WO2022126813A1 - 一种基于y分支对称结构的硅基马赫曾德尔干涉仪 - Google Patents

一种基于y分支对称结构的硅基马赫曾德尔干涉仪 Download PDF

Info

Publication number
WO2022126813A1
WO2022126813A1 PCT/CN2021/071470 CN2021071470W WO2022126813A1 WO 2022126813 A1 WO2022126813 A1 WO 2022126813A1 CN 2021071470 W CN2021071470 W CN 2021071470W WO 2022126813 A1 WO2022126813 A1 WO 2022126813A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
branch
input
output
curved
Prior art date
Application number
PCT/CN2021/071470
Other languages
English (en)
French (fr)
Inventor
赵瑛璇
黄海阳
仇超
甘甫烷
盛振
Original Assignee
中国科学院上海微系统与信息技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海微系统与信息技术研究所 filed Critical 中国科学院上海微系统与信息技术研究所
Publication of WO2022126813A1 publication Critical patent/WO2022126813A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12038Glass (SiO2 based materials)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12159Interferometer

Definitions

  • the invention relates to the technical field of silicon photonic devices, in particular to a silicon-based Mach-Zehnder interferometer based on a Y-branch symmetric structure.
  • silicon photonics technology has developed rapidly. research hotspots in recent years.
  • the silicon-based Mach-Zehnder interferometer is the most basic silicon photonic device, and plays an important role in silicon-based wavelength division multiplexing technology, high-speed silicon-based modulators, and optical switches.
  • the transmission efficiency of the existing silicon-based Mach-Zehnder interferometers is unstable and difficult to meet the needs of different applications.
  • the technical problem to be solved by the present invention is to provide a silicon-based Mach-Zehnder interferometer based on a Y-branch symmetric structure, which can enable stable transmission efficiency when the waveguide length varies from 10 ⁇ m to 40 ⁇ m.
  • the technical solution adopted by the present invention to solve the technical problem is to provide a silicon-based Mach-Zehnder interferometer based on a Y-branch symmetric structure, comprising an input Y-branch waveguide and an output Y-branch waveguide, the input Y-branch waveguide and the output Y-branch waveguide
  • the structure of the branch waveguide is the same, the first output end of the input Y branch waveguide is connected to the first input end of the output Y branch waveguide through the first straight waveguide; the second output end of the input Y branch waveguide is connected to the first curved waveguide one end of the output Y-branch waveguide is connected to one end of the second curved waveguide, the other end of the first curved waveguide and the other end of the second curved waveguide pass through the second straight waveguide connected; the first curved waveguide has the same structure as the second curved waveguide, and is symmetrical along the centerline of the second straight waveguide.
  • the distance between the first output end and the second output end of the input Y-branch waveguide is equal to the length of the input end of the input Y-branch waveguide; the distance between the first input end and the second input end of the output Y-branch waveguide The distance is equal to the length of the output end of the output Y-branch waveguide.
  • the distance between the first output end and the second output end of the input Y-branch waveguide is 5 ⁇ m; the distance between the first input end and the second input end of the output Y-branch waveguide is 5 ⁇ m.
  • the ratio of the distance between one end and the other end of the first curved waveguide to the length of the first curved waveguide is 3.05:4; the distance between one end and the other end of the second curved waveguide is the same as that of the second curved waveguide.
  • the length ratio of the curved waveguide is 3.05:4.
  • the distance between one end and the other end of the first curved waveguide is 3.05 ⁇ m; the length of the first curved waveguide is 4 ⁇ m; the distance between one end and the other end of the second curved waveguide is 3.05 ⁇ m; The length of the second curved waveguide is 4 ⁇ m.
  • the first curved waveguide and the second curved waveguide are both S-shaped curved waveguides.
  • the input Y-branch waveguide and the output Y-branch waveguide both adopt arc-shaped design in the branch part.
  • the present invention has the following advantages and positive effects compared with the prior art: the Y branch waveguide of the present invention adopts an arc-shaped design in the branch part, and the S-shaped curved waveguide makes the overall width of the device
  • the transmission efficiency of the waveguide varies from 10 ⁇ m to 40 ⁇ m, the transmission efficiency is above 96.3%, the interference spectrum is flat, and the extinction ratio of the device is above 12dB. , and the performance remains stable when the thickness and width of the waveguide are varied within ⁇ 20 nm.
  • Fig. 1 is the structural representation of the present invention
  • Fig. 2 is each part length schematic diagram of the present invention.
  • Fig. 3 is the schematic diagram of the width of each part of the present invention.
  • Fig. 4 is the simulation result figure of the present invention.
  • Fig. 5 is the simulation result diagram when the thickness of the waveguide in the present invention is changed at ⁇ 10nm and ⁇ 20nm respectively;
  • Fig. 6 is the simulation result diagram when the waveguide width in the present invention is changed at ⁇ 10nm and ⁇ 20nm respectively;
  • FIG. 7 is a flow chart of the manufacturing process of the present invention.
  • Embodiments of the present invention relate to a silicon-based Mach-Zehnder interferometer based on a Y-branch symmetric structure, as shown in FIG. 1 , including an input Y-branch waveguide and an output Y-branch waveguide, the input Y-branch waveguide and the output Y-branch waveguide
  • the structure is the same, the first output end of the input Y-branch waveguide is connected to the first input end of the output Y-branch waveguide through the first straight waveguide; the second output end of the input Y-branch waveguide is connected to one end of the first curved waveguide connected, the second input end of the output Y-branch waveguide is connected with one end of the second curved waveguide, and the other end of the first curved waveguide is connected with the other end of the second curved waveguide through the second straight waveguide;
  • the first curved waveguide has the same structure as the second curved waveguide, both are S-shaped curved waveguides, and are symmetric
  • the optical signal input by the incident light is divided into the same two beams by the input Y-branch waveguide.
  • the two beams are transmitted in the upper and lower two waveguides with different lengths respectively, and are recombined by the output Y-branch waveguide at the output port.
  • the waveguides of different lengths Can change the phase of the beam, and finally achieve interference.
  • the distance between the first output end and the second output end of the input Y-branch waveguide is equal to the length of the input end of the input Y-branch waveguide;
  • the distance between the two input ends is equal to the length of the output end of the output Y-branch waveguide.
  • the ratio of the distance between one end and the other end of the first curved waveguide to the length of the first curved waveguide is 3.05:4;
  • the distance between one end and the other end of the second curved waveguide is the same as that of the second curved waveguide.
  • the length ratio of the curved waveguide is 3.05:4.
  • the length distribution of each device in this embodiment is as follows: the length of the input end of the input Y-branch waveguide is 5 ⁇ m, and the length of the output end is 5.4 ⁇ m; the length of the first curved waveguide is 4 ⁇ m; the length of the first curved waveguide is 4 ⁇ m; The length of the second straight waveguide is L; the length of the second curved waveguide is 4 ⁇ m; the length of the input end of the output Y branch waveguide is 5.4 ⁇ m, and the length of the output end is 5 ⁇ m; the length of the first straight waveguide is 4 ⁇ m +L+4 ⁇ m.
  • the width distribution of each device in this embodiment is as follows: the distance between the first output end and the second output end of the input Y-branch waveguide is 5 ⁇ m; one end of the first curved waveguide is connected to the other The distance between one end is 3.05 ⁇ m; the distance between one end and the other end of the second curved waveguide is 3.05 ⁇ m; the distance between the first input end and the second input end of the output Y-branch waveguide is 5 ⁇ m .
  • the transmission efficiency of the device varies with the length L as shown in Figure 4. It can be seen from Figure 4 that when the waveguide length of the device varies from 10 ⁇ m to 40 ⁇ m, the interference pattern can be seen in the simulation results, the transmission efficiency of the device is above 96.3%, the interference spectrum line is flat, and the extinction ratio of the device is 12dB above.
  • the waveguide thickness of the device is 220 nm.
  • the simulation results are shown in Figure 5. It can be seen that the performance of the device remains stable when the thickness of the top layer silicon varies within ⁇ 20 nm. .
  • the waveguide width of the device is 500 nm.
  • the simulation results are shown in Figure 6. It can be seen that the performance of the device remains stable when the silicon waveguide width varies within ⁇ 20 nm. .
  • the Y-branch waveguide of the present invention adopts an arc-shaped design in the branch part, and the overall width and loss of the device are reduced by the S-shaped bending waveguide.
  • the optimized design of the parameters of the Y-branch and the S-shaped bending waveguide When the length of the waveguide varies from 10 ⁇ m to 40 ⁇ m, the transmission efficiency is above 96.3%, the interference spectrum is flat, the extinction ratio of the device is above 12 dB, and the performance remains stable when the thickness and width of the waveguide are changed at ⁇ 20 nm.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明涉及一种基于Y分支对称结构的硅基马赫曾德尔干涉仪,包括输入Y分支波导和输出Y分支波导,所述输入Y分支波导和输出Y分支波导的结构相同,所述输入Y分支波导的第一输出端通过第一直波导与输出Y分支波导的第一输入端相连;所述输入Y分支波导的第二输出端与第一弯曲波导的一端相连,所述输出Y分支波导的第二输入端与第二弯曲波导的一端相连,所述第一弯曲波导的另一端与所述第二弯曲波导的另一端通过所述第二直波导相连;所述第一弯曲波导与第二弯曲波导结构相同,并沿着第二直波导的中线对称。本发明能够使得波导长度在10μm到40μm变化时具有稳定的传输效率。

Description

一种基于Y分支对称结构的硅基马赫曾德尔干涉仪 技术领域
本发明涉及硅光子器件技术领域,特别是涉及一种基于Y分支对称结构的硅基马赫曾德尔干涉仪。
背景技术
在过去的几十年中,由于光通信及光互连日益增长的需求,硅光子技术得以迅速发展,同时因其具有结构紧凑,能耗低,CMOS工艺兼容以及高集成度等特性而成为近些年来的研究热点。其中硅基马赫曾德尔干涉仪是最基础的硅光子器件,在硅基波分复用技术、高速硅基调制器、光开关等中起到重要作用。现有的硅基马赫曾德尔干涉仪传输效率不稳定难以满足不同应用的需求。
发明内容
本发明所要解决的技术问题是提供一种基于Y分支对称结构的硅基马赫曾德尔干涉仪,能够使得波导长度在10μm到40μm变化时具有稳定的传输效率。
本发明解决其技术问题所采用的技术方案是:提供一种基于Y分支对称结构的硅基马赫曾德尔干涉仪,包括输入Y分支波导和输出Y分支波导,所述输入Y分支波导和输出Y分支波导的结构相同,所述输入Y分支波导的第一输出端通过第一直波导与输出Y分支波导的第一输入端相连;所述输入Y分支波导的第二输出端与第一弯曲波导的一端相连,所述输出Y分支波导的第二输入端与第二弯曲波导的一端相连,所述第一弯曲波导的另一端与所述第二弯曲波导的另一端通过所述第二直波导相连;所述第一弯曲波导与第二弯曲波导结构相同,并沿着第二直波导的中线对称。
所述输入Y分支波导的第一输出端和第二输出端之间的距离与所述输入Y分支波导输入端的长度相等;所述输出Y分支波导的第一输入端和第二输入端之间的距离与所述输出Y分支波导的输出端长度相等。
所述输入Y分支波导的第一输出端和第二输出端之间的距离为5μm;所述输出Y分支波导的第一输入端和第二输入端之间的距离为5μm。
所述第一弯曲波导的一端与另一端之间的距离与所述第一弯曲波导的长度比为3.05:4;所述第二弯曲波导的一端与另一端之间的距离与所述第二弯曲波导的长度比为3.05:4。
所述第一弯曲波导的一端与另一端之间的距离为3.05μm;所述第一弯曲波导的长度为 4μm;所述第二弯曲波导的一端与另一端之间的距离为3.05μm;所述第二弯曲波导的长度为4μm。
所述第一弯曲波导和第二弯曲波导均为S型弯曲波导。
所述输入Y分支波导和输出Y分支波导在分支部分均采用弧形设计。
有益效果
由于采用了上述的技术方案,本发明与现有技术相比,具有以下的优点和积极效果:本发明的Y分支波导在分支部分采用弧形设计,且通过S形弯曲波导使得器件整体的宽度和损耗均变小,通过Y分支及S形弯曲波导的参数的优化设计,使得波导长度在10μm到40μm变化时,其传输效率在96.3%以上,干涉谱线平坦,器件的消光比在12dB以上,并且在波导厚度和宽度在±20nm变化时,性能依然保持稳定。
附图说明
图1是本发明的结构示意图;
图2是本发明各部分长度示意图;
图3是本发明各部分宽度示意图;
图4是本发明的仿真结果图;
图5是本发明中波导厚度分别在±10nm、±20nm变化时的仿真结果图;
图6是本发明中波导宽度分别在±10nm、±20nm变化时的仿真结果图;
图7是本发明的制作工艺流程图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
本发明的实施方式涉及一种基于Y分支对称结构的硅基马赫曾德尔干涉仪,如图1所示,包括输入Y分支波导和输出Y分支波导,所述输入Y分支波导和输出Y分支波导的结构相同,所述输入Y分支波导的第一输出端通过第一直波导与输出Y分支波导的第一输入端相连;所述输入Y分支波导的第二输出端与第一弯曲波导的一端相连,所述输出Y分支波导的第二输入端与第二弯曲波导的一端相连,所述第一弯曲波导的另一端与所述第二弯曲波导的另一端通过所述第二直波导相连;所述第一弯曲波导与第二弯曲波导结构相 同,均为S型弯曲波导,并沿着第二直波导的中线对称。所述输入Y分支波导和输出Y分支波导在分支部分均采用弧形设计。
入射光输入的光信号由输入Y分支波导分为相同的两个光束,两束光分别在上下两个长度不同的波导中传输,在输出端口通过输出Y分支波导重新组合,其中不同长度的波导能够改变光束的相位,最后实现干涉。
本实施方式中,所述输入Y分支波导的第一输出端和第二输出端之间的距离与所述输入Y分支波导输入端的长度相等;所述输出Y分支波导的第一输入端和第二输入端之间的距离与所述输出Y分支波导的输出端长度相等。所述第一弯曲波导的一端与另一端之间的距离与所述第一弯曲波导的长度比为3.05:4;所述第二弯曲波导的一端与另一端之间的距离与所述第二弯曲波导的长度比为3.05:4。
如图2所示,本实施方式中各个器件的长度分布如下:所述输入Y分支波导的输入端的长度为5μm,输出端的长度为5.4μm;所述第一弯曲波导的长度为4μm;所述第二直波导的长度为L;所述第二弯曲波导的长度为4μm;所述输出Y分支波导的输入端的长度为5.4μm,输出端的长度为5μm;所述第一直波导的长度为4μm+L+4μm。
如图3所示,本实施方式中各个器件的宽度分布如下:所述输入Y分支波导的第一输出端和第二输出端之间的距离为5μm;所述第一弯曲波导的一端与另一端之间的距离为3.05μm;所述第二弯曲波导的一端与另一端之间的距离为3.05μm;所述输出Y分支波导的第一输入端和第二输入端之间的距离为5μm。
当波长为1550nm时,器件的传输效率随长度L变化情况如图4所示。从图4中可以看出,当器件的波导长度在10μm到40μm变化时,可以在仿真结果中看到干涉图样,器件的传输效率在96.3%以上,干涉谱线平坦,器件的消光比在12dB以上。
本实施方式的器件工艺容差仿真如下:
本实施方式中器件的波导厚度为220nm,当波导厚度分别在±10nm、±20nm变化时,仿真结果如图5所示,可以看到器件在顶层硅厚度变化±20nm以内时,性能依然保持稳定。
本实施方式中器件的波导宽度为500nm,当波导宽度分别在±10nm、±20nm变化时,仿真结果如图6所示,可以看到器件在硅波导宽度变化±20nm以内时,性能依然保持稳定。
本实施方式的制作工艺流程如图7所示,从SOI晶圆开始(220nm顶层硅,2μm的BOX层),首先是掩膜版沉积,之后是旋涂光刻胶进行光刻,再进行硅刻蚀,最后沉积上包层。
不难发现,本发明的的Y分支波导在分支部分采用弧形设计,且通过S形弯曲波导使 得器件整体的宽度和损耗均变小,通过Y分支及S形弯曲波导的参数的优化设计,使得波导长度在10μm到40μm变化时,其传输效率在96.3%以上,干涉谱线平坦,器件的消光比在12dB以上,并且在波导厚度和宽度在±20nm变化时,性能依然保持稳定。

Claims (7)

  1. 一种基于Y分支对称结构的硅基马赫曾德尔干涉仪,包括输入Y分支波导和输出Y分支波导,所述输入Y分支波导和输出Y分支波导的结构相同,其特征在于,所述输入Y分支波导的第一输出端通过第一直波导与输出Y分支波导的第一输入端相连;所述输入Y分支波导的第二输出端与第一弯曲波导的一端相连,所述输出Y分支波导的第二输入端与第二弯曲波导的一端相连,所述第一弯曲波导的另一端与所述第二弯曲波导的另一端通过所述第二直波导相连;所述第一弯曲波导与第二弯曲波导结构相同,并沿着第二直波导的中线对称。
  2. 根据权利要求1所述的基于Y分支对称结构的硅基马赫曾德尔干涉仪,其特征在于,所述输入Y分支波导的第一输出端和第二输出端之间的距离与所述输入Y分支波导输入端的长度相等;所述输出Y分支波导的第一输入端和第二输入端之间的距离与所述输出Y分支波导的输出端长度相等。
  3. 根据权利要求1所述的基于Y分支对称结构的硅基马赫曾德尔干涉仪,其特征在于,所述输入Y分支波导的第一输出端和第二输出端之间的距离为5μm;所述输出Y分支波导的第一输入端和第二输入端之间的距离为5μm。
  4. 根据权利要求1所述的基于Y分支对称结构的硅基马赫曾德尔干涉仪,其特征在于,所述第一弯曲波导的一端与另一端之间的距离与所述第一弯曲波导的长度比为3.05:4;所述第二弯曲波导的一端与另一端之间的距离与所述第二弯曲波导的长度比为3.05:4。
  5. 根据权利要求1所述的基于Y分支对称结构的硅基马赫曾德尔干涉仪,其特征在于,所述第一弯曲波导的一端与另一端之间的距离为3.05μm;所述第一弯曲波导的长度为4μm;所述第二弯曲波导的一端与另一端之间的距离为3.05μm;所述第二弯曲波导的长度为4μm。
  6. 根据权利要求1所述的基于Y分支对称结构的硅基马赫曾德尔干涉仪,其特征在于,所述第一弯曲波导和第二弯曲波导均为S型弯曲波导。
  7. 根据权利要求1所述的基于Y分支对称结构的硅基马赫曾德尔干涉仪,其特征在于,所述输入Y分支波导和输出Y分支波导在分支部分均采用弧形设计。
PCT/CN2021/071470 2020-12-15 2021-01-13 一种基于y分支对称结构的硅基马赫曾德尔干涉仪 WO2022126813A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011479959.XA CN112462469A (zh) 2020-12-15 2020-12-15 一种基于y分支对称结构的硅基马赫曾德尔干涉仪
CN202011479959.X 2020-12-15

Publications (1)

Publication Number Publication Date
WO2022126813A1 true WO2022126813A1 (zh) 2022-06-23

Family

ID=74804408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071470 WO2022126813A1 (zh) 2020-12-15 2021-01-13 一种基于y分支对称结构的硅基马赫曾德尔干涉仪

Country Status (2)

Country Link
CN (1) CN112462469A (zh)
WO (1) WO2022126813A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113488832B (zh) * 2021-06-29 2022-09-30 青岛海信宽带多媒体技术有限公司 一种具有调制器的激光器及光模块

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090310906A1 (en) * 2008-06-17 2009-12-17 Fujitsu Limited Optical device and producing method thereof
CN106873074A (zh) * 2017-04-25 2017-06-20 吉林大学 一种基于光漂白的区间可调的非对称m‑z光波导传感器及其制备方法
CN110286444A (zh) * 2019-06-14 2019-09-27 浙江大学 一种基于相变材料的可重构微环光开关
CN110838673A (zh) * 2019-11-20 2020-02-25 中国科学院长春光学精密机械与物理研究所 一种可调谐窄线宽激光器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090310906A1 (en) * 2008-06-17 2009-12-17 Fujitsu Limited Optical device and producing method thereof
CN106873074A (zh) * 2017-04-25 2017-06-20 吉林大学 一种基于光漂白的区间可调的非对称m‑z光波导传感器及其制备方法
CN110286444A (zh) * 2019-06-14 2019-09-27 浙江大学 一种基于相变材料的可重构微环光开关
CN110838673A (zh) * 2019-11-20 2020-02-25 中国科学院长春光学精密机械与物理研究所 一种可调谐窄线宽激光器

Also Published As

Publication number Publication date
CN112462469A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
CN204302526U (zh) 偏振分束旋转器
JP2015079053A (ja) 基板型光導波路素子
CN109324372B (zh) 一种硅光波导端面耦合器
CN114721176B (zh) 一种基于片上模式转换的偏振控制器
CN113640913B (zh) 一种与单模光纤直接耦合的lnoi基模斑转换器
CN109581586B (zh) 一种结构紧凑型氮化硅波分复用光子芯片
CN112051641A (zh) 应用狭缝波导结构的倾斜光栅式偏振分束器及制造方法
CN111522096B (zh) 硅波导与氧化硅波导模式转换器的制备方法
CN113126206A (zh) 一种基于亚波长光栅的硅基偏振分束芯片及其制造方法
CN115857091A (zh) 一种铌酸锂薄膜mmi起偏分束器
CN110780381B (zh) 非对称三波导结构的偏振分束器及其制备方法
WO2022126813A1 (zh) 一种基于y分支对称结构的硅基马赫曾德尔干涉仪
CN101881859A (zh) 一种采用多模干涉耦合的光延时器
CN116520493A (zh) 一种基于薄膜铌酸锂的te模和tm模分离的偏振分束器芯片
WO2022012434A1 (zh) 一种高密度集成光波导
CN105824075A (zh) 一种微环反射光波导辅助的折叠反射式阵列波导光栅波分复用器
CN214586094U (zh) 一种基于亚波长光栅的硅基偏振分束芯片
CN115903135A (zh) 一种基于薄膜铌酸锂悬臂梁结构的双偏振端面耦合器
CN101452095A (zh) 一种绝缘体上的硅基槽缝式光波导耦合器及其制作方法
CN213814027U (zh) 一种基于y分支对称结构的硅基马赫曾德尔干涉仪
US10908359B2 (en) Adjustable wide-spectrum wavelength-insensitive directional coupler
CN113253384B (zh) 一种高消光比的偏振分束器结构
CN212647048U (zh) 应用狭缝波导结构的倾斜光栅式偏振分束器
CN115291333B (zh) 一种可重构的硅基多模微环谐振器
CN219657906U (zh) 一种环形反射器辅助多模干涉波导的波分复用器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21904760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21904760

Country of ref document: EP

Kind code of ref document: A1