WO2020118533A1 - 核电站泄漏监测报警方法及报警系统 - Google Patents

核电站泄漏监测报警方法及报警系统 Download PDF

Info

Publication number
WO2020118533A1
WO2020118533A1 PCT/CN2018/120393 CN2018120393W WO2020118533A1 WO 2020118533 A1 WO2020118533 A1 WO 2020118533A1 CN 2018120393 W CN2018120393 W CN 2018120393W WO 2020118533 A1 WO2020118533 A1 WO 2020118533A1
Authority
WO
WIPO (PCT)
Prior art keywords
leakage
leak
rate
monitoring
alarm
Prior art date
Application number
PCT/CN2018/120393
Other languages
English (en)
French (fr)
Inventor
周新建
温小梅
凌君
田亚杰
Original Assignee
中广核工程有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核工程有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核工程有限公司
Priority to PCT/CN2018/120393 priority Critical patent/WO2020118533A1/zh
Priority to EP18942701.6A priority patent/EP3905263A4/en
Publication of WO2020118533A1 publication Critical patent/WO2020118533A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/001Computer implemented control
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/002Detection of leaks
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/04Safety arrangements
    • G21D3/06Safety arrangements responsive to faults within the plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Definitions

  • the invention belongs to the technical field of nuclear power, and more specifically, the invention relates to a nuclear power plant leakage monitoring and alarm method and alarm system.
  • the leakage of the pressure boundary of the primary loop of the nuclear power plant reactor directly affects the safety of the operation of the nuclear power plant.
  • the leakage of the application object of the pre-breakage leakage technology directly affects the economics of the operation of nuclear power plants.
  • the leakage monitoring system monitors the unrecognizable leakage of the pressure boundary of the primary circuit of the reactor and the leakage of the application object of the pre-breakage leakage technology.
  • the commonly used leak monitoring is through a single monitoring instrument exceeding the threshold alarm method. After the alarm, the operator of the nuclear power plant verifies whether a leak occurs according to operating experience or operating technical specifications.
  • the embodiments of the present invention provide a nuclear power plant leak monitoring and alarm method and an alarm system to solve the problems of low accuracy and low level of automation in the prior art for leak monitoring and diagnosis.
  • a first aspect of an embodiment of the present invention provides a nuclear power plant leak monitoring and alarm method, which includes:
  • the self-checking of the monitoring channel and the self-diagnosis of the system fault determine whether the leak monitoring instrument and the system are faulty, and obtain the comprehensive status of the leak monitoring instrument and the system;
  • leak detection data is reliable, perform leak source location analysis, determine the location of the leak source, and perform a quantitative calculation of the leak rate according to the leak source location;
  • a second aspect of an embodiment of the present invention provides a nuclear power plant leakage monitoring and alarm system, which includes:
  • the data availability diagnosis module is used to obtain the unit's operating condition signal and determine the availability of leak monitoring data based on the unit's operating condition signal;
  • the signal and data acquisition module is used to acquire the process system status signal and leak monitoring instrument data if the availability of the leak monitoring data is available;
  • the operating state determination module is used to determine whether the process system is based on the process system status signal If a fault occurs, the operating state of the process system is obtained;
  • the comprehensive state determination module is used to determine whether the leak monitoring instrument and system are faulty according to the leak monitoring instrument data, monitoring channel self-test and system fault self-diagnosis, and obtain the comprehensive status of the leak monitoring instrument and system;
  • the data reliability determination module is used to determine the reliability of the leakage monitoring data according to the operating state and the integrated state;
  • a leak detection module used to perform leak source location analysis if the leak detection data is reliable, determine the location of the leak source, and perform a quantitative calculation of the leak rate according to the leak source location;
  • the leak alarm module is used to trigger a leak alarm if the analysis result of the leak source location analysis and the calculation result of the quantitative calculation of the leak rate both occur and the leak response characteristics are satisfied.
  • the nuclear power plant leakage monitoring and alarm method and system of the invention realize the comprehensive diagnosis and alarm of leakage through the combination of unit operating condition judgment, process system fault diagnosis, instrument system fault diagnosis, leak source positioning diagnosis and leak source quantitative diagnosis, which effectively improves The accuracy of leak monitoring and diagnosis, while reducing the intervention of operating personnel, reducing human failures, and improving the automation level of leak monitoring.
  • FIG. 1 is an implementation flowchart of a nuclear power plant leakage monitoring and alarm method provided by an embodiment of the present invention
  • step S3 is a flow chart of the implementation of step S3 in the nuclear power plant leakage monitoring and alarm method provided by an embodiment of the present invention
  • step S10 is a flow chart of the implementation of step S10 in the nuclear power plant leakage monitoring and alarm method provided by an embodiment of the present invention
  • step S1 is a flow chart of the implementation of step S1 in the nuclear power plant leakage monitoring and alarm method provided by an embodiment of the present invention
  • FIG. 5 is a flowchart of an implementation in step S4 of the nuclear power plant leakage monitoring and alarm method provided by the embodiment of the present invention.
  • step S6 is a flowchart of an implementation of leak source location analysis in step S6 of a nuclear power plant leak monitoring and alarming method according to an embodiment of the present invention to determine the location of the leak source;
  • step S6 is a flow chart of the quantitative calculation of the leakage rate according to the location of the leakage source when the location of the leakage source is the pressure boundary of the primary loop of the reactor in step S6 of the nuclear power plant leakage monitoring and alarming method provided by the embodiment of the present invention
  • step S6 is a flow chart for implementing quantitative calculation of the leakage rate according to the location of the leakage source when the location of the leakage source is the main steam pipeline in step S6 of the nuclear power plant leakage monitoring and alarming method provided by the embodiment of the present invention
  • FIG. 9 is a schematic diagram of a nuclear power plant leakage monitoring and alarm system provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a computer device provided by an embodiment of the present invention.
  • FIG. 1 shows an implementation process of a nuclear power plant leakage monitoring and alarming method provided by an embodiment of the present invention, including steps S1 to S7.
  • the execution subject of the embodiment of the present invention may be to perform nuclear power plant leakage monitoring and comprehensive diagnosis
  • the server-side device may be a computer. The details are as follows:
  • S1 Obtain the unit operating condition signal and determine the availability of leak monitoring data based on the unit operating condition signal.
  • real-time access unit nuclear power plant operation condition signal R i and the operating parameters or by obtaining power P, temperature T and pressure p operating parameters, the operating conditions to obtain a logical operation signal R i, in accordance with the unit
  • the operating condition signal determines whether the leak monitoring data is available.
  • the operating condition signal may specifically be the operating status signal of the nuclear power plant, including normal operating conditions (normal operating conditions) and expected operating events (anticipated events), etc.
  • the normal operating conditions may include several operating modes (operating modes).
  • the availability of leak monitoring data includes an available state and an unavailable state, and is used to identify whether leak monitoring data is available.
  • the leak monitoring and comprehensive diagnosis system is operating normally and can monitor and diagnose the leakage; when the availability of the leak monitoring data is unavailable, the leak monitoring and comprehensive diagnosis system data is not transmitted , And carry out fault alarm and leakage alarm suppression, so as not to cause interference to the operator.
  • the alarm suppression refers to a method of processing alarm information. For example, under certain working conditions, although the media parameter reaches the alarm threshold, it is not an abnormal phenomenon. The alarm is blocked to prevent normal monitoring.
  • step S1 if the availability of the leak monitoring data obtained according to step S1 is available, the process system status signal and the leak monitoring instrument data are acquired.
  • the process system is based on the leak monitoring instrument.
  • the process system includes, but is not limited to, the containment ventilation system and its equipment cooling system, and the nuclear island hydrophobic exhaust system.
  • acquiring the process system status signal includes:
  • the air volume, temperature and pressure of the ventilation system in each process system it is compared with the preset air volume threshold, the preset temperature threshold and the preset pressure threshold respectively, and the status signal of each process system is determined according to the comparison result.
  • S3 According to the status signal of the process system, determine whether the process system is faulty, and obtain the operating state of the process system.
  • step S2 it is determined whether the process system is faulty according to the process system status signal acquired in step S2. If it is determined that the process system is faulty according to the process system status signal, the operating state of the process system is determined to be faulty. If the process system is determined based on the process system status signal If no failure occurs, the operating status of the process system is normal.
  • judging whether the process system fails according to the process system status signal, and obtaining the operating state of the process system includes:
  • S31 Perform logical AND operation on the status signal of each process system, and determine the operation state of the process system according to the operation result.
  • each process system status signal S i obtained in step S2 it is determined whether the process system is faulty.
  • step S32 If the running state of the process system is fault, the process system fault alarm is triggered. Specifically, if the operating state S of the process system obtained in step S31 is 0, that is, the operating state of the process system is a fault, a process system fault alarm is triggered.
  • S4 According to the data of the leak monitoring instrument, the self-checking of the monitoring channel and the self-diagnosis of the system fault, determine whether the leak monitoring instrument and the system have failed, and obtain the comprehensive status of the leak monitoring instrument and the system.
  • S5 Determine the reliability of the leak monitoring data according to the operating status of the process system and the comprehensive status of the leak monitoring instruments and system.
  • logical operation is performed on the operating state S of the process system obtained in step S3 and the comprehensive state D of the leak monitoring instrument and the system obtained in step S4 to diagnose the reliability of the leak monitoring data.
  • the reliability of the leak monitoring data includes the normal state and the fault state, and is used to identify whether the leak monitoring data is reliable.
  • the leak monitoring value is credible, and the subsequent leak source location analysis and quantitative calculation of the leak rate are carried out in real time; when the leak monitoring data is in a fault state, the leak monitoring value is not credible, triggering a fault alarm, and the monitoring value is maintained At the previous normal value, to avoid distortion of the monitoring value caused by the operator misjudge.
  • leakage source location analysis and leakage rate quantitative calculation are further performed.
  • the leak source location analysis includes the change range of a single instrument with Whether the alarm threshold is exceeded for monitoring and consistent diagnosis of leak source location analysis results.
  • the leak source location alarm L l is triggered.
  • a quantitative leak alarm L q is triggered.
  • the location of the leak source includes the reactor primary loop pressure boundary (RCPB) or the main steam pipeline.
  • the leakage to the reactor primary loop pressure boundary includes the leaked gas and the leaked liquid.
  • the consistency L c and the time sequence of the leak location alarm L l and the leak quantitative alarm L q are further judged L t , and obtain the comprehensive leakage diagnosis result L F according to the consistency and timing.
  • the above nuclear power plant leakage monitoring and alarming method may further include steps S8 to S10, which are described in detail as follows:
  • S8 Output the leakage alarm prompt information containing the leakage rate change curve and the location information of the leakage source, so that the operator can carry out periodic leak rate periodic tests based on the leakage alarm prompt information.
  • the leak alarm prompt information containing the leak rate change curve and the leak source position information is output to the monitoring platform.
  • the leak rate change curve is used to show the change of the leak rate per unit time
  • the leak source location information is used to identify the specific location where the leak occurs.
  • a leak location alarm can be performed in the system; when the calculation result of the quantitative calculation of the leak rate is a leak, a quantitative leak alarm can be performed in the system.
  • the diagnosis result of the quantitative calculation of the leak rate is that no leakage has occurred, that is, only the leak source location alarm and no leak quantitative alarm, it may be the leak source location False alarms caused by unreasonable setting of monitoring instrument faults or positioning alarm thresholds. Therefore, this situation is judged as non-leakage, the display value is confirmed to be invalid, and alarm suppression is performed.
  • the leak monitoring system is in a leak alarm state and the leak source is determined to be the pressure boundary of the primary loop of the reactor, the operator is reminded to carry out periodic leak rate tests.
  • the leakage alarm prompt information also includes the content to remind the operator to carry out periodic leak rate periodic tests as soon as possible.
  • the operator judges whether the operating parameters of the unit are the prerequisites for the periodic test of the leakage rate; if the prerequisites are met, the periodic test of the leakage rate is organized in advance according to the test procedure; and whether corrective measures are taken according to the test results and the technical specifications of the unit operation.
  • the technical specifications of the unit operation and the periodic test procedure for leakage rate are essential documents for PWR nuclear power plants, and the prerequisites are specified in the periodic test procedure for leakage rate.
  • the leak rate periodic test is carried out once a day, according to the requirements of the operation manual.
  • the leak monitoring system provides a means of entry for the selection of the time for the periodic test of the leak rate.
  • the predicted data is automatically calculated during the periodic test of the leak rate, and after the completion of the periodic test of the detected leak rate, the actual data manually calculated by the operator is obtained.
  • the predicted data may specifically include an automatically calculated unrecognizable leak rate L nq
  • the actual data may specifically include a manually calculated unrecognized leak rate L′ nq
  • the actual data may also include total leaks, identifiable leaks, and the like.
  • the predicted data and the actual data obtained in step S9 are compared, and according to the comparison result, it is determined whether to use the system to automatically calculate instead of manually calculating by the operator, and according to the deviation and the correction step size, the correction Leakage gas diffusion loss coefficient.
  • the leakage gas diffusion loss coefficient includes the loss rate during the gas diffusion process and the gas mass ratio at the location of the leakage source.
  • the implementation process of correcting the leakage gas diffusion loss coefficient includes steps S101 to S105, which are described in detail as follows:
  • the automatically calculated unrecognized leakage rate L nq is compared with the unrecognized leakage rate L′ nq manually calculated by the operator, and the long-term operating deviation convergence condition is calculated according to the following formula:
  • ⁇ 1 is the long-term running deviation convergence condition.
  • the system automatically calculates to replace the operator's manual calculation to improve the computing power.
  • the leakage gas diffusion loss coefficient is set reasonably and does not need to be corrected.
  • the operating condition signal of the unit is acquired, and the availability of the leak monitoring data is determined according to the operating condition signal of the unit. If the leak monitoring data is available, the process system status signal and the leak monitoring instrument are obtained Data, and determine the operating state of the process system according to the process system status signal, determine the comprehensive state of the leak monitoring instrument and system based on the leak monitoring instrument data, the self-checking of the monitoring channel and the system fault self-diagnosis, and then determine the leak monitoring according to the operating state and comprehensive state Reliability of the data. If the leak monitoring data is reliable, conduct leak source location analysis to determine the location of the leak source, and perform quantitative calculation of the leak rate based on the leak source location.
  • the leakage alarm is triggered, and the leakage alarm prompt information including the leakage rate change curve and the location information of the leakage source is output, so that the operator can carry out periodic leakage according to the leakage alarm prompt information Rate regular tests.
  • the predicted data of the periodic test of the leak rate is calculated, and after the completion of the periodic test of the detected leak rate, the actual data of the periodic test of the leak rate manually calculated by the operator is obtained;
  • the comparison between the predicted data and the actual data judge whether to use the system to automatically calculate instead of the operator's manual calculation according to the comparison result, to improve the calculation ability, on the other hand, by modifying the leakage gas diffusion loss coefficient, to provide subsequent leakage monitoring and comprehensive diagnosis More accurate judgment basis, thereby further improving the accuracy of leak monitoring and diagnosis.
  • a specific embodiment is used to describe in detail the specific implementation method of determining the availability of leak monitoring data according to the operating condition signal of the unit mentioned in step S1.
  • FIG. 4 illustrates a specific implementation process of step S1 provided by an embodiment of the present invention. Details are as follows:
  • S11 Obtain the operating parameters of the reactor of the nuclear power plant, and determine the operating condition signal of the unit according to the operating parameters.
  • the operating parameters of the reactor are obtained, including but not limited to power P i , temperature T i and pressure p i , and the operating conditions of the unit of the nuclear power plant are determined according to the operating parameters of the reactor.
  • step S11 if the operating condition signal R i obtained in step S11 does not meet the preset operating condition requirements, it is confirmed that the leak monitoring system is malfunctioning, and the leak condition cannot be monitored, that is, the availability of the leak monitoring data is confirmed to be in an unavailable state.
  • step S11 if the operating condition signal obtained in step S11 meets the preset operating condition requirements, it is confirmed that the leak monitoring system is operating normally, and the leak condition can be monitored, that is, the availability of the leak monitoring data is confirmed to be available.
  • the operating parameters of the reactor of the nuclear power plant are obtained, and the operating conditions of the unit are determined according to the given operating parameters. If the operating conditions of the unit do not meet the preset operating conditions, the leak monitoring data is confirmed. Is not available, otherwise, confirm the availability of leak monitoring data is available. Through the analysis of the working condition signal, the availability of leak monitoring data is determined, so as to provide guarantee for the correct diagnosis of subsequent leaks, avoid possible misdiagnosis, and improve the accuracy of leak monitoring.
  • the data of the leak monitoring instrument includes the value of the in-situ leak monitoring instrument and the value of the reference point leak monitoring instrument.
  • the data, the self-checking of the monitoring channel and the self-diagnosis of the system fault determine whether the leak monitoring instrument and system are faulty, and obtain a detailed description of the specific implementation method of the comprehensive status of the leak monitoring instrument and system.
  • FIG. 5 shows a specific implementation process of step S4 provided by an embodiment of the present invention. Details are as follows:
  • the in-situ leakage monitoring instrument value M i and the reference point leakage monitoring instrument value M 0 are obtained , where the reference point may specifically be an air supply vent or the like.
  • S42 every predetermined first time interval, receiving a preset fixed mode signal transmitted by a preset signal transmitter, and detecting the matching degree between the received fixed mode signal and the preset fixed mode signal, and according to The matching degree determines whether the signal transmission in the monitoring channel is normal, and the signal transmission status is obtained.
  • the monitoring channel self-test is performed every first time interval, including the preset signal transmitter transmitting the preset fixed mode signal, and when the fixed mode signal is received, detecting the received fixed mode signal and the preset The degree of matching ⁇ between fixed pattern signals.
  • the first time interval can usually be set to 30 minutes, and the value of the matching threshold a can usually be set to 70%, but it is not limited to this. Both the first time interval and the matching threshold can be based on actual applications. Need to be set, there is no limit here.
  • S43 Obtain the server operating environment parameters, and determine the operating environment state according to the server operating environment parameters.
  • the server operating environment parameters include but are not limited to voltage V, power PD, etc., and the logical operation to determine whether the operating environment state is normal according to the server operating environment parameters is D 31 is the operating environment state, V 0 is the preset voltage reference value, P D0 is the preset power threshold, ⁇ is the preset power adjustment parameter, and ⁇ is the preset voltage deviation rate threshold.
  • the preset power adjustment parameter can usually be set to 1.5, and the preset voltage deviation rate threshold can usually be set to 15, but it is not limited to this. Both the power adjustment parameter and the voltage deviation rate threshold can be based on the actual application. Need to be set, there is no limit here.
  • the system fault self-diagnosis is performed every predetermined second time interval, including performing leak source location analysis according to preset parameters, calculating the leak source location, and comparing with the preset result to determine whether the leak source location function is normal,
  • the system fault self-diagnosis result D 32 is obtained . If the comparison result is that the leak source positioning function is normal, D 32 is assigned a value of 1, and if the comparison result is that the leak source positioning function is abnormal, D 32 is assigned a value of 0.
  • S45 Determine the functional status of the server based on the server's operating environment status and system fault self-diagnosis results.
  • S46 According to the instrument status, signal transmission status and server function status, determine the comprehensive status of the leak monitoring instrument and system.
  • the on-site leakage monitoring instrument and the reference point leakage monitoring instrument determine whether the instrument is faulty and obtain the status of the instrument; perform a self-test of the monitoring channel every predetermined first time interval to check the fixed The matching degree of the mode signal, and determine whether the signal transmission in the monitoring channel is normal according to the self-test result to obtain the signal transmission state; obtain the server operating environment parameters, and determine the operating environment state according to the server operating environment parameters; every predetermined second Perform a system fault self-diagnosis at intervals to obtain the system fault self-diagnosis results; determine the server functional status based on the operating environment status and system fault self-diagnosis results; then determine the leak monitoring instruments and The comprehensive status of the system enables accurate judgment of the status of leak monitoring instruments and systems, thereby providing guarantee for the correct diagnosis of subsequent leaks, avoiding possible misdiagnosis, and improving the accuracy of leak monitoring.
  • FIG. 6 shows a specific implementation process of determining the location of the leak source in step S6 provided by an embodiment of the present invention. Details are as follows:
  • S611 Obtain the temperature and humidity monitoring value collected by the temperature and humidity sensor, where the temperature and humidity monitoring value includes a temperature monitoring value and a humidity monitoring value, and the temperature and humidity sensor is pre-installed at a preset position of the pipe, the equipment compartment, or the ventilation line.
  • the temperature and humidity sensor includes a sensor that separately collects temperature, a sensor that separately collects humidity, and a sensor that simultaneously collects temperature and humidity.
  • the temperature and humidity sensor is pre-installed in a preset position of a pipe, equipment compartment, or ventilation line .
  • the preset position can be selected according to the actual situation of pipes, equipment compartments or ventilation lines, and there is no restriction here.
  • the temperature and humidity sensor collects the temperature and humidity monitoring value, and the server device that performs leak monitoring acquires the temperature and humidity monitoring value.
  • a temperature and humidity sensor is arranged on the air supply main pipe of the ventilation system, and the temperature and humidity data collected by the temperature and humidity sensor is used as an environmental background value.
  • the environmental background value can be used as the judgment reference value of the temperature and humidity monitoring value, and the temperature and humidity sensor can be manually calibrated according to the temperature and humidity monitoring value and the environmental background value.
  • leaks may cause the dry cold air to be heated or dampened, causing changes in temperature and humidity in the pipes, equipment compartments or ventilation lines.
  • each temperature and humidity monitoring value is compared with the environmental background value, and if each temperature and humidity monitoring value is greater than the preset environmental background value, it is collected within a preset time period according to each temperature and humidity sensor The temperature and humidity monitoring value of ,calculate the change range of the temperature and humidity monitoring value within the preset time period.
  • the temperature and humidity sensor according to the variation range of the temperature and humidity monitoring value of the temperature and humidity sensor calculated in step S612, it is determined whether the variation range satisfies the preset alarm threshold range corresponding to the temperature and humidity sensor. If the change range of each temperature and humidity monitoring value satisfies the corresponding alarm threshold range, it is confirmed that the single analysis result of the leak source location analysis corresponding to the temperature and humidity sensor is that a leak has occurred.
  • the temperature and humidity sensor on the pipeline and the temperature sensor of the equipment compartment constitute a functional redundancy, and all should respond.
  • the pipeline The temperature and humidity sensor or the temperature sensor on the equipment compartment and the temperature sensor on the ventilation line are functionally redundant and should respond.
  • each temperature and humidity monitoring value changes Range if each change range is in the range of 28% to 30%, then the diagnosis result of the leak source location diagnosis is confirmed to be a leak, and a leak location alarm is triggered.
  • the temperature and humidity monitoring values collected by the temperature and humidity sensors pre-installed in the preset positions of the pipes, equipment compartments or ventilation lines are obtained, if each temperature and humidity monitoring value is greater than the preset environmental background Value, then calculate the change range of each temperature and humidity monitoring value, and determine whether the change range of each temperature and humidity monitoring value of each temperature and humidity sensor meets the preset alarm threshold range corresponding to the temperature and humidity sensor. Functional redundancy judgment.
  • the diagnosis result of the leak source location diagnosis is confirmed to be a leak and trigger a leak Locate the alarm, otherwise, if the result of the function redundancy determination is that the response is inconsistent, that is, the temperature and humidity monitoring value of the preset number of temperature and humidity sensors does not meet the corresponding alarm threshold range, the alarm threshold range is adjusted to achieve Accurate leak source location diagnosis, thus effectively improving the accuracy of leak monitoring, and at the same time the diagnosis process does not require the intervention of the operating personnel, reducing human factors, and improving the level of automation of leak monitoring.
  • the location of the leak source includes the reactor primary loop pressure boundary (Reactor Coolant Pressure Boundary, RCPB) and the main steam pipeline, wherein the leakage generated at the location of the primary loop pressure boundary of the reactor includes For leaked gas and leaked liquid, the gas mass ratio is ⁇ , and the loss rate during gas diffusion is ⁇ 0.
  • Leakage generated at the location of the main steam pipeline includes the leaked gas.
  • the monitoring data of the leaked gas includes the fan condensate flow rate monitoring value, pit condensation Liquid leakage rate.
  • the monitoring data of the leakage liquid includes the drain leakage rate of the pit ground.
  • the pit condensate leakage rate and the pit ground hydrophobic leakage rate are both pit liquid level conversion leak rates, which is to convert the pit liquid level change to the corresponding leak rate. It can be understood that the greater the liquid level change, Then the corresponding leakage rate is higher, and conversely, the smaller the liquid level change, the lower the corresponding leakage rate.
  • the pit condensate leakage rate refers to the leakage rate corresponding to the flash gas or main steam condensed through the ventilation system and then collected into the pit of the nuclear island hydrophobic exhaust system through the drain line, causing the pit liquid level to change; the pit ground
  • the hydrophobic leakage rate refers to the leakage rate corresponding to the flashing liquid draining through the ground to the nuclear island hydrophobic exhaust system pit, causing the pit liquid level to change.
  • the location of the leak source is the pressure boundary of the primary loop of the reactor, that is, when the RCPB leaks, the high-temperature and high-pressure cooling water flashes, forming a flash vapor body and a flash liquid, respectively; when the main steam pipeline leaks, all the main steam is leaked.
  • the flash gas or main steam causes temperature and humidity changes between the pipeline and the insulation layer, and causes the temperature change of the atmosphere of the containment on the equipment compartment and the ventilation line during the transmission process. After being condensed by the ventilation system, it is collected into the pit of the nuclear island hydrophobic exhaust system through the drain line, causing the flow rate change in the drain line and the pit liquid level change. The flashed liquid drains through the ground and is collected into the pit of the nuclear island hydrophobic exhaust system, causing the pit liquid level to change.
  • the specific implementation method for quantitatively calculating the leakage rate according to the location of the leakage source mentioned in step S6 is described in detail below through a specific embodiment.
  • FIG. 7 shows a specific implementation process of quantitatively calculating the leakage rate according to the location of the leakage source in step S6 provided by an embodiment of the present invention. Details are as follows:
  • the monitoring value of the flow rate of the condensate of the fan refers to the monitoring value of the flow rate of the flash steam body or the main steam after passing through the drain line after being condensed by the ventilation system. Obtain the monitoring value of the condensate flow rate of each fan, and calculate the total condensate flow rate r 11 according to the monitoring value of the fan condensate flow rate.
  • S622 Obtain the liquid level value of the pit condensate, and calculate the unit time according to the liquid level value, the density of the pit condensate, the structural size of the pit where the pit condensate is located, and the start and stop time of the drain pump The pit condensate leakage rate, and correcting the pit condensate leakage rate according to the adhesion loss rate of the hydrophobic pipeline to obtain the corrected pit condensate leakage rate.
  • the pit condensate can be recorded as pit A, and the liquid level value of the pit A is obtained, combined with the density of the pit condensate and the structural size of the pit A, and the unit is calculated according to the start and stop time of the pit A drain pump
  • the leakage rate of pit A within a period of time is corrected according to the adhesion loss rate ⁇ 1 of the hydrophobic pipeline, and the corrected leakage rate of pit A r 12 is calculated.
  • L gas (r 11 ⁇ r 10 ) & (r 12 ⁇ r 10 ) is used to determine whether a quantitative alarm of leaked gas is triggered, where L gas is a quantitative alarm of leaked gas, and r 10 is a preset first Leak gas alarm threshold.
  • preset first deviation threshold can be set and adjusted according to actual application needs, and no limitation is made here.
  • S624 Obtain the water level value of the ground drain of the pit, and calculate the unit time according to the liquid level value, the average density of the ground drain of the pit, the structural size of the pit where the ground drain is located, and the start and stop time of the drain pump
  • the ground drain leakage rate of the pit is corrected according to the ground adhesion loss rate to obtain the corrected ground drain leakage rate of the pit.
  • the ground drainage of the pit can be recorded as pit B, and the liquid level value of the pit B is obtained, combined with the average density of the ground drainage of the pit and the structural size of the pit B, and calculated according to the start and stop time of the pit B drain pump
  • the pit B leakage rate per unit time and amended according to the ground environmental loss rate ⁇ 2 to calculate the corrected pit B leakage rate r 21 , where the ground adhesion loss rate refers to the loss rate due to ground roughness, slope and other factors .
  • the leak rate r 22 of the pit B can represent the total leak rate r.
  • L liquid (r 21 ⁇ r 20 ) is used to determine whether a quantitative alarm of leaked liquid is triggered, where L liquid is a quantitative alarm of leaked liquid, and r 20 is a preset first alarm threshold of leaked liquid.
  • L liquid When L liquid is 1, it is preliminarily determined that liquid leakage has occurred, and a quantitative alarm of liquid leakage is triggered L liquid .
  • the sum of the corrected pit A leak rate r 1 and the corrected pit B leak rate r 2 is calculated, and the sum is used as the total leak rate r, and the corrected pit A leak rate r 1 and the total leak rate are calculated.
  • L total (r ⁇ r 0 )
  • the preset error threshold can usually be set to 20%, but it is not limited to this, and it can be specifically set according to the needs of actual applications, and no limitation is made here.
  • the level value of the surface drainage of the pit and according to the liquid level value, the average density of the surface drainage of the pit, and the location of the pit where the surface drainage of the pit is located Structural size and drain pump start-stop time, calculate the pit ground drain leakage rate per unit time, and correct the pit ground drain leakage rate according to the ground adhesion loss rate to obtain the corrected pit ground drain leakage rate, and according to Corrected the ground drain leakage rate of the pit to initially determine whether a liquid leak occurred and whether to trigger a quantitative alarm on the leaked liquid, and then determine the total leak rate according to the leaked gas quantitative alarm and the leaked liquid quantitative alarm, and according to the total leak rate and the leaked gas mass ratio and gas quality The relative error between the ratios determines whether the total leakage rate quantitative alarm is triggered.
  • the leakage gas quantitative alarm the leakage liquid quantitative alarm and the total leakage rate quantitative alarm, it is confirmed whether the calculation result of the leakage rate quantitative calculation is that leakage has occurred and whether the leakage quantitative alarm is triggered.
  • Alarm, or suppress quantitative leakage alarm realize accurate diagnosis and timely alarm of RCPB leakage, thereby effectively improving the accuracy of leak monitoring, and at the same time, the diagnosis process does not require the intervention of the operating personnel, reducing human factors, and improving the automation of leak monitoring Level.
  • step S6 when the location of the leakage source is the main steam pipe, the specific implementation method for quantitatively calculating the leakage rate according to the location of the leakage source mentioned in step S6 will be described in detail through another specific embodiment.
  • FIG. 8 shows another specific implementation process of quantitatively calculating the leakage rate according to the location of the leakage source in step S6 provided by an embodiment of the present invention. Details are as follows:
  • S631 Obtain the condensate flow monitoring value of each fan, and calculate the total condensate flow according to the condensate flow monitoring value of the fan.
  • S632 Obtain the liquid level value of the pit condensate, and calculate the unit time based on the liquid level value, the density of the pit condensate, the structural size of the pit where the pit condensate is located, and the start and stop time of the drain pump The pit condensate leakage rate, and correcting the pit condensate leakage rate according to the adhesion loss rate of the hydrophobic pipeline to obtain the corrected pit condensate leakage rate.
  • step S631 and step S632 may adopt the same processing method as the above step S621 and step S622. To avoid repetition, no further description is provided here.
  • the liquid level value of the pit B is obtained, combined with the structural size of the pit B and the density of the condensate, and the leak rate of the pit B per unit time is calculated according to the start and stop time of the pit B drain pump , And correct according to the adhesion of the hydrophobic pipeline and the overflow loss rate ⁇ ′ 1 to calculate the corrected pit B leakage rate r 22 .
  • S635 If the total flow of condensate is less than the second leakage gas alarm threshold and the corrected pit condensate leakage rate is greater than or equal to the preset second leakage liquid alarm threshold, or the total condensate flow is greater than or equal to the second leakage gas alarm threshold and corrected If the leakage rate of the pit condensate is less than the second leakage liquid alarm threshold, adjust the adhesion loss rate of the drain line so that the absolute difference between the corrected pit condensate leakage rate and the total condensate flow is less than the preset second deviation threshold .
  • in the process of quantitatively calculating the leakage rate of the main steam pipe first obtain the monitoring value of the condensate flow rate of each fan, and calculate the total condensate flow rate based on the monitoring value of the condensate flow rate of the fan, and then Obtain the liquid level value of the pit condensate, and calculate the pit per unit time according to the liquid level value, the density of the pit condensate, the structural size of the pit where the pit condensate is located and the start and stop time of the drain pump Condensate leakage rate, and correct the pit condensate leakage rate according to the adhesion loss rate of the drain line to obtain the corrected pit condensate leakage rate.
  • the drain pump of the pit where the pit condensate is located fails, then calculate Corrected the drain leakage rate of the pit ground, and then determined whether a leak occurred and triggered a quantitative leak alarm based on the total flow of condensate and the leak rate of the pit condensate, and realized accurate diagnosis and timely alarm of the main steam pipeline leakage, thereby effectively improving The accuracy of the leak monitoring, while the diagnosis process does not require the intervention of the operating personnel, reduce human factors, and improve the level of automation of leak monitoring.
  • FIG. 7 shows a schematic diagram of a nuclear power plant leakage monitoring and alarm system provided by an embodiment of the present invention. For ease of explanation, only parts related to the embodiment of the present invention are shown.
  • the nuclear power plant leakage monitoring and alarm system includes:
  • the data availability diagnostic module 71 is used to obtain the operating conditions of the unit and determine the availability of leak monitoring data based on the signals of the operating conditions of the unit;
  • the signal and data acquisition module 72 is used to obtain the process system status signal and leak monitoring instrument data if the availability of leak monitoring data is available;
  • the operating state determination module 73 is used to determine whether the process system is faulty according to the process system status signal To get the operating status of the process system;
  • the comprehensive state determination module 74 is used to determine whether the leak monitoring instrument and system are faulty according to the data of the leak monitoring instrument, the self-test of the monitoring channel and the self-diagnosis of the system failure, and obtain the comprehensive status of the leak monitoring instrument and system;
  • the data reliability determination module 75 is used to determine the reliability of the leak monitoring data according to the operating state and the integrated state;
  • the leak detection module 76 is used to perform leak source location analysis if the leak detection data is reliable, determine the location of the leak source, and perform quantitative calculation of the leak rate according to the location of the leak source;
  • the leak comprehensive diagnosis and alarm module 77 is used to trigger a leak alarm if the analysis result of the leak source location analysis and the calculation result of the quantitative calculation of the leak rate both occur and the leak response characteristics are satisfied.
  • nuclear power plant leakage monitoring and alarm system also includes:
  • Prompt information output module 78 is used to output leak alarm prompt information including leak rate change curve and leak source location information, so that the operator can carry out periodic leak rate periodic test according to the leak alarm prompt information;
  • the periodic leakage test module 79 is used to calculate the prediction data of the leakage rate periodic test if the operator detects that the leakage rate periodic test is started, and obtain the leakage rate periodic test manually calculated by the operator after the detection of the leakage rate periodic test ends Actual data
  • the parameter correction module 70 is used to correct the leakage loss coefficient of the leaked gas by comparing the predicted data with the actual data.
  • the data availability diagnosis module 71 includes:
  • the operating parameter acquisition sub-module 711 is used to obtain the operating parameters of the nuclear power plant reactor, and determine the unit operating condition signal according to the operating parameters;
  • the first availability judgment sub-module 712 is used to confirm that the availability of the leak monitoring data is unavailable if the unit's operating condition signal does not meet the preset condition requirements;
  • the second availability judgment sub-module 713 if the unit operating condition signal meets the preset operating condition requirements, confirms that the availability of the leak monitoring data is available.
  • the signal and data acquisition module 72 is also used to:
  • the operating state determination module 73 includes:
  • the logic operation sub-module 731 is used to perform a logical AND operation on each process system status signal and determine the operation state of the process system according to the operation result;
  • the fault alarm submodule 732 is used to trigger a process system fault alarm if the operating state is fault.
  • the comprehensive state determination module 74 includes:
  • the instrument detection sub-module 741 is used to judge whether the instrument is faulty according to the value of the local leakage monitoring instrument and the reference point leakage monitoring instrument, and obtain the instrument status;
  • the monitoring channel self-test submodule 742 is configured to receive a preset fixed mode signal transmitted by a preset signal transmitter every predetermined first time interval, and detect the received fixed mode signal and the preset fixed mode signal The degree of matching between them, and according to the degree of matching, determine whether the signal transmission in the monitoring channel is normal and obtain the signal transmission status;
  • the environmental state determination sub-module 743 is used to obtain server operating environment parameters and determine the operating environment state according to the server operating environment parameters;
  • the fault self-diagnosis submodule 744 is used to perform leak source location analysis according to preset parameters every predetermined second time interval to obtain a system fault self-diagnosis result;
  • the functional status determination sub-module 745 is used to determine the functional status of the server according to the operating environment status and the system fault self-diagnosis results;
  • the comprehensive state judgment sub-module 746 is used to determine the comprehensive state of the leak monitoring instrument and the system according to the instrument state, signal transmission state and server function state.
  • the leak detection module 76 includes:
  • the temperature and humidity acquisition sub-module 7611 is used to obtain the temperature and humidity monitoring values collected by the temperature and humidity sensor, wherein the temperature and humidity monitoring values include temperature monitoring values and humidity monitoring values, and the temperature and humidity sensors are pre-installed in pipes, equipment compartments or ventilation lines Preset position
  • Variation calculation sub-module 7612 used to calculate the change of each temperature monitoring value if each temperature monitoring value is greater than the preset environmental background value, and each humidity monitoring value is greater than the preset environmental background value The amplitude and the variation of each humidity monitoring value;
  • the single analysis submodule 7613 is used to change the temperature monitoring value of the temperature and humidity sensor within the preset temperature alarm threshold range and the humidity monitoring value of the temperature and humidity sensor changes within the preset humidity alarm threshold range, then Confirm that the single analysis result of the leak source location analysis corresponding to the temperature and humidity sensor is that a leak has occurred;
  • the leak location alarm submodule 7614 is used to confirm that if the single analysis result of the leak source location analysis of the temperature and humidity sensor with the same location monitoring function is leakage, then confirm that the analysis result of the leak source location analysis is a leak, and obtain the leak source Position and gas mass ratio, and trigger leak location alarm, otherwise, confirm the analysis result is non-leakage or instrument abnormality, suppress leak location alarm, and adjust the temperature alarm threshold range according to the temperature monitoring value curve, and adjust according to the humidity monitoring value curve Humidity alarm threshold range.
  • the location of the leakage source includes the pressure boundary of the primary loop of the reactor and the main steam pipeline, wherein the leakage generated at the pressure boundary of the primary loop of the reactor includes the leaked gas and the leaked liquid, and the leakage generated at the location of the main steam pipeline includes the leaked gas and the leaked gas
  • the monitoring data includes the fan condensate flow monitoring value and the pit condensate leakage rate.
  • the leaked liquid monitoring data includes the pit ground hydrophobic leakage rate.
  • the leak detection module 76 further includes:
  • the first condensate total flow calculation submodule 7621 is used to obtain the condensate flow monitoring value of each fan, and calculate the condensate total flow according to the fan condensate flow monitoring value;
  • the first pit condensate leakage rate calculation submodule 7622 is used to obtain the liquid level value of the pit condensate, and according to the liquid level value, the density of the pit condensate, and the structure of the pit where the pit condensate is located Size and drain pump start and stop time, calculate the pit condensate leakage rate per unit time, and correct the pit condensate leakage rate according to the adhesion loss rate of the drain line to obtain the corrected pit condensate leakage rate;
  • the first leakage gas quantitative alarm sub-module 7623 is used to determine that gas has occurred if the total flow of condensate is greater than or equal to the preset first leakage gas alarm threshold and the corrected pit condensate leakage rate is greater than or equal to the first leakage gas alarm threshold Leakage and trigger the quantitative alarm of the leaked gas, otherwise, if the total flow rate of condensate is greater than or equal to the first leaked gas alarm threshold, or the corrected pit condensate leak rate is greater than or equal to the first leaked gas alarm threshold, the adhesion loss rate of the drain line is adjusted , So that the absolute difference between the corrected pit condensate leakage rate and the total condensate flow is less than the preset first deviation threshold;
  • the first modified pit ground drain leakage rate calculation sub-module 7624 is used to obtain the liquid level value of the pit ground drain, and according to the liquid level value, the average density of the pit ground drain, and the pit where the pit ground drain is located.
  • the size of the structure and the start and stop time of the drain pump calculate the drain leakage rate of the pit ground per unit time, and correct the drain leakage rate of the pit ground according to the adhesion loss rate of the ground to obtain the corrected drain leakage rate of the pit ground;
  • the quantitative liquid leakage alarm submodule 7625 is used to determine that a liquid leakage occurs and trigger a quantitative liquid leakage alarm if the corrected pit ground hydrophobic leakage rate is greater than or equal to the preset first liquid leakage alarm threshold;
  • the total leakage rate calculation sub-module 7626 is used to calculate the sum of the corrected pit condensate leakage rate and the corrected pit ground hydrophobic leakage rate as the total leakage rate if the leaked gas quantitative alarm is triggered, or the leaked liquid quantitative alarm is triggered.
  • the ratio of the corrected leak rate of the condensate to the total leak rate is taken as the mass ratio of leaked gas;
  • the total leakage rate quantitative alarm submodule 7627 is used to trigger the total leakage rate if the total leakage rate is greater than or equal to the preset total leakage alarm threshold and the relative error between the leaked gas mass ratio and the gas mass ratio is less than or equal to the preset error threshold. Quantitative alarm for leakage rate;
  • the alarm suppression sub-module 7628 is used to suppress quantitative alarm of the total leakage rate if the total leakage rate is less than the total leakage alarm threshold and the relative error is greater than the error threshold;
  • the quantitative leakage alarm submodule 7629 is used if both the quantitative gas leakage alarm and the total leakage rate quantitative alarm are triggered, or the quantitative liquid leakage alarm and the total leakage rate quantitative alarm are triggered, or the quantitative gas leakage alarm and the quantitative liquid leakage alarm are both triggered. If it is triggered, the calculation result is confirmed to be a leak, and a quantitative leak alarm is triggered, otherwise the quantitative leak alarm is suppressed.
  • the leak detection module 76 further includes:
  • the second condensate total flow calculation submodule 7631 is used to obtain the condensate flow monitoring value of each fan, and calculate the total condensate flow according to the fan condensate flow monitoring value;
  • the second pit condensate leakage rate calculation submodule 7632 is used to obtain the liquid level value of the pit condensate, and according to the liquid level value, the density of the pit condensate, and the structure of the pit where the pit condensate is located Size and drain pump start and stop time, calculate the pit condensate leakage rate per unit time, and correct the pit condensate leakage rate according to the adhesion loss rate of the drain line to obtain the corrected pit condensate leakage rate;
  • the second modified pit ground drain leakage rate calculation sub-module 7633 is used to obtain the water level value of the pit ground drainage if the drain pump of the pit where the pit condensate is located fails, and according to the liquid level value, the ground The average density of the pit ground drainage, the structure size of the pit where the pit ground drainage is located and the start and stop time of the drain pump, calculate the pit ground drainage leakage rate per unit time, and according to the drainage pipeline adhesion and overflow loss rate The ground drain leakage rate of the pit is corrected to obtain the corrected ground drain leakage rate of the pit;
  • the second leakage gas quantitative alarm sub-module 7634 is used if the total flow of condensate is greater than or equal to the preset second leakage gas alarm threshold and the corrected pit condensate leakage rate is greater than or equal to the second leakage gas alarm threshold, or If the flow rate is greater than or equal to the second leaked gas alarm threshold and the corrected pit ground hydrophobic leak rate is greater than or equal to the second leaked gas alarm threshold, then the calculation result is confirmed to be a leak, and a quantitative alarm of leaked gas is triggered;
  • the first parameter adjustment module 7635 is used if the total flow of condensate is less than the second leakage gas alarm threshold and the corrected pit condensate leakage rate is greater than or equal to the preset second leakage liquid alarm threshold, or the total flow of condensate is greater than or equal to the Second leak gas alarm threshold and the corrected pit condensate leakage rate is less than the second leaked liquid alarm threshold, then adjust the adhesion loss rate of the hydrophobic pipeline so that the absolute difference between the corrected pit condensate leakage rate and the total condensate flow rate is less than The preset second deviation threshold.
  • the leakage gas diffusion loss coefficient includes the loss rate during the gas diffusion process and the gas mass ratio at the location of the leak source.
  • the predicted data includes the automatically calculated unrecognized leakage rate
  • the actual data includes the manually calculated unrecognized leakage rate
  • the parameter correction module 70 include:
  • the condition calculation sub-module 701 is used to obtain a long-term operating deviation convergence condition based on the automatically calculated unrecognizable leakage rate and the manually calculated unrecognizable leakage rate;
  • the first judgment sub-module 702 is used if the absolute difference between the automatically calculated unrecognizable leak rate and the manually calculated unrecognizable leak rate within the preset time range is always less than the preset difference, and the long-term operating deviation If the convergence condition is less than or equal to the preset first convergence coefficient, automatic calculation is used instead of manual calculation;
  • the second judgment sub-module 703 is used to confirm that if the relative error of the current total leakage rate relative to the automatically calculated unrecognizable leakage rate is less than or equal to the preset second convergence coefficient, the leakage gas diffusion loss coefficient is set reasonably;
  • the third judgment sub-module 704 is used to increase the loss rate during the gas diffusion process according to a preset step and modify the leakage if the current relative error is greater than the second convergence coefficient and the total leakage rate is greater than the automatically calculated unrecognizable leakage rate Gas mass ratio at source location;
  • the fourth judgment sub-module 705 is used to reduce the loss rate during the gas diffusion process and modify the leakage according to a preset step if the current relative error is greater than the second convergence coefficient and the total leakage rate is less than the automatically calculated unrecognizable leakage rate The gas mass ratio at the source location.
  • An embodiment of the present invention provides a computer-readable storage medium having a computer program stored on it, which when executed by a processor implements the nuclear power plant leakage monitoring and alarm method in the foregoing method embodiment, or, the The function of each module/unit in the nuclear power plant leakage monitoring and alarm system in the foregoing system embodiment when the computer program is executed by the processor.
  • the computer-readable storage medium may include: any entity or device capable of carrying computer program code, a recording medium, a U disk, a mobile hard disk, a magnetic disk, an optical disk, a computer memory, a read-only memory (Read-Only Memory, ROM ), random access memory (RAM), electrical carrier signals and telecommunications signals, etc.
  • FIG. 10 is a schematic diagram of a computer device according to an embodiment of the present invention.
  • the computer device 10 of this embodiment includes a processor 100, a memory 101, and a computer program 102 stored in the memory 101 and executable on the processor 100, such as a leak monitoring and comprehensive diagnosis program.
  • the processor 100 executes the computer program 102, the steps in the above method embodiments are implemented, for example, steps S1 to S10 shown in FIG. 1.
  • the processor 100 executes the computer program 102
  • the functions of the modules in the foregoing system embodiments are realized, for example, the functions of the modules 71 to 79 shown in FIG. 9.
  • the computer program 102 may be divided into one or more units, and the one or more units are stored in the memory 101 and executed by the processor 100 to complete the present invention.
  • the one or more units may be a series of computer program instruction segments capable of performing specific functions.
  • the instruction segments are used to describe the execution process of the computer program 102 in the computer device 10.
  • the computer program 102 can be divided into a data availability diagnostic module, a signal and data acquisition module, an operating status determination module, an integrated status determination module, a data reliability determination module, a leak detection module, a leak comprehensive diagnosis and alarm module, and a leak regular test Modules and parameter correction modules.
  • the specific functions of each module are as shown in the above system embodiment. In order to avoid repetition, they are not repeated here one by one.
  • the computer device 10 may be a terminal device such as a desktop computer, a notebook, a palmtop computer, and a cloud server.
  • the computer device 10 includes, but is not limited to, the processor 100 and the memory 101.
  • FIG. 10 is only an example of the computer device 10 and does not constitute a limitation on the computer device 10, and may include more or less components than those illustrated, or combine certain components, or different components.
  • the computer device 10 may further include input and output devices, network access devices, buses, and the like.
  • the processor 100 may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), ready-made Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 101 may be an internal storage unit of the computer device 10, such as a hard disk or a memory of the computer device 10.
  • the memory 101 may also be an external storage device of the computer device 10, for example, a plug-in hard disk equipped on the computer device 10, a smart memory card (Smart) Card (SMC), a secure digital (SD) card, and a flash memory card (Flash Card) etc.
  • the memory 101 may also include both an internal storage unit of the computer device 10 and an external storage device.
  • the memory 101 is used to store computer programs and other programs and data required by the computer device 10.
  • the memory 101 may also be used to temporarily store data that has been output or will be output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

本发明适用于核电技术领域,提供了一种核电站泄漏监测报警方法,其包括:获取机组运行工况信号,并根据机组运行工况信号确定泄漏监测可用性;若泄漏监测为可用状态,则获取工艺系统状态信号和泄漏监测仪表数据,确定泄漏监测数据可靠性;若泄漏监测数据为可靠状态,则进行泄漏源定位分析和泄漏源定量计算;若泄漏源定位分析和泄漏率定量计算的诊断结果均表明为发生泄漏,且满足泄漏响应特性,则触发泄漏报警。此外,本发明还提供了一种核电站泄漏监测报警系统。本发明可有效提高泄漏监测的准确度,减少运行人员干预从而降低人因故障,提高泄漏监控的自动化水平。

Description

核电站泄漏监测报警方法及报警系统 技术领域
本发明属于核电技术领域,更具体地说,本发明涉及一种核电站泄漏监测报警方法及报警系统。
背景技术
核电厂反应堆一回路压力边界的泄漏直接影响核电厂运行的安全性。破前漏技术应用对象的泄漏直接影响核电厂运行的经济性。泄漏监测系统监测反应堆一回路压力边界的不可识别泄漏和破前漏技术应用对象的泄漏。
目前,常用的泄漏监测都是通过单一监测仪表超阈值报警的方式,报警后由核电厂运行人员根据运行经验或运行技术规范核实是否发生泄漏。
但是,由于核电厂的运行环境和结构均比较复杂,这种仅通过监测仪表超阈值即报警的方式很容易造成误报警,导致对泄漏监测的准确度不高,同时,报警后由核电厂运行人员核实是否发生泄漏,一方面导致泄漏自动监测能力较低,另一方面也加重了运行人员的工作负荷,造成人力成本的增加,同时人工核实考验运行人员的技术能力,若运行人员经验不足,很可能造成泄漏误判和人因故障风险,也不能有效的提高泄漏监测的准确度,并且造成核电厂运行的经济性下降。
故,有必要提供一种技术方案,以解决上述技术问题。
发明内容
有鉴于此,本发明实施例提供了一种核电站泄漏监测报警方法及报警系统,以解决现有技术对泄漏监测和诊断的准确度低和自动化水平低的问题。
本发明实施例的第一方面提供了一种核电站泄漏监测报警方法,其包括:
获取机组运行工况信号,并根据所述机组运行工况信号,确定泄漏监测数据的可用性;
若所述泄漏监测数据的可用性为可用状态,则获取工艺系统状态信号和泄漏监测仪表数据;
根据所述工艺系统状态信号判断工艺系统是否发生故障,得到所述工艺系统的运行状态;
根据所述泄漏监测仪表数据、监测通道自检和系统故障自诊断判断泄漏监测仪表和系统是否发生故障,得到泄漏监测仪表和系统的综合状态;
根据所述运行状态和所述综合状态,确定泄漏监测数据的可靠性;
若所述泄漏检测数据可靠,则进行泄漏源定位分析,确定泄漏源位置,并根据所述泄漏源位置进行泄漏率定量计算;
若所述泄漏源定位分析的分析结果和所述泄漏率定量计算的计算结果均为发生泄漏,并且满足泄漏响应特性,则触发泄漏报警。
本发明实施例的第二方面提供了一种核电站泄漏监测报警系统,其包括:
数据可用性诊断模块,用于获取机组运行工况信号,并根据机组运行工况信号,确定泄漏监测数据的可用性;
信号和数据获取模块,用于若所述泄漏监测数据的可用性为可用状态,则获取工艺系统状态信号和泄漏监测仪表数据;运行状态确定模块,用于根据所述工艺系统状态信号判断工艺系统是否发生故障,得到所述工艺系统的运行状态;
综合状态确定模块,用于根据所述泄漏监测仪表数据、监测通道自检和系统故障自诊断判断泄漏监测仪表和系统是否发生故障,得到泄漏监测仪表和系统的综合状态;
数据可靠性确定模块,用于根据所述运行状态和所述综合状态,确定泄漏监测数据的可靠性;
泄漏检测模块,用于若所述泄漏检测数据可靠,则进行泄漏源定位分析, 确定泄漏源位置,并根据所述泄漏源位置进行泄漏率定量计算;
泄漏报警模块,用于若所述泄漏源定位分析的分析结果和所述泄漏率定量计算的计算结果均为发生泄漏,并且满足泄漏响应特性,则触发泄漏报警。
本发明核电站泄漏监测报警方法及其系统通过机组运行工况判断、工艺系统故障诊断、仪表系统故障诊断、泄漏源定位诊断和泄漏源定量诊断的组合,实现对泄漏的综合诊断和报警,有效提高泄漏监测和诊断的准确度,同时减少运行人员的干预,降低人因故障,提高了泄漏监控的自动化水平。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的核电站泄漏监测报警方法的实现流程图;
图2是本发明实施例提供的核电站泄漏监测报警方法中步骤S3的实现流程图;
图3是本发明实施例提供的核电站泄漏监测报警方法中步骤S10的实现流程图;
图4是本发明实施例提供的核电站泄漏监测报警方法中步骤S1的实现流程图;
图5是本发明实施例提供的核电站泄漏监测报警方法的步骤S4中的实现流程图;
图6是本发明实施例提供的核电站泄漏监测报警方法的步骤S6中进行泄漏源定位分析,确定泄漏源位置的的实现流程图;
图7是本发明实施例提供的核电站泄漏监测报警方法的步骤S6中,当泄漏源位置为反应堆一回路压力边界时,根据泄漏源位置进行泄漏率定量计算的实 现流程图;
图8是本发明实施例提供的核电站泄漏监测报警方法的步骤S6中,当泄漏源位置为主蒸汽管道时,根据泄漏源位置进行泄漏率定量计算的实现流程图;
图9是本发明实施例提供的核电站泄漏监测报警系统的示意图;
图10是本发明实施例提供的计算机设备的示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
为了说明本发明的技术方案,下面通过具体实施例来进行说明。
请参阅图1,图1示出了本发明实施例提供的一种核电站泄漏监测报警方法的实现流程,包括步骤S1至S7,本发明实施例的执行主体可以是进行核电厂泄漏监测和综合诊断的服务端设备,其具体可以是计算机。详述如下:
S1:获取机组运行工况信号,并根据机组运行工况信号确定泄漏监测数据的可用性。
具体地,实时获取核电厂机组的运行工况信号R i,或者通过获取功率P、温度T和压力p等运行参数,并对这些运行参数进行逻辑运算得到运行工况信号R i,根据该机组运行工况信号判断泄漏监测数据是否可用。
其中,运行工况信号具体可以是核电厂的运行状态信号,包括正常运行工况(normal operating conditions)和预计运行事件(anticipated events)等,正常运行工况可以包括若干运行模式(operating modes)。
泄漏监测数据的可用性包括可用状态和不可用状态,用于标识泄漏监测数据是否可用。当泄漏监测数据的可用性为可用状态时,泄漏监测和综合诊断系 统运行正常,能够对泄漏情况进行监测和诊断;当泄漏监测数据的可用性为不可用状态时,泄漏监测和综合诊断系统数据不传输,并进行故障报警和泄漏报警抑制,以免对操作员造成干扰。
其中,报警抑制是指对报警信息的一种处理方法,如在某些工况下,介质参数虽然达到报警阈值,但并不属于异常现象,为不影响正常监视而闭锁报警的措施。
S2:若泄漏监测数据的可用性为可用状态,则获取工艺系统状态信号和泄漏监测仪表数据。
具体地,若根据步骤S1得到的泄漏监测数据的可用性为可用状态,则获取工艺系统状态信号和泄漏监测仪表数据。
其中,工艺系统为泄漏监测仪表所依托的工艺系统,工艺系统包括但不限于安全壳通风系统及其设备冷却系统、核岛疏水排气系统等。
进一步地,在一具体实施例中,获取工艺系统状态信号包括:
根据每个工艺系统中的通风系统风量、温度和压力,分别与预设的风量阈值、预设的温度阈值和预设的压力阈值进行比较,并根据比较结果确定每个工艺系统状态信号。
具体地,获取每个工艺系统的状态参数,包括但不限于通风系统风量Q i、温度T i和压力p i等,并根据工艺系统状态参数确定工艺系统状态信号,具体逻辑运算公式为S i=Q i≤Q i0&T i≤T i0&p i≤p i0,其中,Q i0为预设的风量阈值,T i0为预设的温度阈值,p i0为预设的压力阈值。
工艺系统状态信号S i的取值为1或0,当S i=1时,表示第i个工艺系统正常,当S i=0时,表示第i个工艺系统故障。
S3:根据工艺系统状态信号判断工艺系统是否发生故障,得到工艺系统的运行状态。
具体地,根据步骤S2获取的工艺系统状态信号判断工艺系统是否发生故障,若根据工艺系统状态信号确定工艺系统发生故障,则得到工艺系统的运行 状态为故障,若根据工艺系统状态信号确定工艺系统方未发生故障,则得到工艺系统的运行状态为正常。
进一步地,如图2所示,在一具体实施例中,根据工艺系统状态信号判断工艺系统是否发生故障,得到工艺系统的运行状态包括:
S31:对每个所工艺系统状态信号进行逻辑与运算,并根据运算结果确定工艺系统的运行状态。
具体地,根据步骤S2得到的每个工艺系统状态信号S i,判断工艺系统是否发生故障,具体逻辑运算公式为S=S 1&S 2&...&S n,其中,S为工艺系统的运行状态,S i为第i个工艺系统状态信号,i∈[1,n],n为工艺系统的数量。
若工艺系统的运行状态S为0,则确认工艺系统的运行状态为故障;
若工艺系统的运行状态S为1,则确认工艺系统的运行状态为正常。
S32:若工艺系统的运行状态为故障,则触发工艺系统故障告警。具体地,若步骤S31得到的工艺系统的运行状态S为0,即工艺系统的运行状态为故障,则触发工艺系统故障告警。
S4:根据泄漏监测仪表数据、监测通道自检和系统故障自诊断判断泄漏监测仪表和系统是否发生故障,得到泄漏监测仪表和系统的综合状态。
具体地,通过对诊断泄漏监测仪表数据、监测通道自检结果和系统故障自诊断结果进行逻辑运算,判断泄漏监测仪表和系统是否发生故障,得到泄漏监测仪表和系统的综合状态。
S5:根据工艺系统的运行状态和泄漏监测仪表和系统的综合状态,确定泄漏监测数据的可靠性。
具体地,对步骤S3得到的工艺系统的运行状态S,以及步骤S4得到的泄漏监测仪表和系统的综合状态D,进行逻辑运算,诊断泄漏监测数据可靠性情况。具体逻辑运算公式为ε=S&D,其中,ε为泄漏监测数据的可靠性。若ε为0,则确定泄漏监测数据不可靠,即其可靠性为故障状态;若ε为1,则确定泄漏监测数据可靠,即其可靠性为正常状态。
泄漏监测数据的可靠性包括正常状态和故障状态,用于标识泄漏监测数据是否可靠。当泄漏监测数据为正常状态时,泄漏监测值可信,实时开展后续泄漏源定位分析和泄漏率定量计算;当泄漏监测数据为故障状态时,泄漏监测值不可信,触发故障报警,监测值维持在上一个正常值,以免失真监测值造成操作员误判。
S6:若泄漏监测数据可靠,则进行泄漏源定位分析,确定泄漏源位置,并根据泄漏源位置进行泄漏率定量计算。
具体地,若根据步骤S5得到的泄漏监测数据的可靠性为正常状态,则进一步进行泄漏源定位分析和泄漏率定量计算。
其中,泄漏源定位分析包括对单一仪表的变化幅度
Figure PCTCN2018120393-appb-000001
Figure PCTCN2018120393-appb-000002
是否超过报警阈值进行监测,以及进行泄漏源定位分析结果的一致性诊断。当泄漏源定位分析的分析结果为某一位置发生泄漏,触发泄漏源定位报警L l
其中,泄漏率定量计算包括对泄漏气体定量报警L gas、泄漏液体定量报警L liquid和总泄漏率定量报警L total是否超过报警阈值的判断,以及进行泄漏率定量计算结果的一致性诊断L q=L gas&L liquid+L gas&L total+L total&L liquid。当泄漏率定量计算的计算结果为发生泄漏,触发泄漏定量报警L q
需要说明的是,对泄漏源位置包括反应堆一回路压力边界(Reactor Coolant Pressure Boundary,RCPB)或主蒸汽管道,对反应堆一回路压力边界位置产生的泄漏包括泄漏气体和泄漏液体,在主蒸汽管道位置产生的泄漏只包括泄漏气体,因此,对主蒸汽管道的泄漏率定量计算只包括泄漏气体定量报警L gas,即L q=L gas
S7:若泄漏源定位分析的分析结果和泄漏率定量计算的计算结果均为发生泄漏,并且满足泄漏响应特性,则触发泄漏报警。
具体地,若步骤S6得到的泄漏源定位分析的分析结果和泄漏率定量计算的计算结果均为发生泄漏,则进一步判断泄漏定位报警L l和泄漏定量报警L q的 一致性L c和时序性L t,并根据一致性和时序性得到泄漏综合诊断结果L F
当泄漏综合诊断结果L F为1时,则确认发生了泄漏,触发泄漏报警。
在另一个优选的实施方式中,上述核电站泄漏监测报警方法还可以包括步骤S8至S10,详述如下:
S8:输出包含泄漏率变化曲线和泄漏源位置信息的泄漏报警提示信息,以使操作员根据该泄漏报警提示信息,开展周期性泄漏率定期试验。
具体地,根据泄漏源定位分析和泄漏率定量计算过程中的泄漏率变化曲线和泄漏源位置信息,向监控平台输出包含该泄漏率变化曲线和该泄漏源位置信息的泄漏报警提示信息。
其中,泄漏率变化曲线用于展示单位时间泄漏率的变化,泄漏源位置信息用于标识发生泄漏的具体位置。
进一步地,当泄漏源定位分析的分析结果为发生泄漏时,可以在本系统内进行泄漏定位报警;当泄漏率定量计算的计算结果为发生泄漏时,可以在本系统内进行泄漏定量报警。
需要说明的是,只有当泄漏源定位分析的分析结果和泄漏率定量计算的计算结果均为发生泄漏时,才确认发生了泄漏,本系统向外发送泄漏报警。
进一步地,若仅有泄漏源定位分析的分析结果为发生泄漏,而泄漏率定量计算的诊断结果为未发生泄漏,即仅有泄漏源定位报警,而无泄漏定量报警,则可能是泄漏源定位监测仪表故障或定位报警阈值设置不合理而导致的误报警,因此,这种情况判定为非泄漏,确认显示值失效,并进行报警抑制。
若仅有泄漏率定量计算的计算结果为发生泄漏,而泄漏源定位分析的分析结果为未发生泄漏,即仅有泄漏定量报警,而无泄漏源定位报警,则可能是其他疏水导致核岛疏水排气系统地坑换算泄漏率超过定量报警阈值,或者通风系统设备冷却水异常排水,导致冷凝液流量和核岛疏水排气系统地坑换算泄漏率超过定量报警阈值,因此,这种情况也判定为非泄漏,确认显示值失效,并进行报警抑制。
若泄漏监测系统处于泄漏报警状态,同时确定泄漏源位置为反应堆一回路压力边界,则提醒操作员开展泄漏率定期试验。
具体地,在触发泄漏报警时,核实泄漏源位置为反应堆一回路压力边界,在泄漏报警提示信息中还包括提醒操作员尽快开展周期性泄漏率定期试验的内容。操作员判断机组运行参数是否泄漏率定期试验先决条件;若满足先决条件,按照试验程序提前组织开展泄漏率定期试验;根据试验结果和机组运行技术规范确定是否采取纠正措施。
其中,机组运行技术规范和泄漏率定期试验程序是压水堆核电厂的必备文件,先决条件在泄漏率定期试验程序中规定。正常情况下,泄漏率定期试验每天开展一次,按操作手册要求开展。泄漏监测系统为泄漏率定期试验开展时间的选择,提供切入手段。
S9:若检测到操作员启动泄漏率定期试验,则计算泄漏率定期试验的预测数据,并在检测到泄漏率定期实验结束后,获取操作员手动计算的泄漏率定期试验的实际数据。
具体地,若检测到操作员启动泄漏率定期试验,则在泄漏率定期试验开展过程中自动计算预测数据,并在检测到泄漏率定期实验结束后,获取操作员手动计算的实际数据。
进一步地,预测数据具体可以包括自动计算的不可识别泄漏率L nq,实际数据具体可以包括手动计算的不可识别泄漏率L' nq,实际数据还可以包括总泄漏、可识别泄漏等。
S10:通过对预测数据和实际数据的比较,修正泄漏气体扩散损失系数。
具体地,根据步骤S9得到的预测数据和实际数据,将预测数据与实际数据进行比较,并根据比较结果,确定是否采用本系统自动计算替代操作员手动计算,并根据偏差和修正步长,修正泄漏气体扩散损失系数。
进一步地,泄漏气体扩散损失系数包括气体扩散过程中损失率和泄漏源位置的气体质量比例。
优选地,在一具体实施例中,如图3所示,通过对预测数据和实际数据的比较,修正泄漏气体扩散损失系数的实现过程包括步骤S101至步骤S105,详述如下:
S101:根据自动计算的不可识别泄漏率和手动计算的不可识别泄漏率,得到长期运行偏差收敛条件。
具体地,将自动计算的不可识别泄漏率L nq与操作员手动计算的不可识别泄漏率L' nq进行比较,并按照如下公式计算长期运行偏差收敛条件:
Figure PCTCN2018120393-appb-000003
其中,δ 1为长期运行偏差收敛条件。
S102:若在预设的时间范围内自动计算的不可识别泄漏率和手动计算的不可识别泄漏率之间的绝对差值始终小于预设的差值,并且长期运行偏差收敛条件小于等于预设的第一收敛系数,则使用自动计算取代手动计算。
具体地,若在预设的时间范围内自动计算的不可识别泄漏率和手动计算的不可识别泄漏率之间的绝对差值始终小于预设的差值,即在预设的时间范围内长期运行表明L nq≈L' nq,并且长期运行偏差收敛条件小于等于预设的第一收敛系数,则采用本系统自动计算替代操作员手动计算,以提高运算能力。
S103:若当前总泄漏率相对于自动计算的不可识别泄漏率的相对误差小于等于预设的第二收敛系数,则确认泄漏气体扩散损失系数设置合理。
具体地,若当前总泄漏率相对于自动计算的不可识别泄漏率的相对误差小于等于预设的第二收敛系数,则确认泄漏气体扩散损失系数设置合理,无需修正。
S104:若当前相对误差大于第二收敛系数,并且总泄漏率大于自动计算的不可识别泄漏率,则按照预设的步长提高气体扩散过程中损失率,并修改泄漏源位置的气体质量比例。
S105:若当前相对误差大于第二收敛系数,并且总泄漏率小于自动计算的 不可识别泄漏率,则按照预设的步长降低气体扩散过程中损失率,并修改泄漏源位置的气体质量比例。
在图1对应的实施例中,获取机组运行工况信号,并根据机组运行的工况信号,确定泄漏监测数据的可用性,若泄漏监测数据为可用状态,则获取工艺系统状态信号和泄漏监测仪表数据,并根据工艺系统状态信号确定工艺系统的运行状态,根据泄漏监测仪表数据、监测通道自检和系统故障自诊断确定泄漏监测仪表和系统的综合状态,然后根据运行状态和综合状态确定泄漏监测数据的可靠性,若泄漏监测数据可靠,则进行泄漏源定位分析,确定泄漏源位置,并根据该泄漏源位置进行泄漏率定量计算,若漏源定位分析的分析结果和泄漏率定量计算的计算结果均为发生泄漏,并且满足泄漏响应特性,则触发泄漏报警,并输出包含泄漏率变化曲线和泄漏源位置信息的泄漏报警提示信息,以使操作员根据该泄漏报警提示信息,开展周期性泄漏率定期试验。
通过机组运行工况判断、工艺系统故障诊断、仪表系统故障诊断、泄漏源定位诊断和泄漏源定量诊断的组合,实现对泄漏的综合诊断,有效提高泄漏监测和诊断的准确度,同时减少运行人员的干预,降低人因故障,提高了泄漏监控的自动化水平。同时,若检测到操作员启动泄漏率定期试验,则计算泄漏率定期试验的预测数据,并在检测到泄漏率定期实验结束后,获取操作员手动计算的泄漏率定期试验的实际数据;通过对预测数据和实际数据的比较,一方面根据比较结果判断是否采用本系统自动计算替代操作员手动计算,提高运算能力,另一方面,通过修正泄漏气体扩散损失系数,为后续泄漏监测和综合诊断提供更加准确的判断依据,从而进一步提高泄漏监测和诊断的准确度。
在图1对应的实施例的基础之上,下面通过一个具体的实施例对步骤S1中所提及的根据机组运行的工况信号,确定泄漏监测数据的可用性的具体实现方法进行详细说明。
请参阅图4,图4示出了本发明实施例提供的步骤S1的具体实现流程,详述如下:
S11:获取核电厂反应堆的运行参数,并根据该运行参数确定机组运行工况信号。
具体地,获取反应堆运行参数,包括但不限于功率P i、温度T i和压力p i等,并根据反应堆运行参数确定核电厂的机组运行工况,具体逻辑运算公式为R i=(P i≥P i0)&(T i≥T i0)&(p i≥p i0),其中,P i0为预设的功率阈值,T i0为预设的温度阈值,p i0为预设的压力阈值。
核电厂的机组运行工况信号R i的取值为1或0,当R i=1时,表示处于第i种模式下。
S12:若机组运行工况信号不满足预设的工况要求,则确认泄漏监测数据的可用性为不可用状态。
具体地,若步骤S11得到的运行工况信号R i不满足预设的工况要求,则确认泄漏监测系统运行故障,不能对泄漏情况进行监测,即确认泄漏监测数据的可用性为不可用状态。
需要说明的是,预设的工况要求具体可以根据实际应用的需要进行设置,此处不做限制。
S13:若机组运行工况信号满足预设的工况要求,则确认泄漏监测数据的可用性为可用状态。
具体地,若步骤S11得到的运行工况信号满足预设的工况要求,则确认泄漏监测系统运行正常,能够对泄漏情况进行监测,即确认泄漏监测数据的可用性为可用状态。
在图4对应的实施例中,获取核电厂反应堆的运行参数,并根据给运行参数确定机组运行工况新,若该机组运行工况信号不满足预设的工况要求,则确认泄漏监测数据的可用性为不可用状态,否则,确认泄漏监测数据的可用性为可用状态。通过对工况信号的分析,确定泄漏监测数据的可用性,从而为后续泄漏的正确诊断提供保障,避免可能的误诊断,提高泄漏监测的准确度。
在图1对应的实施例的基础之上,泄漏监测仪表数据包括就地泄漏监测仪 表值和参考点泄漏监测仪表值,下面通过一个具体的实施例对步骤S4中所提及的根据泄漏监测仪表数据、监测通道自检和系统故障自诊断判断泄漏监测仪表和系统是否发生故障,得到泄漏监测仪表和系统的综合状态的具体实现方法进行详细说明。
请参阅图5,图5示出了本发明实施例提供的步骤S4的具体实现流程,详述如下:
S41:根据就地泄漏监测仪表值和参考点泄漏监测仪表值,判断仪表是否故障,得到仪表状态。
具体地,获取就地泄漏监测仪表值M i和参考点泄漏监测仪表值M 0,其中参考点具体可以是送风口等。
进行仪表故障判断逻辑运算为D 1=D 11&D 12&...&D 1i,其中,D 1为仪表状态,
Figure PCTCN2018120393-appb-000004
Figure PCTCN2018120393-appb-000005
为就地泄漏监测仪表M i的算术平均值。若D 1为0,则确定仪表状态为故障;若D 1为1,则确定仪表状态为正常。
S42:每隔预定的第一时间间隔,接收预设的信号发射器发射的预设的固定模式信号,并检测接收到的固定模式信号与预设的固定模式信号之间的匹配度,并根据该匹配度确定监测通道中的信号传输是否正常,得到信号传输状态。
具体地,每隔第一时间间隔进行一次监测通道自检,包括预设的信号发射器发射预设的固定模式信号,当接收到固定模式信号时,检测接收到的固定模式信号与预设的固定模式信号之间的匹配度χ。
进行监测通道自检的判断逻辑运算为D 2=(χ≥a),其中,D 2为信号传输状态,a为预设的匹配度阈值。若D 2为0,则确定信号传输状态为故障;若D 2为1,则确定信号传输状态为正常。
需要说明的是,第一时间间隔通常可以设置为30分钟,匹配度阈值a的取值通常可以设置为70%,但并不限于此,第一时间间隔和匹配度阈值均可以根据实际应用的需要进行设置,此处不做限制。
S43:获取服务器运行环境参数,并根据该服务器运行环境参数确定运行环境状态。
具体地,读取服务器运行环境参数,该服务器运行环境参数包括但不限于电压V、功率P D等,根据该服务器运行环境参数判断运行环境状态是否正常的逻辑运算为
Figure PCTCN2018120393-appb-000006
其中,D 31为运行环境状态,V 0为预设的电压基准值,P D0为预设的功率阈值,δ为预设的功率调节参数,β为预设的电压偏差率阈值。
需要说明的是,预设的功率调节参数通常可以设置为1.5,预设的电压偏差率阈值通常可以设置为15,但并不限于此,功率调节参数和电压偏差率阈值均可以根据实际应用的需要进行设置,此处不做限制。
S44:每隔预定的第二时间间隔,按照预设的参数进行泄漏源定位分析,得到系统故障自诊断结果。
具体地,每隔预定的第二时间间隔进行一次系统故障自诊断,包括按照预设的参数执行泄漏源定位分析,计算泄漏源位置,并与预设结果比较,判断泄漏源定位功能是否正常,得到系统故障自诊断结果D 32,若比较结果为泄漏源定位功能正常,则D 32赋值为1,若比较结果为泄漏源定位功能不正常,则D 32赋值为0。
S45:根据服务器运行环境状态和系统故障自诊断结果,确定服务器功能状态。
具体地,根据步骤S43得到的运行环境状态D 31和步骤S44得到的系统故障自诊断结果D 32,通过逻辑运算D 3=D 31&D 32确定服务器功能状态D 3。若D 3为0,则确定服务器功能状态为故障;若服务器功能状态D 3为1,则确定服务器功能状态为正常。
S46:根据仪表状态、信号传输状态和服务器功能状态,确定泄漏监测仪表和系统的综合状态。
具体地,进行泄漏监测仪表和系统的综合状态判断的逻辑运算为D=D 1&D 2&D 3,其中,D为泄漏监测仪表和系统的综合状态,D 1为步骤S41得到的仪表状态,D 2为步骤S42得到的信号传输状态,D 3为步骤S45得到的服务器功能状态。若D为0,则确定泄漏监测仪表和系统的综合状态为故障;若D为1,则确定泄漏监测仪表和系统的综合状态为正常。
在图5对应的实施例中,根据就地泄漏监测仪表值和参考点泄漏监测仪表值,判断仪表是否故障,得到仪表状态;每隔预定的第一时间间隔进行一次监测通道自检,检查固定模式信号的匹配度,并根据自检结果确定监测通道中的信号传输是否正常,得到信号传输状态;获取服务器运行环境参数,并根据该服务器运行环境参数确定运行环境状态;每隔预定的第二时间间隔进行一次系统故障自诊断,得到系统故障自诊断结果;根据运行环境状态和系统故障自诊断结果,确定服务器功能状态;然后根据仪表状态、信号传输状态和服务器功能状态,确定泄漏监测仪表和系统的综合状态,实现了对泄漏监测仪表和系统的状态的准确判断,从而为后续泄漏的正确诊断提供保障,避免可能的误诊断,提高泄漏监测的准确度。
在图1对应的实施例的基础之上,下面通过一个具体的实施例对步骤S6中所提及的进行泄漏源定位分析,确定泄漏源位置的具体实现方法进行详细说明。
请参阅图6,图6示出了本发明实施例提供的步骤S6中进行泄漏源定位分析,确定泄漏源位置的具体实现流程,详述如下:
S611:获取温湿度传感器采集的温湿度监测值,其中,温湿度监测值包括温度监测值和湿度监测值,温湿度传感器被预先安装在管道、设备隔间或通风线路的预设位置。
在本发明实施例中,温湿度传感器包括单独采集温度的传感器、单独采集湿度的传感器,以及同时采集温度和湿度的传感器,温湿度传感器被预先安装在管道、设备隔间或通风线路的预设位置。其中,预设位置可以根据管道、设 备隔间或通风线路的实际情况进行选择,此处不做限制。
具体地,当干燥冷空气通过管道、设备隔间或通风线路时,温湿度传感器采集到温湿度监测值,进行泄漏监测的服务端设备获取该温湿度监测值。
S612:若每个温度监测值均大于预设的环境本底值,并且每个湿度监测值均大于预设的环境本底值,则计算每个温度监测值的变化幅度和每个湿度监测值的变化幅度。
在本发明实施例中,在通风系统送风总管上布置温湿度传感器,并将该温湿度传感器采集到的温湿度数据作为环境本底值。环境本底值可以作为温湿度监测值的判断基准值,还可以根据温湿度监测值和环境本底值对温湿度传感器进行人工校准。
干燥冷空气在管道、设备隔间或通风线路的传输过程中,由于泄漏可能会造成干燥冷空气受热或者受潮,使得管道、设备隔间或通风线路中的温湿度发生变化。
具体地,将每个温湿度监测值与环境本底值进行比较,若每个温湿度监测值均大于预设的环境本底值,则根据每个温湿度传感器在预设时间段内采集到的温湿度监测值,计算该预设时间段内该温湿度监测值的变化幅度。
S613:若温湿度传感器的温度监测值的变化幅度满足预设的温度报警阈值范围,并且该温湿度传感器的湿度监测值的变化幅度满足预设的湿度报警阈值范围,则确认该温湿度传感器对应的泄漏源定位分析的单一分析结果为发生泄漏。
具体地,针对温湿度传感器,根据步骤S612计算得到的该温湿度传感器的温湿度监测值的变化幅度,判断该变化幅度是否满足该温湿度传感器对应的预设的报警阈值范围。若每个温湿度监测值的变化幅度均满足对应的报警阈值范围,则确认该温湿度传感器对应的泄漏源定位分析的单一分析结果为发生泄漏。
S614:若具备相同位置监测功能的温湿度传感器的泄漏源定位分析的单一分析结果均为发生泄漏,则确认泄漏源定位分析的分析结果为发生泄漏,并且 获取泄漏源位置和气体质量比例,并触发泄漏定位报警,否则,确认泄漏源定位分析的分析结果为非泄漏或仪表异常,抑制泄漏源定位报警,并根据温度监测值的曲线调整温度报警阈值范围,以及根据湿度监测值的曲线调整湿度报警阈值范围。
具体地,若具备相同位置监测功能的其他温湿度传感器的泄漏源定位分析的单一分析结果L m,l也为泄漏,即L m,l为1,则触发泄漏定位报警L l。具体逻辑判断过程为:当L l=L n,l&L m,l=1,则触发泄漏定位报警L l,并获取泄漏源位置和气体质量比例α 0;当L l=L n,l&L m,l=0,则确定为非泄漏或仪表异常,抑制泄漏源定位报警L l,并根据监测值曲线调整报警阈值A ΔT和A ΔT,将报警阈值范围到合理范围内,使得在一段时间内具有功能冗余的温湿度传感器的报警一致。
例如,对设备和管道连接焊缝导致的泄漏,管道上的温湿度传感器和设备隔间的温度传感器构成功能冗余,均应发生响应,同时,由于泄漏气体沿着通风线路传输,因此,管道上的温湿度传感器或设备隔间的温度传感器还与通风线路上的温度传感器构成功能冗余,均应发生响应。假设管道、设备隔间和通风线路的预设位置的温湿度传感器对应的报警阈值范围均为温湿度监测值的变化幅度在28%至30%之间,则计算每个温湿度监测值的变化幅度,若每个变化幅度均在28%至30%的范围内,则确认泄漏源定位诊断的诊断结果为发生泄漏,并触发泄漏定位报警。
在图6对应的实施例中,获取预先安装在管道、设备隔间或通风线路的预设位置的温湿度传感器采集的温湿度监测值,若每个温湿度监测值均大于预设的环境本底值,则计算每个温湿度监测值的变化幅度,并通过判断每个温湿度传感器的温湿度监测值的变化幅度是否满足该温湿度传感器对应的预设的报警阈值范围,进行温湿度传感器的功能冗余判定,若功能冗余判定的结果为响应一致,即每个温湿度监测值的变化幅度均满足对应的报警阈值范围,则确认泄漏源定位诊断的诊断结果为发生泄漏,并触发泄漏定位报警,否则,若功能冗 余判定的结果为响应不一致,即存在预设数量的温湿度传感器的温湿度监测值的变化幅度不满足对应的报警阈值范围,则调整该报警阈值范围,实现了准确的泄漏源定位诊断,从而有效提高泄漏监测的准确度,同时诊断过程不需要运行人员的干预,降低人因故障,提高了泄漏监控的自动化水平。
在图6对应的实施例的基础之上,进一步地,泄漏源位置包括反应堆一回路压力边界(Reactor Coolant Pressure Boundary,RCPB)和主蒸汽管道,其中,在反应堆一回路压力边界位置产生的泄漏包括泄漏气体和泄漏液体,气体质量比例为α,气体扩散过程中损失率为η 0,在主蒸汽管道位置产生的泄漏包括泄漏气体,泄漏气体的监测数据包括风机冷凝液流量监测值、地坑冷凝液泄漏率,泄漏液体的监测数据包括地坑地面疏水泄漏率。
地坑冷凝液泄漏率和地坑地面疏水泄漏率均为地坑液位换算泄漏率,是将地坑的液位变化情况转换为对应的泄漏率,可以理解的,液位变化幅度越大,则其对应的泄漏率越高,反之,液位变化幅度越小,则其对应的泄漏率越低。
其中,地坑冷凝液泄漏率是指闪蒸气体或主蒸汽经过通风系统冷凝后,通过疏水管线汇集到核岛疏水排气系统地坑,引起地坑液位变化对应的泄漏率;地坑地面疏水泄漏率是指闪蒸液体通过地面疏水汇集到核岛疏水排气系统地坑,引起地坑液位变化对应的泄漏率。
当泄漏源位置为反应堆一回路压力边界,即RCPB泄漏时,高温高压的冷却水发生闪蒸,分别形成闪蒸气体和闪蒸液体;主蒸汽管道泄漏时则全部为主蒸汽。
闪蒸气体或主蒸汽引起管道和保温层之间温湿度变化,在传输过程中引起设备隔间和通风线路上安全壳大气的温度变化。经通风系统冷凝,通过疏水管线汇集到核岛疏水排气系统地坑,引起疏水管线中流量变化和地坑液位变化。闪蒸液体通过地面疏水,汇集到核岛疏水排气系统地坑,引起地坑液位变化。
进一步地,当泄漏源位置为反应堆一回路压力边界时,下面通过一个具体的实施例对步骤S6中所提及的根据泄漏源位置进行泄漏率定量计算的具体实 现方法进行详细说明。
请参阅图7,图7示出了本发明实施例提供的步骤S6中根据泄漏源位置进行泄漏率定量计算的具体实现流程,详述如下:
S621:获取每个风机冷凝液流量监测值,并根据该风机冷凝液流量监测值计算冷凝液总流量
具体地,风机冷凝液流量监测值是指闪蒸气体或主蒸汽经过通风系统冷凝后经过疏水管线时的流量监测值。获取每个风机冷凝液流量监测值、并根据风机冷凝液流量监测值计算冷凝液总流量r 11
S622:获取地坑冷凝液的液位值,并根据该液位值、地坑冷凝液的密度,以及地坑冷凝液所在的地坑的结构尺寸和疏水泵启停时间,计算单位时间内的地坑冷凝液泄漏率,并根据疏水管线粘附损失率对该地坑冷凝液泄漏率进行修正,得到修正地坑冷凝液泄漏率。
具体地,地坑冷凝液可记为地坑A,获取地坑A的液位值,并结合地坑冷凝液的密度和地坑A的结构尺寸,根据地坑A疏水泵启停时间,计算单位时间内地坑A泄漏率,并根据疏水管线粘附损失率η 1进行修正,计算修正地坑A泄漏率r 12
S623:若冷凝液总流量大于等于预设的第一泄漏气体报警阈值,并且修正地坑冷凝液泄漏率大于等于第一泄漏气体报警阈值,则确定发生气体泄漏,并触发泄漏气体定量报警,否则,若冷凝液总流量大于等于第一泄漏气体报警阈值,或者修正地坑冷凝液泄漏率大于等于第一泄漏气体报警阈值,则调整疏水管线粘附损失率,使得修正地坑冷凝液泄漏率与冷凝液总流量之间的绝对差值小于预设的第一偏差阈值。
具体地,使用逻辑运算L gas=(r 11≥r 10)&(r 12≥r 10)判断是否触发泄漏气体定量报警,其中,L gas为泄漏气体定量报警,r 10为预设的第一泄漏气体报警阈值。
当L gas为1时,初步确定发生气体泄漏,触发泄漏气体定量报警L gas
当L gas为0,并且L' gas=(r 11≥r 10)|(r 12≥r 10)的逻辑运算结果为1时,调整疏水管线粘附损失率η 1,使得修正地坑冷凝液泄漏率r 12与冷凝液总流量r 11之间的绝对差值小于预设的第一偏差阈值,即r 11≈r 12=r 1
需要说明的是,预设的第一偏差阈值可根据实际应用的需要进行设置和调整,此处不做限制。
S624:获取地坑地面疏水的液位值,并根据该液位值、地坑地面疏水的平均密度,以及地坑地面疏水所在的地坑的结构尺寸和疏水泵启停时间,计算单位时间内的地坑地面疏水泄漏率,并根据地面粘附损失率对该地坑地面疏水泄漏率进行修正,得到修正地坑地面疏水泄漏率。
具体地,地坑地面疏水可记为地坑B,获取地坑B的液位值,并结合地坑地面疏水的平均密度和地坑B的结构尺寸,根据地坑B疏水泵启停时间,计算单位时间内地坑B泄漏率,并根据地面环境损失率η 2进行修正,计算修正地坑B泄漏率r 21,其中,地面粘附损失率是指由于地面粗糙度、坡度等因素造成的损失率。
需要说明的是,若地坑A疏水泵故障,则地坑A溢流至地坑B,此时地坑B泄漏率r 22即可代表总泄漏率r。
S625:若修正地坑地面疏水泄漏率大于等于预设的第一泄漏液体报警阈值,则确定发生液体泄漏,并触发泄漏液体定量报警。
具体地,使用逻辑运算L liquid=(r 21≥r 20)判断是否触发泄漏液体定量报警,其中,L liquid为泄漏液体定量报警,r 20为预设的第一泄漏液体报警阈值。
当L liquid为1时,初步确定发生液体泄漏,触发泄漏液体定量报警L liquid
S626:若泄漏气体定量报警被触发,或者泄漏液体定量报警被触发,则将修正地坑冷凝液泄漏率和修正地坑地面疏水泄漏率的和作为总泄漏率,并将修正地坑冷凝液泄漏率与总泄漏率的比值作为泄漏气体质量比例。
具体地,若逻辑运算
Figure PCTCN2018120393-appb-000007
结果为1,则计算修正地坑A泄漏率r 1与修正地坑B泄漏率r 2之和,并将该和作为总泄漏率r,并计算修正地坑A泄漏率r 1与总泄漏率r之比,并将该比值作为泄漏气体质量比例α。
S627:若总泄漏率大于等于预设的总泄漏报警阈值,并且泄漏气体质量比例与气体质量比例之间的相对误差小于等于预设的误差阈值,则触发总泄漏率定量报警。
具体地,使用逻辑运算L total=(r≥r 0)|(r 22≥r 0)判断是否触发总泄漏率定量报警,其中,L total为总泄漏率定量报警,r 0为预设的总泄漏报警阈值。
若L total为1,并且泄漏气体质量比例α与步骤S614获取到的气体质量比例α 0之间的相对误差δ α小于等于预设的误差阈值,则最终确定发生泄漏,并触发总泄漏率定量报警L total,其中,
Figure PCTCN2018120393-appb-000008
需要说明的是,预设的误差阈值通常可以设置为20%,但并不限于此,具体可以根据实际应用的需要进行设置,此处不做限制。
S628:若总泄漏率小于预设的总泄漏报警阈值,并且泄漏气体质量比例与气体质量比例之间的相对误差大于预设的误差阈值,则抑制总泄漏率定量报警。
具体地,若L total为0,并且相对误差δ α大于预设的误差阈值,则确定可能有其他液体误排入监测仪表处,抑制总泄漏率定量报警L total
S629:若泄漏气体定量报警和总泄漏率定量报警均被触发,或者泄漏液体定量报警和总泄漏率定量报警均被触发,或者泄漏气体定量报警和泄漏液体定量报警均被触发,则确认泄漏率定量计算的计算结果为发生泄漏,并触发泄漏定量报警,否则抑制泄漏定量报警。
在图7对应的实施例中,在对反应堆一回路压力边界进行泄漏率定量计算的过程中,首先获取每个风机冷凝液流量监测值,并根据该风机冷凝液流量监测值计算冷凝液总流量,然后获取地坑冷凝液的液位值,并根据该液位值、地 坑冷凝液的密度,以及地坑冷凝液所在的地坑的结构尺寸和疏水泵启停时间,计算单位时间内的地坑冷凝液泄漏率,并根据疏水管线粘附损失率对该地坑冷凝液泄漏率进行修正,得到修正地坑冷凝液泄漏率,之后根据冷凝液总流量和修正地坑冷凝液泄漏率初步确定是否发生气体泄漏和是否触发泄漏气体定量报警,同时,获取地坑地面疏水的液位值,并根据该液位值、地坑地面疏水的平均密度,以及地坑地面疏水所在的地坑的结构尺寸和疏水泵启停时间,计算单位时间内的地坑地面疏水泄漏率,并根据地面粘附损失率对该地坑地面疏水泄漏率进行修正,得到修正地坑地面疏水泄漏率,并根据修正地坑地面疏水泄漏率初步确定是否发生液体泄漏和是否触发泄漏液体定量报警,然后根据泄漏气体定量报警和泄漏液体定量报警确定总泄漏率,并根据总泄漏率以及泄漏气体质量比例与气体质量比例之间的相对误差确定是否触发总泄漏率定量报警,最后根据泄漏气体定量报警、泄漏液体定量报警和总泄漏率定量报警确认泄漏率定量计算的计算结果是否为发生泄漏,以及是否触发泄漏定量报警,或者抑制泄漏定量报警,实现了对RCPB泄漏的准确诊断和及时报警,从而有效提高泄漏监测的准确度,同时诊断过程不需要运行人员的干预,降低人因故障,提高了泄漏监控的自动化水平。
进一步地,当泄漏源位置为主蒸汽管道时,下面通过另一个具体的实施例对步骤S6中所提及的根据泄漏源位置进行泄漏率定量计算的具体实现方法进行详细说明。
请参阅图8,图8示出了本发明实施例提供的步骤S6中根据泄漏源位置进行泄漏率定量计算的另一具体实现流程,详述如下:
S631:获取每个风机冷凝液流量监测值,并根据该风机冷凝液流量监测值计算冷凝液总流量。
S632:获取地坑冷凝液的液位值,并根据该液位值、地坑冷凝液的密度,以及地坑冷凝液所在的地坑的结构尺寸和疏水泵启停时间,计算单位时间内的地坑冷凝液泄漏率,并根据疏水管线粘附损失率对该地坑冷凝液泄漏率进行修 正,得到修正地坑冷凝液泄漏率。
具体地,步骤S631和步骤S632的实现过程可以采用与上述步骤S621和步骤S622相同的处理方式,为避免重复,此处不再赘述。
S633:若地坑冷凝液所在的地坑的疏水泵发生故障,则获取地坑地面疏水的液位值,并根据该液位值、地坑地面疏水所在的地坑的结构尺寸和冷凝液密度,以及地坑地面疏水所在的地坑的疏水泵启停时间,计算单位时间内的地坑地面疏水泄漏率,并根据疏水管线粘附和溢流损失率对该地坑地面疏水泄漏率进行修正,得到修正地坑地面疏水泄漏率。
具体地,若地坑A疏水泵故障,则获取地坑B的液位值,结合地坑B的结构尺寸和冷凝液密度,根据地坑B疏水泵启停时间,计算单位时间内地坑B泄漏率,并根据疏水管线粘附和溢流损失率η′ 1进行修正,计算修正地坑B泄漏率r 22
S634:若冷凝液总流量大于等于预设的第二泄漏气体报警阈值并且修正地坑冷凝液泄漏率大于等于第二泄漏气体报警阈值,或者,冷凝液总流量大于等于第二泄漏气体报警阈值并且修正地坑地面疏水泄漏率大于等于第二泄漏气体报警阈值,则确认泄漏率定量计算的计算结果为发生泄漏,并触发泄漏气体定量报警。
具体地,若逻辑运算L gas=(r 11≥r′ 10)&(r 12≥r′ 10)或L gas=(r 11≥r′ 10)&(r 22≥r′ 10)结果为1,则确定泄漏率定量计算的计算结果为发生泄漏,并触发泄漏气体定量报警L gas,其中,r′ 10为预设的第二泄漏气体报警阈值。
S635:若冷凝液总流量小于第二泄漏气体报警阈值并且修正地坑冷凝液泄漏率大于等于预设的第二泄漏液体报警阈值,或者,冷凝液总流量大于等于第二泄漏气体报警阈值并且修正地坑冷凝液泄漏率小于第二泄漏液体报警阈值,则调整疏水管线粘附损失率,使得修正地坑冷凝液泄漏率与冷凝液总流量之间的绝对差值小于预设的第二偏差阈值。
具体地,若逻辑运算L gas=(r 11≥r′ 10)&(r 12≥r′ 10)结果为0,并且逻辑运算L' gas=(r 11≥r′ 10)|(r 22≥r′ 10)结果为1,则调整疏水管线粘附损失率η 1,使得修正地坑冷凝液泄漏率r 12与冷凝液总流量r 11之间的绝对差值小于预设的第二偏差阈值,即r 11≈r 12=r 1
在图8对应的实施例中,在对主蒸汽管道进行泄漏率定量计算的过程中,首先获取每个风机冷凝液流量监测值,并根据该风机冷凝液流量监测值计算冷凝液总流量,然后获取地坑冷凝液的液位值,并根据该液位值、地坑冷凝液的密度,以及地坑冷凝液所在的地坑的结构尺寸和疏水泵启停时间,计算单位时间内的地坑冷凝液泄漏率,并根据疏水管线粘附损失率对该地坑冷凝液泄漏率进行修正,得到修正地坑冷凝液泄漏率,若地坑冷凝液所在的地坑的疏水泵发生故障,则计算修正地坑地面疏水泄漏率,之后,根据冷凝液总流量和地坑冷凝液泄漏率确定是否发生泄漏以及是否触发泄漏定量报警,实现了对主蒸汽管道泄漏的准确诊断和及时报警,从而有效提高泄漏监测的准确度,同时诊断过程不需要运行人员的干预,降低人因故障,提高了泄漏监控的自动化水平。
需要说明的是,在上述实施例中,通过泄漏故障报警、泄漏定位报警、泄漏气体定量报警、泄漏液体定量报警、总泄漏率定量报警等不同报警的组合,实现了对泄漏的综合诊断,运行人员根据组合报警能够准确快速的分析出具体地泄漏位置和泄漏原因,有效提高了泄漏监测的准确度和报警智能化程度。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
对应于上文实施例的泄漏监测方法,图7示出了本发明实施例提供的核电站泄漏监测报警系统的示意图,为了便于说明,仅示出了与本发明实施例相关的部分。
请参阅图7,该核电站泄漏监测报警系统包括:
数据可用性诊断模块71,用于获取机组运行工况,并根据机组运行工况信号,确定泄漏监测数据的可用性;
信号和数据获取模块72,用于若泄漏监测数据的可用性为可用状态,则获取工艺系统状态信号和泄漏监测仪表数据;运行状态确定模块73,用于根据工艺系统状态信号判断工艺系统是否发生故障,得到工艺系统的运行状态;
综合状态确定模块74,用于根据泄漏监测仪表数据、监测通道自检和系统故障自诊断判断泄漏监测仪表和系统是否发生故障,得到泄漏监测仪表和系统的综合状态;
数据可靠性确定模块75,用于根据运行状态和综合状态,确定泄漏监测数据的可靠性;
泄漏检测模块76,用于若泄漏检测数据可靠,则进行泄漏源定位分析,确定泄漏源位置,并根据泄漏源位置进行泄漏率定量计算;
泄漏综合诊断和报警模块77,用于若泄漏源定位分析的分析结果和泄漏率定量计算的计算结果均为发生泄漏,并且满足泄漏响应特性,则触发泄漏报警。
进一步地,核电站泄漏监测报警系统,还包括:
提示信息输出模块78,用于输出包含泄漏率变化曲线和泄漏源位置信息的泄漏报警提示信息,以使操作员根据泄漏报警提示信息,开展周期性泄漏率定期试验;
泄漏定期试验模块79,用于若检测到操作员启动泄漏率定期试验,则计算泄漏率定期试验的预测数据,并在检测到泄漏率定期实验结束后,获取操作员手动计算的泄漏率定期试验的实际数据;
参数修正模块70,用于通过对预测数据和实际数据的比较,修正泄漏气体扩散损失系数。
进一步地,数据可用性诊断模块71包括:
运行参数获取子模块711,用于获取核电厂反应堆的运行参数,并根据运行参数确定机组运行工况信号;
第一可用性判断子模块712,用于若机组运行工况信号不满足预设工况要求,则确认泄漏监测数据的可用性为不可用状态;
第二可用性判断子模块713,若机组运行工况信号满足预设工况要求,则确认泄漏监测数据的可用性为可用状态。
进一步地,信号和数据获取模块72还用于:
根据每个工艺系统中的通风系统风量、温度和压力,分别与预设的风量阈值、预设的温度阈值和预设的压力阈值进行比较,并根据比较结果确定每个工艺系统状态信号;
运行状态确定模块73包括:
逻辑运算子模块731,用于对每个工艺系统状态信号进行逻辑与运算,并根据运算结果确定工艺系统的运行状态;
故障告警子模块732,用于若运行状态为故障,则触发工艺系统故障告警。
进一步地,泄漏监测仪表数据包括就地泄漏监测仪表值和参考点泄漏监测仪表值,综合状态确定模块74包括:
仪表检测子模块741,用于根据就地泄漏监测仪表值和参考点泄漏监测仪表值,判断仪表是否故障,得到仪表状态;
监控通道自检子模块742,用于每隔预定的第一时间间隔,接收预设的信号发射器发射的预设的固定模式信号,并检测接收到的固定模式信号与预设的固定模式信号之间的匹配度,并根据匹配度确定监测通道中的信号传输是否正常,得到信号传输状态;
环境状态确定子模块743,用于获取服务器运行环境参数,并根据取服务器运行环境参数确定运行环境状态;
故障自诊断子模块744,用于每隔预定的第二时间间隔,按照预设的参数进行泄漏源定位分析,得到系统故障自诊断结果;
功能状态确定子模块745,用于根据运行环境状态和系统故障自诊断结果,确定服务器功能状态;
综合状态判断子模块746,用于根据仪表状态、信号传输状态和服务器功能状态,确定泄漏监测仪表和系统的综合状态。
进一步的,泄漏检测模块76包括:
温湿度获取子模块7611,用于获取温湿度传感器采集的温湿度监测值,其中,温湿度监测值包括温度监测值和湿度监测值,温湿度传感器被预先安装在管道、设备隔间或通风线路的预设位置;
变化幅度计算子模块7612,用于若每个温度监测值均大于预设的环境本底值,并且每个湿度监测值均大于预设的环境本底值,则计算每个温度监测值的变化幅度和每个湿度监测值的变化幅度;
单一分析子模块7613,用于若温湿度传感器的温度监测值的变化幅度满足预设的温度报警阈值范围,并且该温湿度传感器的湿度监测值的变化幅度满足预设的湿度报警阈值范围,则确认该温湿度传感器对应的泄漏源定位分析的单一分析结果为发生泄漏;
泄漏定位报警子模块7614,用于若具备相同位置监测功能的温湿度传感器的泄漏源定位分析的单一分析结果均为发生泄漏,则确认泄漏源定位分析的分析结果为发生泄漏,并且获取泄漏源位置和气体质量比例,并触发泄漏定位报警,否则,确认分析结果为非泄漏或仪表异常,抑制泄漏定位报警,并根据温度监测值的曲线调整温度报警阈值范围,以及根据湿度监测值的曲线调整湿度报警阈值范围。
进一步地,泄漏源位置包括反应堆一回路压力边界和主蒸汽管道,其中,在反应堆一回路压力边界位置产生的泄漏包括泄漏气体和泄漏液体,在主蒸汽管道位置产生的泄漏包括泄漏气体,泄漏气体的监测数据包括风机冷凝液流量监测值、地坑冷凝液泄漏率,泄漏液体的监测数据包括地坑地面疏水泄漏率。
进一步地,当泄漏源位置为反应堆一回路压力边界时,泄漏检测模块76还包括:
第一冷凝液总流量计算子模块7621,用于获取每个风机冷凝液流量监测 值,并根据风机冷凝液流量监测值计算冷凝液总流量;
第一地坑冷凝液泄漏率计算子模块7622,用于获取地坑冷凝液的液位值,并根据该液位值、地坑冷凝液的密度,以及地坑冷凝液所在的地坑的结构尺寸和疏水泵启停时间,计算单位时间内的地坑冷凝液泄漏率,并根据疏水管线粘附损失率对该地坑冷凝液泄漏率进行修正,得到修正地坑冷凝液泄漏率;
第一泄漏气体定量报警子模块7623,用于若冷凝液总流量大于等于预设的第一泄漏气体报警阈值,并且修正地坑冷凝液泄漏率大于等于第一泄漏气体报警阈值,则确定发生气体泄漏,并触发泄漏气体定量报警,否则,若冷凝液总流量大于等于第一泄漏气体报警阈值,或者修正地坑冷凝液泄漏率大于等于第一泄漏气体报警阈值,则调整疏水管线粘附损失率,使得修正地坑冷凝液泄漏率与冷凝液总流量之间的绝对差值小于预设的第一偏差阈值;
第一修正地坑地面疏水泄漏率计算子模块7624,用于获取地坑地面疏水的液位值,并根据该液位值、地坑地面疏水的平均密度,以及地坑地面疏水所在的地坑的结构尺寸和疏水泵启停时间,计算单位时间内的地坑地面疏水泄漏率,并根据地面粘附损失率对该地坑地面疏水泄漏率进行修正,得到修正地坑地面疏水泄漏率;
泄漏液体定量报警子模块7625,用于若修正地坑地面疏水泄漏率大于等于预设的第一泄漏液体报警阈值,则确定发生液体泄漏,并触发泄漏液体定量报警;
总泄漏率计算子模块7626,用于若泄漏气体定量报警被触发,或者泄漏液体定量报警被触发,则将修正地坑冷凝液泄漏率和修正地坑地面疏水泄漏率的和作为总泄漏率,并将修正地坑冷凝液泄漏率与总泄漏率的比值作为泄漏气体质量比例;
总泄漏率定量报警子模块7627,用于若总泄漏率大于等于预设的总泄漏报警阈值,并且泄漏气体质量比例与气体质量比例之间的相对误差小于等于预设的误差阈值,则触发总泄漏率定量报警;
报警抑制子模块7628,用于若总泄漏率小于总泄漏报警阈值,并且相对误差大于误差阈值,则抑制总泄漏率定量报警;
泄漏定量报警子模块7629,用于若泄漏气体定量报警和总泄漏率定量报警均被触发,或者泄漏液体定量报警和总泄漏率定量报警均被触发,或者泄漏气体定量报警和泄漏液体定量报警均被触发,则确认计算结果为发生泄漏,并触发泄漏定量报警,否则抑制泄漏定量报警。
进一步地,当泄漏源位置为主蒸汽管道时,泄漏检测模块76还包括:
第二冷凝液总流量计算子模块7631,用于获取每个风机冷凝液流量监测值,并根据风机冷凝液流量监测值计算冷凝液总流量;
第二地坑冷凝液泄漏率计算子模块7632,用于获取地坑冷凝液的液位值,并根据该液位值、地坑冷凝液的密度,以及地坑冷凝液所在的地坑的结构尺寸和疏水泵启停时间,计算单位时间内的地坑冷凝液泄漏率,并根据疏水管线粘附损失率对该地坑冷凝液泄漏率进行修正,得到修正地坑冷凝液泄漏率;
第二修正地坑地面疏水泄漏率计算子模块7633,用于若地坑冷凝液所在的地坑的疏水泵发生故障,则获取地坑地面疏水的液位值,并根据该液位值、地坑地面疏水的平均密度,以及地坑地面疏水所在的地坑的结构尺寸和疏水泵启停时间,计算单位时间内的地坑地面疏水泄漏率,并根据疏水管线粘附和溢流损失率对该地坑地面疏水泄漏率进行修正,得到修正地坑地面疏水泄漏率;
第二泄漏气体定量报警子模块7634,用于若冷凝液总流量大于等于预设的第二泄漏气体报警阈值并且修正地坑冷凝液泄漏率大于等于第二泄漏气体报警阈值,或者,冷凝液总流量大于等于第二泄漏气体报警阈值并且修正地坑地面疏水泄漏率大于等于第二泄漏气体报警阈值,则确认计算结果为发生泄漏,并触发泄漏气体定量报警;
第一参数调整模块7635,用于若冷凝液总流量小于第二泄漏气体报警阈值并且修正地坑冷凝液泄漏率大于等于预设的第二泄漏液体报警阈值,或者,冷凝液总流量大于等于第二泄漏气体报警阈值并且修正地坑冷凝液泄漏率小于第 二泄漏液体报警阈值,则调整疏水管线粘附损失率,使得修正地坑冷凝液泄漏率与冷凝液总流量之间的绝对差值小于预设的第二偏差阈值。
进一步地,泄漏气体扩散损失系数包括气体扩散过程中损失率和泄漏源位置的气体质量比例,预测数据包括自动计算的不可识别泄漏率,实际数据包括手动计算的不可识别泄漏率,参数修正模块70包括:
条件计算子模块701,用于根据自动计算的不可识别泄漏率和手动计算的不可识别泄漏率,得到长期运行偏差收敛条件;
第一判断子模块702,用于若在预设的时间范围内自动计算的不可识别泄漏率和手动计算的不可识别泄漏率之间的绝对差值始终小于预设的差值,并且长期运行偏差收敛条件小于等于预设的第一收敛系数,则使用自动计算取代手动计算;
第二判断子模块703,用于若当前总泄漏率相对于自动计算的不可识别泄漏率的相对误差小于等于预设的第二收敛系数,则确认泄漏气体扩散损失系数设置合理;
第三判断子模块704,用于若当前相对误差大于第二收敛系数,并且总泄漏率大于自动计算的不可识别泄漏率,则按照预设的步长提高气体扩散过程中损失率,并修改泄漏源位置的气体质量比例;
第四判断子模块705,用于若当前相对误差大于第二收敛系数,并且总泄漏率小于自动计算的不可识别泄漏率,则按照预设的步长降低气体扩散过程中损失率,并修改泄漏源位置的气体质量比例。
本发明实施例提供的一种核电站泄漏监测报警系统中各模块实现各自功能的过程,具体可参考前述方法实施例的描述,此处不再赘述。
本发明实施例提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现前述方法实施例中的核电站泄漏监测报警方法,或者,该计算机程序被处理器执行时前述系统实施例中核电站泄漏监测报警系统中各模块/单元的功能。可以理解地,计算机可读存 储介质可以包括:能够携带计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(Read-Only Memory,ROM)、随机存取存储器(RAM)、电载波信号和电信信号等。
请参阅图10,图10是本发明一实施例提供的计算机设备的示意图。如图8所示,该实施例的计算机设备10包括:处理器100、存储器101以及存储在存储器101中并可在处理器100上运行的计算机程序102,例如泄漏监测和综合诊断程序。处理器100执行计算机程序102时实现上述各个方法实施例中的步骤,例如图1所示的步骤S1至步骤S10。或者,处理器100执行计算机程序102时实现上述各系统实施例中各模块的功能,例如图9所示模块71至模块79的功能。
示例性的,计算机程序102可以被分割成一个或多个单元,一个或者多个单元被存储在存储器101中,并由处理器100执行,以完成本发明。一个或多个单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述计算机程序102在计算机设备10中的执行过程。例如,计算机程序102可以被分割成数据可用性诊断模块、信号和数据获取模块、运行状态确定模块、综合状态确定模块、数据可靠性确定模块、泄漏检测模块、泄漏综合诊断和报警模块、泄漏定期试验模块和参数修正模块,各模块的具体功能如上述系统实施例所示,为避免重复,此处不一一赘述。
计算机设备10可以是桌上型计算机、笔记本、掌上电脑及云端服务器等终端设备。计算机设备10包括,但不仅限于,处理器100、存储器101。本领域技术人员可以理解,图10仅仅是计算机设备10的示例,并不构成对计算机设备10的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如计算机设备10还可以包括输入输出设备、网络接入设备、总线等。
处理器100可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电 路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器101可以是计算机设备10的内部存储单元,例如计算机设备10的硬盘或内存。存储器101也可以是计算机设备10的外部存储设备,例如计算机设备10上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器101还可以既包括计算机设备10的内部存储单元也包括外部存储设备。存储器101用于存储计算机程序以及计算机设备10所需的其他程序和数据。存储器101还可以用于暂时地存储已经输出或者将要输出的数据。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种核电站泄漏监测报警方法,其特征在于,所述核电站泄漏监测报警方法包括:
    获取机组运行工况信号,并根据所述机组运行工况信号确定泄漏监测数据的可用性;
    若所述泄漏监测数据的可用性为可用状态,则获取工艺系统状态信号和泄漏监测仪表数据;
    根据所述工艺系统状态信号判断工艺系统是否发生故障,得到所述工艺系统的运行状态;
    根据所述泄漏监测仪表数据、监测通道自检和系统故障自诊断判断泄漏监测仪表和系统是否发生故障,得到泄漏监测仪表和系统的综合状态;
    根据所述运行状态和所述综合状态,确定泄漏监测数据的可靠性;
    若所述泄漏检测数据可靠,则进行泄漏源定位分析,确定泄漏源位置,并根据所述泄漏源位置进行泄漏率定量计算;
    若所述泄漏源定位分析的分析结果和所述泄漏率定量计算的计算结果均为发生泄漏,并且满足泄漏响应特性,则触发泄漏报警。
  2. 根据权利要求1所述的核电站泄漏监测报警方法,其特征在于,在所述触发泄漏报警的同时,还包括:
    输出包含泄漏率变化曲线和泄漏源位置信息的泄漏报警提示信息,以使操作员根据所述泄漏报警提示信息,开展周期性泄漏率定期试验;
    在所述操作员根据所述泄漏报警提示信息,开展周期性泄漏率定期试验之后,还包括:
    若检测到所述操作员启动所述泄漏率定期试验,则计算所述泄漏率定期试验的预测数据,并在检测到所述泄漏率定期实验结束后,获取所述操作员手动计算的所述泄漏率定期试验的实际数据;
    通过对所述预测数据和所述实际数据的比较,修正泄漏气体扩散损失系数。
  3. 根据权利要求1或2所述的核电站泄漏监测报警方法,其特征在于,所述获取机组运行工况信号,并根据所述机组运行工况信号,确定泄漏监测数据的可用性包括:
    获取核电厂反应堆的运行参数,并根据所述运行参数确定所述机组运行工况信号;
    若所述机组运行工况信号不满足预设工况要求,则确认所述泄漏监测数据的可用性为不可用状态;
    若所述机组运行工况信号满足所述预设工况要求,则确认所述泄漏监测数据的可用性为可用状态。
  4. 根据权利要求1或2所述的核电站泄漏监测报警方法,其特征在于,所述获取工艺系统状态信号包括:
    根据每个工艺系统中的通风系统风量、温度和压力,分别与预设的风量阈值、预设的温度阈值和预设的压力阈值进行比较,并根据比较结果确定每个所述工艺系统状态信号;
    所述根据所述工艺系统状态信号判断工艺系统是否发生故障,得到所述工艺系统的运行状态包括:
    对每个所述工艺系统状态信号进行逻辑与运算,并根据运算结果确定所述工艺系统的运行状态;
    若所述运行状态为故障,则触发工艺系统故障告警。
  5. 根据权利要求1或2所述的核电站泄漏监测报警方法,其特征在于,所述泄漏监测仪表数据包括就地泄漏监测仪表值和参考点泄漏监测仪表值,所述根据所述泄漏监测仪表数据、监测通道自检和系统故障自诊断判断泄漏监测仪表和系统是否发生故障,得到泄漏监测仪表和系统的综合状态包括:
    根据所述就地泄漏监测仪表值和所述参考点泄漏监测仪表值,判断仪表是否故障,得到仪表状态;
    每隔预定的第一时间间隔,接收预设的信号发射器发射的预设的固定模式信号,并检测接收到的固定模式信号与预设的固定模式信号之间的匹配度,并根据所述匹配度确定监测通道中的信号传输是否正常,得到信号传输状态;
    获取服务器运行环境参数,并根据所述取服务器运行环境参数确定运行环境状态;
    每隔预定的第二时间间隔,按照预设的参数进行所述泄漏源定位分析,得到系统故障自诊断结果;
    根据所述运行环境状态和所述系统故障自诊断结果,确定服务器功能状态;
    根据所述仪表状态、所述信号传输状态和所述服务器功能状态,确定所述泄漏监测仪表和系统的综合状态。
  6. 根据权利要求1或2所述的核电站泄漏监测报警方法,其特征在于,所述进行泄漏源定位分析,确定泄漏源位置包括:
    获取温湿度传感器采集的温湿度监测值,其中,所述温湿度监测值包括温度监测值和湿度监测值,所述温湿度传感器被预先安装在管道、设备隔间或通风线路的预设位置;
    若每个所述温度监测值均大于预设的环境本底值,并且每个所述湿度监测值均大于预设的环境本底值,则计算每个所述温度监测值的变化幅度和每个所述湿度监测值的变化幅度;
    若所述温湿度传感器的所述温度监测值的变化幅度满足预设的温度报警阈值范围,并且该温湿度传感器的所述湿度监测值的变化幅度满足预设的湿度报警阈值范围,则确认该温湿度传感器对应的泄漏源定位分析的单一分析结果为发生泄漏;
    若具备相同位置监测功能的温湿度传感器的泄漏源定位分析的单一分析结果均为发生泄漏,则确认所述泄漏源定位分析的分析结果为发生泄漏,并且获取泄漏源位置和气体质量比例,并触发泄漏定位报警,否则,确认所述分析结果为非泄漏或仪表异常,抑制所述泄漏定位报警,并根据所述温度监测值的曲 线调整所述温度报警阈值范围,以及根据所述湿度监测值的曲线调整所述湿度报警阈值范围。
  7. 根据权利要求6所述的核电站泄漏监测报警方法,其特征在于,所述泄漏源位置包括反应堆一回路压力边界和主蒸汽管道,其中,在所述反应堆一回路压力边界位置产生的泄漏包括泄漏气体和泄漏液体,在所述主蒸汽管道位置产生的泄漏包括所述泄漏气体,所述泄漏气体的监测数据包括风机冷凝液流量监测值、地坑冷凝液泄漏率,所述泄漏液体的监测数据包括地坑地面疏水泄漏率。
  8. 根据权利要求7所述的核电站泄漏监测报警方法,其特征在于,当所述泄漏源位置为所述反应堆一回路压力边界时,所述根据所述泄漏源位置进行泄漏率定量计算包括:
    获取每个所述风机冷凝液流量监测值,并根据所述风机冷凝液流量监测值计算冷凝液总流量;
    获取地坑冷凝液的液位值,并根据该液位值、所述地坑冷凝液的密度,以及所述地坑冷凝液所在的地坑的结构尺寸和疏水泵启停时间,计算单位时间内的地坑冷凝液泄漏率,并根据疏水管线粘附损失率对该地坑冷凝液泄漏率进行修正,得到修正地坑冷凝液泄漏率;
    若所述冷凝液总流量大于等于预设的第一泄漏气体报警阈值,并且所述修正地坑冷凝液泄漏率大于等于所述第一泄漏气体报警阈值,则确定发生气体泄漏,并触发泄漏气体定量报警,否则,若所述冷凝液总流量大于等于所述第一泄漏气体报警阈值,或者所述修正地坑冷凝液泄漏率大于等于所述第一泄漏气体报警阈值,则调整所述疏水管线粘附损失率,使得所述修正地坑冷凝液泄漏率与所述冷凝液总流量之间的绝对差值小于预设的第一偏差阈值;
    获取地坑地面疏水的液位值,并根据该液位值、所述地坑地面疏水的平均密度,以及所述地坑地面疏水所在的地坑的结构尺寸和疏水泵启停时间,计算单位时间内的地坑地面疏水泄漏率,并根据地面粘附损失率对该地坑地面疏水 泄漏率进行修正,得到修正地坑地面疏水泄漏率;
    若所述修正地坑地面疏水泄漏率大于等于预设的第一泄漏液体报警阈值,则确定发生液体泄漏,并触发泄漏液体定量报警;
    若所述泄漏气体定量报警被触发,或者所述泄漏液体定量报警被触发,则将所述修正地坑冷凝液泄漏率和所述修正地坑地面疏水泄漏率的和作为总泄漏率,并将修正地坑冷凝液泄漏率与所述总泄漏率的比值作为泄漏气体质量比例;
    若所述总泄漏率大于等于预设的总泄漏报警阈值,并且所述泄漏气体质量比例与所述气体质量比例之间的相对误差小于等于预设的误差阈值,则触发总泄漏率定量报警;
    若所述总泄漏率小于所述总泄漏报警阈值,并且所述相对误差大于所述误差阈值,则抑制所述总泄漏率定量报警;
    若所述泄漏气体定量报警和所述总泄漏率定量报警均被触发,或者所述泄漏液体定量报警和所述总泄漏率定量报警均被触发,或者所述泄漏气体定量报警和所述泄漏液体定量报警均被触发,则确认所述计算结果为发生泄漏,并触发泄漏定量报警,否则抑制所述泄漏定量报警。
  9. 根据权利要求7所述的核电站泄漏监测报警方法,其特征在于,当所述权泄漏源位置为所述主蒸汽管道时,所述根据所述泄漏源位置进行泄漏率定量计算还包括:
    获取每个所述风机冷凝液流量监测值,并根据所述风机冷凝液流量监测值计算冷凝液总流量;
    获取地坑冷凝液的液位值,并根据该液位值、所述地坑冷凝液的密度,以及所述地坑冷凝液所在的地坑的结构尺寸和疏水泵启停时间,计算单位时间内的地坑冷凝液泄漏率,并根据疏水管线粘附损失率对该地坑冷凝液泄漏率进行修正,得到修正地坑冷凝液泄漏率;
    若所述地坑冷凝液所在的地坑的疏水泵发生故障,则获取地坑地面疏水的液位值,并根据该液位值、所述地坑地面疏水的平均密度,以及所述地坑地面 疏水所在的地坑的结构尺寸和疏水泵启停时间,计算单位时间内的地坑地面疏水泄漏率,并根据疏水管线粘附和溢流损失率对该地坑地面疏水泄漏率进行修正,得到修正地坑地面疏水泄漏率;
    若所述冷凝液总流量大于等于预设的第二泄漏气体报警阈值并且所述修正地坑冷凝液泄漏率大于等于所述第二泄漏气体报警阈值,或者,所述冷凝液总流量大于等于所述第二泄漏气体报警阈值并且所述修正地坑地面疏水泄漏率大于等于所述第二泄漏气体报警阈值,则确认所述计算结果为发生泄漏,并触发所述泄漏气体定量报警;
    若所述冷凝液总流量小于所述第二泄漏气体报警阈值并且所述修正地坑冷凝液泄漏率大于等于预设的第二泄漏液体报警阈值,或者,所述冷凝液总流量大于等于所述第二泄漏气体报警阈值并且所述修正地坑冷凝液泄漏率小于所述第二泄漏液体报警阈值,则调整所述疏水管线粘附损失率,使得所述修正地坑冷凝液泄漏率与所述冷凝液总流量之间的绝对差值小于预设的第二偏差阈值。
  10. 根据权利要求2所述的核电站泄漏监测报警方法,其特征在于,所述泄漏气体扩散损失系数包括气体扩散过程中损失率和泄漏源位置的气体质量比例,所述预测数据包括自动计算的不可识别泄漏率,所述实际数据包括手动计算的不可识别泄漏率,所述通过对所述预测数据和所述实际数据的比较,修正泄漏气体扩散损失系数包括:根据所述自动计算的不可识别泄漏率和所述手动计算的不可识别泄漏率,得到长期运行偏差收敛条件;
    若在预设的时间范围内所述自动计算的不可识别泄漏率和所述手动计算的不可识别泄漏率之间的绝对差值始终小于预设的差值,并且所述长期运行偏差收敛条件小于等于预设的第一收敛系数,则使用自动计算取代手动计算;
    若当前总泄漏率相对于所述自动计算的不可识别泄漏率的相对误差小于等于预设的第二收敛系数,则确认泄漏气体扩散损失系数设置合理;
    若当前所述相对误差大于所述第二收敛系数,并且所述总泄漏率大于所述自动计算的不可识别泄漏率,则按照预设的步长提高所述气体扩散过程中损失 率,并修改所述泄漏源位置的气体质量比例;
    若当前所述相对误差大于所述第二收敛系数,并且所述总泄漏率小于所述自动计算的不可识别泄漏率,则按照预设的步长降低所述气体扩散过程中损失率,并修改所述泄漏源位置的气体质量比例。
  11. 一种核电站泄漏监测报警系统,其特征在于,所述核电站泄漏监测报警系统包括:
    数据可用性诊断模块,用于获取机组运行工况信号,并根据所述机组运行工况信号确定泄漏监测数据的可用性;
    信号和数据获取模块,用于若所述泄漏监测数据的可用性为可用状态,则获取工艺系统状态信号和泄漏监测仪表数据;
    运行状态确定模块,用于根据所述工艺系统状态信号判断工艺系统是否发生故障,得到所述工艺系统的运行状态;
    综合状态确定模块,用于根据所述泄漏监测仪表数据、监测通道自检和系统故障自诊断判断泄漏监测仪表和系统是否发生故障,得到泄漏监测仪表和系统的综合状态;
    数据可靠性确定模块,用于根据所述运行状态和所述综合状态,确定泄漏监测数据的可靠性;
    泄漏检测模块,用于若所述泄漏检测数据可靠,则进行泄漏源定位分析,确定泄漏源位置,并根据所述泄漏源位置进行泄漏率定量计算;
    泄漏综合诊断和报警模块,用于若所述泄漏源定位分析的分析结果和所述泄漏率定量计算的计算结果均为发生泄漏,并且满足泄漏响应特性,则触发泄漏报警。
  12. 根据权利要求11所述的核电站泄漏监测报警系统,其特征在于,所述核电站泄漏监测报警系统,还包括:
    提示信息输出模块,用于输出包含泄漏率变化曲线和泄漏源位置信息的泄漏报警提示信息,以使操作员根据所述泄漏报警提示信息,开展周期性泄漏率 定期试验;
    泄漏定期试验模块,用于若检测到所述操作员启动所述泄漏率定期试验,则计算所述泄漏率定期试验的预测数据,并在检测到所述泄漏率定期实验结束后,获取所述操作员手动计算的所述泄漏率定期试验的实际数据;
    参数修正模块,用于通过对所述预测数据和所述实际数据的比较,修正泄漏气体扩散损失系数。
PCT/CN2018/120393 2018-12-11 2018-12-11 核电站泄漏监测报警方法及报警系统 WO2020118533A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/120393 WO2020118533A1 (zh) 2018-12-11 2018-12-11 核电站泄漏监测报警方法及报警系统
EP18942701.6A EP3905263A4 (en) 2018-12-11 2018-12-11 ALARM METHOD AND ALARM SYSTEM FOR LEAKAGE MONITORING OF A NUCLEAR POWER PLANT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/120393 WO2020118533A1 (zh) 2018-12-11 2018-12-11 核电站泄漏监测报警方法及报警系统

Publications (1)

Publication Number Publication Date
WO2020118533A1 true WO2020118533A1 (zh) 2020-06-18

Family

ID=71075333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120393 WO2020118533A1 (zh) 2018-12-11 2018-12-11 核电站泄漏监测报警方法及报警系统

Country Status (2)

Country Link
EP (1) EP3905263A4 (zh)
WO (1) WO2020118533A1 (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112259273A (zh) * 2020-09-04 2021-01-22 福建福清核电有限公司 一种用于dcs控制机柜闪发类报警的定位方法
CN112764383A (zh) * 2020-12-22 2021-05-07 中国核电工程有限公司 不同管路信号的显示及报警方法及系统
CN113316278A (zh) * 2021-05-24 2021-08-27 核工业理化工程研究院 一种用于石墨反应釜加热的可调功率感应加热电源系统
CN113409971A (zh) * 2021-05-28 2021-09-17 中国原子能科学研究院 核反应堆的堆芯损伤监测方法、装置、介质及电子设备
CN113418661A (zh) * 2021-06-11 2021-09-21 中国核电工程有限公司 一种核电厂蒸汽发生器的监测方法及系统
CN113639939A (zh) * 2021-07-09 2021-11-12 中国辐射防护研究院 一种建筑物内空气泄漏率异常变化的实时监测方法及系统
CN114171218A (zh) * 2021-11-23 2022-03-11 中核核电运行管理有限公司 一种核电厂凝汽器泄漏检测系统
CN114494979A (zh) * 2022-03-29 2022-05-13 杭州定川信息技术有限公司 一种视频识别生态流量泄放的方法
CN115099723A (zh) * 2022-08-24 2022-09-23 巨野恒丰果蔬有限公司 基于数据分析的大蒜精油生产用储存罐风险预测系统
CN115469064A (zh) * 2022-09-07 2022-12-13 西北工业大学 一种多网格空间气体扩散源定位方法及系统
CN115619298A (zh) * 2022-10-17 2023-01-17 广东宏大民爆集团有限公司 一种乳化炸药的智能防控方法及系统
CN115919544A (zh) * 2023-03-13 2023-04-07 威海东舟医疗器械股份有限公司 一种基于人工智能的鼓膜治疗仪故障预测系统
CN116052912A (zh) * 2023-04-03 2023-05-02 四川晟蔚智能科技有限公司 一种基于气溶胶输运分析的核泄漏检测方法及系统
CN116660703A (zh) * 2023-08-01 2023-08-29 安徽斯派迪电气技术有限公司 基于数据分析的配网系统绝缘故障在线监测系统
CN117154257A (zh) * 2023-10-31 2023-12-01 宁德时代新能源科技股份有限公司 电池包漏水检测方法及装置
CN117288392A (zh) * 2023-11-24 2023-12-26 福建优迪电力技术有限公司 一种用于sf6气体泄漏监测的方法和系统
CN117762095A (zh) * 2023-11-28 2024-03-26 淮阴工学院 基于物联网的石油提炼过程监控系统
CN117875722A (zh) * 2024-03-12 2024-04-12 山东港源管道物流有限公司 一种基于智慧油库的数据管理系统及方法
CN117870775A (zh) * 2024-03-11 2024-04-12 山东港源管道物流有限公司 一种基于智慧油库的储罐检测系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101706039A (zh) * 2009-11-24 2010-05-12 中国核动力研究设计院 核电站压力管道泄漏声发射监测方法及其监测系统
CN102426866A (zh) * 2011-11-03 2012-04-25 中广核工程有限公司 核电站一回路压力边界泄漏监测方法和系统
CN103400612A (zh) * 2013-07-26 2013-11-20 中广核工程有限公司 核电站不可识别泄漏的预警方法和系统
CN105223932A (zh) * 2015-10-21 2016-01-06 中广核工程有限公司 核电站安全预警方法、系统以及核电站仿真技术平台
CN108231227A (zh) * 2017-12-18 2018-06-29 广东核电合营有限公司 一种核电站运行状态的监测方法、系统及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2697939B1 (fr) * 1992-11-06 1995-02-24 Electricite De France Procédé et dispositif de détection de fuites de traversées de couvercle de cuve de réacteur nucléaire en fonctionnement.
EP3125000B1 (en) * 2014-03-28 2019-10-16 Mitsubishi Electric Corporation Radiation monitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101706039A (zh) * 2009-11-24 2010-05-12 中国核动力研究设计院 核电站压力管道泄漏声发射监测方法及其监测系统
CN102426866A (zh) * 2011-11-03 2012-04-25 中广核工程有限公司 核电站一回路压力边界泄漏监测方法和系统
CN103400612A (zh) * 2013-07-26 2013-11-20 中广核工程有限公司 核电站不可识别泄漏的预警方法和系统
CN105223932A (zh) * 2015-10-21 2016-01-06 中广核工程有限公司 核电站安全预警方法、系统以及核电站仿真技术平台
CN108231227A (zh) * 2017-12-18 2018-06-29 广东核电合营有限公司 一种核电站运行状态的监测方法、系统及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3905263A4 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112259273A (zh) * 2020-09-04 2021-01-22 福建福清核电有限公司 一种用于dcs控制机柜闪发类报警的定位方法
CN112259273B (zh) * 2020-09-04 2024-04-09 福建福清核电有限公司 一种用于dcs控制机柜闪发类报警的定位方法
CN112764383A (zh) * 2020-12-22 2021-05-07 中国核电工程有限公司 不同管路信号的显示及报警方法及系统
CN113316278A (zh) * 2021-05-24 2021-08-27 核工业理化工程研究院 一种用于石墨反应釜加热的可调功率感应加热电源系统
CN113316278B (zh) * 2021-05-24 2023-05-16 核工业理化工程研究院 一种用于石墨反应釜加热的可调功率感应加热电源系统
CN113409971A (zh) * 2021-05-28 2021-09-17 中国原子能科学研究院 核反应堆的堆芯损伤监测方法、装置、介质及电子设备
CN113409971B (zh) * 2021-05-28 2024-03-22 中国原子能科学研究院 核反应堆的堆芯损伤监测方法、装置、介质及电子设备
CN113418661A (zh) * 2021-06-11 2021-09-21 中国核电工程有限公司 一种核电厂蒸汽发生器的监测方法及系统
CN113418661B (zh) * 2021-06-11 2023-07-07 中国核电工程有限公司 一种核电厂蒸汽发生器的监测方法及系统
CN113639939A (zh) * 2021-07-09 2021-11-12 中国辐射防护研究院 一种建筑物内空气泄漏率异常变化的实时监测方法及系统
CN113639939B (zh) * 2021-07-09 2023-11-14 中国辐射防护研究院 一种建筑物内空气泄漏率异常变化的实时监测方法及系统
CN114171218A (zh) * 2021-11-23 2022-03-11 中核核电运行管理有限公司 一种核电厂凝汽器泄漏检测系统
CN114494979A (zh) * 2022-03-29 2022-05-13 杭州定川信息技术有限公司 一种视频识别生态流量泄放的方法
CN115099723A (zh) * 2022-08-24 2022-09-23 巨野恒丰果蔬有限公司 基于数据分析的大蒜精油生产用储存罐风险预测系统
CN115099723B (zh) * 2022-08-24 2022-11-15 巨野恒丰果蔬有限公司 基于数据分析的大蒜精油生产用储存罐风险预测系统
CN115469064A (zh) * 2022-09-07 2022-12-13 西北工业大学 一种多网格空间气体扩散源定位方法及系统
CN115469064B (zh) * 2022-09-07 2024-04-26 西北工业大学 一种多网格空间气体扩散源定位方法及系统
CN115619298A (zh) * 2022-10-17 2023-01-17 广东宏大民爆集团有限公司 一种乳化炸药的智能防控方法及系统
CN115919544A (zh) * 2023-03-13 2023-04-07 威海东舟医疗器械股份有限公司 一种基于人工智能的鼓膜治疗仪故障预测系统
CN116052912B (zh) * 2023-04-03 2023-06-16 四川晟蔚智能科技有限公司 一种基于气溶胶输运分析的核泄漏检测方法及系统
CN116052912A (zh) * 2023-04-03 2023-05-02 四川晟蔚智能科技有限公司 一种基于气溶胶输运分析的核泄漏检测方法及系统
CN116660703A (zh) * 2023-08-01 2023-08-29 安徽斯派迪电气技术有限公司 基于数据分析的配网系统绝缘故障在线监测系统
CN116660703B (zh) * 2023-08-01 2023-11-10 安徽斯派迪电气技术有限公司 基于数据分析的配网系统绝缘故障在线监测系统
CN117154257B (zh) * 2023-10-31 2024-02-23 宁德时代新能源科技股份有限公司 电池包漏水检测方法及装置
CN117154257A (zh) * 2023-10-31 2023-12-01 宁德时代新能源科技股份有限公司 电池包漏水检测方法及装置
CN117288392A (zh) * 2023-11-24 2023-12-26 福建优迪电力技术有限公司 一种用于sf6气体泄漏监测的方法和系统
CN117288392B (zh) * 2023-11-24 2024-04-16 福建优迪电力技术有限公司 一种用于sf6气体泄漏监测的方法和系统
CN117762095A (zh) * 2023-11-28 2024-03-26 淮阴工学院 基于物联网的石油提炼过程监控系统
CN117870775A (zh) * 2024-03-11 2024-04-12 山东港源管道物流有限公司 一种基于智慧油库的储罐检测系统及方法
CN117870775B (zh) * 2024-03-11 2024-05-14 山东港源管道物流有限公司 一种基于智慧油库的储罐检测系统及方法
CN117875722A (zh) * 2024-03-12 2024-04-12 山东港源管道物流有限公司 一种基于智慧油库的数据管理系统及方法
CN117875722B (zh) * 2024-03-12 2024-05-28 山东港源管道物流有限公司 一种基于智慧油库的数据管理系统及方法

Also Published As

Publication number Publication date
EP3905263A1 (en) 2021-11-03
EP3905263A4 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
WO2020118533A1 (zh) 核电站泄漏监测报警方法及报警系统
CN109637680B (zh) 核电站泄漏监测报警方法及报警系统
CN111238589B (zh) 一种可监控家用燃气泄漏状态的智能燃气表、系统及方法
WO2020052147A1 (zh) 监测设备故障检测方法及装置
US20130231876A1 (en) Leakage Detection and Leakage Location In Supply Networks
JP5164954B2 (ja) 機器診断方法及び機器診断装置
CN110542520B (zh) 一种发动机漏液监测方法及系统
CN112729723A (zh) 基于物联网和人工智能的智能燃气远程监测管理方法、系统、电子设备及计算机存储介质
US11048565B2 (en) Control system and control apparatus
US10768220B2 (en) Refrigeration system, failure diagnostic system thereof, failure diagnostic method, controller and storage medium
CN114281173A (zh) 一种服务器的可靠散热控制方法及装置
CN110553343A (zh) 空调的冷媒泄漏检测方法、系统及空调
CN116202038B (zh) 管网泄漏事件预警方法、装置、设备和介质
CN111947702A (zh) 传感器交叉验证故障诊断方法、装置、计算机设备
CN114976150B (zh) 燃料电池电堆中单电池泄露检测方法、装置、设备及介质
US20220284704A1 (en) Anomaly detection method and system for image signal processor
CN112903031A (zh) 一种用于换流阀冷却系统的异常检测方法及系统
JP2922665B2 (ja) 調節計器の異常検出装置
US20220136926A1 (en) Leak detection system and method
CN112903211A (zh) 一种检测燃气管道严密性的设备及方法
JP5950834B2 (ja) 異常計測器判定システム
CN112542029A (zh) 风机噪声检测监控方法、系统、计算机设备及存储介质
KR102584912B1 (ko) 음향방출신호 및 진동가속도의 측정에 의한 유체수송관의 감육 탐지 장치 및 방법
CN117739532B (zh) 一种水箱内盘管泄漏检测方法、系统及装置
KR102566249B1 (ko) 밸브 이상 감지 시스템 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018942701

Country of ref document: EP

Effective date: 20210712