WO2020118807A1 - 温度不敏感马赫曾德尔干涉仪 - Google Patents

温度不敏感马赫曾德尔干涉仪 Download PDF

Info

Publication number
WO2020118807A1
WO2020118807A1 PCT/CN2019/070284 CN2019070284W WO2020118807A1 WO 2020118807 A1 WO2020118807 A1 WO 2020118807A1 CN 2019070284 W CN2019070284 W CN 2019070284W WO 2020118807 A1 WO2020118807 A1 WO 2020118807A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
width
tapered waveguide
mode converter
temperature
Prior art date
Application number
PCT/CN2019/070284
Other languages
English (en)
French (fr)
Inventor
仇超
赵瑛璇
甘甫烷
武爱民
盛振
李伟
Original Assignee
中国科学院上海微系统与信息技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811501015.0A external-priority patent/CN109283616B/zh
Priority claimed from CN201822059191.5U external-priority patent/CN209433059U/zh
Application filed by 中国科学院上海微系统与信息技术研究所 filed Critical 中国科学院上海微系统与信息技术研究所
Priority to US17/312,393 priority Critical patent/US11796738B2/en
Publication of WO2020118807A1 publication Critical patent/WO2020118807A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/2935Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/2935Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
    • G02B6/29352Mach-Zehnder configuration, i.e. comprising separate splitting and combining means in a light guide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29398Temperature insensitivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12159Interferometer

Definitions

  • the invention belongs to the technical field of optics, and particularly relates to a temperature-insensitive Mach-Zehnder interferometer.
  • Mach-Zehnder Interferometer (Mach ⁇ Zehnder Modulator, MZI) is widely used in optical signal modulation and other technical fields. Then, the existing Mach-Zehnder interferometer basically adopts a double-connected arm structure.
  • the existing Mach-Zehnder interferometer generally has problems such as being sensitive to temperature, being greatly affected by temperature, complicated in structure, and large in size.
  • the object of the present invention is to provide a temperature-insensitive Mach-Zehnder interferometer, which is used to solve the problem that the Mach-Zehnder interferometer in the prior art is sensitive to temperature and is affected by temperature Large, complex structure, large size and other issues.
  • the present invention provides a temperature-insensitive Mach-Zehnder interferometer.
  • the temperature-insensitive Mach-Zehnder interferometer includes:
  • a second mode converter located on one side of the first mode converter, and having a distance from the first mode converter
  • a connecting arm is located between the first mode converter and the second mode converter, one end of the connecting arm is connected to the first mode converter, and the other end is connected to the second mode converter ;
  • the connecting arm includes a straight waveguide connecting arm.
  • the first mode converter includes: an input waveguide, a first asymmetric tapered waveguide, a first straight waveguide, and a second asymmetric tapered waveguide; wherein, the input waveguide, the The first asymmetric tapered waveguide, the straight waveguide and the second asymmetric tapered waveguide are connected in sequence; the second asymmetric tapered waveguide is connected to the connecting arm;
  • the second mode converter includes a third asymmetric tapered waveguide, a second straight waveguide, a fourth asymmetric tapered waveguide, and an output waveguide; wherein, the third asymmetric tapered waveguide and the second straight waveguide The fourth asymmetric tapered waveguide and the output waveguide are connected in sequence; the third asymmetric tapered waveguide is connected to the connecting arm.
  • one end of the first asymmetric tapered waveguide is a narrow end surface and the other end is a wide end surface, and the narrow end surface of the first asymmetric tapered waveguide is connected to the input waveguide, The wide end face of the first asymmetric tapered waveguide is connected to the first straight waveguide;
  • One end of the second asymmetric tapered waveguide is a narrow end surface, and the other end is a wide end surface.
  • the wide end surface of the second asymmetric tapered waveguide is connected to the first straight waveguide, and the second asymmetric tapered waveguide
  • the narrow end face of the shaped waveguide is connected with the connecting arm;
  • One end of the third asymmetric tapered waveguide is a narrow end surface, and the other end is a wide end surface.
  • the narrow end surface of the third asymmetric tapered waveguide is connected to the connecting arm, and the third asymmetric tapered waveguide The wide end face of is connected to the second straight waveguide;
  • One end of the fourth asymmetric tapered waveguide is a narrow end surface, and the other end is a wide end surface.
  • the wide end surface of the fourth asymmetric tapered waveguide is connected to the second straight waveguide, and the fourth asymmetric tapered waveguide
  • the narrow end face of the shaped waveguide is connected to the output waveguide.
  • the width of the wide end surface of the first asymmetric tapered waveguide and the width of the wide end surface of the second asymmetric tapered waveguide are the same as the width of the first straight waveguide
  • the width of the wide end surface of the third asymmetric tapered waveguide and the width of the wide end surface of the fourth asymmetric tapered waveguide are the same as the width of the second straight waveguide.
  • the width of the input waveguide is 0.45 ⁇ m to 0.55 ⁇ m; the width of the wide end face of the first tapered waveguide is 2.1 ⁇ m to 2.2 ⁇ m, and the width of the first tapered waveguide is narrow
  • the width of the end face is 0.45 ⁇ m to 0.55 ⁇ m, the length of the first tapered waveguide is 8.05 ⁇ m to 8.15 ⁇ m; the width of the first straight waveguide is 2.1 ⁇ m to 2.2 ⁇ m, and the length of the first straight waveguide is 4.95 ⁇ m to 5.05 ⁇ m;
  • the width of the wide end face of the second tapered waveguide is 2.1 ⁇ m to 2.2 ⁇ m, the width of the narrow end face of the second tapered waveguide is 1.15 ⁇ m to 1.25 ⁇ m, the second tapered
  • the length of the waveguide is 6.25 ⁇ m to 6.35 ⁇ m; the width of the wide end face of the third tapered waveguide is 2.1 ⁇ m to 2.2 ⁇
  • the length of the third tapered waveguide is 6.25 ⁇ m to 6.35 ⁇ m; the width of the second straight waveguide is 2.1 ⁇ m to 2.2 ⁇ m, and the length of the second straight waveguide is 4.95 ⁇ m to 5.05 ⁇ m; the fourth tapered The width of the wide end surface of the waveguide is 2.1 ⁇ m to 2.2 ⁇ m, the width of the narrow end surface of the fourth tapered waveguide is 0.45 ⁇ m to 0.55 ⁇ m, and the length of the fourth tapered waveguide is 8.05 ⁇ m to 8.15 ⁇ m; the input The width of the waveguide is 0.45 ⁇ m to 0.55 ⁇ m.
  • the thickness of the first mode converter, the thickness of the second mode converter, and the thickness of the connecting arm are all 215 nm to 225 nm.
  • the temperature-insensitive Mach-Zehnder interferometer further includes a first reverse tapered coupler and a second reverse tapered coupler; wherein, the first reverse tapered coupling The device includes two input ends and one output end. The output end of the first reverse taper coupler is connected to the end of the first mode converter away from the connecting arm; the second reverse taper The coupler includes an input end and two output ends. The input end of the second reverse-cone coupler is connected to the end of the second mode converter away from the connecting arm.
  • the temperature-insensitive Mach-Zehnder interferometer further includes a base, the base includes an underlying silicon layer and a buried oxygen layer in the SOI substrate, the first mode converter, the Both the connecting arm and the second mode converter are formed by etching the top silicon layer in the SOI substrate.
  • the temperature-insensitive Mach-Zehnder interferometer further includes a protective layer, which is located on the upper surface of the buried oxygen layer and completely covers the first mode converter, The connecting arm and the second mode converter.
  • the width of the connecting arm is 646 nm.
  • the temperature-insensitive Mach-Zehnder interferometer of the present invention has the following beneficial effects:
  • the device structure in the temperature-insensitive Mach-Zehnder interferometer of the present invention is obtained based on the preparation of an SOI substrate, because the thermo-optic coefficient of silicon in the SOI substrate is very large (it can reach 1.86 ⁇ 10 ⁇ 4 RIU/K, where, (RIU is the refractive index unit), which can cause a considerable wavelength shift with temperature change (about 80pm/K).
  • RIU refractive index unit
  • temperature insensitivity can be achieved; at the same time
  • the temperature-insensitive Mach-Zehnder interferometer of the present invention can be compatible with the CMOS process, which is convenient for mass production;
  • the temperature-insensitive Mach-Zehnder interferometer of the present invention can output TE 0 mode and TE 1 mode outgoing light no matter whether the input end inputs TE 0 mode incident light or TE 1 mode input light.
  • the two mode converters are connected by a connecting arm, the structure is simple, and the loss is small;
  • the width of the straight waveguide in the asymmetric tapered waveguide in the temperature-insensitive Mach-Zehnder interferometer of the present invention can be adjusted in a large range ( ⁇ 50nm) without affecting the performance of the device, and can be realized on the silicon photonics process platform High-quality mass production.
  • FIGS. 1 and 3 are schematic structural diagrams of a temperature-insensitive Mach-Zehnder interferometer provided by the present invention; wherein, FIGS. 1 and 3 are schematic structural views of two different examples of temperature-insensitive Mach-Zehnder interferometers. 2 shows a schematic diagram of the stereo structure of an example temperature-insensitive Mach-Zehnder interferometer.
  • FIG. 4 shows a schematic top view of the first mode converter in the temperature-insensitive Mach-Zehnder interferometer provided by the present invention.
  • FIG. 5 shows a schematic top view of the second mode converter in the temperature-insensitive Mach-Zehnder interferometer provided by the present invention.
  • curve 6 shows a curve of the width of the connecting arm and the effective refractive index change rate of the incident light of different modes with respect to the temperature in the temperature-insensitive Mach-Zehnder interferometer provided by the present invention; where curve 1 is the incident light in TE 0 mode The incident light, curve 2 is the incident light is TE 1 mode incident light.
  • FIG. 7 and 8 show the temperature-insensitive Mach-Zehnder interferometer provided by the present invention at two different temperature conditions of 26.85 °C and 56.85 °C incident light wavelength and input loss curve; wherein, Figure 7 with the length of the connecting arm 560 ⁇ m , The incident light is in TE 0 mode, and the output light is in TE 0 mode as an example; in FIG. 8, the length of the connecting arm is 1100 ⁇ m, the incident light is in TE 0 mode, and the output light is in TE 0 mode as an example.
  • FIGS. 9 to FIG. 12 are graphs showing the length of the connecting arm and the input loss when connecting arms of different widths in the temperature-insensitive Mach-Zehnder interferometer provided by the present invention; wherein, the input light in FIGS. 9 and 10 is the TE 0 mode , The output light is TE 0 mode and TE 1 mode; in Figure 11 and Figure 12, the input light is TE 1 mode, the output light is TE 0 mode and TE 1 mode; in Figures 9 to 12, curve 1 is the first straight waveguide Or the curve when the width of the second straight waveguide is 2150 nm, the curve 2 is the curve when the width of the first straight waveguide or the second straight waveguide is (2150-50) nm, and the curve 3 is the first straight waveguide or the second straight waveguide The width of is the curve at (2150+50) nm.
  • the present invention provides a temperature-insensitive Mach-Zehnder interferometer.
  • the temperature-insensitive Mach-Zehnder interferometer includes: a first mode converter 10; a second mode converter 11, the second mode The converter 11 is located on one side of the first mode converter 10 and has a distance from the first mode converter 10; a connecting arm 12, the connecting arm 12 is located between the first mode converter 10 and the Between the second mode converter 11, one end of the connecting arm 12 is connected to the first mode converter 10, and the other end is connected to the second mode converter 11; the connecting arm 12 includes a straight waveguide connection arm.
  • the temperature-insensitive Mach-Zehnder interferometer further includes a first reverse tapered coupler 13 and a second reverse tapered coupler 14; wherein, the first The reverse tapered coupler 13 includes two input terminals (such as Port1 and Port2 in FIG. 3) and an output terminal. The output terminal of the first reverse tapered coupler 13 and the first mode converter 10 The end away from the connecting arm 12 is connected; the second reverse tapered coupler 14 includes an input end and two output ends (such as Port3 and Port4 in FIG. 3), the second reverse tapered The input end of the coupler 14 is connected to the end of the second mode converter 11 away from the connecting arm 12.
  • the temperature-insensitive Mach-Zehnder interferometer further includes a substrate 15 including an underlying silicon layer 151 and a buried oxygen layer 152 in an SOI substrate, and the first mode conversion The device 10, the connecting arm 12 and the second mode converter 11 are all formed by etching the top silicon layer in the SOI substrate.
  • the first mode converter 10, the connecting arm 12, and the second mode converter 11 are obtained based on the SOI substrate.
  • thermo-optic coefficient of silicon is very large (up to 1.86 ⁇ 10 -4 RIU/K, where RIU is the refractive index unit), which can cause a considerable wavelength drift with temperature change (about 80pm/K), on this basis
  • RIU refractive index unit
  • temperature insensitivity can be achieved; meanwhile, the temperature-insensitive Mach-Zehnder interferometer of the present invention can be compatible with the CMOS process, which is convenient for mass production.
  • the temperature-insensitive Mach-Zehnder interferometer further includes a protective layer 16, which is located on the upper surface of the buried oxygen layer 152 and completely covers the first mode conversion 10, the connecting arm 12 and the second mode converter 11 to protect the first mode converter 10, the connecting arm 12 and the second mode converter 11.
  • the protective layer 16 may include, but is not limited to, a silicon oxide layer.
  • the first mode converter 10 includes: an input waveguide 101, a first asymmetric tapered waveguide 102, a first straight waveguide 103, and a second asymmetric tapered waveguide 104;
  • the input waveguide 101, the first asymmetric tapered waveguide 102, the straight waveguide 103, and the second asymmetric tapered waveguide 104 are connected in sequence; the second asymmetric tapered waveguide 104 and the first The straight waveguide 103 is connected.
  • an end of the second asymmetric tapered waveguide 104 away from the first straight waveguide 103 is connected to the connecting arm 12.
  • the second mode converter 11 includes a third asymmetric tapered waveguide 111, a second straight waveguide 112, a fourth asymmetric tapered waveguide 113, and an output waveguide 114; wherein, the The third asymmetric tapered waveguide 111, the second straight waveguide 112, the fourth asymmetric tapered waveguide 113, and the output waveguide 114 are sequentially connected; the third asymmetric tapered waveguide 111 and the The connecting arm 12 is connected.
  • one end of the first asymmetric tapered waveguide 102 is a narrow end face, the other end of the first asymmetric tapered waveguide 102 is a wide end face, and the first asymmetric tapered
  • the narrow end surface of the waveguide 102 is connected to the input waveguide 101, the wide end surface of the first asymmetric tapered waveguide 102 is connected to the first straight waveguide 103;
  • one end of the second asymmetric tapered waveguide 104 Is a narrow end surface, the other end of the second asymmetric tapered waveguide 104 is a wide end surface, the wide end surface of the second asymmetric tapered waveguide 104 is connected to the first straight waveguide 103, and the second non-symmetric
  • the narrow end surface of the symmetric tapered waveguide 104 is connected to the connecting arm 12.
  • one end of the third asymmetric tapered waveguide 111 is a narrow end face, the other end of the third asymmetric tapered waveguide 111 is a wide end face, and the third asymmetric tapered
  • the narrow end surface of the waveguide 111 is connected to the connecting arm 12, the wide end surface of the third asymmetric tapered waveguide 111 is connected to the second straight waveguide 112;
  • one end of the fourth asymmetric tapered waveguide 113 Is a narrow end surface, the other end of the fourth asymmetric tapered waveguide 113 is a wide end surface, the wide end surface of the fourth asymmetric tapered waveguide 113 is connected to the second straight waveguide 112, the fourth non-symmetric
  • the narrow end surface of the symmetric tapered waveguide 113 is connected to the output waveguide 114.
  • the width of the wide end surface of the first asymmetric tapered waveguide 102 and the width W5 of the wide end surface of the second asymmetric tapered waveguide 104 are the same as the width W4 of the first straight waveguide 103
  • the width W8 of the wide end surface of the third asymmetric tapered waveguide 111 and the width W10 of the wide end surface of the fourth asymmetric tapered waveguide 113 are the same as the width W9 of the second straight waveguide 112.
  • the first asymmetric tapered waveguide 102, the second asymmetric tapered waveguide 104, the third asymmetric tapered waveguide 111, and the fourth asymmetric tapered waveguide 113 since the first The asymmetry of the structure of the first mode converter 10 and the second mode converter 11 in the y direction (ie, the width direction of the first straight waveguide 103 and the width direction of the second straight waveguide 112) makes the incident The incident light of the TE 0 mode will pass through the first mode converter 10 and the second mode converter 11 at different effective lengths.
  • the width of the first straight waveguide 103 and the The width of the second straight waveguide 112 can prevent the incident TE 0 mode incident light from being completely converted into the TE 1 mode, so that the output light is a mixed mode output light including the TE 0 mode and the TE 1 mode.
  • the width of the input waveguide is 0.45 ⁇ m to 0.55 ⁇ m; the width of the wide end face of the first tapered waveguide is 2.1 ⁇ m to 2.2 ⁇ m, and the width of the narrow end face of the first tapered waveguide is 0.45 ⁇ m ⁇ 0.55 ⁇ m, the length of the first tapered waveguide is 8.05 ⁇ m to 8.15 ⁇ m; the width of the first straight waveguide is 2.1 ⁇ m to 2.2 ⁇ m, and the length of the first straight waveguide is 4.95 ⁇ m to 5.05 ⁇ m; The width of the wide end face of the second tapered waveguide is 2.1 ⁇ m to 2.2 ⁇ m, the width of the narrow end face of the second tapered waveguide is 1.15 ⁇ m to 1.25 ⁇ m, and the length of the second tapered waveguide is 6.25 ⁇ m ⁇ 6.35 ⁇ m; the width of the wide end face of the third tapered waveguide is 2.1 ⁇ m ⁇ 2.2 ⁇ m, the width of the narrow end face of the narrow end face
  • the width W1 of the input waveguide 101 is 0.5 ⁇ m;
  • the width W3 of the wide end surface of the first tapered waveguide 102 is 1.9 ⁇ m, the width W2 of the narrow end surface of the first tapered waveguide 102 is 0.5 ⁇ m, and the length L1 of the first tapered waveguide 102 is 7.6 ⁇ m;
  • the width W4 of the first straight waveguide 103 may be 1.9 ⁇ m, and the length L2 of the first straight waveguide 103 may be 3.6 ⁇ m;
  • the width W5 of the wide end face of the second tapered waveguide 104 may be 1.9 ⁇ m, so
  • the width W6 of the narrow end surface of the second tapered waveguide 104 may be 1.2 ⁇ m, the length L3 of the second tapered waveguide 104 may be 5.1 ⁇ m;
  • the width W1 of the input waveguide 101 is 0.5 ⁇ m; the width W3 of the wide end face of the first tapered waveguide 102 is 1.95 ⁇ m, and the width W2 of the narrow end face of the first tapered waveguide 102 Is 0.5 ⁇ m, the length L1 of the first tapered waveguide 102 is 7.6 ⁇ m; the width W4 of the first straight waveguide 103 may be 1.95 ⁇ m, and the length L2 of the first straight waveguide 103 may be 3.6 ⁇ m;
  • the width W5 of the wide end face of the second tapered waveguide 104 may be 1.95 ⁇ m, the width W6 of the narrow end face of the second tapered waveguide 104 may be 1.2 ⁇ m, and the length L3 of the second tapered waveguide 104 may be Is 5.1 ⁇ m; the width W8 of the wide end surface of the third tapered waveguide 111 is 1.95 ⁇ m, the width W7.6 of the narrow end surface of the third tapered waveguide 111 is
  • the width W1 of the input waveguide 101 is 0.5 ⁇ m; the width W3 of the wide end face of the first tapered waveguide 102 is 2.05 ⁇ m, and the width W2 of the narrow end face of the first tapered waveguide 102 Is 0.5 ⁇ m, the length L1 of the first tapered waveguide 102 is 7.6 ⁇ m; the width W4 of the first straight waveguide 103 may be 2.05 ⁇ m, and the length L2 of the first straight waveguide 103 may be 3.6 ⁇ m;
  • the width W5 of the wide end surface of the second tapered waveguide 104 may be 2.05 ⁇ m, the width W6 of the narrow end surface of the second tapered waveguide 104 may be 1.2 ⁇ m, and the length L3 of the second tapered waveguide 104 may be Is 5.1 ⁇ m; the width W8 of the wide end face of the third tapered waveguide 111 is 2.05 ⁇ m, the width W7.9 of the narrow end face of the third tapered waveguide 111 is
  • the width W1 of the input waveguide 101 is 0.5 ⁇ m; the width W3 of the wide end face of the first tapered waveguide 102 is 2.15 ⁇ m, and the width W2 of the narrow end face of the first tapered waveguide 102 Is 0.5 ⁇ m, the length L1 of the first tapered waveguide 102 is 8.1 ⁇ m; the width W4 of the first straight waveguide 103 may be 2.15 ⁇ m, and the length L2 of the first straight waveguide 103 may be 5 ⁇ m;
  • the width W5 of the wide end surface of the second tapered waveguide 104 may be 2.15 ⁇ m, the width W6 of the narrow end surface of the second tapered waveguide 104 may be 1.2 ⁇ m, and the length L3 of the second tapered waveguide 104 may be 6.3 ⁇ m; the width W8 of the wide end face of the third tapered waveguide 111 is 2.15 ⁇ m, the width W8.1 of the narrow end face of the third tapered waveguide 111 is 1.2
  • the width W1 of the input waveguide 101 is 0.5 ⁇ m; the width W3 of the wide end face of the first tapered waveguide 102 is 2.2 ⁇ m, and the width W2 of the narrow end face of the first tapered waveguide 102 Is 0.5 ⁇ m, the length L1 of the first tapered waveguide 102 is 8.5 ⁇ m; the width W4 of the first straight waveguide 103 may be 2.2 ⁇ m, and the length L2 of the first straight waveguide 103 may be 5 ⁇ m;
  • the width W5 of the wide end surface of the second tapered waveguide 104 may be 2.2 ⁇ m, the width W6 of the narrow end surface of the second tapered waveguide 104 may be 1.2 ⁇ m, and the length L3 of the second tapered waveguide 104 may be 6.3 ⁇ m; the width W8 of the wide end face of the third tapered waveguide 111 is 2.2 ⁇ m, and the width W8.48 of the narrow end face of the third tapered waveguide 111 is
  • the thickness of the first mode converter 10, the thickness of the second mode converter 11, and the thickness of the connecting arm 12 may be set according to actual needs.
  • the first mode converter The thickness of 10, the thickness of the second mode converter 11 and the thickness of the connecting arm 12 may all be 215 nm to 225 nm; more preferably, in this embodiment, the thickness of the first mode converter 10, The thickness of the second mode converter 11 and the thickness of the connecting arm 12 are 220 nm.
  • the width of the connecting arm 12 can be set according to actual needs.
  • the width of the connecting arm 12 is 646 nm;
  • FIG. 6 shows the connecting arm in the temperature-insensitive Mach-Zehnder interferometer provided by the present invention
  • the width of the connecting arm 12 is the corresponding width of the connecting arm 12 when temperature insensitivity can be achieved. Please refer to FIG. 7 and FIG. 8, as can be seen from FIG. 7 and FIG.
  • the temperature insensitive Mach-Zehnder interference of the present invention has roughly the same performance at different temperatures, that is, the performance of the temperature-insensitive Mach-Zehnder interferometer of the present invention is not greatly affected by temperature, that is, FIGS. 7 and 8 further prove that the temperature-insensitive Mach-Zhen of the present invention The Dell interferometer is not sensitive to temperature.
  • the temperature-insensitive Mach-Zehnder interferometer of the present invention can obtain TE 0 regardless of whether the input is TE 0 mode incident light or TE 1 mode incident light.
  • the mixed mode and TE 1 modes emit light.
  • the width of the first straight waveguide 103 and the second straight waveguide 112 in the temperature-insensitive Mach-Zehnder interferometer of the present invention does not affect the temperature when the width changes within the range of ⁇ 50 nm
  • the performance of the insensitive Mach-Zehnder interferometer has a significant impact.
  • the present invention provides a temperature-insensitive Mach-Zehnder interferometer.
  • the temperature-insensitive Mach-Zehnder interferometer includes: a first mode converter; a second mode converter located in the first mode conversion A side of the device, and has a distance from the first mode converter; a connecting arm is located between the first mode converter and the second mode converter, one end of the connecting arm is connected to the first mode The converter is connected, and the other end is connected to the second mode converter; the connection arm includes a straight waveguide connection arm.
  • the present invention is insensitive to temperature obtained SOI substrate is prepared based on the Mach-Zehnder interferometer instrument device structure, since the thermo-optic coefficient in a silicon SOI substrate is large (up to 1.86 ⁇ 10 - 4RIU / K, where, RIU Is a unit of refractive index), which can cause a considerable wavelength drift with temperature change (about 80pm/K).
  • the temperature-insensitive Mach-Zehnder interferometer of the present invention can be compatible with the CMOS process, which is convenient for mass production; the temperature-insensitive Mach-Zehnder interferometer of the present invention regardless of the input light of the TE0 mode or the input light of the TE1 mode at the input end, Both output ends can output TE0 mode and TE1 mode outgoing light; the two mode converters of the temperature-insensitive Mach-Zehnder interferometer of the present invention are connected by a connecting arm, the structure is simple, and the loss is small; the present invention
  • the temperature-insensitive Mach-Zehnder interferometer's asymmetric tapered waveguide can be adjusted in a wide range ( ⁇ 50nm) without affecting the performance of the device, and can achieve high quality on the silicon photonics process platform Mass production.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明提供一种温度不敏感马赫曾德尔干涉仪,包括:第一模式转换器;第二模式转换器,位于第一模式转换器的一侧,且与第一模式转换器具有间距;连接臂,位于第一模式转换器与第二模式转换器之间,一端与第一模式转换器相连接,另一端与第二模式转换器相连接;连接臂包括直波导连接臂。本发明的温度不敏感马赫曾德尔干涉仪通过设置所述连接臂的宽度及厚度等参数可以实现对温度不敏感。

Description

温度不敏感马赫曾德尔干涉仪 技术领域
本发明属于光学技术领域,特别是涉及一种温度不敏感马赫曾德尔干涉仪。
背景技术
马赫曾德尔干涉仪(Mach~Zehnder Modulator,MZI)被广泛应用于光信号调制等技术领域。然后,现有的马赫曾德尔干涉仪基本均采用双连接臂结构,现有的马赫曾德尔干涉仪普遍存在对温度较为敏感,受温度影响较大,结构复杂,尺寸大等问题
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种温度不敏感马赫曾德尔干涉仪,用于解决现有技术中的马赫曾德尔干涉仪存在的对温度较为敏感,受温度影响较大,结构复杂,尺寸大等问题。
为实现上述目的及其他相关目的,本发明提供一种温度不敏感马赫曾德尔干涉仪,所述温度不敏感马赫曾德尔干涉仪包括:
第一模式转换器;
第二模式转换器,位于所述第一模式转换器的一侧,且与所述第一模式转换器具有间距;
连接臂,位于所述第一模式转换器与所述第二模式转换器之间,所述连接臂一端与所述第一模式转换器相连接,另一端与所述第二模式转换器相连接;所述连接臂包括直波导连接臂。
作为本发明的一种优选方案,所述第一模式转换器包括:输入波导、第一非对称锥形波导、第一直波导及第二非对称锥形波导;其中,所述输入波导、所述第一非对称锥形波导、所述直波导及所述第二非对称锥形波导依次相连接;所述第二非对称锥形波导与所述连接臂相连接;
所述第二模式转换器包括第三非对称锥形波导、第二直波导、第四非对称锥形波导及输出波导;其中,所述第三非对称锥形波导、所述第二直波导、所述第四非对称锥形波导及所述输出波导依次相连接;所述第三非对称锥形波导与所述连接臂相连接。
作为本发明的一种优选方案,所述第一非对称锥形波导的一端为窄端面,另一端为宽端面,所述第一非对称锥形波导的窄端面与所述输入波导相连接,所述第一非对称锥形波导的 宽端面与所述第一直波导相连接;
所述第二非对称锥形波导的一端为窄端面,另一端为宽端面,所述第二非对称锥形波导的宽端面与所述第一直波导相连接,所述第二非对称锥形波导的窄端面与所述连接臂相连接;
所述第三非对称锥形波导的一端为窄端面,另一端为宽端面,所述第三非对称锥形波导的窄端面与所述连接臂相连接,所述第三非对称锥形波导的宽端面与所述第二直波导相连接;
所述第四非对称锥形波导的一端为窄端面,另一端为宽端面,所述第四非对称锥形波导的宽端面与所述第二直波导相连接,所述第四非对称锥形波导的窄端面与所述输出波导相连接。
作为本发明的一种优选方案,所述第一非对称锥形波导的宽端面的宽度及所述第二非对称锥形波导的宽端面的宽度均与所述第一直波导的宽度相同,所述第三非对称锥形波导的宽端面的宽度及所述第四非对称锥形波导宽端面的宽度均与所述第二直波导的宽度相同。
作为本发明的一种优选方案,所述输入波导的宽度为0.45μm~0.55μm;所述第一锥形波导的宽端面的宽度为2.1μm~2.2μm,所述第一锥形波导的窄端面的宽度为0.45μm~0.55μm,所述第一锥形波导的长度为8.05μm~8.15μm;所述第一直波导的宽度为2.1μm~2.2μm,所述第一直波导的长度为4.95μm~5.05μm;所述第二锥形波导的宽端面的宽度为2.1μm~2.2μm,所述第二锥形波导的窄端面的宽度为1.15μm~1.25μm,所述第二锥形波导的长度为6.25μm~6.35μm;所述第三锥形波导的宽端面的宽度为2.1μm~2.2μm,所述第三锥形波导的窄端面的宽度为1.15μm~1.25μm,所述第三锥形波导的长度为6.25μm~6.35μm;所述第二直波导的宽度为2.1μm~2.2μm,所述第二直波导的长度为4.95μm~5.05μm;所述第四锥形波导的宽端面的宽度为2.1μm~2.2μm,所述第四锥形波导的窄端面的宽度为0.45μm~0.55μm,所述第四锥形波导的长度8.05μm~8.15μm;所述输入波导的宽度为0.45μm~0.55μm。
作为本发明的一种优选方案,所述第一模式转换器的厚度、所述第二模式转换器的厚度及所述连接臂的厚度均为215nm~225nm。
作为本发明的一种优选方案,所述温度不敏感马赫增德尔干涉仪还包括第一反向锥形耦合器及第二反向锥形耦合器;其中,所述第一反向锥形耦合器包括两个输入端及一个输出端,所述第一反向锥形耦合器的输出端与所述第一模式转换器远离所述连接臂的一端相连接;所述第二反向锥形耦合器包括一个输入端及两个输出端,所述第二反向锥形耦合器的输入端与 所述第二模式转换器远离所述连接臂的一端相连接。
作为本发明的一种优选方案,所述温度不敏感马赫曾德尔干涉仪还包括基底,所述基底包括SOI衬底中的底层硅层及埋氧层,所述第一模式转换器、所述连接臂及所述第二模式转换器均通过刻蚀所述SOI衬底中的顶层硅层而形成。
作为本发明的一种优选方案,所述温度不敏感马赫曾德尔干涉仪还包括保护层,所述保护层位于所述埋氧层的上表面,且完全覆盖所述第一模式转换器、所述连接臂及所述第二模式转换器。
作为本发明的一种优选方案,所述连接臂的宽度为646nm。
如上所述,本发明的温度不敏感马赫曾德尔干涉仪,具有以下有益效果:
本发明的温度不敏感马赫曾德尔干涉仪中的器件结构基于SOI衬底制备而得到,由于SOI衬底中的硅的热光系数很大(可达到1.86×10 ~4RIU/K,其中,RIU为折射率单位),可以引起相当大的随温度变化的波长飘移(约80pm/K),在此基础上,通过设置所述连接臂的宽度及厚度等参数可以实现对温度不敏感;同时,本发明的温度不敏感马赫曾德尔干涉仪可以实现与CMOS工艺兼容,便于批量化生产;
本发明的温度不敏感马赫曾德尔干涉仪无论输入端输入TE 0模式的入射光还是TE 1模式的输入光,其输出端均可以输出TE 0模式和TE 1模式的出射光;
本发明的温度不敏感马赫曾德尔干涉仪中两个模式转换器通过一个连接臂相连接,结构简单,具有较小的损耗;
本发明的温度不敏感马赫曾德尔干涉仪中的非对称锥形波导中的直波导宽度可以在较大范围(±50nm)调整而不会对器件的性能造成影响,可以在硅光子工艺平台实现高质量大规模生产。
附图说明
图1至图3显示为本发明提供的温度不敏感马赫曾德尔干涉仪的结构示意图;其中,图1及图3显示为两不同示例的温度不敏感马赫曾德尔干涉仪的俯视结构示意图,图2显示为一示例的温度不敏感马赫曾德尔干涉仪的立体结构示意图。
图4显示为本发明提供的温度不敏感马赫曾德尔干涉仪中的第一模式转换器的俯视结构示意图。
图5显示为本发明提供的温度不敏感马赫曾德尔干涉仪中的第二模式转换器的俯视结构示意图。
图6显示为本发明提供的温度不敏感马赫曾德尔干涉仪中连接臂的宽度与不同模式入射光的有效折射率相对于温度的变化率的曲线;其中,曲线①为入射光为TE 0模式的入射光,曲线②为入射光为TE 1模式的入射光。
图7及图8显示为本发明提供的温度不敏感马赫曾德尔干涉仪在26.85℃及56.85℃两不同温度条件下入射光波长与输入损耗的曲线图;其中,图7以连接臂的长度560μm,入射光为TE 0模式,输出光以TE 0模式作为示例;图8中以连接臂的长度1100μm,入射光为TE 0模式,输出光以TE 0模式作为示例。
图9至图12显示为本发明提供的温度不敏感马赫曾德尔干涉仪中不同宽度的连接臂时连接臂长度与输入损耗的曲线图;其中,图9及图10中输入光为TE 0模式,输出光为TE 0模式和TE 1模式;图11及图12中输入光为TE 1模式,输出光为TE 0模式和TE 1模式;图9至图12中,曲线①为第一直波导或第二直波导的宽度为2150nm时的曲线,曲线②为第一直波导或第二直波导的宽度为(2150-50)nm时的曲线,曲线③为第一直波导或第二直波导的宽度为(2150+50)nm时的曲线。
元件标号说明
10                     第一模式转换器
101                    输入波导
102                    第一非对称锥形波导
103                    第一直波导
104                    第二非对称锥形波导
11                     第二模式转换器
111                    第三非对称锥形波导
112                    第二直波导
113                    第四非对称锥形波导
114                    输出波导
12                     连接臂
13                     第一反向锥形耦合器
14                     第二反型锥形耦合器
15                     基底
151                    底层硅层
152     埋氧层
16      保护层
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
请参阅图1至图11。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
请参阅图1,本发明提供一种温度不敏感马赫曾德尔干涉仪,所述温度不敏感马赫曾德尔干涉仪包括:第一模式转换器10;第二模式转换器11,所述第二模式转换器11位于所述第一模式转换器10的一侧,且与所述第一模式转换器10具有间距;连接臂12,所述连接臂12位于所述第一模式转换器10与所述第二模式转换器11之间,所述连接臂12一端与所述第一模式转换器10相连接,另一端与所述第二模式转换器11相连接;所述连接臂12包括直波导连接臂。
作为示例,如图2及图3所示,所述温度不敏感马赫增德尔干涉仪还包括第一反向锥形耦合器13及第二反向锥形耦合器14;其中,所述第一反向锥形耦合器13包括两个输入端(如图3中的Port1及Port2)及一个输出端,所述第一反向锥形耦合器13的输出端与所述第一模式转换器10远离所述连接臂12的一端相连接;所述第二反向锥形耦合器14包括一个输入端及两个输出端(如图3中的Port3及Port4),所述第二反向锥形耦合器14的输入端与所述第二模式转换器11远离所述连接臂12的一端相连接。
作为示例,如图2所示,所述温度不敏感马赫曾德尔干涉仪还包括基底15,所述基底15包括SOI衬底中的底层硅层151及埋氧层152,所述第一模式转换器10、所述连接臂12及所述第二模式转换器11均通过刻蚀所述SOI衬底中的顶层硅层而形成。本发明的温度不敏感马赫曾德尔干涉仪中的所述第一模式转换器10、所述连接臂12及所述第二模式转换器11基于SOI衬底制备而得到,由于SOI衬底中的硅的热光系数很大(可达到1.86×10 -4RIU/K,其中, RIU为折射率单位),可以引起相当大的随温度变化的波长飘移(约80pm/K),在此基础上,通过设置所述连接臂12的宽度及厚度等参数可以实现对温度不敏感;同时,本发明的温度不敏感马赫曾德尔干涉仪可以实现与CMOS工艺兼容,便于批量化生产。
作为示例,如图2所示,所述温度不敏感马赫曾德尔干涉仪还包括保护层16,所述保护层16位于所述埋氧层152的上表面,且完全覆盖所述第一模式转换器10、所述连接臂12及所述第二模式转换器11,以实现对所述第一模式转换器10、所述连接臂12及所述第二模式转换器11的保护。所述保护层16可以包括但不仅限于氧化硅层。
作为示例,如图4所示,所述第一模式转换器10包括:输入波导101、第一非对称锥形波导102、第一直波导103及第二非对称锥形波导104;其中,所述输入波导101、所述第一非对称锥形波导102、所述直波导103及所述第二非对称锥形波导104依次相连接;所述第二非对称锥形波导104与所述第一直波导103相连接,具体的,所述第二非对称锥形波导104远离所述第一直波导103的一端与所述连接臂12相连接。
作为示例,如图5所示,所述第二模式转换器11包括第三非对称锥形波导111、第二直波导112、第四非对称锥形波导113及输出波导114;其中,所述第三非对称锥形波导111、所述第二直波导112、所述第四非对称锥形波导113及所述输出波导114依次相连接;所述第三非对称锥形波导111与所述连接臂12相连接。
作为示例,如图4所示,所述第一非对称锥形波导102的一端为窄端面,所述第一非对称锥形波导102的另一端为宽端面,所述第一非对称锥形波导102的窄端面与所述输入波导相101连接,所述第一非对称锥形波导102的宽端面与所述第一直波导103相连接;所述第二非对称锥形波导104的一端为窄端面,所述第二非对称锥形波导104的另一端为宽端面,所述第二非对称锥形波导104的宽端面与所述第一直波导103相连接,所述第二非对称锥形波导104的窄端面与所述连接臂12相连接。
作为示例,如图5所示,所述第三非对称锥形波导111的一端为窄端面,所述第三非对称锥形波导111的另一端为宽端面,所述第三非对称锥形波导111的窄端面与所述连接臂12相连接,所述第三非对称锥形波导111的宽端面与所述第二直波导112相连接;所述第四非对称锥形波导113的一端为窄端面,所述第四非对称锥形波导113的另一端为宽端面,所述第四非对称锥形波导113的宽端面与所述第二直波导112相连接,所述第四非对称锥形波导113的窄端面与所述输出波导114相连接。
作为示例,所述第一非对称锥形波导102的宽端面的宽度及W3所述第二非对称锥形波导104的宽端面的宽度W5均与所述第一直波导103的宽度W4相同,所述第三非对称锥形 波导111的宽端面的宽度W8及所述第四非对称锥形波导113的宽端面的宽度W10均与所述第二直波导112的宽度W9相同。
通过采用所述第一非对称锥形波导102、所述第二非对称锥形波导104、所述第三非对称锥形波导111及所述第四非对称锥形波导113,由于所述第一模式转换器10及所述第二模式转换器11在y方向(即所述第一直波导103的宽度方向及所述第二直波导112的宽度方向)上结构的不对称性,使得入射的TE 0模式的入射光经过所述第一模式转换器10及所述第二模式转换器11时均会在不同的有效长度上传输,通过设定所述第一直波导103的宽度及所述第二直波导112的宽度可以使得入射的TE 0模式的入射光不能完全转换成TE 1模式,使得输出的光为包括TE 0模式和TE 1模式的混合模式的输出光。
作为示例,所述输入波导的宽度为0.45μm~0.55μm;所述第一锥形波导的宽端面的宽度为2.1μm~2.2μm,所述第一锥形波导的窄端面的宽度为0.45μm~0.55μm,所述第一锥形波导的长度为8.05μm~8.15μm;所述第一直波导的宽度为2.1μm~2.2μm,所述第一直波导的长度为4.95μm~5.05μm;所述第二锥形波导的宽端面的宽度为2.1μm~2.2μm,所述第二锥形波导的窄端面的宽度为1.15μm~1.25μm,所述第二锥形波导的长度为6.25μm~6.35μm;所述第三锥形波导的宽端面的宽度为2.1μm~2.2μm,所述第三锥形波导的窄端面的宽度为1.15μm~1.25μm,所述第三锥形波导的长度为6.25μm~6.35μm;所述第二直波导的宽度为2.1μm~2.2μm,所述第二直波导的长度为4.95μm~5.05μm;所述第四锥形波导的宽端面的宽度为2.1μm~2.2μm,所述第四锥形波导的窄端面的宽度为0.45μm~0.55μm,所述第四锥形波导的长度8.05μm~8.15μm;所述输入波导的宽度为0.45μm~0.55μm。
需要说明的是,上述尺寸参数在上述范围之内需要有一一对应的关系,下面以几个示例进行说明:譬如,在第一示例中,所述输入波导101的宽度W1为0.5μm;所述第一锥形波导102的宽端面的宽度W3为1.9μm,所述第一锥形波导102的窄端面的宽度W2为0.5μm,所述第一锥形波导102的长度L1为7.6μm;所述第一直波导103的宽度W4可以为1.9μm,所述第一直波导103的长度L2可以为3.6μm;所述第二锥形波导104的宽端面的宽度W5可以为1.9μm,所述第二锥形波导104的窄端面的宽度W6可以为1.2μm,所述第二锥形波导104的长度L3可以为5.1μm;所述第三锥形波导111的宽端面的宽度W8为1.9μm,所述第三锥形波导111的窄端面的宽度W7为1.2μm,所述第三锥形波导111的长度L4为5.1μm;所述第二直波导112的宽度W9为1.9μm,所述第二直波导112的长度L5为3.6μm;所述第四锥形波导113的宽端面的宽度W10可以为1.9μm,所述第四锥形波导113的窄端面的宽度W11可以为0.5μm,所述第四锥形波导113的长度L6可以为7.6μm;所述输入波导114的宽 度W12可以为0.5μm。在第二示例中,所述输入波导101的宽度W1为0.5μm;所述第一锥形波导102的宽端面的宽度W3为1.95μm,所述第一锥形波导102的窄端面的宽度W2为0.5μm,所述第一锥形波导102的长度L1为7.6μm;所述第一直波导103的宽度W4可以为,1.95μm,所述第一直波导103的长度L2可以为3.6μm;所述第二锥形波导104的宽端面的宽度W5可以为1.95μm,所述第二锥形波导104的窄端面的宽度W6可以为1.2μm,所述第二锥形波导104的长度L3可以为5.1μm;所述第三锥形波导111的宽端面的宽度W8为1.95μm,所述第三锥形波导111的窄端面的宽度W7.6为1.2μm,所述第三锥形波导111的长度L4为5.1μm;所述第二直波导112的宽度W9为1.95μm,所述第二直波导112的长度L5为3.6μm;所述第四锥形波导113的宽端面的宽度W10可以为1.95μm,所述第四锥形波导113的窄端面的宽度W11可以为0.5μm,所述第四锥形波导113的长度L6可以为7.6μm;所述输入波导114的宽度W12可以为0.5μm。在第三示例中,所述输入波导101的宽度W1为0.5μm;所述第一锥形波导102的宽端面的宽度W3为2.05μm,所述第一锥形波导102的窄端面的宽度W2为0.5μm,所述第一锥形波导102的长度L1为7.6μm;所述第一直波导103的宽度W4可以为,2.05μm,所述第一直波导103的长度L2可以为3.6μm;所述第二锥形波导104的宽端面的宽度W5可以为2.05μm,所述第二锥形波导104的窄端面的宽度W6可以为1.2μm,所述第二锥形波导104的长度L3可以为5.1μm;所述第三锥形波导111的宽端面的宽度W8为2.05μm,所述第三锥形波导111的窄端面的宽度W7.9为1.2μm,所述第三锥形波导111的长度L4为5.1μm;所述第二直波导112的宽度W9为2.05μm,所述第二直波导112的长度L5为3.6μm;所述第四锥形波导113的宽端面的宽度W10可以为2.05μm,所述第四锥形波导113的窄端面的宽度W11可以为0.5μm,所述第四锥形波导113的长度L6可以为7.6μm;所述输入波导114的宽度W12可以为0.5μm。在第四示例中,所述输入波导101的宽度W1为0.5μm;所述第一锥形波导102的宽端面的宽度W3为2.15μm,所述第一锥形波导102的窄端面的宽度W2为0.5μm,所述第一锥形波导102的长度L1为8.1μm;所述第一直波导103的宽度W4可以为,2.15μm,所述第一直波导103的长度L2可以为5μm;所述第二锥形波导104的宽端面的宽度W5可以为2.15μm,所述第二锥形波导104的窄端面的宽度W6可以为1.2μm,所述第二锥形波导104的长度L3可以为6.3μm;所述第三锥形波导111的宽端面的宽度W8为2.15μm,所述第三锥形波导111的窄端面的宽度W8.1为1.2μm,所述第三锥形波导111的长度L4为6.3μm;所述第二直波导112的宽度W9为2.15μm,所述第二直波导112的长度L5为5μm;所述第四锥形波导113的宽端面的宽度W10可以为2.15μm,所述第四锥形波导113的窄端面的宽度W11可以为0.5μm,所述第四锥形波导113 的长度L6可以为8.1μm;所述输入波导114的宽度W12可以为0.5μm。在第五示例中,所述输入波导101的宽度W1为0.5μm;所述第一锥形波导102的宽端面的宽度W3为2.2μm,所述第一锥形波导102的窄端面的宽度W2为0.5μm,所述第一锥形波导102的长度L1为8.5μm;所述第一直波导103的宽度W4可以为,2.2μm,所述第一直波导103的长度L2可以为5μm;所述第二锥形波导104的宽端面的宽度W5可以为2.2μm,所述第二锥形波导104的窄端面的宽度W6可以为1.2μm,所述第二锥形波导104的长度L3可以为6.3μm;所述第三锥形波导111的宽端面的宽度W8为2.2μm,所述第三锥形波导111的窄端面的宽度W8.48为1.2μm,所述第三锥形波导111的长度L4为6.3μm;所述第二直波导112的宽度W9为2.2μm,所述第二直波导112的长度L5为5μm;所述第四锥形波导113的宽端面的宽度W10可以为2.2μm,所述第四锥形波导113的窄端面的宽度W11可以为0.5μm,所述第四锥形波导113的长度L6可以为8.1μm;所述输入波导114的宽度W12可以为0.5μm。
作为示例,所述第一模式转换器10的厚度、所述第二模式转换器11的厚度及所述连接臂12的厚度可以根据实际需要进行设定,优选地,所述第一模式转换器10的厚度、所述第二模式转换器11的厚度及所述连接臂12的厚度可以均为215nm~225nm;更为优选地,本实施例中,所述第一模式转换器10的厚度、所述第二模式转换器11的厚度及所述连接臂12的厚度为220nm。
作为示例,所述连接臂12的宽度可以根据实际需要进行设定,优选地,所述连接臂12的宽度为646nm;图6显示为本发明提供的温度不敏感马赫曾德尔干涉仪中连接臂的宽度与不同模式入射光的有效折射率相对于温度的变化率的曲线,选择两种模式的入射光具有相同的有效折射率相对于温度的变化率(d neff/dT)时所对应的所述连接臂12的宽度即为可以实现温度不敏感时对应的所述连接臂12的宽度.请参阅图7及图8,由图7及图8可知,本发明的温度不敏感马赫曾德尔干涉仪在不同的温度下具有大致相同的性能,即本发明的温度不敏感马赫曾德尔干涉仪的性能受温度影响不大,亦即图7及图8进一步证明了本发明的温度不敏感马赫曾德尔干涉仪对温度不敏感。
请参阅图9至图12,由图9至图12可知,本发明的温度不敏感马赫曾德尔干涉仪无论输入的是TE 0模式的入射光还是TE 1模式的入射光,均可得到TE 0模式和TE 1模式的混合模式出射光。由图9至图12可知,本发明的温度不敏感马赫曾德尔干涉仪中的所述第一直波导103及所述第二直波导112的宽度在±50nm的范围内变化时不会对温度不敏感马赫曾德尔干涉仪的性能产生明显的影响。
综上所述,本发明提供一种温度不敏感马赫曾德尔干涉仪,所述温度不敏感马赫曾德尔 干涉仪包括:第一模式转换器;第二模式转换器,位于所述第一模式转换器的一侧,且与所述第一模式转换器具有间距;连接臂,位于所述第一模式转换器与所述第二模式转换器之间,所述连接臂一端与所述第一模式转换器相连接,另一端与所述第二模式转换器相连接;所述连接臂包括直波导连接臂。本发明的温度不敏感马赫曾德尔干涉仪中的器件结构基于SOI衬底制备而得到,由于SOI衬底中的硅的热光系数很大(可达到1.86×10 -4RIU/K,其中,RIU为折射率单位),可以引起相当大的随温度变化的波长飘移(约80pm/K),在此基础上,通过设置所述连接臂的宽度及厚度等参数可以实现对温度不敏感;同时,本发明的温度不敏感马赫曾德尔干涉仪可以实现与CMOS工艺兼容,便于批量化生产;本发明的温度不敏感马赫曾德尔干涉仪无论输入端输入TE0模式的入射光还是TE1模式的输入光,其输出端均可以输出TE0模式和TE1模式的出射光;本发明的温度不敏感马赫曾德尔干涉仪中两个模式转换器通过一个连接臂相连接,结构简单,具有较小的损耗;本发明的温度不敏感马赫曾德尔干涉仪中的非对称锥形波导中直波导的宽度可以在较大范围(±50nm)调整而不会对器件的性能造成影响,可以在硅光子工艺平台实现高质量大规模生产。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

  1. 一种温度不敏感马赫曾德尔干涉仪,其特征在于,所述温度不敏感马赫曾德尔干涉仪包括:
    第一模式转换器;
    第二模式转换器,位于所述第一模式转换器的一侧,且与所述第一模式转换器具有间距;
    连接臂,位于所述第一模式转换器与所述第二模式转换器之间,所述连接臂一端与所述第一模式转换器相连接,另一端与所述第二模式转换器相连接;所述连接臂包括直波导连接臂。
  2. 根据权利要求1所述的温度不敏感马赫曾德尔干涉仪,其特征在于,
    所述第一模式转换器包括:输入波导、第一非对称锥形波导、第一直波导及第二非对称锥形波导;其中,所述输入波导、所述第一非对称锥形波导、所述直波导及所述第二非对称锥形波导依次相连接;所述第二非对称锥形波导与所述连接臂相连接;
    所述第二模式转换器包括第三非对称锥形波导、第二直波导、第四非对称锥形波导及输出波导;其中,所述第三非对称锥形波导、所述第二直波导、所述第四非对称锥形波导及所述输出波导依次相连接;所述第三非对称锥形波导与所述连接臂相连接。
  3. 根据权利要求2所述的温度不敏感马赫曾德尔干涉仪,其特征在于,
    所述第一非对称锥形波导的一端为窄端面,另一端为宽端面,所述第一非对称锥形波导的窄端面与所述输入波导相连接,所述第一非对称锥形波导的宽端面与所述第一直波导相连接;
    所述第二非对称锥形波导的一端为窄端面,另一端为宽端面,所述第二非对称锥形波导的宽端面与所述第一直波导相连接,所述第二非对称锥形波导的窄端面与所述连接臂相连接;
    所述第三非对称锥形波导的一端为窄端面,另一端为宽端面,所述第三非对称锥形波导的窄端面与所述连接臂相连接,所述第三非对称锥形波导的宽端面与所述第二直波导相连接;
    所述第四非对称锥形波导的一端为窄端面,另一端为宽端面,所述第四非对称锥形波导的宽端面与所述第二直波导相连接,所述第四非对称锥形波导的窄端面与所述输出波导相连接。
  4. 根据权利要求3所述的温度不敏感马赫曾德尔干涉仪,其特征在于,所述第一非对称锥形波导的宽端面的宽度及所述第二非对称锥形波导的宽端面的宽度均与所述第一直波导的宽度相同,所述第三非对称锥形波导的宽端面的宽度及所述第四非对称锥形波导宽端面的宽度均与所述第二直波导的宽度相同。
  5. 根据权利要求3所述的温度不敏感马赫曾德尔干涉仪,其特征在于,所述输入波导的宽度为0.45μm~0.55μm;所述第一锥形波导的宽端面的宽度为2.1μm~2.2μm,所述第一锥形波导的窄端面的宽度为0.45μm~0.55μm,所述第一锥形波导的长度为8.05μm~8.15μm;所述第一直波导的宽度为2.1μm~2.2μm,所述第一直波导的长度为4.95μm~5.05μm;所述第二锥形波导的宽端面的宽度为2.1μm~2.2μm,所述第二锥形波导的窄端面的宽度为1.15μm~1.25μm,所述第二锥形波导的长度为6.25μm~6.35μm;所述第三锥形波导的宽端面的宽度为2.1μm~2.2μm,所述第三锥形波导的窄端面的宽度为1.15μm~1.25μm,所述第三锥形波导的长度为6.25μm~6.35μm;所述第二直波导的宽度为2.1μm~2.2μm,所述第二直波导的长度为4.95μm~5.05μm;所述第四锥形波导的宽端面的宽度为2.1μm~2.2μm,所述第四锥形波导的窄端面的宽度为0.45μm~0.55μm,所述第四锥形波导的长度8.05μm~8.15μm;所述输入波导的宽度为0.45μm~0.55μm。
  6. 根据权利要求1所述的温度不敏感马赫曾德尔干涉仪,其特征在于,所述第一模式转换器的厚度、所述第二模式转换器的厚度及所述连接臂的厚度均为215nm~225nm。
  7. 根据权利要求1所述的温度不敏感马赫曾德尔干涉仪,其特征在于,所述温度不敏感马赫增德尔干涉仪还包括第一反向锥形耦合器及第二反向锥形耦合器;其中,所述第一反向锥形耦合器包括两个输入端及一个输出端,所述第一反向锥形耦合器的输出端与所述第一模式转换器远离所述连接臂的一端相连接;所述第二反向锥形耦合器包括一个输入端及两个输出端,所述第二反向锥形耦合器的输入端与所述第二模式转换器远离所述连接臂的一端相连接。
  8. 根据权利要求1所述的温度不敏感马赫曾德尔干涉仪,其特征在于,所述温度不敏感马赫曾德尔干涉仪还包括基底,所述基底包括SOI衬底中的底层硅层及埋氧层,所述第一模式转换器、所述连接臂及所述第二模式转换器均通过刻蚀所述SOI衬底中的顶层硅层而形成。
  9. 根据权利要求8所述的温度不敏感马赫曾德尔干涉仪,其特征在于,所述温度不敏感马赫曾德尔干涉仪还包括保护层,所述保护层位于所述埋氧层的上表面,且完全覆盖所述第一模式转换器、所述连接臂及所述第二模式转换器。
  10. 根据权利要求1至9中任一项所述的温度不敏感马赫曾德尔干涉仪,其特征在于,所述连接臂的宽度为646nm。
PCT/CN2019/070284 2018-12-10 2019-01-03 温度不敏感马赫曾德尔干涉仪 WO2020118807A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/312,393 US11796738B2 (en) 2018-12-10 2019-01-03 Temperature-insensitive Mach-Zehnder interferometer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811501015.0A CN109283616B (zh) 2018-12-10 2018-12-10 温度不敏感马赫曾德尔干涉仪
CN201811501015.0 2018-12-10
CN201822059191.5 2018-12-10
CN201822059191.5U CN209433059U (zh) 2018-12-10 2018-12-10 温度不敏感马赫曾德尔干涉仪

Publications (1)

Publication Number Publication Date
WO2020118807A1 true WO2020118807A1 (zh) 2020-06-18

Family

ID=71075368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070284 WO2020118807A1 (zh) 2018-12-10 2019-01-03 温度不敏感马赫曾德尔干涉仪

Country Status (2)

Country Link
US (1) US11796738B2 (zh)
WO (1) WO2020118807A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604048A (zh) * 2009-07-21 2009-12-16 浙江大学 一种基于细芯光纤的全光纤滤波器
CN102288136A (zh) * 2011-08-08 2011-12-21 哈尔滨工程大学 一种基于非对称双芯光纤的扭转传感器
CN102721431A (zh) * 2012-06-28 2012-10-10 上海大学 锥型波导辅助的级联长周期波导光栅传感器及其制备方法
CN103063238A (zh) * 2012-12-27 2013-04-24 华中科技大学 一种基于马赫曾德尔干涉的全光纤传感器
US20180003897A1 (en) * 2015-06-29 2018-01-04 Elenion Technologies, Llc Optimized 2x2 3db multi-mode interference coupler

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59610596D1 (de) * 1995-02-01 2003-08-14 Juerg Leuthold Kompakte optisch-optische schalter und wellenlängen-konverter mittels multimode-interferenz moden-konvertern
KR100403055B1 (ko) * 2002-01-16 2003-10-23 한국전자통신연구원 신호 분리형 광 파장 변환기
JP5457661B2 (ja) * 2008-07-14 2014-04-02 日本電信電話株式会社 光波長合分波回路
US9690044B2 (en) * 2013-06-07 2017-06-27 Nec Corporation Waveguide mode converter, polarization beam splitter, and optical device
US11048052B2 (en) * 2019-09-24 2021-06-29 Macom Technology Solutions Holdings, Inc. Polarization splitter and rotator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604048A (zh) * 2009-07-21 2009-12-16 浙江大学 一种基于细芯光纤的全光纤滤波器
CN102288136A (zh) * 2011-08-08 2011-12-21 哈尔滨工程大学 一种基于非对称双芯光纤的扭转传感器
CN102721431A (zh) * 2012-06-28 2012-10-10 上海大学 锥型波导辅助的级联长周期波导光栅传感器及其制备方法
CN103063238A (zh) * 2012-12-27 2013-04-24 华中科技大学 一种基于马赫曾德尔干涉的全光纤传感器
US20180003897A1 (en) * 2015-06-29 2018-01-04 Elenion Technologies, Llc Optimized 2x2 3db multi-mode interference coupler

Also Published As

Publication number Publication date
US11796738B2 (en) 2023-10-24
US20220120973A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
Jin et al. LiNbO 3 thin-film modulators using silicon nitride surface ridge waveguides
US6668103B2 (en) Optical modulator with monitor having 3-dB directional coupler or 2-input, 2-output multimode interferometric optical waveguide
US11940707B2 (en) High-speed and low-voltage electro-optical modulator based on lithium niobate-silicon wafer
US9568801B2 (en) Optical modulator
US9588395B2 (en) Optical waveguide modulator with an output MMI tap
US20090074346A1 (en) Hybrid Electro-Optic Polymer/Sol-Gel Modulator
JP5660095B2 (ja) 光変調器
JP2015230466A (ja) 光導波路素子およびこれを用いた光変調器
CN105700202A (zh) 一种基于铌酸锂的pm-qpsk集成光调制器及其工作方法
CN115857201A (zh) 一种基于薄膜铌酸锂密集双波导的偏振无关的电光调制器
CN111487719A (zh) 一种基于模式转换的硅基铌酸锂偏振无关光调制器
CN109283616B (zh) 温度不敏感马赫曾德尔干涉仪
WO2020118807A1 (zh) 温度不敏感马赫曾德尔干涉仪
CN209433059U (zh) 温度不敏感马赫曾德尔干涉仪
CN206178309U (zh) 光调制器及光调制系统
WO2022126813A1 (zh) 一种基于y分支对称结构的硅基马赫曾德尔干涉仪
CN201508442U (zh) 集成光学多功能调制器
CN210243999U (zh) 基于氧化锌波导的新型铌酸锂电光调制器
Liu et al. Silicon rich nitride-lithium niobate on insulator platform for photonics integrated circuits
CN109375389B (zh) 一种石墨烯电光调制器及其制备方法
CN1203361C (zh) 包层调制波导型电光调制器
Ghomashi et al. Simulation of electro optic modulators based on plasmonic directional couplers
CN112130352A (zh) 一种光开关
JPH0659223A (ja) 導波路型光変調器
CN110646957A (zh) 基于氧化锌波导的新型铌酸锂电光调制器及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897013

Country of ref document: EP

Kind code of ref document: A1