WO2020118769A1 - 一种旋转电机 - Google Patents

一种旋转电机 Download PDF

Info

Publication number
WO2020118769A1
WO2020118769A1 PCT/CN2018/123434 CN2018123434W WO2020118769A1 WO 2020118769 A1 WO2020118769 A1 WO 2020118769A1 CN 2018123434 W CN2018123434 W CN 2018123434W WO 2020118769 A1 WO2020118769 A1 WO 2020118769A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor shaft
ring
shaft
induction coil
load
Prior art date
Application number
PCT/CN2018/123434
Other languages
English (en)
French (fr)
Inventor
刘元江
周忠厚
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2020118769A1 publication Critical patent/WO2020118769A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/0094Structural association with other electrical or electronic devices

Definitions

  • the present invention relates to the technical field of electric machines, and more specifically, the present invention relates to a rotating electric machine.
  • the motor is also called a motor, specifically refers to an electromagnetic device that realizes the conversion or transmission of electric energy according to the law of electromagnetic induction.
  • the main job of the motor is to generate driving torque, which is used as a power source for various electrical equipment or various mechanical devices.
  • driving torque which is used as a power source for various electrical equipment or various mechanical devices.
  • An object of the present invention is to provide a new technical solution for a rotating electrical machine.
  • a rotating electric machine including:
  • stator fixed in the accommodating cavity and the rotor rotating relative to the stator
  • a load sensing device which includes an induction coil fixed in the motor housing and surrounding the periphery of the motor shaft.
  • the load shaft is configured to be inserted into the motor shaft to cooperate with the induction coil to change the inductance of the induction coil.
  • the load shaft is made of iron material; the load shaft is configured to be inserted into the induction coil or over the induction coil.
  • the load shaft is made of non-ferrous material; it also includes an induction coil elastically supported in the motor shaft; at the initial position, the induction coil is staggered from the induction coil; when the load shaft is inserted into the motor shaft, The load shaft drives the induction coil to move down to cooperate with the induction coil to change the inductance of the induction coil.
  • the outer side of the induction ring extends radially outward to form a ring-shaped bearing platform
  • the inner wall of the motor shaft is provided with a ring-shaped groove for cooperating with the ring-shaped bearing platform; the ring-shaped bearing platform is carried in the ring-shaped groove by a spring.
  • the induction ring has a tapered inner cavity, and the free end of the load shaft is adapted to the inner cavity of the induction ring.
  • the above-mentioned rotating electrical machine further includes a bottom cover, the bottom cover is fixed to the bottom of the motor housing, the bottom cover is provided with a middle hole through which the power supply shaft penetrates, and the bottom cover surrounds it
  • the hole is provided with a circle of groove; the induction coil is arranged in the groove.
  • a shield ring for electromagnetic isolation from the stator is provided on the exposed end surface of the induction coil.
  • the motor shaft has opposite first and second ends; the motor shaft is provided with a ring groove recessed inwardly near the first end; the motor shaft extends from the ring groove to the second end A first column and a second column are formed in sequence at the end, the first column is larger than the second column, and a first stepped groove is formed at the position where the two are connected;
  • the gap in the ring groove is fitted with a split sliding upper bearing.
  • the split sliding upper bearing is configured to: when the motor shaft is inserted into the accommodating cavity, the split sliding upper bearing is fixed on the motor housing to protect the motor Position the first end of the shaft;
  • the rotor is fixed on the first cylinder of the motor shaft
  • the second cylinder of the motor shaft extends into the middle hole on the bottom cover and is clearance-matched with the middle hole.
  • the first stepped groove of the motor shaft is carried on the end surface of the bottom cover Position the second end of the motor shaft.
  • the split sliding upper bearing includes a semi-circular first sliding upper bearing and a semi-circular second sliding upper bearing, and the first sliding upper bearing and the second sliding upper bearing are respectively inserted into the motor In the ring groove of the shaft;
  • the position of the accommodating cavity relative to the first end of the motor shaft is provided with a second step groove for fixing together with the split sliding upper bearing.
  • the bottom cover is in the shape of a cover plate, and a raised ring platform is further provided on the inner end surface around the middle hole, and the first step groove of the motor shaft is carried on the ring platform;
  • a plurality of support portions extending radially outward are distributed on the outer wall of the ring platform in a circumferential direction, and a recessed portion is formed between two adjacent support portions, and the plurality of recessed portions are configured to: avoid the stator Winding coil
  • a retaining groove for positioning one side of the stator is provided on the inner wall of the accommodating cavity, and the support portion of the bottom cover is configured to position the other side of the stator.
  • the rotating electric machine provided by the embodiment of the present invention has the motor shaft designed as a hollow structure, and uses the space in the motor shaft and the space in the motor housing to accommodate the load sensing device, so as to realize the built-in design of the load sensing device and simplify the external of the rotating motor Structure.
  • FIG. 1 is a cross-sectional view of a rotating electric machine provided by an embodiment of the present invention.
  • FIG. 2 is an exploded view of the structure of a rotating electric machine provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a load sensing device provided by an embodiment of the present invention.
  • An embodiment of the present invention provides a rotating electric machine, as shown in FIG. 1 and FIG. 2, including: a motor housing 11 with a receiving cavity, a hollow motor shaft 3, a load shaft 101 for inserting into the motor shaft 3, fixed at The stator 7 and the rotor 6 rotating relative to the stator 7 in the accommodating cavity, and the load sensing device.
  • the load sensing device includes an induction coil 8 fixed in the motor housing 11 and surrounding the periphery of the motor shaft 3, and the load shaft 101 is configured to be inserted into the hollow motor shaft 3 to cooperate with the induction coil 8, To change the inductance of the induction coil 8.
  • the rotating electrical machine provided by the embodiment of the present invention has the motor shaft 3 designed as a hollow structure, and the load shaft 101 can be inserted into the interior of the motor shaft 3. Furthermore, the load sensing device is provided in the motor housing 11. Therefore, a built-in design of the load sensing device relative to the motor is realized, which simplifies the external structure of the rotary motor. When the motor drives the axial load, the built-in load sensing device can be used to sense and measure the axial load.
  • the aspect ratio of the motor shaft 3 provided by the embodiment of the present invention is less than 1.
  • the purpose of this design is to form a motor shaft with a short and thick outer shape, which can make the motor shaft 3 have a larger size in the radial direction.
  • the motor shaft 3 has a hollow structure, which facilitates insertion of the load shaft 101 or other components therein, and can effectively utilize the space in the motor shaft 3.
  • the load shaft 101 of the present invention may be made of iron material.
  • the load shaft 101 when it is used, it is directly inserted into the induction coil 8 or over the induction coil 8. At this time, since the load shaft 101 is made of iron material, when inserted into the induction coil 8, the inductance of the induction coil 8 may be changed. Specifically, when the iron load shaft 101 is inserted into the induction coil 8 or exceeds the induction coil 8, the inductance of the induction coil 8 may be increased.
  • the load shaft 101 of the present invention may also be made of non-ferrous materials.
  • the load sensing device provided by the embodiment of the present invention may further include an induction coil 5 elastically supported in the motor shaft 3, and the induction coil 5 uses a magnet Made of materials. Specifically, at the initial position, the induction coil 5 and the induction coil 8 are staggered.
  • the load shaft 101 can drive the induction coil 5 to move down to cooperate with the induction coil 8 to change the inductance of the induction coil 8.
  • the inductance of the induction coil 8 may also be changed, that is, the inductance of the induction coil 8 may be increased.
  • the load shaft 101 is made of non-ferrous material, and the load sensing device needs to be provided with an induction ring 5 of magnet material as an example to illustrate the load sensing device of the present invention.
  • the induction coil 5 can be driven to move down to cooperate with the induction coil 8. At this time, the inductance of the induction coil 8 will increase. Specifically:
  • the load sensing device of the present invention adopts a current measurement method, as follows:
  • the inductance L of the induction coil 5 is:
  • ⁇ s the relative permeability of the magnetic core inside the coil.
  • the current flowing through the induction coil 8 at no load is:
  • the inductance L 1 of the induction coil 8 increases sharply, and the current I 1 /I ⁇ 1.
  • the load of the load can be determined by the output of the logic comparison circuit.
  • the structure of the load tray 1 is that a load loading hole is provided on the load tray 1, and the load loading hole is connected to a load shaft 101 having a hollow structure.
  • the structure of the induction ring 5 of the present invention is as follows: referring to FIG. 1 and FIG. 2, a ring-shaped carrying platform 501 is formed extending radially outward on the outside thereof. Specifically, a ring groove 304 for cooperating with the ring-shaped carrier 501 is provided on the inner wall of the motor shaft 3, and the ring-shaped carrier 501 can be carried in the ring-shaped groove 304 by the spring 4. Therefore, the phenomenon of slippage of the induction coil 5 is avoided.
  • the inner wall of the induction ring 5 can be designed in a tapered structure. This design is mainly for carrying the load shaft 101 and the like.
  • the induction ring 5 has a tapered inner cavity, and the free end of the load shaft 101 is adapted to the inner cavity of the induction ring 5.
  • a ring bearing ring platform can also be provided on the inner wall of the induction ring 5, so as to better play a bearing role.
  • the induction coil 5 can be made of materials well known in the art, such as magnet materials, which is not limited in the present invention.
  • the ring-shaped bearing table 501 of the induction coil 5 can be carried in the ring-shaped groove 304 in the motor shaft 3 through the spring 4.
  • the spring 4 is configured such that when the load shaft 101 is removed, the induction coil 5 can return to the initial position under the action of the spring 4, that is, the induction coil 5 and the induction coil 8 are staggered.
  • the spring 4 may be a wave spring.
  • the wave spring has a ring-shaped structure. Referring to FIG. 2 and FIG. 3, a plurality of wave peaks and a plurality of wave troughs are formed on the wave spring, and the wave crests and the wave troughs are alternately arranged.
  • one or more springs 4 may be provided.
  • the multiple springs 4 can be stacked on the outer wall of the induction coil 5 in sequence.
  • the number of springs 4 can be reasonably set according to the requirements of spring force and load weight, and the present invention does not limit this.
  • the spring 4 may be made of materials well known in the art, for example, it may be made of spring steel material.
  • the spring steel material has excellent mechanical properties, especially good elastic limit and strength limit. Moreover, the spring steel material also has good resistance to relaxation, heat resistance, low temperature resistance, oxidation resistance, corrosion resistance and other properties, which is very suitable for use in motors.
  • the rotating electric machine provided by the embodiment of the present invention further includes a bottom cover 10.
  • the bottom cover 10 is fixed to the bottom of the motor housing 11.
  • the bottom cover 10 is provided with a middle hole 1001 through which the power supply shaft 3 penetrates.
  • the bottom cover 10 is provided with a circle of grooves 1002 around the middle hole 1001. The groove 1002 can be used to place the induction coil 8 of the load sensing device, so that the induction coil 8 is located in the motor housing 11.
  • a shield ring 9 for electromagnetic isolation from the stator 7 is provided on the exposed end surface of the induction coil 8.
  • the shielding ring 9 is made of ferromagnetic material with shielding effect.
  • the shield ring 9 is combined with the induction coil 8.
  • the shielding ring 9 and the induction coil 8 may be glued together.
  • the shielding ring 9 and the induction coil 8 can also be fixed together by other methods well known in the art.
  • the rotary electric machine provided by the embodiment of the present invention may adopt a plug-in manner when assembling the motor shaft 3.
  • the motor shaft 3 has opposite first and second ends; the motor shaft 3 is provided with a ring groove 301 inwardly recessed near the first end; the motor shaft 3 is positioned from the ring groove 301 to the second end A first pillar 302 and a second pillar 303 are formed in this order.
  • the size of the first pillar 302 is larger than that of the second pillar 303, and a first stepped groove 305 is formed at a position where the two are connected.
  • a split sliding upper bearing 2 is fitted in the gap in the ring groove 301, and the split sliding upper bearing 2 is configured such that when the motor shaft 3 is inserted into the accommodating cavity, the split sliding upper bearing 2 is fixed on the motor housing 11 , To position the first end of the motor shaft 3.
  • the second cylinder 303 of the motor shaft 3 extends into the middle hole 1001 on the bottom cover 10 and is in clearance fit with the middle hole 1001.
  • the first step groove 305 of the motor shaft 3 is carried on the end surface of the bottom cover 10 to protect the motor The second end of the shaft 3 is positioned.
  • the split type sliding upper bearing 2 has a structure including a semi-circular first sliding upper bearing and a semi-circular second sliding upper bearing.
  • the first sliding upper bearing and the second sliding upper bearing are respectively inserted into the ring groove 301 of the motor shaft 3.
  • two semicircular first sliding upper bearings and second sliding upper bearings can be butted together to form a sliding bearing structure surrounding the motor shaft 3, so that the motor shaft 3 can be
  • the first end is positioned, and the bearing hole of the sliding bearing structure can be made relatively large, so that the radial dimension of the motor shaft is not limited by the bearing structure.
  • other types of split structures can also be used, such as a sliding bearing structure in which two arcs or three arcs are combined together, which is not described in detail here.
  • the split sliding upper bearing 2 may be made of Teflon material.
  • Teflon material has the characteristics of high temperature resistance, low friction coefficient, good wear resistance and good chemical stability.
  • the split sliding upper bearing can also use other materials well known in the art, which is not limited by the present invention.
  • the split sliding upper bearing 2 is provided with a plurality of recesses at intervals on the inner wall adapted to the ring groove 301.
  • the design of multiple recesses can reduce the friction area with the motor shaft 3, thereby reducing the friction with the motor shaft 3, and ultimately can improve the service life of the motor shaft.
  • a position for accommodating the split sliding upper bearing 2 is provided at the position of the first end of the accommodating cavity relative to the motor shaft 3.
  • the second step groove 1101 together.
  • the second step groove 1101 can be used to support the split sliding upper bearing 2, and the split sliding upper bearing 2 is fixed on the motor housing 11 to position the first end of the motor shaft 3.
  • the shape and size of the split sliding upper bearing 2 are adapted to the second step groove 1101, and can be fixed in the second step groove 1101 by glue or other methods well known to those skilled in the art.
  • the split sliding upper bearing 2 can also be directly fixed on the end surface of the motor housing 11, which will not be described in detail here.
  • the split sliding upper bearing 2 and the second step groove 1101 can also be assembled together in an interference fit manner, and the split sliding upper bearing 2 can also be fixed.
  • the above-mentioned method adopted in the present invention does not require the use of fasteners such as screws, rivets, bolts, etc. when assembling the split sliding upper bearing 2, but it can still ensure the stability of the assembly, and the assembly method is simple.
  • fasteners such as screws, rivets, bolts, etc.
  • other fixed connection methods well known in the art may also be used, which is not limited by the present invention.
  • the bottom cover 10 of the present invention is shaped like a cover plate, and a convex ring platform 1003 is provided around the middle hole 1001 on the inner end surface thereof, and the groove 1002 is located in the outer ring of the ring platform 1003.
  • the first step groove 305 of the motor shaft 3 is carried on the ring table 1003.
  • a plurality of support portions 1004 extending radially outward are distributed on the outer wall of the ring base 1003 in the circumferential direction, and a concave portion 1005 is formed between two adjacent support portions 1004.
  • the bottom cover 10 can also be made of Teflon material. Teflon material has the characteristics of high temperature resistance, low friction coefficient, good wear resistance and good chemical stability. Of course, the bottom cover 10 may also use materials well known in the art, which may be metallic materials or non-metallic materials, which is not limited in the present invention.
  • the motor shaft 3 of the present invention has a first end and a second end that are oppositely arranged, which respectively adopt a split sliding upper bearing 2 and a special structure of the accommodating cavity cooperates with the bottom cover 10 to realize the need to fasten the motor without fasteners
  • the rotating electrical machine provided by the embodiment of the present invention is based on the structure of the motor housing 11.
  • the stator 7 and the rotor 6 are assembled, the stator 7 and the rotor 6 are configured to be assembled into the accommodating cavity from the position of the motor housing 11 relative to the second end of the motor shaft 3 .
  • a retaining groove 1102 for positioning one side of the stator 7 is provided on the inner wall of the accommodating cavity; the supporting portion 1004 of the bottom cover 10 is configured to position the other side of the stator 7.
  • the outer wall of the stator 7 and the wall surface of the accommodating cavity may be adhesively fixed together, or the stator 7 and the accommodating cavity may be assembled together in an interference fit manner.
  • the convenient assembly method is relatively simple. The stator 7 can be effectively prevented from falling off during the operation of the motor.
  • other fixed connection methods well known in the art may also be used, which is not limited in the present invention.
  • the stator 7 and the rotor 6 may both have a ring structure to facilitate assembly between the two.
  • the rotor 6 when assembling, can be positioned in the central hole of the stator 7 and the gap between the rotor 6 and the stator 7 can be matched together, and the rotor 6 can rotate relative to the stator 7;
  • the first cylinder 302 of the motor shaft 3 is fixedly connected to the rotor 6. When the rotor 6 rotates relative to the stator 7, the motor shaft 3 can be driven to rotate.
  • the structure of the stator 7 may be, as shown in FIG. 2, including a stator core, and a plurality of stator cores extending toward the rotor 6 are circumferentially distributed on the inner side wall of the stator core
  • a stator winding 701 is wound on each stator tooth, and a tooth shoe is provided at the end of each stator tooth, and a plurality of slots are evenly distributed on the face of the tooth shoe facing the rotor 6.
  • the stator windings 701 are wound around the stator teeth of the stator 7.
  • the plurality of recesses 1005 designed on the bottom cover 10 can be used to avoid the stator winding 701 to achieve the placement of the stator winding 701.
  • the structure of the rotor 6 may be, as shown in FIG. 2, including a rotor core, and a plurality of rotor teeth protruding circumferentially on the outer side wall of the rotor core, two adjacent Rotor slots are formed between the rotor teeth.
  • both the stator 7 and the rotor 6 used in the rotary electric machine provided by the embodiments of the present invention are provided with a slot structure, and a stepping motor can be formed.
  • stators and rotors of other structures well known in the art may also be used in the motor, and the present invention does not limit this.
  • the stator 7 may be formed by laminating a plurality of punched pieces.
  • the rotor 6 may be formed by laminating a plurality of punched pieces.
  • fixing pieces can be used to fix the punching pieces.
  • the fixing member for example, rivets, screws and other components well known in the art may be used.
  • Multiple punches can also be joined together by welding. Of course, multiple punches can also be combined together in other ways, which is not limited in the present invention.
  • a cold-rolled silicon steel sheet or a hot-rolled silicon steel sheet having a thickness of 0.25 mm to 0.5 mm can be used.
  • This design can effectively reduce the eddy current loss and hysteresis loss, and reduce the heating of the stator core or rotor core.
  • the thickness of the silicon steel sheet is thin, it can significantly reduce the eddy current loss and reduce the heating phenomenon of the stator core or the rotor core.
  • the silicon steel sheet is not easy to be too thin, otherwise it is not easy to process itself, and the strength is relatively low, which is not conducive to stacking multiple silicon steel sheets together, and may even cause a short service life of the stator or rotor.
  • stator 7 when the stator winding 701 is wound on the stator teeth, the stator teeth may be insulated in advance so that the stator winding 701 wound on the stator teeth will not contact the conductive member.
  • insulating the stator teeth for example, a method of applying insulating paint to the outer wall of the stator teeth may be used.
  • other insulation treatment methods well known in the art may also be used to make the stator teeth have good insulation.
  • a lead portion for leading the lead wire of the coil on the stator to the outside may be provided on the motor housing 11 to facilitate leading the lead wire of the coil.
  • the motor housing 11 may be made of a lightweight metal material, such as aluminum or aluminum alloy, to reduce the weight of the entire motor.
  • the motor housing 11 can also be made of non-metallic materials well known in the art, which is not limited in the present invention.
  • the rotary electric machine provided by the embodiment of the invention has a simple structure and is easy to assemble, and fasteners can be omitted during the assembly process.
  • the rotating electrical machine provided by the embodiments of the present invention can be applied to many fields such as electric vehicles or robots, and the present invention does not limit this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

一种旋转电机,包括:具有容纳腔的电机外壳(11),中空的电机轴(3),用于插入电机轴(3)内的负载轴(101),固定在容纳腔内的定子(7)和相对于定子(7)转动的转子(6),以及负载感应装置;其中,所述负载感应装置包括固定在电机外壳(11)中且环绕在电机轴(3)外围的感应线圈(8),负载轴(101)被配置为插装到电机轴(3)内与感应线圈(8)配合,以改变所述感应线圈(8)的电感。将电机轴(3)设计为中空结构,利用电机轴(3)内的空间和电机外壳(11)内的空间来容纳负载感应装置,以实现负载感应装置的内置式设计,简化了旋转电机外部的结构。

Description

一种旋转电机 技术领域
本发明涉及电机技术领域,更具体地,本发明涉及一种旋转电机。
背景技术
电机又称为马达,具体是指依据电磁感应定律实现电能转换或者传递的一种电磁装置。电机的主要工作是产生驱动转矩,用以作为各种电器设备或者各种机械装置的动力源。随着电机技术的不断发展,电机作为重要的能量转换装置,现已被广泛地应用在各行各业中,并呈现快速发展的趋势。
传统的旋转电机在驱动轴向负载时,对轴向负载的感知、测量通常需要采用传感器来完成。目前,较为常见的方式是将传感器直接安装在电机轴上,从而使传感器相对于电机形成一种外置式的装配关系。但这种外置传感器的设计常常会造成电机外部结构的复杂化等缺陷,不利于电机的装配。另外,对于传统的旋转电机而言,其轴向的多个零部件之间通常采用紧固件以串联的方式连接在一起。但这样的装配方式会造成旋转电机中的紧固件数量较多,装配起来也比较麻烦。特别是在装配电机轴时通常采用轴承,这就会造成电机轴的径向尺寸会受到轴承结构的限制,从而导致电机轴的径向尺寸一般都会比较小。
由此可见,有必要研究新的旋转电机结构,以解决现有技术中存在的至少一个问题。
发明内容
本发明的一个目的在于提供一种旋转电机的新技术方案。
根据本发明的一个方面,提供了一种旋转电机,包括:
具有容纳腔的电机外壳;
中空的电机轴;
用于插入电机轴内的负载轴;
固定在容纳腔内的定子和相对于定子转动的转子;
负载感应装置,所述负载感应装置包括固定在电机外壳中且环绕在电机轴外围的感应线圈,负载轴被配置为插装到电机轴内与感应线圈配合,以改变所述感应线圈的电感。
可选地,所述负载轴采用铁质材料;所述负载轴被配置为插装至感应线圈中或者越过感应线圈。
可选地,所述负载轴采用非铁质材料;还包括弹性支撑在电机轴内的感应圈;初始位置时,所述感应圈与感应线圈错开;当负载轴插装到电机轴内时,负载轴驱动感应圈下移至与感应线圈配合在一起,以改变所述感应线圈的电感。
可选地,所述感应圈的外侧径向向外延伸形成一圈环状承载台;
在电机轴的内壁上设置有一圈用于与所述环形承载台配合的环形槽;所述环形承载台通过弹簧承载在所述环形槽中。
可选地,所述感应圈具有锥形的内腔,所述负载轴的自由端与感应圈的内腔相适配。
可选地,上述的旋转电机,还包括底盖,所述底盖固定在所述电机外壳的底部,所述底盖上设置有供电机轴穿入的中孔,所述底盖上围绕其中孔设置有一圈凹槽;所述感应线圈设置在该凹槽中。
可选地,在所述感应线圈外露的端面上设置有用于与定子电磁隔绝的屏蔽环。
可选地,所述电机轴具有相对的第一端、第二端;所述电机轴上邻近第一端的位置设置有一圈向内凹陷的环槽;所述电机轴从环槽至第二端的位置依次形成有第一柱体、第二柱体,所述第一柱体的尺寸大于第二柱体的尺寸,并在二者连接的位置形成第一台阶槽;
所述环槽内间隙配合有分体式滑动上轴承,所述分体式滑动上轴承被配置为:当电机轴插装到容纳腔内,分体式滑动上轴承固定在电机外壳上,用以对电机轴的第一端进行定位;
转子固定在所述电机轴的第一柱体上;
所述电机轴的第二柱体伸入到所述底盖上的中孔中,并与中孔间隙配合,所述电机轴的第一台阶槽承载在所述底盖的端面上,以对电机轴的第二端进行定位。
可选地,所述分体式滑动上轴承包括呈半圆形的第一滑动上轴承、半圆形的第二滑动上轴承,所述第一滑动上轴承、第二滑动上轴承分别置入电机轴的环槽中;
所述容纳腔相对于电机轴第一端的位置设置有用于与分体式滑动上轴承固定在一起的第二台阶槽。
可选地,所述底盖呈盖板状,在其内侧端面上围绕中孔还设置有凸起的环台,所述电机轴的第一台阶槽承载在所述环台上;
所述环台的外壁上沿周向分布有多个径向向外延伸的支撑部,相邻的两个支撑部之间形成凹陷部,所述多个凹陷部被配置为:用于避让定子上缠绕的线圈;
在容纳腔的内壁上设置有用于定位定子其中一侧的挡槽,所述底盖的支撑部被配置为:用于定位定子的另一侧。
本发明实施例提供的旋转电机,将电机轴设计为中空结构,利用电机轴内的空间和电机外壳内的空间来容纳负载感应装置,以实现负载感应装置的内置式设计,简化了旋转电机外部的结构。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是本发明实施例提供的旋转电机的剖视图。
图2是本发明实施例提供的旋转电机的结构分解图。
图3是本发明实施例提供的负载感应装置的结构示意图。
附图标记说明:
1-负载托盘,101-负载轴,2-分体式滑动上轴承,3-电机轴,301-环槽,302-第一柱体,303-第二柱体,304-环形槽,305-第一台阶槽,4-弹簧,5-感应圈,501-环状支撑台,6-转子,7-定子,701-定子绕组,8-感应线圈,9-屏蔽环,10-底盖,1001-中孔,1002-凹槽,1003-环台,1004-支撑部,1005-凹陷部,11-电机外壳,1101-第二台阶槽,1102-挡槽。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本发明实施例提供了一种旋转电机,参考图1以及图2所示,包括:具有容纳腔的电机外壳11,中空的电机轴3,用于插入电机轴3内的负载轴101,固定在容纳腔内的定子7和相对于定子7转动的转子6,以及负载感应装置。其中,负载感应装置包括固定在电机外壳11中且环绕在电机轴3外围的感应线圈8,且上述负载轴101被配置为:可以被插装到中空的电机轴3内与感应线圈8配合,以改变感应线圈8的电感。
本发明实施例提供的旋转电机,将电机轴3设计为中空结构,可以将负载轴101插装到电机轴3的内部。并且,将负载感应装置设置在电机外壳11内。从而实现了负载感应装置相对于电机可以形成一种内置式的设计, 简化了旋转电机的外部结构。当电机驱动轴向负载时,可用内置式的负载感应装置实现对轴向负载进行感知、测量。
并且,本发明实施例提供的电机轴3,其长径比小于1。该设计的目的在于形成短粗外形的电机轴,可以使电机轴3在径向上具有较大的尺寸。而且,该电机轴3为中空结构,利于在其内部插装负载轴101或者其它部件,可以有效利用电机轴3内的空间。
本发明的负载轴101可以采用铁质材料制成。当负载轴101为铁质材料,在使用时,直接将其插装至感应线圈8中或者越过感应线圈8。此时,由于负载轴101为铁质材料,当插入感应线圈8内,可以引起感应线圈8的感抗变化。具体来说:当铁质的负载轴101插装到感应线圈8中或者超越感应线圈8时,可以引起感应线圈8的感抗增大。
本发明的负载轴101还可以采用非铁质材料制成。当负载轴101采用非铁材料时,参考图1以及图2所示,本发明实施例提供的负载感应装置还可以包括弹性支撑在电机轴3内的感应圈5,且该感应圈5采用磁铁材料制成。具体地,初始位置时,感应圈5与感应线圈8错开。当负载轴101被插装到电机轴3内时,参考图3所示,负载轴101可以驱动感应圈5下移至与感应线圈8配合在一起,以改变感应线圈8的电感。此时,磁铁材料的感应圈5插入到感应线圈8内,也可以引起感应线圈8的感抗变化,即可以引起感应线圈8的感抗增大。
本发明在此以负载轴101为非铁材质,负载感应装置需要设置磁铁材料的感应圈5为例说明本发明的负载感应装置。
对于非铁质材料的负载轴101,当将其插装到电机轴3内时,可以带动感应圈5下移至与感应线圈8配合在一起。而此时会引起感应线圈8的感抗增大。具体来说:
本发明的负载感应装置采用电流测量方式,具体如下:
感应圈5的电感L为:
Figure PCTCN2018123434-appb-000001
式中:k-线圈系数,μ-线圈内部导磁率,N-线圈匝数,S-线圈截面积,l-线圈长度。
对于空心感应圈5可以将上式简化为L=kμ 0;其中,k-线圈系数。
当负载轴101带动感应圈5向下移进入感应线圈8,此时,感应线圈8的电感L 1为:
L 1=kμ sμ 0
式中:μ s-线圈内部磁芯相对磁导率。
空载时流过感应线圈8的电流为:
Figure PCTCN2018123434-appb-000002
而加载后,由于感应圈5(磁铁材料)插入,感应线圈8的电感L 1急剧增大,电流I 1/I<<1,通过逻辑比较电路的输出,可以判定负载加载情况。
另外,参考图1所示,本发明实施例提供的旋转电机,其负载轴101的一端径向向外延伸形成负载托盘1。在本发明的一个具体实施方式中,参考图2所示,负载托盘1的结构为:在负载托盘1上设置有负载装入孔,该负载装入孔连接有中空结构的负载轴101。
本发明的感应圈5,其结构为:参考图1以及图2所示,在其外侧径向向外延伸形成一圈环状承载台501。具体地,在电机轴3的内壁上设置有一圈用于与该环形承载台501配合的环形槽304,环形承载台501可以通过弹簧4承载在环形槽304中。从而避免感应圈5产生滑脱的现象。
其中,感应圈5的内壁可以设计为呈渐缩式的结构。该设计主要为了承载负载轴101等。在本发明的一个具体实施方式中,参考图1所示,感应圈5具有锥形的内腔,负载轴101的自由端与感应圈5的内腔相适配。进一步地,还可以在感应圈5的内壁上设置一圈承载环台,以便于更好的起到承载作用。
其中,感应圈5可以采用本领域熟知的材料制成,例如可以采用磁铁材料,本发明对此不作限制。
其中,感应圈5的环形承载台501可以通过弹簧4承载在电机轴3内的环形槽304中。且弹簧4被配置为:当负载轴101移除后,感应圈5在弹簧4的作用下可以回复到初始位置,即,感应圈5与感应线圈8错开。
在本发明的一个具体实施方式中,弹簧4可以采用波形弹簧。该波形 弹簧呈环状结构,参考图2以及图3所示,在波形弹簧上形成有多个波峰和多个波谷,且波峰和波谷相互交错设置。
可选地,弹簧4可以设置一个,也可以设置多个。当在感应圈5的外部套接多个弹簧4时,可以使多个弹簧4在感应圈5的外壁上依次堆叠设置。当然,对于弹簧4的数量,可以根据弹力要求、负载重量的情况来合理设置,本发明对此不作限制。
其中,弹簧4可以采用本领域熟知的材料制成,例如可以采用弹簧钢材料制成。弹簧钢材料具有优良的力学性能,特别是具有良好的弹性极限、强度极限等。并且,弹簧钢材料还具有良好的抗松弛性能,以及耐热、耐低温、抗氧化、耐腐蚀等性能,非常适合应用于电机内。
当然,为了使感应圈5顺利回复到初始位置,还可以采用本领域熟知的其它弹性件,本发明对此不作限制。
参考图1以及图2所示,本发明实施例提供的旋转电机,还包括底盖10。具体地,底盖10固定在电机外壳11的底部,底盖10上设置有供电机轴3穿入的中孔1001,底盖10上围绕其中孔1001设置有一圈凹槽1002。该凹槽1002可用于安置负载感应装置的感应线圈8,以使感应线圈8位于电机外壳11内。
可选地,在感应线圈8外露的端面上设置有用于与定子7电磁隔绝的屏蔽环9。其中,屏蔽环9采用具有屏蔽作用的铁磁性材料制成。
具体地,屏蔽环9与感应线圈8结合在一起。在本发明的一个具体实施方式中,屏蔽环9与感应线圈8可以采用胶粘合在一起。当然,屏蔽环9与感应线圈8还可以采用本领域熟知的其它方式固定在一起。
本发明实施例提供的旋转电机,在装配电机轴3时,可以采用插装的方式。具体地,电机轴3具有相对的第一端、第二端;电机轴3上邻近第一端的位置设置有一圈向内凹陷的环槽301;电机轴3从环槽301至第二端的位置依次形成有第一柱体302、第二柱体303,第一柱体302的尺寸大于第二柱体303的尺寸,并在二者连接的位置形成第一台阶槽305。在环槽301内间隙配合有分体式滑动上轴承2,且该分体式滑动上轴承2被配置为:当电机轴3插装到容纳腔内,分体式滑动上轴承2固定在电机外壳 11上,用以对电机轴3的第一端进行定位。电机轴3的第二柱体303伸入到底盖10上的中孔1001中,并与中孔1001间隙配合,电机轴3的第一台阶槽305承载在底盖10的端面上,以对电机轴3的第二端进行定位。这样的设计在装配电机轴3时可以省去紧固件的使用。从而能使该电机轴的装配方式更加简单,在装配时可以显著提高装配效率。
其中,分体式滑动上轴承2,参考图1以及图2所示,其结构为:包括呈半圆形的第一滑动上轴承、半圆形的第二滑动上轴承。其中,第一滑动上轴承、第二滑动上轴承分别置入电机轴3的环槽301中。在使用该分体式滑动上轴承2时,两个半圆形的第一滑动上轴承和第二滑动上轴承可以对接在一起形成环绕电机轴3的滑动轴承结构,从而可以实现对电机轴3的第一端进行定位,该滑动轴承结构的轴承孔可以做的比较大,从而可以使电机轴径向尺寸不受轴承结构的限制。当然,对于本领域的技术人员而言,还可以采用其它样式的分体结构,例如两个圆弧状或者三个圆弧状组合在一起的滑动轴承结构,在此不再具体说明。
具体地,分体式滑动上轴承2可以采用特氟龙材料制成。其中,特氟龙材料具有耐高温、摩擦系数低、耐磨性好以及化学稳定性好的特点。当然,分体式滑动上轴承还可以采用本领域熟知的其它材料,本发明对此不作限制。
进一步地,分体式滑动上轴承2用于与环槽301相适配内壁上间隔地设置有多个凹陷。多个凹陷的设计可以减小与电机轴3的摩擦面积,从而降低与电机轴3之间的摩擦,最终可以提高电机轴的使用寿命。
当将电机轴3装配在电机外壳11的容纳腔内时,参考图1以及图2所示,在容纳腔相对于电机轴3的第一端的位置设置有用于与分体式滑动上轴承2固定在一起的第二台阶槽1101。该第二台阶槽1101可用于承载住分体式滑动上轴承2,并且分体式滑动上轴承2固定在电机外壳11上,用以对电机轴3的第一端进行定位。
分体式滑动上轴承2的形状、尺寸与第二台阶槽1101相适配,并可以通过胶或者本领域技术人员所熟知的其它方式固定在第二台阶槽1101中。当然,对于本领域的技术人员而言,分体式滑动上轴承2也可以直接 固定在电机外壳11的端面上,在此不再具体说明。
在本发明的另一个具体实施方式中,还可以将分体式滑动上轴承2与第二台阶槽1101以过盈配合的方式装配在一起,也可以实现对分体式滑动上轴承2的固定。
本发明中采用的上述方式,在装配分体式滑动上轴承2时都无需使用例如螺钉、铆钉、螺栓等紧固件,但仍然能保证装配的稳固性,并且该装配方式具有简单。当然,在装配分体式滑动上轴承2时,还可以采用本领域熟知的其它固定连接方式,本发明对此不作限制。
参考图2所示,本发明的底盖10,其外形呈盖板状,在其内侧端面上围绕中孔1001设置有凸起的环台1003,且凹槽1002位于环台1003的外圈,电机轴3的第一台阶槽305承载在该环台1003上。并且,该环台1003的外壁上沿周向分布有多个径向向外延伸的支撑部1004,相邻的两个支撑部1004之间形成凹陷部1005。
其中,底盖10也可以采用特氟龙材料制成。特氟龙材料具有耐高温、摩擦系数低、耐磨性好以及化学稳定性好的特点。当然,底盖10还可以采用本领域熟知的材料,可以是金属材料,也可以是非金属材料,本发明对此不作限制。
本发明的电机轴3,具有相对设置的第一端、第二端,其分别采用分体式滑动上轴承2,以及容纳腔的特殊结构与底盖10配合,实现了无需紧固件而对电机轴3的双向定位作用。
本发明实施例提供的旋转电机,基于电机外壳11的结构,在装配定子7和转子6时,定子7和转子6被配置为从电机外壳11相对电机轴3第二端的位置装配到容纳腔内。具体地,参考图2所示,在容纳腔的内壁上设置有用于定位定子7其中一侧的挡槽1102;底盖10的支撑部1004被配置为:用于定位定子7的另一侧。通过该设计可以将定子7固定在电机外壳11的容纳腔内。
可选地,还可以将定子7的外壁与容纳腔的壁面采用粘合剂粘合固定在一起,或者将定子7与容纳腔之间以过盈配合的方式装配在一起。以实现对定子7的稳定固定。这两种方式均没有采用固定件,装配方便方式也 比较简单。在电机的运行中能有效防止定子7脱落。当然,在容纳腔内固定定子时,还可以采用本领域熟知的其它固定连接方式,本发明对此不作限制。
其中,定子7和转子6可以均呈环状结构,以便于二者之间的装配。在本发明的一个具体实施方式中,进行装配时,可以使转子6位于定子7的中心孔内,且使转子6与定子7之间间隙配合在一起,转子6能够相对于定子7产生转动;并且,电机轴3的第一柱体302与转子6固定连接在一起,当转子6相对于定子7产生转动时可以带动电机轴3产生转动。
在本发明的一个具体实施方式中,定子7的结构可以为,参考图2所示,包括定子铁芯,在该定子铁芯的内侧壁上沿周向分布有多个朝向转子6伸出的定子齿,各个定子齿上缠绕有定子绕组701,且各个定子齿的端部设置有齿靴,该齿靴上朝向转子6的一面上均匀分布有多个槽。并且,由于定子7的定子齿上缠绕有定子绕组701。上述底盖10上设计的多个凹陷部1005可以用于避让定子绕组701,以实现对定子绕组701的安置。
在本发明的一个具体实施方式中,转子6的结构可以为,参考图2所示,包括转子铁芯,在该转子铁芯的外侧壁上沿周向伸出有多个转子齿,两相邻的转子齿之间形成转子齿槽。
从上述的定子7和转子6结构可以看出,本发明实施例提供的旋转电机中所采用的定子7和转子6上均带有齿槽结构,可以形成一种步进电机。
当然,在电机中也可以采用本领域熟知的其它结构的定子和转子,本发明对此不作限制。
其中,参考图2所示,定子7可以由多片冲片叠压构成。转子6也可以由多片冲片叠压形成。
在进行冲片叠压时,多片冲片之间可以采用固定件进行固定。固定件例如可以采用铆钉、螺钉等本领域熟知的部件。多片冲片之间也可以采用焊接的方式结合在一起。当然,多片冲片之间也可以采用其它的方式结合在一起,本发明对此不做限制。
本发明中的冲片例如可以采用厚度为0.25mm-0.5mm的冷轧硅钢片或者热轧硅钢片。这样的设计可以有效减少涡流损耗和磁滞损耗,降低定子 铁芯或者转子铁芯发热的情况。实际上,当硅钢片的厚度较薄时,可以显著的减小涡流损耗,降低定子铁芯或者转子铁芯发热现象。但是,硅钢片也不易过薄,否则本身不易加工,强度也比较低,不利于将多片硅钢片叠压在一起,甚至会造成定子或者转子的使用寿命短。
对于定子7而言,在定子齿上绕制定子绕组701时,可以预先对定子齿进行绝缘处理,以使绕制在定子齿上的定子绕组701不会接触到导电件。在对定子齿进行绝缘处理时例如可以采用在定子齿的外壁上涂抹绝缘漆的方式。当然,也可以采用本领域熟知的其它绝缘处理方式,以使定子齿具有良好的绝缘性。
可选地,在电机外壳11上还可以设置有用于将定子上线圈的引出线向外部引出的引线部,以便于将线圈的引出线引出。
可选地,电机外壳11例如可以采用轻质金属材料制成,例如:铝或者铝合金等,以减轻整个电机的重量。当然,电机外壳11也可以采用本领域熟知的非金属材料制作,本发明对此不作限制。
本发明实施例提供的旋转电机,结构简单、装配方便,在装配过程中可以省去紧固件。本发明实施例提供的旋转电机可应用于电动汽车或机器人等诸多领域,本发明对此不作限制。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种旋转电机,其特征在于,包括:
    具有容纳腔的电机外壳;
    中空的电机轴;
    用于插入电机轴内的负载轴;
    固定在容纳腔内的定子和相对于定子转动的转子;
    负载感应装置,所述负载感应装置包括固定在电机外壳中且环绕在电机轴外围的感应线圈,负载轴被配置为插装到电机轴内与感应线圈配合,以改变所述感应线圈的电感。
  2. 根据权利要求1所述的旋转电机,其特征在于,所述负载轴采用铁质材料;所述负载轴被配置为插装至感应线圈中或者越过感应线圈。
  3. 根据权利要求1所述的旋转电机,其特征在于,所述负载轴采用非铁质材料;
    还包括弹性支撑在电机轴内的感应圈;初始位置时,所述感应圈与感应线圈错开;当负载轴插装到电机轴内时,负载轴驱动感应圈下移至与感应线圈配合在一起,以改变所述感应线圈的电感。
  4. 根据权利要求3所述的旋转电机,其特征在于,所述感应圈的外侧径向向外延伸形成一圈环状承载台;
    在电机轴的内壁上设置有一圈用于与所述环形承载台配合的环形槽;所述环形承载台通过弹簧承载在所述环形槽中。
  5. 根据权利要求3所述的旋转电机,其特征在于,所述感应圈具有锥形的内腔,所述负载轴的自由端与感应圈的内腔相适配。
  6. 根据权利要求1所述的旋转电机,其特征在于,还包括底盖,所述底盖固定在所述电机外壳的底部,所述底盖上设置有供电机轴穿入的中孔,所述底盖上围绕其中孔设置有一圈凹槽;所述感应线圈设置在该凹槽中。
  7. 根据权利要求6所述的旋转电机,其特征在于,在所述感应线圈外露的端面上设置有用于与定子电磁隔绝的屏蔽环。
  8. 根据权利要求6所述的旋转电机,其特征在于,所述电机轴具有相对的第一端、第二端;所述电机轴上邻近第一端的位置设置有一圈向内凹陷的环槽;所述电机轴从环槽至第二端的位置依次形成有第一柱体、第二柱体,所述第一柱体的尺寸大于第二柱体的尺寸,并在二者连接的位置形成第一台阶槽;
    所述环槽内间隙配合有分体式滑动上轴承,所述分体式滑动上轴承被配置为:当电机轴插装到容纳腔内,分体式滑动上轴承固定在电机外壳上,用以对电机轴的第一端进行定位;
    转子固定在所述电机轴的第一柱体上;
    所述电机轴的第二柱体伸入到所述底盖上的中孔中,并与中孔间隙配合,所述电机轴的第一台阶槽承载在所述底盖的端面上,以对电机轴的第二端进行定位。
  9. 根据权利要求8所述的旋转电机,其特征在于,所述分体式滑动上轴承包括呈半圆形的第一滑动上轴承、半圆形的第二滑动上轴承,所述第一滑动上轴承、第二滑动上轴承分别置入电机轴的环槽中;
    所述容纳腔相对于电机轴第一端的位置设置有用于与分体式滑动上轴承固定在一起的第二台阶槽。
  10. 根据权利要求8所述的旋转电机,其特征在于,所述底盖呈盖板状,在其内侧端面上围绕中孔还设置有凸起的环台,所述电机轴的第一台阶槽承载在所述环台上;
    所述环台的外壁上沿周向分布有多个径向向外延伸的支撑部,相邻的两个支撑部之间形成凹陷部,所述多个凹陷部被配置为:用于避让定子上缠绕的线圈;
    在容纳腔的内壁上设置有用于定位定子其中一侧的挡槽,所述底盖的支撑部被配置为:用于定位定子的另一侧。
PCT/CN2018/123434 2018-12-13 2018-12-25 一种旋转电机 WO2020118769A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811526408.7 2018-12-13
CN201811526408.7A CN109450146B (zh) 2018-12-13 2018-12-13 一种旋转电机

Publications (1)

Publication Number Publication Date
WO2020118769A1 true WO2020118769A1 (zh) 2020-06-18

Family

ID=65558260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123434 WO2020118769A1 (zh) 2018-12-13 2018-12-25 一种旋转电机

Country Status (2)

Country Link
CN (1) CN109450146B (zh)
WO (1) WO2020118769A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109510379B (zh) * 2018-11-26 2023-11-17 歌尔股份有限公司 一种电机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317820A (ja) * 2000-03-29 2002-10-31 Nsk Ltd 流体軸受装置
CN202384919U (zh) * 2011-12-29 2012-08-15 无锡尚格工业设计有限公司 一体容置式扭矩传感器电机
JP2016111740A (ja) * 2014-12-02 2016-06-20 株式会社ミツバ 中空モータ
CN206117402U (zh) * 2016-06-29 2017-04-19 九江精密测试技术研究所 一种大尺寸低惯量连续旋转的中空轴系
CN206481172U (zh) * 2017-01-21 2017-09-08 苏州智驱机电科技有限公司 一种设有空心轴芯的电机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ268858A (en) * 1993-07-19 1998-01-26 Flux Pty Ltd Substituted Under Electromagnetic machine with permanent magnet rotor and toroidol stator
CN103460571B (zh) * 2011-03-31 2016-11-16 并木精密宝石株式会社 外转子型马达
CN204442089U (zh) * 2014-10-23 2015-07-01 丹东山川电机有限公司 通用减速机电机
JP6332011B2 (ja) * 2014-12-22 2018-05-30 スズキ株式会社 アキシャルギャップ型の回転電機
CN204413221U (zh) * 2015-01-24 2015-06-24 宿州学院 一种电机轴保护结构
JP6464856B2 (ja) * 2015-03-20 2019-02-06 スズキ株式会社 アキシャルギャップ型の回転電機
CN106602749A (zh) * 2016-12-30 2017-04-26 常州朗奇威电器有限公司 一种外转子直流电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317820A (ja) * 2000-03-29 2002-10-31 Nsk Ltd 流体軸受装置
CN202384919U (zh) * 2011-12-29 2012-08-15 无锡尚格工业设计有限公司 一体容置式扭矩传感器电机
JP2016111740A (ja) * 2014-12-02 2016-06-20 株式会社ミツバ 中空モータ
CN206117402U (zh) * 2016-06-29 2017-04-19 九江精密测试技术研究所 一种大尺寸低惯量连续旋转的中空轴系
CN206481172U (zh) * 2017-01-21 2017-09-08 苏州智驱机电科技有限公司 一种设有空心轴芯的电机

Also Published As

Publication number Publication date
CN109450146A (zh) 2019-03-08
CN109450146B (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
KR100230496B1 (ko) 차량용 전기모터 및 이 전기모터에 사용되는 적층제
US10879754B2 (en) Axial flux motor having an insulated rotor
US7535143B2 (en) Electromagnetic coupler
JP5879121B2 (ja) アキシャルギャップ回転電機
EP1643613A2 (en) Electric motor in which the stator laminations are of different thickness and/or material to the rotor laminations
WO1990001824A1 (en) Stator support structure with stamped end plates
US6894412B2 (en) Electric motor
WO2018008709A1 (ja) 電動式直動アクチュエータ
US10027189B2 (en) Electric rotating machine
JP5954198B2 (ja) 回転電機
CN111937488B (zh) 具有直流激励、极小电/动能效率和极高热cop的旋转感应热发生器
WO2020118769A1 (zh) 一种旋转电机
JPWO2014192609A1 (ja) インナーロータ型ブラシレスモータ
CN209267317U (zh) 一种旋转电机
CN108521179A (zh) 定子组件、电机及压缩机
WO2020107635A1 (zh) 一种电机
US9780620B2 (en) Coupling with concentric contact around motor shaft for line start synchronous motor
JP6061832B2 (ja) 回転電機およびその製造方法
CN219554800U (zh) 一种感应电机
KR102569759B1 (ko) 초고속 전동기 시험용 부하모터
EP2810361B1 (en) Electrical machine
US11962199B2 (en) Rotor and speed reducer including the rotor
CN208835966U (zh) 电机
JP2019115217A (ja) ロータコアの取付構造
US20230275476A1 (en) Axial flux electric machine including hybrid stator core with soft magnetic composite (smc) components and laminate component having locking mechanism to secure the smc components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942952

Country of ref document: EP

Kind code of ref document: A1