohexane)ethyltrimethoxysilane , Isopropyl titanate tristearate, n-butyl titanate, bis(acetylacetonyl)ethoxy isopropoxy titanate, bis(triethanolamine) diisopropyl titanate or tetra-n-propyl Any one or a combination of at least two of the base zir
  • the present application provides a method for preparing a silicone-graphite composite thermal interface material according to the first aspect, the preparation method includes: dipping and curing a honeycomb graphite skeleton in an organosilicon material glue solution, The organic silicon graphite composite thermal interface material is obtained.
  • the method for preparing the graphite skeleton of the honeycomb structure includes the following steps:
  • honeycomb stack is stretched and shaped, and then carbonized to obtain a graphite skeleton with a honeycomb structure.
  • the raw material paper includes any one or a combination of at least two of meta-aramid paper, para-aramid paper or polyimide film.
  • the thickness of the raw paper is 15-500 ⁇ m, for example, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 80 ⁇ m, 100 ⁇ m, 150 ⁇ m, 200 ⁇ m, 300 ⁇ m, 400 ⁇ m, 450 ⁇ m, and the like.
  • the gumming is performed on a gumming roller.
  • the glue used for the glue application is any one or a combination of at least two of epoxy resin glue, polyurethane glue, acrylate glue or polyimide glue.
  • the honeycomb core has a honeycomb core cell diameter of 0.5-10 mm, such as 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, and the like.
  • the thickness of the honeycomb core of the honeycomb laminate is 5-50 mm, such as 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, 35 mm, 40 mm, 45 mm, and so on.
  • the setting temperature is 280-350°C, for example, 290°C, 300°C, 310°C, 320°C, 330°C, 340°C, etc.
  • the setting time is 0.5-1h, such as 0.6h, 0.7h, 0.8h, 0.9h, etc.
  • the carbonization is performed in a tube furnace.
  • the carbonization temperature is 1200-3000°C, for example, 1500°C, 2000°C, 2500°C, 2800°C, and so on.
  • the carbonization time is 2-3h, such as 2.2h, 2.4h, 2.5h, 2.6h, 2.8h, etc.
  • the dipping is performed in a dipping machine.
  • the curing temperature is 140-160°C, such as 142°C, 145°C, 147°C, 150°C, 152°C, 155°C, 157°C, etc.
  • the curing time is 20-40 min, such as 22 min, 25 min, 27 min, 30 min, 32 min, 35 min, 37 min, etc.
  • the present application provides the application of the organosilicon graphite composite thermal interface material according to the first aspect in new energy vehicles or electronic components.
  • the thermal interface material of this application includes silicone and honeycomb graphite framework, which not only retains the softness of silicone but also has good thermal conductivity of graphite framework, the silicone material is filled in the honeycomb structure of graphite framework, so that The thermal interface material of the present application has higher longitudinal thermal conductivity at a lower packing density, and the honeycomb structure can further improve the tensile strength of the silicone material and extend the service life in harsh environments;
  • the lightweight and highly thermally conductive silicone graphite thermal interface material of this application has the advantages of high thermal conductivity and low density.
  • the thermal conductivity can be as high as 10W/m ⁇ K or more, and the density can be as low as 1.2g/cm 3 or less .
  • An organic silicon graphite composite thermal interface material is composed of a graphite skeleton with a honeycomb structure and an organic silicon material filled in the honeycomb structure.
  • the raw material for preparing the silicone material is composed of 100 parts by weight of polyvinylsiloxane, 5.5 parts by weight of methyl hydrogen-containing polysiloxane crosslinking agent, 0.3 parts by weight of platinum catalyst, 0.2 parts by weight of butynol inhibitor and 1.5 parts by weight of KH-560 surface treatment agent.
  • the viscosity of the polyvinylsiloxane is 1000 mPa ⁇ s; the viscosity of the methyl hydrogen-containing polysiloxane crosslinking agent is 100 mPa ⁇ s, the hydrogen content is 0.8%; the Pt content of the platinum catalyst is 2000 ppm.
  • the preparation method is as follows:
  • the core strip adhesive is a high temperature epoxy resin adhesive with a viscosity of 20s/50mL; during hot pressing, it is first preheated at 80°C for 10min, then at 150°C for 30min, and finally cured at 170°C for 2h, and the hot pressing pressure is 5MPa.
  • An organic silicon graphite composite thermal interface material is composed of a graphite skeleton with a honeycomb structure and an organic silicon material filled in the honeycomb structure.
  • the raw material for preparing the silicone material is composed of 100 parts by weight of polyvinylsiloxane, 2.5 parts by weight of methyl hydrogen-containing polysiloxane crosslinking agent, 0.05 parts by weight of platinum catalyst, 0.25 parts by weight of butynol inhibitor and 3.0 parts by weight of KH-560 surface treatment agent.
  • the viscosity of the polyvinylsiloxane is 400 mPa ⁇ s; the viscosity of the methyl hydrogen-containing polysiloxane crosslinking agent is 50 mPa ⁇ s, the hydrogen content is 1.5%; the Pt content of the platinum catalyst is 3000 ppm.
  • the preparation method is as follows:
  • the core strip adhesive is a high temperature epoxy resin adhesive with a viscosity of 20s/50mL; during hot pressing, it is first preheated at 80°C for 10min, then at 150°C for 30min, and finally cured at 170°C for 2h, and the hot pressing pressure is 5MPa.
  • An organic silicon graphite composite thermal interface material is composed of a graphite skeleton with a honeycomb structure and an organic silicon material filled in the honeycomb structure.
  • the raw material for preparing the silicone material is composed of 100 parts by weight of polyvinylsiloxane, 3.5 parts by weight of methyl hydrogen-containing polysiloxane crosslinking agent, 0.5 parts by weight of platinum catalyst, 0.2 parts by weight of butynol inhibitor and 2.0 parts by weight of KH-560 surface treatment agent.
  • the viscosity of the polyvinyl siloxane is 500,000 mPa ⁇ s; the viscosity of the methyl hydrogen-containing polysiloxane crosslinking agent is 1000 mPa ⁇ s, the hydrogen content is 1.0%; the Pt content of the platinum catalyst is 5000 ppm.
  • the preparation method is as follows:
  • Polyimide fiber paper with a thickness of 30 ⁇ m is used as the raw material paper, which is coated with a rubber roller dipped in the core strip glue, and then the multi-layered raw material paper is staggered and laminated, and finally hot pressed The machine is hot pressed to make a honeycomb block with a hole size of 0.5mm and a thickness of 5mm.
  • the core strip adhesive is a high-temperature polyimide resin adhesive with a viscosity of 15s/50mL; during hot pressing, it is first preheated at 100°C for 30min, then at 150°C for 60min, and finally cured at 200°C for 2h.
  • the hot pressing pressure is 7MPa.
  • An organic silicon graphite composite thermal interface material is composed of a graphite skeleton with a honeycomb structure and an organic silicon material filled in the honeycomb structure.
  • the raw material for preparing the silicone material is composed of 100 parts by weight of polyvinylsiloxane, 25 parts by weight of methyl hydrogen-containing polysiloxane crosslinking agent, 2.5 parts by weight of platinum catalyst, 3 parts by weight of butynol inhibitor and 3.0 parts by weight of KH-560 surface treatment agent.
  • polyvinyl siloxane is a mixture of 80 parts of vinyl terminated polysiloxane with a viscosity of 500 mPa ⁇ s and 20 parts of vinyl terminated polysiloxane with a viscosity of 30,000 mPa ⁇ s; methyl hydrogen-containing polysiloxane
  • the silicone crosslinking agent is composed of 20 parts of hydrogen-containing polysiloxane (viscosity 3000mPa ⁇ s, hydrogen content of 0.05%) and 5 parts of hydrogen-containing polysiloxane (viscosity 50mPa ⁇ s, hydrogen content of 0.8%);
  • the Pt content of the platinum catalyst was 100 ppm.
  • the preparation method is as follows:
  • Polyimide fiber paper with a thickness of 400 ⁇ m is used as the raw material paper, which is coated with a rubber roller dipped in the core strip glue, and then the multi-layered raw material paper is staggered and finally pressed by hot pressing. The machine is hot pressed to make a honeycomb block with a hole size of 10mm and a thickness of 50mm.
  • the core strip adhesive is a high-temperature polyimide resin adhesive with a viscosity of 15s/50mL; during hot pressing, it is first preheated at 100°C for 30min, then 180°C/60min, 230°C/60min, and the hot pressing pressure is 7MPa.
  • the mixture material after stirring and mixing is filled into a frame-shaped mold with a thickness of 2 mm.
  • the frame-shaped mold is an upper open mold to facilitate the solidification and molding of the upper surface of the material.
  • the excess material is scraped out with a scraper; place the mold with the mixture in the oven and cure at 100 °C for 15 minutes.
  • the thermal interface material with a thickness of 2mm is obtained .
  • the method is as follows:
  • the mixture material after stirring and mixing is filled into a frame-shaped mold with a thickness of 2 mm.
  • the frame-shaped mold is an upper open mold to facilitate the solidification and molding of the upper surface of the material.
  • the excess material is scraped out with a scraper; place the mold with the mixture in the oven and cure at 100 °C for 15 minutes.
  • the thermal interface material with a thickness of 2mm is obtained .
  • An organosilicon graphite composite thermal interface material is prepared by using the preparation method provided by the prior art. The method is as follows:
  • the mixture material after stirring and mixing is filled into a frame-shaped mold with a thickness of 2 mm.
  • the frame-shaped mold is an upper open mold to facilitate the solidification and molding of the upper surface of the material.
  • the excess material is scraped out with a scraper; place the mold with the mixture in the oven and cure at 100 °C for 15 minutes.
  • the thermal interface material with a thickness of 2mm is obtained .
  • the thermal interface material provided by the present application has the advantages of high thermal conductivity and low density.
  • the thermal conductivity can be up to 15 W/m ⁇ K and the density is below 1.15 g/cm 3 .
  • Comparative Examples 1-3 it can be seen that the application of the honeycomb graphite skeleton and the silicone material in this application can save the amount of heat conductive material and have the advantages of high heat conductivity and low density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

有机硅石墨复合热界面材料及其制备方法和应用,所述有机硅石墨复合热界面材料包括具有蜂窝结构的石墨骨架以及填充在蜂窝结构内的有机硅材料。所述热界面材料包括有机硅与蜂窝状石墨骨架,既保留了有机硅柔软的贴合性又具有石墨骨架良好的导热性,有机硅材料填充在石墨骨架的蜂窝结构内,使所述热界面材料在较低的填充密度下具有较高的纵向导热性能,并且蜂窝结构可以进一步提高有机硅材料的抗拉强度,以及延长在恶劣环境下的使用寿命。

Description

[根据细则37.2由ISA制定的发明名称] 有机硅石墨复合热界面材料及其制备方法和应用 技术领域
本申请属于热界面材料技术领域,涉及一种有机硅石墨复合热界面材料及其制备方法和应用。
背景技术
第五代移动通信(5G)是面向2020年信息社会需求的新一代移动通信系统,具有频谱利用率高、数据流量大、网络耗能低、可靠性高和时延短等特点,是物联网、无人驾驶、远程医疗、人工智能等新一代信息技术应用创新的基础。5G通信技术的突破和应用场景的扩大,将促进智能终端的革命性发展,给热界面材料产业发展带来了新的机遇。特别是随着智能终端不断向超高系统集成、小型化和高密度化发展,使得电子器件(尤其是功率器件)在工作过程中产生高密度的热量,造成电子产品的温度迅速上升及可靠性急剧下降。根据Arrhenius公式,温度每升高10℃,器件的寿命降低50%。因此,散热问题已成为新一代电子产品迫切需要解决的关键问题。
热界面材料作为有效的散热解决手段,在热管理中起到了十分关键的作用,成为影响热管理技术未来发展的关键技术之一,引起了人们的广泛关注。有机硅热界面材料是用于发热部位和散热部位之间传递能量的主流材料,具有良好柔韧性、电绝缘性以及延展性,是电子设备中热传递材料的理想选择。然而,相关技术中的有机硅导热材料在有机硅中填充以高导热陶瓷颗粒,如氧化铝、氧化锌、石英粉、氮化铝、氮化硼、碳化硅等,存在着导热系数低(纵向热导率难以超过8W·m -1·K -1)、密度大、硬度高等问题。
CN102746670A公开了一种用于大功率LED灯具封装的散热界面材料及其 制备方法,该散热界面材料是由柔性AB双组分缩合型室温固化有机硅树脂作基体,加入二甲基硅油以及功能化石墨烯微片作为导热填料充分混合而成,制备时功能化石墨烯微片与硅树脂于双辊开炼机上充分混合,使功能化石墨烯均匀地分散在硅树脂基体内,从而制备出性能优异的散热界面材料,虽然降低了界面接触热阻,但是导热系数仍然不够高,难以满足随着电子工业的快速发展带来的功率密度的提升引起的散热问题。CN107686699A公开了一种导热界面材料和制备方法,该导热界面材料包括:石墨烯复合界面材料垫片、喷涂树脂、导热绝缘粉体;喷涂树脂和导热绝缘粉体的混合物,覆盖在石墨烯复合界面材料垫片上;其增加了导热界面材料的绝缘性,但是其热导率仍然较低且密度太大,无法满足应用要求。
因此,亟需开发一种高导热的有机硅热界面材料以保障5G通讯终端设备的稳定持续运行与应用普及。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的在于提供一种有机硅石墨复合热界面材料及其制备方法和应用,本申请提供的有机硅石墨复合热界面材料具有导热率高、密度低并且强度较好的优点,尤其适用于新能源汽车、5G通信设备等轻量高导热化的应用需求。
为达此目的,本申请采用以下技术方案:
第一方面,本申请提供了一种有机硅石墨复合热界面材料,所述有机硅石墨复合热界面材料包括具有蜂窝结构的石墨骨架以及填充在蜂窝结构内的有机硅材料。
本申请的热界面材料包括有机硅与蜂窝状石墨骨架,既保留了有机硅柔软的贴合性又具有石墨骨架良好的导热性,有机硅材料填充在石墨骨架的蜂窝结构内,使本申请的热界面材料在较低的填充密度下具有较高的纵向导热性能,并且蜂窝结构可以进一步提高有机硅材料的抗拉强度,以及延长其使用寿命,尤其是一些恶劣环境下的使用寿命。
采用具有蜂窝结构的石墨作为骨架,蜂窝结构的石墨骨架实现了导热通路的一体化,可以显著降低传统技术中粉体之间导热网络通道的接触热阻,并实现导热通路的垂直排列,大大减少了导热材料的用量,从而获得了本申请的轻质高导热有机硅石墨热界面材料,可以有效解决应用产品的散热问题。
可选地,所述有机硅材料的制备原料包括聚乙烯基硅氧烷、交联剂和催化剂。
可选地,所述聚乙烯基硅氧烷、交联剂和催化剂的质量比为100:(1-25):(0.01-2.5),例如100:2:0.05、100:5:0.1、100:8:0.5、100:10:1、100:15:1.5、100:20:2等。
可选地,所述聚乙烯基硅氧烷为线型聚乙烯基硅氧烷、支链型聚乙烯基硅氧烷、树枝型聚乙烯基硅氧烷或微交联聚乙烯基硅氧烷。
可选地,所述聚乙烯基硅氧烷的分子结构中至少含有两个脂肪族不饱和双键。
可选地,所述聚乙烯基硅氧烷的分子结构中至少含有两个乙烯基。
可选地,所述聚乙烯基硅氧烷的粘度为300-500000mPa·s,例如400mPa·s、500mPa·s、1000mPa·s、5000mPa·s、10000mPa·s、50000mPa·s、100000mPa·s、400000mPa·s等。
可选地,所述交联剂为线型含氢硅油、环形含氢硅树脂或支化交联的含氢硅树脂中的任意一种或至少两种的组合。
可选地,所述交联剂的分子结构中至少含有两个硅氢键。
可选地,所述交联剂的粘度为10-10000mPa·s,例如50mPa·s、100mPa·s、120mPa·s、150mPa·s、200mPa·s、250mPa·s、400mPa·s、500mPa·s、800mPa·s、1000mPa·s、1200mPa·s、1500mPa·s、1800mPa·s、2000mPa·s、2500mPa·s、2800mPa·s等,可选为100-3000mPa·s。
可选地,所述交联剂的含氢量为0.02%-1.52%,例如0.05%、0.08%、0.1%、0.2%、0.5%、0.8%、1.0%、1.2%、1.4%、1.5%等。
可选地,所述催化剂为稀土金属化合物、Ⅷ族的金属化合物或金属络合物、Ⅶ族的金属化合物或金属络合物中的任意一种或至少两种的组合,可选为铂系催化剂、铑系催化剂或钯系催化剂中的任意一种或至少两种的组合,可选为Speier催化剂、Karstedt催化剂或Wilkinson催化剂中的任意一种或至少两种的组合,可选为Speier催化剂。
可选地,所述Speier催化剂的Pt含量为100-5000ppm,例如200ppm、300ppm、500ppm、800ppm、1000ppm、2000ppm、3000ppm、4000ppm等。
可选地,所述有机硅材料的制备原料还包括抑制剂和表面处理剂。
可选地,所述抑制剂和表面处理剂与聚乙烯基硅氧烷的质量比为(0.2-3.0):(0.5-8.0):100,例如0.5:1:100、1:2:100、1.5:3:100、2:4:100、2.5:6:100等。
可选地,所述抑制剂为炔醇类化合物和/或多乙烯基硅油。
可选地,所述表面处理剂包括乙烯基硅烷偶联剂、环氧基偶联剂、丙烯酰 氧基硅烷偶联剂、酞酸酯类偶联剂、锆酸酯类偶联剂、铝酸酯类偶联剂或铝酸酯类偶联剂水解物中的任意一种或至少两种的组合,可选为γ-甲基丙烯酰氧基丙基三甲氧基硅烷、3-缩水甘油醚氧丙基三甲氧基硅烷、3-(2,3环氧丙氧)丙基甲基二乙氧基硅烷、2-(3,4-环氧环己烷基)乙基三甲氧基硅烷、三硬脂酸钛酸异丙酯、钛酸正丁酯、双(乙酰丙酮基)乙氧基异丙氧基钛酸酯、双(三乙醇胺)二异丙基钛酸酯或四正丙基锆酸酯中的任意一种或至少两种的组合,可选为3-缩水甘油醚氧丙基三甲氧基硅烷。
第二方面,本申请提供了根据第一方面所述的有机硅石墨复合热界面材料的制备方法,所述制备方法包括:将蜂窝结构的石墨骨架在有机硅材料胶液中浸胶并固化,得到所述有机硅石墨复合热界面材料。
可选地,所述蜂窝结构的石墨骨架的制备方法包括如下步骤:
(1)将原料纸通过涂胶、叠层、热压后,得到蜂窝叠块;
(2)将蜂窝叠块拉伸、定型,然后进行碳化,得到蜂窝结构的石墨骨架。
可选地,所述原料纸包括间位芳纶纸、对位芳纶纸或聚酰亚胺膜中的任意一种或至少两种的组合。
可选地,所述原料纸的厚度为15-500μm,例如20μm、25μm、30μm、40μm、50μm、80μm、100μm、150μm、200μm、300μm、400μm、450μm等。
可选地,所述涂胶在涂胶辊上进行。
可选地,所述涂胶所用的胶液为环氧树脂胶、聚氨酯胶、丙烯酸酯胶或聚酰亚胺胶中的任意一种或至少两种的组合。
可选地,所述蜂窝叠块的蜂窝芯格孔直径为0.5-10mm,例如1mm、2mm、3mm、4mm、5mm、6mm、7mm、8mm、9mm等。
可选地,所述蜂窝叠块的蜂窝芯格厚度为5-50mm,例如10mm、15mm、20mm、25mm、30mm、35mm、40mm、45mm等。
可选地,所述定型的温度为280-350℃,例如290℃、300℃、310℃、320℃、330℃、340℃等。
可选地,所述定型的时间为0.5-1h,例如0.6h、0.7h、0.8h、0.9h等。
可选地,所述碳化在管式炉中进行。
可选地,所述碳化的温度为1200-3000℃,例如1500℃、2000℃、2500℃、2800℃等。
可选地,所述碳化的时间为2-3h,例如2.2h、2.4h、2.5h、2.6h、2.8h等。
可选地,所述浸胶在浸胶机中进行。
可选地,所述固化的温度为140-160℃,例如142℃、145℃、147℃、150℃、152℃、155℃、157℃等。
可选地,所述固化的时间为20-40min,例如22min、25min、27min、30min、32min、35min、37min等。
第三方面,本申请提供了根据第一方面所述的有机硅石墨复合热界面材料在新能源汽车或电子元器件中的应用。
相对于现有技术,本申请具有以下有益效果:
(1)本申请的热界面材料包括有机硅与蜂窝状石墨骨架,既保留了有机硅柔软的贴合性又具有石墨骨架良好的导热性,有机硅材料填充在石墨骨架的蜂窝结构内,使本申请的热界面材料在较低的填充密度下具有较高的纵向导热性能,并且蜂窝结构可以进一步提高有机硅材料的抗拉强度,以及延长在恶劣环 境下的使用寿命;
(2)本申请的轻质高导热有机硅石墨热界面材料具有高热导率以及低密度的优点,其中,热导率可高达10W/m·K以上,密度可低至1.2g/cm 3以下。
在阅读并理解了详细描述后,可以明白其他方面。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
一种有机硅石墨复合热界面材料,由具有蜂窝结构的石墨骨架以及填充在蜂窝结构内的有机硅材料组成。
其中,有机硅材料的制备原料由100重量份聚乙烯基硅氧烷、5.5重量份甲基含氢聚硅氧烷交联剂、0.3重量份铂催化剂、0.2重量份的丁炔醇抑制剂和1.5重量份的KH-560表面处理剂组成。
其中,聚乙烯基硅氧烷粘度为1000mPa·s;甲基含氢聚硅氧烷交联剂的粘度为100mPa·s,含氢量为0.8%;铂催化剂的Pt含量为2000ppm。
制备方法如下:
(1)将厚度为50μm的对位芳纶纤维纸作为原料纸,利用沾有芯条胶的涂胶辊进行涂胶,再将多层涂胶后的原料纸错层叠合,最后利用热压机热压,制成孔大小为1.83mm,厚度为6mm的蜂窝叠块。
其中,芯条胶为高温环氧树脂胶,粘度为20s/50mL;热压时,首先在80℃下预热10min,然后150℃凝胶30min,最后170℃固化2h,热压压力为5MPa。
(2)将蜂窝叠块用拉伸机以5mm/min的拉伸速度拉伸后,形成正六边形 蜂窝孔格,之后在280℃/30min的条件下高温定型,然后转移至1200℃管式炉中在氮气氛围下碳化240min,制成蜂窝结构的石墨骨架。
(3)将蜂窝结构的石墨骨架在浸胶机中进行浸胶,并于150℃/30min固化,得到有机硅石墨复合热界面材料。
实施例2
一种有机硅石墨复合热界面材料,由具有蜂窝结构的石墨骨架以及填充在蜂窝结构内的有机硅材料组成。
其中,有机硅材料的制备原料由100重量份聚乙烯基硅氧烷、2.5重量份甲基含氢聚硅氧烷交联剂、0.05重量份铂催化剂、0.25重量份的丁炔醇抑制剂和3.0重量份的KH-560表面处理剂组成。
其中,聚乙烯基硅氧烷粘度为400mPa·s;甲基含氢聚硅氧烷交联剂的粘度为50mPa·s,含氢量为1.5%;铂催化剂的Pt含量为3000ppm。
制备方法如下:
(1)将厚度为25μm的间位芳纶纤维纸作为原料纸,利用沾有芯条胶的涂胶辊进行涂胶,再将多层涂胶后的原料纸错层叠合,最后利用热压机热压,制成孔大小为1.0mm,厚度为10mm的蜂窝叠块。
其中,芯条胶为高温环氧树脂胶,粘度为20s/50mL;热压时,首先在80℃下预热10min,然后150℃凝胶30min,最后170℃固化2h,热压压力为5MPa。
(2)将蜂窝叠块用拉伸机以5mm/min的拉伸速度拉伸后,形成正六边形蜂窝孔格,之后在280℃/30min的条件下高温定型,然后转移至1500℃管式炉中在氮气氛围下碳化180min,制成蜂窝结构的石墨骨架。
(3)将蜂窝结构的石墨骨架在浸胶机中进行浸胶,并于150℃/30min固化, 得到有机硅石墨复合热界面材料。
实施例3
一种有机硅石墨复合热界面材料,由具有蜂窝结构的石墨骨架以及填充在蜂窝结构内的有机硅材料组成。
其中,有机硅材料的制备原料由100重量份聚乙烯基硅氧烷、3.5重量份甲基含氢聚硅氧烷交联剂、0.5重量份铂催化剂、0.2重量份的丁炔醇抑制剂和2.0重量份的KH-560表面处理剂组成。
其中,聚乙烯基硅氧烷粘度为500000mPa·s;甲基含氢聚硅氧烷交联剂的粘度为1000mPa·s,含氢量为1.0%;铂催化剂的Pt含量为5000ppm。
制备方法如下:
(1)将厚度为30μm的聚酰亚胺纤维纸作为原料纸,利用沾有芯条胶的涂胶辊进行涂胶,再将多层涂胶后的原料纸错层叠合,最后利用热压机热压,制成孔大小为0.5mm,厚度为5mm的蜂窝叠块。
其中,芯条胶为高温聚酰亚胺树脂胶,粘度为15s/50mL;热压时,首先在100℃下预热30min,然后150℃凝胶60min,最后200℃固化2h,热压压力为7MPa。
(2)将蜂窝叠块用拉伸机以5mm/min的拉伸速度拉伸后,形成正六边形蜂窝孔格,之后在350℃/60min的条件下高温定型,然后转移至3000℃管式炉中在氮气氛围下碳化120min,制成蜂窝结构的石墨骨架。
(3)将蜂窝结构的石墨骨架在浸胶机中进行浸胶,并于150℃/30min固化,得到有机硅石墨复合热界面材料。
实施例4
一种有机硅石墨复合热界面材料,由具有蜂窝结构的石墨骨架以及填充在蜂窝结构内的有机硅材料组成。
其中,有机硅材料的制备原料由100重量份聚乙烯基硅氧烷、25重量份甲基含氢聚硅氧烷交联剂、2.5重量份铂催化剂、3重量份的丁炔醇抑制剂和3.0重量份的KH-560表面处理剂组成。
其中,聚乙烯基硅氧烷是由80份粘度为500mPa·s的乙烯基封端的聚硅氧烷与20份粘度为30000mPa·s的乙烯基封端的聚硅氧烷混合物;甲基含氢聚硅氧烷交联剂是由20份含氢聚硅氧烷(粘度3000mPa·s,氢含量为0.05%)与5份含氢聚硅氧烷(粘度50mPa·s,氢含量为0.8%);铂催化剂的Pt含量为100ppm。
制备方法如下:
(1)将厚度为400μm的聚酰亚胺纤维纸作为原料纸,利用沾有芯条胶的涂胶辊进行涂胶,再将多层涂胶后的原料纸错层叠合,最后利用热压机热压,制成孔大小为10mm,厚度为50mm的蜂窝叠块。
其中,芯条胶为高温聚酰亚胺树脂胶,粘度为15s/50mL;热压时,首先在100℃下预热30min,然后180℃/60min,230℃/60min,热压压力为7MPa。
(2)将蜂窝叠块用拉伸机以5mm/min的拉伸速度拉伸后,形成正六边形蜂窝孔格,之后在350℃/60min的条件下高温定型,然后转移至3000℃管式炉中在氮气氛围下碳化120min,制成蜂窝结构的石墨骨架。
(3)将蜂窝结构的石墨骨架在浸胶机中进行浸胶,并于150℃/30min固化,得到有机硅石墨复合热界面材料。
对比例1
利用现有技术提供的制备方法制备一种热界面材料,方法如下:
(1)取50重量份的1000mPa·s乙烯基封端的聚硅氧烷加入反应釜中,然后依次添加1.2重量份的甲基含氢聚硅氧烷,3重量份的乙烯基三甲氧基硅烷,650重量份的粒径为30μm的氧化铝,350重量份的粒径为3.5μm的氧化铝,0.3重量份的铂催化剂,0.005重量份的丁炔醇抑制剂,上述物料由高速动力混合机真空搅拌30min,得到混合均匀的混合物料。
(2)将搅拌混合后的混合物料灌充到厚度为2mm的框型模具中,该框型模具为上部敞口式模具,便于物料的上表面固化成型。装入框型模具的物料流平后用刮刀将多余的物料刮出;将装有混合物料的模具放入烤箱,在100℃温度下固化15min,固化成型后即得到厚度为2mm的热界面材料。
对比例2
利用现有技术提供的制备方法制备有机硅石墨复合热界面材料,方法如下:
(1)取100重量份的500mPa·s聚乙烯基硅氧烷加入反应釜中,然后依次添加22重量份的甲基含氢聚硅氧烷,3重量份的乙烯基三甲氧基硅烷,1900重量份的粒径为30μm的氧化铝,600重量份的粒径为3.5μm的氧化铝,0.3重量份的铂催化剂,0.005重量份的丁炔醇抑制剂,上述物料由高速动力混合机真空搅拌30min,得到混合均匀的混合物料;
(2)将搅拌混合后的混合物料灌充到厚度为2mm的框型模具中,该框型模具为上部敞口式模具,便于物料的上表面固化成型。装入框型模具的物料流平后用刮刀将多余的物料刮出;将装有混合物料的模具放入烤箱,在100℃温度下固化15min,固化成型后即得到厚度为2mm的热界面材料。
对比例3
利用现有技术提供的制备方法制备一种有机硅石墨复合热界面材料,方法如下:
(1)取100重量份的1000mPa·s乙烯基封端的聚硅氧烷加入反应釜中,然后依次添加20重量份的甲基含氢聚硅氧烷,3重量份的乙烯基三甲氧基硅烷,150重量份的粒径为30μm的鳞片石墨,0.3重量份的铂催化剂,0.005重量份的丁炔醇抑制剂,上述物料由高速动力混合机真空搅拌30min,得到混合均匀的混合物料。
(2)将搅拌混合后的混合物料灌充到厚度为2mm的框型模具中,该框型模具为上部敞口式模具,便于物料的上表面固化成型。装入框型模具的物料流平后用刮刀将多余的物料刮出;将装有混合物料的模具放入烤箱,在100℃温度下固化15min,固化成型后即得到厚度为2mm的热界面材料。
性能测试
对实施例1-4和对比例1-3提供的热界面材料进行性能测试,方法如下:
(1)热导率:根据ASTM D5470标准,采用台湾瑞领的LW-9389热传导系数测试仪测试,样品尺寸2.54×2.54cm,厚度2mm;
(2)密度:根据ASTM D792标准,通过瑞士DX-200F密度天平对样品的密度进行测量;
(3)拉伸强度:根据ASTMD412标准,利用德国Zwick Allround Z050TEH万能拉力试验机进行测试。
测试结果见表1:
表1
样品 热导率(W/m·K) 密度(g/cm 3) 拉伸强度(KPa)
实施例1 4.51 1.12 1380
实施例2 6.92 1.21 1530
实施例3 10.75 1.27 1910
实施例4 15.23 1.31 2560
对比例1 3.00 3.60 126
对比例2 6.05 3.75 86
对比例3 2.37 1.54 259
由实施例和性能测试可知,本申请提供的热界面材料具有高热导率以及低密度的优点,其中,热导率最高可达15W/m·K以上,密度最低在1.15g/cm 3以下。由实施例1-4和对比例1-3的对比可知,本申请选用蜂窝状石墨骨架和有机硅材料,可以在节省导热材料用量的同时具有高导热和低密度的优点。
申请人声明,本申请通过上述实施例来说明本申请的有机硅石墨复合热界面材料及其制备方法和应用,但本申请并不局限于上述详细方法,即不意味着本申请必须依赖上述详细方法才能实施。

Claims (10)

  1. 一种有机硅石墨复合热界面材料,其中,所述有机硅石墨复合热界面材料包括具有蜂窝结构的石墨骨架以及填充在蜂窝结构内的有机硅材料。
  2. 根据权利要求1所述的有机硅石墨复合热界面材料,其中,所述有机硅材料的制备原料包括聚乙烯基硅氧烷、交联剂和催化剂;
    可选地,所述聚乙烯基硅氧烷、交联剂和催化剂的质量比为100:(1-25):(0.01-2.5)。
  3. 根据权利要求2所述的有机硅石墨复合热界面材料,其中,所述聚乙烯基硅氧烷的分子结构中至少含有两个脂肪族不饱和双键;
    可选地,所述聚乙烯基硅氧烷的分子结构中至少含有两个乙烯基;
    可选地,所述聚乙烯基硅氧烷为线型聚乙烯基硅氧烷、支链型聚乙烯基硅氧烷、树枝型聚乙烯基硅氧烷或微交联聚乙烯基硅氧烷;
    可选地,所述聚乙烯基硅氧烷的粘度为300-500000mPa·s;
    可选地,所述交联剂为线形含氢硅油、环形含氢硅树脂或支化交联的含氢硅树脂中的任意一种或至少两种的组合;
    可选地,所述交联剂的分子结构中至少含有两个硅氢键;
    可选地,所述交联剂的粘度为10-10000mPa·s,可选100-3000mPa·s;
    可选地,所述交联剂的含氢量为0.02%-1.52%;
    可选地,所述催化剂为稀土金属化合物、Ⅷ族的金属化合物或金属络合物、Ⅶ族的金属化合物或金属络合物中的任意一种或至少两种的组合,可选为铂系催化剂、铑系催化剂或钯系催化剂中的任意一种或至少两种的组合,可选为Speier催化剂、Karstedt催化剂或Wilkinson催化剂中的任意一种或至少两种的组合,可选为Speier催化剂;
    可选地,所述Speier催化剂的Pt含量为100-5000ppm。
  4. 根据权利要求2或3所述的有机硅石墨复合热界面材料,其中,所述有机硅材料的制备原料还包括抑制剂和表面处理剂;
    可选地,所述抑制剂和表面处理剂与聚乙烯基硅氧烷的质量比为(0.2-3.0):(0.5-8.0):100;
    可选地,所述抑制剂为炔醇类化合物和/或多乙烯基硅油;
    可选地,所述表面处理剂包括乙烯基硅烷偶联剂、环氧基偶联剂、丙烯酰氧基硅烷偶联剂、酞酸酯类偶联剂、锆酸酯类偶联剂、铝酸酯类偶联剂或铝酸酯类偶联剂水解物中的任意一种或至少两种的组合,可选为γ-甲基丙烯酰氧基丙基三甲氧基硅烷、3-缩水甘油醚氧丙基三甲氧基硅烷、3-(2,3环氧丙氧)丙基甲基二乙氧基硅烷、2-(3,4-环氧环己烷基)乙基三甲氧基硅烷、三硬脂酸钛酸异丙酯、钛酸正丁酯、双(乙酰丙酮基)乙氧基异丙氧基钛酸酯、双(三乙醇胺)二异丙基钛酸酯或四正丙基锆酸酯中的任意一种或至少两种的组合,可选为3-缩水甘油醚氧丙基三甲氧基硅烷。
  5. 一种根据权利要求1-4中的任一项所述的有机硅石墨复合热界面材料的制备方法,其中,所述制备方法包括:将蜂窝结构的石墨骨架在有机硅材料胶液中浸胶并固化,得到所述有机硅石墨复合热界面材料。
  6. 根据权利要求5所述的制备方法,其中,所述蜂窝结构的石墨骨架的制备方法包括如下步骤:
    (1)将原料纸通过涂胶、叠层、热压后,得到蜂窝叠块;
    (2)将蜂窝叠块拉伸、定型,然后进行碳化,得到蜂窝结构的石墨骨架。
  7. 根据权利要求6所述的制备方法,其中,所述原料纸包括间位芳纶纸、 对位芳纶纸或聚酰亚胺膜中的任意一种或至少两种的组合;
    可选地,所述原料纸的厚度为15-500μm;
    可选地,所述涂胶在涂胶辊上进行;
    可选地,所述涂胶所用的胶液为环氧树脂胶、聚氨酯胶、丙烯酸酯胶或聚酰亚胺胶中的任意一种或至少两种的组合;
    可选地,所述蜂窝叠块的蜂窝芯格孔直径为0.5-10mm;
    可选地,所述蜂窝叠块的蜂窝芯格厚度为5-50mm。
  8. 根据权利要求6或7所述的制备方法,其中,所述定型的温度为280-350℃;
    可选地,所述定型的时间为0.5-1h;
    可选地,所述碳化在管式炉中进行;
    可选地,所述碳化的温度为1200-3000℃;
    可选地,所述碳化的时间为2-3h。
  9. 根据权利要求5-8中的任一项所述的制备方法,其中,所述浸胶在浸胶机中进行;
    可选地,所述固化的温度为140-160℃;
    可选地,所述固化的时间为20-40min。
  10. 根据权利要求1-4中的任一项所述的有机硅石墨复合热界面材料在新能源汽车或电子元器件中的应用。
PCT/CN2019/123447 2018-12-10 2019-12-05 有机硅石墨复合热界面材料及其制备方法和应用 WO2020119580A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811504485.2A CN109627781B (zh) 2018-12-10 2018-12-10 一种有机硅石墨复合热界面材料及其制备方法和应用
CN201811504485.2 2018-12-10

Publications (1)

Publication Number Publication Date
WO2020119580A1 true WO2020119580A1 (zh) 2020-06-18

Family

ID=66072468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123447 WO2020119580A1 (zh) 2018-12-10 2019-12-05 有机硅石墨复合热界面材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN109627781B (zh)
WO (1) WO2020119580A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220064667A (ko) * 2020-11-12 2022-05-19 성균관대학교산학협력단 연성-강성-연성 다층 구조 열 계면 소재, 이의 제조 방법 및 이를 포함하는 방열 장치 또는 시스템

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109627781B (zh) * 2018-12-10 2021-04-30 深圳先进技术研究院 一种有机硅石墨复合热界面材料及其制备方法和应用
TW202134045A (zh) * 2019-10-25 2021-09-16 德商漢高智慧財產控股公司 可三維圖案化之熱介面

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130001462A1 (en) * 2011-06-30 2013-01-03 G&Cs Co., Ltd. Method for manufacturing polyurethane nanocomposite comprising expanded graphite and composition thereof
CN103740110A (zh) * 2013-12-23 2014-04-23 华为技术有限公司 一种定向柔性导热材料及其成型工艺和应用
CN105199398A (zh) * 2015-10-27 2015-12-30 湖南博翔新材料有限公司 一种有机硅复合材料及其制备方法
US20160376487A1 (en) * 2013-03-14 2016-12-29 Case Western Reserve University High thermal conductivity graphite and graphene-containing composites
CN108129847A (zh) * 2017-12-25 2018-06-08 广州旭川合成材料有限公司 一种轻量化导热片材及其制备方法和应用
CN108690355A (zh) * 2018-06-26 2018-10-23 浙江三元电子科技有限公司 一种柔性热传导片及其制备方法
CN109627781A (zh) * 2018-12-10 2019-04-16 深圳先进技术研究院 一种有机硅石墨复合热界面材料及其制备方法和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7037592B2 (en) * 2003-02-25 2006-05-02 Dow Coming Corporation Hybrid composite of silicone and organic resins
CN102028972B (zh) * 2010-12-23 2013-08-14 西安交通大学 一种蜂窝状聚合物基仿生多孔支架材料的制备方法
CN102584314B (zh) * 2012-01-16 2013-09-25 华南理工大学 高导热耐高温瓦楞状陶瓷基换热器芯体制备方法
CN102675880B (zh) * 2012-05-10 2013-10-09 东南大学 多功能石墨烯和聚二甲基硅氧烷复合材料的制备方法
WO2016190258A1 (ja) * 2015-05-28 2016-12-01 ポリマテック・ジャパン株式会社 熱伝導性シート
CN106519688B (zh) * 2015-09-15 2019-02-05 上海工程技术大学 抗静电防紫外线石墨烯/聚砜酰胺复合薄膜及其制备方法
CN106009671A (zh) * 2016-05-30 2016-10-12 中国科学院山西煤炭化学研究所 一种多孔石墨/硅橡胶界面导热材料及制备方法
CN107967997A (zh) * 2017-11-28 2018-04-27 中国科学院深圳先进技术研究院 一种三维高导热导电复合材料、其制备方法与应用
CN108164741B (zh) * 2017-12-12 2021-03-26 湖北航天化学技术研究所 一种芳纶蜂窝增强的硅基绝热材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130001462A1 (en) * 2011-06-30 2013-01-03 G&Cs Co., Ltd. Method for manufacturing polyurethane nanocomposite comprising expanded graphite and composition thereof
US20160376487A1 (en) * 2013-03-14 2016-12-29 Case Western Reserve University High thermal conductivity graphite and graphene-containing composites
CN103740110A (zh) * 2013-12-23 2014-04-23 华为技术有限公司 一种定向柔性导热材料及其成型工艺和应用
CN105199398A (zh) * 2015-10-27 2015-12-30 湖南博翔新材料有限公司 一种有机硅复合材料及其制备方法
CN108129847A (zh) * 2017-12-25 2018-06-08 广州旭川合成材料有限公司 一种轻量化导热片材及其制备方法和应用
CN108690355A (zh) * 2018-06-26 2018-10-23 浙江三元电子科技有限公司 一种柔性热传导片及其制备方法
CN109627781A (zh) * 2018-12-10 2019-04-16 深圳先进技术研究院 一种有机硅石墨复合热界面材料及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220064667A (ko) * 2020-11-12 2022-05-19 성균관대학교산학협력단 연성-강성-연성 다층 구조 열 계면 소재, 이의 제조 방법 및 이를 포함하는 방열 장치 또는 시스템
KR102565178B1 (ko) 2020-11-12 2023-08-08 성균관대학교산학협력단 연성-강성-연성 다층 구조 열 계면 소재, 이의 제조 방법 및 이를 포함하는 방열 장치 또는 시스템

Also Published As

Publication number Publication date
CN109627781A (zh) 2019-04-16
CN109627781B (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2020119580A1 (zh) 有机硅石墨复合热界面材料及其制备方法和应用
CN103059576B (zh) 一种高导热柔性硅胶垫片及其制备方法
TWI278392B (en) Thermally conductive composite sheet and manufacturing method thereof
JP5573842B2 (ja) 多層樹脂シート及びその製造方法、多層樹脂シート硬化物の製造方法、並びに、高熱伝導樹脂シート積層体及びその製造方法
WO2019114047A1 (zh) 一种反应型导热绝缘双面胶带及其制备方法
KR101523144B1 (ko) 방열특성이 개선된 에폭시 복합수지 조성물 및 이를 이용한 방열 구조물
WO2022127156A1 (zh) 一种硅橡胶及其制备方法、压敏电阻及其制备方法
CN109971415B (zh) 一种高导热有机硅胶粘剂及其制备方法
CN106634809B (zh) 一种led电源封装用抗中毒抗沉降高粘结的导热硅胶
WO2016026205A1 (zh) 一种uv/湿气双固化有机硅胶水
CN105062006A (zh) 一种铝基覆铜箔板高导热绝缘介质胶膜的生产方法
TW201444962A (zh) 裝置、接著劑用組成物、接著片
KR20130117909A (ko) 전기 전도성을 가지는 열전도 테이프 및 그 제조방법
CN109880541A (zh) 可快速固化且具高粘接强度的导热材料
CN206059377U (zh) 一种功率器件单管及其冷却装置
CN203888313U (zh) 一种高压缩高导热硅胶片
CN110740566A (zh) 一种高导热金属基双面铜基覆铜板及其制备工艺
TWI244976B (en) Thermally conductive rubber material
WO2020107599A1 (zh) 一种导热屏蔽有机硅材料及其制备方法
CN108728029A (zh) 一种导热绝缘介质胶膜的生产方法
TWI627639B (zh) Electrical connecting material and manufacturing method thereof, and connecting body
CN113939149A (zh) 一种便携式终端用散热膜片以及散热粘合膜
WO2021142751A1 (zh) 一种丙烯酸导电胶及其制备方法和应用
CN114292613A (zh) 复合膜、倒装led芯片及其制造方法
JP2021050305A (ja) 樹脂シート及びパワー半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19897064

Country of ref document: EP

Kind code of ref document: A1