WO2020119535A1 - 光学引擎及投影设备 - Google Patents

光学引擎及投影设备 Download PDF

Info

Publication number
WO2020119535A1
WO2020119535A1 PCT/CN2019/122868 CN2019122868W WO2020119535A1 WO 2020119535 A1 WO2020119535 A1 WO 2020119535A1 CN 2019122868 W CN2019122868 W CN 2019122868W WO 2020119535 A1 WO2020119535 A1 WO 2020119535A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
galvanometer
bracket
fixed
damping pad
Prior art date
Application number
PCT/CN2019/122868
Other languages
English (en)
French (fr)
Inventor
侯乃文
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811511425.3A external-priority patent/CN111308837B/zh
Priority claimed from CN201922007541.8U external-priority patent/CN211741714U/zh
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2020119535A1 publication Critical patent/WO2020119535A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam

Definitions

  • the present application relates to the field of projection equipment, in particular to an optical machine engine and projection equipment.
  • projection equipment includes LCD (Liquid Crystal Display) projectors, DLP (Digital Light Processing) projectors, etc.
  • the core device in DLP projection equipment is DMD (Digital Micromirror Device, digital micromirror device), and its surface is composed of thousands of miniature mirrors.
  • the DMD chip receives the drive of the drive signal corresponding to the image signal, modulates the light beam irradiated to its surface, and then projects it into the lens for imaging. It can be simply considered that each micro-mirror on the surface of the DMD can correspond to a pixel of the image frame.
  • the resolution of the image to be displayed will not match the resolution of the DMD chip in the projection device.
  • the current screen to be displayed by the projection device is 4K resolution (4096x2160 pixel resolution), but the resolution of the DMD chip may be 1080P (1K), or 2K.
  • a galvanometer is needed.
  • the galvanometer is a flat lens structure between the DMD chip and the projection lens, which can be driven to perform high-speed deflection vibration.
  • FIG. 1-1 shows a schematic structural diagram of a galvanometer.
  • the galvanometer assembly includes a flip fixing bracket 200 and a driving unit 300, and a light-transmitting lens 400 provided on the flip fixing bracket 200.
  • the driving unit 300 is used to drive the reversing fixing bracket 200 to reciprocate, so as to drive the translucent lens 400 to reciprocate.
  • the entire structure of the galvanometer assembly is fixed in the projection display device through the fixing bracket 100, specifically, it is fixedly connected to the inside of the housing of the projection display device. Since the galvanometer assembly is located between the DMD chip and the projection lens, the DMD chip is the core device of the optical machine part, the projection lens and the optical machine are connected, and the galvanometer assembly can be specifically fixed inside the optical machine housing.
  • the implementation scheme of the 4K resolution DLP projector is a DMD chip plus a galvanometer.
  • the working principle of the galvanometer is to superimpose the lower original ecological resolution image beam through its high-frequency vibration.
  • the sharpness of the content of the image has been improved to achieve the improvement of the visual resolution.
  • the original ecological resolution of the DMD chip is 1920X1080, which does not achieve the 4K display effect.
  • the light-transmitting flat lens in the middle of the galvanometer will swing along the two axes at high frequency, as shown in Figure 1-2, so that one pixel point 01 reaches four different positions, Therefore, each pixel 01 will be projected to four different positions in an instant, but what the human eye perceives is the increase in the amount of image information and the improvement in clarity, which in turn achieves the effect of four times the visual resolution and the 4K display effect.
  • the galvanometer needs continuous vibration, for example, the galvanometer vibration frequency is 240Hz (hertz, hertz, frequency unit), the galvanometer transparent glass vibration angle is 0.225 degrees, the subjective experience of the galvanometer single drive noise is not great, but will After the galvanometer assembly is assembled into the housing of the projection display device, the galvanometer assembly is fixed to the device casing, so that the high-frequency vibration of the galvanometer itself will induce higher-order vibrations to the case where it is fixed, resulting in equipment noise The problem.
  • the galvanometer vibration frequency is 240Hz (hertz, hertz, frequency unit)
  • the galvanometer transparent glass vibration angle is 0.225 degrees
  • the embodiments of the present application provide an optical machine engine and a projection device, which can effectively reduce or eliminate the stress vibration of the entire projection device caused by the vibration of the galvanometer assembly without affecting the image quality, solve the noise problem, and have a simple structure. low cost.
  • an embodiment of the present application provides an optomechanical engine, including a main housing, the main housing is formed with a receiving cavity, and the content of the receiving cavity is provided with:
  • the light valve is used to modulate the illumination beam and project the modulated illumination beam into the projection lens for imaging;
  • the galvanometer is located in the light path between the light valve and the projection lens,
  • the galvanometer includes a galvanometer assembly, and the galvanometer assembly is connected and fixed to the main housing through a fixing bracket;
  • the fixing bracket is provided with a first mounting hole, and the first mounting hole is provided with a first vibration-damping pad, and the screw passes through the vibration-damping pad and is fixedly connected with the main housing;
  • the first vibration-damping pad isolates the first screw from the fixing bracket, and the first vibration-damping pad is in a non-compressed state.
  • the first mounting hole is provided with a first vibration damping pad.
  • the first vibration damping pad When the bracket is fixed to the mounting shell, the first vibration damping pad The pad isolates the first screw from the bracket.
  • the first vibration-damping pad is in a natural state.
  • the vibration of the galvanometer assembly is transmitted from the bracket to the mounting shell, it will be absorbed by the first vibration-damping pad, thereby blocking the transmission of vibration and avoiding vibration.
  • the vibration of the mirror assembly is transmitted to the entire projection device.
  • the first damping pad in a natural state is not compressed by external force, and the vibration transmission path is cut to some extent.
  • the present application provides a projection device, which includes a device main case, and the device main case includes:
  • Light source used to provide illumination beam
  • Optical machine used to modulate the illumination beam and project the modulated illumination beam into the projection lens
  • Projection lens used to receive the modulated illumination beam and image
  • a galvanometer is provided in the optical path of the modulated illumination beam projected into the projection lens, and the galvanometer displaces the transmitted beam by vibration,
  • the galvanometer includes a galvanometer holder and a light-transmitting lens.
  • the light-transmitting lens is connected to the galvanometer holder.
  • the galvanometer holder is fixed to the main casing of the device through a fixing bracket to install and fix the galvanometer.
  • the galvanometer bracket and the fixed bracket, as well as the fixed bracket and the main casing of the device are all movably connected.
  • connection between the galvanometer and the fixed bracket is set to be a movable connection state with a gap, and the fixed bracket and the main casing of the optical machine are also movable, which is not rigid
  • the connection method can reduce the transmission efficiency of vibration to a certain extent, or cut off the transmission path of vibration.
  • the movable connection between the galvanometer and the fixed bracket can eliminate or cut off the vibration transmission path between the galvanometer and the fixed bracket.
  • the movable connection between the fixed bracket and the main casing of the device can eliminate or cut off the vibration transmission path between the fixed bracket and the main casing of the optical machine.
  • Figure 1-1 is a schematic structural diagram of a related-art galvanometer assembly
  • Figure 1-2 is a schematic diagram of the movement of pixels when the galvanometer assembly of the related art works
  • FIG. 2 is a partial enlarged view of a schematic cross-sectional view of an installation of a galvanometer assembly inside a projection device of the related art
  • FIG. 3-1 is a schematic structural diagram of a laser projection device according to an embodiment of this application.
  • 3-2 is a schematic diagram of the decomposition structure of the bracket with the galvanometer assembly and the mounting shell of the optomechanical engine of the embodiment of the present application;
  • FIG. 4 is a schematic cross-sectional view of an optical machine engine according to an embodiment of the present application after installation of a bracket with a galvanometer assembly and an installation housing;
  • FIG. 5 is a partially enlarged view of a schematic cross-sectional view of an optical machine engine according to an embodiment of the present application after mounting a bracket with a galvanometer assembly and an installation housing;
  • FIG. 6 is one of the schematic structural diagrams of the bracket of the optical engine according to the embodiment of the present application.
  • FIG. 7 is a second schematic structural diagram of a bracket of an optical engine according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a galvanometer assembly and a second screw of an optical machine engine according to an embodiment of the present application;
  • FIG. 9 is a schematic structural diagram of a galvanometer assembly of an optical machine engine according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of the installation of the support of the optomechanical engine and the galvanometer assembly according to the embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another laser projection device according to an embodiment of the present application.
  • 12-1 is a schematic structural diagram of another optical engine according to an embodiment of the present application.
  • Figure 12-2 is a schematic diagram of the exploded structure in Figure 12-1;
  • FIG. 13 is a schematic structural diagram of another galvanometer according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a vibration damping pad according to an embodiment of the present application.
  • 310-light source 320-optical machine, 330-projection lens; 311-light entrance; 322-light valve;
  • 1-galvanometer assembly 11-second mounting hole; 12-second positioning hole; 110-galvanometer lens; 120-galvanometer holder; 13-first screw; 14-first flexible pad; 15-second screw ; 16- second flexible pad;
  • first and second are used only for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more.
  • connection should be understood in a broad sense, for example, it can be fixed connection or detachable Connect, or connect integrally.
  • connection should be understood in specific situations.
  • a solution of the related art is to reduce the vibration frequency of the galvanometer assembly during operation, but this will affect the superimposition effect of the image beams and cannot guarantee the presentation of high-resolution effect images. And it only reduces the working frequency of the galvanometer assembly, does not change the transmission of vibration, and the vibration reduction effect is not obvious.
  • FIG. 2 there is provided a structure in which a galvanometer assembly is installed inside a projection device, and a fixing bracket 02 to which a galvanometer assembly lens (not shown in the figure) is fixed is fixed on an optical machine main casing 03 of the projection device,
  • the specific fixing method is to fix the shaft main body 03 with the shoulder screw 04.
  • a vibration damping pad 05 is provided between the shoulder screw 04 and the optomechanical main casing 03.
  • the vibration damping pad 05 can suppress the transmission of the vibration of the fixed bracket 02 to which the galvanometer assembly is fixed to the optomechanical main unit to a certain extent. ⁇ 03 ⁇ Shell 03.
  • the vibration damping pad 05 can be made of rubber and has elasticity.
  • the damping pad 05 is compressed to achieve the purpose of tightening and fixing.
  • the vibration damping pad 05 is compressed up and down.
  • the amounts a and b of the vibration damping pad 05 compressed up and down in the figure may be 0.3 mm, for example.
  • This interference fit is also a common technical means.
  • the applicant found in the implementation that even if the above vibration mirror assembly fixing solution with vibration damping pads is adopted, the vibration generated during the operation of the vibration mirror assembly will still be transmitted from the fixing bracket 02 to the optomechanical casing 03, and further transmitted to the entire Projection equipment can easily cause coercive vibration to the entire projection equipment, which in turn generates noise.
  • the laser projection device includes a light source 310, an optical machine 320, and a projection lens 330.
  • the above three parts are also called optical engine parts.
  • the circuit board (not shown in the figure), sound box (not shown in the figure) and other components that are also provided inside the laser projection device they are wrapped by the whole casing (not shown in the figure), and the optical engine part propagates along the light beam The direction is connected and fixed in sequence, keeping the internal sealed optical environment.
  • the light source 310 is used to provide an illuminating light beam.
  • the light source 310 may be composed of a laser assembly and a fluorescent wheel.
  • the laser assembly emits blue laser light
  • the fluorescent wheel is used to generate light beams of colors other than blue primary light.
  • the light source 310 may also be composed of a three-color laser, including a red laser component, a blue laser component, and a green laser component.
  • the core component of the optical machine 320 is the DMD chip and the portion of the illumination light path before the DMD chip.
  • the DMD chip projects the illumination beam incident on its surface after being modulated by the image display signal into the projection lens 330.
  • the galvanometer assembly is provided inside the optical machine 320.
  • Fig. 3-2 exemplarily shows a disassembly schematic diagram of the optomechanical housing.
  • the galvanometer assembly is fixed inside the optomechanical housing and close to the connection end with the projection lens.
  • FIG. 4 exemplarily shows a cross-sectional view of the connection of the galvanometer assembly to the optomechanical housing.
  • an optomechanical engine provided by an embodiment of the present application includes a galvanometer assembly 1, a fixed bracket 2, and a mounting housing 3.
  • the mounting housing 3 is specifically an optomechanical housing.
  • the galvanometer assembly 1 is fixed on the fixing bracket 2, and the fixing bracket 2 is provided with a first mounting hole 21, and the first screw 4 passes through the first mounting hole 21 and is fixed to the mounting housing 3 to fix the galvanometer assembly 1
  • the fixing bracket 2 is fixed on the mounting shell 3, and the first mounting hole 21 is provided with a first vibration-damping pad 5.
  • the first vibration-damping pad 5 fixes the first screw 4 It is isolated from the fixing bracket 2 and the first vibration-damping pad 5 is in a natural state after the fixing is completed, that is, the first vibration-damping pad 5 is not compressed and no interference fit occurs.
  • the optical engine provided in the embodiment of the present application includes a galvanometer assembly 1, a fixing bracket 2 and an installation housing 3, and the galvanometer assembly 1 is fixed on the fixing bracket 2.
  • the fixing bracket 2 is provided with a first mounting hole 21, and the first screw 4 is fixed to the mounting housing 3 through the first mounting hole 21 to fix the galvanometer
  • the fixing bracket 2 of the assembly 1 is fixed on the mounting shell 3.
  • the first mounting hole 21 is provided with a first vibration-damping pad 5.
  • the vibration of the galvanometer assembly 1 When the vibration of the galvanometer assembly 1 is transmitted from the fixing bracket 2 to the mounting housing 3, it will be absorbed by the first vibration-damping pad 5, thereby blocking the transmission of vibration, which can avoid the galvanometer assembly 1 Vibration is transmitted to the entire projection device. And, in this example, when the fixing bracket 2 is fixed to the mounting housing 3, the first vibration-damping pad 5 is in a natural state and is not in an interference fit.
  • the first damping pad 5 in a natural state is not compressed by external force, but it can make it absorb vibration while it is not easy to further transmit this vibration because of the "tighter" fixing relationship between the fixing bracket and the housing , That is, by arranging the vibration-damping pad between the fixing screw and the fixing body, the vibration-damping pad is not compressed and filled between the fixing screw and the fixing body, but the vibration-damping pad is naturally stretched to a certain extent Cut off the path of vibration transmission. It will not cause the fixed body to be forced to vibrate, so that when the galvanometer is working normally, high-frequency vibration, this vibration will not be transmitted to the optical machine shell to a lesser extent, reducing or eliminating the optical machine shell The body's stress vibration reduces the vibration level of the entire laser projection device.
  • the technical solution in this example does not need to reduce the vibration frequency of the galvanometer assembly 1 to ensure the picture quality of the projection device, and on the other hand, the first vibration-damping pad 5 will not be compressed to cause the vibration-damping effect
  • the reduction can effectively eliminate the stress vibration of the entire projection device caused by the vibration of the galvanometer assembly 1 and solve the noise problem.
  • the structure is simple and easy to implement, and the cost is low.
  • the damping effect of the first damping pad 5 generally depends on the material's elastic deformation characteristics.
  • an elastic member may be in three states, namely, being stretched and compressed And the natural state, in which the shutdown engine in the embodiment of the present application is not stretched, and being compressed will inevitably cause the deformable variable of the elastic member to become smaller, which in turn will reduce the vibration of the first vibration-damping pad 5 The effect is reduced; the elastic member in the natural state is not affected by external forces, so it can ensure the vibration reduction effect and prevent the vibration of the galvanometer assembly 1 from being transmitted to the entire projection device.
  • the first vibration-damping pad 5 is not compressed after the galvanometer assembly 1 is installed, it can be achieved by controlling the distance between the place where the first screw 4 will compress the first vibration-damping pad 5 and the mounting housing 3.
  • the first end of the first screw 4 has a fastening cap 41, and the second end of the first screw 4 passes through the first mounting hole 21 and is fixed to the mounting housing 3 when the fixing bracket 2
  • the distance between the fastening cap 41 of the first screw 4 and the mounting shell 3 is the first distance m
  • the height of the first vibration-damping pad 5 along the extending direction of the first mounting hole 21 is The second distance n
  • the first distance m is greater than the second distance n.
  • the first damping pad 5 between the first screw 4 and the mounting housing 3 has a sufficient accommodation gap, and the first damping pad 5 It will not be pressed by the fastening cap 41 of the first screw 4, thereby ensuring the vibration-damping effect of the first vibration-damping pad 5.
  • the first screw 4 may be a screw of various specifications, such as a full-thread screw or a shoulder screw as shown in FIG. 5.
  • the full thread screw needs to estimate the degree of tightening during installation, which is not easy to operate, and may not be firmly fixed with the mounting shell 3; and due to the structural characteristics of the shoulder screw, you can know the last when it is not installed The distance that can be reserved after installation, and then no need to estimate the degree of tightening during installation, only need to tighten to ensure firmness. Therefore, the first screw 4 is preferably a shoulder screw.
  • the distance between the fastening cap 41 of the first screw 4 and the mounting housing 3 is the first distance m
  • the first vibration-damping pad 5 is installed along the first
  • the height of the hole 21 in the extending direction is the second distance n
  • the first distance m is greater than the second distance n
  • a clearance range is obtained in the specific implementation: the lower edge of the fastening cap 41 of the first screw 4 and the first
  • the distance c of the upper edge of a damping pad 5 is 0.2 mm
  • the distance d of the lower edge of the first damping pad 5 from the outer surface of the mounting housing 3 is 0.2 mm. That is, the difference between the first distance m and the second distance n is 0.4 mm.
  • the number of the first mounting holes 21 may be multiple, correspondingly, the first vibration-damping pads 5 also correspond to Set to multiple to ensure vibration reduction effect.
  • the fixing bracket 2 is provided with a first positioning hole 22,
  • the mounting housing 3 is provided with a first positioning post 31 corresponding to the first positioning hole 22.
  • the first positioning post 31 extends into the first positioning hole 22 correspondingly to position the fixing bracket 2 and the relative position of the mounting housing 3.
  • the hard contact between the first positioning holes 22 and the first positioning posts 31 may also transmit the vibration of the galvanometer assembly 1 from the fixing bracket 2 to the mounting housing 3. Therefore, in order to avoid the above problems, as shown in FIGS. 3, 6 and 7, a second vibration-damping pad 6 is installed in the first positioning hole 22. Furthermore, the second vibration-damping pad 6 can block the transmission of vibration at the joint of the first positioning hole 22 of the fixing bracket 2 and the first positioning post 31 of the mounting housing 3.
  • first positioning post 31 on the mounting housing 3 may be chamfered to facilitate cooperation with the first positioning hole 22.
  • first positioning holes 22 and first positioning posts 31 may be chamfered to facilitate cooperation with the first positioning hole 22.
  • first positioning holes 22 and first positioning posts 31 may be chamfered to facilitate cooperation with the first positioning hole 22.
  • first positioning holes 22 and first positioning posts 31 may be a plurality of first positioning holes 22 and first positioning posts 31 corresponding to each other to ensure a stable connection.
  • second damping pads 6 there are also a plurality of second damping pads 6.
  • the galvanometer assembly 1 in order to install the galvanometer assembly 1 on the fixing bracket 2, the galvanometer assembly 1 is provided with a second mounting hole 11, and the second screw 7 passes through the second mounting hole 11 and The fixing bracket 2 is fixed to fix the galvanometer assembly 1 on the fixing bracket 2.
  • the vibration of the galvanometer assembly 1 will be transmitted to the fixed bracket 2 through the contact surface with the fixed bracket 2.
  • the second mounting hole 11 is provided with Second damping pad 6.
  • the second vibration-damping pad 6 can reduce the transmission of vibration from the galvanometer assembly 1 to the fixing bracket 2 through the contact of the second screw 7 and the second mounting hole 11.
  • the second mounting hole 11 and the second screw 7 may be multiple, for example, as shown in FIGS. 8 and 9, the second mounting hole 11 is symmetrically arranged on both sides of the galvanometer assembly 1 It can balance the force of the galvanometer assembly 1 and install it firmly.
  • the fixing bracket 2 is provided with a fixing post 23 corresponding to the second mounting hole 11, and a screw hole 231 is opened in the fixing post 23. In this way, the fixing post 23 is provided with a threaded hole 231.
  • the fixing post 23 cooperates to extend into the second mounting hole 11, and the second screw 7 and the screw hole 231 in the fixing post 23 Tighten together to fix the galvanometer assembly 1 on the fixing bracket 2.
  • the second vibration-damping pad 6 is in contact with the outer wall of the fixed column 23, which can not only reduce the vibration transmission of the galvanometer assembly 1, but also protect the second vibration-damping pad 6 from being damaged by the second screw 7.
  • the galvanometer assembly 1 is provided with a second positioning hole 12, and the fixed bracket 2 is provided corresponding to the second positioning hole 12 There is a second positioning post 24.
  • the second positioning post 24 cooperates to extend into the second positioning hole 12 to position the relative position of the galvanometer assembly 1 and the fixing bracket 2.
  • the second positioning post 24 and the second positioning hole 12 are hard-connected.
  • the galvanometer assembly 1 During the vibration of the galvanometer assembly 1, the galvanometer assembly 1 The vibration of will be transmitted to the fixed bracket 2 through the contact part of the galvanometer assembly 1 and the fixed bracket 2.
  • the second positioning hole 12 is provided with a second vibration damping pad 6. The second damping pad 6 can further reduce the vibration of the galvanometer assembly 1 from being transmitted to the fixing bracket 2 through the second positioning post 24 and the second positioning hole 12.
  • the shapes of the first vibration-damping pad 5, the second vibration-damping pad 6, the second vibration-damping pad 6 and the second vibration-damping pad 6 may be in various forms such as a cylindrical shape, a cross-sectional I-shape or a cross-sectional T-shape, etc.
  • the cylindrical shape or the cross-section T shape cannot cover the upper and lower sides of the orifice or only one side of the orifice, so the vibration damping effect will also be affected.
  • the first vibration-damping pad 5, the second vibration-damping pad 6, the second vibration-damping pad 6 and the second vibration-damping pad 6 are I-shaped in cross section, and have a through hole in the middle.
  • the top and bottom of the I-shape can completely cover the upper and lower opening surfaces of the protected hole, reducing vibration transmission between the galvanometer assembly 1 and the fixed bracket 2 and between the fixed bracket 2 and the mounting housing 3.
  • the upper and lower sides of the I-shape protrude from the surface of the hole, it can also prevent the other components on the mounting housing 3 from directly contacting the fixing bracket 2 and causing friction during installation.
  • the first shock absorbing pad 5, the second shock absorbing pad 6, the second shock absorbing pad 6 and the second shock absorbing pad 6 are provided with through holes in the middle to facilitate the passage of screws or positioning posts to achieve positioning or fixing.
  • the materials of the first vibration-damping pad 5, the second vibration-damping pad 6, the second vibration-damping pad 6, and the second vibration-damping pad 6 can be many kinds, such as silicone, rubber, etc.
  • the rubber material cost is low and the same Under the external force, the deformation is large, and the external force can be quickly restored to the original state after removing the external force, which can play a good role in reducing vibration. Therefore, in a specific implementation, the first vibration-damping pad 5, the second vibration-damping pad 6, the second vibration-damping pad 6, and the second vibration-damping pad 6 are made of rubber material.
  • FIG. 11 shows a partial structural schematic diagram of the laser projection device.
  • the main casing 3 of the optical machine is connected to the projection lens 330, and the light inlet 311 of the optical machine is connected to the light source.
  • the illumination beam emitted from the light source enters the optical lens inside the optical machine through the light inlet 311.
  • the galvanometer assembly 1 is located inside the main casing 3 of the optical machine, specifically, in the light path between the light valve and the projection lens.
  • the light valve is provided at the bottom of the housing, and a prism 321 is provided above the light valve.
  • the light beam modulated by the light valve is incident on the galvanometer assembly 1 through the prism 321, and is transmitted through the galvanometer assembly 1, and finally enters Into the projection lens 300.
  • the galvanometer assembly includes a galvanometer lens 110 and a galvanometer holder 120 for fixing the lens.
  • the galvanometer assembly is fastened to the fixing bracket 2 by screws.
  • FIGS. 12-1 and 12-2 exemplarily provide structural diagrams of an optical engine.
  • FIG. 12-1 and FIG. 12-2 are respectively a schematic structural view and a disassembly schematic view of the optomechanical part in the example of FIG. 11 described above.
  • the optical engine may include:
  • the opto-mechanical main casing 3 is formed with an accommodating cavity, and the accommodating cavity is provided with:
  • the light valve 322 specifically a digital micromirror device DMD chip, is used to modulate the image signal of the illumination beam to form a modulated beam.
  • the galvanometer assembly 1 is arranged in the optical path between the digital micromirror device and the imaging mirror group, and is used to periodically move at least two positions when driven by electricity.
  • the modulated light beam passing through the galvanometer assembly 1 is sequentially misaligned and enters the projection lens .
  • the galvanometer assembly 1 is fixed on the main casing 3 of the optical machine through a fixing bracket 2.
  • the galvanometer assembly 1 and the fixed bracket 2 are non-rigidly connected, and/or, the fixed bracket 2 and the main machine housing 3 are not rigidly connected.
  • the galvanometer assembly 1 includes a galvanometer holder 120 and a light-transmitting lens 110 and a lens driving structure mounted on the galvanometer holder 120.
  • the galvanometer assembly 1 further includes four first screws 13 and four first flexible pads 14, and the four first screws 13 respectively pass through the four first flexible pads 14. It should be noted that the above four numbers are only specific implementations, and are not limited to the above numbers.
  • the galvanometer bracket 120 is connected to the fixed bracket 2 through the above-mentioned plurality of first screws and first flexible pads.
  • the lens drive structure converts the electrical signal into vibration, which drives the light-transmitting lens 110 to oscillate at high frequencies along the axis, projecting one pixel in the image reflected from the DMD to two or more Locations.
  • the lens driving junction can be assembled on the galvanometer holder 120, and also drives the galvanometer holder 120 to vibrate.
  • the galvanometer transmits the vibration to the galvanometer bracket through screws.
  • the first screw 13 in the galvanometer assembly 1 connects the galvanometer bracket 120 and the fixed bracket 2, and the first flexible pad 14 separates the first screw 13 from the fixed bracket 2, which can weaken the first screw
  • the transmission of 13 pairs of vibrations that is, the galvanometer assembly 1 can attenuate the vibration frequency transmitted from the galvanometer to the fixed bracket 2, thereby reducing the noise generated by a part of the vibration.
  • the first screw 13 may be a shoulder screw.
  • the first flexible pad 14 includes a tubular structure and two ring structures respectively extending from both ends of the tubular structure. As shown in the cross-sectional view shown in FIG. 5, the shape is “I”.
  • the galvanometer bracket 120 has four second mounting holes 11, the tubular structures of the four first flexible pads 14 are correspondingly located in the four second mounting holes 11, and the two ring-shaped structures are respectively located in the galvanometer bracket 120 On both sides.
  • FIG. 4 is a schematic structural diagram of the first flexible pad in FIG. 3.
  • the first flexible pad 14 includes a tubular structure 141 and two ring-shaped structures 142 and 143 respectively extending from both ends of the tubular structure 141.
  • the first screw 13 includes a first screw and a screw head at one end of the first screw, specifically, a shoulder screw structure, wherein the first screw is located in a tubular structure, and the screw head and the ring structure There is a gap between them.
  • the first screw of the first screw 13 passes through the tubular structure of the first flexible pad 14, and there is a gap between the screw head of the first screw 13 and the ring structure 1252, that is, a non-rigid connection.
  • the galvanometer holder 120 does not directly contact the first screw 13.
  • the first flexible pad may also have other shapes, which is not limited in the embodiments of the present application. In the above connection method, the first flexible pad 14 obstructs most of the transmission of vibration, but the first flexible pad 14 cannot completely block the transmission of vibration, the vibration of the galvanometer is transmitted to the first screw 13, and the first screw 13 will vibrate The first flexible pad 14 is transmitted, and the first flexible pad 14 transmits the vibration to the fixed bracket 2 again.
  • the manufacturing tolerance of the first flexible pad 14 is not high, there may be a slight difference in the compression amount of each machine, and the consistency of the noise level of the whole machine is poor. Therefore, a gap can be provided between the galvanometer assembly 1 and the fixing bracket 2, which completely blocks the transmission of vibration.
  • the gap between the screw head of the first screw 13 and the ring-shaped structure may be 0.1 mm, and the gap of 0.1 mm can not only leave a certain space between the galvanometer assembly 1 and the fixing bracket 2 but also because the space is too large As a result, the connection is not stable enough, and the gap of 0.1mm can ensure that the optical index of the galvanometer is inclined by 1 degree, and the secondary vibration induced by the galvanometer vibration is completely eliminated without affecting the image quality, thereby improving the overall noise level.
  • the gap can also be set to other widths, which is not limited in the embodiments of the present application.
  • the material of the first flexible pad 14 includes rubber.
  • Rubber is a highly elastic polymer material. The viscoelastic properties of rubber make it have good vibration damping properties.
  • the vibration generated by the galvanometer holder 120 is reduced when passing through the first flexible pad 14 made of rubber, so that the vibration transmitted to the fixed holder 2 is reduced. Therefore, it has the effect of reducing vibration and reducing noise.
  • the material of the first flexible pad 14 may also be other materials with good vibration damping effects, which are not limited in the embodiments of the present application.
  • the fixing bracket 2 is connected to the main casing of the optomechanical machine through screws and flexible pads. Specifically, the fixing bracket 2 passes through four second screws 15 and four second flexible pads 16, and the four second screws 15 pass through the four second flexible pads 16 and the fixing bracket 2 respectively, and are connected to the main casing of the optical machine connection.
  • the galvanometer assembly 1 is connected to the main casing of the optical machine through a fixing bracket 2 to fix the galvanometer assembly 1 inside the casing.
  • the galvanometer holder transmits the vibration to the inside of the housing through screws, and the vibration frequency is gradually doubled during the transmission process, and the entire housing generates a large noise during the vibration .
  • the first screw 13 and the first flexible pad 14 are first used to attenuate a part of the vibration transmitted from the galvanometer assembly 1 to the fixed bracket 2, and then the connection portion of the fixed bracket 2 and the housing is also provided to reduce the vibration The transferred second screw 15 and the second flexible pad 16.
  • the second flexible pad 16 is in contact with the second screw 15 to avoid direct contact between the second screw and the fixing bracket 2, which may hinder the transmission of vibration.
  • the second screw 15 may be a shoulder screw.
  • the second flexible pad 16 includes a tubular structure and two ring structures respectively extending from both ends of the tubular structure; the fixing bracket 2 has four first mounting holes 21 and four second flexible pads 16
  • the tubular structures are located in one-to-one correspondence in the four first mounting holes 21, and the two ring-shaped structures are located on both sides of the fixing bracket 2, respectively.
  • the second flexible pad 16 has the same structure as the first flexible pad 14 in FIG. 14, and also includes a tubular structure through which the stud can pass, and two ring-shaped structures stuck at both ends of the second through hole.
  • the second screw includes a second screw and a screw head located at one end of the second screw.
  • the second screw is located in the tubular structure with a gap between the screw head and the ring structure.
  • the second screw 15 connects the fixing bracket 2 and the housing, the second screw passes through the tubular structure of the second flexible pad 16 located in the first mounting hole 21, and there is a gap between the screw head of the second screw 15 and the ring structure, So that the second screw 15 does not directly contact the fixing bracket 2, thereby reducing the transmission of vibration.
  • the number of the first mounting holes 21 may be four, and each of the first mounting holes 21 is sleeved with a second flexible pad 16 and connected with a second screw 15.
  • the fixing bracket 2 and the housing are provided with a gap, which completely blocks the transmission of vibration.
  • the gap between the screw head of the second screw 15 and the ring structure may be 0.1 mm, or may be set to other widths, which is not limited herein in the embodiments of the present application.
  • the material of the second flexible pad 16 includes rubber.
  • the function of the second flexible pad 16 is to weaken the vibration transmitted from the fixed bracket 2 to the housing. Therefore, the second flexible pad 16 can also be made of rubber with good vibration damping performance.
  • the material of the second flexible pad 16 may also be other materials with good vibration damping effects, which are not limited in the embodiments of the present application.
  • the first layer 14 and the second layer 16 are used to block the transmission of vibration.
  • the gap between the screw and the flexible pad is used for the gap between the fixed bracket 2 and the housing.
  • the second layer of blocking is performed, so that the vibration of the galvanometer cannot be transmitted to other components in the housing, thereby reducing the noise generated by the vibration and improving the user experience.
  • the laser projection device and the optical engine provided in the embodiments of the present application, wherein the optical engine housing is formed with an accommodating cavity, and the accommodating cavity is provided with: an illumination component for providing an illumination beam; a digital micromirror device, It is used to modulate the image signal of the illumination beam to form a modulated beam; a galvanometer, which is arranged in the optical path between the digital micromirror device and the projection lens, is used to periodically move multiple positions by electric drive.
  • the modulated light beam behind the mirror is sequentially misaligned into the projection lens, and the galvanometer is fixed to the housing by a fixing bracket, wherein the connection between the galvanometer assembly and the fixing bracket is set to a non-rigid connection, but has a movable gap Connected state, and the flexible pad or vibration damping pad is not compressed to fill the gap, but the flexible pad is in a natural extension state, so that there is a gap between the galvanometer assembly and the fixed bracket, presenting a movable connection state, and, The fixed bracket and the main casing of the optical machine are also movably connected.
  • the fixed bracket and the main casing of the optical machine are connected by screws and a flexible pad (or vibration damping pad), and the flexible pad is not compressed and filled.
  • the gap, but the flexible pad is in a natural extension state, so that there is a gap between the galvanometer assembly and the fixed bracket, showing a movable connection state, so that the vibration transmission path from the galvanometer assembly to the fixed bracket is cut off successively, and
  • the vibration transmission path between the fixed bracket and the main casing of the optical machine even if the galvanometer vibrates, the impact on the vibration transmission of the equipment casing fixed to it is reduced to as small as possible, thereby solving the problem of optical engine operation in the related art.
  • the problem of large noise has achieved the effect of reducing the noise generated when the optical engine is running.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种光机引擎,包括安装壳体(3),安装壳体(3)内容置有:光阀(322),用于对照明光束调制,并将调制后的照明光束投射进入投影镜头(330)成像;振镜组件(1),位于光阀(322)与投影镜头(330)之间的光路径中,其中,振镜组件(1)通过固定支架(2)与安装壳体(3)连接固定;固定支架(2)设置有第一安装孔(21),第一安装孔(21)内设有第一减振垫(5),第一螺钉(4)穿过第一减振垫(5)与安装壳体(3)固定连接;当固定支架(2)与安装壳体(3)固定后,第一减振垫(5)将第一螺钉(4)与固定支架(2)隔离,且第一减振垫(5)为非压缩状态。

Description

光学引擎及投影设备
本申请要求于2018年12月11日提交中国专利局、申请号为201811511425.3,申请名称为“一种光学引擎及投影设备”,以及2019年11月19日提交中国专利局、申请号为201922007541.8,申请名称为“光学引擎”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及投影设备领域,尤其涉及一种光机引擎及投影设备。
背景技术
按照光调制方式的不同,投影设备包括LCD(Liquid Crystal Display液晶显示)投影机、DLP(Digital Light Processing,数字光源处理)投影机等。
其中,DLP投影设备中的核心器件为DMD(Digital Micromirror Device,数字微镜装置),其表面由成千上万的微型反射镜组成。DMD芯片接收图像信号对应的驱动信号的驱动,将照射至其表面的光束调制,再投射进入镜头中成像。可以简单的认为,DMD表面的每个微型反射镜可以对应图像画面的一个像素点。
由于成本和芯片制作工艺的限制,会遇到待显示图像的分辨率与投影设备中的DMD芯片的分辨率不匹配。比如目前投影设备待显示的画面为4K分辨率(4096x 2160的像素分辨率),但DMD芯片的分辨率可能为1080P(1K),或者2K。在一种技术实现中,若要实现画面4K分辨率,需要用到振镜。在相关技术中,振镜是位于DMD芯片和投影镜头之间的平面镜片结构,可以受驱动进行高速的偏转振动。
图1-1示出了一种振镜的结构示意图,如图所示,振镜组件包括有翻转固定支架200和驱动单元300以及设置在翻转固定支架200上的透光镜片400,具体可以是平面镜片,驱动单元300用于驱动翻转固定支架200往复翻转, 以带动透光镜片400往复翻转。以及,整个振镜组件结构通过固定支架100固定于投影显示设备中,具体地,是与投影显示设备的壳体内侧进行固定连接。由于振镜组件位于DMD芯片和投影镜头之间,DMD芯片是光机部分的核心器件,投影镜头与光机具有连接,振镜组件具体地可固定于光机壳体内部。
在相关技术的应用中,4K分辨率DLP投影机的实现方案为DMD芯片加振镜,其中振镜的工作原理为通过其高频振动将较低的原生态分辨率的图像光束叠加,叠加后的图像内容清晰度提高,达到视觉上分辨率的提升。例如,DMD芯片的原生态分辨率为1920X1080,未达到4K显示效果。而DMD芯片反射的图像通过振镜后,振镜中间的透光平面镜片会沿着两个轴线高频摆动,如图1-2所示,从而使一个像素点01到达四个不同的位置,因此每个像素点01瞬时会投射到四个不同位置,但人眼感知到的是图像信息量的增加和清晰度的提升,进而达到视觉上分辨率提升四倍的效果,达到4K显示效果。
振镜工作时需要持续振动,比如,振镜振动频率为240Hz(hertz,赫兹,频率单位),振镜透光玻璃振动角为0.225度,振镜的单体驱动噪声主观体验不大,但是将振镜组件组装到投影显示设备的壳体内部后,振镜组件与设备壳体的固定,使得振镜本身的高频振动会诱发与其发生固定的壳体发生更高阶振动,带来设备噪音的问题。
发明内容
本申请的实施例提供一种光机引擎及投影设备,在不影响画质的前提下能有效减轻或消除振镜组件的振动引起的整个投影设备的胁迫振动,解决噪音问题,且结构简单,成本低廉。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请实施例提供了一种光机引擎,包括主壳体,主壳体形成有容 纳腔,在容纳腔内容置有:
光阀,用于对照明光束调制,并将调制后的照明光束投射进入投影镜头成像;振镜,位于光阀与投影镜头之间的光路径中,
其中,振镜包括振镜组件,振镜组件通过固定支架与所述主壳体连接固定;
固定支架设置有第一安装孔,第一安装孔内设有第一减振垫,螺钉穿过减振垫与主壳体固定连接;
当固定支架与主壳体固定后,第一减振垫将第一螺钉与固定支架隔离,且第一减振垫为非压缩状态。
本申请实施例的光机引擎,为了避免振镜组件的振动传递至整个投影设备上,第一安装孔内配套设有第一减振垫,当支架与安装壳体固定后,第一减振垫将第一螺钉与支架隔离,第一减振垫处于自然状态,振镜组件的振动由支架向安装壳体上传递时会被第一减振垫吸收,进而阻隔振动的传递,可以避免振镜组件的振动传递至整个投影设备上。当支架与安装壳体固定后,处于自然状态的第一减振垫不受外力压缩,从某种程度上切断了振动传递的路径。也就不会造成设备主机被迫振动的结果,从而当振镜正常工作时高频振动,这种振动也不会或者极少程度的传递到光机壳体上,减轻或者消除了光机壳体的胁迫振动,降低整个激光投影设备整机的振动程度。
第二方面,本申请提供了一种投影设备,包括设备主壳体,设备主壳体内容置有:
光源,用于提供照明光束;
光机,用于对照明光束进行调制并将调制后的照明光束投射进入投影镜头;
投影镜头,用于接收调制后的照明光束并成像,
其中,在调制后的照明光束投射进入投影镜头的光路径中设置有振镜,振镜通过振动将透射的光束进行错位,
振镜包括振镜支架和透光镜片,透光镜片连接于振镜支架上,振镜支架通过固定支架固定于设备的主壳体上以对振镜进行安装固定,
振镜支架和固定支架之间,以及,固定支架和设备主壳体之间均为活动连接。
本申请实施例提供的投影设备中,振镜和固定支架之间的连接设置为存在间隙的可活动连接状态,以及,固定支架与光机主壳体之间也为活动连接,这种非刚性的连接方式,在一定程度上可以降低振动的传递效率,或者切断振动的传递路径,比如,振镜与固定支架之间的活动连接可以消除或切断振镜到固定支架之间的振动传递路径,以及固定支架与设备主壳体之间的活动连接,可以消除或切断固定支架与光机主壳体之间的振动传递路径。即便振镜振动,也对固定其的设备壳体的振动传递的影响降至尽可能小,从而解决了相关技术中光学引擎运行时产生的噪音较大的问题,达到了降低光学引擎运行时产生的噪音的效果。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1-1为相关技术的振镜组件组件的结构示意图;
图1-2为相关技术的振镜组件组件工作时,像素点的移动情况示意图;
图2为相关技术的一种投影设备内部安装振镜组件组件的安装剖面示意图的局部放大图;
图3-1为本申请实施例的激光投影设备的结构示意图;
图3-2为本申请实施例的光机引擎的带有振镜组件的支架与安装壳体的分 解结构示意图;
图4为本申请实施例的光机引擎的带有振镜组件的支架与安装壳体安装后的剖面示意图;
图5为本申请实施例的光机引擎的带有振镜组件的支架与安装壳体安装后的剖面示意图的局部放大图;
图6为本申请实施例的光机引擎的支架结构示意图之一;
图7为本申请实施例的光机引擎的支架结构示意图之二;
图8为本申请实施例的光机引擎的振镜组件与第二螺钉的结构示意图;
图9为本申请实施例的光机引擎的振镜组件的结构示意图;
图10为本申请实施例的光机引擎的支架与振镜组件的安装的结构示意图。
图11为本申请实施例的另一种激光投影设备结构示意图;
图12-1为本申请实施例的另一种光学引擎结构示意图;
图12-2为图12-1中的分解结构示意图;
图13为本申请实施例的另一种振镜结构示意图;
图14为本申请实施例的一种减振垫的结构示意图;
附图标记说明:
01-像素点;100-固定支架,200-翻转支架,300-驱动单元,400-透光镜片;
310-光源,320-光机,330-投影镜头;311-入光口;322-光阀;
02-固定支架;03-光机主壳体;04-轴肩螺钉;05-减振垫;
1-振镜组件;11-第二安装孔;12-第二定位孔;110-振镜镜片;120-振镜支架;13-第一螺钉;14-第一柔性垫;15-第二螺钉;16-第二柔性垫;
2-固定支架;21-第一安装孔;22-第一定位孔;23-固定柱;231-螺纹孔;24-第二定位柱;
3-安装壳体;31-第一定位柱;
4-第一螺钉;41-紧固帽;
5-第一减振垫;6-第二减振垫;
7-第二螺钉;
具体实施方式
为使本申请的目的、特征和优点能够更加明显易懂,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,均属于本申请保护的范围。
在本申请的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
为了减小振动带来的噪音问题,相关技术一种解决方案是降低振镜组件工作时的振动频率,但是这会影响图像光束的叠加效果,无法保证高分率效果图像的呈现。并且仅仅是降低振镜组件工作的频率,对振动的传递并未做改变,减振效果并不明显。
相关技术中另一种是在振镜组件组件安装在投影设备内时增加减振元件。具体的,振镜组件组件通过螺钉与设备的壳体进行固定,为了减轻这种硬接触带来的振动传递以及噪音,会在固定螺钉和固定用壳体之间设置减振元件。如图2所示,提供了一种投影设备内部安装振镜组件的结构,固定有振镜组件镜片(图中未示出)的固定支架02固定在投影设备的光机主壳体03上,具体的固定方式是通过轴肩螺钉04与光机主壳体03固定。为了减小噪音问题,在轴肩螺钉04与光机主壳体03中间设置减振垫05,减振垫05一定程度上可以抑制 固定有振镜组件的固定支架02的振动传递到光机主壳体03。减振垫05可以为橡胶材质,具有弹性。
参照图2,当轴肩螺钉04与光机主壳体03固定后,会对减振垫05进行一定压缩,以达到紧固固定的目的。一般的,减振垫05上下均被压缩,图中示出的减振垫05上下被压缩的量a和b比如可以均为0.3毫米,这种过盈配合也是通常的技术手段。但是申请人在实施中发现,即便是采用上述设置减振垫的振镜组件固定方案,振镜组件工作时产生的振动仍会由固定支架02传递至光机壳体03上,进一步传递到整个投影设备,极易导致整个投影设备产生胁迫振动,进而产生噪音。
本申请实施例提供了一种激光投影设备,如图3-1所示,按照光学功能划分,激光投影设备包括光源310,光机320,投影镜头330,上述三部分也称为光学引擎部,与激光投影设备内部还设置的电路板(图中未示出),音箱(图中未示出)等部件一起被整机外壳(图中未示出)包裹,上述光学引擎部分沿着光束传播的方向依次连接固定,保持内部密封的光学环境。
其中,光源310用于提供照明光束,光源310可以为激光器组件和荧光轮构成,激光器组件发出蓝色激光,荧光轮用于受激发产生除蓝色基色光以外的其他颜色的光束。光源310也可以由三色激光器组成,包括红色激光器组件,蓝色激光器组件和绿色激光器组件。
光机320的核心部件为DMD芯片,以及DMD芯片之前的照明光路部分。
DMD芯片将入射其表面的照明光束经过图像显示信号的调制后投射进入投影镜头330。
振镜组件设置于光机320内部。
图3-2示例性示出了一种光机壳体的拆解示意图,振镜组件固定于光机壳体内侧,且靠近与投影镜头的连接端。
图4示例性示出了振镜组件于光机壳体连接的一个剖面图。
如图3-2和图4,本申请实施例提供的一种光机引擎,包括振镜组件1、固 定支架2和安装壳体3,安装壳体3具体为光机壳体。振镜组件1固定在固定支架2上,固定支架2上设置有第一安装孔21,第一螺钉4穿过第一安装孔21与安装壳体3固定,以将固定有振镜组件1的固定支架2固定在安装壳体3上,第一安装孔21内配套设有第一减振垫5,当固定支架2与安装壳体3固定后,第一减振垫5将第一螺钉4与固定支架2隔离,且完成固定后第一减振垫5处于自然状态,即第一减振垫5未被压缩,不发生过盈配合。
本申请实施例提供的光机引擎,如图3-2和图4所示,包括振镜组件1、固定支架2和安装壳体3,振镜组件1固定在固定支架2上。为了将振镜组件1固定于安装壳体3上,固定支架2上设置有第一安装孔21,第一螺钉4穿过第一安装孔21与安装壳体3固定,以将固定有振镜组件1的固定支架2固定在安装壳体3上。为了避免振镜组件1的振动传递至整个投影设备上,第一安装孔21内配套设有第一减振垫5,当固定支架2与安装壳体3固定后,第一减振垫5将第一螺钉4与固定支架2隔离,振镜组件1的振动由固定支架2向安装壳体3上传递时会被第一减振垫5吸收,进而阻隔振动的传递,可以避免振镜组件1的振动传递至整个投影设备上。,并且,在本示例中,当固定支架2与安装壳体3固定后,第一减振垫5处于自然状态,不处于过盈配合。处于自然状态的第一减振垫5不受外力压缩,反而能够使得在吸收振动的同时,还不易因为固定支架与壳体之间“较紧密”的固定关系,而使这种振动进行进一步传递,也就是通过将减振垫设置于固定螺钉和固定主体之间,不将减振垫压缩填充在固定螺钉和固定主体之间,而是使得减振垫处于自然伸展状态,从某种程度上切断了振动传递的路径。也就不会造成固定主体被迫振动的结果,从而当振镜正常工作时高频振动,这种振动也不会或者极少程度的传递到光机壳体上,减轻或者消除了光机壳体的胁迫振动,降低整个激光投影设备整机的振动程度。
因此,相比相关技术,本示例中的技术方案,一方面不用降低振镜组件1的振动频率,保证投影设备画面质量,另一方面第一减振垫5不会被压缩而导致减振效果下降,可以有效消除振镜组件1的振动引起的整个投影设备的胁迫 振动,解决噪音问题。另外,其结构简单易实现,成本低廉。
需要说明的是,第一减振垫5的减振效果一般取决于其材料的可发生弹性形变的特性,通常情况下,一个弹性件可能处于三种状态下,即,被拉伸、被压缩和自然状态,其中,本申请实施例的关机引擎中,不存在被拉伸的情况,而被压缩必然会导致弹性件的可形变量变小,进而会使第一减振垫5的减振效果下降;处于自然状态的弹性件不受外力影响,因此其得以保证减振效果,避免振镜组件1的振动传递至整个投影设备上。
为保证在振镜组件1安装后,第一减振垫5不被压缩,可以通过控制第一螺钉4会压缩第一减振垫5的地方与安装壳体3之间的距离来实现。具体的,参照图4和图5,第一螺钉4的第一端具有紧固帽41,第一螺钉4的第二端穿过第一安装孔21与安装壳体3固定,当固定支架2与安装壳体3固定后,第一螺钉4的紧固帽41与安装壳体3之间的距离为第一距离m,第一减振垫5沿第一安装孔21的延伸方向的高度为第二距离n,第一距离m大于第二距离n。这样,在安装完成后,由于第一距离m大于第二距离n,使位于第一螺钉4和安装壳体3之间的第一减振垫5具有足够的容纳间隙,第一减振垫5不会被第一螺钉4的紧固帽41压迫,进而保证第一减振垫5的减振效果。
需要说明的是,第一螺钉4可以是多种规格的螺钉,例如全螺纹螺钉或者如图5中所示的为轴肩螺钉。其中,全螺纹螺钉在安装时需要预估紧固的程度,不好操作,且可能与安装壳体3的固定不够牢靠;而轴肩螺钉由于其结构的特点,在未安装时即可知道最后安装完可预留的距离,进而安装时不用再预估紧固的程度,只需要拧紧保证牢靠即可。因此,第一螺钉4优选采用轴肩螺钉。
参照图5,当固定支架2与安装壳体3固定后,第一螺钉4的紧固帽41与安装壳体3之间的距离为第一距离m,第一减振垫5沿第一安装孔21的延伸方向的高度为第二距离n,第一距离m大于第二距离n,且经过验证,得到一个在具体实施中间隙范围:第一螺钉4的紧固帽41的下边沿与第一减振垫5的上边沿的距离c为0.2毫米,第一减振垫5的下边沿与安装壳体3的外表面的距离d 为0.2毫米。也即,第一距离m与第二距离n的差值为0.4毫米。
另外,参照图6和图7,为了将固定支架2可靠地固定于安装壳体3上,第一安装孔21的数量可以为多个,对应的,第一减振垫5也一一对应的设置为多个,以保证减振效果。
为了快速准确的将固定有振镜组件1的固定支架2固定于安装壳体3的正确位置上,如图3、图6和图7所示,固定支架2上设置有第一定位孔22,安装壳体3上对应第一定位孔22设有第一定位柱31,当固定支架2与安装壳体3固定时,第一定位柱31对应伸入第一定位孔22内,以定位固定支架2和安装壳体3的相对位置。在设置了第一定位孔22和第一定位柱31后,第一定位孔22和第一定位柱31的硬接触可能也会将振镜组件1的振动从固定支架2上传递至安装壳体3上,因此,为了避免上述问题,如图3、图6和图7所示,第一定位孔22内配套安装有第二减振垫6。进而第二减振垫6可以阻隔振动在固定支架2的第一定位孔22与安装壳体3的第一定位柱31的配合处的传递。
需要说明的是,安装壳体3上的第一定位柱31的上部可倒角,以方便与第一定位孔22的配合。另外,第一定位孔22和第一定位柱31可以一一对应为多个,以确保连接稳固,当然,对应的,第二减振垫6也为多个。
如图8、图9和图10所示,为了将振镜组件1安装于固定支架2上,振镜组件1上设有第二安装孔11,第二螺钉7穿过第二安装孔11与固定支架2固定,以将振镜组件1固定在固定支架2上。在振镜组件1振动的过程中,振镜组件1的振动会通过与固定支架2的接触面传递到固定支架2,为了减少振镜组件1的振动传递,第二安装孔11内配套设有第二减振垫6。第二减振垫6可以减少振动从振镜组件1通过第二螺钉7与第二安装孔11的接触传递到固定支架2上。
需要说明的是,为了固定牢靠,第二安装孔11和第二螺钉7均可为多个,例如,如图8和图9所示,第二安装孔11对称设置于振镜组件1两侧,可以使振镜组件1受力平衡,安装牢固。
参照图8、图9和图10,当第二螺钉7穿过第二安装孔11与固定支架2固 定时,第二螺钉7会穿过与第二安装孔11内的第二减振垫6并与其直接接触,第二螺钉7受力拧紧时,第二螺钉7上的螺纹可能会划伤第二减振垫6的内侧,进而可能使第二减振垫6遭到破坏,因此,为了避免上述问题,如图8、图6、图9和图10所示,固定支架2上对应第二安装孔11设有固定柱23,固定柱23内开设有螺纹孔231。这样,固定柱23内开设有螺纹孔231,当振镜组件1与固定支架2固定时,固定柱23配合伸入第二安装孔11内,第二螺钉7与固定柱23内的螺纹孔231配合拧紧,以将振镜组件1固定在固定支架2上。第二减振垫6与固定柱23的外壁接触,既能减少振镜组件1的振动传递,又能保护第二减振垫6不被第二螺钉7破坏。
为了进一步方便振镜组件1安装于固定支架2上,如图6、图9和图10所示,振镜组件1上设置有第二定位孔12,固定支架2上对应第二定位孔12设有第二定位柱24,当振镜组件1与固定支架2固定时,第二定位柱24配合伸入第二定位孔12内,以定位振镜组件1和固定支架2的相对位置。在设置了第二定位柱24与第二定位孔12配合的结构后,第二定位柱24与第二定位孔12之间为硬连接,在振镜组件1振动的过程中,振镜组件1的振动会通过振镜组件1与固定支架2的接触部分传递到固定支架2上,为了减少振镜组件1的振动传递,第二定位孔12内配套安装有第二减振垫6。第二减振垫6可以进一步减少振镜组件1的振动通过第二定位柱24和第二定位孔12传到固定支架2上。
进一步地,第一减振垫5、第二减振垫6、第二减振垫6和第二减振垫6的形状可以为多种形式比如筒形、截面工形或者截面T形等,但是,筒形或者截面T形不能包裹住孔口上下两面或者仅能包裹住孔口的一面,所以减振效果也会受到影响,在具体实施中,如图5、图7和图9所示,第一减振垫5、第二减振垫6、第二减振垫6和第二减振垫6的截面为工形,且中部具有通孔。一方面工形上下可以完全包裹住所保护的孔的上下开口面上,减少振镜组件1与固定支架2之间以及固定支架2与安装壳体3之间的振动传递。另一方面,工形上下两边因为突出于孔的表面,所以还可以起到防止安装壳体3上面其他零部件 安装时与固定支架2直接接触产生摩擦。第一减振垫5、第二减振垫6、第二减振垫6和第二减振垫6的中部具有通孔可以方便螺钉或者定位柱穿过,实现定位或固定的作用。
进一步地,第一减振垫5、第二减振垫6、第二减振垫6和第二减振垫6的材质可以为很多种,比如硅胶、橡胶等,橡胶材料成本低且在相同的外力下产生变形较大,除去外力后能快速恢复原状,能起到很好地减振作用。所以在具体实施中,第一减振垫5、第二减振垫6、第二减振垫6和第二减振垫6,由橡胶材料制成。
以及,本申请实施例还提供了一种激光投影设备,图11示出了激光投影设备的部分结构示意图。如图11所示,光机主壳体3连接投影镜头330,光机入光口311与光源连接,光源出射的照明光束通过入光口311进入光机内部的光学镜片中。振镜组件1位于光机主壳体3的内部,具体地,位于光阀入射投影镜头之间的光路径中。在图11中,光阀设置于壳体的底部,光阀上方设置有棱镜321,经光阀调制后反射的光束经由棱镜321入射至振镜组件1,并透射通过振镜组件1,最终入射至投影镜头300中。
以及,图11中所示的振镜部件可参见图13的结构示例。
具体地,参见图13,振镜组件包括振镜镜片110,以及固定镜片用的振镜支架120。
振镜组件通过螺钉紧固在固定支架2上。
以及,图12-1,图12-2示例性提供了一种光学引擎结构图。具体地,图12-1,图12-2分别为上述图11示例中光机部分的结构示意图和拆解示意图。
如图12-1,12-2所示,该光学引擎可以包括:
光机主壳体3,光机主壳体3形成有容置腔,容置腔内设有:
光阀322,具体为数字微镜器件DMD芯片,用于对照明光束进行图像信号调制形成调制光束。
振镜组件1,设置于数字微镜器件和成像镜组之间的光路中,用于受电驱动进行至少两个位置的周期性移动,经振镜组件1后的调制光束依次错位进入投影镜头。
以及,振镜组件1通过固定支架2固定在光机主壳体3上。
其中,振镜组件1和固定支架2之间为非刚性连接,和/或,固定支架2与光机主壳体3之间为非刚性连接。
如图12-1,12-2所示,在一具体实施中,振镜组件1包括振镜支架120以及装配在振镜支架120上的透光镜片110和镜片驱动结构。
振镜组件1还包括四个第一螺钉13和四个第一柔性垫14,四个第一螺钉13分别穿过四个第一柔性垫14。需要说明的是,上述数量四个仅为具体实施方式,并不限于上述数目。振镜支架120通过上述多个第一螺钉和第一柔性垫与固定支架2连接。
当激光投影设备接通电源后,镜片驱动结构将电信号转换为振动,从而带动透光镜片110沿着轴线高频摆动,将从DMD反射的图像中的一个像素点投射到两个或更多个位置。镜片驱动结够装配在振镜支架120上,同时也带动振镜支架120振动。相关技术中,振镜通过螺钉将振动传递至振镜支架。而在本申请实施例中,振镜组件1中的第一螺钉13连接振镜支架120与固定支架2,第一柔性垫14将第一螺钉13与固定支架2隔开,可以削弱第一螺钉13对振动的传递,即振镜组件1可以削弱从振镜传递至固定支架2的振动频率,从而降低一部分振动产生的噪音。其中第一螺钉13可以是轴肩螺钉。
在一具体实施种,第一柔性垫14包括管状结构以及分别从管状结构两端延伸出的两个环状结构,如图5所示的截面图中,呈“工”字型。振镜支架120上具有四个第二安装孔11,四个第一柔性垫14的管状结构一一对应的位于四个第二安装孔11中,两个环状结构分别位于振镜支架120的两侧。
图4是图3中第一柔性垫的结构示意图,第一柔性垫14包括管状结构141以及分别从管状结构141两端延伸出的两个环状结构142和143。
在一具体实施中,第一螺钉13包括第一螺杆和位于第一螺杆一端的螺头,具体地,为轴肩螺钉结构,其中,第一螺杆位于管状结构中,且螺头与环状结构之间具有间隙。
第一螺钉13的第一螺杆穿过第一柔性垫14的管状结构,第一螺钉13的螺头与环状结构1252之间具有间隙,即非刚性连接。振镜支架120与第一螺钉13不直接接触。其中第一柔性垫也可以是其它形状,本申请实施例在此不作限定。在上述连接方式中,第一柔性垫14阻碍了大部分振动的传递,但是第一柔性垫14无法完全阻断振动的传递,振镜的振动传递给第一螺钉13,第一螺钉13将振动传递第一柔性垫14,第一柔性垫14又将该振动传递至固定支架2。且由于第一柔性垫14制作公差不高,故每台机器的压缩量可能存在些许差异,整机的噪声水准一致性较差。因此可以在振镜组件1与固定支架2之间设置一个间隙,该间隙彻底阻断了振动的传递。
第一螺钉13的螺头与环状结构之间的间隙可以是0.1mm,0.1mm的间隙既可以使振镜组件1与固定支架2之间留有一定的空间,也不会因为空间过大导致连接不够稳固,且0.1mm的间隙可以确保振镜倾斜1度的光学指标,在不影响画质的前提下将振镜振动诱发的次生振动彻底消除,进而提高整机噪声水平。间隙也可以设置为其他宽度,本申请实施例在此不作限定。
在一具体实施中,第一柔性垫14的材料包括橡胶。橡胶是一种高弹性的聚合物材料,橡胶的黏弹性能使其具有良好的减振性能。振镜支架120产生的振动通过橡胶材质的第一柔性垫14时减弱,使其传递至固定支架2的振动减小。从而起到减振且降低噪音的效果。第一柔性垫14的材料也可以是其他具有良好减振效果的材料,本申请实施例在此不作限定。
在一具体实施中,固定支架2通过螺钉和柔性垫连接至光机主壳体上。具体地,固定支架2通过四个第二螺钉15和四个第二柔性垫16,四个第二螺钉15分别穿过四个第二柔性垫16以及固定支架2,并与光机主壳体连接。
振镜组件1通过固定支架2与光机主壳体连接,以将振镜组件1固定在壳 体内部。相关技术中,振镜将振动传递之振镜支架后,振镜支架通过螺钉将振动传递至壳体内部,且振动频率在传递的过程中逐渐倍增,整个壳体在振动中产生较大的噪音。
本申请实施例中,先使用第一螺钉13和第一柔性垫14削弱一部分从振镜组件1传递至固定支架2的振动,再在固定支架2与壳体的连接部分,同样设置可以降低振动传递的第二螺钉15和第二柔性垫16。其中,第二柔性垫16与第二螺钉15接触,避免第二螺钉与固定支架2直接接触,可以阻碍振动的传递。其中第二螺钉15可以是轴肩螺钉。
在一具体实施种,第二柔性垫16包括管状结构以及分别从管状结构两端延伸出的两个环状结构;固定支架2上具有四个第一安装孔21,四个第二柔性垫16的管状结构位于一一对应的位于四个第一安装孔21中,两个环状结构分别位于固定支架2的两侧。参见图14,第二柔性垫16与图14中的第一柔性垫14结构相同,也包括可供螺柱穿过的管状结构以及卡在第二通孔两端的两个环状结构。
在一具体实施种,第二螺钉包括第二螺杆和位于第二螺杆一端的螺头,第二螺杆位于管状结构中,且螺头与环状结构之间具有间隙。第二螺钉15连接固定支架2与壳体时,第二螺杆穿过第二柔性垫16位于第一安装孔21中的管状结构,第二螺钉15的螺头与环状结构之间具有间隙,以使第二螺钉15不与固定支架2直接接触,从而降低振动的传递。在具体实施中,第一安装孔21的数量可以为四个,每个第一安装孔21内套入一个第二柔性垫16,使用一个第二螺钉15进行连接。固定支架2与壳体连接时,部分振动会从固定支架2传递至第二螺钉15,第二螺钉15将振动传递至第二柔性垫16,第二柔性垫16将振动传递至壳体,因此固定支架2与壳体设置有一个间隙,该间隙彻底阻断了振动的传递。第二螺钉15的螺头与环状结构之间的间隙可以是0.1mm,也可以设置为其他宽度,本申请实施例在此不作限定。
在一具体实施种,第二柔性垫16的材料包括橡胶。第二柔性垫16的作用 为减弱从固定支架2传递至壳体的振动,因此第二柔性垫16也可以使用减振性能良好的橡胶进行制作。第二柔性垫16的材料也可以是其他具有良好减振效果的材料,本申请实施例在此不作限定。
通过第一柔性垫14和第二柔性垫16对振动的传递进行第一层阻断,通过在螺钉与柔性垫之间为间隙配合,固定支架2与壳体之间为间隙配合对振动的传递进行第二层阻断,从而使振镜的振动无法传递至壳体内的其他部件,以此减小了振动产生的噪音,提高了用户体验。
综上所述,本申请实施例提供的激光投影设备和光学引擎,其中光学引擎壳体形成有容置腔,容置腔内设有:照明组件,用于提供照明光束;数字微镜器件,用于对照明光束进行图像信号调制形成调制光束;振镜,设置于数字微镜器件和投影镜头之间的光路中,用于受电驱动进行多个个位置的周期性移动,经所述振镜后的调制光束依次错位进入投影镜头,以及,振镜通过固定支架固定在壳体上,其中,振镜组件和固定支架之间的连接设置为非刚性连接,而是具有存在间隙的可活动连接状态,且对其中的柔性垫或减振垫不进行压缩填充空隙,而是使柔性垫处于自然伸展状态,使得振镜组件与固定支架之间具有间隙,呈现一种活动连接状态,以及,固定支架与光机主壳体之间也为活动连接,同上,固定支架和光机主壳体之间通过螺钉和柔性垫(或称减振垫)连接,且对其中的柔性垫不进行压缩填充空隙,而是使柔性垫处于自然伸展状态,使得振镜组件与固定支架之间具有间隙,呈现一种活动连接状态,这样就相继切断了振镜组件到固定支架之间的振动传递路径,以及固定支架与光机主壳体之间的振动传递路径,即便振镜振动,也对固定其的设备壳体的振动传递的影响降至尽可能小,从而解决了相关技术中光学引擎运行时产生的噪音较大的问题,达到了降低光学引擎运行时产生的噪音的效果。
以上仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化 或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (12)

  1. 一种光学引擎,其特征在于,包括主壳体,所述主壳体形成有容纳腔,在所述容纳腔内容置有:
    光阀,用于对照明光束调制,并将调制后的照明光束投射进入投影镜头成像;振镜,位于所述光阀与投影镜头之间的光路径中,
    其中,所述振镜包括振镜组件,所述振镜组件通过固定支架固定于主壳体;
    所述固定支架设置有第一安装孔,所述第一安装孔内设有第一减振垫,螺钉穿过所述减振垫与所述主壳体固定连接;
    当所述固定支架与所述主壳体固定后,所述第一减振垫将所述第一螺钉与所述固定支架隔离,且所述第一减振垫为非压缩状态。
  2. 根据权利要求1所述的光机引擎,其特征在于,所述第一螺钉的第一端具有紧固帽,所述第一螺钉的第二端穿过所述第一安装孔与所述主壳体固定,
    当所述支架与所述壳体固定后,所述紧固帽与所述主壳体之间的距离为第一距离,所述第一减振垫沿所述第一安装孔的延伸方向的高度为第二距离,所述第一距离大于所述第二距离。
  3. 根据权利要求2所述的光机引擎,其特征在于,所述第一距离与所述第二距离的差值为0.4毫米。
  4. 根据权利要求2中所述的光机引擎,其特征在于,所述第一螺钉为轴肩螺钉,所述第一安装孔为多个,所述第一螺钉和所述第一减震垫的数量也为多个。
  5. 根据权利要求2所述的光机引擎,其特征在于,所述主壳体上对应所述第一定位孔设有第一定位柱,当所述固定支架与所述主壳体固定时,所述第一定位柱对应伸入所述第一定位孔内,以定位所述支架和所述主壳体的相对位置。
  6. 根据权利要求1所述的光机引擎,其特征在于,所述振镜组件包括透光镜片和振镜支架,所述透光镜片固定于所述振镜支架上,所述振镜支架上设有第二安装孔,第二螺钉穿过所述第二安装孔与所述固定支架固定,所述第二安装孔内配套设有第二减振垫,当所述振镜组件与所述固定支架连接后,所述第二减振垫将所述第二螺钉和所述固定支架隔离,所述第二减振垫为非压缩状态。
  7. 根据权利要求6所述的光机引擎,其特征在于,所述固定支架上对应所述第二安装孔设有固定柱,所述固定柱内开设有螺纹孔,当所述振镜支架与所述支架固定时,所述固定柱配合伸入所述第二安装孔内,所述第二螺钉与所述固定柱内的所述螺纹孔配合,以将所述振镜固定在所述支架上。
  8. 根据权利要求1或6所述的光机引擎,其特征在于,所述第一减振垫、第二减振垫的截面均为工形,且中部均具有通孔。
  9. 根据权利要求7所述的光机引擎,其特征在于,所述第一减振垫、第二减振垫任一由橡胶材料制成。
  10. 一种激光投影设备,其特征在于,包括:设备主壳体,设备主壳体内容置有:
    光源,用于提供照明光束;
    光机,用于对所述照明光束进行调制并将调制后的照明光束投射进入投影镜头;投影镜头,用于接收调制后的照明光束并成像,
    其中,在调制后的照明光束投射进入所述投影镜头的光路径中设置有振镜,所述振镜通过振动将透射的光束进行错位,
    所述振镜包括振镜支架和透光镜片,所述透光镜片连接于所述振镜支架上,所述振镜支架通过固定支架固定于设备的主壳体上以对所述振镜进行安装固定,
    所述振镜支架和所述固定支架之间,以及,所述固定支架和所述设备主壳体之间均为活动连接。
  11. 根据权利要求10所述的激光投影设备,其特征在于,所述振镜支架和所述固定支架之间具有第二减振垫,当所述振镜支架和所述固定支架固定连接后,所述第二减振垫处于非压缩状态。
  12. 根据权利要求10所述的激光投影设备,其特征在于,所述固定支架和所述设备主壳体之间具有第一减振垫,当所述固定支架和所述设备主壳体固定连接后,所述第二减振垫处于非压缩状态。
PCT/CN2019/122868 2018-12-11 2019-12-04 光学引擎及投影设备 WO2020119535A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811511425.3A CN111308837B (zh) 2018-12-11 2018-12-11 一种光机引擎及投影设备
CN201811511425.3 2018-12-11
CN201922007541.8U CN211741714U (zh) 2019-11-19 2019-11-19 光学引擎和投影设备
CN201922007541.8 2019-11-19

Publications (1)

Publication Number Publication Date
WO2020119535A1 true WO2020119535A1 (zh) 2020-06-18

Family

ID=71077141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122868 WO2020119535A1 (zh) 2018-12-11 2019-12-04 光学引擎及投影设备

Country Status (1)

Country Link
WO (1) WO2020119535A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0195868A1 (en) * 1985-03-29 1986-10-01 Evertyte Inc. Improved anti friction lap joint
EP2290177A2 (fr) * 2009-07-06 2011-03-02 Peugeot Citroën Automobiles SA Dispositif d'amortissement de vibrations d'une gache
CN202251653U (zh) * 2011-09-15 2012-05-30 北京自动化控制设备研究所 一种套筒型减振装置
CN103867638A (zh) * 2014-04-02 2014-06-18 广西玉柴机器股份有限公司 发动机弹性支撑座
CN104455153A (zh) * 2014-10-21 2015-03-25 广西柳工机械股份有限公司 缓冲限位座及装载机铲斗
CN205721053U (zh) * 2016-06-07 2016-11-23 海信集团有限公司 成像位移组件和投影装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0195868A1 (en) * 1985-03-29 1986-10-01 Evertyte Inc. Improved anti friction lap joint
EP2290177A2 (fr) * 2009-07-06 2011-03-02 Peugeot Citroën Automobiles SA Dispositif d'amortissement de vibrations d'une gache
CN202251653U (zh) * 2011-09-15 2012-05-30 北京自动化控制设备研究所 一种套筒型减振装置
CN103867638A (zh) * 2014-04-02 2014-06-18 广西玉柴机器股份有限公司 发动机弹性支撑座
CN104455153A (zh) * 2014-10-21 2015-03-25 广西柳工机械股份有限公司 缓冲限位座及装载机铲斗
CN205721053U (zh) * 2016-06-07 2016-11-23 海信集团有限公司 成像位移组件和投影装置

Similar Documents

Publication Publication Date Title
KR100709500B1 (ko) 투사 디스플레이를 위한 led 광원을 사용하는 방법 및 시스템
US6585378B2 (en) Digital cinema projector
US7977624B2 (en) Screen, rear projector, and image display device that are capable of effectively reducing scintillation
JP4605032B2 (ja) スクリーン及び画像投影装置
US10139717B2 (en) Laser-diode, liquid-crystal projector
JP6369038B2 (ja) ヘッドアップディスプレイ装置
US7567384B2 (en) Method and apparatus for combining light paths of like-colored light sources
JP2004295130A (ja) レーザー表示装置及びその制御方法
WO2020119535A1 (zh) 光学引擎及投影设备
WO2012039267A1 (ja) レーザ投射装置および画像投影システム
CN111308837B (zh) 一种光机引擎及投影设备
CN109557746A (zh) 投影设备
US20220091488A1 (en) Laser projection apparatus
KR101713342B1 (ko) 프로젝션 시스템
JP5199016B2 (ja) 単板投写型表示装置
US7404643B2 (en) Projector having polarization conversion element
KR100704374B1 (ko) 진동형 틸팅장치 및 그 작동방법
KR20070100579A (ko) 화소 증진 조립체 및 이를 포함하는 영상투사장치
WO2021004162A1 (zh) 一种激光投影装置
CN111596518B (zh) 一种无散斑激光投影设备
CN110531570B (zh) 激光投影设备及镜头
KR20180134567A (ko) 프로젝션 시스템의 투과형 영상틸팅장치 및 투과형 영상틸팅장치를 구비한 프로젝션 시스템
JP4407345B2 (ja) 空間光変調装置
JP6579230B2 (ja) ヘッドアップディスプレイ装置
KR200219413Y1 (ko) 후면투사 티에프티-엘씨디 멀티스크린 고정장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19895191

Country of ref document: EP

Kind code of ref document: A1