WO2020119561A1 - 同步信号块的发送、接收方法及装置 - Google Patents

同步信号块的发送、接收方法及装置 Download PDF

Info

Publication number
WO2020119561A1
WO2020119561A1 PCT/CN2019/123116 CN2019123116W WO2020119561A1 WO 2020119561 A1 WO2020119561 A1 WO 2020119561A1 CN 2019123116 W CN2019123116 W CN 2019123116W WO 2020119561 A1 WO2020119561 A1 WO 2020119561A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
signal block
position information
antenna panels
terminal
Prior art date
Application number
PCT/CN2019/123116
Other languages
English (en)
French (fr)
Inventor
袁璞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19895766.4A priority Critical patent/EP3876612B1/en
Publication of WO2020119561A1 publication Critical patent/WO2020119561A1/zh
Priority to US17/344,451 priority patent/US11943727B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/006Synchronisation arrangements determining timing error of reception due to propagation delay using known positions of transmitter and receiver

Definitions

  • the present application relates to the field of communication technologies, and in particular, to methods and devices for sending and receiving synchronization signal blocks.
  • V2X Vehicle and outside (V2X) technology is the key technology of the future intelligent transportation system. It enables vehicles to communicate with each other and vehicles to communicate with base stations, enabling vehicles to obtain real-time road conditions, road information, pedestrian information and other traffic information, which can effectively improve the safety of car driving, reduce congestion, improve traffic efficiency, and provide on-board Entertainment information, etc.
  • V2V Vehicle-to-vehicle
  • VUE vehicle user equipment
  • the present application provides a method and device for transmitting and receiving a synchronization signal block, which is used to enable a terminal to determine a relative position between itself and another terminal.
  • a method for transmitting a synchronization signal block includes: a first terminal according to a corresponding relationship between M antenna panel position information of the first terminal and P synchronization signal blocks, and positions of N antenna panels Information, determine the synchronization signal block corresponding to each of the N antenna panels; where the position information of the M antenna panels is used to indicate the position of the M antenna panels on the first terminal, and the N antenna panels belong to the M antennas In the panel, N is less than or equal to M, M, N, and P are positive integers, and P is an integer multiple of M; the first terminal uses N antenna panels to send synchronization signal blocks corresponding to the N antenna panels, respectively.
  • the antenna panels at different positions of the first terminal correspond to different synchronization signal blocks respectively. Therefore, for the receiving end of the synchronization signal block, the receiving end can determine to send the synchronization according to the received synchronization signal block The position of the antenna panel of the signal block on the first terminal, and then the receiving end can determine its relative orientation with the first terminal.
  • P is equal to M, and the position information of one of the M antenna panels of the first terminal corresponds to one of the M synchronization signal blocks; or, P is at least twice M, the first terminal’s
  • the position information of one antenna panel among the M antenna panels corresponds to at least two synchronization signal blocks among the P synchronization signal blocks.
  • the synchronization signal block is used to indicate the position information of the antenna panel that transmits the synchronization signal block.
  • the synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel.
  • the correspondence between the position information of M antenna panels and P synchronization signal blocks includes: the correspondence between the position information of M antenna panels and P resource mapping modes, which are used to indicate synchronization The position of the time-frequency resource occupied by the primary synchronization signal and the secondary synchronization signal in the signal block.
  • the synchronization signal blocks corresponding to the antenna panels at different positions on the first terminal adopt different resource mapping methods, so that the structure of the synchronization signal blocks corresponding to the antenna panels at different positions on the first terminal are different.
  • Antenna panels at different positions on a terminal correspond to different synchronization signal blocks.
  • the correspondence between the position information of M antenna panels and P synchronization signal blocks includes: the correspondence between the position information of M antenna panels and the sequence of P auxiliary synchronization signals.
  • the sequences of the auxiliary synchronization signals corresponding to the antenna panels at different positions on the first terminal are different, so that the antenna panels at different positions on the first terminal correspond to different synchronization signal blocks.
  • a method for receiving a synchronization signal block includes: a second terminal receives a plurality of synchronization signal blocks; a second terminal determines a synchronization signal block with a maximum signal strength from the plurality of synchronization signal blocks; second The terminal determines the position information of the antenna panel used by the first terminal to transmit the synchronization signal block with the strongest signal strength according to the correspondence between the position information of the M antenna panels of the first terminal and the P synchronization signal blocks; wherein, M antenna panels The location information of is used to indicate the positions of the M antenna panels on the first terminal; P is an integer multiple of M, and M and P are positive integers.
  • the first terminal is used to transmit the antenna panel of the synchronization signal block with the highest signal strength, which is the antenna terminal used for transmitting the synchronization signal block by the first terminal and the second terminal The closest antenna panel. Therefore, the second terminal can determine the relative orientation between itself and the first terminal through the position information of the antenna panel used by the first terminal to transmit the synchronization signal block with the largest signal strength.
  • P is equal to M, and the position information of one of the M antenna panels of the first terminal corresponds to one of the M synchronization signal blocks; or, P is at least twice M, the first terminal’s
  • the position information of one antenna panel among the M antenna panels corresponds to at least two synchronization signal blocks among the P synchronization signal blocks.
  • the synchronization signal block is used to indicate the position information of the antenna panel that transmits the synchronization signal block.
  • the synchronization signal block includes: a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel.
  • the correspondence between the position information of M antenna panels and P synchronization signal blocks includes: the correspondence between the position information of M antenna panels and P resource mapping modes, which are used to indicate synchronization The position of the time-frequency resource occupied by the primary synchronization signal and the secondary synchronization signal in the signal block.
  • the synchronization signal blocks corresponding to the antenna panels at different positions on the first terminal adopt different resource mapping methods, so that the structure of the synchronization signal blocks corresponding to the antenna panels at different positions on the first terminal are different.
  • Antenna panels at different positions on a terminal correspond to different synchronization signal blocks.
  • the correspondence between the position information of M antenna panels and P synchronization signal blocks includes: the correspondence between the position information of M antenna panels and the sequence of P auxiliary synchronization signals.
  • the sequences of the auxiliary synchronization signals corresponding to the antenna panels at different positions on the first terminal are different, so that the antenna panels at different positions on the first terminal correspond to different synchronization signal blocks.
  • a synchronization signal block transmission device including: a processing module configured to correspond to the positional information of M antenna panels of the synchronization signal block transmission device and P synchronization signal blocks, and N antennas
  • the position information of the panel determines the synchronization signal block corresponding to each of the N antenna panels; the position information of the M antenna panels is used to indicate the positions of the M antenna panels on the transmission device of the synchronization signal block, N
  • the antenna panel belongs to M antenna panels, N is less than or equal to M, M, N, and P are positive integers, and P is an integer multiple of M.
  • the sending module is configured to use N antenna panels to respectively send synchronization signal blocks corresponding to the N antenna panels.
  • P is equal to M
  • the position information of one antenna panel in the M antenna panels of the transmission device of the synchronization signal block corresponds to one synchronization signal block in the M synchronization signal blocks; or, P is at least twice of M to synchronize
  • the position information of one antenna panel among the M antenna panels of the transmission device of the signal block corresponds to at least two synchronization signal blocks among the P synchronization signal blocks.
  • the synchronization signal block is used to indicate the position information of the antenna panel that transmits the synchronization signal block.
  • the synchronization signal block includes: a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel.
  • the correspondence between the position information of M antenna panels and P synchronization signal blocks includes: the correspondence between the position information of M antenna panels and P resource mapping modes, which are used to indicate synchronization The position of the time-frequency resource occupied by the primary synchronization signal and the secondary synchronization signal in the signal block.
  • the correspondence between the position information of M antenna panels and P synchronization signal blocks includes: the correspondence between the position information of M antenna panels and the sequence of P auxiliary synchronization signals.
  • a device for transmitting a synchronization signal block including: a processor, which is used to couple with a memory, read an instruction in the memory, and implement any one of the foregoing first aspects according to the instruction The method for sending the synchronization signal block.
  • the transmission device of the synchronization signal block provided in the third aspect and the fourth aspect may be a terminal, or a part of devices in the terminal, such as a chip, a chip system, or a circuit structure, etc., which is not limited in this application.
  • a computer-readable storage medium in which instructions are stored in the computer-readable storage medium, which when executed on a terminal, enables the terminal to execute the synchronization signal block described in any one of the first aspects Delivery method.
  • a computer program product containing instructions that, when run on a terminal, enable the terminal to execute the method for transmitting the synchronization signal block described in any one of the above-mentioned first aspects.
  • a chip system includes a processor for supporting a terminal to implement the functions related to the first aspect.
  • the chip system includes a memory for storing necessary program instructions and data of the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • a receiving device for a synchronization signal block includes a receiving module for receiving a plurality of synchronization signal blocks.
  • the processing module is used to determine the synchronization signal block with the largest signal strength from the plurality of synchronization signal blocks; according to the corresponding relationship between the position information of the M antenna panels of the transmission device of the synchronization signal block and the P synchronization signal blocks, the synchronization signal is determined
  • the block transmission device is used to transmit the position information of the antenna panel of the synchronization signal block with the highest signal strength; wherein, the position information of the M antenna panels is used to indicate the positions of the M antenna panels on the synchronization signal block transmission device;
  • P is An integer multiple of M, M and P are positive integers.
  • P is equal to M
  • the position information of one antenna panel in the M antenna panels of the transmission device of the synchronization signal block corresponds to one synchronization signal block in the M synchronization signal blocks; or, P is at least twice of M to synchronize
  • the position information of one antenna panel among the M antenna panels of the transmission device of the signal block corresponds to at least two synchronization signal blocks among the P synchronization signal blocks.
  • the synchronization signal block is used to indicate the position information of the antenna panel that transmits the synchronization signal block.
  • the synchronization signal block includes: a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel.
  • the correspondence between the position information of M antenna panels and P synchronization signal blocks includes: the correspondence between the position information of M antenna panels and P resource mapping modes, which are used to indicate synchronization The position of the time-frequency resource occupied by the primary synchronization signal and the secondary synchronization signal in the signal block.
  • the correspondence between the position information of M antenna panels and P synchronization signal blocks includes: the correspondence between the position information of M antenna panels and the sequence of P auxiliary synchronization signals.
  • a receiving device for a synchronization signal block comprising: a processor, which is used to couple with a memory and read an instruction in the memory, and implement any one of the above-mentioned second aspects according to the instruction The receiving method of the synchronization signal block.
  • the receiving device of the synchronization signal block provided in the eighth and ninth aspects may be a terminal, or a part of devices in the terminal, such as a chip, a chip system, or a circuit structure, etc., which is not limited in this application.
  • a computer-readable storage medium which stores instructions which, when run on a terminal, enable the terminal to execute the synchronization signal block described in any one of the above-mentioned second aspects Reception method.
  • a computer program product containing instructions that, when run on a terminal, enable the terminal to perform the method for receiving the synchronization signal block described in any one of the second aspects above.
  • a chip system includes a processor for supporting a terminal to implement the functions related to the second aspect.
  • the chip system includes a memory for storing necessary program instructions and data of the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • a communication system including a first terminal and a second terminal, the first terminal is used to perform the method for transmitting the synchronization signal block according to any one of the first aspect, and the second terminal is used to perform the second The method for receiving a synchronization signal block according to any one of the aspects.
  • Figure 1 is a schematic diagram of the structure of a synchronization signal block
  • FIG. 2 is a flowchart of a method for sending and receiving a synchronization signal block provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a sector covered by each antenna panel on a first terminal according to an embodiment of the present application
  • mapping method 1 is a schematic diagram of a mapping method 1 provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a second mapping method provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of a third mapping method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a fourth mapping method provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a mapping manner provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another mapping manner provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of another mapping manner provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of another mapping manner provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of communication between a first terminal and a second terminal according to an embodiment of the present application
  • FIG. 13 is a schematic diagram of another communication between a first terminal and a second terminal provided by an embodiment of this application;
  • FIG. 14 is a schematic diagram of another communication between a first terminal and a second terminal provided by an embodiment of this application;
  • FIG. 15 is a schematic structural diagram of a synchronization signal block transmission device according to an embodiment of the present application.
  • 16 is a schematic diagram of a hardware structure of a synchronization signal block sending device provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a receiving device for a synchronization signal block according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a hardware structure of a receiving device for a synchronization signal block according to an embodiment of the present application.
  • the synchronization signal block is a signal structure that includes a primary synchronization signal (primary synchronization signal, PSS), a secondary synchronization signal (secondary synchronization signal, SSS), and a physical broadcast channel (PBCH).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • the synchronization signal block generally occupies 4 orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • the primary synchronization signal and the secondary synchronization signal are used to assist the terminal to identify the cell and synchronize with the cell.
  • PBCH contains the most basic system information, such as system frame number, intra-frame timing information, etc.
  • the sequence of the secondary synchronization signal is generated according to the following formula (1):
  • c(n) is the sequence of the secondary synchronization signal.
  • n is an integer greater than or equal to 0 and less than or equal to 126.
  • PCI physical cell identifier
  • Both x 0 (n) and x 1 (n) are M sequences.
  • the M sequence is a pseudo-random sequence generated by a linear feedback shift register (LFSR).
  • LFSR linear feedback shift register
  • the sending end uses different initial values to generate an M sequence, and the receiving end can uniquely determine the M sequence through sequence detection.
  • FIG. 2 it is a method for sending and receiving a synchronization signal block provided by an embodiment of the present application.
  • the method includes the following steps:
  • the first terminal determines, according to the correspondence between the position information of the M antenna panels of the first terminal and the P synchronization signal blocks, and the position information of the N antenna panels, the corresponding relationship between each of the N antenna panels Synchronization signal block.
  • the first terminal is configured with M antenna panels, where M is a positive integer.
  • the M antenna panels are deployed in different parts of the first terminal, such as a front bumper, a rear bumper, and a roof. It can be understood that the above N antenna panels belong to M panels, that is, the N antenna panels are all or part of the M antenna panels of the first terminal.
  • N is less than or equal to M
  • P is an integer multiple of M
  • M, N, and P are positive integers.
  • P is equal to M, and the position information of one of the M antenna panels of the first terminal corresponds to one of the M synchronization signal blocks; or, the P It is at least twice of M, and the position information of one antenna panel among the M antenna panels of the first terminal corresponds to at least two synchronization signal blocks among the P synchronization signal blocks.
  • the position information of the M antenna panels is used to indicate the positions of the M antenna panels on the first terminal.
  • the position information of the antenna panel may be a position index, a position identifier, and so on.
  • the position index of the antenna panel may refer to Table 1.
  • the antenna panel is on the left side of the body of the first terminal 11
  • the antenna panel is on the right side of the body of the first terminal ... ...
  • the M antenna panels of the first terminal are used to cover different sectors. It is understandable that the antenna panel on the front bumper of the first terminal can only cover the front area, but not the rear area; the antenna panel on the right side of the body of the first terminal can only cover the right area of the body. It is impossible to cover the left area of the body. In this way, in practical applications, to ensure the coverage effect, the sector covered by the antenna panel is determined by the position of the antenna panel on the first terminal. In other words, there is a corresponding relationship between the sectors covered by the antenna panel and the position information of the antenna panel. In other words, the position information of the antenna panel is also used to implicitly indicate the sectors covered by the antenna panel. Optionally, the correspondence between the sectors covered by the antenna panel and the sectors covered by the antenna panel is pre-configured or specified in the standard.
  • the antenna panel of the front bumper of the first terminal is responsible for covering the sector from 45° to 315°.
  • the antenna panel on the side covers the sector from 45° to 135°
  • the antenna panel on the rear bumper of the first terminal covers the sector from 135° to 225°
  • the antenna panel on the right side of the body of the first terminal covers 225 ° to 315° sector.
  • the antenna panel on the front bumper of the first terminal is responsible for sector 1
  • the antenna panel on the left side of the body of the first terminal is responsible for sector 2
  • the rear bumper of the first terminal The antenna panel is responsible for sector 3
  • the antenna panel on the right side of the body of the first terminal is responsible for sector 4.
  • the correspondence between the position information of the antenna panel and the synchronization signal block may be pre-configured on the first terminal and/or the second terminal, or may be determined through negotiation between the first terminal and the second terminal, or may be specified in the standard of.
  • the synchronization signal block may be used to indicate the position information of the antenna panel that transmits the synchronization signal block.
  • the synchronization signal block indicates the position information of the antenna panel transmitting the synchronization signal block in an explicit manner.
  • the PBCH in the synchronization signal block carries the position information of the antenna panel that sends the synchronization signal block.
  • the synchronization signal block indicates the position information of the antenna panel transmitting the synchronization signal block in an implicit manner.
  • the correspondence between the position information of the M antenna panels and the P synchronization signal blocks includes one of the following situations or any combination thereof:
  • Case 1 There is a correspondence between the position information of M antenna panels and P resource mapping modes.
  • the resource mapping mode is used to indicate the location of time-frequency resources occupied by the primary synchronization signal and the secondary synchronization signal in the synchronization signal block.
  • the resource mapping method may have different names, such as a resource pattern, and the embodiments of the present application are not limited thereto.
  • the position information of one of the M antenna panels of the first terminal corresponds to one of the P resource mapping modes; or, if P is at least twice M, Then, the position information of one antenna panel among the M antenna panels of the first terminal corresponds to at least two resource mapping modes among the P resource mapping modes.
  • the synchronization signal block uses different resource mapping methods, the time-frequency resources occupied by the primary synchronization signal and the secondary synchronization signal in the synchronization signal block are different.
  • the above case (1) will be described below by way of example.
  • the correspondence between the position index of the antenna panel and the resource mapping manner can be referred to Table 2.
  • the above resource mapping method 1 may refer to FIG. 4
  • the resource mapping method 2 may refer to FIG. 5
  • the resource mapping method 3 may refer to FIG. 6,
  • the resource mapping method 4 may refer to FIG. 7.
  • the correspondence between the position index of the antenna panel and the resource mapping method can be referred to Table 3.
  • Antenna panel location index Resource mapping 00 Resource mapping method one 00 Resource mapping method two 01 Resource mapping method three 01 Resource mapping method 4 ... ...
  • the synchronization signal block uses different resource mapping methods, the time domain resources occupied by the primary synchronization signal and the secondary synchronization signal in the synchronization signal block are different.
  • the correspondence between the location information of the M antenna panels and the P resource mapping modes includes: the location information of the M antenna panels and the time of the P primary synchronization signals The correspondence between the domain offset values, and/or the correspondence between the position information of the M antenna panels and the time domain offset values of the P secondary synchronization signals.
  • the time-domain offset value of the primary synchronization signal is the offset value between the OFDM symbol occupied by the primary synchronization signal in the synchronization signal block and the starting OFDM symbol of the synchronization signal block.
  • the time-domain offset value of the secondary synchronization signal is the offset value between the OFDM symbol occupied by the secondary synchronization signal in the synchronization signal block and the starting OFDM symbol of the synchronization signal block.
  • the correspondence between the position information of the antenna panel and the time domain offset value of the main synchronization signal in the synchronization signal block, and the antenna panel Refer to Table 4 for the correspondence between the location information and the time-domain offset value of the secondary synchronization signal in the synchronization signal block.
  • Antenna panel location index Time-domain offset value of the main synchronization signal Time-domain offset value of secondary synchronization signal 00 1 0 11 1 2 01 3 1 10 0 2 ... ... ...
  • the resource mapping method corresponding to the antenna panel with the position index of 00 can refer to FIG. 8
  • the resource mapping method corresponding to the antenna panel with the position index of 11 can refer to FIG. 9, and the antenna panel with the position index of 01 corresponds to Refer to FIG. 10 for the resource mapping method of FIG. 10, and refer to FIG. 11 for the resource mapping method of the antenna panel whose position index is 10.
  • Case 2 There is a correspondence between the position information of M antenna panels and the sequence of P secondary synchronization signals.
  • the position information of one of the M antenna panels of the first terminal corresponds to the sequence of one of the P secondary synchronization signal sequences; or, if P is at least M Twice, then the position information of one of the M antenna panels of the first terminal corresponds to the sequence of at least two secondary synchronization signals in the sequence of P secondary synchronization signals.
  • antenna panels at different positions on the first terminal correspond to different sequences of the secondary synchronization signal, so that on the first terminal Antenna panels at different positions correspond to different synchronization signal blocks.
  • the sequence of the secondary synchronization signal is generated according to the following formula (2):
  • c (n) is the sequence of the secondary synchronization signal; n is a positive integer greater than or equal to 0 and less than or equal to 126.
  • NID1 is the identifier of the physical cell identification group. NID1 is an integer greater than or equal to 0 and less than or equal to 335. NID2 is the intra-group identification of the physical cell identification group, and the value range of NID2 is ⁇ 0,1,2 ⁇ .
  • Both x 0 (n) and x 1 (n) are M-sequences.
  • x 0 (n) and x 1 (n) please refer to the foregoing, and they will not be repeated here.
  • k is the first cyclic displacement parameter
  • l is the second cyclic displacement parameter. Both k and l are integers, and k and l are determined by the position information of the antenna panel. For example, k and l are determined according to the correspondence between the position information of the antenna panel and k and l.
  • the correspondence between k and l and the position index of the antenna panel can be referred to Table 5.
  • the correspondence between k and l and the position index of the antenna panel can be referred to Table 6.
  • the correspondence between the position information of the antenna panel and the synchronization signal block may refer to Table 7.
  • the resource mapping modes adopted by the synchronization signal blocks corresponding to the two antenna panels are different, and/or the synchronization signal blocks corresponding to the two antenna panels
  • the sequence of the middle and auxiliary synchronization signals is different.
  • the first terminal uses the N antenna panels to respectively send synchronization signal blocks corresponding to the N antenna panels.
  • the first terminal uses the N antenna panels to simultaneously transmit the synchronization signal blocks corresponding to the N antenna panels, which can save the beam scanning time and reduce the transmission delay of the synchronization signal blocks.
  • the first terminal uses the antenna panel on the front bumper to send the synchronization signal block 1, the antenna panel on the rear bumper to send the synchronization signal block 2, and the antenna panel on the left side of the vehicle body to send the synchronization signal block 3, on the right side of the vehicle body
  • the antenna panel sends the synchronization signal block 4.
  • the first terminal uses the antenna panel to transmit the synchronization signal block in a beam scanning manner in the sector covered by the antenna panel.
  • the second terminal receives multiple synchronization signal blocks.
  • the second terminal determines the synchronization signal block with the largest signal strength from the plurality of synchronization signal blocks.
  • the signal strength of the synchronization signal block refers to the reference signal received power (RSRP) of the synchronization signal contained in the synchronization signal block.
  • the synchronization signal includes a main synchronization signal and/or an auxiliary synchronization signal. It can be understood that, in this case, the synchronization signal block with the largest signal strength is the synchronization signal block with the largest RSRP of the synchronization signal.
  • the second terminal determines the RSRP of the synchronization signal included in the synchronization signal block. After that, the second terminal determines the synchronization signal block with the largest RSRP of the synchronization signal from the plurality of synchronization signal blocks.
  • the signal strength of the synchronization signal block is not limited to RSRP, but may also be other parameters.
  • the embodiments of the present application are not limited to this.
  • the second terminal determines the position information of the antenna panel used by the first terminal to send the synchronization signal block with the highest signal strength according to the correspondence between the position information of the M antenna panels of the first terminal and the P synchronization signal blocks.
  • the second terminal can indirectly determine the relative position relationship between the second terminal and the first terminal by determining the position information of the antenna panel used by the first terminal to transmit the synchronization signal block with the highest signal strength.
  • step S105 describes step S105 by way of example. Moreover, it is assumed that the antenna panel on the front bumper of the first terminal corresponds to the synchronization signal block 1, the antenna panel on the rear bumper of the first terminal corresponds to the synchronization signal block 2, and the antenna panel on the left side of the body of the first terminal corresponds to synchronization
  • the signal block 3 corresponds to the synchronization signal block 4 on the antenna panel on the right side of the body of the first terminal.
  • the synchronization signal block 2 is the synchronization signal block with the largest signal strength.
  • the second terminal can determine that the antenna panel transmitting the synchronization signal block 2 is the antenna panel on the rear bumper of the first terminal according to the correspondence between the position information of the antenna panel and the synchronization signal block, so that the second terminal can Make sure you are behind the first terminal.
  • the synchronization signal block 3 is the synchronization signal block with the largest signal strength .
  • the second terminal can determine that the antenna panel transmitting the synchronization signal block 2 is the antenna panel on the left side of the body of the first terminal according to the correspondence between the position information of the antenna panel and the synchronization signal block, so that the second terminal can determine It is on the left side of the first terminal.
  • synchronization signal block 1 is the synchronization signal block with the largest signal strength.
  • the second terminal can determine that the antenna panel transmitting the synchronization signal block 1 is the antenna panel on the front bumper of the first terminal according to the correspondence between the position information of the antenna panel and the synchronization signal block, so that the second terminal can Make sure you are in front of the first terminal.
  • the above method embodiments are mainly described in V2V scenarios, but it does not mean that the technical solutions provided by the embodiments of the present application are only applicable in V2V scenarios.
  • the technical solution provided by the embodiments of the present application may also be applied to a device-to-device (Device to Device, D2D) scenario, which is not limited in the embodiments of the present application.
  • D2D Device to Device
  • each network element such as the first terminal and the second terminal, includes a hardware structure and/or a software module corresponding to each function in order to implement the above-mentioned functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed by hardware or computer software driven hardware depends on the specific application and design constraints of the technical solution. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of this application.
  • the transmission device of the synchronization signal block includes a processing module 101 and a transmission module 102.
  • the processing module 101 is used for a transmission device supporting a synchronization signal block to perform step S101 in FIG. 2 and/or other processes for the technical solution described herein.
  • the sending module 102 is used to support the first terminal to perform step S102 in FIG. 2 and/or other processes for the technical solution described herein. All relevant content of each step involved in the above method embodiments can be referred to the function description of the corresponding function module, which will not be repeated here.
  • the transmission device of the synchronization signal block shown in FIG. 15 can be implemented by using the hardware structure shown in FIG. 16.
  • the transmission device of the synchronization signal block includes a processor 201 and a communication interface 202.
  • the processor 201 is used for a transmission device supporting a synchronization signal block to perform step S101 shown in FIG. 2 and/or other processes used in the technology described herein.
  • the communication interface 202 is used by a transmission device that supports a synchronization signal block to perform step S102 shown in FIG. 2 and/or other processes for the technical solutions described herein.
  • the transmission device of the synchronization signal block may further include a memory 203 and a bus 204.
  • the processor 201 may be a central processor unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • the processor may also be a combination that realizes a computing function, for example, including one or more microprocessor combinations, a combination of a digital signal processor and a microprocessor, and so on.
  • the communication interface 202 is used to communicate with other devices or communication networks, such as Ethernet, wireless access network, wireless local area network, and so on.
  • the memory 203 may be a read-only memory or other types of static storage devices that can store static information and instructions, a random access memory or other types of dynamic storage devices that can store information and instructions, or electrically erasable programmable read-only Memory, CD-ROM or other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store instructions or The desired program code in the form of a data structure and any other medium that can be accessed by a computer, but is not limited thereto.
  • the memory 203 may exist independently, and is connected to the processor 201 through the bus 204.
  • the memory 203 may also be integrated with the processor 201.
  • the memory 203 is used to store a software program that executes the solution provided by the embodiment of the present invention, and is controlled and executed by the processor 201.
  • the bus 204 may be a standard bus for interconnecting peripheral components or an extended industry standard structure bus.
  • the bus can be divided into an address bus, a data bus, and a control bus. For ease of representation, only a thick line is used in FIG. 16, but it does not mean that there is only one bus or one type of bus.
  • Embodiments of the present application also provide a computer-readable storage medium, in which computer instructions are stored; when the computer-readable storage medium runs on a first terminal, the first terminal is executed as The method shown in Figure 2.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium, or a semiconductor medium (for example, a solid state disk (SSD)) or the like.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site , Computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or Data center for transmission.
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • An embodiment of the present application further provides a chip system.
  • the chip system includes a processor for supporting the first terminal to implement the method shown in FIG. 2.
  • the chip system also includes a memory.
  • the memory is used to store necessary program instructions and data of the first terminal.
  • the memory may not be in the chip system.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiments of the present application.
  • An embodiment of the present application further provides a computer program product containing computer instructions, which when run on the first terminal, enables the first terminal to execute the method shown in FIG. 2.
  • the first terminal, the computer storage medium, the chip system, and the computer program product provided in the above embodiments of the present application are all used to execute the method for sending and receiving the synchronization signal block provided above, and therefore, the beneficial effects that can be achieved can be referred to The beneficial effects corresponding to the method provided above will not be repeated here.
  • the receiving device of the synchronization signal block includes: a processing module 301 and a receiving module 302.
  • the processing module 301 is used for the receiving device supporting the synchronization signal block to execute steps S104 and S105 in FIG. 2 and/or other processes for the technical solutions described herein.
  • the receiving module 302 is used by a receiving device that supports a synchronization signal block to perform step S103 in FIG. 2 and/or other processes for the technical solutions described herein. All relevant content of each step involved in the above method embodiments can be referred to the function description of the corresponding function module, which will not be repeated here.
  • the receiving device of the synchronization signal block shown in FIG. 17 can be implemented by using the hardware structure shown in FIG. 18.
  • the receiving device of the synchronization signal block includes: a processor 401 and a communication interface 402.
  • the processor 401 is used by a receiving device supporting a synchronization signal block to perform steps S104 and S105 shown in FIG. 2 and/or other processes used in the technology described herein.
  • the communication interface 402 is used by a receiving device that supports a synchronization signal block to perform step S103 shown in FIG. 2 and/or other processes for the technical solutions described herein.
  • the receiving device of the synchronization signal block may further include a memory 403 and a bus 404.
  • the processor 401 may be a central processor unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • the processor may also be a combination that realizes a computing function, for example, including one or more microprocessor combinations, a combination of a digital signal processor and a microprocessor, and so on.
  • the communication interface 402 is used to communicate with other devices or communication networks, such as Ethernet, wireless access network, and wireless local area network.
  • the memory 403 may be a read-only memory or other types of static storage devices that can store static information and instructions, a random access memory or other types of dynamic storage devices that can store information and instructions, or electrically erasable programmable read-only Memory, CD-ROM or other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store instructions or The desired program code in the form of a data structure and any other medium that can be accessed by a computer, but is not limited thereto.
  • the memory 403 may exist independently, and is connected to the processor 401 through the bus 404.
  • the memory 403 may also be integrated with the processor 401.
  • the memory 403 is used to store a software program that executes the solution provided by the embodiment of the present invention, and is controlled and executed by the processor 401.
  • the bus 404 may be a standard bus for interconnecting peripheral components or an extended industry standard structure bus.
  • the bus can be divided into an address bus, a data bus, and a control bus. For ease of representation, only a thick line is used in FIG. 18, but it does not mean that there is only one bus or one type of bus.
  • Embodiments of the present application also provide a computer-readable storage medium, in which computer instructions are stored; when the computer-readable storage medium runs on a second terminal, the second terminal is executed as The method shown in Figure 2.
  • An embodiment of the present application further provides a chip system.
  • the chip system includes a processor for supporting the second terminal to implement the method shown in FIG. 2.
  • the chip system also includes a memory.
  • the memory is used to store necessary program instructions and data of the second terminal.
  • the memory may not be in the chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices, which is not specifically limited in the embodiments of the present application.
  • An embodiment of the present application also provides a computer program product containing computer instructions, which when run on a second terminal, enables the second terminal to execute the method shown in FIG. 2.
  • the second terminal, the computer storage medium, the chip system, and the computer program product provided in the above embodiments of the present application are all used to perform the method for sending and receiving the synchronization signal block provided above, therefore, the beneficial effects that can be achieved can be referred to The beneficial effects corresponding to the method provided above will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种同步信号块的发送、接收方法及装置,涉及通信技术领域,用于使终端通过同步信号块确定另一个终端的方位。该方法包括:第一终端根据该第一终端的M个天线面板的位置信息与P个同步信号块的对应关系,以及N个天线面板的位置信息,确定N个天线面板中每一个天线面板对应的同步信号块;其中,M个天线面板的位置信息用于指示M个天线面板在第一终端上的位置,N个天线面板属于M个天线面板;N小于等于M,M、N、P均为正整数,P为M的整数倍;之后,第一终端使用N个天线面板分别发送N个天线面板对应的同步信号块。本申请适用于V2V的场景下。

Description

同步信号块的发送、接收方法及装置
本申请要求于2018年12月11日提交国家知识产权局、申请号为201811513585.1、申请名称为“同步信号块的发送、接收方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及同步信号块的发送、接收方法及装置。
背景技术
汽车与外界(vehicle to x,V2X)技术是未来智能交通运输系统的关键技术。它使得车与车、车与基站之间能够通信,使得车辆能够获取实时路况、道路信息、行人信息等一切交通信息,从而能够有效提高汽车驾驶的安全性、减少拥堵、提高交通效率、提供车载娱乐信息等。
车辆对车辆(vehicle to vehicle,V2V)技术是V2X技术中的一种。采用V2V技术,车辆用户设备(vehicle user equipment,VUE)之间可以直接交换无线信息,而无需通过基站转发。在采用V2V技术的情况下,如何使得一个VUE确定另一个VUE的相对方位,以保证汽车驾驶安全,是亟待解决的技术问题。
发明内容
本申请提供一种同步信号块的发送、接收方法及装置,用于使终端确定自身与另一个终端之间的相对方位。
为达到上述目的,本申请提供如下技术方案:
第一方面,提供一种同步信号块的发送方法,该方法包括:第一终端根据第一终端的M个天线面板的位置信息与P个同步信号块的对应关系,以及N个天线面板的位置信息,确定N个天线面板中每一个天线面板对应的同步信号块;其中,M个天线面板的位置信息用于指示M个天线面板在第一终端上的位置,N个天线面板属于M个天线面板,N小于等于M,M、N、P均为正整数,P为M的整数倍;第一终端使用N个天线面板分别发送N个天线面板对应的同步信号块。
基于上述技术方案,在第一终端的不同位置的天线面板分别对应不同的同步信号块,因此,对于同步信号块的接收端来说,接收端能够根据接收到的同步信号块,确定发送这个同步信号块的天线面板在第一终端上的位置,进而接收端能够确定自身与第一终端的相对方位。
其中,P等于M,第一终端的M个天线面板中的一个天线面板的位置信息与M个同步信号块中的一个同步信号块对应;或者,P为M的至少两倍,第一终端的M个天线面板中的一个天线面板的位置信息与P个同步信号块中的至少两个同步信号块对应。
一种可能的设计中,同步信号块用于指示发送同步信号块的天线面板的位置信息。
一种可能的设计中,同步信号块包括:主同步信号、辅同步信号以及物理广播信 道。
一种可能的设计中,M个天线面板的位置信息与P个同步信号块的对应关系,包括:M个天线面板的位置信息与P个资源映射方式的对应关系,资源映射方式用于指示同步信号块中主同步信号和辅同步信号占用的时频资源的位置。这样一来,在第一终端上不同位置的天线面板对应的同步信号块采用不同的资源映射方式,从而在第一终端上不同位置的天线面板对应的同步信号块的构造不相同,进而在第一终端上不同位置的天线面板对应不同的同步信号块。
一种可能的设计中,M个天线面板的位置信息与P个同步信号块的对应关系,包括:M个天线面板的位置信息与P个辅同步信号的序列的对应关系。这样一来,在第一终端上不同位置的天线面板对应的辅同步信号的序列不相同,从而在第一终端上不同位置的天线面板对应不同的同步信号块。
一种可能的设计中,辅同步信号的序列根据以下公式生成:c(n)=(x 0(n+i 1+k)+x 1(n+i 2+l))mod2。其中,c(n)为辅同步信号的序列;n为大于等于0,小于等于126的整数;
Figure PCTCN2019123116-appb-000001
NID1为物理小区标识组的标识,NID1为大于等于0,小于等于335的整数;NID2为物理小区标识组的组内标识,NID2的取值范围为{0,1,2};x 0(n)、x 1(n)均为M序列;i 2=(NID1)mod112;k和l均为整数,k和l由天线面板的位置信息来确定。
第二方面,提供一种同步信号块的接收方法,该方法包括:第二终端接收多个同步信号块;第二终端从多个同步信号块中,确定信号强度最大的同步信号块;第二终端根据第一终端的M个天线面板的位置信息与P个同步信号块的对应关系,确定第一终端用于发送信号强度最大的同步信号块的天线面板的位置信息;其中,M个天线面板的位置信息用于指示M个天线面板在第一终端上的位置;P为M的整数倍,M、P为正整数。
基于上述技术方案,对于第二终端来说,第一终端用于发送信号强度最大的同步信号块的天线面板,即为第一终端用于发送同步信号块的多个天线面板中与第二终端距离最近的天线面板。因此,第二终端能够通过第一终端用于发送信号强度最大的同步信号块的天线面板的位置信息,确定自身与第一终端之间的相对方位。
其中,P等于M,第一终端的M个天线面板中的一个天线面板的位置信息与M个同步信号块中的一个同步信号块对应;或者,P为M的至少两倍,第一终端的M个天线面板中的一个天线面板的位置信息与P个同步信号块中的至少两个同步信号块对应。
一种可能的设计中,同步信号块用于指示发送同步信号块的天线面板的位置信息。
一种可能的设计中,同步信号块包括:主同步信号、辅同步信号以及物理广播信道。
一种可能的设计中,M个天线面板的位置信息与P个同步信号块的对应关系,包括:M个天线面板的位置信息与P个资源映射方式的对应关系,资源映射方式用于指示同步信号块中主同步信号和辅同步信号占用的时频资源的位置。这样一来,在第一终端上不同位置的天线面板对应的同步信号块采用不同的资源映射方式,从而在第一 终端上不同位置的天线面板对应的同步信号块的构造不相同,进而在第一终端上不同位置的天线面板对应不同的同步信号块。
一种可能的设计中,M个天线面板的位置信息与P个同步信号块的对应关系,包括:M个天线面板的位置信息与P个辅同步信号的序列的对应关系。这样一来,在第一终端上不同位置的天线面板对应的辅同步信号的序列不相同,从而在第一终端上不同位置的天线面板对应不同的同步信号块。
一种可能的设计中,辅同步信号的序列根据以下公式生成:c(n)=(x 0(n+i 1+k)+x 1(n+i 2+l))mod2。其中,c(n)为辅同步信号的序列;n为大于等于0,小于等于126的整数;
Figure PCTCN2019123116-appb-000002
NID1为物理小区标识组的标识,NID1为大于等于0,小于等于335的整数;NID2为物理小区标识组的组内标识,NID2的取值范围为{0,1,2};x 0(n)、x 1(n)均为M序列;i 2=(NID1)mod112;k和l均为整数,k和l由天线面板的位置信息来确定。
第三方面,提供一种同步信号块的发送装置,包括:处理模块,用于根据同步信号块的发送装置的M个天线面板的位置信息与P个同步信号块的对应关系,以及N个天线面板的位置信息,确定N个天线面板中每一个天线面板对应的同步信号块;其中,M个天线面板的位置信息用于指示M个天线面板在同步信号块的发送装置上的位置,N个天线面板属于M个天线面板,N小于等于M,M、N、P均为正整数,P为M的整数倍。发送模块,用于使用N个天线面板分别发送N个天线面板对应的同步信号块。
其中,P等于M,同步信号块的发送装置的M个天线面板中的一个天线面板的位置信息与M个同步信号块中的一个同步信号块对应;或者,P为M的至少两倍,同步信号块的发送装置的M个天线面板中的一个天线面板的位置信息与P个同步信号块中的至少两个同步信号块对应。
一种可能的设计中,同步信号块用于指示发送同步信号块的天线面板的位置信息。
一种可能的设计中,同步信号块包括:主同步信号、辅同步信号以及物理广播信道。
一种可能的设计中,M个天线面板的位置信息与P个同步信号块的对应关系,包括:M个天线面板的位置信息与P个资源映射方式的对应关系,资源映射方式用于指示同步信号块中主同步信号和辅同步信号占用的时频资源的位置。
一种可能的设计中,M个天线面板的位置信息与P个同步信号块的对应关系,包括:M个天线面板的位置信息与P个辅同步信号的序列的对应关系。
一种可能的设计中,辅同步信号的序列根据以下公式生成:c(n)=(x 0(n+i 1+k)+x 1(n+i 2+l))mod2。其中,c(n)为辅同步信号的序列;n为大于等于0,小于等于126的整数;
Figure PCTCN2019123116-appb-000003
NID1为物理小区标识组的标识,NID1为大于等于0,小于等于335的整数;NID2为物理小区标识组的组内标识,NID2的取值范围为{0,1,2};x 0(n)、x 1(n)均为M序列;i 2=(NID1)mod112;k和l均为整数,k和l由天线面板的位置信息来确定。
第四方面,提供一种同步信号块的发送装置,包括:处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如上述第一方面任一项所述的同步信号块的发送方法。
可选的,上述第三方面和第四方面所提供的同步信号块的发送装置可以是终端,或者终端中的一部分装置,例如芯片、芯片系统或者电路结构等,本申请对此不作任何限定。
第五方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在终端上运行时,使得终端可以执行上述第一方面任一项所述的同步信号块的发送方法。
第六方面,提供一种包含指令的计算机程序产品,当其在终端上运行时,使得终端可以执行上述第一方面任一项所述的同步信号块的发送方法。
第七方面,提供一种芯片系统,该芯片系统包括处理器,用于支持终端实现上述第一方面所涉及的功能。在一种可能的设计中,该芯片系统包括存储器,该存储器用于保存终端必要的程序指令和数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
其中,上述第三方面至第七方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
第八方面,提供一种同步信号块的接收装置,包括:接收模块,用于接收多个同步信号块。处理模块,用于从多个同步信号块中,确定信号强度最大的同步信号块;根据同步信号块的发送装置的M个天线面板的位置信息与P个同步信号块的对应关系,确定同步信号块的发送装置用于发送信号强度最大的同步信号块的天线面板的位置信息;其中,M个天线面板的位置信息用于指示M个天线面板在同步信号块的发送装置上的位置;P为M的整数倍,M、P为正整数。
其中,P等于M,同步信号块的发送装置的M个天线面板中的一个天线面板的位置信息与M个同步信号块中的一个同步信号块对应;或者,P为M的至少两倍,同步信号块的发送装置的M个天线面板中的一个天线面板的位置信息与P个同步信号块中的至少两个同步信号块对应。
一种可能的设计中,同步信号块用于指示发送同步信号块的天线面板的位置信息。
一种可能的设计中,同步信号块包括:主同步信号、辅同步信号以及物理广播信道。
一种可能的设计中,M个天线面板的位置信息与P个同步信号块的对应关系,包括:M个天线面板的位置信息与P个资源映射方式的对应关系,资源映射方式用于指示同步信号块中主同步信号和辅同步信号占用的时频资源的位置。
一种可能的设计中,M个天线面板的位置信息与P个同步信号块的对应关系,包括:M个天线面板的位置信息与P个辅同步信号的序列的对应关系。
一种可能的设计中,辅同步信号的序列根据以下公式生成:c(n)=(x 0(n+i 1+k)+x 1(n+i 2+l))mod2。其中,c(n)为辅同步信号的序列;n为大于等于0,小于等于126的整数;
Figure PCTCN2019123116-appb-000004
NID1为物理小区标识组的标识,NID1为大于等于0,小于等于335的整数;NID2为物理小区标识组的组内标识,NID2的 取值范围为{0,1,2};x 0(n)、x 1(n)均为M序列;i 2=(NID1)mod112;k和l均为整数,k和l由天线面板的位置信息来确定。
第九方面,提供一种同步信号块的接收装置,包括:处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如上述第二方面任一项所述的同步信号块的接收方法。
可选的,上述第八方面和第九方面所提供的同步信号块的接收装置可以是终端,或者终端中的一部分装置,例如芯片、芯片系统或者电路结构等,本申请对此不作任何限定。
第十方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在终端上运行时,使得终端可以执行上述第二方面任一项所述的同步信号块的接收方法。
第十一方面,提供一种包含指令的计算机程序产品,当其在终端上运行时,使得终端可以执行上述第二方面任一项所述的同步信号块的接收方法。
第十二方面,提供一种芯片系统,该芯片系统包括处理器,用于支持终端实现上述第二方面所涉及的功能。在一种可能的设计中,该芯片系统包括存储器,该存储器用于保存终端必要的程序指令和数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
其中,上述第八方面至第十二方面中任一种设计方式所带来的技术效果可参见第二方面中不同设计方式所带来的技术效果,此处不再赘述。
第十三方面,提供一种通信系统,包括第一终端和第二终端,第一终端用于执行第一方面任一项所述的同步信号块的发送方法,第二终端用于执行第二方面任一项所述的同步信号块的接收方法。
附图说明
图1为同步信号块的结构示意图;
图2为本申请实施例提供的一种同步信号块发送、接收方法的流程图;
图3为本申请实施例提供的一种第一终端上各个天线面板覆盖的扇区的示意图;
图4为本申请实施例提供的一种映射方式一的示意图;
图5为本申请实施例提供的一种映射方式二的示意图;
图6为本申请实施例提供的一种映射方式三的示意图;
图7为本申请实施例提供的一种映射方式四的示意图;
图8为本申请实施例提供的一种映射方式的示意图;
图9为本申请实施例提供的另一种映射方式的示意图;
图10为本申请实施例提供的另一种映射方式的示意图;
图11为本申请实施例提供的另一种映射方式的示意图;
图12为本申请实施例提供的一种第一终端和第二终端通信的示意图;
图13为本申请实施例提供的另一种第一终端和第二终端通信的示意图;
图14为本申请实施例提供的另一种第一终端和第二终端通信的示意图;
图15为本申请实施例提供的一种同步信号块的发送装置的结构示意图;
图16为本申请实施例提供的一种同步信号块的发送装置的硬件结构示意图;
图17为本申请实施例提供的一种同步信号块的接收装置的结构示意图;
图18为本申请实施例提供的一种同步信号块的接收装置的硬件结构示意图。
具体实施方式
下面先对本申请实施例所涉及的一些概念进行简单介绍。
如图1所示,为同步信号块的结构示意图。同步信号块是一种信号结构,包含主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)以及物理广播信道(physical broadcast channel,PBCH)。需要说明的是,同步信号块一般占用4个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。其中,主同步信号和辅同步信号用于辅助终端识别小区以及和小区进行同步。PBCH包含了最基本的系统信息,例如系统帧号、帧内定时信息等。
当前,辅同步信号的序列按以下公式(1)生成:
c(n)=(x 0(n+i 1)+x 1(n+i 2))mod2          (1)
其中,c(n)为辅同步信号的序列。n为大于等于0,小于等于126的整数。
Figure PCTCN2019123116-appb-000005
i 2=(NID1)mod112。
NID1为物理小区标识组的标识,NID1为大于等于0,小于等于335的整数。NID2为物理小区标识组的组内标识,NID2的取值范围为{0,1,2}。需要说明的是,N cell=3*NID1+NID2,N cell为物理小区标识(physical cell identifier,PCI)。
x 0(n)、x 1(n)均为M序列。需要说明的是,M序列是通过线性反馈移位寄存器(linear feedback shift register,LFSR)来生成的一种伪随机序列。对于确定的LFSR,给定每一个初始值,都有一个唯一的M序列与之对应。因此,发送端利用不同的初始值生成M序列,则接收端可通过序列检测来唯一的确定这个M序列。
x 0(n)所用的移位寄存器为:x 0(i+7)=(x 0(i+4)+x 0(i))mod2。其中,初始值为:x 0(0)=0,x 0(1)=0,x 0(2)=0,x 0(3)=0,x 0(4)=0,x 0(5)=0,x 0(6)=1。
x 1(n)所用的移位寄存器为:x 1(i+7)=(x 1(i+1)+x 1(i))mod2。其中,初始值为:x 1(0)=0,x 1(1)=0,x 1(2)=0,x 1(3)=0,x 1(4)=0,x 1(5)=0,x 1(6)=1。
本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
如图2所示,为本申请实施例提供的同步信号块的发送、接收方法,该方法包括以下步骤:
S101、第一终端根据第一终端的M个天线面板的位置信息与P个同步信号块的对应关系,以及N个天线面板的位置信息,确定所述N个天线面板中每一个天线面板对应的同步信号块。
其中,第一终端配置有M个天线面板,M为正整数。其中,这M个天线面板部署在第一终端的不同部位,例如前保险杆、后保险杆、车顶等。可以理解的是,上述N个天线面板属于M个面板,也即N个天线面板为第一终端的M个天线面板的全部或者一部分。N小于等于M,P为M的整数倍,M、N、P为正整数。
可以理解的是,所述P等于M,所述第一终端的M个天线面板中的一个天线面板的位置信息与所述M个同步信号块中的一个同步信号块对应;或者,所述P为M的至少两倍,所述第一终端的M个天线面板中的一个天线面板的位置信息与所述P个同步信号块中的至少两个同步信号块对应。
在本申请实施例中,所述M个天线面板的位置信息用于指示M个天线面板在第一终端上的位置。可选的,所述天线面板的位置信息可以是位置索引、位置标识等。示例性的,以所述天线面板的位置信息为位置索引为例,天线面板的位置索引可参考表一。
表一
位置索引 天线面板在第一终端上的位置
00 天线面板在第一终端的前保险杆
01 天线面板在第一终端的后保险杆
10 天线面板在第一终端的车身左侧
11 天线面板在第一终端的车身右侧
…… ……
在本申请实施例中,第一终端的M个天线面板用于覆盖不同的扇区。可以理解的是,在第一终端的前保险杆的天线面板只能覆盖车头区域,而不可能覆盖到车尾区域;在第一终端的车身右侧的天线面板只能覆盖车身右侧区域,而不可能覆盖到车身左侧区域。这样一来,在实际应用中,为了保证覆盖效果,天线面板所覆盖的扇区由天线面板在第一终端上的位置来确定。也就是说,天线面板所覆盖的扇区与天线面板的位置信息存在对应关系。换而言之,天线面板的位置信息还用于隐式指示天线面板所覆盖的扇区。可选的,天线面板所覆盖的扇区与天线面板所覆盖的扇区之间的对应关系是预先配置的,或者是标准中规定的。
例如,在以第一终端作为极点,车头方向作为极轴的极坐标系中,在第一终端的前保险杆的天线面板负责覆盖45°到315°的扇区,在第一终端的车身右侧的天线面板负责覆盖45°到135°的扇区,在第一终端的后保险杆的天线面板负责135°到225°的扇区,在第一终端的车身右侧的天线面板负责覆盖225°到315°的扇区。
又例如,结合图3进行说明,在第一终端的前保险杆的天线面板负责扇区1,在第一终端的车身左侧的天线面板负责扇区2,在第一终端的后保险杆的天线面板负责扇区3,在第一终端的车身右侧的天线面板负责扇区4。
在本申请实施例中,天线面板的位置信息与同步信号块之间存在对应关系。其中,天线面板的位置信息与同步信号块的对应关系可以是预先配置在第一终端和/或第二 终端上的,或者是第一终端和第二终端协商确定的,又或者是标准中规定的。
由于天线面板的位置信息与同步信号块之间存在对应关系,因此在第一终端上不同位置的天线面板分别对应不同的同步信号块。也就是说,同步信号块可以用于指示发送所述同步信号块的天线面板的位置信息。
作为一种实现方式,同步信号块以显式的方式指示发送所述同步信号块的天线面板的位置信息。可选的,同步信号块中PBCH携带发送所述同步信号块的天线面板的位置信息。
作为另一种实现方式,同步信号块以隐式的方式指示发送所述同步信号块的天线面板的位置信息。在这种情况下,上述M个天线面板的位置信息与P个同步信号块之间的对应关系,包括以下情形之一或者它们的任意组合:
情形一、M个天线面板的位置信息与P个资源映射方式之间存在对应关系。其中,所述资源映射方式用于指示所述同步信号块中主同步信号和辅同步信号占用的时频资源的位置。需要说明的是,所述资源映射方式可以有不同的名称,例如资源图样(pattern),本申请实施例不限于此。
其中,若P等于M,则所述第一终端的M个天线面板中一个天线面板的位置信息与P个资源映射方式中的一个资源映射方式对应;或者,若P为M的至少两倍,则所述第一终端的M个天线面板中的一个天线面板的位置信息与P个资源映射方式中的至少两个资源映射方式对应。
可以理解的是,由于天线面板的位置信息与资源映射方式之间存在对应关系,因此,在第一终端上不同位置的天线面板对应不同的资源映射方式,换而言之,在第一终端上不同位置的天线面板发送的同步信号块采用不同的资源映射方式,因此,在第一终端上不同位置的天线面板发送的同步信号块在构造上不相同,从而在第一终端上不同位置的天线面板发送的同步信号块不相同。
需要说明的是,采用不同资源映射方式的同步信号块在构造上不相同,包括以下两种情况:
(1)若同步信号块采用不同的资源映射方式,则同步信号块中主同步信号和辅同步信号所占用的时频资源不相同。
下面以举例的方式对上述情况(1)进行说明。示例性的,以天线面板的位置信息为位置索引,P等于M为例,天线面板的位置索引与资源映射方式之间的对应关系可参考表二。示例性的,上述资源映射方式一可参考图4,资源映射方式二可参考图5,资源映射方式三可参考图6,资源映射方式四可参考图7。
表二
天线面板的位置索引 资源映射方式
00 资源映射方式一
11 资源映射方式二
01 资源映射方式三
10 资源映射方式四
…… ……
示例性的,以天线面板的位置信息为位置索引,P为M的两倍为例,天线面板的 位置索引与资源映射方式之间的对应关系可参考表三。
表三
天线面板的位置索引 资源映射方式
00 资源映射方式一
00 资源映射方式二
01 资源映射方式三
01 资源映射方式四
…… ……
(2)若同步信号块采用不同的资源映射方式,则同步信号块中主同步信号和辅同步信号所占用的时域资源不相同。
可选的,在这种情况下,所述M个天线面板的位置信息与P个资源映射方式之间的对应关系,包括:所述M个天线面板的位置信息与P个主同步信号的时域偏移值之间的对应关系,和/或所述M个天线面板的位置信息与P个辅同步信号的时域偏移值之间的对应关系。其中,主同步信号的时域偏移值即为主同步信号在同步信号块中占用的OFDM符号与同步信号块的起始OFDM符号之间的偏移值。辅同步信号的时域偏移值即为辅同步信号在同步信号块中占用的OFDM符号与同步信号块的起始OFDM符号之间的偏移值。
示例性的,以天线面板的位置信息为位置索引,P等于M为例,天线面板的位置信息与同步信号块中主同步信号的时域偏移值之间的对应关系,以及所述天线面板的位置信息与同步信号块中辅同步信号的时域偏移值之间的对应关系,可参考表四。
表四
天线面板的位置索引 主同步信号的时域偏移值 辅同步信号的时域偏移值
00 1 0
11 1 2
01 3 1
10 0 2
…… …… ……
示例性的,结合表三,位置索引为00的天线面板对应的资源映射方式可参考图8,位置索引为11的天线面板对应的资源映射方式可参考图9,位置索引为01的天线面板对应的资源映射方式可参考图10,位置索引为10的天线面板对应的资源映射方式可参考图11。
可以理解的是,上述图4至图11所示的资源映射方式仅是本申请实施例所提供的示例,不构成任何限定。
情形二、M个天线面板的位置信息与P个辅同步信号的序列之间存在对应关系。
其中,若P等于M,则第一终端的M个天线面板中的一个天线面板的位置信息与P个辅同步信号的序列中的一个辅同步信号的序列对应;或者,若P为M的至少两倍,则第一终端的M个天线面板中的一个天线面板的位置信息与P个辅同步信号的序列中的至少两个辅同步信号的序列对应。
可以理解的是,由于天线面板的位置信息与辅同步信号的序列之间存在对应关系, 因此,在第一终端上不同位置的天线面板对应不同的辅同步信号的序列,从而在第一终端上不同位置的天线面板对应不同的同步信号块。
作为一种实现方式,辅同步信号的序列根据以下公式(2)生成:
c(n)=(x 0(n+i 1+k)+x 1(n+i 2+l))mod2          (2)
其中,c(n)为辅同步信号的序列;n为大于等于0,小于等于126的正整数。
Figure PCTCN2019123116-appb-000006
i 2=(NID1)mod112。NID1为物理小区标识组的标识,NID1为大于等于0,小于等于335的整数。NID2为物理小区标识组的组内标识,NID2的取值范围为{0,1,2}。
x 0(n)、x 1(n)均为M序列,x 0(n)、x 1(n)可参考前文,在此不予赘述。
k为第一循环位移参数,l为第二循环位移参数。k和l均为整数,k和l由天线面板的位置信息来确定。例如,根据天线面板的位置信息与k、l之间的对应关系,确定k和l。
示例性的,以天线面板的位置信息为位置索引,P等于M为例,k、l与天线面板的位置索引之间的对应关系可参考表五。
表五
天线面板的位置索引 k l
00 1 2
11 3 4
01 2 3
10 1 4
…… …… ……
示例性的,以天线面板的位置信息为位置索引,P为M的两倍为例,k、l与天线面板的位置索引之间的对应关系可参考表六。
表六
天线面板的位置索引 k l
00 1 2
00 3 4
11 2 3
11 1 4
10 3 4
10 4 3
01 5 6
01 6 5
…… …… ……
下面以举例的方式说明上述情形一与情形二相互结合的场景。示例性的,以P等于M为例,天线面板的位置信息与同步信号块的对应关系可参考表七。
表七
天线面板的位置索引 资源映射方式 k l
000 资源映射方式一 1 2
001 资源映射方式一 3 4
010 资源映射方式二 1 2
011 资源映射方式二 3 4
100 资源映射方式三 1 2
…… …… …… ……
也就是说,对于第一终端的任意两个天线面板来说,这两个天线面板对应的同步信号块所采用的资源映射方式不相同,和/或,这两个天线面板对应的同步信号块中辅同步信号的序列不相同。
可以理解的是,上述情形一和情形二仅是对M个天线面板的位置信息与P个同步信号块之间对应关系的示例,本申请实施例不限于此。
S102、第一终端使用所述N个天线面板分别发送所述N个天线面板对应的同步信号块。
可以理解的是,相比于现有技术中以N个天线面板形成天线阵列进行波束扫描的同步信号块发送方式,本申请实施例所提供的技术方案中,由于N个天线面板分别覆盖不同的扇区,因此第一终端同时使用所述N个天线面板分别发送所述N个天线面板对应的同步信号块,能够节约波束扫描的时间,减少同步信号块的传输时延。
举例来说,假设在第一终端的前保险杆的天线面板对应同步信号块1,在第一终端的后保险杆的天线面板对应同步信号块2,在第一终端的车身左侧的天线面板对应同步信号块3,在第一终端的车身右侧的天线面板对应同步信号块4。因此,第一终端使用在前保险杆的天线面板发送同步信号块1,使用在后保险杆的天线面板发送同步信号块2,在车身左侧的天线面板发送同步信号块3,在车身右侧的天线面板发送同步信号块4。
可选的,对于N个天线面板中的任一个天线面板来说,第一终端使用天线面板在其覆盖的扇区中以波束扫描的方式发送同步信号块。
S103、第二终端接收多个同步信号块。
S104、第二终端从所述多个同步信号块中,确定信号强度最大的同步信号块。
可选的,同步信号块的信号强度是指同步信号块包含的同步信号的参考信号接收功率(reference signal receiving power,RSRP)。其中,同步信号包括主同步信号和/或辅同步信号。可以理解的是,在这种情况下,信号强度最大的同步信号块即为同步信号的RSRP最大的同步信号块。
作为一种实现方式,对于所述多个同步信号块中的每一个同步信号块,第二终端确定同步信号块包含的同步信号的RSRP。之后,第二终端从所述多个同步信号块中,确定同步信号的RSRP最大的同步信号块。
当前,同步信号块的信号强度不局限于RSRP,还可以是其他参数,本申请实施例不限于此。
S105、第二终端根据第一终端的M个天线面板的位置信息与P个同步信号块的对应关系,确定第一终端用于发送所述信号强度最大的同步信号块的天线面板的位置信息。
可以理解的是,第二终端通过确定第一终端用于发送所述信号强度最大的同步信号块的天线面板的位置信息,能够间接确定第二终端与第一终端的相对位置关系。
下面以举例的方式说明步骤S105。并且,假设在第一终端的前保险杆的天线面板对应同步信号块1,在第一终端的后保险杆的天线面板对应同步信号块2,在第一终端的车身左侧的天线面板对应同步信号块3,在第一终端的车身右侧的天线面板对应同步信号块4。
作为一种示例,如图12所示,由于第二终端在第一终端的后方,因此第二终端接收到的多个同步信号块中,同步信号块2是信号强度最大的同步信号块。这样一来,第二终端根据天线面板的位置信息与同步信号块的对应关系,能够确定发送同步信号块2的天线面板是在第一终端的后保险杆上的天线面板,从而第二终端能够确定自身在第一终端的后方。
作为另一种示例,如图13所示,由于第二终端在第一终端的左侧,因此第二终端接收到的多个同步信号块中,同步信号块3是信号强度最大的同步信号块。这样一来,第二终端根据天线面板的位置信息与同步信号块的对应关系,能够确定发送同步信号块2的天线面板是在第一终端的车身左侧的天线面板,从而第二终端能够确定自身在第一终端的左侧。
作为另一种示例,如图14所示,由于第二终端在第一终端的前方,因此第二终端接收到的多个同步信号块中,同步信号块1是信号强度最大的同步信号块。这样一来,第二终端根据天线面板的位置信息与同步信号块的对应关系,能够确定发送同步信号块1的天线面板是在第一终端的前保险杆上的天线面板,从而第二终端能够确定自身在第一终端的前方。
另外,上述方法实施例主要从V2V场景进行描述,但不代表本申请实施例所提供的技术方案仅适用于V2V场景下。例如,本申请实施例所提供的技术方案还可以应用于设备到设备(Device to Device,D2D)场景,本申请实施例对此不作任何限定。
上述主要从每一个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,每一个网元,例如第一终端和第二终端,为了实现上述功能,其包含了执行每一个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图15为本申请实施例提供的一种同步信号块的发送装置的结构示意图。如图15所示,同步信号块的发送装置包括:处理模块101和发送模块102。其中,所述处理模块101用于支持同步信号块的发送装置执行图2中的步骤S101,和/或用于本文描述的技术方案的其他过程。所述发送模块102用于支持第一终端执行图2中的步骤S102,和/或用于本文描述的技术方案的其他过程。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图15所示的同步信号块的发送装置可以采用图16所示的硬件结构来实现。如图 16所示,该同步信号块的发送装置包括:处理器201和通信接口202。处理器201用于支持同步信号块的发送装置执行图2所示的步骤S101,和/或用于本文所描述的技术的其他过程。通信接口202用于支持同步信号块的发送装置执行图2所示的步骤S102,和/或用于本文描述的技术方案的其他过程。此外,该同步信号块的发送装置的还可以包括存储器203和总线204。
其中,处理器201可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。
通信接口202用于与其他设备或通信网络通信,如以太网、无线接入网、无线局域网等。
存储器203可以是只读存储器或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器、只读光盘或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器203可以独立存在,通过总线204与处理器201相连接。存储器203也可以和处理器201集成在一起。其中,所述存储器203用于存储执行本发明实施例提供的方案的软件程序,并由处理器201来控制执行。
总线204可以是外设部件互连标准总线或扩展工业标准结构总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图16中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令;当所述计算机可读存储介质在第一终端上运行时,使得该第一终端执行如图2所示的方法。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
在本申请实施例中,所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持第一终端实现图2所示的方法。在一种可能的设计中,该芯片系统还包括存储器。该存储器,用于保存第一终端必要的程序指令和数据。当然,存储器也可以不在芯片系统中。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
本申请实施例还提供了一种包含计算机指令的计算机程序产品,当其在第一终端 上运行时,使得第一终端可以执行图2所示的方法。
上述本申请实施例提供的第一终端、计算机存储介质、芯片系统以及计算机程序产品均用于执行上文所提供的同步信号块的发送、接收方法,因此,其所能达到的有益效果可参考上文所提供的方法对应的有益效果,在此不再赘述。
图17为本申请实施例提供的一种同步信号块的接收装置的结构示意图。如图17所示,同步信号块的接收装置包括:处理模块301和接收模块302。其中,所述处理模块301用于支持同步信号块的接收装置执行图2中的步骤S104和S105,和/或用于本文描述的技术方案的其他过程。所述接收模块302用于支持同步信号块的接收装置执行图2中的步骤S103,和/或用于本文描述的技术方案的其他过程。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图17所示的同步信号块的接收装置可以采用图18所示的硬件结构来实现。如图18所示,该同步信号块的接收装置包括:处理器401和通信接口402。处理器401用于支持同步信号块的接收装置执行图2所示的步骤S104和S105,和/或用于本文所描述的技术的其他过程。通信接口402用于支持同步信号块的接收装置执行图2所示的步骤S103,和/或用于本文描述的技术方案的其他过程。此外,该同步信号块的接收装置的还可以包括存储器403和总线404。
其中,处理器401可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。
通信接口402用于与其他设备或通信网络通信,如以太网、无线接入网、无线局域网等。
存储器403可以是只读存储器或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器、只读光盘或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器403可以独立存在,通过总线404与处理器401相连接。存储器403也可以和处理器401集成在一起。其中,所述存储器403用于存储执行本发明实施例提供的方案的软件程序,并由处理器401来控制执行。
总线404可以是外设部件互连标准总线或扩展工业标准结构总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图18中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令;当所述计算机可读存储介质在第二终端上运行时,使得该第二终端执行如图2所示的方法。
本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持第二终端实现图2所示的方法。在一种可能的设计中,该芯片系统还包括存储器。该存储器,用于保存第二终端必要的程序指令和数据。当然,存储器也可以不在芯片系统中。该 芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
本申请实施例还提供了一种包含计算机指令的计算机程序产品,当其在第二终端上运行时,使得第二终端可以执行图2所示的方法。
上述本申请实施例提供的第二终端、计算机存储介质、芯片系统以及计算机程序产品均用于执行上文所提供的同步信号块的发送、接收方法,因此,其所能达到的有益效果可参考上文所提供的方法对应的有益效果,在此不再赘述。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (34)

  1. 一种同步信号块的发送方法,其特征在于,所述方法包括:
    第一终端根据所述第一终端的M个天线面板的位置信息与P个同步信号块的对应关系,以及N个天线面板的位置信息,确定所述N个天线面板中每一个天线面板对应的同步信号块;其中,所述M个天线面板的位置信息用于指示所述M个天线面板在所述第一终端上的位置,所述N个天线面板属于所述M个天线面板,N小于等于M,M、N、P均为正整数,P为M的整数倍;
    所述第一终端使用所述N个天线面板分别发送所述N个天线面板对应的同步信号块。
  2. 根据权利要求1所述的同步信号块的发送方法,其特征在于,所述同步信号块用于指示发送所述同步信号块的天线面板的位置信息。
  3. 根据权利要求1或2所述的同步信号块的发送方法,其特征在于,所述同步信号块包括:主同步信号、辅同步信号以及物理广播信道。
  4. 根据权利要求3所述的同步信号块的发送方法,其特征在于,所述M个天线面板的位置信息与P个同步信号块的对应关系,包括:
    所述M个天线面板的位置信息与P个资源映射方式的对应关系,所述资源映射方式用于指示所述同步信号块中主同步信号和辅同步信号占用的时频资源的位置。
  5. 根据权利要求3所述的同步信号块的发送方法,其特征在于,所述M个天线面板的位置信息与P个同步信号块的对应关系,包括:
    所述M个天线面板的位置信息与P个辅同步信号的序列的对应关系。
  6. 根据权利要求5所述的同步信号块的发送方法,其特征在于,所述辅同步信号的序列根据以下公式生成:
    c(n)=(x 0(n+i 1+k)+x 1(n+i 2+l))mod2
    其中,c(n)为辅同步信号的序列;n为大于等于0,小于等于126的整数;
    Figure PCTCN2019123116-appb-100001
    NID1为物理小区标识组的标识,NID1为大于等于0,小于等于335的整数;NID2为物理小区标识组的组内标识,NID2的取值范围为{0,1,2};
    i 2=(NID1)mod112;
    x 0(n)、x 1(n)均为M序列;
    k和l均为整数,k和l由所述天线面板的位置信息来确定。
  7. 根据权利要求1至6任一项所述的同步信号块的发送方法,其特征在于,
    所述P等于M,所述第一终端的M个天线面板中的一个天线面板的位置信息与M个同步信号块中的一个同步信号块对应;或
    所述P为M的至少两倍,所述第一终端的M个天线面板中的一个天线面板的位置信息与所述P个同步信号块中的至少两个同步信号块对应。
  8. 一种同步信号块的接收方法,其特征在于,所述方法包括:
    第二终端接收多个同步信号块;
    所述第二终端从多个同步信号块中,确定信号强度最大的同步信号块;
    所述第二终端根据第一终端的M个天线面板的位置信息与P个同步信号块的对应 关系,确定所述第一终端用于发送所述信号强度最大的同步信号块的天线面板的位置信息;其中,所述M个天线面板的位置信息用于指示所述M个天线面板在所述第一终端上的位置;P为M的整数倍,M、P为正整数。
  9. 根据权利要求8所述的同步信号块的接收方法,其特征在于,所述同步信号块用于指示发送所述同步信号块的天线面板的位置信息。
  10. 根据权利要求8或9所述的同步信号块的接收方法,其特征在于,所述同步信号块包括:主同步信号、辅同步信号以及物理广播信道。
  11. 根据权利要求10所述的同步信号块的接收方法,其特征在于,所述M个天线面板的位置信息与P个同步信号块的对应关系,包括:
    所述M个天线面板的位置信息与P个资源映射方式的对应关系,所述资源映射方式用于指示所述同步信号块中主同步信号和辅同步信号占用的时频资源的位置。
  12. 根据权利要求10所述的同步信号块的接收方法,其特征在于,所述M个天线面板的位置信息与P个同步信号块的对应关系,包括:
    所述M个天线面板的位置信息与P个辅同步信号的序列的对应关系。
  13. 根据权利要求12所述的同步信号块的接收方法,其特征在于,所述辅同步信号的序列根据以下公式生成:
    c(n)=(x 0(n+i 1+k)+x 1(n+i 2+l))mod2
    其中,c(n)为辅同步信号的序列;n为大于等于0,小于等于126的正整数;
    Figure PCTCN2019123116-appb-100002
    NID1为物理小区标识组的标识,NID1为大于等于0,小于等于335的整数;NID2为物理小区标识组的组内标识,NID2的取值范围为{0,1,2};
    i 2=(NID1)mod112;
    x 0(n)、x 1(n)均为M序列;
    k和l均为整数,k和l由所述天线面板的位置信息来确定。
  14. 根据权利要求8至13任一项所述的同步信号块的接收方法,其特征在于,
    所述P等于M,所述第一终端的M个天线面板中的一个天线面板的位置信息与M个同步信号块中的一个同步信号块对应;或
    所述P为M的至少两倍,所述第一终端的M个天线面板中的一个天线面板的位置信息与所述P个同步信号块中的至少两个同步信号块对应。
  15. 一种同步信号块的发送装置,其特征在于,包括:
    处理模块,用于根据所述同步信号块的发送装置的M个天线面板的位置信息与P个同步信号块的对应关系,以及N个天线面板的位置信息,确定所述N个天线面板中每一个天线面板对应的同步信号块;其中,所述M个天线面板的位置信息用于指示所述M个天线面板在所述同步信号块的发送装置上的位置,所述N个天线面板属于所述M个天线面板,N小于等于M,M、N、P均为正整数,P为M的整数倍;
    发送模块,用于使用所述N个天线面板分别发送所述N个天线面板对应的同步信号块。
  16. 根据权利要求15所述的同步信号块的发送装置,其特征在于,所述同步信号块用于指示发送所述同步信号块的天线面板的位置信息。
  17. 根据权利要求15或16所述的同步信号块的发送装置,其特征在于,所述同 步信号块包括:主同步信号、辅同步信号以及物理广播信道。
  18. 根据权利要求17所述的同步信号块的发送装置,其特征在于,所述M个天线面板的位置信息与P个同步信号块的对应关系,包括:
    所述M个天线面板的位置信息与P个资源映射方式的对应关系,所述资源映射方式用于指示所述同步信号块中主同步信号和辅同步信号占用的时频资源的位置。
  19. 根据权利要求17所述的同步信号块的发送装置,其特征在于,所述M个天线面板的位置信息与P个同步信号块的对应关系,包括:
    所述M个天线面板的位置信息与P个辅同步信号的序列的对应关系。
  20. 根据权利要求19所述的同步信号块的发送装置,其特征在于,所述辅同步信号的序列根据以下公式生成:
    c(n)=(x 0(n+i 1+k)+x 1(n+i 2+l))mod2
    其中,c(n)为辅同步信号的序列;n为大于等于0,小于等于126的整数;
    Figure PCTCN2019123116-appb-100003
    NID1为物理小区标识组的标识,NID1为大于等于0,小于等于335的整数;NID2为物理小区标识组的组内标识,NID2的取值范围为{0,1,2};
    i 2=(NID1)mod112;
    x 0(n)、x 1(n)均为M序列;
    k和l均为整数,k和l由所述天线面板的位置信息来确定。
  21. 根据权利要求15至20任一项所述的同步信号块的发送装置,其特征在于,
    所述P等于M,所述同步信号块的发送装置的M个天线面板中的一个天线面板的位置信息与M个同步信号块中的一个同步信号块对应;或
    所述P为M的至少两倍,所述同步信号块的发送装置的M个天线面板中的一个天线面板的位置信息与所述P个同步信号块中的至少两个同步信号块对应。
  22. 一种同步信号块的接收装置,其特征在于,包括:
    接收模块,用于接收多个同步信号块;
    处理模块,用于从多个同步信号块中,确定信号强度最大的同步信号块;根据同步信号块的发送装置的M个天线面板的位置信息与P个同步信号块的对应关系,确定所述同步信号块的发送装置用于发送所述信号强度最大的同步信号块的天线面板的位置信息;其中,所述M个天线面板的位置信息用于指示所述M个天线面板在所述同步信号块的发送装置上的位置;P为M的整数倍,M、P为正整数。
  23. 根据权利要求22所述的同步信号块的接收装置,其特征在于,所述同步信号块用于指示发送所述同步信号块的天线面板的位置信息。
  24. 根据权利要求22或23所述的同步信号块的接收装置,其特征在于,所述同步信号块包括:主同步信号、辅同步信号以及物理广播信道。
  25. 根据权利要求24所述的同步信号块的接收装置,其特征在于,所述M个天线面板的位置信息与P个同步信号块的对应关系,包括:
    所述M个天线面板的位置信息与P个资源映射方式的对应关系,所述资源映射方式用于指示所述同步信号块中主同步信号和辅同步信号占用的时频资源的位置。
  26. 根据权利要求24所述的同步信号块的接收装置,其特征在于,所述M个天线面板的位置信息与P个同步信号块的对应关系,包括:
    所述M个天线面板的位置信息与P个辅同步信号的序列的对应关系。
  27. 根据权利要求26所述的同步信号块的接收装置,其特征在于,所述辅同步信号的序列根据以下公式生成:
    c(n)=(x 0(n+i 1+k)+x 1(n+i 2+l))mod2
    其中,c(n)为辅同步信号的序列;n为大于等于0,小于等于126的正整数;
    Figure PCTCN2019123116-appb-100004
    NID1为物理小区标识组的标识,NID1为大于等于0,小于等于335的整数;NID2为物理小区标识组的组内标识,NID2的取值范围为{0,1,2};
    i 2=(NID1)mod112;
    x 0(n)、x 1(n)均为M序列;
    k和l均为整数,k和l由所述天线面板的位置信息来确定。
  28. 根据权利要求22至27任一项所述的同步信号块的接收装置,其特征在于,
    所述P等于M,所述同步信号块的发送装置的M个天线面板中的一个天线面板的位置信息与M个同步信号块中的一个同步信号块对应;或
    所述P为M的至少两倍,所述同步信号块的发送装置的M个天线面板中的一个天线面板的位置信息与所述P个同步信号块中的至少两个同步信号块对应。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被处理器执行时使得处理器执行如权利要求1至7任一项所述的同步信号块的发送方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被处理器执行时使得处理器执行如权利要求8至14任一项所述的同步信号块的接收方法。
  31. 一种计算机程序产品,其特征在于,所述计算机程序产品包括程序指令,所述程序指令被处理器执行时,使得处理器执行如权利要求1至7任一项所述的同步信号块的发送方法。
  32. 一种计算机程序产品,其特征在于,所述计算机程序产品包括程序指令,所述程序指令被处理器执行时,使得处理器执行如权利要求8至14任一项所述的同步信号块的接收方法。
  33. 一种芯片,其特征在于,所述芯片包括处理器,当所述处理器执行指令时,所述处理器用于执行权利要求1至14任一项所述的方法。
  34. 一种通信系统,其特征在于,所述通信系统包括第一终端和第二终端,所述第一终端用于执行权利要求1至7任一项所述的同步信号块的发送方法,所述第二终端用于执行权利要求8至14任一项所述的同步信号块的接收方法。
PCT/CN2019/123116 2018-12-11 2019-12-04 同步信号块的发送、接收方法及装置 WO2020119561A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19895766.4A EP3876612B1 (en) 2018-12-11 2019-12-04 Method and device for transmitting and receiving synchronization signal block
US17/344,451 US11943727B2 (en) 2018-12-11 2021-06-10 Synchronization signal block sending and receiving method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811513585.1 2018-12-11
CN201811513585.1A CN111315007B (zh) 2018-12-11 2018-12-11 同步信号块的发送、接收方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/344,451 Continuation US11943727B2 (en) 2018-12-11 2021-06-10 Synchronization signal block sending and receiving method and apparatus

Publications (1)

Publication Number Publication Date
WO2020119561A1 true WO2020119561A1 (zh) 2020-06-18

Family

ID=71077132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123116 WO2020119561A1 (zh) 2018-12-11 2019-12-04 同步信号块的发送、接收方法及装置

Country Status (4)

Country Link
US (1) US11943727B2 (zh)
EP (1) EP3876612B1 (zh)
CN (2) CN111315007B (zh)
WO (1) WO2020119561A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020097846A1 (zh) * 2018-11-15 2020-05-22 北京小米移动软件有限公司 同步信号块的配置信息的广播、接收方法和装置
CN110140301B (zh) * 2019-03-25 2023-06-27 北京小米移动软件有限公司 同步信号块传输方法、装置及存储介质
CA3135038A1 (en) * 2019-03-29 2020-10-08 Zte Corporation Systems and methods of configuration using group identifiers
CN114158059B (zh) * 2020-09-07 2024-04-16 大唐移动通信设备有限公司 一种信息处理方法、装置、终端设备及网络侧设备
US11856568B2 (en) * 2020-11-18 2023-12-26 Qualcomm Incorporated Assisted beam management between frequency bands

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101645722A (zh) * 2008-08-05 2010-02-10 中兴通讯股份有限公司 一种天线端口配置信息的检测系统及方法
CN107548146A (zh) * 2016-06-23 2018-01-05 中兴通讯股份有限公司 同步信号的发送方法、接收方法、发送装置及接收装置
WO2018030783A1 (ko) * 2016-08-09 2018-02-15 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 채널 전송 방법 및 장치

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379072B (zh) * 2012-04-20 2016-12-14 电信科学技术研究院 一种信号传输方法及装置
EP3160178B1 (en) * 2014-07-25 2021-05-26 Huawei Technologies Co., Ltd. Communication device and method under high frequency system
CN106304346B (zh) * 2015-05-15 2019-07-19 电信科学技术研究院 一种同步信号的发送、接收方法及装置
CN108270710A (zh) * 2017-01-03 2018-07-10 中兴通讯股份有限公司 一种信号传输方法、装置及系统
CN108307496B (zh) * 2017-01-13 2020-01-07 维沃移动通信有限公司 同步接入信号组的发送方法、接收方法、相关设备及系统
US10568102B2 (en) * 2017-02-23 2020-02-18 Qualcomm Incorporated Usage of synchronization signal block index in new radio
US11026233B2 (en) * 2018-06-20 2021-06-01 Apple Inc. Emission and panel aware beam selection
US10972972B2 (en) * 2018-07-17 2021-04-06 FG Innovation Company Limited Methods and apparatuses for operating multiple antenna panels
KR102548093B1 (ko) * 2018-08-03 2023-06-27 삼성전자주식회사 빔포밍에 기반한 통신을 수행하는 전자 장치 및 이를 위한 방법
CN109417717B (zh) * 2018-09-27 2022-06-24 北京小米移动软件有限公司 测量配置方法、装置、设备、系统及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101645722A (zh) * 2008-08-05 2010-02-10 中兴通讯股份有限公司 一种天线端口配置信息的检测系统及方法
CN107548146A (zh) * 2016-06-23 2018-01-05 中兴通讯股份有限公司 同步信号的发送方法、接收方法、发送装置及接收装置
WO2018030783A1 (ko) * 2016-08-09 2018-02-15 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 채널 전송 방법 및 장치

Also Published As

Publication number Publication date
EP3876612B1 (en) 2023-09-13
US20210306964A1 (en) 2021-09-30
US11943727B2 (en) 2024-03-26
CN111315007A (zh) 2020-06-19
EP3876612A1 (en) 2021-09-08
CN111315007B (zh) 2022-04-12
EP3876612A4 (en) 2021-12-29
CN114900880A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
WO2020119561A1 (zh) 同步信号块的发送、接收方法及装置
US20200366452A1 (en) Channel transmission method, and related products
US20180167184A1 (en) Transmission Method and Apparatus for Demodulation Reference Signal and Communications System
US11109392B2 (en) Communication method, network device, and relay device
US20200336276A1 (en) Method for transmitting data in internet of vehicles, terminal device and network device
WO2019096272A1 (zh) 信息指示方法、终端设备及网络设备
EP3107345B1 (en) Channel resource indication method and device
US20230232348A1 (en) Method and device for processing synchronization signal block information and communication device
WO2019157910A1 (zh) 同步信号块的传输方法、通信装置及通信设备
JP2023535814A (ja) 同期信号ブロック伝送方法及び通信装置
WO2018027822A1 (zh) 一种调度分配信息传输方法、设备及系统
WO2019157769A1 (zh) 指示方法、检测方法及相关设备
WO2019154024A1 (zh) 波束确定方法及第一通信设备、第二通信设备
CN111866942A (zh) 一种通信方法及通信装置
US11246084B2 (en) Method for updating system information, terminal, and network side device
WO2021114043A1 (zh) 设备到设备的通信方法和通信装置
US11496950B2 (en) Method for determining parameter set of cell, method for sending parameter set of cell, device, and system
WO2023066050A1 (zh) 一种物理上行控制信道的发送方法、接收方法及通信装置
WO2019095783A1 (zh) 一种同步块与寻呼调度信令关联方法、指示方法及装置
CN110062473B (zh) 随机接入方法、终端设备和网络设备
WO2018018602A1 (en) Methods, terminals, and base stations for end-to-end communication
WO2018027934A1 (zh) 一种资源指示方法及相关设备
WO2020143797A1 (zh) 一种数据信道发送方法及通信装置
US20220225416A1 (en) Methods and Apparatus for PRACH Resource Determination and RA-RNTI Computation in Wireless Communication
WO2021237426A1 (zh) 参考信号传输方法、用户设备、网络设备及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895766

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019895766

Country of ref document: EP

Effective date: 20210603

NENP Non-entry into the national phase

Ref country code: DE