WO2020116248A1 - Plasma processing device - Google Patents

Plasma processing device Download PDF

Info

Publication number
WO2020116248A1
WO2020116248A1 PCT/JP2019/046221 JP2019046221W WO2020116248A1 WO 2020116248 A1 WO2020116248 A1 WO 2020116248A1 JP 2019046221 W JP2019046221 W JP 2019046221W WO 2020116248 A1 WO2020116248 A1 WO 2020116248A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
plasma processing
processing apparatus
plasma
electrode
Prior art date
Application number
PCT/JP2019/046221
Other languages
French (fr)
Japanese (ja)
Inventor
池田 太郎
田中 澄
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2020116248A1 publication Critical patent/WO2020116248A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the exemplary embodiments of the present disclosure relate to a plasma processing apparatus.
  • the conventional plasma processing apparatus is described in Patent Documents 1 to 6. Although there are various types of plasma generation methods, a capacitively coupled plasma (CCP) processing apparatus using a very high frequency (VHF) band frequency for plasma generation is drawing attention.
  • the VHF band is a frequency in the range of about 30 MHz to 300 MHz.
  • JP-A-2000-323456 Japanese Patent No. 4364667 Japanese Patent No. 5317992 Japanese Patent No. 5367,000 Japanese Patent No. 5513104 JP, 2011-44446, A JP 2004-247401 A
  • a plasma processing apparatus includes an upper electrode and a lower electrode facing each other in a processing container, wherein the plasma processing apparatus generates plasma in a space between these electrodes.
  • the lower electrode has recesses on the surfaces facing each other, and an upper dielectric and a lower dielectric are provided in the recesses of the upper electrode and the lower electrode, respectively.
  • a VHF wave introduction portion is provided at a lateral end portion of the space between and.
  • the plasma distribution can be made uniform.
  • FIG. 1 is an explanatory diagram showing a device configuration of a plasma processing apparatus.
  • FIG. 2 is a vertical cross-sectional view of a plasma processing apparatus for explaining an example of a gas introduction structure.
  • FIG. 3 is a vertical cross-sectional view of a plasma processing apparatus for explaining another example of the gas introduction structure.
  • FIG. 4 is a vertical cross-sectional view of a plasma processing apparatus for explaining still another example of the gas introduction structure.
  • FIG. 5 is a vertical cross-sectional view of a plasma processing apparatus for explaining still another example of the gas introduction structure.
  • FIG. 6 is a vertical cross-sectional view of a plasma processing apparatus for explaining still another example of the gas introduction structure.
  • the first plasma processing apparatus includes an upper electrode and a lower electrode that are arranged to face each other in a processing container, and in the plasma processing apparatus that generates plasma in a space between these electrodes, the upper electrode and the lower electrode are respectively A recess is provided on the surface facing each other, and an upper dielectric and a lower dielectric are provided in the recess of each of the upper electrode and the lower electrode, and the space between the upper dielectric and the lower dielectric is provided. It is characterized in that a VHF wave introduction portion is provided at an end portion in the lateral direction of the space.
  • the introduction part of the VHF wave is located at the lateral end (horizontal end), and since the VHF wave is introduced from various lateral directions into this space, a standing wave is formed. It is hard to be done.
  • the electric field vector generated between the upper electrode and the lower electrode tends to incline downward from the vertical direction in the outer peripheral region of the electrode, but the upper electrode and the lower electrode are each provided with a recess. Since the upper dielectric and the lower dielectric are provided, the electric field vector can be made uniform in the plane by these dielectrics. Therefore, the plasma distribution generated between the upper electrode and the lower electrode can be made uniform by introducing the VHF wave in the lateral direction and making the electric field vector direction uniform.
  • the upper dielectric and the lower dielectric are each characterized in that the outer peripheral portion is thinner than the central portion.
  • the direction and magnitude of the electric field vector affected by the dielectric material also depend on the thickness thereof, it is possible to improve the in-plane uniformity of the electric field vector strength by setting the electric field vector to be thin at the outer peripheral portion.
  • the surface of the dielectric material opposite to the plasma generating space may be inclined like a mortar. With this inclination, the corresponding electric field vector can be directed more vertically, and the in-plane plasma uniformity can be enhanced.
  • the third plasma processing apparatus is characterized in that the upper dielectric and the lower dielectric are coaxially arranged with the space in between. That is, when the axes between the electrodes are aligned, the in-plane uniformity of plasma can be improved.
  • a vertical separation distance ⁇ zup from the lower surface of the upper dielectric to the introduction portion, and a vertical separation distance ⁇ zdown from the upper surface of the lower dielectric to the introduction portion are characterized by being equal.
  • these distances are equal, the distances from the VHF wave introduction position to the respective dielectrics are equal, and therefore the plasma caused by the VHF waves tends to be uniform in the vertical direction.
  • the plasma processing apparatus according to the embodiment will be described. The same elements will be denoted by the same reference symbols, without redundant description.
  • FIG. 1 is an explanatory diagram showing a device configuration of the plasma processing apparatus 100.
  • a three-dimensional orthogonal coordinate system is set.
  • the vertical direction of the plasma processing apparatus is the Z-axis direction, and the two directions perpendicular to this are the X-axis and the Y-axis, respectively.
  • the plasma processing apparatus 100 includes an upper electrode 5 and a lower electrode 6 that are arranged to face each other in the processing container 1, and in the plasma processing apparatus that generates plasma in a space SP between these electrodes, the upper electrode 5 and the lower electrode 6 are provided. Are provided with recesses 5d and 6d on the surfaces facing each other. Further, an upper dielectric 7 and a lower dielectric 8 are provided in the recesses of the upper electrode 5 and the lower electrode 6, respectively, and a lateral end portion of the space SP between the upper dielectric 7 and the lower dielectric 8 is provided. Is provided with a VHF wave introducing unit 9.
  • a VHF wave waveguide 2 made of a dielectric plate is provided on the upper open end of the processing container 1, and a lid member 3 is provided on the VHF wave waveguide 2 if necessary.
  • the center of the lid member 3 is open, the side wall around the opening constitutes the outer conductor 3a of the coaxial tube, and the inner conductor 3b is arranged at the axial center.
  • the inner conductor 3b is integrally formed with the upper electrode 5 and is electrically connected thereto.
  • a mortar-shaped recess 5d is formed on the lower surface of the upper electrode 5, and the upper dielectric 7 is embedded in the recess 5d.
  • the lower surface of the upper dielectric 7 is flat and parallel to the XY plane.
  • the planar shapes of the upper dielectric 7 and the upper electrode 5 are circular.
  • the upper dielectric 7 has a large thickness in the central portion and a small thickness in the outer peripheral portion.
  • the central region of the upper surface of the upper dielectric 7 is flat and parallel to the XY plane, and the outermost region is also flat and parallel to the XY plane, but the region between them is a conical surface, and from top to bottom. It is composed of an inclined surface whose diameter of the plane shape increases toward the side.
  • a mortar-shaped recess 6d is formed on the upper surface of the lower electrode 6, and the lower dielectric 8 is embedded in the recess 6d.
  • the upper surface of the lower dielectric 8 is flat and parallel to the XY plane. Further, the planar shapes (shapes viewed from the Z-axis direction) of the lower dielectric 8 and the lower electrode 6 are circular.
  • the lower dielectric 8 has a large thickness in the central portion and a small thickness in the outer peripheral portion.
  • the central region of the lower surface of the lower dielectric 8 is flat and parallel to the XY plane, and the outermost region is also flat and parallel to the XY plane, but the region between them is a conical surface, and from the bottom to the top. It is composed of an inclined surface whose diameter of the plane shape increases toward the side.
  • the VHF wave introduced in the central part of the VHF wave waveguide 2 in the horizontal direction travels radially to the peripheral part along the horizontal direction. After that, the VHF wave travels downward in a waveguide 1w formed of a concave portion (planar shape is circular ring-shaped, depth is in the Z-axis direction) provided in the side wall of the processing container 1, and reaches the VHF wave introducing portion 9. It is introduced and proceeds from the outer peripheral portion toward the central portion.
  • the planar shape of the VHF wave introducing unit 9 is a circular ring shape, and the VHF wave travels from all horizontal azimuths toward the axial center of the processing container.
  • the VHF wave introducing unit 9 is located in the lateral direction of the plasma generation space SP.
  • the VHF wave generated from the VHF wave generator 13 is introduced into the horizontal VHF wave waveguide 2 through the waveguide. After that, as described above, when the VHF wave is introduced from the VHF wave introducing unit 9 between the upper electrode 5 and the lower electrode 6, the gas inside the processing container is turned into plasma and plasma is generated. In this case, the VHF wave introducing unit 9 is located at the lateral end (horizontal end), and since VHF waves are introduced from various lateral directions into this space, a standing wave is formed. There is an advantage that it is hard to be done.
  • the electric field vector generated between the upper electrode 5 and the lower electrode 6 tends to incline downward from the vertical direction in the outer peripheral region of the electrode. A recess is provided.
  • the electric field vector can be made uniform in the plane by these dielectrics. Therefore, the plasma distribution generated between the upper electrode 5 and the lower electrode 6 can be made uniform in the plane by introducing the VHF wave in the lateral direction and making the direction of the electric field vector uniform.
  • the upper dielectric 7 and the lower dielectric 8 each have a thinner outer peripheral portion than a central portion.
  • the direction and magnitude of the electric field vector affected by the dielectric material also depends on its thickness. Therefore, by setting it thin on the outer periphery of the dielectric material, the in-plane uniformity of the electric field vector strength can be improved.
  • the surfaces on the side opposite to the plasma generation space SP are inclined like a mortar. With this inclination, the corresponding electric field vector can be directed more vertically, and the in-plane plasma uniformity can be enhanced. That is, the upper dielectric 7 and the lower dielectric 8 have a lens function of bending the electric field vector.
  • the upper dielectric 7 and the lower dielectric 8 are coaxially arranged with the space SP in between. That is, the in-plane uniformity of plasma can be improved when the axes between the electrodes are aligned. Further, the vertical distance ⁇ zup from the lower surface of the upper dielectric 7 to the VHF wave introducing portion 9 is equal to the vertical distance ⁇ zdown from the upper surface of the lower dielectric 8 to the VHF wave introducing portion 9. When these distances are equal, the distances from the VHF wave introduction position to the respective dielectrics are equal, and therefore the plasma caused by the VHF waves tends to be uniform in the vertical direction.
  • the distance ⁇ z between the upper dielectric 7 and the lower dielectric 8 is preferably, for example, 5 mm to 80 mm from the viewpoint of generating uniform plasma. Further, the distance ⁇ x, which is the difference between the radius of the upper dielectric body 7 and the radius of the lower dielectric body 8, is preferably close to zero. This is because the plasma generation conditions are symmetrical and the plasma uniformity is improved.
  • the lower electrode 6 can be moved vertically by the drive stage DRV. As a result, plasma can be generated under optimum conditions. Further, the lower electrode 6 is provided with a temperature adjusting device TEMP.
  • the temperature control device TEMP includes a medium passage for flowing a cooling medium, a heater, and a temperature sensor, and the control device 12 controls the lower electrode 6 to have a target temperature. For example, if the target temperature is T1° C., if the output of the temperature sensor is smaller than T1° C., the heater is heated, and if it is higher than T1° C., the heater is not heated and the cooling medium is flown into the medium passage. , It should be controlled.
  • the control device 12 also controls the exhaust device 14.
  • the exhaust device 14 exhausts the gas in the annular exhaust passage 4 provided in the outer wall of the processing container 1.
  • the exhaust passage 4 is provided in the lateral direction of the plasma generation space SP, and communicates with a plurality of exhaust holes provided along the circumferential direction on the inner surface of the processing container. Thereby, the gas in the plasma generation space SP can be exhausted, and the pressure in this space can be set to an appropriate value. This pressure may be changed depending on the processing content, but can be set to 0.1 Pa to 100 Pa, for example.
  • a pump normally used in a vacuum system device such as a rotary pump, an ion pump, a cryostat, or a turbo molecular pump can be adopted.
  • the control device 12 controls the flow rate controller 11 that controls the flow rate of the gas generated from the gas source 10.
  • the flow rate controller 11 may be a simple valve. As a result, the target gas can be introduced into the processing container 1.
  • the controller 12 also controls the VHF wave generator 13.
  • the frequency of the VHF wave is about 30 MHz to 300 MHz.
  • gases that can be used for the gas source 10 include noble gases such as Ar, gases containing carbon and fluorine such as CF 4 and C 4 F 8 and gases such as N 2 and O 2 .
  • Aluminum can be used as the material of the upper electrode 5 and the lower electrode 6.
  • Aluminum nitride (AlN) can be used as a material for the upper dielectric body 7 and the lower dielectric body 8.
  • quartz can be used as the material of the VHF wave waveguide 2 in the horizontal direction, air may be used as long as the waveguide can be formed.
  • silicon or the like can be used, and processing such as film formation or etching can be performed on this substrate.
  • an electrostatic chuck may be provided, a DC bias potential may be applied to the lower dielectric 8, or a high frequency voltage may be applied between the upper and lower electrodes in some cases.
  • a configuration in which a magnet is arranged in the is also conceivable.
  • FIG. 2 is a vertical cross-sectional view of a plasma processing apparatus for explaining an example of a gas introduction structure.
  • a through hole along the Z-axis direction is formed in the inner conductor 3b located in the center of the upper electrode 5, and a hole communicating with this is also formed in the upper dielectric 7.
  • Other structures are as described above. In such a case, there is a problem that the gas concentration in the central portion of the processing container becomes higher than that in the peripheral portion.
  • FIG. 3 is a vertical cross-sectional view of a plasma processing apparatus for explaining another example of the gas introduction structure.
  • the upper dielectric 7 in the apparatus of FIG. 2 has a shower structure having a plurality of through holes. Thereby, the in-plane uniformity of gas concentration can be improved.
  • FIG. 4 is a vertical cross-sectional view of a plasma processing apparatus for explaining still another example of the gas introduction structure.
  • a through hole is formed in the VHF wave waveguide 2.
  • the through-hole has an annular shape in a plan view, and a ring-shaped tube of an insulator made of alumina (Al 2 O 3 ) is arranged in the through-hole to form the gas introduction passage 2A. Since the outer conductor 3a is only required near the center of the VHF wave waveguide 2, the remaining portion of the lid member is removed from the VHF wave waveguide 2. In this case, an appropriate gas storage space is provided in the gas introduction passage 2A, and gas is introduced into the gas introduction passage 2A from this space.
  • a gas passage is formed inside the upper electrode 5, and reaches the upper dielectric body 7 of the shower structure through the gas passage and the gas diffusion plate 7A.
  • the gas diffusion plate 7A is a diffuser and has a plurality of through holes formed therein.
  • the material of the gas diffusion plate 7A is made of an insulator such as AlN, alumina, or SiO 2, but it may be made of a mesh electrode or the like.
  • FIG. 5 is a vertical cross-sectional view of a plasma processing apparatus for explaining still another example of the gas introduction structure.
  • FIG. 6 is a vertical cross-sectional view of a plasma processing apparatus for explaining still another example of the gas introduction structure.
  • the VHF wave waveguide 2 described above is a solid dielectric, but it may be air. That is, in the upper structure of the processing container 1, the waveguide 2w extending in the horizontal direction and communicating with the waveguide 1w formed of a recess provided in the side wall of the processing container 1 is formed instead of the solid dielectric waveguide. Then, the insulator block 2B made of a ring-shaped insulator is arranged between the outer conductor 3a and the inner conductor 3b. As a result, the VHF wave introduced from the upper part of the insulator block 2B reaches the vertical waveguide 1w through the horizontal waveguide 2w, and is introduced into the processing container through the VHF wave introducing unit 9. To be done.
  • the thickness ⁇ Z of the insulator block 2B in the Z-axis direction is set so as to function as an impedance converter that converts the plasma load impedance with respect to the wavelength ⁇ of the VHF wave (120 MHz to 240 MHz in frequency conversion in this example). To do.
  • the impedance conversion unit matches the characteristic impedance of the coaxial tubes (3a, 3b) with the impedance of the antenna unit (waveguide 2, block 2B and subsequent portions, introduction unit 9, upper dielectric 7).

Abstract

Provided is a plasma processing device which is capable of enabling uniform plasma distribution. The plasma processing device is provided with an upper electrode and a lower electrode disposed opposite to each other in a processing container and generates plasma in the space between the electrodes, wherein the upper electrode and the lower electrode are respectively provided with recessed parts on the opposite faces, and an upper dielectric and a lower dielectric are respectively provided in the recessed parts of the upper electrode and the lower electrode, and a VHF wave introducing part is provided in a horizontal end part of the space SP between the upper dielectric and the lower dielectric.

Description

プラズマ処理装置Plasma processing device
 本開示の例示的実施形態は、プラズマ処理装置に関する。 The exemplary embodiments of the present disclosure relate to a plasma processing apparatus.
 従来のプラズマ処理装置は、特許文献1~特許文献6に記載されている。プラズマの発生方式には様々なものがあるが、超短波(VHF)帯の周波数をプラズマ発生に用いた容量結合プラズマ(CCP)処理装置が、注目されている。VHF帯とは、30MHz~300MHz程度の範囲の周波数である。 The conventional plasma processing apparatus is described in Patent Documents 1 to 6. Although there are various types of plasma generation methods, a capacitively coupled plasma (CCP) processing apparatus using a very high frequency (VHF) band frequency for plasma generation is drawing attention. The VHF band is a frequency in the range of about 30 MHz to 300 MHz.
特開2000-323456号公報JP-A-2000-323456 特許4364667号公報Japanese Patent No. 4364667 特許5317992号公報Japanese Patent No. 5317992 特許5367000号公報Japanese Patent No. 5367,000 特許5513104号公報Japanese Patent No. 5513104 特開2011-44446号公報JP, 2011-44446, A 特開2004-247401号公報JP 2004-247401 A
 しかしながら、VHF-CCP装置では、定在波効果により、プラズマ分布を均一にすることが困難とされてきた。プラズマ分布を均一にすることが可能なプラズマ処理装置が期待されている。 However, in the VHF-CCP device, it has been difficult to make the plasma distribution uniform due to the standing wave effect. A plasma processing apparatus that can make the plasma distribution uniform is expected.
 一つの例示的実施形態に係るプラズマ処理装置は、処理容器内に対向配置された上部電極及び下部電極を備え、これらの電極間の空間にプラズマを発生させるプラズマ処理装置において、前記上部電極及び前記下部電極は、それぞれ互いに対向する面に凹部を備え、前記上部電極及び前記下部電極それぞれの前記凹部内には、上部誘電体及び下部誘電体がそれぞれ設けられ、前記上部誘電体と前記下部誘電体との間の前記空間の横方向端部には、VHF波の導入部が設けられていることを特徴とする。 A plasma processing apparatus according to one exemplary embodiment includes an upper electrode and a lower electrode facing each other in a processing container, wherein the plasma processing apparatus generates plasma in a space between these electrodes. The lower electrode has recesses on the surfaces facing each other, and an upper dielectric and a lower dielectric are provided in the recesses of the upper electrode and the lower electrode, respectively. A VHF wave introduction portion is provided at a lateral end portion of the space between and.
 例示的実施形態に係るプラズマ処理装置によれば、プラズマ分布を均一にすることができる。 According to the plasma processing apparatus according to the exemplary embodiment, the plasma distribution can be made uniform.
図1は、プラズマ処理装置の装置構成を示す説明図である。FIG. 1 is an explanatory diagram showing a device configuration of a plasma processing apparatus. 図2は、ガス導入構造の一例を説明するためのプラズマ処理装置の縦断面図である。FIG. 2 is a vertical cross-sectional view of a plasma processing apparatus for explaining an example of a gas introduction structure. 図3は、ガス導入構造の別の一例を説明するためのプラズマ処理装置の縦断面図である。FIG. 3 is a vertical cross-sectional view of a plasma processing apparatus for explaining another example of the gas introduction structure. 図4は、ガス導入構造の更に別の一例を説明するためのプラズマ処理装置の縦断面図である。FIG. 4 is a vertical cross-sectional view of a plasma processing apparatus for explaining still another example of the gas introduction structure. 図5は、ガス導入構造の更に別の一例を説明するためのプラズマ処理装置の縦断面図である。FIG. 5 is a vertical cross-sectional view of a plasma processing apparatus for explaining still another example of the gas introduction structure. 図6は、ガス導入構造の更に別の一例を説明するためのプラズマ処理装置の縦断面図である。FIG. 6 is a vertical cross-sectional view of a plasma processing apparatus for explaining still another example of the gas introduction structure.
 第1のプラズマ処理装置は、処理容器内に対向配置された上部電極及び下部電極を備え、これらの電極間の空間にプラズマを発生させるプラズマ処理装置において、前記上部電極及び前記下部電極は、それぞれ互いに対向する面に凹部を備え、前記上部電極及び前記下部電極それぞれの前記凹部内には、上部誘電体及び下部誘電体がそれぞれ設けられ、前記上部誘電体と前記下部誘電体との間の前記空間の横方向端部には、VHF波の導入部が設けられていることを特徴とする。 The first plasma processing apparatus includes an upper electrode and a lower electrode that are arranged to face each other in a processing container, and in the plasma processing apparatus that generates plasma in a space between these electrodes, the upper electrode and the lower electrode are respectively A recess is provided on the surface facing each other, and an upper dielectric and a lower dielectric are provided in the recess of each of the upper electrode and the lower electrode, and the space between the upper dielectric and the lower dielectric is provided. It is characterized in that a VHF wave introduction portion is provided at an end portion in the lateral direction of the space.
 上部電極と下部電極との間に、VHF波導入部から、VHF波が導入されると、内部のガスがプラズマ化し、プラズマが発生する。この場合、VHF波の導入部は、横方向端部(水平方向端部)に位置しており、この空間内には、様々な横方向からVHF波が導入されるので、定在波が形成されにくい。また、上部電極と下部電極との間に発生する電界ベクトルは、電極の外周領域では鉛直方向から下向き外側に向けて傾斜する傾向があるが、上部電極及び下部電極には、それぞれ凹部が設けられ、上部誘電体及び下部誘電体が設けられているので、これらの誘電体により、電界ベクトルを面内で均一にすることができる。したがって、横方向のVHF波導入と電界ベクトル方向の均一化により、上部電極と下部電極との間に発生するプラズマ分布を均一にすることができる。 When the VHF wave is introduced between the upper electrode and the lower electrode from the VHF wave introducing part, the gas inside becomes plasma and plasma is generated. In this case, the introduction part of the VHF wave is located at the lateral end (horizontal end), and since the VHF wave is introduced from various lateral directions into this space, a standing wave is formed. It is hard to be done. The electric field vector generated between the upper electrode and the lower electrode tends to incline downward from the vertical direction in the outer peripheral region of the electrode, but the upper electrode and the lower electrode are each provided with a recess. Since the upper dielectric and the lower dielectric are provided, the electric field vector can be made uniform in the plane by these dielectrics. Therefore, the plasma distribution generated between the upper electrode and the lower electrode can be made uniform by introducing the VHF wave in the lateral direction and making the electric field vector direction uniform.
 第2のプラズマ処理装置においては、前記上部誘電体及び前記下部誘電体は、それぞれ、中央部の厚みよりも外周部の厚みが薄いことを特徴とする。特に、誘電体が影響を与える電界ベクトルの向きと大きさは、その厚みにも依存するので、外周部において、薄く設定することで、電界ベクトル強度の面内均一性を向上させることができる。なお、上記誘電体において、前記プラズマ発生空間とは反対側の面は、すり鉢状に傾斜することができる。この傾斜により、対応する電界ベクトルをより鉛直方向に向け、面内のプラズマ均一性を高めることができる。 In the second plasma processing apparatus, the upper dielectric and the lower dielectric are each characterized in that the outer peripheral portion is thinner than the central portion. In particular, since the direction and magnitude of the electric field vector affected by the dielectric material also depend on the thickness thereof, it is possible to improve the in-plane uniformity of the electric field vector strength by setting the electric field vector to be thin at the outer peripheral portion. The surface of the dielectric material opposite to the plasma generating space may be inclined like a mortar. With this inclination, the corresponding electric field vector can be directed more vertically, and the in-plane plasma uniformity can be enhanced.
 第3のプラズマ処理装置においては、前記上部誘電体及び前記下部誘電体は、前記空間を挟んで同軸配置されていることを特徴とする。すなわち、電極間の軸が一致している方が、プラズマの面内均一性を高めることができる。 The third plasma processing apparatus is characterized in that the upper dielectric and the lower dielectric are coaxially arranged with the space in between. That is, when the axes between the electrodes are aligned, the in-plane uniformity of plasma can be improved.
 第4のプラズマ処理装置においては、前記上部誘電体の下部表面から前記導入部までの鉛直方向の離間距離Δzupと、前記下部誘電体の上部表面から前記導入部までの鉛直方向の離間距離Δzdownとは等しいことを特徴とする。これらの距離が、等しい場合には、VHF波導入位置からのそれぞれの誘電体への距離が等しくなるので、VHF波に起因したプラズマは、鉛直方向において、均一になる傾向がある。
 以下、実施の形態に係るプラズマ処理装置について説明する。同一要素には、同一符号を用い、重複する説明は省略する。
In the fourth plasma processing apparatus, a vertical separation distance Δzup from the lower surface of the upper dielectric to the introduction portion, and a vertical separation distance Δzdown from the upper surface of the lower dielectric to the introduction portion. Are characterized by being equal. When these distances are equal, the distances from the VHF wave introduction position to the respective dielectrics are equal, and therefore the plasma caused by the VHF waves tends to be uniform in the vertical direction.
Hereinafter, the plasma processing apparatus according to the embodiment will be described. The same elements will be denoted by the same reference symbols, without redundant description.
 図1は、プラズマ処理装置100の装置構成を示す説明図である。なお、説明の便宜上、三次元直交座標系を設定する。プラズマ処理装置の鉛直方向をZ軸方向とし、これに垂直な2方向をそれぞれX軸及びY軸とする。 FIG. 1 is an explanatory diagram showing a device configuration of the plasma processing apparatus 100. For convenience of explanation, a three-dimensional orthogonal coordinate system is set. The vertical direction of the plasma processing apparatus is the Z-axis direction, and the two directions perpendicular to this are the X-axis and the Y-axis, respectively.
 このプラズマ処理装置100は、処理容器1内に対向配置された上部電極5及び下部電極6を備え、これらの電極間の空間SPにプラズマを発生させるプラズマ処理装置において、上部電極5及び下部電極6は、それぞれ互いに対向する面に凹部5d,6dを備えている。また、上部電極5及び下部電極6それぞれの凹部内には、上部誘電体7及び下部誘電体8がそれぞれ設けられ、上部誘電体7と下部誘電体8との間の空間SPの横方向端部には、VHF波導入部9が設けられている。 The plasma processing apparatus 100 includes an upper electrode 5 and a lower electrode 6 that are arranged to face each other in the processing container 1, and in the plasma processing apparatus that generates plasma in a space SP between these electrodes, the upper electrode 5 and the lower electrode 6 are provided. Are provided with recesses 5d and 6d on the surfaces facing each other. Further, an upper dielectric 7 and a lower dielectric 8 are provided in the recesses of the upper electrode 5 and the lower electrode 6, respectively, and a lateral end portion of the space SP between the upper dielectric 7 and the lower dielectric 8 is provided. Is provided with a VHF wave introducing unit 9.
 処理容器1の上部開口端上には、誘電体板からなるVHF波導波路2が設けられており、VHF波導波路2上には、必要に応じて、蓋部材3が設けられる。蓋部材3の中央は開口しており、開口周囲の側壁が、同軸管の外側導体3aを構成し、軸中心には内側導体3bが配置されている。なお、内側導体3bは、上部電極5に対して一体的に構成され、電気的に接続されている。 A VHF wave waveguide 2 made of a dielectric plate is provided on the upper open end of the processing container 1, and a lid member 3 is provided on the VHF wave waveguide 2 if necessary. The center of the lid member 3 is open, the side wall around the opening constitutes the outer conductor 3a of the coaxial tube, and the inner conductor 3b is arranged at the axial center. The inner conductor 3b is integrally formed with the upper electrode 5 and is electrically connected thereto.
 上部電極5の下面には、すり鉢状の凹部5dが形成されており、この凹部5d内に上部誘電体7が埋め込まれている。上部誘電体7の下部表面は平坦であり、XY平面に平行である。また、上部誘電体7及び上部電極5の平面形状(Z軸方向から見た形状)は、円形である。上部誘電体7は、中央部では厚みが厚く、外周部では厚みが薄い。上部誘電体7の上部表面の中央領域は平坦でXY平面に平行であり、最外領域も平坦でXY平面に平行であるが、これらの間の領域は、円錐面であり、上部から下部に向けて平面形状の直径が大きくなる傾斜面からなる。 A mortar-shaped recess 5d is formed on the lower surface of the upper electrode 5, and the upper dielectric 7 is embedded in the recess 5d. The lower surface of the upper dielectric 7 is flat and parallel to the XY plane. Further, the planar shapes of the upper dielectric 7 and the upper electrode 5 (the shapes viewed from the Z-axis direction) are circular. The upper dielectric 7 has a large thickness in the central portion and a small thickness in the outer peripheral portion. The central region of the upper surface of the upper dielectric 7 is flat and parallel to the XY plane, and the outermost region is also flat and parallel to the XY plane, but the region between them is a conical surface, and from top to bottom. It is composed of an inclined surface whose diameter of the plane shape increases toward the side.
 下部電極6の上面には、すり鉢状の凹部6dが形成されており、この凹部6d内に下部誘電体8が埋め込まれている。下部誘電体8の上部表面は平坦であり、XY平面に平行である。また、下部誘電体8及び下部電極6の平面形状(Z軸方向から見た形状)は、円形である。下部誘電体8は、中央部では厚みが厚く、外周部では厚みが薄い。下部誘電体8の下部表面の中央領域は平坦でXY平面に平行であり、最外領域も平坦でXY平面に平行であるが、これらの間の領域は、円錐面であり、下部から上部に向けて平面形状の直径が大きくなる傾斜面からなる。 A mortar-shaped recess 6d is formed on the upper surface of the lower electrode 6, and the lower dielectric 8 is embedded in the recess 6d. The upper surface of the lower dielectric 8 is flat and parallel to the XY plane. Further, the planar shapes (shapes viewed from the Z-axis direction) of the lower dielectric 8 and the lower electrode 6 are circular. The lower dielectric 8 has a large thickness in the central portion and a small thickness in the outer peripheral portion. The central region of the lower surface of the lower dielectric 8 is flat and parallel to the XY plane, and the outermost region is also flat and parallel to the XY plane, but the region between them is a conical surface, and from the bottom to the top. It is composed of an inclined surface whose diameter of the plane shape increases toward the side.
 水平方向のVHF波導波路2の中央部に導入されたVHF波は、水平方向に沿って放射状に周辺部に進行する。その後、このVHF波は、処理容器1の側壁に設けられた凹部(平面形状は円リング状で、深さはZ軸方向)からなる導波路1wを下方に進行し、VHF波導入部9に導入され、外周部から中央部に向けて進行する。VHF波導入部9の平面形状は円リング状であり、水平方向の全方位から処理容器の軸中心に向けて、VHF波が進行する。VHF波導入部9は、プラズマ発生空間SPの横方向に位置している。 The VHF wave introduced in the central part of the VHF wave waveguide 2 in the horizontal direction travels radially to the peripheral part along the horizontal direction. After that, the VHF wave travels downward in a waveguide 1w formed of a concave portion (planar shape is circular ring-shaped, depth is in the Z-axis direction) provided in the side wall of the processing container 1, and reaches the VHF wave introducing portion 9. It is introduced and proceeds from the outer peripheral portion toward the central portion. The planar shape of the VHF wave introducing unit 9 is a circular ring shape, and the VHF wave travels from all horizontal azimuths toward the axial center of the processing container. The VHF wave introducing unit 9 is located in the lateral direction of the plasma generation space SP.
 VHF波発生器13から発生したVHF波は、導波管を通って、水平方向のVHF波導波路2に導入される。その後、上述のように、上部電極5と下部電極6との間に、VHF波導入部9から、VHF波が導入されると、処理容器の内部のガスがプラズマ化し、プラズマが発生する。この場合、VHF波導入部9は、横方向端部(水平方向端部)に位置しており、この空間内には、様々な横方向からVHF波が導入されるので、定在波が形成されにくいという利点がある。また、上部電極5と下部電極6との間に発生する電界ベクトルは、電極の外周領域では鉛直方向から下向き外側に向けて傾斜する傾向があるが、上部電極5及び下部電極6には、それぞれ凹部が設けられている。これらには、上部誘電体7及び下部誘電体8が設けられているので、これらの誘電体により、電界ベクトルを面内で均一にすることができる。したがって、横方向のVHF波導入と電界ベクトル方向の均一化により、上部電極5と下部電極6との間に発生するプラズマ分布を面内で均一にすることができる。 The VHF wave generated from the VHF wave generator 13 is introduced into the horizontal VHF wave waveguide 2 through the waveguide. After that, as described above, when the VHF wave is introduced from the VHF wave introducing unit 9 between the upper electrode 5 and the lower electrode 6, the gas inside the processing container is turned into plasma and plasma is generated. In this case, the VHF wave introducing unit 9 is located at the lateral end (horizontal end), and since VHF waves are introduced from various lateral directions into this space, a standing wave is formed. There is an advantage that it is hard to be done. The electric field vector generated between the upper electrode 5 and the lower electrode 6 tends to incline downward from the vertical direction in the outer peripheral region of the electrode. A recess is provided. Since these are provided with the upper dielectric 7 and the lower dielectric 8, the electric field vector can be made uniform in the plane by these dielectrics. Therefore, the plasma distribution generated between the upper electrode 5 and the lower electrode 6 can be made uniform in the plane by introducing the VHF wave in the lateral direction and making the direction of the electric field vector uniform.
 なお、上部誘電体7及び下部誘電体8は、それぞれ、中央部の厚みよりも外周部の厚みが薄い。特に、誘電体が影響を与える電界ベクトルの向きと大きさは、その厚みにも依存するので、誘電体の外周部において、薄く設定することで、電界ベクトル強度の面内均一性を向上させることができる。また、上部誘電体7及び下部誘電体8において、プラズマ発生空間SPとは反対側の面は、すり鉢状に傾斜している。この傾斜により、対応する電界ベクトルをより鉛直方向に向け、面内のプラズマ均一性を高めることができる。すなわち、上部誘電体7及び下部誘電体8には、電界ベクトルを曲げるレンズ機能がある。 The upper dielectric 7 and the lower dielectric 8 each have a thinner outer peripheral portion than a central portion. In particular, the direction and magnitude of the electric field vector affected by the dielectric material also depends on its thickness. Therefore, by setting it thin on the outer periphery of the dielectric material, the in-plane uniformity of the electric field vector strength can be improved. You can Further, in the upper dielectric 7 and the lower dielectric 8, the surfaces on the side opposite to the plasma generation space SP are inclined like a mortar. With this inclination, the corresponding electric field vector can be directed more vertically, and the in-plane plasma uniformity can be enhanced. That is, the upper dielectric 7 and the lower dielectric 8 have a lens function of bending the electric field vector.
 また、上部誘電体7及び下部誘電体8は、空間SPを挟んで同軸配置されている。すなわち、電極間の軸が一致している方が、プラズマの面内均一性を高めることができるからである。また、上部誘電体7の下部表面からVHF波導入部9までの鉛直方向の離間距離Δzupと、下部誘電体8の上部表面からVHF波導入部9までの鉛直方向の離間距離Δzdownとは等しい。これらの距離が、等しい場合には、VHF波導入位置からのそれぞれの誘電体への距離が等しくなるので、VHF波に起因したプラズマは、鉛直方向において、均一になる傾向がある。なお、上部誘電体7と下部誘電体8との間の距離Δzは、均一なプラズマを発生させる観点からは、例えば、5mm~80mmであることが好ましい。また、上部誘電体7の半径と、下部誘電体8の半径との差の距離Δxは、0に近い値の方が好ましい。プラズマ発生条件が対称になるため、プラズマの均一性が高まるからである。 The upper dielectric 7 and the lower dielectric 8 are coaxially arranged with the space SP in between. That is, the in-plane uniformity of plasma can be improved when the axes between the electrodes are aligned. Further, the vertical distance Δzup from the lower surface of the upper dielectric 7 to the VHF wave introducing portion 9 is equal to the vertical distance Δzdown from the upper surface of the lower dielectric 8 to the VHF wave introducing portion 9. When these distances are equal, the distances from the VHF wave introduction position to the respective dielectrics are equal, and therefore the plasma caused by the VHF waves tends to be uniform in the vertical direction. The distance Δz between the upper dielectric 7 and the lower dielectric 8 is preferably, for example, 5 mm to 80 mm from the viewpoint of generating uniform plasma. Further, the distance Δx, which is the difference between the radius of the upper dielectric body 7 and the radius of the lower dielectric body 8, is preferably close to zero. This is because the plasma generation conditions are symmetrical and the plasma uniformity is improved.
 下部電極6は、駆動ステージDRVによって上下方向に移動させることができる。これにより、最適な条件でプラズマを発生させることができる。また、下部電極6には、温度調節装置TEMPが設けられている。温度調節装置TEMPは、冷却媒体を流すための媒体通路と、ヒータと、温度センサとを含んでおり、制御装置12によって、下部電極6が目的の温度となるように制御される。例えば、目標温度がT1℃であれば、温度センサの出力がT1℃よりも小さければ、ヒータを加熱し、T1℃よりも高ければ、ヒータを加熱しないで、冷却媒体を媒体通路に流すように、制御すればよい。 The lower electrode 6 can be moved vertically by the drive stage DRV. As a result, plasma can be generated under optimum conditions. Further, the lower electrode 6 is provided with a temperature adjusting device TEMP. The temperature control device TEMP includes a medium passage for flowing a cooling medium, a heater, and a temperature sensor, and the control device 12 controls the lower electrode 6 to have a target temperature. For example, if the target temperature is T1° C., if the output of the temperature sensor is smaller than T1° C., the heater is heated, and if it is higher than T1° C., the heater is not heated and the cooling medium is flown into the medium passage. , It should be controlled.
 制御装置12は、排気装置14も制御している。排気装置14は、処理容器1の外壁内に設けられた円環状の排気通路4内のガスを排気する。排気通路4は、プラズマ発生空間SPの横方向に設けられており、処理容器の内面において周方向に沿って設けられた複数の排気孔に連通している。これにより、プラズマ発生空間SP内のガスを排気することができ、この空間における圧力を適切な値に設定することができる。この圧力は、処理内容に応じて変更すればよいが、例えば、0.1Paから100Paとすることができる。排気装置14としては、ロータリポンプ、イオンポンプ、クライオスタット、ターボ分子ポンプなど真空系の装置で通常用いられるポンプを採用することができる。 The control device 12 also controls the exhaust device 14. The exhaust device 14 exhausts the gas in the annular exhaust passage 4 provided in the outer wall of the processing container 1. The exhaust passage 4 is provided in the lateral direction of the plasma generation space SP, and communicates with a plurality of exhaust holes provided along the circumferential direction on the inner surface of the processing container. Thereby, the gas in the plasma generation space SP can be exhausted, and the pressure in this space can be set to an appropriate value. This pressure may be changed depending on the processing content, but can be set to 0.1 Pa to 100 Pa, for example. As the exhaust device 14, a pump normally used in a vacuum system device such as a rotary pump, an ion pump, a cryostat, or a turbo molecular pump can be adopted.
 制御装置12は、ガス源10から発生したガスの流量を制御する流量コントローラ11を制御している。流量コントローラ11は、単なるバルブであってもよい。これにより、目的のガスを、処理容器1内に導入することができる。また、制御装置12は、VHF波発生器13も制御している。VHF波の周波数は、30MHz~300MHz程度である。 The control device 12 controls the flow rate controller 11 that controls the flow rate of the gas generated from the gas source 10. The flow rate controller 11 may be a simple valve. As a result, the target gas can be introduced into the processing container 1. The controller 12 also controls the VHF wave generator 13. The frequency of the VHF wave is about 30 MHz to 300 MHz.
 ガス源10に使用できるガスとしては、Ar等の希ガスの他、CF,Cなどの炭素及びフッ素を含むガス、N,Oなどのガスなどが、一例として挙げられる。 Examples of gases that can be used for the gas source 10 include noble gases such as Ar, gases containing carbon and fluorine such as CF 4 and C 4 F 8 and gases such as N 2 and O 2 .
 上部電極5及び下部電極6の材料としては、アルミニウムを用いることができる。上部誘電体7及び下部誘電体8の材料としては、窒化アルミニウム(AlN)を用いることができる。水平方向のVHF波導波路2の材料としては、石英を用いることができるが、導波路を形成することができれば、空気でもよい。 Aluminum can be used as the material of the upper electrode 5 and the lower electrode 6. Aluminum nitride (AlN) can be used as a material for the upper dielectric body 7 and the lower dielectric body 8. Although quartz can be used as the material of the VHF wave waveguide 2 in the horizontal direction, air may be used as long as the waveguide can be formed.
 下部誘電体8上に配置される基板としては、シリコンなどを用いることができ、この基板に対して、成膜やエッチングなどの処理を行うことができる。また、必要に応じて、静電チャックを設けたり、下部誘電体8に直流バイアス電位を印加したり、場合によっては、高周波電圧を上下の電極間に印加する構成も考えられ、処理容器の周囲に磁石を配置する構成も考えられる。 As the substrate placed on the lower dielectric 8, silicon or the like can be used, and processing such as film formation or etching can be performed on this substrate. If necessary, an electrostatic chuck may be provided, a DC bias potential may be applied to the lower dielectric 8, or a high frequency voltage may be applied between the upper and lower electrodes in some cases. A configuration in which a magnet is arranged in the is also conceivable.
 また、ガスの導入方法は、様々なものが考えられる。 Also, various gas introduction methods are possible.
 図2は、ガス導入構造の一例を説明するためのプラズマ処理装置の縦断面図である。 FIG. 2 is a vertical cross-sectional view of a plasma processing apparatus for explaining an example of a gas introduction structure.
 図2では、上部電極5の中央に位置していた内側導体3bにおいて、Z軸方向に沿った貫通孔を形成し、上部誘電体7にもこれに連通する孔を形成したものである。他の構造は、上述の通りである。かかる場合、処理容器の中央部でのガス濃度が周辺に比べて高くなるという不具合がある。 In FIG. 2, a through hole along the Z-axis direction is formed in the inner conductor 3b located in the center of the upper electrode 5, and a hole communicating with this is also formed in the upper dielectric 7. Other structures are as described above. In such a case, there is a problem that the gas concentration in the central portion of the processing container becomes higher than that in the peripheral portion.
 図3は、ガス導入構造の別の一例を説明するためのプラズマ処理装置の縦断面図である。 FIG. 3 is a vertical cross-sectional view of a plasma processing apparatus for explaining another example of the gas introduction structure.
 図3では、図2の装置において、上部誘電体7が複数の貫通孔を有するシャワー構造としたものである。これにより、ガス濃度の面内均一性を高めることができる。 In FIG. 3, the upper dielectric 7 in the apparatus of FIG. 2 has a shower structure having a plurality of through holes. Thereby, the in-plane uniformity of gas concentration can be improved.
 図4は、ガス導入構造の更に別の一例を説明するためのプラズマ処理装置の縦断面図である。 FIG. 4 is a vertical cross-sectional view of a plasma processing apparatus for explaining still another example of the gas introduction structure.
 VHF波導波路2に、貫通孔を形成する。この貫通孔の形状は、平面形状が円環状であり、この貫通孔内にアルミナ(Al)からなる絶縁体のリング状の菅を配置し、ガス導入通路2Aとする。外側導体3aは、VHF波導波路2の中央近傍のみでよいため、蓋部材の残りの部分は、VHF波導波路2上から除く。この場合、ガス導入通路2Aには、適当なガス貯留空間を設け、この空間からガス導入通路2A内にガスを導入する。上部電極5には、内部に、ガス通路が形成されており、このガス通路と、ガス拡散板7Aを介して、シャワー構造の上部誘電体7に至る。ガス拡散板7Aは、ディフューザであり、複数の貫通孔が形成されている。ガス拡散板7Aの材料は、AlN、アルミナ、SiOなどの絶縁体からなるが、メッシュ電極などから構成することも可能である。 A through hole is formed in the VHF wave waveguide 2. The through-hole has an annular shape in a plan view, and a ring-shaped tube of an insulator made of alumina (Al 2 O 3 ) is arranged in the through-hole to form the gas introduction passage 2A. Since the outer conductor 3a is only required near the center of the VHF wave waveguide 2, the remaining portion of the lid member is removed from the VHF wave waveguide 2. In this case, an appropriate gas storage space is provided in the gas introduction passage 2A, and gas is introduced into the gas introduction passage 2A from this space. A gas passage is formed inside the upper electrode 5, and reaches the upper dielectric body 7 of the shower structure through the gas passage and the gas diffusion plate 7A. The gas diffusion plate 7A is a diffuser and has a plurality of through holes formed therein. The material of the gas diffusion plate 7A is made of an insulator such as AlN, alumina, or SiO 2, but it may be made of a mesh electrode or the like.
 図5は、ガス導入構造の更に別の一例を説明するためのプラズマ処理装置の縦断面図である。 FIG. 5 is a vertical cross-sectional view of a plasma processing apparatus for explaining still another example of the gas introduction structure.
 なお、図5に示すように、図4に示した構造において、さらに、内側導体3bにガス導入口を形成することも可能である。この場合、中央部と周辺部のガス流量を独立に制御することも可能であり、均一性の高いプラズマを発生させることもできる。 Note that, as shown in FIG. 5, in the structure shown in FIG. 4, it is possible to further form a gas introduction port in the inner conductor 3b. In this case, it is possible to control the gas flow rates of the central portion and the peripheral portion independently, and it is possible to generate highly uniform plasma.
 図6は、ガス導入構造の更に別の一例を説明するためのプラズマ処理装置の縦断面図である。 FIG. 6 is a vertical cross-sectional view of a plasma processing apparatus for explaining still another example of the gas introduction structure.
 上述のVHF波導波路2は、固体の誘電体であったが、これは空気であってもよい。すなわち、処理容器1の上部構造において、処理容器1の側壁に設けられた凹部からなる導波路1wに連通する水平方向に延びた導波路2wを、固体の誘電体導波路に代えて形成する。そして、外側導体3aと内側導体3bとの間に、リング状の絶縁体からなる絶縁体ブロック2Bを配置する。これにより、絶縁体ブロック2Bの上部から導入されたVHF波は、水平方向の導波路2wを介して、垂直方向の導波路1wに至り、VHF波導入部9を介して、処理容器内部に導入される。なお、絶縁体ブロック2BのZ軸方向の厚みΔZは、VHF波の波長λ(本例では周波数換算で120MHz~240MHz)に対して、プラズマ負荷インピーダンスを変換するインピーダンス変換器として機能するように設定する。なお、インピーダンス変換部は、同軸管(3a,3b)の特性インピーダンスと、アンテナ部(ブロック2B以降の導波路2、導入部9、上部誘電体7)のインピーダンスとを一致させている。絶縁体ブロック2BにおけるVHF波の実効波長をλとし、自然数Nを用いて、奇数を2N-1で示すと、絶縁体ブロック2BのZ軸方向の厚みΔZは、たとえば、ΔZ=(1/4)×λ×(2N-1)に設定することができる。 The VHF wave waveguide 2 described above is a solid dielectric, but it may be air. That is, in the upper structure of the processing container 1, the waveguide 2w extending in the horizontal direction and communicating with the waveguide 1w formed of a recess provided in the side wall of the processing container 1 is formed instead of the solid dielectric waveguide. Then, the insulator block 2B made of a ring-shaped insulator is arranged between the outer conductor 3a and the inner conductor 3b. As a result, the VHF wave introduced from the upper part of the insulator block 2B reaches the vertical waveguide 1w through the horizontal waveguide 2w, and is introduced into the processing container through the VHF wave introducing unit 9. To be done. The thickness ΔZ of the insulator block 2B in the Z-axis direction is set so as to function as an impedance converter that converts the plasma load impedance with respect to the wavelength λ of the VHF wave (120 MHz to 240 MHz in frequency conversion in this example). To do. The impedance conversion unit matches the characteristic impedance of the coaxial tubes (3a, 3b) with the impedance of the antenna unit (waveguide 2, block 2B and subsequent portions, introduction unit 9, upper dielectric 7). When the effective wavelength of the VHF wave in the insulator block 2B is λ and a natural number N is used and an odd number is represented by 2N-1, the thickness ΔZ of the insulator block 2B in the Z-axis direction is, for example, ΔZ=(1/4 )×λ×(2N−1).
 DRV…駆動ステージ、SP…プラズマ発生空間、TEMP…温度調節装置、1…処理容器、1w…導波路、2…VHF波導波路、2A…ガス導入通路、2B…絶縁体ブロック、2w…導波路、3…蓋部材、3a…外側導体、3b…内側導体、4…排気通路、5…上部電極、5d…凹部、6d…凹部、6…下部電極、7…上部誘電体、7A…ガス拡散板、8…下部誘電体、9…VHF波導入部、10…ガス源、11…流量コントローラ、12…制御装置、13…VHF波発生器、14…排気装置、100…プラズマ処理装置。 DRV... Drive stage, SP... Plasma generation space, TEMP... Temperature control device, 1... Processing container, 1w... Waveguide, 2... VHF wave waveguide, 2A... Gas introduction passage, 2B... Insulator block, 2w... Waveguide, 3... Lid member, 3a... Outer conductor, 3b... Inner conductor, 4... Exhaust passage, 5... Upper electrode, 5d... Recess, 6d... Recess, 6... Lower electrode, 7... Upper dielectric, 7A... Gas diffusion plate, 8... Lower dielectric material, 9... VHF wave introduction part, 10... Gas source, 11... Flow controller, 12... Control device, 13... VHF wave generator, 14... Exhaust device, 100... Plasma processing device.

Claims (4)

  1.  処理容器内に対向配置された上部電極及び下部電極を備え、これらの電極間の空間にプラズマを発生させるプラズマ処理装置において、
     前記上部電極及び前記下部電極は、それぞれ互いに対向する面に凹部を備え、
     前記上部電極及び前記下部電極それぞれの前記凹部内には、上部誘電体及び下部誘電体がそれぞれ設けられ、
     前記上部誘電体と前記下部誘電体との間の前記空間の横方向端部には、VHF波の導入部が設けられている、
    ことを特徴とするプラズマ処理装置。
    In a plasma processing apparatus that includes an upper electrode and a lower electrode that are arranged to face each other in a processing container, and that generates plasma in a space between these electrodes,
    The upper electrode and the lower electrode each have a concave portion on a surface facing each other,
    An upper dielectric and a lower dielectric are provided in the recesses of the upper electrode and the lower electrode, respectively.
    A VHF wave introducing portion is provided at a lateral end portion of the space between the upper dielectric body and the lower dielectric body,
    A plasma processing apparatus characterized by the above.
  2.  前記上部誘電体及び前記下部誘電体は、それぞれ、中央部の厚みよりも外周部の厚みが薄い、
    ことを特徴とする請求項1に記載のプラズマ処理装置。
    The upper dielectric and the lower dielectric each have a thinner outer peripheral portion than a central portion,
    The plasma processing apparatus according to claim 1, wherein:
  3.  前記上部誘電体及び前記下部誘電体は、前記空間を挟んで同軸配置されている、
    ことを特徴とする請求項1又は2に記載のプラズマ処理装置。
    The upper dielectric and the lower dielectric are coaxially arranged with the space in between.
    The plasma processing apparatus according to claim 1, wherein the plasma processing apparatus is a plasma processing apparatus.
  4.  前記上部誘電体の下部表面から前記導入部までの鉛直方向の離間距離Δzupと、前記下部誘電体の上部表面から前記導入部までの鉛直方向の離間距離Δzdownと、は等しい、
    ことを特徴とする請求項1乃至3のいずれか一項に記載のプラズマ処理装置。
    The vertical separation distance Δzup from the lower surface of the upper dielectric to the introduction portion is equal to the vertical separation distance Δzdown from the upper surface of the lower dielectric to the introduction portion,
    The plasma processing apparatus according to claim 1, wherein the plasma processing apparatus is a plasma processing apparatus.
PCT/JP2019/046221 2018-12-06 2019-11-26 Plasma processing device WO2020116248A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-229253 2018-12-06
JP2018229253A JP2020092033A (en) 2018-12-06 2018-12-06 Plasma processing apparatus

Publications (1)

Publication Number Publication Date
WO2020116248A1 true WO2020116248A1 (en) 2020-06-11

Family

ID=70975024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046221 WO2020116248A1 (en) 2018-12-06 2019-11-26 Plasma processing device

Country Status (2)

Country Link
JP (1) JP2020092033A (en)
WO (1) WO2020116248A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022098353A (en) 2020-12-21 2022-07-01 東京エレクトロン株式会社 Plasma processing apparatus
JP2023020600A (en) 2021-07-30 2023-02-09 東京エレクトロン株式会社 Plasma processing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111577A (en) * 1989-09-26 1991-05-13 Idemitsu Petrochem Co Ltd Microwave plasma generator and production of diamond film by utilizing this generator
JPH09503350A (en) * 1994-05-13 1997-03-31 アプライド マテリアルズ インコーポレイテッド Magnetic field excited multi-capacity plasma generator and related method
JP2001250815A (en) * 2000-03-06 2001-09-14 Hitachi Ltd Device and method for plasma treatment
JP2003506889A (en) * 1999-08-10 2003-02-18 ユナキス・トレーディング・アクチェンゲゼルシャフト Plasma reactor for processing large area substrates
JP2007505450A (en) * 2003-09-10 2007-03-08 ユナキス・バルツェルス・アクチェンゲゼルシャフト Voltage non-uniformity compensation method for RF plasma reactor for processing rectangular large area substrates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111577A (en) * 1989-09-26 1991-05-13 Idemitsu Petrochem Co Ltd Microwave plasma generator and production of diamond film by utilizing this generator
JPH09503350A (en) * 1994-05-13 1997-03-31 アプライド マテリアルズ インコーポレイテッド Magnetic field excited multi-capacity plasma generator and related method
JP2003506889A (en) * 1999-08-10 2003-02-18 ユナキス・トレーディング・アクチェンゲゼルシャフト Plasma reactor for processing large area substrates
JP2001250815A (en) * 2000-03-06 2001-09-14 Hitachi Ltd Device and method for plasma treatment
JP2007505450A (en) * 2003-09-10 2007-03-08 ユナキス・バルツェルス・アクチェンゲゼルシャフト Voltage non-uniformity compensation method for RF plasma reactor for processing rectangular large area substrates

Also Published As

Publication number Publication date
JP2020092033A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
TWI720793B (en) Showerhead with reduced backside plasma ignition
JP4707588B2 (en) Plasma processing apparatus and electrodes used therefor
JP5233092B2 (en) Mounting table for plasma processing apparatus and plasma processing apparatus
TWI423308B (en) A plasma processing apparatus, a plasma processing method, and a dielectric window for use therefor and a method of manufacturing the same
TWI411034B (en) A plasma processing apparatus and a method and a focusing ring
US11430636B2 (en) Plasma processing apparatus and cleaning method
CN102315150A (en) The removable basic ring that is used for plasma processing chamber
KR20200051494A (en) Placing table, positioning method of edge ring and substrate processing apparatus
KR20160140450A (en) Plasma processing apparatus and focus ring
WO2020116248A1 (en) Plasma processing device
WO2020116249A1 (en) Plasma processing device
US11908663B2 (en) Plasma processing apparatus
JP5602282B2 (en) Plasma processing apparatus and focus ring and focus ring component
KR20200051505A (en) Placing table and substrate processing apparatus
JP6785377B2 (en) Plasma processing equipment
TWI731994B (en) Chamber filler kit for dielectric etch chamber
JP2012109608A (en) Plasma processing apparatus, method and focus ring
JP2023088520A (en) Plasma etching processing device and upper electrode
JP3969907B2 (en) Plasma processing equipment
JP2013020973A (en) Plasma processing apparatus
JP7079947B2 (en) Plasma processing equipment
WO2024009828A1 (en) Substrate processing device and electrostatic chuck
WO2024018960A1 (en) Plasma processing device and plasma processing method
US20240047181A1 (en) Plasma processing apparatus and plasma processing method
JP2022130067A (en) Plasma processing device and substrate support

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893059

Country of ref document: EP

Kind code of ref document: A1