WO2019154024A1 - 波束确定方法及第一通信设备、第二通信设备 - Google Patents

波束确定方法及第一通信设备、第二通信设备 Download PDF

Info

Publication number
WO2019154024A1
WO2019154024A1 PCT/CN2019/071612 CN2019071612W WO2019154024A1 WO 2019154024 A1 WO2019154024 A1 WO 2019154024A1 CN 2019071612 W CN2019071612 W CN 2019071612W WO 2019154024 A1 WO2019154024 A1 WO 2019154024A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
receive
synchronization signal
receiving
information
Prior art date
Application number
PCT/CN2019/071612
Other languages
English (en)
French (fr)
Inventor
袁璞
罗俊
向铮铮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19750582.9A priority Critical patent/EP3737125A4/en
Publication of WO2019154024A1 publication Critical patent/WO2019154024A1/zh
Priority to US16/989,297 priority patent/US11277841B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a beam determining method, a first communications device, and a second communications device.
  • V2X Vehicle to everything (V2X) communication system includes Vehicle to Vehicle (V2V) intelligent traffic service, Vehicle to Pedestrian (V2P), Vehicle to Infrastructure (V2I) And intelligent transportation services such as Vehicle to Network (V2N).
  • V2V Vehicle to Vehicle
  • V2P Vehicle to Pedestrian
  • V2I Vehicle to Infrastructure
  • V2N Vehicle to Network
  • the actual vehicle-to-vehicle communication can be directly communicated, that is, the communication between the two does not need to rely on the base station, and the beam alignment can improve the signal strength of the received signal and reduce the bit error rate.
  • the existing solution in order to achieve beam alignment between the vehicle and the vehicle, first, the vehicle and the vehicle need to complete signal synchronization, and then the base station sends a downlink reference signal for beam training to achieve beam alignment. In this way, the car and the car are beam aligned after signal synchronization is completed, and the reference signal takes up additional time-frequency resources.
  • the present application provides a beam determining method and a first communications device and a second communications device, which can implement beam alignment between the first communications device and the second communications device earlier, and does not require an additional reference signal to implement the beam. Align to reduce the waste of time-frequency resources.
  • the first aspect provides a beam determining method for the embodiment of the present application, including:
  • the first communication device transmits B synchronization signal blocks to the second communication device by using the A transmit beams, and each of the B synchronization signal blocks includes an identifier of the first communication device and a receive beam timing of the first communication device.
  • Information, the receive beam timing information is used to indicate a timing position of the first communication device to perform feedback information reception; the first communication device receives the first feedback information from the second communication device according to the timing position by using C receive beams, and receives according to C
  • the receive beam that receives the first feedback information in the beam determines the first receive beam, and determines the first transmit beam according to the first receive beam or the first feedback information, where the first transmit beam belongs to the A transmit beams.
  • the first communications device may send the first information to the second communications device by using the first sending beam, and may receive the second information from the second communications device by using the first receiving beam.
  • the first communication device may determine the first receive beam and the first transmit beam that transmit information with the second communication device in the synchronization phase, and the determination of the first receive beam and the first transmit beam is completed earlier, Moreover, no additional reference signals are needed to achieve beam alignment, thereby reducing waste of time-frequency resources.
  • the receive beam timing information indicates at least one timing position
  • the ith timing position corresponds to a receiving direction of the jth receiving beam
  • the ith timing position belongs to at least one timing position
  • the jth receiving The beams belong to C receive beams.
  • the timing position in the received beam timing information refers to a position in a time window, which may include all timing positions indicated by the received beam timing position information, and both i and j are positive integers. .
  • a possible correspondence is that a timing position uniquely corresponds to a receiving direction of a receiving beam, and a receiving direction of a receiving beam uniquely corresponds to a timing position; another possible correspondence is that a timing position uniquely corresponds to one In the receiving direction of the receiving beam, the receiving direction of one receiving beam may correspond to one or more timing positions. This embodiment of the present application does not limit this.
  • the first communication device performs: receiving, by using the C receive beams, the first feedback information from the second communication device according to the timing position: adopting the jth corresponding to the ith timing position at the ith timing position
  • the receive beams receive the first feedback information from the second communication device.
  • the first receiving beam is a receiving beam with the highest received signal strength among the plurality of receiving beams, and the multiple beams belong to the C receive beams. In this way, the first communication device receives the information of the second communication device more accurately using the first receiving beam.
  • A is a positive integer less than or equal to B.
  • the sth transmit beam in the A transmit beams corresponds to the identity of at least one of the B sync signal blocks.
  • one transmit beam can transmit one or more sync signal blocks, and one sync signal block can only be transmitted by one transmit beam, so that the first communication device can uniquely determine a first transmit beam according to the identifier of one sync signal block.
  • k and s are both positive integers.
  • the kth synchronization signal block of the B synchronization signal blocks further includes an identifier of the kth synchronization signal block; the first feedback information further includes an identifier of the synchronization signal block received by the second communication device.
  • the sth transmit beam in the A transmit beams corresponds to the identifier of the at least one of the B sync signal blocks; the first transmit beam is determined according to the identifier of the sync signal block included in the first feedback information.
  • a sync signal block corresponds to an identifier of a sync signal block, and the identifiers of different sync signal blocks are different.
  • the identifier of the synchronization signal block can also be described by using the time index of the synchronization signal block, which is not limited in this embodiment of the present application.
  • the first feedback information further includes an identifier of the first feedback information
  • the method further includes: the first communications device sends the second feedback information to the second communications device by using the first sending beam, the second feedback The information includes an identifier of the first feedback information received by the first communications device by using the first receiving beam, so that the second communications device determines the second transmit beam according to the second feedback information.
  • the receiving beam timing information is further used to indicate a receiving direction of at least one receiving beam in the first communications device, and the at least one receiving beam belongs to the C receiving beams.
  • the ith timing position corresponds to the receiving direction of the jth receiving beam
  • the ith timing position belongs to at least one timing position
  • the jth receiving beam belongs to C receiving beams
  • both i and j are positive integers.
  • the first communications device may indicate at least one timing location and a receiving direction of the receiving beam corresponding to each of the at least one timing location by receiving beam timing information.
  • the synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel PBCH; the identity of the first communication device is indicated by a primary synchronization signal, a secondary synchronization signal, or a PBCH; beam timing information is passed through the primary synchronization.
  • Signal, secondary sync signal or PBCH is indicated.
  • the indication herein may include an explicit indication or an implicit indication, and the indicated information may be directly indicated by an explicit indication, and the number of occupied bits may be reduced by the implicit indication, and the security of the indicated information is improved.
  • the first information may be data, control information, HARQ feedback information, reference signals, training sequences, or other information received by the second communication device from the first communication device.
  • the second information may be data, control information, HARQ feedback information, a reference signal, a training sequence, or other information that is sent by the second communications device to the first communications device.
  • the first information and the second information are not limited in this embodiment of the present application.
  • the first feedback information includes an identification of the second communication device to cause the first communication device to determine the device from which the first feedback information is derived.
  • the second aspect provides a beam determining method for the embodiment of the present application, including:
  • the second communication device receives the synchronization signal block from the first communication device by using D receiving beams, where the synchronization signal block includes an identifier of the first communication device and receive beam timing information of the first communication device, where the receive beam timing information is used to indicate a communication device performs a timing position of feedback information reception, the second communication device determines a second receive beam according to a receive beam of the D receive beams that receives the sync signal block, and determines a second transmit beam according to the second receive beam; The communication device sends the first feedback information to the first communication device according to the received beam timing information by using the second transmit beam.
  • the second communication device may receive the first information from the first communications device by using the second receiving beam; and may send the second information to the first communications device by using the second sending beam.
  • the second communication device may determine the second receive beam and the second transmit beam that transmit information with the first communication device in the synchronization phase, and determine the second receive beam and the second transmit beam earlier. Moreover, no additional reference signals are needed to achieve beam alignment, thereby reducing waste of time-frequency resources.
  • the second communications device performs: transmitting, by using the second transmit beam, the first feedback information to the first communications device according to the received beam timing information:
  • the first feedback information sent includes an identifier of the second communication device, so that after the first communication device receives the first feedback information, the first communication device may determine that the device that completes signal synchronization and beam alignment is the second communication device.
  • the receive beam timing information indicates at least one timing position
  • the receive beam timing information is further used to indicate a receive direction of at least one receive beam in the first communication device, the ith timing position and the jth receive beam
  • the receiving direction corresponds to the ith timing position belonging to at least one timing position
  • the jth receiving beam belongs to at least one receiving beam, and both i and j are positive integers.
  • the timing position in the received beam timing information refers to a position in a time window, which may include all timing positions indicated by the received beam timing position information, and both i and j are positive integers. .
  • a possible correspondence is that a timing position uniquely corresponds to a receiving direction of a receiving beam, and a receiving direction of a receiving beam uniquely corresponds to a timing position; another possible correspondence is that a timing position uniquely corresponds to one In the receiving direction of the receiving beam, the receiving direction of one receiving beam may correspond to one or more timing positions. This embodiment of the present application does not limit this.
  • the second communications device performs: transmitting, by using the second transmit beam, the first feedback information to the first communications device according to the received beam timing information, by using the second transmit beam to send the first at the target timing position.
  • the feedback information, the target timing position is determined from the at least one timing position according to the receiving direction of the second transmitting beam and the at least one receiving beam.
  • the second communication device reduces the number of times the first feedback information is sent, thereby reducing the waste of time-frequency resources and improving the transmission efficiency of the first feedback information.
  • the second receiving beam is a receiving beam having the largest signal strength received among the plurality of receiving beams.
  • the plurality of receive beams here belong to D receive beams of the second communication device. This facilitates the second communication device to receive the information of the first communication device more accurately using the second receive beam.
  • the synchronization signal block further includes an identifier of the synchronization signal block;
  • the first feedback information further includes an identifier of the synchronization signal block received by the second communication device by using the second reception beam, so that the first communication device is configured according to The identification of the synchronization signal block in the first feedback information determines the first transmit beam.
  • the first information may be data, control information, HARQ feedback information, reference signals, training sequences, or other information received by the second communication device from the first communication device.
  • the second information may be data, control information, HARQ feedback information, a reference signal, a training sequence, or other information that is sent by the second communications device to the first communications device.
  • the first information and the second information are not limited in this embodiment of the present application.
  • the synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel PBCH; the identity of the first communication device is indicated by a primary synchronization signal, a secondary synchronization signal, or a PBCH; beam timing information is passed through the primary synchronization.
  • Signal, secondary sync signal or PBCH is indicated.
  • the indication herein may include an explicit indication or an implicit indication, and the indicated information may be directly indicated by an explicit indication, and the number of occupied bits may be reduced by the implicit indication, and the security of the indicated information is improved.
  • the third aspect provides a beam determining method for the embodiment of the present application, including:
  • the second communication device receives the synchronization signal block from the first communication device by using D receiving beams, where the synchronization signal block includes an identifier of the first communication device, receive beam timing information of the first communication device, and an identifier of the synchronization signal block, the receive beam
  • the timing information is used to indicate a timing position at which the first communication device performs feedback information reception; the second reception beam is determined according to the reception beam in which the synchronization signal block is received in the D reception beams, and the E transmission beams are used according to the reception beam timing information.
  • a communication device sends F first feedback information, and each of the F first feedback information includes an identifier of the synchronization signal block received by the second communication device by using the second receiving beam, and the first feedback information.
  • the second communication device may receive the first information from the first communication device by using the second receive beam; and send the second information to the first communication device by using the second transmit beam.
  • the second communication device may determine the second receive beam and the second transmit beam that transmit information with the first communication device in the synchronization phase, and determine the second receive beam and the second transmit beam earlier. Moreover, no additional reference signals are needed to achieve beam alignment, thereby reducing waste of time-frequency resources.
  • the second communications device performs: transmitting, by using the E transmit beams, the F first feedback information to the first communications device according to the received beam timing information: the receiving beam timing information indicates the at least one timing position
  • each of the E transmit beams is transmitted with a first feedback message at each timing position of the at least one timing position.
  • the first feedback information sent includes an identifier of the second communication device, so that after the first communication device receives the first feedback information, the first communication device may determine that the device that completes signal synchronization and beam alignment is the second communication device.
  • the receive beam timing information indicates at least one timing position
  • the receive beam timing information is further used to indicate a receive direction of at least one receive beam in the first communication device
  • the ith timing position and the The receiving directions of the j receiving beams correspond to each other
  • the i-th timing position belongs to at least one timing position
  • the j-th receiving beam belongs to at least one receiving beam
  • both i and j are positive integers.
  • the timing position in the received beam timing information refers to a position in a time window, which may include all timing positions indicated by the received beam timing position information.
  • a possible correspondence is that a timing position uniquely corresponds to a receiving direction of a receiving beam, and a receiving direction of a receiving beam uniquely corresponds to a timing position; another possible correspondence is that a timing position uniquely corresponds to one In the receiving direction of the receiving beam, the receiving direction of one receiving beam may correspond to one or more timing positions. This embodiment of the present application does not limit this.
  • the second communications device performs: transmitting, by using the E transmit beams, the F first feedback information to the first communications device according to the received beam timing information: the receiving beam timing information indicates the at least one timing position
  • the second communication device uses the mth transmit beam to transmit a first feedback information at a target timing position corresponding to the mth transmit beam, and the mth transmit beam is any one of the E transmit beams.
  • the target timing position corresponding to the mth transmit beam is determined from at least one timing position according to a receiving direction of the mth transmit beam and the at least one receive beam, where m is a positive integer.
  • the second communication device reduces the number of times the first feedback information is sent, thereby reducing the waste of time-frequency resources and improving the transmission efficiency of the first feedback information.
  • the second receiving beam is a receiving beam having the largest signal strength received among the plurality of receiving beams. This facilitates the second communication device to receive the information of the first communication device more accurately using the second receive beam.
  • the first information may be data, control information, HARQ feedback information, reference signals, training sequences, or other information received by the second communication device from the first communication device.
  • the second information may be data, control information, HARQ feedback information, a reference signal, a training sequence, or other information that is sent by the second communications device to the first communications device.
  • the first information and the second information are not limited in this embodiment of the present application.
  • the synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel PBCH; the identity of the first communication device is indicated by a primary synchronization signal, a secondary synchronization signal, or a PBCH; beam timing information is passed through the primary synchronization.
  • Signal, secondary sync signal or PBCH is indicated.
  • the indication herein may include an explicit indication or an implicit indication, and the indicated information may be directly indicated by an explicit indication, and the number of occupied bits may be reduced by the implicit indication, and the security of the indicated information is improved.
  • the embodiment of the present application provides a communication device, where the communication device is a first communication device, and the first communication device includes:
  • a sending unit configured to send B synchronization signal blocks to the second communication device by using the A transmit beams, where each of the B synchronization signal blocks includes an identifier of the first communication device and a receive beam timing of the first communication device Information, the receive beam timing information is used to indicate a timing position at which the first communication device performs feedback information reception, and both A and B are positive integers;
  • a receiving unit configured to receive, by using the C receiving beams, the first feedback information from the second communications device according to the timing position, where C is a positive integer
  • a processing unit configured to determine a first receive beam according to a receive beam that receives the first feedback information in the C receive beams;
  • the processing unit is further configured to determine, according to the first receive beam or the first feedback information, the first transmit beam, where the first transmit beam belongs to the A transmit beams;
  • the sending unit is further configured to send the first information to the second communications device by using the first sending beam;
  • the receiving unit is further configured to receive the second information from the second communications device by using the first receiving beam.
  • the first communications device may also implement some or all of the optional implementations of the first aspect.
  • the embodiment of the present application provides a communications device, where the communications device is a second communications device, where the second communications device includes:
  • a receiving unit configured to receive, by using D receiving beams, a synchronization signal block from a first communications device, where the synchronization signal block includes an identifier of the first communications device and receive beam timing information of the first communications device, and the received beam timing information is used to indicate the first The timing position at which the communication device performs feedback information reception, and D is a positive integer;
  • a processing unit configured to determine a second receive beam according to a receive beam that receives the sync signal block in the D receive beams;
  • the processing unit is further configured to determine a second transmit beam according to the second receive beam
  • a sending unit configured to send the first feedback information to the first communications device according to the received beam timing information by using the second sending beam
  • the sending unit is further configured to receive the first information from the first communications device by using the second receiving beam;
  • the receiving unit is further configured to send the second information to the first communications device by using the second sending beam.
  • the second communications device may also implement some or all of the optional implementations of the second aspect.
  • the embodiment of the present application provides a communications device, where the communications device is a second communications device, where the second communications device includes:
  • a receiving unit configured to receive, by using the D receiving beams, a synchronization signal block from the first communications device, where the synchronization signal block includes an identifier of the first communications device, a received beam timing information of the first communications device, and an identifier of the synchronization signal block, and a receive beam timing
  • the information is used to indicate a timing position at which the first communication device performs feedback information reception, where D is a positive integer;
  • a processing unit configured to determine a second receive beam according to a receive beam that receives the sync signal block in the D receive beams;
  • a sending unit configured to send, by using E transmit beams, F first feedback information to the first communications device according to the received beam timing information, where each of the F first feedback information includes the second communications device adopts a second Receiving, by the receiving beam, an identifier of the synchronization signal block and an identifier of the first feedback information, where E and F are positive integers;
  • the receiving unit is further configured to receive second feedback information from the first communications device, where the second feedback information includes an identifier of the first feedback information received by the first communications device;
  • the processing unit is further configured to determine, according to the identifier of the first feedback information received by the first communications device, the second sending beam, where the second sending beam is sent by sending the first feedback information received by the first communications device in the E transmitting beams.
  • the sending unit is further configured to receive the first information from the first communications device by using the second receiving beam;
  • the receiving unit is further configured to send the second information to the first communications device by using the second sending beam.
  • the second communications device may also implement some or all of the optional implementations of the third aspect.
  • a communication device may be a device in the above method design or a chip disposed in the device.
  • the device includes a memory for storing computer executable program code, a transceiver, and a processor coupled to the memory and the transceiver.
  • the program code stored in the memory includes instructions that, when executed by the processor, cause the communication device to perform the method performed by the communication device in any of the possible aspects of the first aspect, the second aspect, and the third aspect.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, causing the computer to perform the first to third aspects and any possible implementation thereof Methods.
  • a computer readable medium storing program code for causing a computer to perform the above first to third aspects and any possible implementation thereof when the computer program code is run on a computer The method in .
  • a chip comprising a processor and a memory for storing a computer program, the processor for calling and running the computer program from the memory, the computer program for implementing the first to third aspects Aspects and methods in any of its possible implementations.
  • FIG. 1 is a schematic structural diagram of a possible V2X communication system according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a beam determining method according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a possible synchronization signal block according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart diagram of another method for determining a beam according to an embodiment of the present application.
  • FIG. 5 is a schematic flowchart diagram of another method for determining a beam according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another beam determining method according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a communication device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another communication device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another communication device according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a possible V2X communication system according to an embodiment of the present application.
  • the V2X communication system architecture includes V2V communication and Vehicle to Network (V2N) communication, and the communication system includes a network device 101, a vehicle 102, and a vehicle 103.
  • V2V communication includes communication between the vehicle 102 and the vehicle 103
  • V2N communication includes communication between the vehicle 102 or the vehicle 103 and the base station 101.
  • the vehicle and the vehicle can communicate via a side link (SL), which refers to direct communication between the vehicle and the vehicle, that is, the communication between the vehicle and the vehicle does not pass.
  • SL side link
  • the network device forwards direct communication of data.
  • beam alignment refers to the vehicle 102 determining a transmit beam for transmitting information to the vehicle 103 and determining a receive beam for receiving information from the vehicle 103.
  • vehicle 103 determines a transmit beam for transmitting information to the vehicle 102 and determining for use in determining A receive beam of information is received from the vehicle 102.
  • NR New Radio
  • beam alignment between communication equipment and network equipment can be done by downlink synchronization and random access, but in NR-V2V/V2P communication, between communication equipment and communication equipment There is no random access mechanism, so beam alignment can only be achieved by other methods of uplink feedback.
  • V2V taking V2V as an example, in order to achieve beam alignment between the vehicle 102 and the vehicle 103, first, the signal synchronization between the vehicle 102 and the vehicle 103 is required, and then the downlink reference signal is transmitted through the network device for beam training. Achieve beam alignment.
  • the reference signal is sent after the sync signal frame, such that the vehicle 102 and the vehicle 103 are beam aligned after signal synchronization is completed, resulting in an increase in delay; 2) for the beam
  • the trained reference signal will take up additional time-frequency resources.
  • the vehicle 102 transmits B synchronization signal blocks to the vehicle 103 using A transmit beams, each of the B synchronization signal blocks including the identification of the vehicle 102 and the vehicle 102.
  • Receiving beam timing information the receiving beam timing information is used to indicate the timing position at which the vehicle 102 performs feedback information reception; the vehicle 103 receives the synchronization signal block from the vehicle 102 using D receiving beams, and receives the synchronization signal block according to the D receiving beams.
  • the receive beam determines a second receive beam; the vehicle 103 determines a second transmit beam based on the second receive beam; the vehicle 103 uses the second transmit beam to transmit first feedback information to the vehicle 102 based on the received beam timing information; the vehicle 102 employs C receive beams
  • the first feedback information is received from the vehicle 103 based on the timing position; the vehicle 102 determines the first receive beam based on the receive beam of the C receive beams that received the first feedback information; the vehicle 102 determines the first transmit beam based on the first receive beam.
  • the vehicle 102 transmits B synchronization signal blocks to the vehicle 103 by using A transmit beams, and each of the B synchronization signal blocks includes the identifier of the vehicle 102 and the vehicle.
  • Receive beam timing information of 102 and identification of a synchronization signal block the received beam timing information is used to indicate a timing position at which the vehicle 102 performs feedback information reception;
  • the vehicle 103 receives the synchronization signal block from the vehicle 102 using D reception beams, and receives according to D
  • the receiving beam that receives the synchronization signal block in the beam determines the second receiving beam;
  • the vehicle 103 uses the E transmitting beams to transmit F first feedback information to the vehicle 102 according to the received beam timing information, and each of the F first feedback information
  • a feedback information includes an identifier of the synchronization signal block received by the vehicle 103 using the second receive beam and an identifier of the first feedback information;
  • the vehicle 102 receives the first feedback information from the vehicle 103 according to the received beam timing information by using the C
  • the solution achieves beam alignment between the vehicle 102 and the vehicle 103 during the synchronization phase, that is, beam alignment between the vehicle 101 and the vehicle 102 is completed earlier, and no additional reference signals are needed to achieve beam alignment. Reduce the waste of time-frequency resources.
  • the beam determining method of the embodiment of the present application can be applied to a V2V communication system, and can also be used in a communication system of a direct communication such as a Vehicle to Pedestrian (V2P) or a Vehicle to Infrastructure (V2I).
  • V2P Vehicle to Pedestrian
  • V2I Vehicle to Infrastructure
  • the network device involved in the embodiments of the present application may include various forms of base stations, such as a macro base station, a micro base station (also referred to as a small station), a relay station, an access point, and the like.
  • base stations such as a macro base station, a micro base station (also referred to as a small station), a relay station, an access point, and the like.
  • the name of a device having a base station function may be different, for example, in a 5th generation (5th generation, 5G) system, called gNB; in an LTE system, It is an evolved Node B (eNB or eNodeB); in a 3rd generation (3G) system, it is called a Node B.
  • 5G 5th generation
  • gNB 5th generation
  • LTE Long Term Evolution
  • eNB evolved Node B
  • 3G 3rd generation
  • the first communication device and the second communication device involved in the embodiments of the present application may be an in-vehicle terminal, a user equipment (UE), a handheld terminal, a notebook computer, a subscriber unit, a cellular phone, and a smart device.
  • Smart phone wireless data card, personal digital assistant (PDA) computer, tablet computer, wireless modem (modem), handheld, laptop computer, cordless phone ( Cordless phone) or wireless local loop (WLL) station, machine type communication (MTC) terminal or other device.
  • PDA personal digital assistant
  • modem modem
  • handheld laptop computer
  • cordless phone Cordless phone
  • WLL wireless local loop
  • MTC machine type communication
  • the beam determining method includes steps 201 to 208.
  • the first communications device sends the B sync signal blocks to the second communications device by using the A transmit beams.
  • the synchronization signal block of the B synchronization signal blocks sent by the first communication device includes an identifier of the first communication device and receive beam timing information of the first communication device, where the receive beam timing information is used. And indicating a timing position at which the first communication device performs feedback information reception, where A and B are both positive integers.
  • the identifier of the first communication device is used to uniquely identify the first communication device.
  • it may be a hardware identification code of the communication device.
  • the specific form of the identifier of the first communication device is not limited in this embodiment.
  • the timing position indicated by the received beam timing information may be the position of the first symbol of the fifth slot in the second subframe, or may be the fifth sub- The 18th time slot of the frame.
  • the timing position here is the position in a radio frame, and is not fixed in a certain radio frame.
  • the receiving beam timing information may indicate one or more timing positions, which is not limited in this embodiment of the present application.
  • the first communication device can transmit B synchronization signal blocks by means of beam scanning.
  • the beam scanning method involved in the various embodiments of the present application specifically refers to forming a beam in different directions by using a beam forming algorithm, and then receiving information or transmitting information by using beams in different directions, where the beams in different directions may be used. Commonly cover 360° ranges or collectively cover a specified range of angles.
  • the first communication device may transmit B synchronization signal blocks by transmitting beams in different directions.
  • one transmit beam may send one or more sync signal blocks.
  • a transmit beams include transmit beams tx1, tx2, and tx3, and B sync signal blocks include sync signal blocks s1. , s2, s3, s4, the possible way is: tx1--> s1, tx2--> s2 and s3, tx3--> s4.
  • Tx3 transmits a sync signal block s4.
  • the transmit beam is in one-to-one correspondence with the sync signal block, that is, A and B are numerically equal, and one transmit beam uniquely corresponds to one sync signal block, and one sync signal block uniquely corresponds.
  • a transmit beams include transmit beams tx1, tx2, and tx3, and B sync signal blocks include sync signal blocks s1, s2, and s3, and the possible modes are: tx1 - -> s1, tx2 -->s2, tx3-->s3.
  • different transmit beams may send the same sync signal block.
  • a transmit beams include transmit beams tx1, tx2, and tx3, and B sync signal blocks include sync signal blocks s1.
  • the possible ways are: tx1-->s1 and s2, tx2-->s2 and s3, tx3-->s4.
  • tx1-->s1 and s2 indicate that the sync signal block s1 and the sync signal block s2 are transmitted by using the transmit beam tx1; tx2-->s2 and s3 indicate that the sync signal block s2 and the sync signal block s3 are transmitted by using the transmit beam tx2; tx3- -> s4 indicates that the sync signal block s4 is transmitted using the transmit beam tx3.
  • the B sync signal blocks may belong to the same sync signal burst set.
  • a synchronization signal burst set is defined in the NR communication system.
  • the B synchronization signal blocks transmitted by the first communication device may belong to one synchronization signal burst set, and the first communication device may transmit differently.
  • the beams respectively transmit these sync signal blocks to implement beam scanning.
  • the identification of the first communication device included in the synchronization signal block s1 and the synchronization signal block s2 may be the same, and the received reception beam timing information may be the same.
  • the synchronization signal block s1 and the synchronization signal block s2 are two different synchronization signal blocks in the B synchronization signal blocks, so that for the second communication device, the first communication can be uniquely determined regardless of which synchronization signal block is received
  • the device receives beam timing information.
  • the second communications device receives the synchronization signal block from the first communications device by using D receiving beams.
  • the second communication device can receive the synchronization signal block by means of beam scanning. It can be understood that the second communication device receives the synchronization signal block by using D receiving beams, and does not indicate that each of the D receiving beams receives the synchronization signal block, but indicates that the second communication device uses D receiving beams.
  • the purpose is to receive the sync signal block.
  • D is a positive integer, and the embodiment of the present application does not limit the number of receiving beams.
  • step 201 and step 202 have no sequential order in execution time.
  • the second communications device determines a second receiving beam according to a receiving beam that receives the synchronization signal block in the D receiving beams.
  • the receiving beam of the received synchronization signal block is determined as the first Two receive beams.
  • the second communication device may determine the signal strength of each of the received sync signal blocks and determine the receive beam having the highest signal strength as the second receive beam.
  • the second communications device determines a second transmit beam according to the second receive beam.
  • the second communications device may directly determine the second transmit beam according to the second receive beam.
  • the antenna configuration parameter corresponding to the second transmit beam may be determined according to the configuration parameter of the antenna corresponding to the second receive beam, thereby directly determining the second transmit beam.
  • the channel reciprocity means that the characteristics of the uplink channel and the downlink channel are basically the same.
  • the second communication device may receive the first information to the first communication device through the second receive beam, further The second information may be transmitted to the first communication device through the second transmit beam.
  • the second communications device uses the second transmit beam to send first feedback information to the first communications device at a timing location included in the receive beam timing information.
  • the second communication device transmits the first feedback information by receiving beam timing information included in the received synchronization signal block.
  • the second communication device may determine the second transmit beam, and send the first feedback information to the first communications device by using the second transmit beam at a timing position included in the receive beam timing information.
  • the second communications device transmits a first feedback message at each timing location using the second transmit beam.
  • the first feedback information sent includes an identifier of the second communication device, so that after the first communication device receives the first feedback information, the first communication device may determine that the device that completes signal synchronization and beam alignment is the second communication device.
  • the identifier of the second communication device is used to uniquely identify the second communication device. For example, it may be a hardware identifier of the communication device. The specific form of the identifier of the second communication device is not limited in this embodiment.
  • the first communications device receives first feedback information from the second communications device according to the timing position by using C receiving beams.
  • the first communications device can receive the first feedback information by means of beam scanning. It can be understood that the first communication device receives the first feedback information by using C receiving beams, and does not indicate that each of the C receiving beams receives the first feedback information, but indicates that the first communications device uses C.
  • the beam is received to receive information for the purpose of receiving the first feedback information.
  • the C is a positive integer. The embodiment of the present application does not limit the number of receive beams.
  • the first communication device can receive the first feedback information at the notified timing position.
  • the C receiving beams in the first communications device have a certain correspondence with at least one timing position included in the receiving beam indication information, specifically: the ith timing position and the reception of the jth receiving beam Corresponding to the direction, the ith timing position belongs to the at least one timing position, and the jth receiving beam belongs to the C receiving beams.
  • the timing position in the received beam timing information refers to a position in a time window, which may include all timing positions indicated by the received beam timing position information.
  • the time window is a radio frame, so that the first communication device can receive the first feedback information according to the timing position by using C receiving beams in the radio frame 1, and can also adopt C receiving in another radio frame 2.
  • the beam receives the first feedback information according to the timing position.
  • the embodiment of the present application does not limit the location of the time window used by the first communication device to receive the first feedback information and the number of time windows.
  • the correspondence between the receiving direction and the timing position of the receiving beam is illustrated in a time window.
  • the number of receiving beams is 3, and the receiving directions corresponding to the three receiving beams are: rx1-D1, rx2-D2, rx3-D4; the timing positions indicated by the receiving beam timing information include: T1, T2, and T3, such as As shown in Table 1, it can be seen that one timing position uniquely corresponds to the receiving direction of one receiving beam, and the receiving direction of one receiving beam uniquely corresponds to one timing position.
  • the first communication device receives the first feedback information from the second communication device by using the jth receive beam corresponding to the i th timing position at the i th timing position.
  • the number of receiving beams is 3, the receiving direction of the receiving beam rx1 indicated by the receiving beam timing information is rx1-D1, the receiving direction of the receiving beam rx2 is rx2-D2, and the receiving direction of the receiving beam rx3 is rx3-D2;
  • the timing positions indicated by the receive beam timing information include: T1, T2, T3, T4, and T5. As shown in Table 2, it can be seen that one timing position uniquely corresponds to the receiving direction of one receiving beam, and the receiving direction of one receiving beam can be Corresponding to one or more timing positions, such that the first communication device receives the first feedback from the second communication device by using the jth receive beam corresponding to the i th timing position at the i th timing position information.
  • step 206 is performed after step 201, and step 206 and step 202 are not sequential in execution time.
  • the first communications device determines a first receive beam according to a receive beam that receives the first feedback information in the C receive beams.
  • the first communication device After the first communication device receives the first feedback information by using the C receiving beams, if only one of the C receiving beams receives the first feedback information, the receiving beam that receives the first feedback information is received. Determined as the first receive beam.
  • the first communication device may determine a signal strength of each of the received first feedback information and determine a received beam having the highest signal strength as the first receive beam.
  • the first communications device determines a first transmit beam according to the first receive beam.
  • the first communications device may directly determine the first transmit beam according to the first receive beam. For example, on the premise of the channel reciprocity, the antenna configuration parameter corresponding to the first transmit beam may be determined according to the configuration parameter of the antenna corresponding to the first receive beam, thereby directly determining the first transmit beam.
  • the number of transmit beams of the first communication device in the embodiment shown in FIG. 2 may be equal to the number of receive beams, and one transmit beam uniquely corresponds to one receive beam, such that The first transmit beam determined by step 208 belongs to A transmit beams in the first communication device.
  • the first communication device may receive the second information to the second communication device by using the first receive beam, The first information may also be transmitted to the second communication device through the first transmit beam.
  • the first information may be data received by the second communication device from the first communication device, control information, Hybrid Automatic Repeat reQuest (HARQ) feedback information, reference signal (reference signal), training sequence (including but not Limited to preamble, midamble, or other information.
  • the second information may be the data that is sent by the second communications device to the first communications device, the control information, the HARQ feedback information, the reference signal, the training sequence (including but not limited to the preamble, the midamble), or other information. Information and second information are not limited.
  • the first communication device may determine a first receive beam and a first transmit beam that transmit information with the second communication device during the synchronization phase, and the second communication device may also determine with the first communication device A second receive beam and a second transmit beam of information are transmitted. This completes beam alignment between the first communication device and the second communication device earlier, and does not require additional reference signals to achieve beam alignment, reducing waste of time-frequency resources.
  • the synchronization signal block includes a primary synchronization signal (primary synchronization sigal, PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • the synchronization signal block includes the identification and reception beam timing information of the first communication device, and the reception beam timing information is used to indicate the timing position at which the first communication device performs feedback information reception.
  • the identifier of the first communications device may be indicated by the primary synchronization signal, the secondary synchronization signal, or the PBCH; the beam timing information may pass the primary synchronization signal, the secondary synchronization signal Or the PBCH is indicated.
  • the receive beam timing information may be implicitly indicated by the primary synchronization signal or the secondary synchronization signal.
  • the primary synchronization signal may include a plurality of synchronization sequences, first determining a correspondence between the synchronization sequence and the received beam timing information, and indicating the received beam timing information by the transmitted synchronization sequence.
  • the receive beam timing information may be explicitly indicated by the PBCH.
  • a target preset value may be written in a field portion included in the PBCH to indicate receive beam timing information corresponding to the target preset value.
  • the receive beam timing information may be implicitly indicated by the PBCH.
  • it may be indicated by a demodulation reference signal (DMRS) of the PBCH, a scrambling sequence used by the PBCH, and the like.
  • DMRS demodulation reference signal
  • One way is to determine a correspondence between multiple DMRSs and received beam timing information, and pass the target DMRS of the PBCH.
  • the receiving beam timing information corresponding thereto is indicated; the other way is to determine the correspondence between the multiple scrambling sequences and the received beam timing information, and the target receiving scrambling sequence adopted by the PBCH is used to indicate the receiving beam timing information corresponding thereto.
  • the indication of the received beam timing information by the synchronization signal block may be indicated in the same manner for the identifier of the first communication device, and the specific indication manner may refer to the detailed description of the received beam timing information. This will not be repeated here.
  • Figure 3 is only a schematic diagram of one possible structure.
  • the present application does not limit the structure of the synchronization signal block.
  • the synchronization signal block may include at least one of PSS, SSS, and PBCH, so that the identifier of the first communication device in the present application may be implemented by the synchronization signal block, and the same
  • the receiving beam timing information of a communication device can be implemented by the synchronization signal block.
  • the specific indication manner can be referred to the following detailed description.
  • the beam determining method includes steps 401 to 409.
  • the first communications device sends B synchronization signal blocks to the second communications device by using the A transmit beams.
  • Each of the B synchronization signal blocks includes an identifier of the first communication device and receive beam timing information of the first communication device, the receive beam timing information being used to instruct the first communication device to perform feedback information reception Timing position, the received beam timing information is further used to indicate a receiving direction of C receiving beams in the first communications device, and the ith timing position corresponds to a receiving direction of the jth receiving beam, the ith timing position Having the at least one timing position, the jth receive beam belongs to the C receive beams.
  • C is a positive integer
  • i is a positive integer
  • j is a positive integer less than or equal to C.
  • the timing position in the received beam timing information refers to a position in a time window, which may include all timing positions indicated by the received beam timing position information.
  • the time window is a radio frame, so that the first communication device can receive the first feedback information according to the timing position by using C receiving beams in the radio frame 1, and can also adopt C receiving in another radio frame 2.
  • the beam receives the first feedback information according to the timing position.
  • the embodiment of the present application does not limit the location of the time window used by the first communication device to receive the first feedback information and the number of time windows.
  • the receiving direction and the timing position of the receiving beam in a time window For the correspondence between the receiving direction and the timing position of the receiving beam in a time window, refer to the detailed description of Table 1 and Table 2 in the embodiment shown in FIG. 2, and details are not described herein again.
  • One possible correspondence is that one timing position uniquely corresponds to the receiving direction of one receiving beam, and the receiving direction of one receiving beam uniquely corresponds to one timing position; or another possible correspondence is that one timing position is unique
  • the receiving direction of one receiving beam may correspond to one or more timing positions.
  • the identifier of the first communication device is used to uniquely identify the first communication device.
  • it may be a hardware identification code of the communication device.
  • the specific form of the identifier of the first communication device is not limited in this embodiment.
  • the timing position indicated by the received beam timing information may be represented by at least one of a position of a subframe, a position of a slot, and a position of a symbol in a radio frame.
  • the first communication device can transmit B synchronization signal blocks by means of beam scanning.
  • the beam scanning method involved in the various embodiments of the present application specifically refers to forming a beam in different directions by using a beam forming algorithm, and then receiving information or transmitting information by using beams in different directions, where the beams in different directions may be used. Commonly cover 360° ranges or collectively cover a specified range of angles.
  • the first communications device may transmit B sync signal blocks using transmit beams in different directions.
  • the numerical relationship between A and B may not be limited, and the correspondence between A transmit beams and B sync signal blocks may not be limited.
  • a transmit beams and B sync signal blocks may not be limited.
  • the B sync signal blocks may belong to the same sync signal burst set.
  • a synchronization signal burst set is defined in the NR communication system.
  • the B synchronization signal blocks transmitted by the first communication device may belong to one synchronization signal burst set, and the first communication device may transmit differently.
  • the beams respectively transmit these sync signal blocks to implement beam scanning.
  • the identification of the first communication device included in the synchronization signal block s1 and the synchronization signal block s2 is the same, and the received reception beam timing information is the same.
  • the synchronization signal block s1 and the synchronization signal block s2 are two different synchronization signal blocks in the B synchronization signal blocks, so that for the second communication device, the first communication can be uniquely determined regardless of which synchronization signal block is received
  • the device receives beam timing information.
  • the second communications device receives the synchronization signal block from the first communications device by using D receiving beams.
  • the second communications device determines a second receiving beam according to a receiving beam that receives the synchronization signal block in the D receiving beams.
  • the second communications device determines a second transmit beam according to the second receive beam.
  • the second communications device determines a target timing location according to the second transmit beam and the receive beam timing information.
  • the received beam timing information is used to indicate a timing position
  • the receiving beam timing information indicates a receiving beam corresponding to the timing position.
  • the second communication device can determine the one timing position as the target timing position.
  • the first possible case is that the receiving beam timing information indicates a The receiving direction of the receiving beam corresponds to the two or more timing positions, or the second possible case is that the receiving beam timing information indicates the receiving direction of the at least two receiving beams and the two or more Timing positions correspond. Let's take a look at the two possible scenarios.
  • the receive beam timing information of the first communication device indicates that the timing positions are T1 and T2, and the received direction of the received receive beam rx1 is rx1-D1, that is, the first communication
  • the device performs reception of feedback information at T1 and T2 using the receive beam rx1, respectively, such that the second communication device can determine at least one of the timing positions T1 and T2 as the target timing position.
  • the receive beam timing information of the first communication device indicates that the timing positions are T1, T2, T3, T4, and T5, and the received direction of the received receive beam rx1
  • the receiving direction of rx1-D1 indicates that the timing positions are T1, T2, T3, T4, and T5
  • the receiving direction of rx1-D1 indicates that the timing positions are T1, T2, T3, T4, and T5
  • the receiving beam rx2 is rx2-D2
  • the receiving direction of the receiving beam rx3 is rx3-D2.
  • the second communication device determines, according to the second transmit beam and the receive beam timing information, the target timing position, where the second communication device is configured according to the transmit direction of the second transmit beam and the receive directions of the three receive beams, rx1-D1, rx2 D2 and rx2-D2, determining a target receiving direction with the smallest angle from the transmitting direction of the second transmitting beam from the receiving directions of the three receiving beams; if the target receiving direction is rx1-D1, the second communication device acquires The timing positions T1 and T2 corresponding to rx1-D1, the second communication device may determine at least one timing position of T1 and T2 as the target timing position; if the target receiving direction is rx2-D2, the second communication device may The timing position T3 is determined as the target timing position.
  • the second communications device sends the first feedback information to the first communications device at the target timing location by using the second transmit beam.
  • the second communication device sends the first feedback information to the first communications device at the target timing position by using the second sending beam, so that the second communications device reduces the number of times the first feedback information is sent, thereby reducing the number of times.
  • the waste of time-frequency resources improves the transmission efficiency of the first feedback information.
  • the transmitted first feedback information includes an identification of the second communication device such that after the first communication device receives the first feedback information, the first communication device can determine that the device that completes signal synchronization and beam alignment is the second communication device.
  • the identifier of the second communication device is used to uniquely identify the second communication device. For example, it may be a hardware identifier of the communication device. The specific form of the identifier of the second communication device is not limited in this embodiment.
  • the first communications device receives first feedback information from the second communications device according to the timing position by using C receiving beams.
  • the first communications device determines a first receive beam according to a receive beam that receives the first feedback information in the C receive beams.
  • the first communications device determines a first transmit beam according to the first receive beam.
  • the first communication device may receive, by using the first receive beam, the second receive device
  • the second information may also send the first information to the second communications device by using the first sending beam.
  • the second communication device may receive the first information to the first communication device through the second receive beam, further The second information may be transmitted to the first communication device through the second transmit beam.
  • the first information may be data, control information, HARQ feedback information, reference signals, training sequences (including but not limited to, preamble, midamble) received by the second communication device from the first communication device or other information.
  • the second information may be the data that is sent by the second communications device to the first communications device, the control information, the HARQ feedback information, the reference signal, the training sequence (including but not limited to the preamble, the midamble), or other information. Information and second information are not limited.
  • the synchronization signal block in the embodiment shown in FIG. 4 also includes the identification and reception beam timing information of the first communication device.
  • the receive beam timing information is used to indicate a timing position at which the first communication device performs feedback information reception and a reception direction of a receive beam corresponding to the timing position.
  • the first communication device may determine a first receive beam and a first transmit beam that transmit information with the second communication device during the synchronization phase, and the second communication device may also determine with the first communication device A second receive beam and a second transmit beam of information are transmitted.
  • the second communications device can determine the target timing position for transmitting the first feedback information by using the information, thereby reducing waste of time-frequency resources and improving the The transmission efficiency of a feedback information, thereby improving the determination efficiency of the transmit beam and the receive beam.
  • FIG. 5 is another beam determining method according to an embodiment of the present application.
  • the beam determining method includes steps 501 to 509.
  • the first communications device sends the B sync signal blocks to the second communications device by using the A transmit beams.
  • the synchronization signal block of the B synchronization signal blocks sent by the first communication device includes an identifier of the first communication device, receive beam timing information of the first communication device, and an identifier of the synchronization signal block, where The receive beam timing information is used to indicate a timing position at which the first communications device performs feedback information reception.
  • the kth sync signal block of the B sync signal blocks further includes an identifier of the kth sync signal block, and k is a positive integer less than or equal to B. That is to say, one synchronization signal block corresponds to the identifier of one synchronization signal block, and the identifiers of different synchronization signal blocks are different.
  • the identifier of the synchronization signal block can also be described by using the time index of the synchronization signal block, which is not limited in this embodiment of the present application.
  • the identifier of the first communication device is used to uniquely identify the first communication device. For example, it may be a hardware identification code of the communication device. The specific form of the identifier of the first communication device is not limited in this embodiment of the present application.
  • the identification of the first communication device included in the synchronization signal block s1 and the synchronization signal block s2 may be the same, and the received reception beam timing information may be the same, and the identification of the synchronization signal block s1 and the identification of the synchronization signal block s2 are different.
  • the synchronization signal block s1 and the synchronization signal block s2 are two different synchronization signal blocks in the B synchronization signal blocks, so that for the second communication device, the first communication can be uniquely determined regardless of which synchronization signal block is received
  • the device receives beam timing information.
  • the timing position indicated by the received beam timing information may be represented by at least one of a position of a subframe, a position of a slot, and a position of a symbol in a radio frame.
  • the first communication device can transmit B synchronization signal blocks by means of beam scanning.
  • the beam scanning method involved in the various embodiments of the present application specifically refers to forming a beam in different directions by using a beam forming algorithm, and then receiving information or transmitting information by using beams in different directions, where the beams in different directions may be used. Commonly cover 360° ranges or collectively cover a specified range of angles.
  • the first communications device may transmit B sync signal blocks using transmit beams in different directions.
  • A is a positive integer less than or equal to B.
  • the sth of the A transmit beams corresponds to an identifier of at least one of the B sync signal blocks, and s is a positive integer less than or equal to A. Therefore, in this embodiment, the transmit beam needs to be determined according to the identifier of the synchronization signal block, so one transmit beam can transmit one or more sync signal blocks, and one sync signal block can only be transmitted by one transmit beam, so that the first communication
  • the device can uniquely determine a transmit beam based on the identity of a sync block.
  • a and B are numerically equal, and one transmit beam uniquely corresponds to one sync signal block, and one sync signal block uniquely corresponds to one transmit beam.
  • a transmit beams include The transmit beams tx1, tx2, and tx3, and the B sync signal blocks include the sync signal blocks s1, s2, and s3, and the possible modes are: tx1 - -> s1, tx2 - -> s2, and tx3 - -> s3.
  • A is smaller than B, and one synchronization signal block uniquely corresponds to one transmission beam.
  • a transmit beams include transmit beams tx1 and tx2, and B sync signal blocks include sync signal blocks.
  • s1, s2, and s3 the possible ways are: tx1-->s1 and s2, tx2-->s3.
  • the B sync signal blocks may belong to the same sync signal burst set.
  • a synchronization signal burst set is defined in the NR communication system.
  • the B synchronization signal blocks transmitted by the first communication device may belong to one synchronization signal burst set, and the first communication device may transmit differently.
  • the beams respectively transmit these sync signal blocks to implement beam scanning.
  • the second communications device receives the synchronization signal block from the first communications device by using D receiving beams.
  • the second communications device determines a second receive beam according to a receive beam that receives the synchronization signal block in the D receive beams.
  • the second communications device sends a first feedback message at each timing position by using each of the E transmit beams.
  • the second communications device sends the F first feedback information to the first communications device according to the received beam timing information by using E transmit beams. Where E and F are positive integers. And in the case that the receive beam timing information indicates at least one timing position, the second communications device transmits, by using each of the E transmit beams, a first feedback at each timing position of the at least one timing position. information.
  • Each of the first feedback information includes an identifier of the synchronization signal block received by the second communication device by using the second receiving beam and an identifier of the first feedback information. The identifiers of the different first feedback information are different.
  • the identifier of the first feedback information sent by the same transmit beam at the timing position T1 and the identifier of the first feedback information sent by the timing position T2 are different. And the identifiers of the first feedback information sent by different transmit beams are different, so that the transmit beam that sends the first feedback information is uniquely determined according to the identifier of the first feedback information.
  • the second communication device may complete the transmission in three time windows in order to implement step 504.
  • a feedback message in which the four timing positions can be found in each time window.
  • the three transmit beams are: tx1, tx2, and tx3, and the three time windows are w1, w2, and w3, and the four timing positions are T1, T2, T3, and T4, respectively.
  • Table 4 is a possible way to send
  • the second communication device uses tx1 to respectively send a first feedback information in the above four timing positions; in the w2 time window, the second communication device The first feedback information is respectively sent in the above four timing positions by using tx2; in the w3 time window, the second communication device uses tx3 to respectively send a first feedback information in the above four timing positions. This achieves traversal transmission of the first feedback information at each timing position for each transmit beam.
  • Time Window Correspondence between transmit beam and timing position W1 Tx1——T1, tx2——T2, tx3——T3, tx1——T4 W2 Tx1——T2, tx2——T3, tx3——T4, tx2——T1 W3 Tx1 - T3, tx2 - T4, tx3 - T1, tx3 - T2
  • Table 5 Another possible transmission method is shown in Table 5. Specifically, in the w1 time window, the second communication device uses tx1 to send a first feedback message at timing positions T1 and T4, respectively, and sends a first time at timing position T2 using tx2. A feedback message is sent with a first feedback message at timing position T3 using tx3. For the correspondence between the transmit beam and the timing position in other time windows, see Table 2. It can be seen that the traversal transmission of the first feedback information by each transmission beam at each timing position is also realized by the transmission method of Table 2.
  • Table 4 and Table 5 above are examples of the step 504.
  • the embodiment of the present application does not limit the correspondence between the transmit beam and the time window, and does not limit the number of time windows, and does not limit the correspondence between the transmit beam and the timing position.
  • each of the first feedback information sent includes an identifier of the second communication device, so that after the first communication device receives the first feedback information, the first communication device may determine that the device that completes signal synchronization and beam alignment is Second communication device.
  • the identifier of the second communication device is used to uniquely identify the second communication device. For example, it may be a hardware identifier of the communication device. The specific form of the identifier of the second communication device is not limited in this embodiment.
  • the first communications device receives first feedback information from the second communications device according to the timing position by using C receiving beams.
  • the first communications device determines a first receive beam according to a receive beam that receives the first feedback information in the C receive beams.
  • the first communications device determines a first transmit beam according to the first feedback information.
  • the first feedback information includes an identifier of the synchronization signal block received by the second communication device by using the second receiving beam, and in the first communication device, one synchronization signal block can only be transmitted by one transmission beam, so The communication device may determine, according to the identifier of the synchronization signal block fed back by the second communication device, the transmit beam that transmits the synchronization signal block, and determine the transmit beam as the first transmit beam.
  • the first receive beam is determined by step 506 and the first transmit beam is determined by step 507, and the first communication device can receive the second information to the second communication device by using the first receive beam, The first information may be transmitted to the second communication device through the first transmit beam.
  • the first communications device sends the second feedback information by using the first sending beam.
  • the first communications device sends the second feedback information to the second communications device by using the first sending beam.
  • the second feedback information includes an identifier of the first feedback information received by the first communications device by using the first receiving beam. So that the second communication device determines the second transmit beam according to the second feedback information.
  • the second communication device receives the second feedback information.
  • the second communications device may receive the second feedback information by using the second receiving beam determined in step 503.
  • the second communications device determines the second transmit beam according to the second feedback information.
  • the second communication device determines the second transmit beam according to the identifier of the first feedback information that is received by the first communications device.
  • the second communication device determines, as the second transmit beam, a transmit beam that sends the first feedback information that is received by the first communications device in the E transmit beams, because the identifiers of the different first feedback information are different.
  • the second receive beam is determined by step 503 and the second transmit beam is determined by step 509, and the second communication device can receive the second information to the first communication device by using the second receive beam, The first information may be transmitted to the first communication device through the second transmit beam.
  • the first information may be data, control information, HARQ feedback information, reference signals, training sequences (including but not limited to (preamble), midamble) received by the second communication device from the first communication device or other information.
  • the second information may be the data that is sent by the second communications device to the first communications device, the control information, the HARQ feedback information, the reference signal, the training sequence (including but not limited to the preamble, the midamble), or other information. Information and second information are not limited.
  • the synchronization signal block in the embodiment shown in FIG. 5 also includes the identifier of the first communication device, the received beam timing information, and the identifier of the synchronization signal block.
  • the receive beam timing information is used to indicate a timing position at which the first communication device performs feedback information reception.
  • the description of how to indicate the synchronization signal block by the synchronization signal block can be indicated in the same manner.
  • the specific indication manner can be referred to the detailed description of the received beam timing information, and details are not described herein again.
  • the first communication device may determine a first receive beam and a first transmit beam that transmit information with the second communication device during the synchronization phase, and the second communication device may also determine with the first communication device A second receive beam and a second transmit beam of information are transmitted. This completes beam alignment between the first communication device and the second communication device earlier, and does not require additional reference signals to achieve beam alignment, reducing waste of time-frequency resources.
  • the beam determining method includes steps 601 to 610.
  • the first communications device sends the B sync signal blocks to the second communications device by using the A transmit beams.
  • the synchronization signal block of the B synchronization signal blocks sent by the first communication device includes an identifier of the first communication device, receive beam timing information of the first communication device, and an identifier of the synchronization signal block, where
  • the receiving beam timing information is used to indicate a timing position at which the first communications device performs feedback information reception, where the receiving beam timing information is further used to indicate a receiving direction of C receiving beams in the first communications device, the ith timing position and the jth
  • the receiving directions of the receiving beams correspond to the at least one timing position, and the jth receiving beam belongs to the C receiving beams.
  • C is a positive integer
  • i is a positive integer
  • j is a positive integer less than or equal to C.
  • the timing position in the received beam timing information refers to a position in a time window, which may include all timing positions indicated by the received beam timing position information.
  • the time window is a radio frame, so that the first communication device can receive the first feedback information according to the timing position by using C receiving beams in the radio frame 1, and can also adopt C receiving in another radio frame 2.
  • the beam receives the first feedback information according to the timing position.
  • the embodiment of the present application does not limit the location of the time window used by the first communication device to receive the first feedback information and the number of time windows.
  • the receiving direction and the timing position of the receiving beam in a time window For the correspondence between the receiving direction and the timing position of the receiving beam in a time window, refer to the detailed description of Table 1 and Table 2 in the embodiment shown in FIG. 2, and details are not described herein again.
  • One possible correspondence is that one timing position uniquely corresponds to the receiving direction of one receiving beam, and the receiving direction of one receiving beam uniquely corresponds to one timing position; or another possible correspondence is that one timing position is unique
  • the receiving direction of one receiving beam may correspond to one or more timing positions.
  • the kth sync signal block of the B sync signal blocks further includes an identifier of the kth sync signal block, where k is a positive integer less than or equal to B. That is to say, one synchronization signal block corresponds to the identifier of one synchronization signal block, and the identifiers of different synchronization signal blocks are different.
  • the identifier of the synchronization signal block can also be described by using the time index of the synchronization signal block, which is not limited in this embodiment of the present application.
  • the identifier of the first communication device is used to uniquely identify the first communication device. For example, it may be a hardware identification code of the communication device. The specific form of the identifier of the first communication device is not limited in this embodiment of the present application.
  • the identification of the first communication device included in the synchronization signal block s1 and the synchronization signal block s2 may be the same, and the received reception beam timing information may be the same, and the identification of the synchronization signal block s1 and the identification of the synchronization signal block s2 are different.
  • the synchronization signal block s1 and the synchronization signal block s2 are two different synchronization signal blocks in the B synchronization signal blocks, so that for the second communication device, the first communication can be uniquely determined regardless of which synchronization signal block is received
  • the device receives beam timing information.
  • the timing position indicated by the received beam timing information may be represented by at least one of a position of a subframe, a position of a slot, and a position of a symbol in a radio frame.
  • the first communication device can transmit B synchronization signal blocks by means of beam scanning.
  • the beam scanning method involved in the various embodiments of the present application specifically refers to forming a beam in different directions by using a beam forming algorithm, and then receiving information or transmitting information by using beams in different directions, where the beams in different directions may be used. Commonly cover 360° ranges or collectively cover a specified range of angles.
  • the first communications device may transmit B sync signal blocks using transmit beams in different directions.
  • the B sync signal blocks may belong to the same sync signal burst set.
  • a synchronization signal burst set is defined in the NR communication system.
  • the B synchronization signal blocks transmitted by the first communication device may belong to one synchronization signal burst set, and the first communication device may transmit differently.
  • the beams respectively transmit these sync signal blocks to implement beam scanning.
  • the second communications device receives the synchronization signal block from the first communications device by using D receiving beams.
  • the second communications device determines a second receiving beam according to a receiving beam that receives the synchronization signal block in the D receiving beams.
  • the second communications device determines, according to the E transmit beams and the receive beam timing information, a target timing location corresponding to each transmit beam.
  • the received beam timing information is used to indicate a timing position, according to the correspondence between the receiving direction and the timing position of the receiving beam in step 601, it may be determined that the receiving beam timing information indicates a receiving direction of the receiving beam corresponding to the timing position.
  • the second communication device can determine the one timing position as the target timing position corresponding to each of the transmit beams.
  • the first possible case is that the receiving beam timing information indicates a The receiving direction of the receiving beam corresponds to the two or more timing positions, or the second possible case is that the receiving beam timing information indicates the receiving direction of the at least two receiving beams and the two or more Timing positions correspond. Let's take a look at the two possible scenarios.
  • the receive beam timing information of the first communication device indicates that the timing positions are T1 and T2, and the received direction of the received receive beam rx1 is rx1-D1, that is, the first communication
  • the device performs reception of feedback information at T1 and T2 using the receive beam rx1, respectively, for any one of the E transmit beams, tx0, so that the second communication device can determine at least one timing position of T1 and T2 as The target timing position corresponding to the transmit beam tx p , where p is a positive integer and 0 ⁇ p ⁇ E.
  • the receive beam timing information of the first communication device indicates that the timing positions are T1, T2, T3, T4, and T5, and an indication
  • the receiving direction of the receiving beam rx1 is rx1-D1
  • the receiving direction of the receiving beam rx2 is rx2-D2
  • the receiving direction of the receiving beam rx3 is rx3-D2.
  • the second communication device determines the target timing position from the transmit beam tx p and the receive beam timing information, specifically: the second communication device according to the transmit direction of the transmit beam tx p and three receiving direction of the received beam rx1-D1, rx2-D2 and rx2-D2, three receive beam receiving direction from the reception direction to the determined target transmission direction of the transmission beam tx p smallest angle; If the target receiving direction is rx1-D1, the second communication device acquires the timing positions T1 and T2 corresponding to rx1-D1, the second communication device may determine at least one timing position of T1 and T2 as the transmission beam tx p corresponding The target timing position; if the target receiving direction is rx2-D2, the second communication device may determine the timing position T3 as the target timing position corresponding to the transmitting beam tx p , where p is a positive integer, 0 ⁇ p ⁇ E.
  • the second communications device sends, by using each of the E transmit beams, a first feedback information at a target timing position corresponding to the transmit beam.
  • the second communication device sends, by using each of the E transmit beams, the first feedback information to the first communication device at a target timing position corresponding to the transmit beam, so that the second communication device reduces the transmission.
  • the number of times of feedback information reduces the waste of time-frequency resources and improves the transmission efficiency of the first feedback information.
  • the second communication device sends the E first feedback information.
  • Each of the first feedback information includes an identifier of the synchronization signal block received by the second communications device by using the second receiving beam, and an identifier of the first feedback information.
  • the identifiers of the different first feedback information are different.
  • each of the first feedback information sent includes an identifier of the second communication device, so that after the first communication device receives the first feedback information, the first communication device may determine that the device that completes signal synchronization and beam alignment is Second communication device.
  • the identifier of the second communication device is used to uniquely identify the second communication device. For example, it may be a hardware identifier of the communication device. The specific form of the identifier of the second communication device is not limited in this embodiment.
  • the first communications device receives first feedback information from the second communications device according to the timing position by using C receiving beams.
  • the first communications device determines a first receive beam according to a receive beam that receives the first feedback information in the C receive beams.
  • the first communications device determines a first transmit beam according to the first feedback information.
  • the first communications device sends the second feedback information by using the first sending beam.
  • the second communications device determines a second transmit beam according to the second feedback information.
  • the first communication device may receive, by using the first receive beam, the second receive device
  • the second information may also send the first information to the second communications device by using the first sending beam.
  • the second communication device may receive the first information to the first communication device through the second receive beam, further The second information may be transmitted to the first communication device through the second transmit beam.
  • the first information may be data, control information, HARQ feedback information, reference signals, training sequences (including but not limited to, preamble, midamble) received by the second communication device from the first communication device or other information.
  • the second information may be the data that is sent by the second communications device to the first communications device, the control information, the HARQ feedback information, the reference signal, the training sequence (including but not limited to the preamble, the midamble), or other information. Information and second information are not limited.
  • the first communication device may determine a first receive beam and a first transmit beam that transmit information with the second communication device during the synchronization phase, and the second communication device may also determine with the first communication device A second receive beam and a second transmit beam of information are transmitted.
  • the second communications device can determine the target timing position for transmitting the first feedback information by using the information, thereby reducing waste of time-frequency resources and improving the The transmission efficiency of a feedback information, thereby improving the determination efficiency of the transmit beam and the receive beam.
  • FIG. 7 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device can be a first communication device for implementing the embodiments of Figures 2-6.
  • the first communication device 700 includes a transmitting unit 701, a receiving unit 702, and a processing unit 703.
  • the sending unit 701 is configured to send, by using the A transmit beams, B synchronization signal blocks to the second communication device, where each of the B synchronization signal blocks includes an identifier of the first communication device and the Receive beam timing information of a communication device, the receive beam timing information is used to indicate a timing position at which the first communication device performs feedback information reception, where A and B are positive integers;
  • the receiving unit 702 is configured to receive first feedback information from the second communications device according to the timing position by using C receiving beams, where C is a positive integer;
  • the processing unit 703 is configured to determine, according to the receive beam that receives the first feedback information in the C receive beams, a first receive beam;
  • the processing unit 703 is further configured to determine, according to the first receive beam or the first feedback information, a first transmit beam, where the first transmit beam belongs to the A transmit beams;
  • the sending unit 701 is further configured to send the first information to the second communications device by using the first sending beam;
  • the receiving unit 702 is further configured to receive the second information from the second communications device by using the first receiving beam.
  • the receiving beam timing information indicates at least one timing position
  • the ith timing position corresponds to a receiving direction of the jth receiving beam
  • the ith timing position belongs to the at least one timing position
  • the jth receive beam belongs to the C receive beams, and both i and j are positive integers.
  • the receiving unit 702 is configured to: receive, by using the C receiving beams, the first feedback information from the second communications device according to the timing position, where The jth receive beam corresponding to the i th timing position receives the first feedback information from the second communication device.
  • the receiving beam timing information is further used to indicate a receiving direction of at least one receiving beam in the first communications device, where the at least one receiving beam belongs to the C receiving beams.
  • the first receive beam is a receive beam with the highest received signal strength among the multiple receive beams, the multiple beams It belongs to the C receiving beams.
  • the A is a positive integer less than or equal to the B.
  • the kth synchronization signal block of the B synchronization signal blocks further includes an identifier of the kth synchronization signal block;
  • the first feedback information further includes synchronization received by the second communication device An identifier of the signal block, where the sth transmit beam of the A transmit beams corresponds to an identifier of at least one of the B sync signal blocks; the first transmit beam is according to the first
  • the feedback information includes the determination of the identity of the synchronization signal block, and both k and s are positive integers.
  • the first feedback information further includes an identifier of the first feedback information
  • the sending unit 701 is further configured to send the second feedback information to the second communications device by using the first sending beam, where the second feedback information includes the first communications device receiving by using the first receiving beam.
  • the synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel PBCH; the identifier of the first communication device is indicated by the primary synchronization signal, the secondary synchronization signal, or the PBCH; The beam timing information is indicated by the primary synchronization signal, the secondary synchronization signal, or the PBCH.
  • the first feedback information includes an identifier of the second communications device.
  • the sending unit 701 may be a transmitter or a sending circuit
  • the receiving unit 702 may be a receiver or a receiving circuit.
  • the sending unit 701 and the receiving unit 702 may also be communication interfaces of the session management network element.
  • FIG. 8 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device can be a second communication device for implementing the embodiments of Figures 2-6.
  • the second communication device 800 includes a receiving unit 801, a processing unit 802, and a transmitting unit 803.
  • the second communications device is used to implement the embodiments in FIG. 2 to FIG.
  • the receiving unit 801 is configured to receive, by using D receiving beams, a synchronization signal block, where the synchronization signal block includes an identifier of the first communications device and receive beam timing information of the first communications device, where The receiving beam timing information is used to indicate a timing position at which the first communications device performs feedback information reception, where D is a positive integer;
  • the processing unit 802 is configured to determine a second receive beam according to the receive beam that receives the synchronization signal block in the D receive beams;
  • the processing unit 802 is further configured to determine a second transmit beam according to the second receive beam;
  • the sending unit 803 is configured to send the first feedback information to the first communications device according to the received beam timing information by using the second sending beam;
  • the sending unit 803 is further configured to receive the first information from the first communications device by using the second receiving beam;
  • the receiving unit 801 is further configured to send the second information to the first communications device by using the second sending beam.
  • the receiving beam timing information indicates at least one timing position
  • the sending unit 803 is specifically configured to send the first feedback information to the first communications device according to the received beam timing information by using the second sending beam. And transmitting, by using the second transmit beam, the first feedback information to the first communications device at each timing position of the at least one timing position.
  • the receiving beam timing information indicates at least one timing position
  • the receiving beam timing information is further used to indicate a receiving direction of at least one receiving beam in the first communications device, an ith timing position Corresponding to a receiving direction of the jth receiving beam, the i-th timing position belongs to the at least one timing position, the j-th receiving beam belongs to the at least one receiving beam, and the i and j are positive Integer.
  • the sending unit 803 is specifically configured to: use the second transmit beam to target the second transmit beam by using the second transmit beam to send the first feedback information to the first communications device according to the received beam timing information.
  • the timing position transmits first feedback information, the target timing position being determined from the at least one timing position according to a receiving direction of the second transmitting beam and the at least one receiving beam.
  • the second receive beam is a receive beam with the highest received signal strength among the multiple receive beams, and the multiple receive beams belong to the Describe the D receive beams.
  • the synchronization signal block further includes an identifier of the synchronization signal block
  • the first feedback information further includes an identifier of the synchronization signal block received by the second communications device by using the second receiving beam.
  • the synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel PBCH; the identifier of the first communication device is indicated by the primary synchronization signal, the secondary synchronization signal, or the PBCH; The beam timing information is indicated by the primary synchronization signal, the secondary synchronization signal, or the PBCH.
  • the second communications device is used to implement the embodiments of FIG. 5 and FIG.
  • the receiving unit 801 is configured to receive, by using D receiving beams, a synchronization signal block from a first communications device, where the synchronization signal block includes an identifier of the first communications device, receive beam timing information of the first communications device, and the An identifier of the synchronization signal block, where the reception beam timing information is used to indicate a timing position at which the first communication device performs feedback information reception, where D is a positive integer;
  • the processing unit 802 is configured to determine a second receive beam according to the receive beam that receives the synchronization signal block in the D receive beams;
  • the sending unit 803 is configured to send, by using the E transmit beams, F first feedback information to the first communications device according to the received beam timing information, where each first feedback information of the F first feedback information includes
  • the second communication device adopts an identifier of the synchronization signal block received by the second receiving beam and an identifier of the first feedback information, where the E and F are positive integers;
  • the receiving unit 801 is further configured to receive second feedback information from the first communications device, where the second feedback information includes an identifier of the first feedback information received by the first communications device;
  • the processing unit 802 is further configured to determine, according to the identifier of the first feedback information that is received by the first communications device, a second transmit beam, where the second transmit beam sends the E transmit beam a transmit beam of the first feedback information received by the first communications device;
  • the sending unit 803 is further configured to receive the first information from the first communications device by using the second receiving beam;
  • the receiving unit 801 is further configured to send the second information to the first communications device by using the second sending beam.
  • the receiving beam timing information indicates at least one timing position; the sending unit 803 specifically uses the E sending beams to send the F first feedback information to the first communications device according to the received beam timing information. And: transmitting, by using each of the E transmit beams, a first feedback information at each timing position of the at least one timing position.
  • the receiving beam timing information indicates at least one timing position
  • the receiving beam timing information is further used to indicate a receiving direction of at least one receiving beam in the first communications device, an ith timing position Corresponding to a receiving direction of the jth receiving beam, the i-th timing position belongs to the at least one timing position, the j-th receiving beam belongs to the at least one receiving beam, and the i and j are positive Integer.
  • the sending unit 803 is configured to: use the M transmit beams to send the F first feedback information to the first communications device according to the received beam timing information, where: the adopting the mth transmit beam in the Sending a first feedback information to a target timing position corresponding to the mth transmit beam, where the mth transmit beam is a transmit beam of any one of the E transmit beams, and a target timing corresponding to the mth transmit beam a location is determined from the at least one timing position based on a receive direction of the mth transmit beam and the at least one receive beam, the m being a positive integer.
  • the second receive beam is a receive beam with the highest received signal strength among the multiple receive beams, and the multiple receive beams belong to the Describe the D receive beams.
  • the synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel PBCH; the identifier of the first communication device is indicated by the primary synchronization signal, the secondary synchronization signal, or the PBCH; The beam timing information is indicated by the primary synchronization signal, the secondary synchronization signal, or the PBCH.
  • the transmitting unit 803 may be a transmitter or a transmitting circuit
  • the receiving unit 801 may be a receiver or a receiving circuit.
  • the sending unit 803 and the receiving unit 801 may also be communication interfaces of the session management network element.
  • the communication device in the above-described embodiments shown in FIGS. 7 and 8 can be implemented by the communication device 900 shown in FIG.
  • FIG. 9 a schematic structural diagram of another communication device is provided in the embodiment of the present application.
  • the communication device 900 shown in FIG. 9 includes: a processor 901 and a transceiver 902, where the transceiver 902 is configured to support a communication device.
  • the information transmission between the 900 and the other communication devices for example, implements the functions of the transmitting unit 701 and the receiving unit 702 in the embodiment shown in FIG. 7, and further implements the functions of the receiving unit 801 and the transmitting unit 803 in the embodiment shown in FIG.
  • the processor 901 and the transceiver 902 are communicatively coupled, such as by a bus.
  • the communication device 900 can also include a memory 903.
  • the memory 903 is configured to store program code and data for execution by the communication device 900, and the processor 901 is configured to execute the application code stored in the memory 903 to implement the actions of the communication device provided by any of the embodiments shown in FIG. 2 to FIG. .
  • the communication device in the actual application may include one or more processors, and the structure of the communication device 900 does not constitute a limitation on the embodiments of the present application.
  • the processor 901 can be a central processing unit (CPU), a network processor (NP), a hardware chip, or any combination thereof.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the memory 903 may include a volatile memory such as a random access memory (RAM); the memory 903 may also include a non-volatile memory such as a read-only memory (read- Only memory, ROM), flash memory, hard disk drive (HDD) or solid-state drive (SSD); the memory 903 may also include a combination of the above types of memories.
  • RAM random access memory
  • ROM read- Only memory
  • HDD hard disk drive
  • SSD solid-state drive
  • the memory 903 may also include a combination of the above types of memories.
  • a computer storage medium which can be used to store computer software instructions used by the communication device in the embodiment shown in FIG. 9, which is configured to perform the communication device design in the above embodiment. program of.
  • the storage medium includes, but is not limited to, a flash memory, a hard disk, a solid state disk.
  • a computer program product is also provided in the embodiment of the present application.
  • the communication method designed for the communication device in the above embodiment of FIG. 9 can be executed.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请实施例公开了一种波束确定方法及第一通信设备、第二通信设备,其中方法包括:第一通信设备采用A个发送波束向第二通信设备发送B个同步信号块,B个同步信号块中的每个同步信号块包括第一通信设备的标识和第一通信设备的接收波束时序信息,接收波束时序信息用于指示第一通信设备执行反馈信息接收的时序位置;采用C个接收波束根据时序位置从第二通信设备接收第一反馈信息;根据C个接收波束中接收到第一反馈信息的接收波束确定第一接收波束;根据第一接收波束或第一反馈信息确定第一发送波束,第一发送波束属于A个发送波束。采用本申请,可以实现较早的完成第一通信设备和第二通信设备之间波束对齐,并减少时频资源的浪费。

Description

波束确定方法及第一通信设备、第二通信设备
本申请要求于2018年2月11日提交中国专利局、申请号为201810140679.2、申请名称为“波束确定方法及第一通信设备、第二通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种波束确定方法及第一通信设备、第二通信设备。
背景技术
车到所有(vehicle to everything,V2X)通信系统包括车到车(Vehicle to Vehicle,V2V)的智能交通业务、车到人(Vehicle to Pedestrian,V2P)、车到基础设施(Vehicle to Infrastructure,V2I)和车到网络(Vehicle to Network,V2N)等的智能交通业务。以V2V为例,实际中的车与车之间可以直接通信,即两者之间的通信不需要依赖基站,且通过波束对齐可以提升接收信号的信号强度以及减小误码率。在现有方案中,为了实现车与车之间的波束对齐,首先车与车之间需要先完成信号同步,再通过基站发送下行参考信号进行波束训练以实现波束对齐。这样车与车是在完成信号同步之后实现的波束对齐,而且参考信号会占用额外的时频资源。
在这一场景下,如何较早的实现两个通信设备的波束对齐以及减少时频资源的浪费是需要解决的问题。
发明内容
本申请提供了一种波束确定方法及第一通信设备、第二通信设备,可以实现较早的完成第一通信设备和第二通信设备之间波束对齐,且不需要额外的参考信号来实现波束对齐,以减少时频资源的浪费。
第一方面,为本申请实施例提供了一种波束确定方法,包括:
第一通信设备采用A个发送波束向第二通信设备发送B个同步信号块,该B个同步信号块中的每个同步信号块包括第一通信设备的标识和第一通信设备的接收波束时序信息,该接收波束时序信息用于指示第一通信设备执行反馈信息接收的时序位置;第一通信设备采用C个接收波束根据时序位置从第二通信设备接收第一反馈信息,并根据C个接收波束中接收到第一反馈信息的接收波束确定第一接收波束,以及根据第一接收波束或第一反馈信息确定第一发送波束,第一发送波束属于A个发送波束。
其中,第一通信设备可以采用第一发送波束向第二通信设备发送第一信息,以及可以采用第一接收波束从第二通信设备接收第二信息。
在第一方面中,第一通信设备可以在同步阶段确定与第二通信设备传输信息的第一接收波束和第一发送波束,较早的完成了第一接收波束和第一发送波束的确定,且不需要额外的参考信号来实现波束对齐,进而减少了时频资源的浪费。
在一种可能的设计中,接收波束时序信息指示至少一个时序位置,第i个时序位置与第j个接收波束的接收方向相对应,第i个时序位置属于至少一个时序位置,第j个接收波 束属于C个接收波束。可以理解的是,接收波束时序信息中的时序位置是指在一个时间窗的中的位置,该时间窗可以包括接收波束时序位置信息所指示的全部时序位置,所述i和j均为正整数。一种可能的对应关系为:一个时序位置唯一对应于一个接收波束的接收方向,一个接收波束的接收方向唯一对应于一个时序位置;另一种可能的对应关系为:一个时序位置唯一对应于一个接收波束的接收方向,一个接收波束的接收方向可以对应一个或者多个时序位置。本申请实施例对此不作限定。
基于这一设计,第一通信设备在执行采用C个接收波束根据时序位置从第二通信设备接收第一反馈信息方面具体执行:在第i个时序位置采用与第i个时序位置对应的第j个接收波束从第二通信设备接收第一反馈信息。
在一种可能的设计中,在多个接收波束接收到第一反馈信息的情况下,第一接收波束为多个接收波束中接收到的信号强度最大的接收波束,所述多个波束属于所述C个接收波束。这样以便于第一通信设备采用第一接收波束更准确的接收到第二通信设备的信息。
在一种可能的设计中,在需要根据同步信号块的标识来确定第一发送波束的场景中,A为小于或等于B的正整数。A个发送波束中的第s个发送波束与B个同步信号块中的至少一个同步信号块的标识相对应。
具体是一个发送波束可以发送一个或者多个同步信号块,且一个同步信号块仅能被一个发送波束来发送,这样第一通信设备可以根据一个同步信号块的标识唯一确定出一个第一发送波束,所述k和s均为正整数。
在一种可能的设计中,B个同步信号块中的第k个同步信号块还包括第k个同步信号块的标识;第一反馈信息还包括第二通信设备接收到的同步信号块的标识,A个发送波束中的第s个发送波束与B个同步信号块中的至少一个同步信号块的标识相对应;第一发送波束是根据第一反馈信息包括的同步信号块的标识的确定的。一个同步信号块对应一个同步信号块的标识,不同同步信号块的标识不同。其中,同步信号块的标识还可以用同步信号块的时间索引来描述,本申请实施例对此不做限定。
在一种可能的设计中,第一反馈信息还包括该第一反馈信息的标识;该方法还包括:第一通信设备采用第一发送波束向第二通信设备发送第二反馈信息,第二反馈信息包括第一通信设备采用第一接收波束接收到的第一反馈信息的标识,以使第二通信设备根据第二反馈信息来确定第二发送波束。
在一种可能的设计中,述接收波束时序信息还用于指示所述第一通信设备中至少一个接收波束的接收方向,所述至少一个接收波束属于所述C个接收波束。
其中,第i个时序位置与第j个接收波束的接收方向相对应,第i个时序位置属于至少一个时序位置,第j个接收波束属于C个接收波束,所述i和j均为正整数。例如,具体实现中第一通信设备可以通过接收波束时序信息指示至少一个时序位置和与该至少一个时序位置中每个时序位置对应的接收波束的接收方向。
在一种可能的设计中,同步信号块包括主同步信号、辅同步信号和物理广播信道PBCH;第一通信设备的标识通过主同步信号、辅同步信号或PBCH来指示;波束时序信息通过主同步信号、辅同步信号或PBCH来指示。这里的指示可以包括显式指示或隐式指示,通过显式指示可以直接指示出所指示的信息,通过隐式指示可以减少所占用的比特数,且提高 了所指示信息的安全性。
在一种可能的设计中,第一信息可以是第二通信设备从第一通信设备接收的数据、控制信息、HARQ反馈信息、参考信号、训练序列或其他信息。第二信息可以是第二通信设备向第一通信设备发送的数据、控制信息、HARQ反馈信息、参考信号、训练序列或其他信息,本申请实施例对第一信息和第二信息不做限定。
在一种可能的设计中,第一反馈信息包括第二通信设备的标识,以使第一通信设备确定第一反馈信息所来自的设备。
第二方面,为本申请实施例提供了一种波束确定方法,包括:
第二通信设备采用D个接收波束从第一通信设备接收同步信号块,该同步信号块包括第一通信设备的标识和第一通信设备的接收波束时序信息,该接收波束时序信息用于指示第一通信设备执行反馈信息接收的时序位置,第二通信设备根据D个接收波束中接收到同步信号块的接收波束确定第二接收波束,并根据第二接收波束确定第二发送波束;接着第二通信设备采用第二发送波束根据接收波束时序信息向第一通信设备发送第一反馈信息。其中,第二通信设备可以采用第二接收波束从第一通信设备接收第一信息;以及可以采用第二发送波束向第一通信设备发送第二信息。
在第二方面中,第二通信设备可以在同步阶段确定与第一通信设备传输信息的第二接收波束和第二发送波束,较早的完成了第二接收波束和第二发送波束的确定,且不需要额外的参考信号来实现波束对齐,进而减少了时频资源的浪费。
在一种可能的设计中,第二通信设备在执行采用第二发送波束根据接收波束时序信息向第一通信设备发送第一反馈信息方面具体执行:
在接收波束时序信息指示至少一个时序位置的情况下,采用第二发送波束在至少一个时序位置的每个时序位置向第一通信设备发送第一反馈信息。所发送的第一反馈信息包括第二通信设备的标识,以使第一通信设备在接收到第一反馈信息之后,第一通信设备可以确定完成信号同步和波束对齐的设备为第二通信设备。
在一种可能的设计中,接收波束时序信息指示至少一个时序位置,接收波束时序信息还用于指示第一通信设备中至少一个接收波束的接收方向,第i个时序位置与第j个接收波束的接收方向相对应,第i个时序位置属于至少一个时序位置,第j个接收波束属于至少一个接收波束,所述i和j均为正整数。
可以理解的是,接收波束时序信息中的时序位置是指在一个时间窗的中的位置,该时间窗可以包括接收波束时序位置信息所指示的全部时序位置,所述i和j均为正整数。一种可能的对应关系为:一个时序位置唯一对应于一个接收波束的接收方向,一个接收波束的接收方向唯一对应于一个时序位置;另一种可能的对应关系为:一个时序位置唯一对应于一个接收波束的接收方向,一个接收波束的接收方向可以对应一个或者多个时序位置。本申请实施例对此不作限定。
在一种可能的设计中,第二通信设备在执行采用第二发送波束根据接收波束时序信息向第一通信设备发送第一反馈信息方面具体执行:采用第二发送波束在目标时序位置发送第一反馈信息,目标时序位置是根据第二发送波束和至少一个接收波束的接收方向从至少一个时序位置中确定的。这样第二通信设备减少了发送第一反馈信息的次数,进而减少了 时频资源的浪费,提高了第一反馈信息的传输效率。
在一种可能的设计中,在多个接收波束接收到同步信号块的情况下,第二接收波束为多个接收波束中接收到的信号强度最大的接收波束。这里的多个接收波束属于第二通信设备的D个接收波束。这样以便于第二通信设备采用第二接收波束更准确的接收到第一通信设备的信息。
在一种可能的设计中,同步信号块还包括同步信号块的标识;第一反馈信息还包括第二通信设备采用第二接收波束接收到的同步信号块的标识,以使第一通信设备根据第一反馈信息中同步信号块的标识确定第一发送波束。
在一种可能的设计中,在一种可能的设计中,第一信息可以是第二通信设备从第一通信设备接收的数据、控制信息、HARQ反馈信息、参考信号、训练序列或其他信息。第二信息可以是第二通信设备向第一通信设备发送的数据、控制信息、HARQ反馈信息、参考信号、训练序列或其他信息,本申请实施例对第一信息和第二信息不做限定。
在一种可能的设计中,同步信号块包括主同步信号、辅同步信号和物理广播信道PBCH;第一通信设备的标识通过主同步信号、辅同步信号或PBCH来指示;波束时序信息通过主同步信号、辅同步信号或PBCH来指示。这里的指示可以包括显式指示或隐式指示,通过显式指示可以直接指示出所指示的信息,通过隐式指示可以减少所占用的比特数,且提高了所指示信息的安全性。
第三方面,为本申请实施例提供了一种波束确定方法,包括:
第二通信设备采用D个接收波束从第一通信设备接收同步信号块,该同步信号块包括第一通信设备的标识、第一通信设备的接收波束时序信息和同步信号块的标识,该接收波束时序信息用于指示第一通信设备执行反馈信息接收的时序位置;根据D个接收波束中接收到同步信号块的接收波束确定第二接收波束,并采用E个发送波束根据接收波束时序信息向第一通信设备发送F个第一反馈信息,F个第一反馈信息中的每个第一反馈信息包括第二通信设备采用第二接收波束接收到的同步信号块的标识和该第一反馈信息的标识,并从第一通信设备接收第二反馈信息,第二反馈信息包括第一通信设备接收到的第一反馈信息的标识;根据第一通信设备接收到的第一反馈信息的标识确定第二发送波束,第二发送波束为E个发送波束中发送第一通信设备接收到的第一反馈信息的发送波束。
其中,第二通信设备可以采用第二接收波束从第一通信设备接收第一信息;以及采用第二发送波束向第一通信设备发送第二信息。
在第三方面中,第二通信设备可以在同步阶段确定与第一通信设备传输信息的第二接收波束和第二发送波束,较早的完成了第二接收波束和第二发送波束的确定,且不需要额外的参考信号来实现波束对齐,进而减少了时频资源的浪费。
在一种可能的设计中,第二通信设备在执行采用E个发送波束根据接收波束时序信息向第一通信设备发送F个第一反馈信息方面具体执行:在接收波束时序信息指示至少一个时序位置的情况下,采用E个发送波束中的每个发送波束在至少一个时序位置的每个时序位置发送一个第一反馈信息。所发送的第一反馈信息包括第二通信设备的标识,以使第一通信设备在接收到第一反馈信息之后,第一通信设备可以确定完成信号同步和波束对齐的设备为第二通信设备。
在一种可能的设计中,在接收波束时序信息指示至少一个时序位置的情况下,接收波束时序信息还用于指示第一通信设备中至少一个接收波束的接收方向,第i个时序位置与第j个接收波束的接收方向相对应,第i个时序位置属于至少一个时序位置,第j个接收波束属于至少一个接收波束,所述i和j均为正整数。可以理解的是,接收波束时序信息中的时序位置是指在一个时间窗的中的位置,该时间窗可以包括接收波束时序位置信息所指示的全部时序位置。一种可能的对应关系为:一个时序位置唯一对应于一个接收波束的接收方向,一个接收波束的接收方向唯一对应于一个时序位置;另一种可能的对应关系为:一个时序位置唯一对应于一个接收波束的接收方向,一个接收波束的接收方向可以对应一个或者多个时序位置。本申请实施例对此不作限定。
在一种可能的设计中,第二通信设备在执行采用E个发送波束根据接收波束时序信息向第一通信设备发送F个第一反馈信息方面具体执行:在接收波束时序信息指示至少一个时序位置的情况下,第二通信设备采用第m个发送波束在第m个发送波束对应的目标时序位置上发送一个第一反馈信息,第m个发送波束为E个发送波束中的任意一个发送波束,第m个发送波束对应的目标时序位置是根据第m个发送波束和至少一个接收波束的接收方向从至少一个时序位置中确定的,m为正整数。这样第二通信设备减少了发送第一反馈信息的次数,进而减少了时频资源的浪费,提高了第一反馈信息的传输效率。
在一种可能的设计中,在多个接收波束接收到同步信号块的情况下,第二接收波束为多个接收波束中接收到的信号强度最大的接收波束。这样以便于第二通信设备采用第二接收波束更准确的接收到第一通信设备的信息。
在一种可能的设计中,第一信息可以是第二通信设备从第一通信设备接收的数据、控制信息、HARQ反馈信息、参考信号、训练序列或其他信息。第二信息可以是第二通信设备向第一通信设备发送的数据、控制信息、HARQ反馈信息、参考信号、训练序列或其他信息,本申请实施例对第一信息和第二信息不做限定。
在一种可能的设计中,同步信号块包括主同步信号、辅同步信号和物理广播信道PBCH;第一通信设备的标识通过主同步信号、辅同步信号或PBCH来指示;波束时序信息通过主同步信号、辅同步信号或PBCH来指示。这里的指示可以包括显式指示或隐式指示,通过显式指示可以直接指示出所指示的信息,通过隐式指示可以减少所占用的比特数,且提高了所指示信息的安全性。
第四方面,本申请实施例提供了一种通信设备,该通信设备为第一通信设备,该第一通信设备包括:
发送单元,用于采用A个发送波束向第二通信设备发送B个同步信号块,B个同步信号块中的每个同步信号块包括第一通信设备的标识和第一通信设备的接收波束时序信息,接收波束时序信息用于指示第一通信设备执行反馈信息接收的时序位置,A和B均为正整数;
接收单元,用于采用C个接收波束根据时序位置从第二通信设备接收第一反馈信息,C为正整数;
处理单元,用于根据C个接收波束中接收到第一反馈信息的接收波束确定第一接收波束;
处理单元,还用于根据第一接收波束或第一反馈信息确定第一发送波束,第一发送波束属于A个发送波束;
发送单元,还用于采用第一发送波束向第二通信设备发送第一信息;
接收单元,还用于采用第一接收波束从第二通信设备接收第二信息。
可选的,该第一通信设备还可以实现第一方面的部分或全部的可选的实现方式。
第五方面,本申请实施例提供了一种通信设备,该通信设备为第二通信设备,该第二通信设备包括:
接收单元,用于采用D个接收波束从第一通信设备接收同步信号块,同步信号块包括第一通信设备的标识和第一通信设备的接收波束时序信息,接收波束时序信息用于指示第一通信设备执行反馈信息接收的时序位置,D为正整数;
处理单元,用于根据D个接收波束中接收到同步信号块的接收波束确定第二接收波束;
处理单元,还用于根据第二接收波束确定第二发送波束;
发送单元,用于采用第二发送波束根据接收波束时序信息向第一通信设备发送第一反馈信息;
发送单元,还用于采用所述第二接收波束从所述第一通信设备接收第一信息;
接收单元,还用于采用所述第二发送波束向所述第一通信设备发送第二信息。
可选的,该第二通信设备还可以实现第二方面的部分或全部的可选的实现方式。
第六方面,本申请实施例提供了一种通信设备,该通信设备为第二通信设备,该第二通信设备包括:
接收单元,用于采用D个接收波束从第一通信设备接收同步信号块,同步信号块包括第一通信设备的标识、第一通信设备的接收波束时序信息和同步信号块的标识,接收波束时序信息用于指示第一通信设备执行反馈信息接收的时序位置,D为正整数;
处理单元,用于根据D个接收波束中接收到同步信号块的接收波束确定第二接收波束;
发送单元,用于采用E个发送波束根据接收波束时序信息向第一通信设备发送F个第一反馈信息,F个第一反馈信息中的每个第一反馈信息包括第二通信设备采用第二接收波束接收到的同步信号块的标识和该第一反馈信息的标识,E和F为正整数;
接收单元,还用于从第一通信设备接收第二反馈信息,第二反馈信息包括第一通信设备接收到的第一反馈信息的标识;
处理单元,还用于根据第一通信设备接收到的第一反馈信息的标识确定第二发送波束,第二发送波束为E个发送波束中发送第一通信设备接收到的第一反馈信息的发送波束;
发送单元,还用于采用所述第二接收波束从所述第一通信设备接收第一信息;
接收单元,还用于采用所述第二发送波束向所述第一通信设备发送第二信息。
可选的,该第二通信设备还可以实现第三方面的部分或全部的可选的实现方式。
第七方面,提供一种通信设备。该通信设备可以为上述方法设计中的设备,或者为设置在设备中的芯片。该设备包括:存储器,用于存储计算机可执行程序代码;收发器,以及处理器,处理器与存储器、收发器耦合。其中存储器所存储的程序代码包括指令,当处理器执行指令时,使通信装置执行上述第一方面、第二方面、第三方面的任意一种可能的设计中通信设备所执行的方法。
第八方面,提供了一种计算机程序产品,计算机程序产品包括:计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行上述第一方面至第三方面及其任意可能的实现方式中的方法。
第九方面,提供了一种计算机可读介质,计算机可读介质存储有程序代码,当计算机程序代码在计算机上运行时,使得计算机执行上述第一方面至第三方面及其任意可能的实现方式中的方法。
第十方面,提供一种芯片,包括处理器和存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,该计算机程序用于实现上述第一方面至第三方面及其任意可能的实现方式中的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为本申请实施例提供了一种可能的V2X通信系统架构示意图;
图2为本申请实施例提供了一种波束确定方法的流程示意图;
图3为本申请实施例提供了一种可能的同步信号块的结构示意图;
图4为本申请实施例提供了另一种波束确定方法的流程示意图;
图5为本申请实施例提供了另一种波束确定方法的流程示意图;
图6为本申请实施例提供了另一种波束确定方法的流程示意图;
图7是本申请实施例提供的一种通信设备的结构示意图;
图8是本申请实施例提供的另一种通信设备的结构示意图;
图9是本申请实施例提供的另一种通信设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例进行说明。
请参见图1,图1是本申请实施例涉及的一种可能的V2X通信系统的架构示意图。如图1所示,该V2X通信系统架构包含了V2V通信和车到网络(Vehicle to Network,V2N)通信,该通信系统包括网络设备101、车辆102、车辆103。其中,V2V通信包括车辆102和车辆103之间的通信;V2N通信包括车辆102或车辆103与基站101之间的通信。
在V2X通信场景下,车辆和车辆之间可以通过侧链路(side link,SL)通信,SL通信是指车辆和车辆之间的直接通信,也就是说,车辆和车辆之间的通信不通过网络设备转发数据的直接通信。
在实际通信中,车辆102和车辆103之间的直接通信需要完成波束对齐。其中波束对齐是指车辆102确定用于向车辆103发送信息的发送波束以及确定用于从车辆103接收信息的接收波束,同样,车辆103确定用于向车辆102发送信息的发送波束以及确定用于从车辆102接收信息的接收波束。
在新空口(New Radio,NR)中,通信设备和网络设备之间的波束对齐可以通过下行同步和随机接入来共同完成,但是在NR-V2V/V2P通信中,通信设备和通信设备之间并没有随机接入机制,因此只能用其他方式的上行反馈来实现波束对齐。在现有方案中,以V2V 为例,为了实现车辆102和车辆103之间的波束对齐,首先车辆102和车辆103之间需要先完成信号同步,再通过网络设备发送下行参考信号进行波束训练以实现波束对齐。这样做会带来两个问题:1)参考信号在同步信号帧之后发送的,这样车辆102和车辆103是在完成信号同步之后实现的波束对齐,造成了时延的增加;2)用于波束训练的参考信号会占用额外的时频资源。
在本申请实施例的一种可能实现方案中,车辆102采用A个发送波束向车辆103发送B个同步信号块,B个同步信号块中的每个同步信号块包括车辆102的标识和车辆102的接收波束时序信息,接收波束时序信息用于指示车辆102执行反馈信息接收的时序位置;车辆103采用D个接收波束从车辆102接收同步信号块,并根据D个接收波束中接收到同步信号块的接收波束确定第二接收波束;车辆103根据第二接收波束确定第二发送波束;车辆103采用第二发送波束根据接收波束时序信息向车辆102发送第一反馈信息;车辆102采用C个接收波束根据时序位置从车辆103接收第一反馈信息;车辆102根据C个接收波束中接收到第一反馈信息的接收波束确定第一接收波束;车辆102根据第一接收波束确定第一发送波束。这样该方案在同步阶段实现了车辆102和车辆103之间的波束对齐,也就是说,较早的完成了车辆101和车辆102之间波束对齐,且不需要额外的参考信号来实现波束对齐,减少了时频资源的浪费。
在本申请实施例的另一种可能实现方案中,车辆102采用A个发送波束向车辆103发送B个同步信号块,B个同步信号块中的每个同步信号块包括车辆102的标识、车辆102的接收波束时序信息和同步信号块的标识,接收波束时序信息用于指示车辆102执行反馈信息接收的时序位置;车辆103采用D个接收波束从车辆102接收同步信号块,并根据D个接收波束中接收到同步信号块的接收波束确定第二接收波束;车辆103采用E个发送波束根据接收波束时序信息向车辆102发送F个第一反馈信息,F个第一反馈信息中的每个第一反馈信息包括车辆103采用第二接收波束接收到的同步信号块的标识和该第一反馈信息的标识;车辆102采用C个接收波束根据接收波束时序信息从车辆103接收第一反馈信息,并根据C个接收波束中接收到第一反馈信息的接收波束确定第一接收波束,并根据采用第一接收波束接收到的第一反馈信息包括的同步信号块的标识确定第一发送波束,车辆102采用第一发送波束向车辆103发送第二反馈信息,第二反馈信息包括车辆102接收到的第一反馈信息的标识;车辆103从车辆102接收第二反馈信息;车辆103根据第二反馈信息确定第二发送波束。这样该方案在同步阶段实现了车辆102和车辆103之间的波束对齐,也就是说,较早的完成了车辆101和车辆102之间波束对齐,且不需要额外的参考信号来实现波束对齐,减少了时频资源的浪费。
本申请实施例的波束确定方法除了可以应用于V2V通信系统中,也可用于车到人(Vehicle to Pedestrian,V2P)、车到基础设施(Vehicle to Infrastructure,V2I)等直接通信的通信系统中。
本申请实施例涉及的网络设备可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在第五代(5th generation,5G)系统中,称为gNB;在LTE系统中,称为演进的节点B(evolved nodeB,eNB或者eNodeB);在第三代(3rd generation, 3G)系统中,称为节点B(node B)等。
本申请实施例涉及的第一通信设备、第二通信设备可以为车载终端、用户设备(user equipment,UE)、手持终端、笔记本电脑、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端或是其他设备。
基于图1所示的系统架构图,请参见图2,为本申请实施例提供了一种波束确定方法。如图2所示,该波束确定方法包括步骤201至步骤208。
201,第一通信设备采用A个发送波束向第二通信设备发送B个同步信号块。
其中,第一通信设备发送的B个同步信号块中的每个同步信号块包括所述第一通信设备的标识和所述第一通信设备的接收波束时序信息,所述接收波束时序信息用于指示所述第一通信设备执行反馈信息接收的时序位置,所述A和B均为正整数。
其中,第一通信设备的标识用于唯一识别该第一通信设备,例如,可以是通信设备的硬件识别码,本申请实施例对第一通信设备的标识的具体形式不做限定。
接收波束时序信息所指示的时序位置可以通过在一无线帧中子帧的位置、时隙(slot)的位置、符号(symbol)的位置中的至少一个来表示,例如,以1无线帧=10子帧=10ms=20时隙=140符号为例,接收波束时序信息所指示的时序位置可以为第2个子帧中第5个时隙的第1个符号的位置,或者,可以为第5个子帧的第18个时隙。可以理解的是,这里的时序位置是在一个无线帧中的位置,并非固定于某一个无线帧中。可选的,接收波束时序信息可以指示一个或者多个时序位置,本申请实施例对此不做限定。
举例来说,第一通信设备可以通过波束扫描的方式发送B个同步信号块。其中,本申请各个实施例中涉及的波束扫描的方式具体是指采用波束形成算法等方式形成不同方向的波束,再采用该不同方向的波束接收信息或者发送信息,其中,这些不同方向的波束可以共同覆盖360°范围或者共同覆盖指定角度范围。在图2实施例中,第一通信设备可以采用给不同方向的发送波束发送B个同步信号块。
在图2所示的实施例中可以不限定A和B在数值上的大小关系,以及可以不限定A个发送波束和B个同步信号块的对应关系。在第一种可能的实现方案中,一个发送波束可以发送一个或者多个同步信号块,举例来说,A个发送波束包括发送波束tx1、tx2、tx3,B个同步信号块包括同步信号块s1、s2、s3、s4,则可能的方式为:tx1-->s1、tx2-->s2和s3、tx3-->s4。其中,tx1-->s1表示采用发送波束tx1发送同步信号块s1;tx2-->s2和s3表示采用发送波束tx2发送同步信号块s2和同步信号块s3;tx3-->s4表示采用发送波束tx3发送同步信号块s4。在另一种可能的实现方案中,发送波束与同步信号块一一对应,也就是说,A与B在数值上相等,且一个发送波束唯一对应于一个同步信号块,一个同步信号块唯一对应于一个发送波束,举例来说,A个发送波束包括发送波束tx1、tx2、tx3,B个同步信号块包括同步信号块s1、s2、s3,则可能的方式为:tx1-->s1、tx2-->s2、tx3-->s3。在另一种可能的实现方案中,不同的发送波束可以发送同一个同步信号块,举例来说,A个发送 波束包括发送波束tx1、tx2、tx3,B个同步信号块包括同步信号块s1、s2、s3、s4,则可能的方式为:tx1-->s1和s2、tx2-->s2和s3、tx3-->s4。其中,tx1-->s1和s2表示采用发送波束tx1发送同步信号块s1和同步信号块s2;tx2-->s2和s3表示采用发送波束tx2发送同步信号块s2和同步信号块s3;tx3-->s4表示采用发送波束tx3发送同步信号块s4。
B个同步信号块可以属于同一个同步信号突发集(burst set)。例如,在NR通信系统中定义了同步信号突发集,基于这一通信系统,第一通信设备所发送的B个同步信号块可以属于一个同步信号突发集,第一通信设备可以通过不同发送波束分别发送这些同步信号块从而实现波束扫描。
同步信号块s1和同步信号块s2包括的第一通信设备的标识可以是相同的,以及包括的接收波束时序信息可以是相同的。其中,同步信号块s1和同步信号块s2是B个同步信号块中的两个不同的同步信号块,这样对于第二通信设备而言,不论接收到哪个同步信号块,可以唯一确定第一通信设备接收波束时序信息。
202,第二通信设备采用D个接收波束从第一通信设备接收同步信号块。
举例来说,第二通信设备可以通过波束扫描的方式接收同步信号块。可以理解的是,第二通信设备采用D个接收波束接收同步信号块,不表示D个接收波束中的每个接收波束都接收到了同步信号块,而是表示第二通信设备采用D个接收波束来接收信息,其目的是为了接收到同步信号块。其中,D为正整数,本申请实施例不限定接收波束的数量。
其中,步骤201和步骤202在执行时间上并无先后顺序之分。
203,所述第二通信设备根据所述D个接收波束中接收到所述同步信号块的接收波束确定第二接收波束。
其中,在第二通信设备采用D个接收波束接收到同步信号块后,如果D个接收波束中仅有一个接收波束接收到同步信号块,则将该接收到同步信号块的接收波束确定为第二接收波束。
如果D个接收波束中存在两个或者两个以上的接收波束接收到同步信号块,则从接收到同步信号块的两个或者两个以上的接收波束中选择一个接收波束确定为第二接收波束。第二通信设备可以确定每个接收到同步信号块的信号强度,并将信号强度最大的接收波束确定为第二接收波束。
204,所述第二通信设备根据所述第二接收波束确定第二发送波束。
其中,所述第二通信设备可以根据第二接收波束直接确定第二发送波束。例如,在假设信道互易性的前提下,可以按照第二接收波束对应的天线的配置参数确定第二发送波束对应的天线配置参数,进而实现直接确定第二发送波束。其中,信道互易性是指上行信道与下行信道的特性基本相同。
在确定第二接收波束和第二发送波束之后,以及结合同步信号块中所包括的第一通信设备的标识,第二通信设备可以通过第二接收波束向第一通信设备接收第一信息,还可以通过第二发送波束向第一通信设备发送第二信息。
205,所述第二通信设备采用所述第二发送波束在接收波束时序信息包括的时序位置上向所述第一通信设备发送第一反馈信息。
其中,所述第二通信设备通过接收到的同步信号块包括的接收波束时序信息来发送第 一反馈信息。通过步骤204,第二通信设备可以确定出第二发送波束,并采用第二发送波束在接收波束时序信息包括的时序位置上向所述第一通信设备发送第一反馈信息。
在接收波束时序信息包括至少一个时序位置的情况下,第二通信设备采用第二发送波束在每个时序位置发送一个第一反馈信息。所发送的第一反馈信息包括第二通信设备的标识,以使第一通信设备在接收到第一反馈信息之后,第一通信设备可以确定完成信号同步和波束对齐的设备为第二通信设备。其中,第二通信设备的标识用于唯一识别该第二通信设备,例如,可以是通信设备的硬件识别码,本申请实施例对第二通信设备的标识的具体形式不做限定。
206,所述第一通信设备采用C个接收波束根据所述时序位置从所述第二通信设备接收第一反馈信息。
举例来说,第一通信设备可以通过波束扫描的方式接收第一反馈信息。可以理解的是,第一通信设备采用C个接收波束接收第一反馈信息,不表示C个接收波束中的每个接收波束都接收到了第一反馈信息,而是表示第一通信设备采用C个接收波束来接收信息,其目的是为了接收到第一反馈信息。其中,C为正整数,本申请实施例不限定接收波束的数量。
进一步的,由于通过接收波束时序信息向第二通信设备通知了第一通信设备接收反馈信息的时序位置,这样第一通信设备可以在所通知的时序位置上接收第一反馈信息。
在一种可能的设计中,第一通信设备中C个接收波束与接收波束指示信息包括的至少一个时序位置存在一定的对应关系,具体是:第i个时序位置与第j个接收波束的接收方向相对应,所述第i个时序位置属于所述至少一个时序位置,所述第j个接收波束属于所述C个接收波束。可以理解的是,接收波束时序信息中的时序位置是指在一个时间窗的中的位置,该时间窗可以包括接收波束时序位置信息所指示的全部时序位置。例如,该时间窗为一个无线帧,这样第一通信设备可以在无线帧1中采用C个接收波束根据该时序位置来接收第一反馈信息,还可以在另外一个无线帧2中采用C个接收波束根据该时序位置来接收第一反馈信息。本申请实施例不限定第一通信设备用于接收第一反馈信息的时间窗的位置以及时间窗的数量。
在一个时间窗内对接收波束的接收方向和时序位置对应关系进行举例说明。例如,接收波束的数量为3,3个接收波束对应的接收方向分别为:rx1-D1、rx2-D2、rx3-D4;接收波束时序信息所指示的时序位置包括:T1、T2和T3,如表1所示,可以看出一个时序位置唯一对应于一个接收波束的接收方向,一个接收波束的接收方向唯一对应于一个时序位置。这样第一通信设备在所述第i个时序位置采用与所述第i个时序位置对应的所述第j个接收波束从所述第二通信设备接收第一反馈信息。
表1一种可能的接收方向和时序位置对应关系
接收波束的接收方向 时序位置
rx1-D1 T1
rx2-D2 T2
rx3-D3 T3
又如,接收波束的数量为3,接收波束时序信息所指示的接收波束rx1的接收方向为 rx1-D1、接收波束rx2的接收方向为rx2-D2、接收波束rx3的接收方向为rx3-D2;接收波束时序信息所指示的时序位置包括:T1、T2、T3、T4和T5,如表2所示,可以看出一个时序位置唯一对应于一个接收波束的接收方向,一个接收波束的接收方向可以对应一个或者多个时序位置,这样第一通信设备在所述第i个时序位置采用与所述第i个时序位置对应的所述第j个接收波束从所述第二通信设备接收第一反馈信息。
表2另一种可能的接收方向和时序位置对应关系
接收波束的接收方向 时序位置
rx1-D1 T1、T2
rx2-D2 T3
rx3-D3 T4、T5
其中,步骤206在步骤201之后执行,步骤206和步骤202在执行时间上并无先后顺序之分。
207,所述第一通信设备根据所述C个接收波束中接收到所述第一反馈信息的接收波束确定第一接收波束。
其中,在第一通信设备采用C个接收波束接收到第一反馈信息后,如果C个接收波束中仅有一个接收波束接收到第一反馈信息,则将该接收到第一反馈信息的接收波束确定为第一接收波束。
如果C个接收波束中存在两个或者两个以上的接收波束接收到第一反馈信息,则从接收到第一反馈信息的两个或者两个以上的接收波束中选择一个接收波束确定为第一接收波束。第一通信设备可以确定每个接收到第一反馈信息的信号强度,并将信号强度最大的接收波束确定为第一接收波束。
208,所述第一通信设备根据所述第一接收波束确定第一发送波束。
其中,所述第一通信设备可以根据第一接收波束直接确定第一发送波束。例如,在假设信道互易性的前提下,可以按照第一接收波束对应的天线的配置参数确定第一发送波束对应的天线配置参数,进而实现直接确定第一发送波束。
举例来说,在假设信道互易性的前提下,图2所示实施例中第一通信设备的发送波束的数量可以与接收波束的数量相等,且一个发送波束与一个接收波束唯一对应,这样通过步骤208所确定的第一发送波束属于第一通信设备中的A个发送波束。
在确定第一接收波束和第一发送波束之后,以及结合第一反馈信息中所包括的第二通信设备的标识,第一通信设备可以通过第一接收波束向第二通信设备接收第二信息,还可以通过第一发送波束向第二通信设备发送第一信息。
第一信息可以是第二通信设备从第一通信设备接收的数据、控制信息、混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)反馈信息、参考信号(reference signal)、训练序列(包括但不限于前导序列(preamble)、中间码(midamble))或其他信息。第二信息可以是第二通信设备向第一通信设备发送的数据、控制信息、HARQ反馈信息、reference signal、训练序列(包括但不限于preamble、midamble)或其他信息,本申请实施例对第一信息和第二信息不做限定。
在图2所示的实施例中,在同步阶段第一通信设备可以确定与第二通信设备传输信息 的第一接收波束和第一发送波束,以及第二通信设备也可以确定与第一通信设备传输信息的第二接收波束和第二发送波束。这样较早的完成了第一通信设备和第二通信设备之间波束对齐,且不需要额外的参考信号来实现波束对齐,减少了时频资源的浪费。
接下来,请参见图3,为本申请实施例提供了一种可能的同步信号块的结构示意图。如图3所示,该同步信号块包括主同步信号(primary synchronization sigal,PSS)、辅同步信号(secondary synchronization signal,SSS)以及物理广播信道(physical broadcast channel,PBCH)。
在图2实施例中,同步信号块包括第一通信设备的标识和接收波束时序信息,接收波束时序信息用于指示所述第一通信设备执行反馈信息接收的时序位置。结合图3,所述第一通信设备的标识可以通过所述主同步信号、所述辅同步信号或所述PBCH来指示;所述波束时序信息可以通过所述主同步信号、所述辅同步信号或所述PBCH来指示。
以接收波束时序信息为例来说,在第一种可能的实现方案中,接收波束时序信息可以通过主同步信号或辅同步信号隐式指示。例如,主同步信号可以包括多个同步序列,先确定同步序列与接收波束时序信息的对应关系,通过所发送的同步序列来指示接收波束时序信息。
在第二种可能的实现方案中,接收波束时序信息可以通过PBCH显式指示。例如,可以在PBCH包含的字段部分写入目标预设值,以指示与该目标预设值对应的接收波束时序信息。这一方案,需要先确定多个预设值与多个接收波束时序信息的对应关系。
在第三种可能的实现方案中,接收波束时序信息可以通过PBCH隐式指示。例如,可以通过PBCH的解调参考信号(demodulation reference signal,DMRS)、PBCH采用的加扰序列等来指示,一种方式是确定多个DMRS与接收波束时序信息的对应关系,通过PBCH的目标DMRS来指示与其对应的接收波束时序信息;另一种方式是确定多个加扰序列与接收波束时序信息的对应关系,通过PBCH采用的目标加扰序列来指示与其对应的接收波束时序信息。
上述对如何通过同步信号块指示接收波束时序信息进行了举例来说,对于第一通信设备的标识也可以采用同样的方式来指示,其具体指示方式可以参考指示接收波束时序信息的详细描述,在此不再赘述。
图3仅仅为一种可能的结构示意图。本申请不限定同步信号块的结构,例如同步信号块可以包括PSS、SSS和PBCH中的至少一个,这样本申请中第一通信设备的标识可以通过同步信号块所包括的来实现指示,同样第一通信设备的接收波束时序信息可以通过同步信号块所包括的来实现指示,具体指示方式可以参考以下详细描述。
基于图1所示的系统架构图,请参见图4,为本申请实施例提供了另一种波束确定方法。如图4所示,该波束确定方法包括步骤401至步骤409。
401,第一通信设备采用A个发送波束向第二通信设备发送B个同步信号块。
其中,A和B均为正整数。所述B个同步信号块中的每个同步信号块包括所述第一通信设备的标识和第一通信设备的接收波束时序信息,该接收波束时序信息用于指示第一通 信设备执行反馈信息接收的时序位置,该接收波束时序信息还用于指示第一通信设备中C个接收波束的接收方向,第i个时序位置与第j个接收波束的接收方向相对应,所述第i个时序位置属于所述至少一个时序位置,所述第j个接收波束属于所述C个接收波束。其中,C为正整数,i为正整数,j为小于或等于C的正整数。
可以理解的是,接收波束时序信息中的时序位置是指在一个时间窗的中的位置,该时间窗可以包括接收波束时序位置信息所指示的全部时序位置。例如,该时间窗为一个无线帧,这样第一通信设备可以在无线帧1中采用C个接收波束根据该时序位置来接收第一反馈信息,还可以在另外一个无线帧2中采用C个接收波束根据该时序位置来接收第一反馈信息。本申请实施例不限定第一通信设备用于接收第一反馈信息的时间窗的位置以及时间窗的数量。
一个时间窗内接收波束的接收方向和时序位置对应关系可以参考图2所示实施例中关于表1和表2的详细描述,在此不再赘述。其中,一种可能的对应关系为,一个时序位置唯一对应于一个接收波束的接收方向,一个接收波束的接收方向唯一对应于一个时序位置;或者另一种可能的对应关系为,一个时序位置唯一对应于一个接收波束的接收方向,一个接收波束的接收方向可以对应一个或者多个时序位置。
其中,第一通信设备的标识用于唯一识别该第一通信设备,例如,可以是通信设备的硬件识别码,本申请实施例对第一通信设备的标识的具体形式不做限定。
其中,接收波束时序信息所指示的时序位置可以通过在一无线帧中子帧的位置、时隙(slot)的位置、符号(symbol)的位置中的至少一个来表示。具体的指示方式可以参考图2所示实施例中步骤201的详细描述,在此不再赘述。
举例来说,第一通信设备可以通过波束扫描的方式发送B个同步信号块。其中,本申请各个实施例中涉及的波束扫描的方式具体是指采用波束形成算法等方式形成不同方向的波束,再采用该不同方向的波束接收信息或者发送信息,其中,这些不同方向的波束可以共同覆盖360°范围或者共同覆盖指定角度范围。在图4实施例中,第一通信设备可以采用不同方向的发送波束发送B个同步信号块。
在图4所示的实施例中可以不限定A和B在数值上的大小关系,以及可以不限定A个发送波束和B个同步信号块的对应关系。其可选的对应关系可以参考图2所示实施例中步骤201中的详细描述,在此不再赘述。
B个同步信号块可以属于同一个同步信号突发集(burst set)。例如,在NR通信系统中定义了同步信号突发集,基于这一通信系统,第一通信设备所发送的B个同步信号块可以属于一个同步信号突发集,第一通信设备可以通过不同发送波束分别发送这些同步信号块从而实现波束扫描。
同步信号块s1和同步信号块s2包括的第一通信设备的标识是相同的,以及包括的接收波束时序信息是相同的。其中,同步信号块s1和同步信号块s2是B个同步信号块中的两个不同的同步信号块,这样对于第二通信设备而言,不论接收到哪个同步信号块,可以唯一确定第一通信设备接收波束时序信息。
402,第二通信设备采用D个接收波束从第一通信设备接收同步信号块。
403,所述第二通信设备根据所述D个接收波束中接收到所述同步信号块的接收波束 确定第二接收波束。
404,所述第二通信设备根据所述第二接收波束确定第二发送波束。
其中,步骤402至步骤404可以参考图2所示实施例中步骤202至步骤204的详细描述,在此不再赘述。两个实施例的区别在于同步信号块中接收波束时序信息所指示的信息不同。
405,所述第二通信设备根据第二发送波束和所述接收波束时序信息确定目标时序位置。
其中,在接收波束时序信息用于指示一个时序位置的情况下,根据步骤401中接收波束的接收方向和时序位置对应关系,可以确定接收波束时序信息指示了一个与该时序位置对应的接收波束的接收方向,第二通信设备可以将这一个时序位置确定为目标时序位置。
在接收波束时序信息用于指示两个或者两个以上的时序位置的情况下,根据步骤401中接收波束的接收方向和时序位置对应关系,第一种可能的情况是接收波束时序信息指示了一个接收波束的接收方向与该两个或者两个以上的时序位置相对应,或者第二种可能的情况是接收波束时序信息指示了至少两个接收波束的接收方向与该两个或者两个以上的时序位置相对应。接下来对这两种可能的情况进行介绍。
针对第一种可能的情况,举例来说,第一通信设备的接收波束时序信息指示时序位置为T1和T2,以及指示的接收波束rx1的接收方向为rx1-D1,也就是说,第一通信设备会采用接收波束rx1分别在T1和T2执行反馈信息的接收,这样第二通信设备可以将T1和T2中的至少一个时序位置确定为目标时序位置。
针对第二种可能的情况,举例来说,如表3所示,第一通信设备的接收波束时序信息指示时序位置为T1、T2、T3、T4和T5,以及指示的接收波束rx1的接收方向为rx1-D1、接收波束rx2的接收方向为rx2-D2、接收波束rx3的接收方向为rx3-D2。第二通信设备根据第二发送波束和接收波束时序信息从中确定出目标时序位置具体是:第二通信设备根据第二发送波束的发送方向和这三个接收波束的接收方向rx1-D1、rx2-D2和rx2-D2,从这三个接收波束的接收方向中确定出与第二发送波束的发送方向的夹角最小的目标接收方向;如果目标接收方向为rx1-D1,则第二通信设备获取与rx1-D1对应的时序位置T1和T2,则第二通信设备可以将T1和T2中的至少一个时序位置确定为目标时序位置;如果目标接收方向为rx2-D2,则第二通信设备可以将时序位置T3确定为目标时序位置。
表3一种可能的接收方向和时序位置对应关系
接收波束的接收方向 时序位置
rx1-D1 T1、T2
rx2-D2 T3
rx3-D3 T4、T5
406,所述第二通信设备采用所述第二发送波束在目标时序位置向所述第一通信设备发送第一反馈信息。
其中,所述第二通信设备采用所述第二发送波束在目标时序位置向所述第一通信设备发送第一反馈信息,这样第二通信设备减少了发送第一反馈信息的次数,进而减少了时频资源的浪费,提高了第一反馈信息的传输效率。
所发送的第一反馈信息包括第二通信设备的标识,以使第一通信设备在接收到第一反 馈信息之后,第一通信设备可以确定完成信号同步和波束对齐的设备为第二通信设备。其中,第二通信设备的标识用于唯一识别该第二通信设备,例如,可以是通信设备的硬件识别码,本申请实施例对第二通信设备的标识的具体形式不做限定。
407,所述第一通信设备采用C个接收波束根据所述时序位置从所述第二通信设备接收第一反馈信息。
408,所述第一通信设备根据所述C个接收波束中接收到所述第一反馈信息的接收波束确定第一接收波束。
409,所述第一通信设备根据所述第一接收波束确定第一发送波束。
其中,步骤407至步骤409可以参考图2所示实施例中步骤206至步骤208的详细描述,在此不再赘述。
在第一通信设备确定第一接收波束和第一发送波束之后,以及结合第一反馈信息中所包括的第二通信设备的标识,第一通信设备可以通过第一接收波束向第二通信设备接收第二信息,还可以通过第一发送波束向第二通信设备发送第一信息。在确定第二接收波束和第二发送波束之后,以及结合同步信号块中所包括的第一通信设备的标识,第二通信设备可以通过第二接收波束向第一通信设备接收第一信息,还可以通过第二发送波束向第一通信设备发送第二信息。
第一信息可以是第二通信设备从第一通信设备接收的数据、控制信息、HARQ反馈信息、参考信号(reference signal)、训练序列(包括但不限于(preamble)、中间码(midamble))或其他信息。第二信息可以是第二通信设备向第一通信设备发送的数据、控制信息、HARQ反馈信息、reference signal、训练序列(包括但不限于preamble、midamble)或其他信息,本申请实施例对第一信息和第二信息不做限定。
基于图3所示的同步信号块的结构示意图,图4所示实施例中的同步信号块同样包括第一通信设备的标识和接收波束时序信息。接收波束时序信息用于指示所述第一通信设备执行反馈信息接收的时序位置和与时序位置对应的接收波束的接收方向。第一通信设备的标识和接收波束时序信息中任意一个的指示方式可以参考图3所示实施例的具体介绍,在此不再赘述。
在图2所示的实施例中,在同步阶段第一通信设备可以确定与第二通信设备传输信息的第一接收波束和第一发送波束,以及第二通信设备也可以确定与第一通信设备传输信息的第二接收波束和第二发送波束。这样较早的完成了第一通信设备和第二通信设备之间波束对齐,且不需要额外的参考信号来实现波束对齐,减少了时频资源的浪费。另外,由于接收波束时序信息还携带了与时序位置对应的接收方向,第二通信设备可以通过这一信息确定出发送第一反馈信息的目标时序位置,减少了时频资源的浪费,提高了第一反馈信息的传输效率,进而提高了发送波束和接收波束的确定效率。
基于图1所示的系统架构图,请参见图5,为本申请实施例提供了另一种波束确定方法。如图5所示,该波束确定方法包括步骤501至步骤509。
501,第一通信设备采用A个发送波束向第二通信设备发送B个同步信号块。
其中,第一通信设备发送的B个同步信号块中的每个同步信号块包括所述第一通信设 备的标识、所述第一通信设备的接收波束时序信息和所述同步信号块的标识,所述接收波束时序信息用于指示所述第一通信设备执行反馈信息接收的时序位置。
在图5所示实施例中,所述B个同步信号块中的第k个同步信号块还包括所述第k个同步信号块的标识,k为小于或等于B的正整数。也就是说,一个同步信号块对应一个同步信号块的标识,不同同步信号块的标识不同。其中,同步信号块的标识还可以用同步信号块的时间索引来描述,本申请实施例对此不做限定。第一通信设备的标识用于唯一识别该第一通信设备,例如,可以是通信设备的硬件识别码,本申请实施例对第一通信设备的标识的具体形式不做限定。
同步信号块s1和同步信号块s2包括的第一通信设备的标识可以是相同的,以及包括的接收波束时序信息可以是相同的,同步信号块s1的标识和同步信号块s2的标识是不同。其中,同步信号块s1和同步信号块s2是B个同步信号块中的两个不同的同步信号块,这样对于第二通信设备而言,不论接收到哪个同步信号块,可以唯一确定第一通信设备接收波束时序信息。
其中,接收波束时序信息所指示的时序位置可以通过在一无线帧中子帧的位置、时隙(slot)的位置、符号(symbol)的位置中的至少一个来表示。具体的指示方式可以参考图2所示实施例中步骤201的详细描述,在此不再赘述。
举例来说,第一通信设备可以通过波束扫描的方式发送B个同步信号块。其中,本申请各个实施例中涉及的波束扫描的方式具体是指采用波束形成算法等方式形成不同方向的波束,再采用该不同方向的波束接收信息或者发送信息,其中,这些不同方向的波束可以共同覆盖360°范围或者共同覆盖指定角度范围。在图5实施例中,第一通信设备可以采用不同方向的发送波束发送B个同步信号块。
在图5所示的实施例中,A为小于或等于B的正整数。所述A个发送波束中的第s个发送波束与所述B个同步信号块中的至少一个同步信号块的标识相对应,s为小于或等于A的正整数。是因为本实施例中需要根据同步信号块的标识来确定发送波束,因此一个发送波束可以发送一个或者多个同步信号块,且一个同步信号块仅能被一个发送波束来发送,这样第一通信设备可以根据一个同步信号块的标识唯一确定出一个发送波束。
在第一种可能的实现方式中,A与B在数值上相等,且一个发送波束唯一对应于一个同步信号块,一个同步信号块唯一对应于一个发送波束,举例来说,A个发送波束包括发送波束tx1、tx2、tx3,B个同步信号块包括同步信号块s1、s2、s3,则可能的方式为:tx1-->s1、tx2-->s2、tx3-->s3。
在第二种可能的实现方式中,A小于B,且一个同步信号块唯一对应于一个发送波束,举例来说,A个发送波束包括发送波束tx1、tx2,B个同步信号块包括同步信号块s1、s2、s3,则可能的方式为:tx1-->s1和s2、tx2-->s3。
B个同步信号块可以属于同一个同步信号突发集(burst set)。例如,在NR通信系统中定义了同步信号突发集,基于这一通信系统,第一通信设备所发送的B个同步信号块可以属于一个同步信号突发集,第一通信设备可以通过不同发送波束分别发送这些同步信号块从而实现波束扫描。
502,第二通信设备采用D个接收波束从第一通信设备接收同步信号块。
503,所述第二通信设备根据所述D个接收波束中接收到所述同步信号块的接收波束确定第二接收波束。
其中,步骤502和步骤503可以参考图2所示实施例中步骤202和步骤203的详细描述,在此不再赘述。两个实施例的区别在于同步信号块所包括的信息不同。
504,所述第二通信设备采用E个发送波束中的每个发送波束在每个时序位置发送一个第一反馈信息。
其中,所述第二通信设备采用E个发送波束根据所述接收波束时序信息向所述第一通信设备发送F个第一反馈信息。其中E和F为正整数。在所述接收波束时序信息指示至少一个时序位置的情况下,所述第二通信设备采用E个发送波束中的每个发送波束在所述至少一个时序位置的每个时序位置发送一个第一反馈信息。每个第一反馈信息包括所述第二通信设备采用所述第二接收波束接收到的同步信号块的标识和该第一反馈信息的标识。不同第一反馈信息的标识是不同的。
可以理解的是,同一个发送波束在时序位置T1发送的第一反馈信息的标识和时序位置T2发送的第一反馈信息的标识是不同的。以及,不同发送波束发送的第一反馈信息的标识是不同的,这样可以实现根据第一反馈信息的标识唯一确定发送该第一反馈信息的发送波束。
举例来说,如果第二通信设备采用3个发送波束来发送第一反馈信息,接收波束时序信息包括4个时序位置,则为了实现步骤504第二通信设备可以在3个时间窗来完成发送第一反馈信息,其中,在每一个时间窗内均可以找到这4个时序位置。3个发送波束分别为:tx1、tx2、tx3,3个时间窗为w1、w2、w3,4个时序位置分别为T1、T2、T3、T4。
表4一种可能的发送方式
发送波束 时间窗 时序位置
tx1 w1 T1、T2、T3、T4
tx2 w2 T1、T2、T3、T4
tx3 w3 T1、T2、T3、T4
一种可能的发送方式请参见表4,具体为:在w1时间窗内,第二通信设备采用tx1在以上4个时序位置分别发送一个第一反馈信息;在w2时间窗内,第二通信设备采用tx2在以上4个时序位置分别发送一个第一反馈信息;在w3时间窗内,第二通信设备采用tx3在以上4个时序位置分别发送一个第一反馈信息。这样实现了每个发送波束在每个时序位置对第一反馈信息的遍历发送。
表5另一种可能的发送方式
时间窗 发送波束与时序位置的对应关系
w1 tx1——T1、tx2——T2、tx3——T3、tx1——T4
w2 tx1——T2、tx2——T3、tx3——T4、tx2——T1
w3 tx1——T3、tx2——T4、tx3——T1、tx3——T2
另一种可能的发送方式请参见表5,具体为:在w1时间窗内,第二通信设备采用tx1在时序位置T1和T4分别发送一个第一反馈信息,采用tx2在时序位置T2发送一个第一反馈信息,采用tx3在时序位置T3发送一个第一反馈信息。对于其他时间窗中发送波束和时 序位置的对应关系可以参见表二。可以看出,通过表二的发送方式也实现了每个发送波束在每个时序位置对第一反馈信息的遍历发送。
以上表4和表5是对步骤504的举例说明,本申请实施例不限定发送波束与时间窗的对应关系,也不限定时间窗的数量,以及不限定发送波束与时序位置的对应关系。
另外,所发送的每个第一反馈信息均包括第二通信设备的标识,以使第一通信设备在接收到第一反馈信息之后,第一通信设备可以确定完成信号同步和波束对齐的设备为第二通信设备。其中,第二通信设备的标识用于唯一识别该第二通信设备,例如,可以是通信设备的硬件识别码,本申请实施例对第二通信设备的标识的具体形式不做限定。
505,所述第一通信设备采用C个接收波束根据所述时序位置从所述第二通信设备接收第一反馈信息。
506,所述第一通信设备根据所述C个接收波束中接收到所述第一反馈信息的接收波束确定第一接收波束。
其中,步骤505和步骤506可以参考图2所示实施例中步骤206和步骤207的详细描述,在此不再赘述。
507,所述第一通信设备根据所述第一反馈信息确定第一发送波束。
其中,由于第一反馈信息包括了第二通信设备采用第二接收波束接收到的同步信号块的标识,以及在第一通信设备中一个同步信号块仅能被一个发送波束来发送,因此第一通信设备可以根据第二通信设备反馈的同步信号块的标识确定发送该同步信号块的发送波束,并将该发送波束确定为第一发送波束。
这样对于第一通信设备而言,通过步骤506确定出第一接收波束和通过步骤507确定出第一发送波束,第一通信设备可以通过第一接收波束向第二通信设备接收第二信息,还可以通过第一发送波束向第二通信设备发送第一信息。
508,所述第一通信设备采用第一发送波束发送第二反馈信息。
其中,所述第一通信设备采用所述第一发送波束向所述第二通信设备发送第二反馈信息。该第二反馈信息包括第一通信设备采用所述第一接收波束接收到的第一反馈信息的标识。以使第二通信设备根据该第二反馈信息确定第二发送波束。
相应地,第二通信设备接收该第二反馈信息。具体实现中,第二通信设备可以采用步骤503确定出的第二接收波束来接收该第二反馈信息。
509,第二通信设备根据第二反馈信息确定第二发送波束。
其中,在第二通信设备接收到第二反馈信息之后,第二通信设备根据所述第一通信设备接收到的所述第一反馈信息的标识确定第二发送波束。由于不同第一反馈信息的标识是不同的,第二通信设备将E个发送波束中发送所述第一通信设备接收到的所述第一反馈信息的发送波束确定为第二发送波束。
这样对于第二通信设备而言,通过步骤503确定出第二接收波束和通过步骤509确定出第二发送波束,第二通信设备可以通过第二接收波束向第一通信设备接收第二信息,还可以通过第二发送波束向第一通信设备发送第一信息。
第一信息可以是第二通信设备从第一通信设备接收的数据、控制信息、HARQ反馈信息、参考信号(reference signal)、训练序列(包括但不限于(preamble)、中间码(midamble)) 或其他信息。第二信息可以是第二通信设备向第一通信设备发送的数据、控制信息、HARQ反馈信息、reference signal、训练序列(包括但不限于preamble、midamble)或其他信息,本申请实施例对第一信息和第二信息不做限定。
基于图3所示的同步信号块的结构示意图,图5所示实施例中的同步信号块同样包括第一通信设备的标识、接收波束时序信息和同步信号块的标识。接收波束时序信息用于指示所述第一通信设备执行反馈信息接收的时序位置。第一通信设备的标识和接收波束时序信息中任意一个的指示方式可以参考图3所示实施例的具体介绍,在此不再赘述。对如何通过同步信号块指示同步信号块的标识可以采用同样的方式来指示,其具体指示方式可以参考指示接收波束时序信息的详细描述,在此不再赘述。
在图5所示的实施例中,在同步阶段第一通信设备可以确定与第二通信设备传输信息的第一接收波束和第一发送波束,以及第二通信设备也可以确定与第一通信设备传输信息的第二接收波束和第二发送波束。这样较早的完成了第一通信设备和第二通信设备之间波束对齐,且不需要额外的参考信号来实现波束对齐,减少了时频资源的浪费。
基于图1所示的系统架构图,请参见图6,为本申请实施例提供了另一种波束确定方法。如图6所示,该波束确定方法包括步骤601至步骤610。
601,第一通信设备采用A个发送波束向第二通信设备发送B个同步信号块。
其中,第一通信设备发送的B个同步信号块中的每个同步信号块包括所述第一通信设备的标识、所述第一通信设备的接收波束时序信息和所述同步信号块的标识,该接收波束时序信息用于指示第一通信设备执行反馈信息接收的时序位置,该接收波束时序信息还用于指示第一通信设备中C个接收波束的接收方向,第i个时序位置与第j个接收波束的接收方向相对应,所述第i个时序位置属于所述至少一个时序位置,所述第j个接收波束属于所述C个接收波束。其中,C为正整数,i为正整数,j为小于或等于C的正整数。可以理解的是,接收波束时序信息中的时序位置是指在一个时间窗的中的位置,该时间窗可以包括接收波束时序位置信息所指示的全部时序位置。例如,该时间窗为一个无线帧,这样第一通信设备可以在无线帧1中采用C个接收波束根据该时序位置来接收第一反馈信息,还可以在另外一个无线帧2中采用C个接收波束根据该时序位置来接收第一反馈信息。本申请实施例不限定第一通信设备用于接收第一反馈信息的时间窗的位置以及时间窗的数量。
一个时间窗内接收波束的接收方向和时序位置对应关系可以参考图2所示实施例中关于表1和表2的详细描述,在此不再赘述。其中,一种可能的对应关系为,一个时序位置唯一对应于一个接收波束的接收方向,一个接收波束的接收方向唯一对应于一个时序位置;或者另一种可能的对应关系为,一个时序位置唯一对应于一个接收波束的接收方向,一个接收波束的接收方向可以对应一个或者多个时序位置。
在图6所示实施例中,所述B个同步信号块中的第k个同步信号块还包括所述第k个同步信号块的标识,其中,k为小于或等于B的正整数。也就是说,一个同步信号块对应一个同步信号块的标识,不同同步信号块的标识不同。其中,同步信号块的标识还可以用同步信号块的时间索引来描述,本申请实施例对此不做限定。第一通信设备的标识用于唯一识别该第一通信设备,例如,可以是通信设备的硬件识别码,本申请实施例对第一通信 设备的标识的具体形式不做限定。
同步信号块s1和同步信号块s2包括的第一通信设备的标识可以是相同的,以及包括的接收波束时序信息可以是相同的,同步信号块s1的标识和同步信号块s2的标识是不同。其中,同步信号块s1和同步信号块s2是B个同步信号块中的两个不同的同步信号块,这样对于第二通信设备而言,不论接收到哪个同步信号块,可以唯一确定第一通信设备接收波束时序信息。
其中,接收波束时序信息所指示的时序位置可以通过在一无线帧中子帧的位置、时隙(slot)的位置、符号(symbol)的位置中的至少一个来表示。具体的指示方式可以参考图2所示实施例中步骤201的详细描述,在此不再赘述。
举例来说,第一通信设备可以通过波束扫描的方式发送B个同步信号块。其中,本申请各个实施例中涉及的波束扫描的方式具体是指采用波束形成算法等方式形成不同方向的波束,再采用该不同方向的波束接收信息或者发送信息,其中,这些不同方向的波束可以共同覆盖360°范围或者共同覆盖指定角度范围。在图4实施例中,第一通信设备可以采用不同方向的发送波束发送B个同步信号块。
在图6所示的实施例中,A与B的大小关系可以参考图5所示实施例中的详细介绍,在此不再赘述。
B个同步信号块可以属于同一个同步信号突发集(burst set)。例如,在NR通信系统中定义了同步信号突发集,基于这一通信系统,第一通信设备所发送的B个同步信号块可以属于一个同步信号突发集,第一通信设备可以通过不同发送波束分别发送这些同步信号块从而实现波束扫描。
602,第二通信设备采用D个接收波束从第一通信设备接收同步信号块。
603,所述第二通信设备根据所述D个接收波束中接收到所述同步信号块的接收波束确定第二接收波束。
其中,步骤602和步骤603可以参考图2所示实施例中步骤202和步骤203的详细描述,在此不再赘述。两个实施例的区别在于同步信号块所包括的信息不同。
604,所述第二通信设备根据E个发送波束和接收波束时序信息确定每个发送波束对应的目标时序位置。
其中,E为正整数。在接收波束时序信息用于指示一个时序位置的情况下,根据步骤601中接收波束的接收方向和时序位置对应关系,可以确定接收波束时序信息指示了一个与该时序位置对应的接收波束的接收方向,第二通信设备可以将这一个时序位置确定为每个发送波束对应的目标时序位置。
在接收波束时序信息用于指示两个或者两个以上的时序位置的情况下,根据步骤601中接收波束的接收方向和时序位置对应关系,第一种可能的情况是接收波束时序信息指示了一个接收波束的接收方向与该两个或者两个以上的时序位置相对应,或者第二种可能的情况是接收波束时序信息指示了至少两个接收波束的接收方向与该两个或者两个以上的时序位置相对应。接下来对这两种可能的情况进行介绍。
针对第一种可能的情况,举例来说,第一通信设备的接收波束时序信息指示时序位置为T1和T2,以及指示的接收波束rx1的接收方向为rx1-D1,也就是说,第一通信设备会 采用接收波束rx1分别在T1和T2执行反馈信息的接收,对于E个发送波束的其中任意一个发送波束tx0而言,这样第二通信设备可以将T1和T2中的至少一个时序位置确定为发送波束tx p对应的目标时序位置,其中,p为正整数,0<p<E。
针对第二种可能的情况下,举例来说,如图4实施例中的表3所示,第一通信设备的接收波束时序信息指示时序位置为T1、T2、T3、T4和T5,以及指示的接收波束rx1的接收方向为rx1-D1、接收波束rx2的接收方向为rx2-D2、接收波束rx3的接收方向为rx3-D2。对于E个发送波束的其中任意一个发送波束tx0而言,第二通信设备根据发送波束tx p和接收波束时序信息从中确定出目标时序位置具体是:第二通信设备根据发送波束tx p的发送方向和这三个接收波束的接收方向rx1-D1、rx2-D2和rx2-D2,从这三个接收波束的接收方向中确定出与发送波束tx p的发送方向的夹角最小的目标接收方向;如果目标接收方向为rx1-D1,则第二通信设备获取与rx1-D1对应的时序位置T1和T2,则第二通信设备可以将T1和T2中的至少一个时序位置确定为发送波束tx p对应的目标时序位置;如果目标接收方向为rx2-D2,则第二通信设备可以将时序位置T3确定为发送波束tx p对应的目标时序位置,其中,p为正整数,0<p<E。
605,所述第二通信设备采用E个发送波束中的每个发送波束在该发送波束对应的目标时序位置发送一个第一反馈信息。
其中,所述第二通信设备采用E个发送波束中的每个发送波束在该发送波束对应的目标时序位置向所述第一通信设备发送第一反馈信息,这样第二通信设备减少了发送第一反馈信息的次数,进而减少了时频资源的浪费,提高了第一反馈信息的传输效率。
在图6所示实施例中,可以看出第二通信设备发送了E个第一反馈信息。其中,每个第一反馈信息包括所述第二通信设备采用所述第二接收波束接收到的同步信号块的标识和该第一反馈信息的标识。不同第一反馈信息的标识是不同的。
另外,所发送的每个第一反馈信息均包括第二通信设备的标识,以使第一通信设备在接收到第一反馈信息之后,第一通信设备可以确定完成信号同步和波束对齐的设备为第二通信设备。其中,第二通信设备的标识用于唯一识别该第二通信设备,例如,可以是通信设备的硬件识别码,本申请实施例对第二通信设备的标识的具体形式不做限定。
606,所述第一通信设备采用C个接收波束根据所述时序位置从所述第二通信设备接收第一反馈信息。
607,所述第一通信设备根据所述C个接收波束中接收到所述第一反馈信息的接收波束确定第一接收波束。
608,所述第一通信设备根据所述第一反馈信息确定第一发送波束。
609,所述第一通信设备采用第一发送波束发送第二反馈信息。
610,第二通信设备根据第二反馈信息确定第二发送波束。
其中,步骤606至步骤610可以参考图5所示实施例中步骤505至步骤509的详细描述,在此不再赘述。
在第一通信设备确定第一接收波束和第一发送波束之后,以及结合第一反馈信息中所包括的第二通信设备的标识,第一通信设备可以通过第一接收波束向第二通信设备接收第二信息,还可以通过第一发送波束向第二通信设备发送第一信息。在确定第二接收波束和 第二发送波束之后,以及结合同步信号块中所包括的第一通信设备的标识,第二通信设备可以通过第二接收波束向第一通信设备接收第一信息,还可以通过第二发送波束向第一通信设备发送第二信息。
第一信息可以是第二通信设备从第一通信设备接收的数据、控制信息、HARQ反馈信息、参考信号(reference signal)、训练序列(包括但不限于(preamble)、中间码(midamble))或其他信息。第二信息可以是第二通信设备向第一通信设备发送的数据、控制信息、HARQ反馈信息、reference signal、训练序列(包括但不限于preamble、midamble)或其他信息,本申请实施例对第一信息和第二信息不做限定。
在图6所示的实施例中,在同步阶段第一通信设备可以确定与第二通信设备传输信息的第一接收波束和第一发送波束,以及第二通信设备也可以确定与第一通信设备传输信息的第二接收波束和第二发送波束。这样较早的完成了第一通信设备和第二通信设备之间波束对齐,且不需要额外的参考信号来实现波束对齐,减少了时频资源的浪费。另外,由于接收波束时序信息还携带了与时序位置对应的接收方向,第二通信设备可以通过这一信息确定出发送第一反馈信息的目标时序位置,减少了时频资源的浪费,提高了第一反馈信息的传输效率,进而提高了发送波束和接收波束的确定效率。
请参见图7,图7是本申请实施例提供的一种通信设备的结构示意图。该通信设备可以为第一通信设备,用于实现图图2至图6的实施例。如图7所示,该第一通信设备700包括发送单元701、接收单元702和处理单元703。
发送单元701,用于采用A个发送波束向第二通信设备发送B个同步信号块,所述B个同步信号块中的每个同步信号块包括所述第一通信设备的标识和所述第一通信设备的接收波束时序信息,所述接收波束时序信息用于指示所述第一通信设备执行反馈信息接收的时序位置,所述A和B均为正整数;
接收单元702,用于采用C个接收波束根据所述时序位置从所述第二通信设备接收第一反馈信息,所述C为正整数;
处理单元703,用于根据所述C个接收波束中接收到所述第一反馈信息的接收波束确定第一接收波束;
所述处理单元703,还用于根据所述第一接收波束或所述第一反馈信息确定第一发送波束,所述第一发送波束属于所述A个发送波束;
所述发送单元701,还用于采用所述第一发送波束向所述第二通信设备发送第一信息;
所述接收单元702,还用于采用所述第一接收波束从所述第二通信设备接收第二信息。
可选的,所述接收波束时序信息指示至少一个时序位置,第i个时序位置与第j个接收波束的接收方向相对应,所述第i个时序位置属于所述至少一个时序位置,所述第j个接收波束属于所述C个接收波束,所述i和j均为正整数。
可选的,所述接收单元702在采用C个接收波束根据所述时序位置从所述第二通信设备接收第一反馈信息方面,具体用于:在所述第i个时序位置采用与所述第i个时序位置对应的所述第j个接收波束从所述第二通信设备接收第一反馈信息。
可选的,所述接收波束时序信息还用于指示所述第一通信设备中至少一个接收波束的 接收方向,所述至少一个接收波束属于所述C个接收波束。
可选的,在多个接收波束接收到所述第一反馈信息的情况下,所述第一接收波束为所述多个接收波束中接收到的信号强度最大的接收波束,所述多个波束属于所述C个接收波束。
可选的,所述A为小于或等于所述B的正整数。
可选的,所述B个同步信号块中的第k个同步信号块还包括所述第k个同步信号块的标识;所述第一反馈信息还包括所述第二通信设备接收到的同步信号块的标识,所述A个发送波束中的第s个发送波束与所述B个同步信号块中的至少一个同步信号块的标识相对应;所述第一发送波束是根据所述第一反馈信息包括的同步信号块的标识的确定的,所述k和s均为正整数。
可选的,所述第一反馈信息还包括该第一反馈信息的标识;
所述发送单元701,还用于采用所述第一发送波束向所述第二通信设备发送第二反馈信息,所述第二反馈信息包括所述第一通信设备采用所述第一接收波束接收到的所述第一反馈信息的标识。
可选的,所述同步信号块包括主同步信号、辅同步信号和物理广播信道PBCH;所述第一通信设备的标识通过所述主同步信号、所述辅同步信号或所述PBCH来指示;所述波束时序信息通过所述主同步信号、所述辅同步信号或所述PBCH来指示。
可选的,所述第一反馈信息包括所述第二通信设备的标识。
可以理解的,关于图7的第一通信设备包括的功能块的具体实现方式及相应的有益效果,可参考前述图2至图6的实施例中第一通信设备的具体介绍,这里不赘述。
在本申请实施例中,发送单元701可以是发送器或者发送电路,接收单元702可以是接收器或者接收电路。发送单元701和接收单元702还可以是该会话管理网元的通信接口。
请参见图8,图8是本申请实施例提供的一种通信设备的结构示意图。该通信设备可以为第二通信设备,用于实现图2至图6的实施例。如图8所示,该第二通信设备800包括接收单元801、处理单元802和发送单元803。
在第一种可能的实现方案中,该第二通信设备用于实现图2至图4的实施例,具体包括:
接收单元801,用于采用D个接收波束从第一通信设备接收同步信号块,所述同步信号块包括所述第一通信设备的标识和所述第一通信设备的接收波束时序信息,所述接收波束时序信息用于指示所述第一通信设备执行反馈信息接收的时序位置,所述D为正整数;
处理单元802,用于根据所述D个接收波束中接收到所述同步信号块的接收波束确定第二接收波束;
所述处理单元802,还用于根据所述第二接收波束确定第二发送波束;
发送单元803,用于采用所述第二发送波束根据所述接收波束时序信息向所述第一通信设备发送第一反馈信息;
所述发送单元803,还用于采用所述第二接收波束从所述第一通信设备接收第一信息;
所述接收单元801,还用于采用所述第二发送波束向所述第一通信设备发送第二信息。
可选的,所述接收波束时序信息指示至少一个时序位置;所述发送单元803在采用所述第二发送波束根据所述接收波束时序信息向所述第一通信设备发送第一反馈信息方面具体用于:采用所述第二发送波束在所述至少一个时序位置的每个时序位置向所述第一通信设备发送第一反馈信息。
可选的,在所述接收波束时序信息指示至少一个时序位置的情况下,所述接收波束时序信息还用于指示所述第一通信设备中至少一个接收波束的接收方向,第i个时序位置与第j个接收波束的接收方向相对应,所述第i个时序位置属于所述至少一个时序位置,所述第j个接收波束属于所述至少一个接收波束,所述i和j均为正整数。
可选的,所述发送单元803在采用所述第二发送波束根据所述接收波束时序信息向所述第一通信设备发送第一反馈信息方面具体用于:采用所述第二发送波束在目标时序位置发送第一反馈信息,所述目标时序位置是根据所述第二发送波束和所述至少一个接收波束的接收方向从所述至少一个时序位置中确定的。
可选的,在多个接收波束接收到同步信号块的情况下,所述第二接收波束为所述多个接收波束中接收到的信号强度最大的接收波束,所述多个接收波束属于所述D个接收波束。
可选的,所述同步信号块还包括所述同步信号块的标识;所述第一反馈信息还包括所述第二通信设备采用所述第二接收波束接收到的同步信号块的标识。
可选的,所述同步信号块包括主同步信号、辅同步信号和物理广播信道PBCH;所述第一通信设备的标识通过所述主同步信号、所述辅同步信号或所述PBCH来指示;所述波束时序信息通过所述主同步信号、所述辅同步信号或所述PBCH来指示。
在第二种可能的实现方案中,该第二通信设备用于实现图5和图6的实施例,具体包括:
接收单元801,用于采用D个接收波束从第一通信设备接收同步信号块,所述同步信号块包括所述第一通信设备的标识、所述第一通信设备的接收波束时序信息和所述同步信号块的标识,所述接收波束时序信息用于指示所述第一通信设备执行反馈信息接收的时序位置,所述D为正整数;
处理单元802,用于根据所述D个接收波束中接收到所述同步信号块的接收波束确定第二接收波束;
发送单元803,用于采用E个发送波束根据所述接收波束时序信息向所述第一通信设备发送F个第一反馈信息,所述F个第一反馈信息中的每个第一反馈信息包括所述第二通信设备采用所述第二接收波束接收到的同步信号块的标识和该第一反馈信息的标识,所述E和F为正整数;
所述接收单元801,还用于从所述第一通信设备接收第二反馈信息,所述第二反馈信息包括所述第一通信设备接收到的所述第一反馈信息的标识;
所述处理单元802,还用于根据所述第一通信设备接收到的所述第一反馈信息的标识确定第二发送波束,所述第二发送波束为所述E个发送波束中发送所述第一通信设备接收到的所述第一反馈信息的发送波束;
所述发送单元803,还用于采用所述第二接收波束从所述第一通信设备接收第一信息;
所述接收单元801,还用于采用所述第二发送波束向所述第一通信设备发送第二信息。
可选的,所述接收波束时序信息指示至少一个时序位置;所述发送单元803在采用E个发送波束根据所述接收波束时序信息向所述第一通信设备发送F个第一反馈信息方面具体用于:采用E个发送波束中的每个发送波束在所述至少一个时序位置的每个时序位置发送一个第一反馈信息。
可选的,在所述接收波束时序信息指示至少一个时序位置的情况下,所述接收波束时序信息还用于指示所述第一通信设备中至少一个接收波束的接收方向,第i个时序位置与第j个接收波束的接收方向相对应,所述第i个时序位置属于所述至少一个时序位置,所述第j个接收波束属于所述至少一个接收波束,所述i和j均为正整数。
可选的,所述发送单元803在采用E个发送波束根据所述接收波束时序信息向所述第一通信设备发送F个第一反馈信息方面具体用于:采用第m个发送波束在所述第m个发送波束对应的目标时序位置上发送一个第一反馈信息,所述第m个发送波束为所述E个发送波束中的任意一个发送波束,所述第m个发送波束对应的目标时序位置是根据所述第m个发送波束和所述至少一个接收波束的接收方向从所述至少一个时序位置中确定的,所述m为正整数。
可选的,在多个接收波束接收到同步信号块的情况下,所述第二接收波束为所述多个接收波束中接收到的信号强度最大的接收波束,所述多个接收波束属于所述D个接收波束。
可选的,所述同步信号块包括主同步信号、辅同步信号和物理广播信道PBCH;所述第一通信设备的标识通过所述主同步信号、所述辅同步信号或所述PBCH来指示;所述波束时序信息通过所述主同步信号、所述辅同步信号或所述PBCH来指示。
可以理解的,关于图8的通信设备包括的功能块的具体实现方式及相应的有益效果,可参考前述图4或图5的实施例的具体介绍,这里不赘述。
在本专利申请中,发送单元803可以是发送器或者发送电路,接收单元801可以是接收器或者接收电路。发送单元803和接收单元801还可以是该会话管理网元的通信接口。
上述图7、图8所示实施例中的通信设备可以以图9所示的通信设备900实现。如图9所示,为本申请实施例提供了另一种通信设备的结构示意图,图9所示的通信设备900包括:处理器901和收发器902,所述收发器902用于支持通信设备900与其他通信设备之间的信息传输,例如实现图7所示实施例中发送单元701、接收单元702的功能,又如实现图8所示实施例中接收单元801、发送单元803的功能。处理器901和收发器902通信连接,例如通过总线相连。所述通信设备900还可以包括存储器903。存储器903用于存储供通信设备900执行的程序代码和数据,处理器901用于执行存储器903中存储的应用程序代码,以实现图2至图6所示任一实施例提供的通信设备的动作。
需要说明的是,实际应用中通信设备可以包括一个或者多个处理器,该通信设备900的结构并不构成对本申请实施例的限定。
处理器901可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP),硬件芯片或者其任意组合。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑 (generic array logic,GAL)或其任意组合。
存储器903可以包括易失性存储器(volatile memory),例如随机存取存储器(random access memory,RAM);存储器903也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器903还可以包括上述种类的存储器的组合。
在本申请实施例中还提供了一种计算机存储介质,可以用于存储图9所示实施例中所述通信设备所用的计算机软件指令,其包含用于执行上述实施例中为通信设备所设计的程序。该存储介质包括但不限于快闪存储器、硬盘、固态硬盘。
在本申请实施例中还提供了一种计算机程序产品,该计算机产品被计算设备运行时,可以执行上述图9实施例中为通信设备所设计的通信方法。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选的还包括没有列出的步骤或单元,或可选的还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
本领域普通技术人员可以理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本申请较佳实施例而已,当然不能以此来限定本申请之权利范围,因此依本申请权利要求所作的等同变化,仍属本申请所涵盖的范围。

Claims (44)

  1. 一种波束确定方法,其特征在于,包括:
    第一通信设备采用A个发送波束向第二通信设备发送B个同步信号块,所述B个同步信号块中的每个同步信号块包括所述第一通信设备的标识和所述第一通信设备的接收波束时序信息,所述接收波束时序信息用于指示所述第一通信设备执行反馈信息接收的时序位置,所述A和B均为正整数;
    所述第一通信设备采用C个接收波束根据所述时序位置从所述第二通信设备接收第一反馈信息,所述C为正整数;
    所述第一通信设备根据所述C个接收波束中接收到所述第一反馈信息的接收波束确定第一接收波束;
    所述第一通信设备根据所述第一接收波束或所述第一反馈信息确定第一发送波束,所述第一发送波束属于所述A个发送波束;
    所述第一通信设备采用所述第一发送波束向所述第二通信设备发送第一信息;
    所述第一通信设备采用所述第一接收波束从所述第二通信设备接收第二信息。
  2. 根据权利要求1所述的方法,其特征在于,所述接收波束时序信息指示至少一个时序位置,第i个时序位置与第j个接收波束的接收方向相对应,所述第i个时序位置属于所述至少一个时序位置,所述第j个接收波束属于所述C个接收波束,所述i和j均为正整数。
  3. 根据权利要求2所述的方法,其特征在于,所述第一通信设备采用C个接收波束根据所述时序位置从所述第二通信设备接收第一反馈信息,包括:
    所述第一通信设备在所述第i个时序位置采用与所述第i个时序位置对应的所述第j个接收波束从所述第二通信设备接收第一反馈信息。
  4. 根据权利要求2或3所述的方法,其特征在于,所述接收波束时序信息还用于指示所述第一通信设备中至少一个接收波束的接收方向,所述至少一个接收波束属于所述C个接收波束。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,在多个接收波束接收到所述第一反馈信息的情况下,所述第一接收波束为所述多个接收波束中接收到的信号强度最大的接收波束,所述多个波束属于所述C个接收波束。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述A小于或等于所述B。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述B个同步信号块中的第k个同步信号块还包括所述第k个同步信号块的标识;所述第一反馈信息还包括所述第二通信设备接收到的同步信号块的标识,所述A个发送波束中的第s个发送波束与所述B个同步信号块中的至少一个同步信号块的标识相对应;所述第一发送波束是根据所述第一反馈信息包括的同步信号块的标识的确定的,所述k和s均为正整数。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述第一反馈信息还包括该第一反馈信息的标识;
    所述方法还包括:
    所述第一通信设备采用所述第一发送波束向所述第二通信设备发送第二反馈信息,所 述第二反馈信息包括所述第一通信设备采用所述第一接收波束接收到的所述第一反馈信息的标识。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述同步信号块包括主同步信号、辅同步信号和物理广播信道PBCH;所述第一通信设备的标识通过所述主同步信号、所述辅同步信号或所述PBCH来指示;所述波束时序信息通过所述主同步信号、所述辅同步信号或所述PBCH来指示。
  10. 一种波束确定方法,其特征在于,包括:
    第二通信设备采用D个接收波束从第一通信设备接收同步信号块,所述同步信号块包括所述第一通信设备的标识和所述第一通信设备的接收波束时序信息,所述接收波束时序信息用于指示所述第一通信设备执行反馈信息接收的时序位置,所述D为正整数;
    所述第二通信设备根据所述D个接收波束中接收到所述同步信号块的接收波束确定第二接收波束;
    所述第二通信设备根据所述第二接收波束确定第二发送波束;
    所述第二通信设备采用所述第二发送波束根据所述接收波束时序信息向所述第一通信设备发送第一反馈信息;
    所述第二通信设备采用所述第二接收波束从所述第一通信设备接收第一信息;
    所述第二通信设备采用所述第二发送波束向所述第一通信设备发送第二信息。
  11. 根据权利要求10所述的方法,其特征在于,所述接收波束时序信息指示至少一个时序位置;
    所述第二通信设备采用所述第二发送波束根据所述接收波束时序信息向所述第一通信设备发送第一反馈信息,包括:
    所述第二通信设备采用所述第二发送波束在所述至少一个时序位置的每个时序位置向所述第一通信设备发送第一反馈信息。
  12. 根据权利要求10所述的方法,其特征在于,所述接收波束时序信息指示至少一个时序位置,所述接收波束时序信息还用于指示所述第一通信设备中至少一个接收波束的接收方向,第i个时序位置与第j个接收波束的接收方向相对应,所述第i个时序位置属于所述至少一个时序位置,所述第j个接收波束属于所述至少一个接收波束,所述i和j均为正整数。
  13. 根据权利要求12所述的方法,其特征在于,所述第二通信设备采用所述第二发送波束根据所述接收波束时序信息向所述第一通信设备发送第一反馈信息,包括:
    所述第二通信设备采用所述第二发送波束在目标时序位置发送第一反馈信息,所述目标时序位置是根据所述第二发送波束和所述至少一个接收波束的接收方向从所述至少一个时序位置中确定的。
  14. 根据权利要求10-13任一项所述的方法,其特征在于,在多个接收波束接收到同步信号块的情况下,所述第二接收波束为所述多个接收波束中接收到的信号强度最大的接收波束,所述多个接收波束属于所述D个接收波束。
  15. 根据权利要求10-14任一项所述的方法,其特征在于,所述同步信号块还包括所述同步信号块的标识;所述第一反馈信息还包括所述第二通信设备采用所述第二接收波束 接收到的同步信号块的标识。
  16. 根据权利要求10-15任一项所述的方法,其特征在于,所述同步信号块包括主同步信号、辅同步信号和物理广播信道PBCH;所述第一通信设备的标识通过所述主同步信号、所述辅同步信号或所述PBCH来指示;所述波束时序信息通过所述主同步信号、所述辅同步信号或所述PBCH来指示。
  17. 一种波束确定方法,其特征在于,包括:
    第二通信设备采用D个接收波束从第一通信设备接收同步信号块,所述同步信号块包括所述第一通信设备的标识、所述第一通信设备的接收波束时序信息和所述同步信号块的标识,所述接收波束时序信息用于指示所述第一通信设备执行反馈信息接收的时序位置,所述D为正整数;
    所述第二通信设备根据所述D个接收波束中接收到所述同步信号块的接收波束确定第二接收波束;
    所述第二通信设备采用E个发送波束根据所述接收波束时序信息向所述第一通信设备发送F个第一反馈信息,所述F个第一反馈信息中的每个第一反馈信息包括所述第二通信设备采用所述第二接收波束接收到的同步信号块的标识和该第一反馈信息的标识,所述E和F为正整数;
    所述第二通信设备从所述第一通信设备接收第二反馈信息,所述第二反馈信息包括所述第一通信设备接收到的所述第一反馈信息的标识;
    所述第二通信设备根据所述第一通信设备接收到的所述第一反馈信息的标识确定第二发送波束,所述第二发送波束为所述E个发送波束中发送所述第一通信设备接收到的所述第一反馈信息的发送波束;
    所述第二通信设备采用所述第二接收波束从所述第一通信设备接收第一信息;
    所述第二通信设备采用所述第二发送波束向所述第一通信设备发送第二信息。
  18. 根据权利要求17所述的方法,其特征在于,所述接收波束时序信息指示至少一个时序位置;
    所述第二通信设备采用E个发送波束根据所述接收波束时序信息向所述第一通信设备发送F个第一反馈信息,包括:
    所述第二通信设备采用E个发送波束中的每个发送波束在所述至少一个时序位置的每个时序位置发送一个第一反馈信息。
  19. 根据权利要求17所述的方法,其特征在于,所述接收波束时序信息指示至少一个时序位置,所述接收波束时序信息还用于指示所述第一通信设备中至少一个接收波束的接收方向,第i个时序位置与第j个接收波束的接收方向相对应,所述第i个时序位置属于所述至少一个时序位置,所述第j个接收波束属于所述至少一个接收波束,所述i和j均为正整数。
  20. 根据权利要求19所述的方法,其特征在于,所述第二通信设备采用E个发送波束根据所述接收波束时序信息向所述第一通信设备发送F个第一反馈信息,包括:
    所述第二通信设备采用第m个发送波束在所述第m个发送波束对应的目标时序位置上发送一个第一反馈信息,所述第m个发送波束为所述E个发送波束中的任意一个发送波束, 所述第m个发送波束对应的目标时序位置是根据所述第m个发送波束和所述至少一个接收波束的接收方向从所述至少一个时序位置中确定的,所述m为正整数。
  21. 根据权利要求17-20任一项所述的方法,其特征在于,在多个接收波束接收到同步信号块的情况下,所述第二接收波束为所述多个接收波束中接收到的信号强度最大的接收波束,所述多个接收波束属于所述D个接收波束。
  22. 根据权利要求17-21任一项所述的方法,其特征在于,所述同步信号块包括主同步信号、辅同步信号和物理广播信道PBCH;所述第一通信设备的标识通过所述主同步信号、所述辅同步信号或所述PBCH来指示;所述波束时序信息通过所述主同步信号、所述辅同步信号或所述PBCH来指示。
  23. 一种通信设备,其特征在于,所述通信设备为第一通信设备,所述第一通信设备包括:
    发送单元,用于采用A个发送波束向第二通信设备发送B个同步信号块,所述B个同步信号块中的每个同步信号块包括所述第一通信设备的标识和所述第一通信设备的接收波束时序信息,所述接收波束时序信息用于指示所述第一通信设备执行反馈信息接收的时序位置,所述A和B均为正整数;
    接收单元,用于采用C个接收波束根据所述时序位置从所述第二通信设备接收第一反馈信息,所述C为正整数;
    处理单元,用于根据所述C个接收波束中接收到所述第一反馈信息的接收波束确定第一接收波束;
    所述处理单元,还用于根据所述第一接收波束或所述第一反馈信息确定第一发送波束,所述第一发送波束属于所述A个发送波束;
    所述发送单元,还用于采用所述第一发送波束向所述第二通信设备发送第一信息;
    所述接收单元,还用于采用所述第一接收波束从所述第二通信设备接收第二信息。
  24. 根据权利要求23所述的通信设备,其特征在于,所述接收波束时序信息指示至少一个时序位置,第i个时序位置与第j个接收波束的接收方向相对应,所述第i个时序位置属于所述至少一个时序位置,所述第j个接收波束属于所述C个接收波束,所述i和j均为正整数。
  25. 根据权利要求24所述的通信设备,其特征在于,所述接收单元在采用C个接收波束根据所述时序位置从所述第二通信设备接收第一反馈信息方面,具体用于:在所述第i个时序位置采用与所述第i个时序位置对应的所述第j个接收波束从所述第二通信设备接收第一反馈信息。
  26. 根据权利要求24或25所述的通信设备,其特征在于,所述接收波束时序信息还用于指示所述第一通信设备中至少一个接收波束的接收方向,所述至少一个接收波束属于所述C个接收波束。
  27. 根据权利要求23-26任一项所述的通信设备,其特征在于,在多个接收波束接收到所述第一反馈信息的情况下,所述第一接收波束为所述多个接收波束中接收到的信号强度最大的接收波束,所述多个波束属于所述C个接收波束。
  28. 根据权利要求23-27任一项所述的通信设备,其特征在于,所述A小于或等于所 述B。
  29. 根据权利要求23-28任一项所述的通信设备,其特征在于,所述B个同步信号块中的第k个同步信号块还包括所述第k个同步信号块的标识;所述第一反馈信息还包括所述第二通信设备接收到的同步信号块的标识,所述A个发送波束中的第s个发送波束与所述B个同步信号块中的至少一个同步信号块的标识相对应;所述第一发送波束是根据所述第一反馈信息包括的同步信号块的标识的确定的,所述k和s均为正整数。
  30. 根据权利要求23-29任一项所述的通信设备,其特征在于,所述第一反馈信息还包括该第一反馈信息的标识;
    所述发送单元,还用于采用所述第一发送波束向所述第二通信设备发送第二反馈信息,所述第二反馈信息包括所述第一通信设备采用所述第一接收波束接收到的所述第一反馈信息的标识。
  31. 根据权利要求23-30任一项所述的通信设备,其特征在于,所述同步信号块包括主同步信号、辅同步信号和物理广播信道PBCH;所述第一通信设备的标识通过所述主同步信号、所述辅同步信号或所述PBCH来指示;所述波束时序信息通过所述主同步信号、所述辅同步信号或所述PBCH来指示。
  32. 一种通信设备,其特征在于,所述通信设备为第二通信设备,所述第二通信设备包括:
    接收单元,用于采用D个接收波束从第一通信设备接收同步信号块,所述同步信号块包括所述第一通信设备的标识和所述第一通信设备的接收波束时序信息,所述接收波束时序信息用于指示所述第一通信设备执行反馈信息接收的时序位置,所述D为正整数;
    处理单元,用于根据所述D个接收波束中接收到所述同步信号块的接收波束确定第二接收波束;
    所述处理单元,还用于根据所述第二接收波束确定第二发送波束;
    发送单元,用于采用所述第二发送波束根据所述接收波束时序信息向所述第一通信设备发送第一反馈信息;
    所述发送单元,还用于采用所述第二接收波束从所述第一通信设备接收第一信息;
    所述接收单元,还用于采用所述第二发送波束向所述第一通信设备发送第二信息。
  33. 根据权利要求32所述的通信设备,其特征在于,所述接收波束时序信息指示至少一个时序位置;
    所述发送单元在采用所述第二发送波束根据所述接收波束时序信息向所述第一通信设备发送第一反馈信息方面具体用于:采用所述第二发送波束在所述至少一个时序位置的每个时序位置向所述第一通信设备发送第一反馈信息。
  34. 根据权利要求32所述的通信设备,其特征在于,所述接收波束时序信息指示至少一个时序位置,所述接收波束时序信息还用于指示所述第一通信设备中至少一个接收波束的接收方向,第i个时序位置与第j个接收波束的接收方向相对应,所述第i个时序位置属于所述至少一个时序位置,所述第j个接收波束属于所述至少一个接收波束,所述i和j均为正整数。
  35. 根据权利要求34所述的通信设备,其特征在于,所述发送单元在采用所述第二发 送波束根据所述接收波束时序信息向所述第一通信设备发送第一反馈信息方面具体用于:采用所述第二发送波束在目标时序位置发送第一反馈信息,所述目标时序位置是根据所述第二发送波束和所述至少一个接收波束的接收方向从所述至少一个时序位置中确定的。
  36. 根据权利要求32-35任一项所述的通信设备,其特征在于,在多个接收波束接收到同步信号块的情况下,所述第二接收波束为所述多个接收波束中接收到的信号强度最大的接收波束,所述多个接收波束属于所述D个接收波束。
  37. 根据权利要求32-36任一项所述的通信设备,其特征在于,所述同步信号块还包括所述同步信号块的标识;所述第一反馈信息还包括所述第二通信设备采用所述第二接收波束接收到的同步信号块的标识。
  38. 根据权利要求32-37任一项所述的通信设备,其特征在于,所述同步信号块包括主同步信号、辅同步信号和物理广播信道PBCH;所述第一通信设备的标识通过所述主同步信号、所述辅同步信号或所述PBCH来指示;所述波束时序信息通过所述主同步信号、所述辅同步信号或所述PBCH来指示。
  39. 一种通信设备,其特征在于,所述通信设备为第二通信设备,所述第二通信设备包括:
    接收单元,用于采用D个接收波束从第一通信设备接收同步信号块,所述同步信号块包括所述第一通信设备的标识、所述第一通信设备的接收波束时序信息和所述同步信号块的标识,所述接收波束时序信息用于指示所述第一通信设备执行反馈信息接收的时序位置,所述D为正整数;
    处理单元,用于根据所述D个接收波束中接收到所述同步信号块的接收波束确定第二接收波束;
    发送单元,用于采用E个发送波束根据所述接收波束时序信息向所述第一通信设备发送F个第一反馈信息,所述F个第一反馈信息中的每个第一反馈信息包括所述第二通信设备采用所述第二接收波束接收到的同步信号块的标识和该第一反馈信息的标识,所述E和F为正整数;
    所述接收单元,还用于从所述第一通信设备接收第二反馈信息,所述第二反馈信息包括所述第一通信设备接收到的所述第一反馈信息的标识;
    所述处理单元,还用于根据所述第一通信设备接收到的所述第一反馈信息的标识确定第二发送波束,所述第二发送波束为所述E个发送波束中发送所述第一通信设备接收到的所述第一反馈信息的发送波束;
    所述发送单元,还用于采用所述第二接收波束从所述第一通信设备接收第一信息;
    所述接收单元,还用于采用所述第二发送波束向所述第一通信设备发送第二信息。
  40. 根据权利要求39所述的通信设备,其特征在于,所述接收波束时序信息指示至少一个时序位置;
    所述发送单元在采用E个发送波束根据所述接收波束时序信息向所述第一通信设备发送F个第一反馈信息方面具体用于:采用E个发送波束中的每个发送波束在所述至少一个时序位置的每个时序位置发送一个第一反馈信息。
  41. 根据权利要求39所述的通信设备,其特征在于,所述接收波束时序信息指示至少 一个时序位置,所述接收波束时序信息还用于指示所述第一通信设备中至少一个接收波束的接收方向,第i个时序位置与第j个接收波束的接收方向相对应,所述第i个时序位置属于所述至少一个时序位置,所述第j个接收波束属于所述至少一个接收波束,所述i和j均为正整数。
  42. 根据权利要求41所述的通信设备,其特征在于,所述发送单元在采用E个发送波束根据所述接收波束时序信息向所述第一通信设备发送F个第一反馈信息方面具体用于:采用第m个发送波束在所述第m个发送波束对应的目标时序位置上发送一个第一反馈信息,所述第m个发送波束为所述E个发送波束中的任意一个发送波束,所述第m个发送波束对应的目标时序位置是根据所述第m个发送波束和所述至少一个接收波束的接收方向从所述至少一个时序位置中确定的,所述m为正整数。
  43. 根据权利要求39-42任一项所述的通信设备,其特征在于,在多个接收波束接收到同步信号块的情况下,所述第二接收波束为所述多个接收波束中接收到的信号强度最大的接收波束,所述多个接收波束属于所述D个接收波束。
  44. 根据权利要求39-43任一项所述的通信设备,其特征在于,所述同步信号块包括主同步信号、辅同步信号和物理广播信道PBCH;所述第一通信设备的标识通过所述主同步信号、所述辅同步信号或所述PBCH来指示;所述波束时序信息通过所述主同步信号、所述辅同步信号或所述PBCH来指示。
PCT/CN2019/071612 2018-02-11 2019-01-14 波束确定方法及第一通信设备、第二通信设备 WO2019154024A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19750582.9A EP3737125A4 (en) 2018-02-11 2019-01-14 METHOD OF RADIATION DETERMINATION AND FIRST COMMUNICATION DEVICE AND SECOND COMMUNICATION DEVICE
US16/989,297 US11277841B2 (en) 2018-02-11 2020-08-10 Beam determining method, first communications device, and second communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810140679.2 2018-02-11
CN201810140679.2A CN110149612B (zh) 2018-02-11 2018-02-11 波束确定方法及第一通信设备、第二通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/989,297 Continuation US11277841B2 (en) 2018-02-11 2020-08-10 Beam determining method, first communications device, and second communications device

Publications (1)

Publication Number Publication Date
WO2019154024A1 true WO2019154024A1 (zh) 2019-08-15

Family

ID=67549276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071612 WO2019154024A1 (zh) 2018-02-11 2019-01-14 波束确定方法及第一通信设备、第二通信设备

Country Status (4)

Country Link
US (1) US11277841B2 (zh)
EP (1) EP3737125A4 (zh)
CN (1) CN110149612B (zh)
WO (1) WO2019154024A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112543443A (zh) * 2019-09-20 2021-03-23 华为技术有限公司 通信方法和通信装置
CN112714393B (zh) * 2019-10-09 2022-06-10 中移物联网有限公司 一种自适应锁定站点相对位置的方法以及无线接入点
CN112748425A (zh) * 2019-10-31 2021-05-04 华为技术有限公司 感知方法及装置
CN113746606B (zh) * 2020-05-27 2022-12-02 华为技术有限公司 一种通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163542A1 (ja) * 2015-04-09 2016-10-13 株式会社Nttドコモ ビーム選択方法、移動局及び基地局
CN106358216A (zh) * 2015-07-17 2017-01-25 北京信威通信技术股份有限公司 一种多波束随机接入方法
CN106900075A (zh) * 2016-05-13 2017-06-27 中国移动通信有限公司研究院 一种随机接入方法、装置、相关设备和系统
CN107645322A (zh) * 2016-07-21 2018-01-30 上海诺基亚贝尔股份有限公司 基于波束赋形的随机接入的方法和设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7697626B2 (en) * 2006-01-13 2010-04-13 Interdigital Technology Corporation Method and apparatus for selecting a beam combination in a MIMO wireless communication system
EP2211483B1 (en) * 2009-01-23 2016-05-25 Sony Corporation Iterative beam selection method with receiver and transmitter diversity
KR101944796B1 (ko) * 2012-01-17 2019-04-17 삼성전자주식회사 빔포밍 기반 무선통신 시스템의 상향링크 빔 트래킹 방법 및 장치
CN103634895B (zh) * 2013-11-13 2016-08-17 深圳大学 快速波束合成系统及其源端各发送天线的载波同步方法
KR102261051B1 (ko) * 2014-05-14 2021-06-04 삼성전자주식회사 무선통신 시스템에서 하이브리드 자동 재전송 요청 피드백 방법 및 장치
US9866299B2 (en) * 2014-09-24 2018-01-09 Mediatek Inc. Synchronization in a beamforming system
WO2017044155A1 (en) * 2015-09-10 2017-03-16 Intel IP Corporation Random access procedure for beam based cell-less operation in 5g rat
US10090594B2 (en) * 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
JP2020505814A (ja) * 2017-01-06 2020-02-20 コンヴィーダ ワイヤレス, エルエルシー Nrにおける効率的なアクセスと送信の機構
CN109428700B (zh) * 2017-08-29 2020-09-18 华为技术有限公司 一种发送信号的方法及设备
EP3474459A1 (en) * 2017-10-18 2019-04-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Receiver, transmitter, system and method employing space-delay precoding
KR20190099841A (ko) * 2018-02-20 2019-08-28 삼성전자주식회사 무선 통신 시스템에서 제어 채널을 전송하는 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163542A1 (ja) * 2015-04-09 2016-10-13 株式会社Nttドコモ ビーム選択方法、移動局及び基地局
CN106358216A (zh) * 2015-07-17 2017-01-25 北京信威通信技术股份有限公司 一种多波束随机接入方法
CN106900075A (zh) * 2016-05-13 2017-06-27 中国移动通信有限公司研究院 一种随机接入方法、装置、相关设备和系统
CN107645322A (zh) * 2016-07-21 2018-01-30 上海诺基亚贝尔股份有限公司 基于波束赋形的随机接入的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3737125A4 *

Also Published As

Publication number Publication date
CN110149612B (zh) 2021-07-09
EP3737125A1 (en) 2020-11-11
US20200383098A1 (en) 2020-12-03
US11277841B2 (en) 2022-03-15
CN110149612A (zh) 2019-08-20
EP3737125A4 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
US10554344B2 (en) Feedback method for hybrid automatic repeat request and an apparatus thereof
WO2019154024A1 (zh) 波束确定方法及第一通信设备、第二通信设备
WO2021012265A1 (zh) 用于传输数据的方法和终端设备
CA3061633A1 (en) Beam configuration method and apparatus
CN110167035B (zh) 波束管理方法、终端、网络设备以及存储介质
WO2022033274A1 (zh) 通信方法、用户设备、网络设备及计算机可读存储介质
CN108292980A (zh) 业务传输的方法和装置
CN113490278B (zh) 下行信号传输的方法和设备
US20200322942A1 (en) Method for use in transmitting signal, terminal device, and network device
TW201801553A (zh) 傳輸訊號的方法、網路設備和終端設備
WO2018133173A1 (zh) 数据传输方法及装置
WO2020015494A1 (zh) 一种数据传输方法、网络设备、通信设备及存储介质
WO2019033396A1 (zh) 无线通信方法和设备
CN114765506A (zh) 辅链路的psfch传输方法及装置、计算机可读存储介质
WO2020206581A1 (zh) 传输信号的方法、终端设备和网络设备
CN110169185A (zh) 传输数据的方法和装置
EP3768010B1 (en) Uplink control information transmission method and device
CN114424643A (zh) 一种上行传输方法及装置
WO2020087528A1 (zh) 无线通信方法、终端设备和网络设备
US20220173870A1 (en) Communication Method and Apparatus
US11039471B2 (en) Method and device for random access
US11212839B2 (en) Method for random access and terminal device
US11856539B2 (en) Method and device for transmitting downlink control information
WO2018018602A1 (en) Methods, terminals, and base stations for end-to-end communication
WO2021056557A1 (zh) Harq反馈的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019750582

Country of ref document: EP

Effective date: 20200806