WO2020116061A1 - Rankine cycle device and control method therefor - Google Patents

Rankine cycle device and control method therefor Download PDF

Info

Publication number
WO2020116061A1
WO2020116061A1 PCT/JP2019/042901 JP2019042901W WO2020116061A1 WO 2020116061 A1 WO2020116061 A1 WO 2020116061A1 JP 2019042901 W JP2019042901 W JP 2019042901W WO 2020116061 A1 WO2020116061 A1 WO 2020116061A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
pressure
temperature
pump
threshold
Prior art date
Application number
PCT/JP2019/042901
Other languages
French (fr)
Japanese (ja)
Inventor
倉本 哲英
雅也 本間
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019188055A external-priority patent/JP2020094580A/en
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201980031455.0A priority Critical patent/CN112105801A/en
Publication of WO2020116061A1 publication Critical patent/WO2020116061A1/en
Priority to US17/134,650 priority patent/US20210115807A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/08Arrangement of sensing elements responsive to condition of working-fluid, e.g. pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D19/00Starting of machines or engines; Regulating, controlling, or safety means in connection therewith
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether

Definitions

  • the present disclosure relates to a Rankine cycle device and a control method thereof.
  • Patent Document 1 describes an example of a Rankine cycle device.
  • FIG. 8 shows a Rankine cycle device 100 according to Patent Document 1.
  • a pump 101 In the Rankine cycle device 100, a pump 101, an evaporator 102, an expander 103, and a condenser 104 are connected in an annular shape.
  • the Rankine cycle device 100 is provided with a bypass flow passage 110.
  • the bypass passage 110 bypasses the expander 103.
  • a valve 105 is provided in the bypass passage 110. The valve 105 regulates the flow rate of the working fluid in the bypass flow passage 110.
  • the present disclosure provides technology suitable for ensuring the reliability of Rankine cycle equipment.
  • This disclosure is A sensor, a pump, an evaporator, an expander, and a condenser, A fluid circuit in which a working fluid flows, the fluid circuit including a circulation circuit is provided, In the circulation circuit, the pump, the evaporator, the expander, and the condenser are arranged in this order, The sensor detects (I) the pressure of the working fluid, (II) the temperature of the working fluid, or (III) the temperature of a cooling medium to be heat exchanged with the working fluid in the condenser, When the detection value of the sensor is lower than the first threshold value, the first control is started, The first control provides a Rankine cycle device, which is a control in which the working fluid is circulated by the pump through the evaporator and/or the heater.
  • a Rankine cycle device which is a control in which the working fluid is circulated by the pump through the evaporator and/or the heater.
  • the technology according to the present disclosure is suitable for ensuring the reliability of Rankine cycle equipment.
  • FIG. 1 is a configuration diagram of the Rankine cycle device according to the first embodiment.
  • FIG. 2 is a state diagram of a working fluid according to an example.
  • FIG. 3 shows a flowchart showing the control in the first embodiment.
  • FIG. 4 is a configuration diagram of the Rankine cycle device according to the second embodiment.
  • FIG. 5 shows a flowchart showing the control in the second embodiment.
  • FIG. 6 is a configuration diagram of the Rankine cycle device according to the third embodiment.
  • FIG. 7 shows a flowchart showing the control in the fourth embodiment.
  • FIG. 8 is a block diagram of the Rankine cycle apparatus which concerns on a prior art.
  • a Rankine cycle device (Outline of One Aspect According to the Present Disclosure)
  • a fluid circuit in which a working fluid flows, the fluid circuit including a circulation circuit is provided,
  • the pump, the evaporator, the expander, and the condenser are arranged in this order,
  • the sensor detects (I) the pressure of the working fluid, (II) the temperature of the working fluid, or (III) the temperature of a cooling medium to be heat exchanged with the working fluid in the condenser,
  • the first control is started,
  • the first control is control in which the working fluid is circulated by the pump via the evaporator and/or heater.
  • the technology according to the first aspect is suitable for preventing the pressure of the working fluid from becoming a negative pressure. This contributes to ensuring the reliability of the Rankine cycle device.
  • the sensor may detect the pressure of the working fluid, and the first threshold may be a pressure equal to or higher than atmospheric pressure, (Ii) the sensor may detect the temperature of the working fluid, and the first threshold may be a temperature equal to or higher than the boiling point of the working fluid at atmospheric pressure, or (Iii) The sensor may detect a temperature of a cooling medium to be heat-exchanged with the working fluid in the condenser, and the first threshold may be a temperature equal to or higher than a boiling point of the working fluid at atmospheric pressure. Good.
  • the second modes (i), (ii) and (iii) are suitable for preventing the pressure of the working fluid from becoming negative.
  • the sensor may detect the pressure of the working fluid in a portion of the circulation circuit downstream of the expander and upstream of the pump.
  • the third mode is suitable for preventing the pressure of the working fluid from becoming a negative pressure.
  • the fluid circuit includes a portion downstream of the evaporator and upstream of the expander in the circulation circuit, and a portion downstream of the expander and upstream of the condenser in the circulation circuit. , May include a bypass circuit to connect, In the first control, the working fluid may be circulated via the bypass circuit.
  • the working fluid can circulate by bypassing the expander by the bypass circuit. With this configuration, the working fluid can smoothly circulate in the first control.
  • a valve may be provided in the bypass circuit, In the first control, the opening degree of the valve of the bypass circuit may be set to 50% or more and 100% or less.
  • the opening degree of the valve of the bypass circuit is set to 50% or more and 100% or less.
  • the heater In the fluid circuit, the heater may be provided, In the first control, the working fluid may be circulated through the evaporator by the pump, When the detected value is less than a second threshold value and the elapsed time from the start of the first control is a threshold time or more, heat generation of the heater may be started.
  • the risk can be suppressed by using the heater.
  • the Rankine cycle device for example, the Rankine cycle device according to any one of the first to sixth aspects, The drive of the pump may be stopped when the detected value is equal to or greater than the second threshold value.
  • the boiling point of the working fluid at atmospheric pressure may be 0° C. or higher and 50° C. or lower.
  • the pressure of the working fluid tends to be a negative pressure. Therefore, in this case, the technique of preventing the pressure of the working fluid from becoming a negative pressure is likely to exert its effect.
  • the Rankine cycle device for example, it may be provided with a generator that generates electric power by the rotation torque of the expander.
  • power can be generated by the expander and the generator.
  • a control method is A method for controlling a Rankine cycle device in which a working fluid circulates through a pump, an evaporator, an expander, and a condenser in this order, A sensor for detecting (I) the pressure of the working fluid, (II) the temperature of the working fluid, or (III) the temperature of a cooling medium to be heat-exchanged with the working fluid in the condenser, Starting a first circulation in which the working fluid in a heated state is circulated by the pump when the detection value of the sensor is lower than a first threshold value.
  • the technology according to the tenth aspect is suitable for preventing the pressure of the working fluid from becoming a negative pressure. This contributes to ensuring the reliability of the Rankine cycle device.
  • the sensor may detect the pressure of the working fluid, and the first threshold may be a pressure equal to or higher than atmospheric pressure, (Ii) the sensor may detect the temperature of the working fluid, and the first threshold may be a temperature equal to or higher than the boiling point of the working fluid at atmospheric pressure, or (Iii) The sensor may detect a temperature of a cooling medium to be heat-exchanged with the working fluid in the condenser, and the first threshold may be a temperature equal to or higher than a boiling point of the working fluid at atmospheric pressure. Good.
  • the eleventh modes (i), (ii) and (iii) are suitable for preventing the pressure of the working fluid from becoming negative.
  • a circulation circuit may be provided in which the pump, the evaporator, the expander, and the condenser are arranged in this order,
  • the sensor may detect the pressure of the working fluid in a portion of the circulation circuit downstream of the expander and upstream of the pump.
  • the twelfth aspect is suitable for preventing the pressure of the working fluid from becoming a negative pressure.
  • the Rankine cycle device In the Rankine cycle device, A circulation circuit in which the pump, the evaporator, the expander, and the condenser are arranged in this order, A bypass connecting a portion of the circulation circuit downstream of the evaporator and upstream of the expander, and a portion of the circulation circuit downstream of the expander and upstream of the condenser. And a circuit may be provided, In the first circulation, the working fluid may pass through the bypass circuit.
  • the working fluid can circulate by bypassing the expander by the bypass circuit. With this configuration, the working fluid can smoothly circulate in the first circulation.
  • a valve may be provided in the bypass circuit, In the first circulation, the opening degree of the valve of the bypass circuit may be set to 50% or more and 100% or less.
  • the valve opening degree of the bypass circuit is set to 50% or more and 100% or less. When the opening is set in this way, the working fluid can be easily circulated in the first circulation.
  • the working fluid may be heated by the evaporator and/or heater.
  • An evaporator and a heater are specific examples of devices that heat a working fluid.
  • the working fluid may be heated by the evaporator
  • the control method may further include starting heating of the working fluid by a heater when the detected value is less than a second threshold value and an elapsed time after starting the first circulation is a threshold time or more. You may have it.
  • the risk can be suppressed by using the heater.
  • the method may further include stopping driving of the pump when the detected value is equal to or greater than a second threshold value.
  • the boiling point of the working fluid at atmospheric pressure may be 0° C. or higher and 50° C. or lower.
  • the pressure of the working fluid tends to be a negative pressure. Therefore, in this case, the technique of preventing the pressure of the working fluid from becoming a negative pressure is likely to exert its effect.
  • a Rankine cycle device A sensor, a pump, an evaporator, an expander, and a condenser, A fluid circuit in which a working fluid flows, the fluid circuit including a circulation circuit is provided, In the circulation circuit, the pump, the evaporator, the expander, and the condenser are arranged in this order, The sensor detects (I) the pressure of the working fluid, (II) the temperature of the working fluid, or (III) the temperature of a cooling medium to be heat exchanged with the working fluid in the condenser, When the detection value of the sensor is lower than the first threshold value, the first control of circulating the heated working fluid by the pump is started.
  • a control method is A method for controlling a Rankine cycle device in which a working fluid circulates through a pump, an evaporator, an expander, and a condenser in this order, A sensor for detecting (I) the pressure of the working fluid, (II) the temperature of the working fluid, or (III) the temperature of a cooling medium to be heat-exchanged with the working fluid in the condenser, Starting a first circulation when the detection value of the sensor is lower than a first threshold value; The first circulation is a circulation of the working fluid by the pump through the evaporator and/or heater.
  • circuit may be used. As understood from the drawings and the like, the term “circuit” does not necessarily mean a closed path, but can be rephrased as “flow path” as appropriate.
  • FIG. 1 shows a configuration diagram of the Rankine cycle device 21 in the first embodiment.
  • the Rankine cycle device 21 is provided with a fluid circuit 14.
  • the fluid circuit 14 includes a circulation circuit 15 and a bypass circuit 16.
  • the type of working fluid is not particularly limited.
  • the boiling point of the working fluid at atmospheric pressure is, for example, 0° C. or higher and 50° C. or lower.
  • the atmospheric pressure refers to one atmosphere.
  • a specific example of the working fluid is a hydrofluoroolefin (HFO)-based working fluid.
  • the HFO-based working fluid refers to a working fluid containing HFO.
  • the content of HFO in the working fluid is, for example, 50% by mass or more, and may be 80% by mass or more. More specifically, as the working fluid, a mixed fluid of HFO1336mzz(Z), HFO1336mzz(E), HFO1336mzz(Z), and HFO1336mzz(E) can be adopted.
  • the working fluid containing HFO may be a mixed fluid or a single type of working fluid. A known fluid that does not contain HFO can be used as the working fluid.
  • the fluid circuit 14 is composed of a plurality of pipes.
  • the plurality of pipes may be collectively referred to as a pipe portion.
  • a Rankine cycle is configured in the Rankine cycle device 21.
  • the Rankine cycle device 21 constitutes an organic Rankine cycle (ORC).
  • the Rankine cycle device 21 includes a pump 1, an evaporator 2, an expander 3, and a condenser 4.
  • the pump 1, the evaporator 2, the expander 3, and the condenser 4 are arranged in this order.
  • the pump 1, the evaporator 2, the expander 3, and the condenser 4 are connected using a plurality of pipes.
  • Rankine cycle device 21 includes reheater 6. In the reheater 6, heat is exchanged between the working fluids flowing in different parts of the circulation circuit 15.
  • the bypass circuit 16 includes a portion of the circulation circuit 15 downstream of the evaporator 2 and upstream of the expander 3, and a portion of the circulation circuit 15 downstream of the expander 3 and upstream of the condenser 4. , Are connected.
  • Rankine cycle device 21 includes valve 5.
  • the valve 5 is provided in the bypass circuit 16.
  • the valve 5 may be referred to as the bypass valve 5.
  • the bypass valve 5 is a flow rate adjusting valve.
  • the flow rate adjusting valve is a valve that can take not only 0% and 100% but also an opening degree larger than 0% and smaller than 100%.
  • the Rankine cycle device 21 includes a generator 18.
  • the generator 18 is connected to the expander 3.
  • the power generation operation of the Rankine cycle device 21 refers to an operation in which the generator 18 generates power.
  • Pump 1 conveys a working fluid.
  • the evaporator 2 evaporates the working fluid. Specifically, the evaporator 2 recovers the heat of the heating medium and evaporates the working fluid.
  • the heating medium is a heat source gas. Specifically, in the present embodiment, the heating medium is exhaust gas from a heat source such as factory equipment.
  • the evaporator 2 is composed of, for example, a fin-and-tube heat exchanger.
  • the expander 3 expands the working fluid. Specifically, the expander 3 expands the working fluid that has become high temperature steam in the evaporator 2.
  • the condenser 4 condenses the working fluid expanded by the expander 3. Specifically, the condenser 4 condenses the working fluid by removing the heat of the working fluid by the cooling medium.
  • the cooling medium is gas, specifically air in the atmosphere. However, the cooling medium may be a liquid such as water.
  • the condenser 4 includes a fan 7. The condenser 4 uses the fan 7 to condense the working fluid. However, the fan 7 is not essential.
  • the condenser 4 is composed of, for example, a fin-and-tube heat exchanger, a plate heat exchanger, or a double-tube heat exchanger.
  • the cooling medium is air
  • the condenser 4 is a fin and tube heat exchanger
  • the condenser 4 comprises a fan 7.
  • the cooling medium is water
  • the condenser 4 is a plate heat exchanger or a double tube heat exchanger
  • the condenser 4 is not equipped with a fan 7.
  • the bypass valve 5 adjusts the flow rate of the working fluid flowing through the expander 3 and the flow rate of the working fluid flowing through the bypass circuit 16. Specifically, these flow rates are adjusted by adjusting the opening degree of the bypass valve 5.
  • the reheater 6 includes a first portion 6a downstream of the pump 1 in the circulation circuit 15 and upstream of the evaporator 2, and downstream of the expander 3 in the circulation circuit 15 and upstream of the condenser 4. Second portion 6b of In the reheater 6, heat is exchanged between the working fluids flowing through these two parts. Due to this heat exchange, the temperature of the working fluid flowing through the first portion 6a rises and the temperature of the working fluid flowing through the second portion 6b falls.
  • the generator 18 generates power by the rotating torque of the expander 3.
  • the Rankine cycle device 21 includes a first pressure sensor 8a, a second pressure sensor 8b, a first temperature sensor 9a, a second temperature sensor 9b, a third temperature sensor 9c, and a fourth temperature sensor 9d. including.
  • the first pressure sensor 8a detects the pressure of the working fluid in the first circuit 15a.
  • the second pressure sensor 8b detects the pressure of the working fluid in the second circuit 15b.
  • the first circuit 15 a is a part of the circulation circuit 15 that is downstream of the pump 1 and upstream of the expander 3.
  • the second circuit 15b is a part of the circulation circuit 15 downstream of the expander 3 and upstream of the pump 1.
  • the first pressure sensor 8a is provided in the first circuit 15a. Specifically, in the present embodiment, the first pressure sensor 8a is provided in a portion of the circulation circuit 15 downstream of the evaporator 2 and upstream of the expander 3. However, the first pressure sensor 8a may be provided in a portion of the circulation circuit 15 downstream of the pump 1 and upstream of the evaporator 2. The first pressure sensor 8a detects the pressure on the high pressure side of the Rankine cycle in the Rankine cycle device 21. The first pressure sensor 8a can be referred to as a high pressure sensor 8a.
  • the first pressure sensor 8a may be provided in a part of the bypass circuit 16 upstream of the bypass valve 5.
  • the first pressure sensor 8a provided on the upstream side of the bypass valve 5 in the bypass circuit 16 can also detect the pressure of the working fluid in the first circuit 15a.
  • the second pressure sensor 8b is provided in the second circuit 15b.
  • the second pressure sensor 8b is provided in a portion of the circulation circuit 15 downstream of the condenser 4 and upstream of the pump 1. As described later, this portion corresponds to the third circuit 15c.
  • the second pressure sensor 8b may be provided in a portion of the circulation circuit 15 downstream of the expander 3 and upstream of the condenser 4.
  • the second pressure sensor 8b detects the pressure on the low pressure side of the Rankine cycle in the Rankine cycle device 21.
  • the second pressure sensor 8b can be referred to as a low pressure sensor 8b.
  • the second pressure sensor 8b may be provided in a portion of the bypass circuit 16 downstream of the bypass valve 5.
  • the second pressure sensor 8b provided on the downstream side of the bypass valve 5 in the bypass circuit 16 can also detect the pressure of the working fluid in the second circuit 15b.
  • the first temperature sensor 9a is provided in a portion of the circulation circuit 15 downstream of the evaporator 2 and upstream of the expander 3.
  • the first temperature sensor 9a detects the temperature of the working fluid in this portion.
  • the temperature of the working fluid at the inlet of the expander 3 can be grasped by the first temperature sensor 9a.
  • the first temperature sensor 9a can be referred to as an expander inlet temperature sensor 9a.
  • the second temperature sensor 9b is provided in the third circuit 15c.
  • the third circuit 15c is a part of the circulation circuit 15 that is downstream of the condenser 4 and upstream of the pump 1.
  • the second temperature sensor 9b detects the temperature of the working fluid in the third circuit 15c.
  • the temperature of the working fluid at the outlet of the condenser 4 can be grasped by the second temperature sensor 9b.
  • the second temperature sensor 9b can be referred to as a condenser outlet temperature sensor 9b.
  • the third temperature sensor 9c is installed in the cooling medium suction portion of the condenser 4.
  • the third temperature sensor 9c detects the temperature of the cooling medium.
  • the cooling medium is air in the atmosphere, and the third temperature sensor 9c detects the outside air temperature.
  • the third temperature sensor 9c can be referred to as an outside air temperature sensor 9c.
  • the fourth temperature sensor 9d detects the temperature of the heating medium sucked into the evaporator 2.
  • the heating medium is the heat source gas.
  • the fourth temperature sensor 9d can be referred to as the heat source gas temperature sensor 9d.
  • the Rankine cycle device 21 includes a control device 19.
  • the control device 19 controls the components of the Rankine cycle device 21.
  • the pressure of the working fluid in the fluid circuit 14 will be described below.
  • the evaporator 2 recovers the heat of the heating medium, and the heat heats the working fluid. Then, the working fluid heated by the pump 1 flows through the fluid circuit 14. Therefore, the pressure of the working fluid in the fluid circuit 14 is maintained at a positive pressure.
  • the positive pressure is a pressure higher than the atmospheric pressure.
  • the working fluid does not flow in the fluid circuit 14.
  • the pressure of the working fluid in the fluid circuit 14 is affected by the outside air temperature and becomes a pressure close to the saturation pressure of the working fluid at the outside air temperature.
  • the pump 1, the expander 3, and the condenser 4 are housed in one housing, and the housing and the evaporator 2 are separated by 5 m or more.
  • the separation distance is as large as that, the pressure of the working fluid in the fluid circuit 14 existing in the housing is more easily affected by the outside air temperature than the temperature of the heating medium, and is saturated with the outside air temperature of the working fluid. It tends to be close to pressure.
  • the working fluid when the outside air temperature is lower than the boiling point of the working fluid, the working fluid may have a negative pressure.
  • the saturation temperature refers to a boiling point.
  • Negative pressure refers to pressure below atmospheric pressure.
  • FIG. 2 is a state diagram of the working fluid. In addition, in FIG. 2, the melting curve and the sublimation curve are omitted.
  • the working fluid In state A, the working fluid is in a gas-liquid two-phase state.
  • the pressure of the working fluid is positive pressure.
  • the temperature of the working fluid is above its boiling point at atmospheric pressure.
  • the temperature of the working fluid also changes under the influence of the outside air temperature.
  • the temperature of the working fluid inside the condenser 4 becomes substantially the same as the outside air temperature when in a thermal equilibrium state. For example, if the outside air temperature decreases, the temperature of the working fluid also decreases. As the temperature of the working fluid decreases, the pressure of the working fluid decreases along the vapor pressure curve. Specifically, in this example, the state of the working fluid changes from state A to state C via state B.
  • state B the working fluid is in a gas-liquid two-phase state.
  • the pressure of the working fluid is atmospheric pressure.
  • the temperature of the working fluid is the boiling point at atmospheric pressure.
  • the working fluid In state C, the working fluid is in a gas-liquid two-phase state.
  • the temperature of the working fluid is the outside air temperature.
  • the pressure of the working fluid is a negative pressure.
  • the pressure of the working fluid is negative even in the state between the state B and the state C in the vapor pressure curve. As understood from this, even if the temperature of the working fluid does not fall to the outside air temperature, the pressure of the working fluid can be a negative pressure.
  • FIG. 2 is a diagram for explanation and should not be used for limiting interpretation of the embodiment.
  • the curves of the working fluid phase diagram are not limited to the shape of FIG.
  • the pressure of the working fluid that is not in the gas-liquid two-phase state may become negative.
  • HFO1336mzz(Z) is used as the working fluid.
  • the boiling point of HFO1336mzz(Z) is 33°C. Therefore, in this case, if the pump 1 is stopped when the outside air temperature is less than 33° C., the pressure of the working fluid may become a negative pressure.
  • HFO1336mzz(E) is used as the working fluid.
  • the boiling point of HFO1336mzz(E) is 8°C. Therefore, in this case, if the pump 1 is stopped when the outside air temperature is lower than 8° C., the pressure of the working fluid may become a negative pressure.
  • the Rankine cycle device 21 can be returned to the state before the leakage of the working fluid by repairing the piping so as to eliminate the gap and refilling the working fluid.
  • the working fluid leaks from the piping portion, specific symptoms that indicate a malfunction of the Rankine cycle device appear, such as the working fluid cannot be circulated by the pump 1 due to lack of working fluid. Therefore, the leakage of the working fluid from the piping portion is easily recognized. Therefore, the repair of the piping portion and the refilling of the working fluid can be performed relatively early from the occurrence of the leakage of the working fluid.
  • the pressure of the working fluid is negative, and if a gap is created in the piping, air, moisture, etc. in the atmosphere may enter the piping.
  • the working fluid or the lubricating oil may be hydrolyzed. If the lubricating oil is hydrolyzed, the lubricity of the sliding parts of the components such as the pump 1 and the expander 3 may be deteriorated, which may cause the device failure. It is not always easy to immediately recognize the entry of air, moisture, etc. into the piping section. For this reason, when it is noticed that a defect has occurred, the degree of the defect may be large. Therefore, at the time when the trouble is discovered, the equipment failure has progressed to a serious state, and it is difficult to return to the original state even if the gap is repaired and the working fluid is refilled.
  • the fluid circuit 14 may include a welding part, a screw connection part, and the like. It is not easy to completely eliminate the generation of gaps at welded parts, screw connection parts and the like.
  • the Rankine cycle device 21 By adopting an installation method in which the Rankine cycle device 21 is completed in a factory equipped with manufacturing devices and the finished product is moved to the installation place, that is, by eliminating the welding work at the installation site of the Rankine cycle device 21, It is possible to reduce the probability of forming a gap at the welded portion.
  • an installation method is not always adopted.
  • the heat source that supplies the heat source gas to the evaporator 2 is equipment fixed to the land
  • the Rankine cycle device 21 may be installed at the site where the equipment is located. When welding is performed on site, it is not always easy to completely prevent the formation of a gap at the welding point.
  • the negative pressure can be suppressed by driving the pump 1 in the stopped state. Specifically, by driving the pump 1, the working fluid can be heated in the evaporator 2 while flowing the working fluid in the fluid circuit 14, and the pressure of the working fluid can be maintained at a positive pressure.
  • the present inventors have made further studies and arrived at the control described below.
  • step S1 the control device 19 determines whether the pump 1 is stopped and the pressure detected by the second pressure sensor 8b is less than the first threshold pressure Pth1.
  • the process proceeds to step S2.
  • step S1 is executed again. “When the pump 1 is driven and/or when the pressure detected by the second pressure sensor 8b is equal to or higher than the first threshold pressure Pth1”, the condition that the pump 1 is driven and the detection by the second pressure sensor 8b are performed. This means that at least one of the conditions that the pressure is equal to or higher than the first threshold pressure Pth1 is satisfied.
  • the first threshold pressure Pth1 may be a pressure equal to or higher than atmospheric pressure.
  • the first threshold pressure Pth1 may be a pressure equal to or lower than the detection pressure of the second pressure sensor 8b during the power generation operation, specifically, a pressure lower than the detection pressure.
  • the "detection pressure of the second pressure sensor 8b during the power generation operation" refers to the detection value of the pressure in the steady state rather than the transient state.
  • the first threshold pressure Pth1 is, for example, 0.01 MPa or more and 0.2 MPa or less. In one specific example, the first threshold pressure Pth1 is 0.05 MPa.
  • the elapsed time that satisfies the condition of step S1 is counted starting from the timing when the process first proceeds from step S1 to S2.
  • this elapsed time may be referred to as a standby time.
  • step S2 the control device 19 determines whether the waiting time is equal to or longer than the threshold waiting time Twth. When the waiting time is equal to or longer than the threshold waiting time Twth, the process proceeds to step S3. If the waiting time is less than the threshold waiting time Twth, the process proceeds to step S1.
  • the threshold wait time Twth is, for example, 0.1 minute or more and 5 minutes or less.
  • a specific example of the threshold waiting time Twth is 1 minute.
  • step S3 the control device 19 increases the opening degree of the bypass valve 5. Further, in step S3, the control device 19 starts driving the pump 1. It progresses to step S4 after step S3.
  • step S3 After execution of step S3, the working fluid circulates through the pump 1, the evaporator 2, the bypass valve 5 and the condenser 4 in this order. In the evaporator 2, the heat of the heating medium supplied to the evaporator 2 is recovered, and the heat heats the working fluid. This heating increases the pressure of the working fluid.
  • the heating medium supplied to the evaporator 2 may be a heat source gas.
  • the heat source gas is exhaust gas from a facility having a large heat capacity, such as a drying furnace or a blast furnace. In this case, even if the operation of the equipment is stopped, the temperature of the exhaust gas does not immediately drop to near the outside air temperature. For this reason, the evaporator 2 and its ambient temperature are kept higher than the outside air temperature for a while after the operation is stopped. Therefore, by driving the pump 1, the evaporator 2 heats the working fluid. Then, the pressure can be increased.
  • step S3 the bypass valve 5 may be fully opened. If the opening degree of the bypass valve 5 is not zero before execution of step S3, for example, if the opening degree is 50% or more, the opening degree of the bypass valve 5 does not necessarily have to be increased in step S3. .. In some cases, the opening degree of the bypass valve 5 may be maintained at zero before and after step S3.
  • step S3 the rotation speed of the pump 1 is set to, for example, 100 rpm or more and 5000 rpm or less. In one specific example, in step S3, the rotation speed of the pump 1 is set to 1000 rpm. However, since the operating rotational speed range varies depending on the pump specifications, the rotational speed to be set is not limited to the above example.
  • step S3 can be considered as control for preventing negative pressure.
  • the control of step S3 can be referred to as first negative pressure prevention control.
  • the second pressure sensor 8b is provided in the second circuit 15b.
  • the pressure of the working fluid in the second circuit 15b tends to be a negative pressure. Therefore, if the negative pressure prevention control is performed based on the detection value of the second pressure sensor 8b, it is easy to obtain the effect of suppressing the negative pressure of the working fluid.
  • the second pressure sensor 8b is provided in the third circuit 15c.
  • step S4 the control device 19 determines whether the pressure detected by the second pressure sensor 8b is equal to or higher than the second threshold pressure Pth2. When the pressure detected by the second pressure sensor 8b is equal to or higher than the second threshold pressure Pth2, the process proceeds to step S5. When the pressure detected by the second pressure sensor 8b is less than the second threshold pressure Pth2, step S4 is executed again.
  • the second threshold pressure Pth2 may be a pressure equal to or higher than the atmospheric pressure, specifically, a pressure higher than the atmospheric pressure.
  • the second threshold pressure Pth2 may be a pressure equal to or lower than the detection pressure of the second pressure sensor 8b during the power generation operation, specifically, a pressure lower than the detection pressure.
  • the second threshold pressure Pth2 is higher than the first threshold pressure Pth1.
  • the second threshold pressure Pth2 is, for example, 0.01 MPa or more and 0.2 MPa or less. In one specific example, the second threshold pressure Pth2 is 0.15 MPa.
  • step S5 the control device 19 stops the pump 1. As a result, the negative pressure prevention control in step S3 ends.
  • the control may be restarted after the control based on the flowchart of FIG. 3 is completed.
  • the control may be restarted after a predetermined period has elapsed since the control based on the flowchart of FIG. 3 was completed. This also applies to the control of the embodiment described later.
  • FIG. 4 shows a configuration diagram of the Rankine cycle device 22 in the second embodiment.
  • Rankine cycle device 22 includes heater 10.
  • the heater 10 is, for example, a resistance heater.
  • the heater 10 is provided in the fluid circuit 14.
  • the heater 10 heats the working fluid flowing through the fluid circuit 14.
  • the heater 10 is provided in the circulation circuit 15.
  • the heater 10 is provided in a portion of the circulation circuit 15 downstream of the pump 1 and upstream of the condenser 4.
  • the heater 10 is provided in the circulation circuit 15 at a portion other than the portion downstream of the condenser 4 and upstream of the pump 1.
  • the heater 10 is provided in a portion of the circulation circuit 15 downstream of the pump 1 and upstream of the evaporator 2. More specifically, the heater 10 is provided in a portion of the circulation circuit 15 downstream of the pump 1 and upstream of the reheater 6.
  • the heater 10 has a linear shape.
  • the heater 10 is in close contact with the pipe in the circulation circuit 15.
  • the length direction of the pipe and the length direction of the heater 10 match.
  • the heater 10 has a strip shape.
  • the heater 10 is wound around the outer wall of the pipe in the circulation circuit 15.
  • the control device 19 controls the heater 10.
  • the control device 19 controls energization of the heater 10. When electricity is supplied to the heater 10, the heater 10 generates heat. When the heater 10 is not energized, the heater 10 does not generate heat.
  • the elapsed time from the start of driving the pump 1 in step S3 is counted.
  • this elapsed time is referred to as a pump operating time.
  • step S4 when the pressure detected by the second pressure sensor 8b is less than the second threshold pressure Pth2 in step S4, the process proceeds to step S6.
  • step S6 the control device 19 determines whether or not the pump operation time is equal to or longer than the threshold time Tth. If the pump operating time is equal to or longer than the threshold time Tth, the process proceeds to step S7. If the pump operating time is less than the threshold time Tth, the process proceeds to step S4.
  • the threshold time Tth is, for example, 1 minute or more and 10 minutes or less. A specific example of the threshold time Tth is 5 minutes.
  • step S7 the controller 19 starts energizing the heater 10.
  • the energization of the heater 10 is started in step S7, the heating of the working fluid by the heater 10 is started. It progresses to step S8 after step S7.
  • the heat source is factory equipment and the factory equipment has been down for a long time.
  • the difference between the temperature of the heat source gas and the outside air temperature may be small. If this difference is small, even if the pump 1 is driven in step 3, the working fluid cannot be sufficiently heated in the evaporator 2, and the pressure of the working fluid may not rise sufficiently.
  • the working fluid is heated by the heater 10 in step S7. Thereby, the pressure of the working fluid can be sufficiently increased.
  • step S7 can be considered as control for preventing negative pressure.
  • the control of step S7 can be referred to as second negative pressure prevention control.
  • step S8 the control device 19 determines whether the pressure detected by the second pressure sensor 8b is equal to or higher than the second threshold pressure Pth2. When the pressure detected by the second pressure sensor 8b is equal to or higher than the second threshold pressure Pth2, the process proceeds to step S9. When the pressure detected by the second pressure sensor 8b is less than the second threshold pressure Pth2, step S8 is executed again.
  • step S9 the controller 19 terminates energization of the heater 10.
  • the heating of the working fluid by the heater 10 is ended by the end of the energization of the heater 10 in step S9.
  • the second negative pressure prevention control of step S7 ends.
  • step S9 the control device 19 may stop energizing the heater 10 and stop the pump 1.
  • FIG. 6 shows a configuration diagram of the Rankine cycle device 23 in the third embodiment.
  • the fluid circuit 14 includes a shortcut circuit 17.
  • Rankine cycle device 23 includes valve 11.
  • the valve 11 is provided in the shortcut circuit 17.
  • the valve 11 will be referred to as a shortcut valve 11.
  • the shortcut valve 11 is a flow rate adjusting valve.
  • control based on the flowchart of FIG. 5 can be applied to the third embodiment.
  • the control device 19 increases the opening degree of the shortcut valve 11 when step S7 of FIG. 5 is executed.
  • the working fluid circulates through the pump 1, the shortcut valve 11 and the condenser 4 in this order.
  • the working fluid also passes through the heater 10.
  • the working fluid is heated by the heater 10.
  • the pressure of the working fluid can be increased.
  • the circulation path of the working fluid passing through the pump 1, the shortcut valve 11 and the condenser 4 in this order is shorter than the circulation path of the working fluid passing through the pump 1, the evaporator 2, the bypass valve 5 and the condenser 4 in this order,
  • the working fluid can be circulated quickly by the pump 1.
  • Such a short circulation path may make it easier for the heater 10 to raise the pressure of the working fluid.
  • the shortcut valve 11 may be fully opened when step S7 of FIG. 5 is executed.
  • the opening degree of the shortcut valve 11 is not zero before the execution of step S7, for example, when the opening degree is 50% or more, the opening degree of the shortcut valve 11 is not necessarily increased when step S7 is executed. You don't have to. In some cases, the opening degree of the shortcut valve 11 may be maintained at zero before and after step S7.
  • step S2 if the waiting time is equal to or longer than the threshold waiting time Twth in step S2, the process proceeds to step S10.
  • step S10 the control device 19 increases the opening degree of the bypass valve 5.
  • step S10 the controller 19 starts energizing the heater 10.
  • the heater 10 is energized in step S10, heating of the working fluid by the heater 10 is started.
  • step S10 the control device 19 starts driving the pump 1. It progresses to step S4 after step S10.
  • step S10 the working fluid circulates through the pump 1, the heater 10, the evaporator 2, the bypass valve 5 and the condenser 4 in this order.
  • the working fluid is heated in the heater 10.
  • the working fluid can also be heated in the evaporator 2.
  • step S10 the bypass valve 5 may be fully opened. If the opening degree of the bypass valve 5 is not zero before execution of step S10, for example, if the opening degree is 50% or more, it is not necessary to increase the opening degree of the bypass valve 5 in step S10. In some cases, the opening degree of the bypass valve 5 may be maintained at zero before and after step S10.
  • control device 19 may energize the heater 10 before step S10. For example, when the standby time reaches the first threshold time, the controller 19 starts energizing the heater 10, and when the standby time reaches the threshold standby time Twt, the controller 19 starts driving the pump 1. May be.
  • the first threshold time is shorter than the threshold waiting time Twth.
  • the pump 1 may be driven by the control device 19 before step S10.
  • the controller 19 starts driving the pump 1, and when the standby time reaches the threshold standby time Twt, the controller 19 starts energizing the heater 10. May be.
  • the second threshold time is shorter than the threshold waiting time Twth.
  • step S10 the rotation speed of the pump 1 is set to, for example, 100 rpm or more and 5000 rpm or less. In one specific example, in step S10, the rotation speed of the pump 1 is set to 1000 rpm. However, since the operating rotational speed range varies depending on the pump specifications, the rotational speed to be set is not limited to the above example.
  • step S10 can be considered as control for preventing negative pressure.
  • the control in step S10 can be referred to as third negative pressure prevention control.
  • step S4 if the pressure detected by the second pressure sensor 8b is equal to or higher than the second threshold pressure Pth2 in step S4, the process proceeds to step S11.
  • step S11 the controller 19 terminates energization of the heater 10.
  • step S11 the control device 19 stops the pump 1.
  • step S11 the negative pressure prevention control of step S10 ends.
  • the heat source is factory equipment and the factory equipment has been stopped for a long time, there may be substantially no difference between the temperature of the heat source gas and the outside air temperature. In this case, even if the pump 1 is driven, the working fluid is not substantially heated in the evaporator 2. Therefore, the evaporator 2 does not substantially contribute to the pressure increase of the working fluid.
  • the heater 10 can raise the temperature and the pressure of the working fluid.
  • the opening degree of the shortcut valve 11 when step S10 of FIG. 7 is executed, the opening degree of the shortcut valve 11 may be increased or may be fully opened. If the opening degree of the shortcut valve 11 is not zero before execution of step S10, for example, if the opening degree is 50% or more, the opening degree of the shortcut valve 11 should not be increased when step S10 is executed. You can In some cases, the opening degree of the shortcut valve 11 may be maintained at zero before and after step S10.
  • step S10 of FIG. 7 a mode in which the opening degree of the shortcut valve 11 is non-zero and the opening degree of the bypass valve 5 is zero can also be adopted.
  • the working fluid circulates through the pump 1, the heater 10, the shortcut valve 11 and the condenser 4 in this order.
  • the working fluid is heated in the heater 10. This heating increases the pressure of the working fluid.
  • step S1 of the first to fifth embodiments it is determined whether the pressure detected by the second pressure sensor 8b is less than the first threshold pressure Pth1. However, instead of making this determination, it may be determined whether the temperature detected by the second temperature sensor 9b is lower than the first threshold temperature. Instead of making this determination, it may be determined whether the temperature detected by the third temperature sensor 9c is lower than the second threshold temperature. This is because the temperature detected by the second temperature sensor 9b and the temperature detected by the third temperature sensor 9c can be effective indices for preventing the pressure of the working fluid from becoming negative.
  • the pressure detected by the second pressure sensor 8b used in step S1 of the first to fifth embodiments is the pressure detected on the low pressure side of the Rankine cycle.
  • the detected pressure on the high pressure side of the Rankine cycle may be used.
  • the low-pressure side pressure and the high-pressure side pressure may be close to each other.
  • the detected temperature on the high pressure side of the Rankine cycle may be used in step S1. Specifically, in step S1, it may be determined whether or not the temperature detected by the first temperature sensor 9a is lower than the third threshold temperature. This is because the detected temperature on the high pressure side can also be an effective index for preventing the pressure of the working fluid from becoming a negative pressure. When the pump 1 is stopped, the low-pressure side temperature and the high-pressure side temperature may be close to each other.
  • step S1 the control device 19 determines whether the pump 1 is stopped and the temperature detected by the second temperature sensor 9b is lower than the first threshold temperature.
  • the process proceeds to step S2.
  • step S1 is executed again.
  • the first threshold temperature may be a temperature equal to or higher than the boiling point of the working fluid at atmospheric pressure, specifically, a temperature higher than the boiling point.
  • the first threshold temperature may be a temperature equal to or lower than the detection temperature of the second temperature sensor 9b during the power generation operation, specifically, a temperature lower than the detection temperature.
  • the first threshold temperature is, for example, a value obtained by adding a margin to the boiling point of the working fluid at atmospheric pressure.
  • the margin is, for example, 0° C. or more and 5° C. or less.
  • step S1 the control device 19 determines whether the pump 1 is stopped and the temperature detected by the third temperature sensor 9c is lower than the second threshold temperature.
  • the process proceeds to step S2.
  • step S1 is executed again.
  • the second threshold temperature may be a temperature equal to or higher than the boiling point of the working fluid at atmospheric pressure, specifically, a temperature higher than the boiling point.
  • the second threshold temperature is, for example, a value obtained by adding a margin to the boiling point of the working fluid at atmospheric pressure.
  • the margin is, for example, 0° C. or more and 5° C. or less.
  • step S1 the control device 19 determines whether the pump 1 is stopped and the pressure detected by the first pressure sensor 8a is less than the third threshold pressure.
  • the process proceeds to step S2.
  • step S1 is executed again.
  • the third threshold pressure may be a pressure equal to or higher than atmospheric pressure, specifically a pressure higher than atmospheric pressure.
  • the third threshold pressure may be a pressure equal to or lower than the detection pressure of the first pressure sensor 8a during the power generation operation, specifically, a pressure lower than the detection pressure. The same value as the first threshold pressure can be adopted as the third threshold pressure.
  • step S1 the control device 19 determines whether the pump 1 is stopped and the temperature detected by the first temperature sensor 9a is lower than the third threshold temperature.
  • the process proceeds to step S2.
  • step S1 is executed again.
  • the third threshold temperature may be a temperature equal to or higher than the boiling point of the working fluid at atmospheric pressure, specifically, a temperature higher than the boiling point.
  • the third threshold temperature may be a temperature equal to or lower than the detection temperature of the first temperature sensor 9a during the power generation operation, specifically, a temperature lower than the detection temperature.
  • the third threshold temperature is, for example, a value obtained by adding a margin to the boiling point of the working fluid at atmospheric pressure.
  • the margin is, for example, a value in the range of 0° C. or higher and 5° C. or lower.
  • step S4 of the first to fifth embodiments it is determined whether the pressure detected by the second pressure sensor 8b is equal to or higher than the second threshold pressure Pth2. However, instead of making this determination, it may be determined whether the temperature detected by the second temperature sensor 9b is equal to or higher than the fourth threshold temperature. Instead of making this determination, it may be determined whether the temperature detected by the first temperature sensor 9a is equal to or higher than the fifth threshold temperature.
  • step S4 the control device 19 determines whether the temperature detected by the second temperature sensor 9b is equal to or higher than the fourth threshold temperature.
  • the process proceeds to step S5 or step S11.
  • step S4 is executed again or the process proceeds to step S6.
  • the fourth threshold temperature may be a temperature equal to or higher than the boiling point of the working fluid at atmospheric pressure, specifically, a temperature higher than the boiling point.
  • the fourth threshold temperature may be a temperature equal to or lower than the detection temperature of the second temperature sensor 9b during the power generation operation, specifically, a temperature lower than the detection temperature.
  • the fourth threshold temperature may be higher than the first threshold temperature.
  • the fourth threshold temperature is, for example, a value obtained by adding a margin to the boiling point of the working fluid at atmospheric pressure.
  • the margin is, for example, a value in the range of 0° C. or higher and 5° C. or lower.
  • step S4 the control device 19 determines whether the temperature detected by the first temperature sensor 9a is equal to or higher than the fifth threshold temperature.
  • the process proceeds to step S5 or step S11.
  • step S4 is executed again or the process proceeds to step S6.
  • the fifth threshold temperature may be a temperature equal to or higher than the boiling point of the working fluid at atmospheric pressure, specifically, a temperature higher than the boiling point.
  • the fifth threshold temperature may be a temperature equal to or lower than the detection temperature of the first temperature sensor 9a during the power generation operation, specifically, a temperature lower than the detection temperature.
  • the fifth threshold temperature may be higher than the second threshold temperature.
  • the fifth threshold temperature is, for example, a value obtained by adding a margin to the boiling point of the working fluid at atmospheric pressure.
  • the margin is, for example, a value in the range of 0° C. or higher and 5° C. or lower.
  • step S6 the control device 19 determines whether the pump operation time is equal to or longer than the threshold time Tth. It is also possible to apply the judgment based on the pump operating time to step S4 of the first, fourth and fifth embodiments.
  • step S4 the control device 19 determines whether or not the pump operation time is equal to or longer than the threshold time Tth. If the pump operating time is equal to or longer than the threshold time Tth, the process proceeds to step S5. When the pump operating time is less than the threshold time Tth, step S4 is executed again.
  • step S4 the control device 19 determines whether or not the pump operation time is equal to or longer than the threshold time Tth. If the pump operating time is equal to or longer than the threshold time Tth, the process proceeds to step S11. When the pump operating time is less than the threshold time Tth, step S4 is executed again.
  • step S8 of the second and third embodiments it is determined whether the pressure detected by the second pressure sensor 8b is equal to or higher than the second threshold pressure Pth2. However, instead of making this determination, it may be determined whether the temperature detected by the second temperature sensor 9b is equal to or higher than the fourth threshold temperature. Instead of making this determination, it may be determined whether the temperature detected by the first temperature sensor 9a is equal to or higher than the fifth threshold temperature.
  • step S8 the control device 19 determines whether the temperature detected by the second temperature sensor 9b is equal to or higher than the fourth threshold temperature. When the temperature detected by the second temperature sensor 9b is equal to or higher than the fourth threshold temperature, the process proceeds to step S9. When the temperature detected by the second temperature sensor 9b is lower than the fourth threshold temperature, step S8 is executed again.
  • step S8 the control device 19 determines whether the temperature detected by the first temperature sensor 9a is equal to or higher than the fifth threshold temperature. When the temperature detected by the first temperature sensor 9a is equal to or higher than the fifth threshold temperature, the process proceeds to step S9. When the temperature detected by the first temperature sensor 9a is lower than the fifth threshold temperature, step S8 is executed again.
  • step S1 of Embodiments 1 to 3 the control device 19 determines whether the pump 1 is stopped and the pressure detected by the second pressure sensor 8b is less than the first threshold pressure Pth1. to decide. However, in step S1, the control device 19 determines that the pump 1 is stopped, the pressure detected by the second pressure sensor 8b is less than the first threshold pressure Pth1, and the temperature detected by the fourth temperature sensor 9d is the third. You may judge whether it is higher than the detection temperature of the temperature sensor 9c. By determining whether or not the temperature detected by the fourth temperature sensor 9d is higher than the temperature detected by the third temperature sensor 9c, it is possible to confirm whether or not the working fluid can be heated by the evaporator 2 when step S3 is executed. it can.
  • a temperature sensor for detecting the temperature of the evaporator 2 (specifically, the temperature of the structural portion forming the evaporator 2) is provided, and the temperature detected by the temperature sensor is used instead of the temperature detected by the fourth temperature sensor 9d. Good.
  • the same modification can be applied to the fourth and fifth embodiments.
  • step S1 in addition to the conditions of step S1 of the first to third embodiments, the control device 19 determines that the temperature detected by the fourth temperature sensor 9d is the temperature detected by the third temperature sensor 9c. Is higher than.
  • step S1 of Embodiments 1 to 3 the conditions of step S1 of Embodiments 1 to 3 are satisfied and the temperature detected by the fourth temperature sensor 9d is higher than the temperature detected by the third temperature sensor 9c, the process proceeds to step S2.
  • step S1 is executed again. To be done.
  • the same modification can be applied to the fourth and fifth embodiments. Furthermore, the same modification can be applied to the above-described modified example.
  • bypass valve 5 and the shortcut valve 11 are variable flow rate type valves.
  • the bypass valve 5 and the shortcut valve 11 may be opening/closing valves such as solenoid valves.
  • the on-off valve refers to a valve whose opening degree is set to either of 0% and 100%.
  • An electric ball valve can be adopted as the bypass valve 5 and/or the shortcut valve 11.
  • the electric ball valve has a small change in the flow passage cross-sectional area between the valve portion and the piping before and after the valve. Therefore, according to the electric ball valve, the flow path resistance when circulating the working fluid can be reduced.
  • the working fluid circulates through the expander 3. This enables power generation by the expander 3 and the generator 18.
  • the working fluid circulates through the expander 3 when the Rankine cycle device is not generating power.
  • the working fluid circulates through bypass circuit 16 in addition to pump 1 and evaporator 2. This allows the working flow to flow smoothly.
  • the opening degree of the bypass valve 5 may be 100% or less than 100%.
  • the opening degree of the bypass valve 5 after step S3 and step S10 being 100% is advantageous from the viewpoint of smoothing the flow of the working fluid through the pump 1, the evaporator 2 and the bypass circuit 16. In this case, the working fluid is easily heated by the evaporator 2.
  • the fact that the opening degree of the bypass valve 5 after step S3 and step S10 is less than 100% means that the temperature of the working fluid flowing into the condenser 4 is lowered as compared with the case where the opening degree is 100%. Is advantageous. In this case, the working fluid is likely to be condensed in the condenser 4, the gas-liquid two-phase working fluid is unlikely to flow into the pump 1, and the pump 1 is unlikely to cause a problem.
  • step S3 and step S10 it is possible to suppress the inflow of the working fluid into the expander 3 by controlling the rotation speed of the expander 3.
  • the rotary shaft of the expander 3 and the rotary shaft of the generator 18 are connected. Therefore, control of the rotation speed of the expander 3 can be realized by controlling the rotation speed of the generator 18.
  • the control of the rotation speed of the generator 18 can be realized by the control device 19, for example.
  • a PWM (Pulse Width Modulation) inverter (not shown) is connected to the generator 18. Then, the control device 19 PWM-controls the rotation speed of the generator 18 using the PWM inverter. During the power generation operation, it is also possible to control the amount of power generation by rotating the generator 18 by PWM control.
  • bypass circuit 16 is connected to the portion of the circulation circuit 15 downstream of the evaporator 2 and upstream of the expander 3.
  • a valve may be provided in a portion of the circulation circuit 15 that is downstream of the connection and upstream of the expander 3. By doing so, the flow of the working fluid into the expander 3 can be prevented by closing the valve. For example, in steps S3 and S10, the valve can be closed.
  • the fan 7 of the condenser 4 may be stopped while the first negative pressure prevention control, the second negative pressure prevention control, and the third negative pressure prevention control are being performed.
  • the working fluid is less likely to be affected by the outside air temperature, and the pressure of the working fluid is more likely to increase or less likely to decrease.
  • the fan 7 may be operated while performing the first negative pressure prevention control, the second negative pressure prevention control, and the third negative pressure prevention control. This makes it difficult for the gas-liquid two-phase working fluid to flow into the pump 1.
  • the fan 7 can be operated when the temperature of the working fluid flowing into the condenser 4 is high and the ability to condense the working fluid should be improved.
  • the fan 7 is controlled based on the detection value of the second pressure sensor 8b and the detection value of the second temperature sensor 9b.
  • the degree of supercooling of the working fluid is calculated based on the detection value of the second pressure sensor 8b and the detection value of the second temperature sensor 9b, and the fan 7 is controlled based on the degree of supercooling.
  • Controlling the fan 7 is an expression that includes both a form in which the rotation speed of the fan 7 is controlled and a form in which whether the fan 7 is driven or stopped is controlled.
  • the Rankine cycle devices 21 to 23 start the first control when the detection value of the sensor is lower than the first threshold value.
  • the first control is control in which the working fluid is circulated by the pump 1 via the evaporator 2 and/or the heater 10.
  • Such a Rankine cycle device is suitable for preventing the pressure of the working fluid from becoming a negative pressure. This contributes to ensuring the reliability of the Rankine cycle device.
  • the first control is control in which the working fluid is circulated by the pump 1 via the evaporator 2 and/or the heater 10 in a heat generation state.
  • the first control is control in which the working fluid is circulated by the pump 1 via the evaporator 2 in a state in which the working fluid can be heated and/or the heater 10 in a heating state.
  • starting the first control means that the driving of the pump 1 is started before the heat generation of the heater 10 is started, the driving of the pump 1 is started simultaneously with the heat generation of the heater 10, and the first control is started. It is a concept including a form in which the driving is started after the heat generation of the heater 10 is started. In a typical example, the start of the first control and the start of driving the pump 1 are simultaneous.
  • the expression “circulating the working fluid by the pump 1 through the evaporator 2 and/or the heater 10” does not mean that the presence of the heater 10 is essential.
  • the first control can be executed without the heater 10.
  • the Rankine cycle devices 21 to 23 start the driving of the pump 1 when the pump 1 is stopped and the first condition is satisfied, so that the Rankine cycle devices 21 and 23 evaporate.
  • the first control of circulating the working fluid via the device 2 is started.
  • the first condition is a condition that the detection value of the sensor is lower than the first threshold value.
  • the control method includes a step of detecting with a sensor. Further, the control method includes a step of starting a first circulation in which the working fluid in a heated state is circulated by the pump 1 when the detection value of the sensor is lower than the first threshold value.
  • the expression “starting the first circulation in which the working fluid in a heated state is circulated by the pump 1 is started” will be explained.
  • the driving start of the pump 1 is before the heating of the working fluid
  • the driving start of the pump 1 is the same as the heating of the working fluid
  • the driving start of the pump 1 is the heating of the working fluid. It is a concept that includes a form after the start. In a typical example, the start of the first circulation and the start of driving the pump 1 are simultaneous.
  • control method includes a step of heating the working fluid.
  • the working fluid may be heated by, for example, the evaporator 2 and/or the heater 10.
  • the step of heating the working fluid may be performed by the evaporator 2 and/or the heater 10, for example.
  • the above sensor may be a sensor that detects the pressure of the working fluid.
  • the first condition is a condition that the pressure of the working fluid is lower than the first threshold value.
  • the first threshold may be a pressure equal to or higher than atmospheric pressure, specifically a pressure higher than atmospheric pressure.
  • the second pressure sensor 8b can be used as the sensor, and the above-described first threshold pressure Pth1 can be used as the first threshold.
  • the first pressure sensor 8a can be used as the sensor and the third threshold pressure can be used as the first threshold.
  • the above sensor may be a sensor that detects the temperature of the working fluid.
  • the first condition is a condition that the temperature of the working fluid is lower than the first threshold value.
  • the first threshold may be a temperature equal to or higher than the boiling point of the working fluid at atmospheric pressure, specifically, a temperature higher than the boiling point.
  • the second temperature sensor 9b can be used as the sensor, and the above-mentioned first threshold temperature can be used as the first threshold.
  • the first temperature sensor 9a can be used as the sensor and the above-mentioned third threshold temperature can be used as the first threshold.
  • the above sensor may be a sensor that detects the temperature of the cooling medium that is to be heat-exchanged with the working fluid in the condenser 4.
  • the first condition is a condition that the temperature of the cooling medium is lower than the first threshold value.
  • the first threshold may be a temperature equal to or higher than the boiling point of the working fluid at atmospheric pressure, specifically, a temperature higher than the boiling point.
  • the third temperature sensor 9c can be used as the sensor, and the above-mentioned second threshold temperature can be used as the first threshold.
  • the “temperature of the cooling medium to be heat-exchanged with the working fluid in the condenser 4” refers to the temperature of the cooling medium before being heat-exchanged with the working fluid in the condenser 4.
  • the senor detects the pressure of the working fluid in the portion of the circulation circuit 15 downstream of the expander 3 and upstream of the pump 1 (that is, the second circuit 15b).
  • the pressure of the working fluid in this portion tends to be a negative pressure. Therefore, the detection of the pressure of the working fluid in this portion by the sensor is suitable for preventing the pressure of the working fluid from becoming a negative pressure.
  • the senor detects the pressure of the working fluid in the portion of the circulation circuit 15 downstream of the condenser 4 and upstream of the pump 1 (that is, the third circuit 15c).
  • the working fluid may be circulated via the bypass circuit 16. In this way, the working fluid can be circulated by bypassing the expander 3 by the bypass circuit 16. In this way, the working fluid can circulate smoothly.
  • the working fluid in the first control, is circulated via the pump 1, the evaporator 2, and the bypass circuit 16. With this configuration, in the first control, the working fluid can smoothly circulate via the pump 1 and the evaporator 2.
  • the working fluid may pass through the bypass circuit 16.
  • the working fluid may pass through the pump 1, the evaporator 2, and the bypass circuit 16.
  • the opening degree of the valve 5 of the bypass circuit 16 can be set to 50% or more and 100% or less in the first control. When the opening is set in this manner, the working fluid can be easily circulated through the pump 1 and the evaporator 2 smoothly in the first control. In the first control, the opening degree of the valve 5 of the bypass circuit 16 may be set to 75% or more and 100% or less.
  • the first circulation may be performed with the opening degree of the valve 5 of the bypass circuit 16 set to 50% or more and 100% or less.
  • the first circulation may be performed with the opening degree of the valve 5 of the bypass circuit 16 set to 75% or more and 100% or less.
  • the working fluid in the first control, the working fluid is circulated through the evaporator 2 by the pump 1.
  • the elapsed time from the start of the first control is the threshold time or more
  • the heater 10 starts to generate heat.
  • the second threshold is higher than the first threshold.
  • the second control in which the working fluid is circulated through the pump 1 and the heater 10 while causing the heater 10 to generate heat.
  • the second condition is a condition that the detected value is equal to or more than the second threshold value.
  • the second threshold is a higher threshold than the first threshold.
  • the pump operation time is an elapsed time after the driving of the pump is started by the first control.
  • the working fluid is heated by the evaporator 2 in the first circulation.
  • the control method includes the step of starting the heating of the working fluid by the heater 10 when the detected value of the sensor is less than the second threshold value and the elapsed time from the start of the first circulation is the threshold time or more.
  • the control method causes the heater 10 to generate heat and circulates the working fluid through the pump 1 and the heater 10.
  • a step of starting the second circulation In the typical example, the second threshold is higher than the first threshold.
  • the Rankine cycle device may stop the driving of the pump 1 when the detected value is equal to or higher than the second threshold value. In this way, unnecessary power consumption of the pump can be avoided.
  • control method may further include a step of stopping the driving of the pump 1 when the detection value of the sensor is equal to or higher than the second threshold value.
  • the sensor may be a sensor that detects the pressure of the working fluid.
  • the second condition is a condition that the pressure of the working fluid is equal to or higher than the second threshold value.
  • the second threshold may be a pressure equal to or higher than atmospheric pressure, specifically a pressure higher than atmospheric pressure.
  • the second pressure sensor 8b can be used as the sensor, and the second threshold pressure Pth2 can be used as the second threshold.
  • the first threshold may be referred to as a first threshold pressure and the second threshold may be referred to as a second threshold pressure.
  • the second threshold pressure is higher than the first threshold pressure.
  • the sensor may be a sensor that detects the temperature of the working fluid.
  • the second condition is a condition that the temperature of the working fluid is equal to or higher than the second threshold value.
  • the second threshold may be a temperature equal to or higher than the boiling point of the working fluid at atmospheric pressure, specifically, a temperature higher than the boiling point.
  • the second temperature sensor 9b can be used as the sensor, and the above-mentioned fourth threshold temperature can be used as the second threshold.
  • the first temperature sensor 9a can be used as the sensor and the fifth threshold temperature can be used as the second threshold.
  • the working fluid is circulated via the pump 1, the heater 10, and the bypass circuit 16.
  • the opening degree of the valve 5 of the bypass circuit 16 can be set to, for example, 50% or more and 100% or less. In the second control, the opening degree of the valve 5 of the bypass circuit 16 may be set to 75% or more and 100% or less.
  • the working fluid is circulated through the pump 1, the heater 10, and the bypass circuit 16.
  • the opening degree of the valve 5 of the bypass circuit 16 can be set to, for example, 50% or more and 100% or less in the second circulation. In the second circulation, the opening degree of the valve 5 of the bypass circuit 16 may be set to 75% or more and 100% or less.
  • the fluid circuit 14 may include the shortcut circuit 17 described above.
  • the working fluid may be circulated through the pump 1, the heater 10, and the shortcut circuit 17.
  • the opening degree of the valve 11 of the shortcut circuit 17 can be set to, for example, 50% or more and 100% or less in the second control. In the second control, the opening degree of the valve 11 of the shortcut circuit 17 may be set to 75% or more and 100% or less.
  • the working fluid may be circulated via the pump 1, the heater 10 and the shortcut circuit 17.
  • the opening degree of the valve 11 of the shortcut circuit 17 can be set to, for example, 50% or more and 100% or less.
  • the opening degree of the valve 11 of the shortcut circuit 17 may be set to 75% or more and 100% or less.
  • the pump 1, the expander 3, and the condenser 4 are housed in one housing. Since the pump 1, the expander 3, and the condenser 4 are housed in the housing, it is difficult for the pump 1, the expander 3, and the condenser 4 to exchange heat with the outside air, and the temperature is less likely to drop due to the outside air. Therefore, the housing can exert an effect of suppressing the working fluid from becoming negative pressure.
  • the Rankine cycle apparatus can be applied to a direct contact Rankine cycle in which an evaporator is in direct contact with a heat source gas. Further, the Rankine cycle apparatus according to the present disclosure can be applied to a binary Rankine cycle having a cycle of a water refrigerant or the like between a heat source gas and an evaporator.

Abstract

This Rankine cycle device comprises a sensor, a pump, an evaporator, an expansion machine, and a condenser, and also comprises a fluid circuit in which a working fluid flows and which includes a circulation circuit. In the circulation circuit, the pump, the evaporator, the expansion machine, and the condenser are arranged in this order. The sensor detects: (I) the pressure of the working fluid; (II) the temperature of the working fluid; or (III) the temperature of a cooling medium that is to exchange heat with the working fluid in the condenser. The sensor commences a first control if a value detected by the sensor is lower than a first threshold value. In the first control, the working fluid is circulated by the pump through the evaporator and/or a heater.

Description

ランキンサイクル装置およびその制御方法Rankine cycle device and control method thereof
 本開示は、ランキンサイクル装置およびその制御方法に関する。 The present disclosure relates to a Rankine cycle device and a control method thereof.
 従来、種々のランキンサイクル装置が検討されている。特許文献1には、ランキンサイクル装置の一例が記載されている。 Conventionally, various Rankine cycle devices have been studied. Patent Document 1 describes an example of a Rankine cycle device.
 図8に、特許文献1に係るランキンサイクル装置100を示す。ランキンサイクル装置100では、ポンプ101と、蒸発器102と、膨張機103と、凝縮器104とが環状に接続されている。ランキンサイクル装置100には、バイパス流路110が設けられている。バイパス流路110は、膨張機103をバイパスしている。バイパス流路110には、弁105が設けられている。弁105は、バイパス流路110における作動流体の流量を調整する。 FIG. 8 shows a Rankine cycle device 100 according to Patent Document 1. In the Rankine cycle device 100, a pump 101, an evaporator 102, an expander 103, and a condenser 104 are connected in an annular shape. The Rankine cycle device 100 is provided with a bypass flow passage 110. The bypass passage 110 bypasses the expander 103. A valve 105 is provided in the bypass passage 110. The valve 105 regulates the flow rate of the working fluid in the bypass flow passage 110.
特許第6179736号Patent No. 6179736
 本開示は、ランキンサイクル装置の信頼性を確保するのに適した技術を提供する。 The present disclosure provides technology suitable for ensuring the reliability of Rankine cycle equipment.
 本開示は、
 センサと、ポンプと、蒸発器と、膨張機と、凝縮器と、を備え、
 作動流体が流れる流体回路であって、循環回路を含む流体回路が設けられ、
 前記循環回路において、前記ポンプと、前記蒸発器と、前記膨張機と、前記凝縮器と、がこの順に並び、
 前記センサは、(I)前記作動流体の圧力、(II)前記作動流体の温度、または、(III)前記凝縮器において前記作動流体と熱交換されるべき冷却媒体の温度、を検出し、
 前記センサの検出値が第1閾値よりも低いときに、第1制御を開始し、
 前記第1制御は、前記作動流体を、前記ポンプにより、前記蒸発器および/またはヒータを介して循環させる制御である、ランキンサイクル装置を提供する。
This disclosure is
A sensor, a pump, an evaporator, an expander, and a condenser,
A fluid circuit in which a working fluid flows, the fluid circuit including a circulation circuit is provided,
In the circulation circuit, the pump, the evaporator, the expander, and the condenser are arranged in this order,
The sensor detects (I) the pressure of the working fluid, (II) the temperature of the working fluid, or (III) the temperature of a cooling medium to be heat exchanged with the working fluid in the condenser,
When the detection value of the sensor is lower than the first threshold value, the first control is started,
The first control provides a Rankine cycle device, which is a control in which the working fluid is circulated by the pump through the evaporator and/or the heater.
 本開示に係る技術は、ランキンサイクル装置の信頼性を確保するのに適している。 The technology according to the present disclosure is suitable for ensuring the reliability of Rankine cycle equipment.
図1は、実施の形態1におけるランキンサイクル装置の構成図である。FIG. 1 is a configuration diagram of the Rankine cycle device according to the first embodiment. 図2は、一例に係る作動流体の状態図である。FIG. 2 is a state diagram of a working fluid according to an example. 図3は、実施の形態1における制御を表すフローチャートを示す。FIG. 3 shows a flowchart showing the control in the first embodiment. 図4は、実施の形態2におけるランキンサイクル装置の構成図である。FIG. 4 is a configuration diagram of the Rankine cycle device according to the second embodiment. 図5は、実施の形態2における制御を表すフローチャートを示す。FIG. 5 shows a flowchart showing the control in the second embodiment. 図6は、実施の形態3におけるランキンサイクル装置の構成図である。FIG. 6 is a configuration diagram of the Rankine cycle device according to the third embodiment. 図7は、実施の形態4における制御を表すフローチャートを示す。FIG. 7 shows a flowchart showing the control in the fourth embodiment. 図8は、従来技術に係るランキンサイクル装置の構成図である。FIG. 8: is a block diagram of the Rankine cycle apparatus which concerns on a prior art.
 (本開示の基礎となった知見)
 作動流体の圧力が負圧である場合、作動流体が流れる流路内に、大気中の空気、水分等が混入するおそれがある。このような混入を抑制することは、ランキンサイクル装置の信頼性確保に寄与する。
(Findings that form the basis of this disclosure)
When the pressure of the working fluid is a negative pressure, air, moisture, etc. in the atmosphere may be mixed in the flow path through which the working fluid flows. Suppressing such mixture contributes to ensuring the reliability of the Rankine cycle device.
 (本開示に係る一態様の概要)
 本開示の第1態様に係るランキンサイクル装置は、
 センサと、ポンプと、蒸発器と、膨張機と、凝縮器と、を備え、
 作動流体が流れる流体回路であって、循環回路を含む流体回路が設けられ、
 前記循環回路において、前記ポンプと、前記蒸発器と、前記膨張機と、前記凝縮器と、がこの順に並び、
 前記センサは、(I)前記作動流体の圧力、(II)前記作動流体の温度、または、(III)前記凝縮器において前記作動流体と熱交換されるべき冷却媒体の温度、を検出し、
 前記センサの検出値が第1閾値よりも低いときに、第1制御を開始し、
 前記第1制御は、前記作動流体を、前記ポンプにより、前記蒸発器および/またはヒータを介して循環させる制御である。
(Outline of One Aspect According to the Present Disclosure)
A Rankine cycle device according to a first aspect of the present disclosure,
A sensor, a pump, an evaporator, an expander, and a condenser,
A fluid circuit in which a working fluid flows, the fluid circuit including a circulation circuit is provided,
In the circulation circuit, the pump, the evaporator, the expander, and the condenser are arranged in this order,
The sensor detects (I) the pressure of the working fluid, (II) the temperature of the working fluid, or (III) the temperature of a cooling medium to be heat exchanged with the working fluid in the condenser,
When the detection value of the sensor is lower than the first threshold value, the first control is started,
The first control is control in which the working fluid is circulated by the pump via the evaporator and/or heater.
 第1態様に係る技術は、作動流体の圧力が負圧になることを防止するのに適している。このことは、ランキンサイクル装置の信頼性確保に寄与する。 The technology according to the first aspect is suitable for preventing the pressure of the working fluid from becoming a negative pressure. This contributes to ensuring the reliability of the Rankine cycle device.
 本開示の第2態様において、例えば、第1態様に係るランキンサイクル装置では、
(i)前記センサは前記作動流体の圧力を検出してもよく、前記第1閾値は大気圧以上の圧力であってもよく、
(ii)前記センサは前記作動流体の温度を検出してもよく、前記第1閾値は大気圧における前記作動流体の沸点以上の温度であってもよく、または、
(iii)前記センサは前記凝縮器において前記作動流体と熱交換されるべき冷却媒体の温度を検出してもよく、前記第1閾値は大気圧における前記作動流体の沸点以上の温度であってもよい。
In the second aspect of the present disclosure, for example, in the Rankine cycle device according to the first aspect,
(I) The sensor may detect the pressure of the working fluid, and the first threshold may be a pressure equal to or higher than atmospheric pressure,
(Ii) the sensor may detect the temperature of the working fluid, and the first threshold may be a temperature equal to or higher than the boiling point of the working fluid at atmospheric pressure, or
(Iii) The sensor may detect a temperature of a cooling medium to be heat-exchanged with the working fluid in the condenser, and the first threshold may be a temperature equal to or higher than a boiling point of the working fluid at atmospheric pressure. Good.
 第2態様の(i)、(ii)および(iii)は、作動流体の圧力が負圧になることを防止するのに適している。 The second modes (i), (ii) and (iii) are suitable for preventing the pressure of the working fluid from becoming negative.
 本開示の第3態様において、例えば、第1態様または第2態様に係るランキンサイクル装置では、
 前記センサは、前記循環回路における前記膨張機よりも下流側かつ前記ポンプよりも上流側の部分における前記作動流体の圧力を検出してもよい。
In the third aspect of the present disclosure, for example, in the Rankine cycle device according to the first aspect or the second aspect,
The sensor may detect the pressure of the working fluid in a portion of the circulation circuit downstream of the expander and upstream of the pump.
 第3態様は、作動流体の圧力が負圧になることを防止するのに適している。 The third mode is suitable for preventing the pressure of the working fluid from becoming a negative pressure.
 本開示の第4態様において、例えば、第1から第3態様のいずれか1つに係るランキンサイクル装置では、
 前記流体回路は、前記循環回路における前記蒸発器よりも下流側かつ前記膨張機よりも上流側の部分と、前記循環回路における前記膨張機よりも下流側かつ前記凝縮器よりも上流側の部分と、を接続するバイパス回路を含んでいてもよく、
 前記第1制御において、前記バイパス回路を介して前記作動流体を循環させてもよい。
In the fourth aspect of the present disclosure, for example, in the Rankine cycle device according to any one of the first to third aspects,
The fluid circuit includes a portion downstream of the evaporator and upstream of the expander in the circulation circuit, and a portion downstream of the expander and upstream of the condenser in the circulation circuit. , May include a bypass circuit to connect,
In the first control, the working fluid may be circulated via the bypass circuit.
 第4態様の第1制御において、作動流体は、バイパス回路によって、膨張機をバイパスして循環できる。このようにすれば、第1制御において、作動流体はスムーズに循環できる。 In the first control of the fourth aspect, the working fluid can circulate by bypassing the expander by the bypass circuit. With this configuration, the working fluid can smoothly circulate in the first control.
 本開示の第5態様において、例えば、第4態様に係るランキンサイクル装置では、
 前記バイパス回路において、弁が設けられていてもよく、
 前記第1制御において、前記バイパス回路の前記弁の開度を50%以上100%以下に設定してもよい。
In the fifth aspect of the present disclosure, for example, in the Rankine cycle device according to the fourth aspect,
A valve may be provided in the bypass circuit,
In the first control, the opening degree of the valve of the bypass circuit may be set to 50% or more and 100% or less.
 第5態様では、第1制御において、バイパス回路の弁の開度を、50%以上100%以下に設定する。このように開度を設定すると、第1制御において、作動流体をスムーズに循環させ易い。 In the fifth mode, in the first control, the opening degree of the valve of the bypass circuit is set to 50% or more and 100% or less. When the opening is set in this way, the working fluid can be easily circulated smoothly in the first control.
 本開示の第6態様において、例えば、第1から第5態様のいずれか1つに係るランキンサイクル装置では、
 前記流体回路において、前記ヒータが設けられていてもよく、
 前記第1制御において、前記作動流体を、前記ポンプにより、前記蒸発器を介して循環させてもよく、
 前記検出値が第2閾値未満でありかつ前記第1制御を開始してからの経過時間が閾値時間以上であるときに、前記ヒータの発熱を開始してもよい。
In the sixth aspect of the present disclosure, for example, in the Rankine cycle device according to any one of the first to fifth aspects,
In the fluid circuit, the heater may be provided,
In the first control, the working fluid may be circulated through the evaporator by the pump,
When the detected value is less than a second threshold value and the elapsed time from the start of the first control is a threshold time or more, heat generation of the heater may be started.
 第6態様によれば、第1制御では作動流体の圧力が負圧になるリスクを十分に抑制できない場合であっても、ヒータを用いて上記リスクを抑制できる。 According to the sixth aspect, even when the risk of the pressure of the working fluid becoming a negative pressure cannot be sufficiently suppressed by the first control, the risk can be suppressed by using the heater.
 本開示の第7態様において、例えば、第1から第6態様のいずれか1つに係るランキンサイクル装置は、
 前記検出値が第2閾値以上であるときに、前記ポンプの駆動を停止させてもよい。
In the seventh aspect of the present disclosure, for example, the Rankine cycle device according to any one of the first to sixth aspects,
The drive of the pump may be stopped when the detected value is equal to or greater than the second threshold value.
 第7態様によれば、ポンプの不要な電力消費を回避できる。 According to the seventh aspect, unnecessary power consumption of the pump can be avoided.
 本開示の第8態様において、例えば、第1から第7態様のいずれか1つに係るランキンサイクル装置では、
 前記作動流体の大気圧における沸点は、0℃以上50℃以下であってもよい。
In the eighth aspect of the present disclosure, for example, in the Rankine cycle device according to any one of the first to seventh aspects,
The boiling point of the working fluid at atmospheric pressure may be 0° C. or higher and 50° C. or lower.
 作動流体の沸点が第8態様で規定している程度に高い場合には、作動流体の圧力が負圧になり易い。このため、この場合には、作動流体の圧力が負圧になることを防止する技術がその効果を発揮し易い。 When the boiling point of the working fluid is high as specified in the eighth mode, the pressure of the working fluid tends to be a negative pressure. Therefore, in this case, the technique of preventing the pressure of the working fluid from becoming a negative pressure is likely to exert its effect.
 本開示の第9態様において、例えば、第1から第8態様のいずれか1つに係るランキンサイクル装置は、
 前記膨張機の回転トルクにより発電する発電機を備えていてもよい。
In the ninth aspect of the present disclosure, for example, the Rankine cycle device according to any one of the first to eighth aspects,
It may be provided with a generator that generates electric power by the rotation torque of the expander.
 第9態様によれば、膨張機および発電機により発電を行うことができる。 According to the ninth aspect, power can be generated by the expander and the generator.
 本開示の第10態様に係る制御方法は、
 ポンプと、蒸発器と、膨張機と、凝縮器と、をこの順に作動流体が循環するランキンサイクル装置の制御方法であって、
 センサにより、(I)前記作動流体の圧力、(II)前記作動流体の温度、または、(III)前記凝縮器において前記作動流体と熱交換されるべき冷却媒体の温度、を検出することと、
 前記センサの検出値が第1閾値よりも低いときに、加熱されている状態にある前記作動流体を前記ポンプにより循環させる第1循環を開始することと、を備える。
A control method according to a tenth aspect of the present disclosure is
A method for controlling a Rankine cycle device in which a working fluid circulates through a pump, an evaporator, an expander, and a condenser in this order,
A sensor for detecting (I) the pressure of the working fluid, (II) the temperature of the working fluid, or (III) the temperature of a cooling medium to be heat-exchanged with the working fluid in the condenser,
Starting a first circulation in which the working fluid in a heated state is circulated by the pump when the detection value of the sensor is lower than a first threshold value.
 第10態様に係る技術は、作動流体の圧力が負圧になることを防止するのに適している。このことは、ランキンサイクル装置の信頼性確保に寄与する。 The technology according to the tenth aspect is suitable for preventing the pressure of the working fluid from becoming a negative pressure. This contributes to ensuring the reliability of the Rankine cycle device.
 本開示の第11態様において、例えば、第10態様に係る制御方法では、
(i)前記センサは前記作動流体の圧力を検出してもよく、前記第1閾値は大気圧以上の圧力であってもよく、
(ii)前記センサは前記作動流体の温度を検出してもよく、前記第1閾値は大気圧における前記作動流体の沸点以上の温度であってもよく、または、
(iii)前記センサは前記凝縮器において前記作動流体と熱交換されるべき冷却媒体の温度を検出してもよく、前記第1閾値は大気圧における前記作動流体の沸点以上の温度であってもよい。
In the eleventh aspect of the present disclosure, for example, in the control method according to the tenth aspect,
(I) The sensor may detect the pressure of the working fluid, and the first threshold may be a pressure equal to or higher than atmospheric pressure,
(Ii) the sensor may detect the temperature of the working fluid, and the first threshold may be a temperature equal to or higher than the boiling point of the working fluid at atmospheric pressure, or
(Iii) The sensor may detect a temperature of a cooling medium to be heat-exchanged with the working fluid in the condenser, and the first threshold may be a temperature equal to or higher than a boiling point of the working fluid at atmospheric pressure. Good.
 第11態様の(i)、(ii)および(iii)は、作動流体の圧力が負圧になることを防止するのに適している。 The eleventh modes (i), (ii) and (iii) are suitable for preventing the pressure of the working fluid from becoming negative.
 本開示の第12態様において、例えば、第10態様または第11態様に係る制御方法では、
 前記ランキンサイクル装置において、前記ポンプと、前記蒸発器と、前記膨張機と、前記凝縮器と、がこの順に並ぶ循環回路が設けられていてもよく、
 前記センサは、前記循環回路における前記膨張機よりも下流側かつ前記ポンプよりも上流側の部分における前記作動流体の圧力を検出してもよい。
In the twelfth aspect of the present disclosure, for example, in the control method according to the tenth aspect or the eleventh aspect,
In the Rankine cycle apparatus, a circulation circuit may be provided in which the pump, the evaporator, the expander, and the condenser are arranged in this order,
The sensor may detect the pressure of the working fluid in a portion of the circulation circuit downstream of the expander and upstream of the pump.
 第12態様は、作動流体の圧力が負圧になることを防止するのに適している。 The twelfth aspect is suitable for preventing the pressure of the working fluid from becoming a negative pressure.
 本開示の第13態様において、例えば、第10から第12態様のいずれか1つに係る制御方法では、
 前記ランキンサイクル装置において、
  前記ポンプと、前記蒸発器と、前記膨張機と、前記凝縮器と、がこの順に並ぶ循環回路と、
  前記循環回路における前記蒸発器よりも下流側かつ前記膨張機よりも上流側の部分と、前記循環回路における前記膨張機よりも下流側かつ前記凝縮器よりも上流側の部分と、を接続するバイパス回路と、が設けられていてもよく、
 前記第1循環において、前記作動流体は前記バイパス回路を経由してもよい。
In the thirteenth aspect of the present disclosure, for example, in the control method according to any one of the tenth to twelfth aspects,
In the Rankine cycle device,
A circulation circuit in which the pump, the evaporator, the expander, and the condenser are arranged in this order,
A bypass connecting a portion of the circulation circuit downstream of the evaporator and upstream of the expander, and a portion of the circulation circuit downstream of the expander and upstream of the condenser. And a circuit may be provided,
In the first circulation, the working fluid may pass through the bypass circuit.
 第13態様の第1循環において、作動流体は、バイパス回路によって、膨張機をバイパスして循環できる。このようにすれば、第1循環において、作動流体はスムーズに循環できる。 In the first circulation of the thirteenth aspect, the working fluid can circulate by bypassing the expander by the bypass circuit. With this configuration, the working fluid can smoothly circulate in the first circulation.
 本開示の第14態様において、例えば、第13態様に係る制御方法では、
 前記バイパス回路おいて、弁が設けられていてもよく、
 前記第1循環において、前記バイパス回路の前記弁の開度を50%以上100%以下に設定してもよい。
In the fourteenth aspect of the present disclosure, for example, in the control method according to the thirteenth aspect,
A valve may be provided in the bypass circuit,
In the first circulation, the opening degree of the valve of the bypass circuit may be set to 50% or more and 100% or less.
 第14態様では、第1循環において、バイパス回路の弁の開度を、50%以上100%以下に設定する。このように開度を設定すると、第1循環において、作動流体をスムーズに循環させ易い。 In the fourteenth aspect, in the first circulation, the valve opening degree of the bypass circuit is set to 50% or more and 100% or less. When the opening is set in this way, the working fluid can be easily circulated in the first circulation.
 本開示の第15態様において、例えば、第10から第14態様のいずれか1つに係る制御方法では、
 前記第1循環において、前記蒸発器および/またはヒータによって前記作動流体を加熱してもよい。
In the fifteenth aspect of the present disclosure, for example, in the control method according to any one of the tenth to fourteenth aspects,
In the first circulation, the working fluid may be heated by the evaporator and/or heater.
 蒸発器およびヒータは、作動流体を加熱する機器の一具体例である。 An evaporator and a heater are specific examples of devices that heat a working fluid.
 本開示の第16態様において、例えば、第10から第15態様のいずれか1つに係る制御方法では、
 前記第1循環において、前記蒸発器によって前記作動流体を加熱してもよく、
 前記制御方法は、前記検出値が第2閾値未満でありかつ前記第1循環を開始してからの経過時間が閾値時間以上であるときに、前記作動流体のヒータによる加熱を開始することをさらに備えていてもよい。
In the sixteenth aspect of the present disclosure, for example, in the control method according to any one of the tenth to fifteenth aspects,
In the first circulation, the working fluid may be heated by the evaporator,
The control method may further include starting heating of the working fluid by a heater when the detected value is less than a second threshold value and an elapsed time after starting the first circulation is a threshold time or more. You may have it.
 第16態様によれば、第1循環では作動流体の圧力が負圧になるリスクを十分に抑制できない場合であっても、ヒータを用いて上記リスクを抑制できる。 According to the sixteenth aspect, even if the risk that the pressure of the working fluid becomes a negative pressure cannot be sufficiently suppressed in the first circulation, the risk can be suppressed by using the heater.
 本開示の第17態様において、例えば、第10から第16態様のいずれか1つに係る制御方法は、
 前記検出値が第2閾値以上であるときに、前記ポンプの駆動を停止させることをさらに備えていてもよい。
In the seventeenth aspect of the present disclosure, for example, the control method according to any one of the tenth to sixteenth aspects,
The method may further include stopping driving of the pump when the detected value is equal to or greater than a second threshold value.
 第17態様によれば、ポンプの不要な電力消費を回避できる。 According to the seventeenth aspect, it is possible to avoid unnecessary power consumption of the pump.
 本開示の第18態様において、例えば、第10から第17態様のいずれか1つに係る制御方法では、
 前記作動流体の大気圧における沸点は、0℃以上50℃以下であってもよい。
In the eighteenth aspect of the present disclosure, for example, in the control method according to any one of the tenth to seventeenth aspects,
The boiling point of the working fluid at atmospheric pressure may be 0° C. or higher and 50° C. or lower.
 作動流体の沸点が第18態様で規定している程度に高い場合には、作動流体の圧力が負圧になり易い。このため、この場合には、作動流体の圧力が負圧になることを防止する技術がその効果を発揮し易い。 If the boiling point of the working fluid is high as specified in the eighteenth aspect, the pressure of the working fluid tends to be a negative pressure. Therefore, in this case, the technique of preventing the pressure of the working fluid from becoming a negative pressure is likely to exert its effect.
 本開示の第19態様に係るランキンサイクル装置は、
 センサと、ポンプと、蒸発器と、膨張機と、凝縮器と、を備え、
 作動流体が流れる流体回路であって、循環回路を含む流体回路が設けられ、
 前記循環回路において、前記ポンプと、前記蒸発器と、前記膨張機と、前記凝縮器と、がこの順に並び、
 前記センサは、(I)前記作動流体の圧力、(II)前記作動流体の温度、または、(III)前記凝縮器において前記作動流体と熱交換されるべき冷却媒体の温度、を検出し、
 前記センサの検出値が第1閾値よりも低いときに、加熱されている状態にある前記作動流体を前記ポンプにより循環させる第1制御を開始する。
A Rankine cycle device according to a nineteenth aspect of the present disclosure,
A sensor, a pump, an evaporator, an expander, and a condenser,
A fluid circuit in which a working fluid flows, the fluid circuit including a circulation circuit is provided,
In the circulation circuit, the pump, the evaporator, the expander, and the condenser are arranged in this order,
The sensor detects (I) the pressure of the working fluid, (II) the temperature of the working fluid, or (III) the temperature of a cooling medium to be heat exchanged with the working fluid in the condenser,
When the detection value of the sensor is lower than the first threshold value, the first control of circulating the heated working fluid by the pump is started.
 本開示の第20態様に係る制御方法は、
 ポンプと、蒸発器と、膨張機と、凝縮器と、をこの順に作動流体が循環するランキンサイクル装置の制御方法であって、
 センサにより、(I)前記作動流体の圧力、(II)前記作動流体の温度、または、(III)前記凝縮器において前記作動流体と熱交換されるべき冷却媒体の温度、を検出することと、
 前記センサの検出値が第1閾値よりも低いときに、第1循環を開始することと、を備え、
 前記第1循環は、前記作動流体の、前記ポンプによる、前記蒸発器および/またはヒータを介した循環である。
A control method according to a twentieth aspect of the present disclosure is
A method for controlling a Rankine cycle device in which a working fluid circulates through a pump, an evaporator, an expander, and a condenser in this order,
A sensor for detecting (I) the pressure of the working fluid, (II) the temperature of the working fluid, or (III) the temperature of a cooling medium to be heat-exchanged with the working fluid in the condenser,
Starting a first circulation when the detection value of the sensor is lower than a first threshold value;
The first circulation is a circulation of the working fluid by the pump through the evaporator and/or heater.
 以下の実施の形態では、「回路」という用語を用いることがある。図面等から理解されるように、「回路」は、閉じた経路を必ずしも意味せず、「流路」に適宜言い換え可能である。 In the following embodiments, the term "circuit" may be used. As understood from the drawings and the like, the term “circuit” does not necessarily mean a closed path, but can be rephrased as “flow path” as appropriate.
 以下、実施の形態について、図面を参照しながら説明する。実施の形態によって本開示は限定されない。 Hereinafter, embodiments will be described with reference to the drawings. The present disclosure is not limited to the embodiments.
 (実施の形態1)
 図1に、実施の形態1におけるランキンサイクル装置21の構成図を示す。
(Embodiment 1)
FIG. 1 shows a configuration diagram of the Rankine cycle device 21 in the first embodiment.
 ランキンサイクル装置21では、流体回路14が設けられている。流体回路14では、作動流体が流れる。流体回路14は、循環回路15と、バイパス回路16と、を含む。 The Rankine cycle device 21 is provided with a fluid circuit 14. In the fluid circuit 14, the working fluid flows. The fluid circuit 14 includes a circulation circuit 15 and a bypass circuit 16.
 作動流体の種類は、特に限定されない。作動流体の大気圧における沸点は、例えば、0℃以上50℃以下である。ここで、大気圧は、一気圧を指す。作動流体の具体例は、ハイドロフルオロオレフィン(HFO)系の作動流体である。ここで、HFO系の作動流体は、HFOを含む作動流体を指す。作動流体におけるHFOの含有率は、例えば、50質量%以上であり、80質量%以上であってもよい。より具体的には、作動流体として、HFO1336mzz(Z)、HFO1336mzz(E)、HFO1336mzz(Z)およびHFO1336mzz(E)の混合流体等を採用できる。HFOを含む作動流体は、混合流体であってもよく、単一種類の作動流体であってもよい。作動流体として、HFOを含まない公知の流体を採用することもできる。 The type of working fluid is not particularly limited. The boiling point of the working fluid at atmospheric pressure is, for example, 0° C. or higher and 50° C. or lower. Here, the atmospheric pressure refers to one atmosphere. A specific example of the working fluid is a hydrofluoroolefin (HFO)-based working fluid. Here, the HFO-based working fluid refers to a working fluid containing HFO. The content of HFO in the working fluid is, for example, 50% by mass or more, and may be 80% by mass or more. More specifically, as the working fluid, a mixed fluid of HFO1336mzz(Z), HFO1336mzz(E), HFO1336mzz(Z), and HFO1336mzz(E) can be adopted. The working fluid containing HFO may be a mixed fluid or a single type of working fluid. A known fluid that does not contain HFO can be used as the working fluid.
 流体回路14は、複数の配管を用いて構成されている。以下、複数の配管を、まとめて配管部と称することがある。 The fluid circuit 14 is composed of a plurality of pipes. Hereinafter, the plurality of pipes may be collectively referred to as a pipe portion.
 ランキンサイクル装置21において、ランキンサイクルが構成されている。具体的には、ランキンサイクル装置21において、オーガニックランキンサイクル(ORC)が構成されている。 A Rankine cycle is configured in the Rankine cycle device 21. Specifically, the Rankine cycle device 21 constitutes an organic Rankine cycle (ORC).
 ランキンサイクル装置21は、ポンプ1と、蒸発器2と、膨張機3と、凝縮器4とを備える。循環回路15において、ポンプ1と、蒸発器2と、膨張機3と、凝縮器4とは、この順に並んでいる。ポンプ1と、蒸発器2と、膨張機3と、凝縮器4とは、複数の配管を用いて接続されている。 The Rankine cycle device 21 includes a pump 1, an evaporator 2, an expander 3, and a condenser 4. In the circulation circuit 15, the pump 1, the evaporator 2, the expander 3, and the condenser 4 are arranged in this order. The pump 1, the evaporator 2, the expander 3, and the condenser 4 are connected using a plurality of pipes.
 ランキンサイクル装置21は、再熱器6を含む。再熱器6では、循環回路15における互いに異なる部分を流れる作動流体の間で熱交換がなされる。 Rankine cycle device 21 includes reheater 6. In the reheater 6, heat is exchanged between the working fluids flowing in different parts of the circulation circuit 15.
 バイパス回路16は、循環回路15における蒸発器2よりも下流側かつ膨張機3よりも上流側の部分と、循環回路15における膨張機3よりも下流側かつ凝縮器4よりも上流側の部分と、を接続している。 The bypass circuit 16 includes a portion of the circulation circuit 15 downstream of the evaporator 2 and upstream of the expander 3, and a portion of the circulation circuit 15 downstream of the expander 3 and upstream of the condenser 4. , Are connected.
 ランキンサイクル装置21は、弁5を含む。弁5は、バイパス回路16に設けられている。以下では、弁5を、バイパス弁5と称することがある。本実施の形態では、バイパス弁5は、流量調整弁である。ここで、流量調整弁は、0%および100%のみならず、0%よりも大きく100%よりも小さい開度を採り得る弁である。 Rankine cycle device 21 includes valve 5. The valve 5 is provided in the bypass circuit 16. Hereinafter, the valve 5 may be referred to as the bypass valve 5. In the present embodiment, the bypass valve 5 is a flow rate adjusting valve. Here, the flow rate adjusting valve is a valve that can take not only 0% and 100% but also an opening degree larger than 0% and smaller than 100%.
 ランキンサイクル装置21は、発電機18を備える。発電機18は、膨張機3に接続されている。 The Rankine cycle device 21 includes a generator 18. The generator 18 is connected to the expander 3.
 以下、ランキンサイクル装置21が発電運転を行っているときの、ポンプ1、蒸発器2、膨張機3、凝縮器4、バイパス弁5、再熱器6および発電機18の動作について説明する。ここで、ランキンサイクル装置21の発電運転は、発電機18が発電を行う運転を指す。 Hereinafter, operations of the pump 1, the evaporator 2, the expander 3, the condenser 4, the bypass valve 5, the reheater 6 and the generator 18 when the Rankine cycle device 21 is in the power generation operation will be described. Here, the power generation operation of the Rankine cycle device 21 refers to an operation in which the generator 18 generates power.
 ポンプ1は、作動流体を搬送する。 Pump 1 conveys a working fluid.
 蒸発器2は、作動流体を蒸発させる。具体的には、蒸発器2は、加熱媒体の熱を回収して作動流体を蒸発させる。本実施の形態では、加熱媒体は、熱源ガスである。具体的には、本実施の形態では、加熱媒体は、工場の設備等の熱源からの排ガスである。蒸発器2は、例えば、フィンアンドチューブ熱交換器によって構成されている。 The evaporator 2 evaporates the working fluid. Specifically, the evaporator 2 recovers the heat of the heating medium and evaporates the working fluid. In the present embodiment, the heating medium is a heat source gas. Specifically, in the present embodiment, the heating medium is exhaust gas from a heat source such as factory equipment. The evaporator 2 is composed of, for example, a fin-and-tube heat exchanger.
 膨張機3は、作動流体を膨張させる。具体的には、膨張機3は、蒸発器2で高温蒸気となった作動流体を膨張させる。 The expander 3 expands the working fluid. Specifically, the expander 3 expands the working fluid that has become high temperature steam in the evaporator 2.
 凝縮器4は、膨張機3で膨張した作動流体を凝縮させる。具体的には、凝縮器4は、冷却媒体により作動流体の熱を奪うことによって、作動流体を凝縮させる。本実施の形態では、冷却媒体は、ガスであり、具体的には大気中の空気である。ただし、冷却媒体は、水などの液体であってもよい。本実施の形態では、凝縮器4は、ファン7を備えている。凝縮器4は、ファン7を用いて作動流体を凝縮させる。ただし、ファン7は必須ではない。凝縮器4は、例えば、フィンアンドチューブ熱交換器、プレート熱交換器または二重管式熱交換器によって構成されている。一具体例では、冷却媒体は空気であり、凝縮器4はフィンアンドチューブ熱交換器であり、凝縮器4はファン7を備えている。別の具体例では、冷却媒体は水であり、凝縮器4はプレート熱交換器または二重管式熱交換器であり、凝縮器4はファン7を備えていない。 The condenser 4 condenses the working fluid expanded by the expander 3. Specifically, the condenser 4 condenses the working fluid by removing the heat of the working fluid by the cooling medium. In the present embodiment, the cooling medium is gas, specifically air in the atmosphere. However, the cooling medium may be a liquid such as water. In the present embodiment, the condenser 4 includes a fan 7. The condenser 4 uses the fan 7 to condense the working fluid. However, the fan 7 is not essential. The condenser 4 is composed of, for example, a fin-and-tube heat exchanger, a plate heat exchanger, or a double-tube heat exchanger. In one embodiment, the cooling medium is air, the condenser 4 is a fin and tube heat exchanger, and the condenser 4 comprises a fan 7. In another embodiment, the cooling medium is water, the condenser 4 is a plate heat exchanger or a double tube heat exchanger, and the condenser 4 is not equipped with a fan 7.
 バイパス弁5は、膨張機3を流れる作動流体の流量と、バイパス回路16を流れる作動流体の流量と、を調整する。具体的には、バイパス弁5の開度が調整されることによって、これらの流量が調整される。 The bypass valve 5 adjusts the flow rate of the working fluid flowing through the expander 3 and the flow rate of the working fluid flowing through the bypass circuit 16. Specifically, these flow rates are adjusted by adjusting the opening degree of the bypass valve 5.
 再熱器6は、循環回路15におけるポンプ1よりも下流側かつ蒸発器2よりも上流側の第1部分6aと、循環回路15における膨張機3よりも下流側かつ凝縮器4よりも上流側の第2部分6bと、を含む。再熱器6では、これら両部分を流れる作動流体の間で熱交換がなされる。この熱交換により、第1部分6aを流れる作動流体の温度が上昇し、第2部分6bを流れる作動流体の温度が低下する。 The reheater 6 includes a first portion 6a downstream of the pump 1 in the circulation circuit 15 and upstream of the evaporator 2, and downstream of the expander 3 in the circulation circuit 15 and upstream of the condenser 4. Second portion 6b of In the reheater 6, heat is exchanged between the working fluids flowing through these two parts. Due to this heat exchange, the temperature of the working fluid flowing through the first portion 6a rises and the temperature of the working fluid flowing through the second portion 6b falls.
 発電機18は、膨張機3の回転トルクにより発電する。 The generator 18 generates power by the rotating torque of the expander 3.
 さらに、ランキンサイクル装置21は、第1圧力センサ8aと、第2圧力センサ8bと、第1温度センサ9aと、第2温度センサ9bと、第3温度センサ9cと、第4温度センサ9dと、を含む。 Further, the Rankine cycle device 21 includes a first pressure sensor 8a, a second pressure sensor 8b, a first temperature sensor 9a, a second temperature sensor 9b, a third temperature sensor 9c, and a fourth temperature sensor 9d. including.
 第1圧力センサ8aは、第1回路15aにおける作動流体の圧力を検出する。第2圧力センサ8bは、第2回路15bにおける作動流体の圧力を検出する。ここで、第1回路15aは、循環回路15におけるポンプ1よりも下流側かつ膨張機3よりも上流側の部分である。第2回路15bは、循環回路15における膨張機3よりも下流側かつポンプ1よりも上流側の部分である。 The first pressure sensor 8a detects the pressure of the working fluid in the first circuit 15a. The second pressure sensor 8b detects the pressure of the working fluid in the second circuit 15b. Here, the first circuit 15 a is a part of the circulation circuit 15 that is downstream of the pump 1 and upstream of the expander 3. The second circuit 15b is a part of the circulation circuit 15 downstream of the expander 3 and upstream of the pump 1.
 本実施の形態では、第1圧力センサ8aは、第1回路15aに設けられている。具体的には、本実施の形態では、第1圧力センサ8aは、循環回路15における蒸発器2よりも下流側かつ膨張機3よりも上流側の部分に設けられている。ただし、第1圧力センサ8aは、循環回路15におけるポンプ1よりも下流側かつ蒸発器2よりも上流側の部分に設けられていてもよい。第1圧力センサ8aは、ランキンサイクル装置21におけるランキンサイクルの高圧側の圧力を検出する。第1圧力センサ8aを、高圧センサ8aと称することができる。 In the present embodiment, the first pressure sensor 8a is provided in the first circuit 15a. Specifically, in the present embodiment, the first pressure sensor 8a is provided in a portion of the circulation circuit 15 downstream of the evaporator 2 and upstream of the expander 3. However, the first pressure sensor 8a may be provided in a portion of the circulation circuit 15 downstream of the pump 1 and upstream of the evaporator 2. The first pressure sensor 8a detects the pressure on the high pressure side of the Rankine cycle in the Rankine cycle device 21. The first pressure sensor 8a can be referred to as a high pressure sensor 8a.
 第1圧力センサ8aは、バイパス回路16におけるバイパス弁5よりも上流側の部分に設けられていてもよい。バイパス回路16におけるバイパス弁5よりも上流側の部分に設けられた第1圧力センサ8aも、第1回路15aにおける作動流体の圧力を検出し得る。 The first pressure sensor 8a may be provided in a part of the bypass circuit 16 upstream of the bypass valve 5. The first pressure sensor 8a provided on the upstream side of the bypass valve 5 in the bypass circuit 16 can also detect the pressure of the working fluid in the first circuit 15a.
 本実施の形態では、第2圧力センサ8bは、第2回路15bに設けられている。具体的には、本実施の形態では、第2圧力センサ8bは、循環回路15における凝縮器4よりも下流側かつポンプ1よりも上流側の部分に設けられている。後述するように、この部分は、第3回路15cに対応する。ただし、第2圧力センサ8bは、循環回路15における膨張機3よりも下流側かつ凝縮器4よりも上流側の部分に設けられていてもよい。第2圧力センサ8bは、ランキンサイクル装置21におけるランキンサイクルの低圧側の圧力を検出する。第2圧力センサ8bを、低圧センサ8bと称することができる。 In the present embodiment, the second pressure sensor 8b is provided in the second circuit 15b. Specifically, in the present embodiment, the second pressure sensor 8b is provided in a portion of the circulation circuit 15 downstream of the condenser 4 and upstream of the pump 1. As described later, this portion corresponds to the third circuit 15c. However, the second pressure sensor 8b may be provided in a portion of the circulation circuit 15 downstream of the expander 3 and upstream of the condenser 4. The second pressure sensor 8b detects the pressure on the low pressure side of the Rankine cycle in the Rankine cycle device 21. The second pressure sensor 8b can be referred to as a low pressure sensor 8b.
 第2圧力センサ8bは、バイパス回路16におけるバイパス弁5よりも下流側の部分に設けられていてもよい。バイパス回路16におけるバイパス弁5よりも下流側の部分に設けられた第2圧力センサ8bも、第2回路15bにおける作動流体の圧力を検出し得る。 The second pressure sensor 8b may be provided in a portion of the bypass circuit 16 downstream of the bypass valve 5. The second pressure sensor 8b provided on the downstream side of the bypass valve 5 in the bypass circuit 16 can also detect the pressure of the working fluid in the second circuit 15b.
 第1温度センサ9aは、循環回路15における蒸発器2よりも下流側かつ膨張機3よりも上流側の部分に設けられている。第1温度センサ9aは、この部分における作動流体の温度を検出する。第1温度センサ9aによれば、膨張機3の入口における作動流体の温度を把握できる。第1温度センサ9aを、膨張機入口温度センサ9aと称することができる。 The first temperature sensor 9a is provided in a portion of the circulation circuit 15 downstream of the evaporator 2 and upstream of the expander 3. The first temperature sensor 9a detects the temperature of the working fluid in this portion. The temperature of the working fluid at the inlet of the expander 3 can be grasped by the first temperature sensor 9a. The first temperature sensor 9a can be referred to as an expander inlet temperature sensor 9a.
 第2温度センサ9bは、第3回路15cに設けられている。ここで、第3回路15cは、循環回路15のうち、凝縮器4よりも下流側かつポンプ1よりも上流側の部分である。第2温度センサ9bは、第3回路15cにおける作動流体の温度を検出する。第2温度センサ9bによれば、凝縮器4の出口における作動流体の温度を把握できる。第2温度センサ9bを、凝縮器出口温度センサ9bと称することができる。 The second temperature sensor 9b is provided in the third circuit 15c. Here, the third circuit 15c is a part of the circulation circuit 15 that is downstream of the condenser 4 and upstream of the pump 1. The second temperature sensor 9b detects the temperature of the working fluid in the third circuit 15c. The temperature of the working fluid at the outlet of the condenser 4 can be grasped by the second temperature sensor 9b. The second temperature sensor 9b can be referred to as a condenser outlet temperature sensor 9b.
 第3温度センサ9cは、凝縮器4における冷却媒体の吸い込み部分に設置されている。第3温度センサ9cは、冷却媒体の温度を検出する。本実施の形態では、冷却媒体は、大気中の空気であり、第3温度センサ9cは外気温度を検出する。本実施の形態では、第3温度センサ9cを、外気温度センサ9cと称することができる。 The third temperature sensor 9c is installed in the cooling medium suction portion of the condenser 4. The third temperature sensor 9c detects the temperature of the cooling medium. In the present embodiment, the cooling medium is air in the atmosphere, and the third temperature sensor 9c detects the outside air temperature. In the present embodiment, the third temperature sensor 9c can be referred to as an outside air temperature sensor 9c.
 第4温度センサ9dは、蒸発器2に吸い込まれる加熱媒体の温度を検出する。上述の通り、本実施の形態では、加熱媒体は、熱源ガスである。本実施の形態では、第4温度センサ9dを、熱源ガス温度センサ9dと称することができる。 The fourth temperature sensor 9d detects the temperature of the heating medium sucked into the evaporator 2. As described above, in the present embodiment, the heating medium is the heat source gas. In the present embodiment, the fourth temperature sensor 9d can be referred to as the heat source gas temperature sensor 9d.
 さらに、ランキンサイクル装置21は、制御装置19を含む。制御装置19は、ランキンサイクル装置21の構成要素を制御する。 Further, the Rankine cycle device 21 includes a control device 19. The control device 19 controls the components of the Rankine cycle device 21.
 以下、流体回路14における作動流体の圧力について説明する。 The pressure of the working fluid in the fluid circuit 14 will be described below.
 ランキンサイクル装置21が発電運転を行っているときには、蒸発器2において、加熱媒体の熱が回収され、その熱により作動流体が加熱される。そして、ポンプ1によって、加熱された作動流体が、流体回路14を流れる。このため、流体回路14における作動流体の圧力は、正圧に保持される。ここで、正圧は、大気圧よりも高い圧力である。 When the Rankine cycle device 21 is in the power generation operation, the evaporator 2 recovers the heat of the heating medium, and the heat heats the working fluid. Then, the working fluid heated by the pump 1 flows through the fluid circuit 14. Therefore, the pressure of the working fluid in the fluid circuit 14 is maintained at a positive pressure. Here, the positive pressure is a pressure higher than the atmospheric pressure.
 一方、ランキンサイクル装置21が停止し、ポンプ1が停止しているときは、作動流体が、流体回路14を流れない。この場合、蒸発器2に供給される加熱媒体の温度が高くても、流体回路14における作動流体の圧力は、外気温度の影響を受け、作動流体の外気温度での飽和圧力に近い圧力となることがある。 On the other hand, when the Rankine cycle device 21 is stopped and the pump 1 is stopped, the working fluid does not flow in the fluid circuit 14. In this case, even if the temperature of the heating medium supplied to the evaporator 2 is high, the pressure of the working fluid in the fluid circuit 14 is affected by the outside air temperature and becomes a pressure close to the saturation pressure of the working fluid at the outside air temperature. Sometimes.
 一具体例では、ポンプ1、膨張機3および凝縮器4は1つの筐体に収容され、その筐体と蒸発器2とは5m以上離間している。離間距離がその程度に大きい場合には、筐体内に存する流体回路14における作動流体の圧力は、加熱媒体の温度よりも外気温度の影響を強く受け易く、作動流体の外気温度での飽和圧力に近い圧力になり易い。 In one specific example, the pump 1, the expander 3, and the condenser 4 are housed in one housing, and the housing and the evaporator 2 are separated by 5 m or more. When the separation distance is as large as that, the pressure of the working fluid in the fluid circuit 14 existing in the housing is more easily affected by the outside air temperature than the temperature of the heating medium, and is saturated with the outside air temperature of the working fluid. It tends to be close to pressure.
 大気圧における飽和温度が高い作動流体を使用する場合を考える。この場合、外気温度が作動流体の沸点よりも低いと、作動流体の圧力が負圧となる可能性がある。ここで、飽和温度は、沸点を指す。負圧は、大気圧よりも低い圧力を指す。 Consider using a working fluid with a high saturation temperature at atmospheric pressure. In this case, when the outside air temperature is lower than the boiling point of the working fluid, the working fluid may have a negative pressure. Here, the saturation temperature refers to a boiling point. Negative pressure refers to pressure below atmospheric pressure.
 作動流体の温度が流体回路14の各部で略平衡状態でありかつ外気温度が作動流体の沸点よりも低い場合において、外気温度の影響を受けて作動流体の圧力が負圧になる様子を、図2を参照しながら説明する。なお、典型的には、ポンプ1の停止直後においては、流体回路14の各部で作動流体に温度差がある。ポンプ1の停止から十分に時間が経過した後に、作動流体の温度は流体回路14の各部で略平衡状態となり得る。図2は、作動流体の状態図である。なお、図2では、融解曲線および昇華曲線は省略している。 When the temperature of the working fluid is in a substantially equilibrium state in each part of the fluid circuit 14 and the outside air temperature is lower than the boiling point of the working fluid, a state in which the pressure of the working fluid becomes a negative pressure under the influence of the outside air temperature is shown in FIG. This will be described with reference to 2. Note that, typically, immediately after the pump 1 is stopped, there is a temperature difference in the working fluid in each part of the fluid circuit 14. After a lapse of a sufficient time from the stop of the pump 1, the temperature of the working fluid can reach a substantially equilibrium state in each part of the fluid circuit 14. FIG. 2 is a state diagram of the working fluid. In addition, in FIG. 2, the melting curve and the sublimation curve are omitted.
 状態Aにおいて、作動流体は、気液二相状態にある。作動流体の圧力は、正圧である。作動流体の温度は、大気圧における沸点よりも高い。 In state A, the working fluid is in a gas-liquid two-phase state. The pressure of the working fluid is positive pressure. The temperature of the working fluid is above its boiling point at atmospheric pressure.
 外気温度が変化すると、作動流体の温度も外気温度の影響を受けて変化する。特に、凝縮器4内部の作動流体の温度は、熱的平衡状態にある場合は、ほぼ外気温度と同じ温度になる。例えば、外気温度が低下すると、作動流体の温度も低下する。作動流体の温度が低下すると、作動流体の圧力は、蒸気圧曲線に沿って低下する。具体的には、この例では、作動流体の状態は、状態Aから、状態Bを経由して、状態Cに変化する。 When the outside air temperature changes, the temperature of the working fluid also changes under the influence of the outside air temperature. In particular, the temperature of the working fluid inside the condenser 4 becomes substantially the same as the outside air temperature when in a thermal equilibrium state. For example, if the outside air temperature decreases, the temperature of the working fluid also decreases. As the temperature of the working fluid decreases, the pressure of the working fluid decreases along the vapor pressure curve. Specifically, in this example, the state of the working fluid changes from state A to state C via state B.
 状態Bにおいて、作動流体は、気液二相状態にある。作動流体の圧力は、大気圧である。作動流体の温度は、大気圧における沸点である。 In state B, the working fluid is in a gas-liquid two-phase state. The pressure of the working fluid is atmospheric pressure. The temperature of the working fluid is the boiling point at atmospheric pressure.
 状態Cにおいて、作動流体は、気液二相状態にある。作動流体の温度は、外気温度である。作動流体の圧力は、負圧である。 In state C, the working fluid is in a gas-liquid two-phase state. The temperature of the working fluid is the outside air temperature. The pressure of the working fluid is a negative pressure.
 図2では、蒸気圧曲線における状態Bと状態Cの間の状態においても、作動流体の圧力は負圧である。このことから理解されるように、作動流体の温度が外気温度まで下がりきらなくても、作動流体の圧力は負圧になり得る。 In FIG. 2, the pressure of the working fluid is negative even in the state between the state B and the state C in the vapor pressure curve. As understood from this, even if the temperature of the working fluid does not fall to the outside air temperature, the pressure of the working fluid can be a negative pressure.
 なお、図2は、説明用の図であり、実施の形態の限定的に解釈するために用いられるべきではない。例えば、作動流体の状態図の曲線は、図2の形に限定されない。また、気液二相状態にない作動流体の圧力が負圧になることもあり得る。 Note that FIG. 2 is a diagram for explanation and should not be used for limiting interpretation of the embodiment. For example, the curves of the working fluid phase diagram are not limited to the shape of FIG. In addition, the pressure of the working fluid that is not in the gas-liquid two-phase state may become negative.
 具体的に、作動流体としてHFO1336mzz(Z)を使用する場合を考える。HFO1336mzz(Z)の沸点は、33℃である。このため、この場合には、外気温度が33℃未満であるときにポンプ1が停止していると、作動流体の圧力が負圧となるおそれがある。 Specifically, consider the case where HFO1336mzz(Z) is used as the working fluid. The boiling point of HFO1336mzz(Z) is 33°C. Therefore, in this case, if the pump 1 is stopped when the outside air temperature is less than 33° C., the pressure of the working fluid may become a negative pressure.
 また、作動流体としてHFO1336mzz(E)を使用する場合を考える。HFO1336mzz(E)の沸点は、8℃である。このため、この場合には、外気温度が8℃未満であるときにポンプ1が停止していると、作動流体の圧力が負圧となるおそれがある。 Also, consider the case where HFO1336mzz(E) is used as the working fluid. The boiling point of HFO1336mzz(E) is 8°C. Therefore, in this case, if the pump 1 is stopped when the outside air temperature is lower than 8° C., the pressure of the working fluid may become a negative pressure.
 配管部では、溶接個所、ネジ接続部分等で隙間が生じ得る。この隙間は、溶接不良、ネジ接続時の締め付けトルク不足等の施工不良によって生じる場合もあれば、運転中の振動等によるネジ接続部の緩み、経年劣化等によって生じる場合もあり得る。作動流体の圧力が正圧である場合は、万一、配管部に隙間が発生した場合には、配管部の内部から外部へと作動流体が漏れる。この場合、隙間がなくなるように配管部を修理し、作動流体を再充填すれば、ランキンサイクル装置21を作動流体が漏れる前の状態に戻すことができる。また、配管部から作動流体が漏れていると、作動流体不足が原因でポンプ1による作動流体の循環ができない等、ランキンサイクル装置の不具合を示唆する具体的な症状が現れる。このため、配管部からの作動流体の漏れは、認識され易い。このため、配管部の修理および作動流体の再充填は、作動流体の漏れの発生から比較的早期に実施できる。 In the piping section, there may be gaps at the welding point, screw connection section, etc. This gap may be caused by poor welding, poor construction such as insufficient tightening torque during screw connection, or loosening of the screw connection portion due to vibration during operation, deterioration over time, and the like. If the pressure of the working fluid is positive, and if a gap occurs in the piping, the working fluid leaks from the inside of the piping to the outside. In this case, the Rankine cycle device 21 can be returned to the state before the leakage of the working fluid by repairing the piping so as to eliminate the gap and refilling the working fluid. Further, if the working fluid leaks from the piping portion, specific symptoms that indicate a malfunction of the Rankine cycle device appear, such as the working fluid cannot be circulated by the pump 1 due to lack of working fluid. Therefore, the leakage of the working fluid from the piping portion is easily recognized. Therefore, the repair of the piping portion and the refilling of the working fluid can be performed relatively early from the occurrence of the leakage of the working fluid.
 一方、作動流体の圧力が負圧である場合、配管部に隙間が発生した場合には、大気中の空気、水分等が、配管部内に混入するおそれがある。そのような混入が発生すると、作動流体または潤滑油が加水分解するおそれがある。潤滑油が加水分解すると、ポンプ1、膨張機3等の機器において部品の摺動部の潤滑性が悪化して、機器故障の原因となり得る。配管部内への空気、水分等の混入を速やかに認識するのは必ずしも容易ではない。このため、不具合が発生していることに気がついた時には、不具合の程度が大きくなっていることもあり得る。そのため、不具合が発覚した時点では機器の故障が深刻な状態にまで進行しており、隙間を補修し、作動流体を再充填しても、元の状態には戻り難い。 On the other hand, if the pressure of the working fluid is negative, and if a gap is created in the piping, air, moisture, etc. in the atmosphere may enter the piping. When such mixing occurs, the working fluid or the lubricating oil may be hydrolyzed. If the lubricating oil is hydrolyzed, the lubricity of the sliding parts of the components such as the pump 1 and the expander 3 may be deteriorated, which may cause the device failure. It is not always easy to immediately recognize the entry of air, moisture, etc. into the piping section. For this reason, when it is noticed that a defect has occurred, the degree of the defect may be large. Therefore, at the time when the trouble is discovered, the equipment failure has progressed to a serious state, and it is difficult to return to the original state even if the gap is repaired and the working fluid is refilled.
 配管部に隙間が生じた場合において作動流体の圧力が負圧となることが原因で生じる上記の不具合を避けるためには、配管部における隙間の発生自体をなくすことが考えられる。しかし、隙間の発生を完全になくすことは、必ずしも容易ではない。 In order to avoid the above-mentioned inconvenience caused by the pressure of the working fluid becoming a negative pressure when a gap is created in the piping part, it is conceivable to eliminate the occurrence of the gap itself in the piping part. However, it is not always easy to completely eliminate the generation of gaps.
 具体的には、上記のように、流体回路14は、溶接個所、ネジ接続部等を含んでいることがある。溶接個所、ネジ接続部等における隙間の発生を完全になくすことは、容易でない。 Specifically, as described above, the fluid circuit 14 may include a welding part, a screw connection part, and the like. It is not easy to completely eliminate the generation of gaps at welded parts, screw connection parts and the like.
 製造装置が整った工場でランキンサイクル装置21を完成させ、その完成品を設置場所に移動させるという設置方式を採用すること、すなわちランキンサイクル装置21の設置現場での溶接作業を排除することで、溶接個所における隙間の発生確率を低下させることは可能である。しかし、そのような設置方式が常に採用されるわけではない。蒸発器2に熱源ガスを供給する熱源が、土地に定着した設備である場合には、その設備がある現場において、ランキンサイクル装置21を施工することもある。現場で溶接を行う場合、溶接個所における隙間の発生を完全に防止することは、必ずしも容易ではない。 By adopting an installation method in which the Rankine cycle device 21 is completed in a factory equipped with manufacturing devices and the finished product is moved to the installation place, that is, by eliminating the welding work at the installation site of the Rankine cycle device 21, It is possible to reduce the probability of forming a gap at the welded portion. However, such an installation method is not always adopted. When the heat source that supplies the heat source gas to the evaporator 2 is equipment fixed to the land, the Rankine cycle device 21 may be installed at the site where the equipment is located. When welding is performed on site, it is not always easy to completely prevent the formation of a gap at the welding point.
 また、ランキンサイクル装置21の設置時には問題がなくても、ランキンサイクル装置21の運転時の振動が原因で、配管部で隙間が生じることもあり得る。運転に伴う隙間の発生を完全に回避することも、必ずしも容易ではない。 Also, even if there is no problem when the Rankine cycle device 21 is installed, a gap may occur in the piping portion due to vibration during operation of the Rankine cycle device 21. It is not always easy to completely avoid the generation of gaps during operation.
 そこで、本発明者らは、配管部に隙間が発生した場合に、作動流体の圧力が負圧となることが原因で生じる上記の不具合の発生を抑制するために、ランキンサイクル装置21の配管部内の負圧発生を抑制することを検討した。 Therefore, in order to suppress the occurrence of the above-mentioned inconvenience caused by the pressure of the working fluid becoming a negative pressure when a gap occurs in the pipe portion, the present inventors have It was examined to suppress the generation of negative pressure.
 本発明者らの検討によれば、作動流体の圧力が低い場合に、停止状態にあるポンプ1を駆動させることによって、負圧の発生を抑制できる。具体的には、ポンプ1を駆動させることにより、流体回路14で作動流体を流しながら蒸発器2において作動流体を加熱でき、作動流体の圧力を正圧に保持できる。本発明者らは、さらに検討を進め、以下で説明する制御を想到するに至った。 According to the study by the present inventors, when the pressure of the working fluid is low, the negative pressure can be suppressed by driving the pump 1 in the stopped state. Specifically, by driving the pump 1, the working fluid can be heated in the evaporator 2 while flowing the working fluid in the fluid circuit 14, and the pressure of the working fluid can be maintained at a positive pressure. The present inventors have made further studies and arrived at the control described below.
 以下、図3のフローチャートを参照しつつ、ランキンサイクル装置21の制御について説明する。なお、以下の説明では、フローチャートの開始前において、バイパス弁5は閉じられているものとする。 Hereinafter, the control of the Rankine cycle device 21 will be described with reference to the flowchart of FIG. In the following description, the bypass valve 5 is assumed to be closed before starting the flowchart.
 ステップS1において、制御装置19は、ポンプ1が停止しておりかつ第2圧力センサ8bの検出圧力が第1閾値圧力Pth1未満であるか否かを判断する。ポンプ1が停止しておりかつ第2圧力センサ8bの検出圧力が第1閾値圧力Pth1未満である場合、ステップS2に進む。ポンプ1が駆動されている場合および/または第2圧力センサ8bの検出圧力が第1閾値圧力Pth1以上である場合には、再度ステップS1が実行される。「ポンプ1が駆動されている場合および/または第2圧力センサ8bの検出圧力が第1閾値圧力Pth1以上である場合」は、ポンプ1が駆動されているという条件および第2圧力センサ8bの検出圧力が第1閾値圧力Pth1以上であるという条件の少なくとも一方が成立している場合を意味する。 In step S1, the control device 19 determines whether the pump 1 is stopped and the pressure detected by the second pressure sensor 8b is less than the first threshold pressure Pth1. When the pump 1 is stopped and the pressure detected by the second pressure sensor 8b is less than the first threshold pressure Pth1, the process proceeds to step S2. When the pump 1 is driven and/or when the pressure detected by the second pressure sensor 8b is equal to or higher than the first threshold pressure Pth1, step S1 is executed again. “When the pump 1 is driven and/or when the pressure detected by the second pressure sensor 8b is equal to or higher than the first threshold pressure Pth1”, the condition that the pump 1 is driven and the detection by the second pressure sensor 8b are performed. This means that at least one of the conditions that the pressure is equal to or higher than the first threshold pressure Pth1 is satisfied.
 第1閾値圧力Pth1は、大気圧以上の圧力であり得る。第1閾値圧力Pth1は、発電運転時の第2圧力センサ8bの検出圧力以下の圧力、具体的には該検出圧力よりも低い圧力であり得る。この文脈において、「発電運転時の第2圧力センサ8bの検出圧力」は、過渡状態ではなく定常状態にある圧力の検出値を指す。第1閾値圧力Pth1は、例えば、0.01MPa以上0.2MPa以下である。一具体例では、第1閾値圧力Pth1は、0.05MPaである。 The first threshold pressure Pth1 may be a pressure equal to or higher than atmospheric pressure. The first threshold pressure Pth1 may be a pressure equal to or lower than the detection pressure of the second pressure sensor 8b during the power generation operation, specifically, a pressure lower than the detection pressure. In this context, the "detection pressure of the second pressure sensor 8b during the power generation operation" refers to the detection value of the pressure in the steady state rather than the transient state. The first threshold pressure Pth1 is, for example, 0.01 MPa or more and 0.2 MPa or less. In one specific example, the first threshold pressure Pth1 is 0.05 MPa.
 この例では、最初にステップS1からS2に進んだタイミングを起点として、ステップS1の条件を満足している経過時間がカウントされる。以下、この経過時間を、待機時間と称することがある。 In this example, the elapsed time that satisfies the condition of step S1 is counted starting from the timing when the process first proceeds from step S1 to S2. Hereinafter, this elapsed time may be referred to as a standby time.
 ステップS2において、制御装置19は、待機時間が閾値待機時間Twth以上か否かを判断する。待機時間が閾値待機時間Twth以上である場合、ステップS3に進む。待機時間が閾値待機時間Twth未満である場合、ステップS1に進む。 In step S2, the control device 19 determines whether the waiting time is equal to or longer than the threshold waiting time Twth. When the waiting time is equal to or longer than the threshold waiting time Twth, the process proceeds to step S3. If the waiting time is less than the threshold waiting time Twth, the process proceeds to step S1.
 閾値待機時間Twthは、例えば、0.1分間以上5分間以下である。閾値待機時間Twthの具体例は、1分である。 The threshold wait time Twth is, for example, 0.1 minute or more and 5 minutes or less. A specific example of the threshold waiting time Twth is 1 minute.
 ステップS3において、制御装置19は、バイパス弁5の開度を大きくする。また、ステップS3において、制御装置19は、ポンプ1の駆動を開始する。ステップS3の後、ステップS4に進む。 In step S3, the control device 19 increases the opening degree of the bypass valve 5. Further, in step S3, the control device 19 starts driving the pump 1. It progresses to step S4 after step S3.
 ステップS3の実施後には、作動流体は、ポンプ1、蒸発器2、バイパス弁5および凝縮器4をこの順に循環する。蒸発器2において、蒸発器2に供給される加熱媒体の熱が回収され、その熱により作動流体が加熱される。この加熱により、作動流体の圧力が上昇する。 After execution of step S3, the working fluid circulates through the pump 1, the evaporator 2, the bypass valve 5 and the condenser 4 in this order. In the evaporator 2, the heat of the heating medium supplied to the evaporator 2 is recovered, and the heat heats the working fluid. This heating increases the pressure of the working fluid.
 上述の通り、蒸発器2に供給される加熱媒体は、熱源ガスであり得る。一具体例では、熱源ガスは、乾燥炉、溶鉱炉等の熱容量が大きな設備からの排ガスである。この場合、設備の稼働を停止しても、すぐに排ガスの温度が外気温度付近まで低下することはない。このため、稼働を停止してから暫くの間は、蒸発器2およびその周囲温度は外気温度に比べて高い状態が維持されるため、ポンプ1を駆動させることにより蒸発器2で作動流体を加熱してその圧力を上昇させることが可能である。 As mentioned above, the heating medium supplied to the evaporator 2 may be a heat source gas. In one specific example, the heat source gas is exhaust gas from a facility having a large heat capacity, such as a drying furnace or a blast furnace. In this case, even if the operation of the equipment is stopped, the temperature of the exhaust gas does not immediately drop to near the outside air temperature. For this reason, the evaporator 2 and its ambient temperature are kept higher than the outside air temperature for a while after the operation is stopped. Therefore, by driving the pump 1, the evaporator 2 heats the working fluid. Then, the pressure can be increased.
 ステップS3において、バイパス弁5を全開にしてもいい。ステップS3の実行前においてバイパス弁5の開度がゼロでない場合、例えば該開度が50%以上である場合等には、ステップS3において、必ずしもバイパス弁5の開度を大きくしなくてもよい。場合によっては、ステップS3の前後において、バイパス弁5の開度をゼロに維持してもよい。 In step S3, the bypass valve 5 may be fully opened. If the opening degree of the bypass valve 5 is not zero before execution of step S3, for example, if the opening degree is 50% or more, the opening degree of the bypass valve 5 does not necessarily have to be increased in step S3. .. In some cases, the opening degree of the bypass valve 5 may be maintained at zero before and after step S3.
 ステップS3において、ポンプ1の回転数は、例えば、100rpm以上5000rpm以下に設定される。一具体例では、ステップS3において、ポンプ1の回転数は、1000rpmに設定される。ただし、ポンプの仕様によってその運転回転数範囲は様々であるため、設定される回転数は上記の例に限定されるものではない。 In step S3, the rotation speed of the pump 1 is set to, for example, 100 rpm or more and 5000 rpm or less. In one specific example, in step S3, the rotation speed of the pump 1 is set to 1000 rpm. However, since the operating rotational speed range varies depending on the pump specifications, the rotational speed to be set is not limited to the above example.
 ステップS3の動作を、負圧を防止する制御と考えることが可能である。ステップS3の制御を、第1の負圧防止制御と称することができる。 The operation in step S3 can be considered as control for preventing negative pressure. The control of step S3 can be referred to as first negative pressure prevention control.
 第2圧力センサ8bは、第2回路15bに設けられている。第2回路15bにおける作動流体の圧力は負圧になり易い。このため、第2圧力センサ8bの検出値に基づいて負圧防止制御を行うと、作動流体が負圧になることを抑制する効果が得られ易い。具体的には、第2圧力センサ8bは、第3回路15cに設けられている。 The second pressure sensor 8b is provided in the second circuit 15b. The pressure of the working fluid in the second circuit 15b tends to be a negative pressure. Therefore, if the negative pressure prevention control is performed based on the detection value of the second pressure sensor 8b, it is easy to obtain the effect of suppressing the negative pressure of the working fluid. Specifically, the second pressure sensor 8b is provided in the third circuit 15c.
 ステップS4において、制御装置19は、第2圧力センサ8bの検出圧力が第2閾値圧力Pth2以上であるか否かを判断する。第2圧力センサ8bの検出圧力が第2閾値圧力Pth2以上である場合、ステップS5に進む。第2圧力センサ8bの検出圧力が第2閾値圧力Pth2未満である場合、再度ステップS4が実行される。 In step S4, the control device 19 determines whether the pressure detected by the second pressure sensor 8b is equal to or higher than the second threshold pressure Pth2. When the pressure detected by the second pressure sensor 8b is equal to or higher than the second threshold pressure Pth2, the process proceeds to step S5. When the pressure detected by the second pressure sensor 8b is less than the second threshold pressure Pth2, step S4 is executed again.
 第2閾値圧力Pth2は、大気圧以上の圧力、具体的には大気圧よりも高い圧力であり得る。第2閾値圧力Pth2は、発電運転時の第2圧力センサ8bの検出圧力以下の圧力、具体的には該検出圧力よりも低い圧力であり得る。本実施の形態では、第2閾値圧力Pth2は、第1閾値圧力Pth1よりも高い。第2閾値圧力Pth2は、例えば、0.01MPa以上0.2MPa以下である。一具体例では、第2閾値圧力Pth2は、0.15MPaである。 The second threshold pressure Pth2 may be a pressure equal to or higher than the atmospheric pressure, specifically, a pressure higher than the atmospheric pressure. The second threshold pressure Pth2 may be a pressure equal to or lower than the detection pressure of the second pressure sensor 8b during the power generation operation, specifically, a pressure lower than the detection pressure. In the present embodiment, the second threshold pressure Pth2 is higher than the first threshold pressure Pth1. The second threshold pressure Pth2 is, for example, 0.01 MPa or more and 0.2 MPa or less. In one specific example, the second threshold pressure Pth2 is 0.15 MPa.
 ステップS5において、制御装置19は、ポンプ1を停止する。これにより、ステップS3の負圧防止制御が終了する。 In step S5, the control device 19 stops the pump 1. As a result, the negative pressure prevention control in step S3 ends.
 図3のフローチャートに基づく制御が終了した後に、同制御を再開してもよい。例えば、図3のフローチャートに基づく制御が終了してから所定期間経過後に、同制御を再開してもよい。この点は、後述の実施形態の制御についても同様である。 The control may be restarted after the control based on the flowchart of FIG. 3 is completed. For example, the control may be restarted after a predetermined period has elapsed since the control based on the flowchart of FIG. 3 was completed. This also applies to the control of the embodiment described later.
 以下、他のいくつかの実施の形態について説明する。以下では、既に説明した実施の形態とその後に説明される実施の形態とで共通する要素には同じ参照符号を付し、それらの説明を省略することがある。フローチャートについても同様である。各実施の形態に関する説明は、技術的に矛盾しない限り、相互に適用されうる。技術的に矛盾しない限り、各実施形態は、相互に組み合わされてもよい。 The following describes some other embodiments. In the following, elements common to the embodiments already described and the embodiments to be described later are designated by the same reference numerals, and the description thereof may be omitted. The same applies to the flowchart. The description of each embodiment can be applied to each other as long as there is no technical contradiction. The respective embodiments may be combined with each other as long as there is no technical conflict.
 (実施の形態2)
 図4に、実施の形態2におけるランキンサイクル装置22の構成図を示す。
(Embodiment 2)
FIG. 4 shows a configuration diagram of the Rankine cycle device 22 in the second embodiment.
 ランキンサイクル装置22は、ヒータ10を備える。ヒータ10は、例えば、抵抗加熱ヒータである。 Rankine cycle device 22 includes heater 10. The heater 10 is, for example, a resistance heater.
 ヒータ10は、流体回路14に設けられている。ヒータ10は、流体回路14を流れる作動流体を加熱する。図4の例では、ヒータ10は、循環回路15に設けられている。 The heater 10 is provided in the fluid circuit 14. The heater 10 heats the working fluid flowing through the fluid circuit 14. In the example of FIG. 4, the heater 10 is provided in the circulation circuit 15.
 具体的には、ヒータ10は、循環回路15における、ポンプ1よりも下流側かつ凝縮器4よりも上流側の部分に設けられている。別の言い方をすると、ヒータ10は、循環回路15における、凝縮器4よりも下流側かつポンプ1よりも上流側の部分以外の部分に設けられている。このようにすれば、ヒータ10による加熱によりポンプ1に流入する作動流体が気液二相状態となる事態を招き難く、ポンプ1による作動流体の搬送に不具合が生じ難い。 Specifically, the heater 10 is provided in a portion of the circulation circuit 15 downstream of the pump 1 and upstream of the condenser 4. In other words, the heater 10 is provided in the circulation circuit 15 at a portion other than the portion downstream of the condenser 4 and upstream of the pump 1. With this configuration, the working fluid flowing into the pump 1 due to the heating by the heater 10 is unlikely to be in a gas-liquid two-phase state, and a problem in the transfer of the working fluid by the pump 1 is less likely to occur.
 より具体的には、ヒータ10は、循環回路15における、ポンプ1よりも下流側かつ蒸発器2よりも上流側の部分に設けられている。さらに具体的には、ヒータ10は、循環回路15における、ポンプ1よりも下流側かつ再熱器6よりも上流側の部分に設けられている。 More specifically, the heater 10 is provided in a portion of the circulation circuit 15 downstream of the pump 1 and upstream of the evaporator 2. More specifically, the heater 10 is provided in a portion of the circulation circuit 15 downstream of the pump 1 and upstream of the reheater 6.
 一例では、ヒータ10は、線状形状を有する。ヒータ10は、循環回路15における配管に密着している。配管の長さ方向とヒータ10の長さ方向が一致している。 In one example, the heater 10 has a linear shape. The heater 10 is in close contact with the pipe in the circulation circuit 15. The length direction of the pipe and the length direction of the heater 10 match.
 別例では、ヒータ10は、帯状形状を有する。ヒータ10は、循環回路15における配管の外壁に巻き付けられている。 In another example, the heater 10 has a strip shape. The heater 10 is wound around the outer wall of the pipe in the circulation circuit 15.
 制御装置19は、ヒータ10を制御する。本実施の形態では、制御装置19は、ヒータ10への通電を制御する。ヒータ10への通電がなされているとき、ヒータ10は発熱する。ヒータ10への通電がなされていないとき、ヒータ10は発熱しない。 The control device 19 controls the heater 10. In the present embodiment, the control device 19 controls energization of the heater 10. When electricity is supplied to the heater 10, the heater 10 generates heat. When the heater 10 is not energized, the heater 10 does not generate heat.
 以下、図5のフローチャートを参照しつつ、ランキンサイクル装置22の制御について説明する。 The control of the Rankine cycle device 22 will be described below with reference to the flowchart of FIG.
 実施の形態2では、ステップS3におけるポンプ1の駆動開始からの経過時間がカウントされる。以下、この経過時間を、ポンプ運転時間と称する。 In the second embodiment, the elapsed time from the start of driving the pump 1 in step S3 is counted. Hereinafter, this elapsed time is referred to as a pump operating time.
 実施の形態2では、ステップS4において、第2圧力センサ8bの検出圧力が第2閾値圧力Pth2未満である場合、ステップS6に進む。 In the second embodiment, when the pressure detected by the second pressure sensor 8b is less than the second threshold pressure Pth2 in step S4, the process proceeds to step S6.
 ステップS6において、制御装置19は、ポンプ運転時間が閾値時間Tth以上であるか否かを判断する。ポンプ運転時間が閾値時間Tth以上である場合、ステップS7に進む。ポンプ運転時間が閾値時間Tth未満である場合、ステップS4に進む。 In step S6, the control device 19 determines whether or not the pump operation time is equal to or longer than the threshold time Tth. If the pump operating time is equal to or longer than the threshold time Tth, the process proceeds to step S7. If the pump operating time is less than the threshold time Tth, the process proceeds to step S4.
 閾値時間Tthは、例えば、1分以上10分以下である。閾値時間Tthの具体例は、5分である。 The threshold time Tth is, for example, 1 minute or more and 10 minutes or less. A specific example of the threshold time Tth is 5 minutes.
 ステップS7において、制御装置19により、ヒータ10への通電が開始される。ステップS7におけるヒータ10への通電開始により、ヒータ10による作動流体の加熱が開始される。ステップS7の後、ステップS8に進む。 In step S7, the controller 19 starts energizing the heater 10. When the energization of the heater 10 is started in step S7, the heating of the working fluid by the heater 10 is started. It progresses to step S8 after step S7.
 熱源が工場設備であり、工場設備が長期間停止している場合を考える。その場合、工場設備は周囲の空気により冷却されるため、熱源ガスの温度と外気温度との差が小さいことがある。この差が小さいと、ステップ3によりポンプ1を駆動させても、蒸発器2において作動流体を十分には加熱できず、作動流体の圧力が十分に上昇しないことがある。この点、本実施の形態では、ステップS7において、ヒータ10により作動流体が加熱される。これにより、作動流体の圧力を十分に上昇させることができる。 Consider a case where the heat source is factory equipment and the factory equipment has been down for a long time. In that case, since the factory equipment is cooled by the ambient air, the difference between the temperature of the heat source gas and the outside air temperature may be small. If this difference is small, even if the pump 1 is driven in step 3, the working fluid cannot be sufficiently heated in the evaporator 2, and the pressure of the working fluid may not rise sufficiently. In this respect, in the present embodiment, the working fluid is heated by the heater 10 in step S7. Thereby, the pressure of the working fluid can be sufficiently increased.
 ステップS7の動作を、負圧を防止する制御と考えることが可能である。ステップS7の制御を、第2の負圧防止制御と称することができる。 The operation in step S7 can be considered as control for preventing negative pressure. The control of step S7 can be referred to as second negative pressure prevention control.
 ステップS8において、制御装置19は、第2圧力センサ8bの検出圧力が第2閾値圧力Pth2以上であるか否かを判断する。第2圧力センサ8bの検出圧力が第2閾値圧力Pth2以上である場合、ステップS9に進む。第2圧力センサ8bの検出圧力が第2閾値圧力Pth2未満である場合、再度ステップS8が実行される。 In step S8, the control device 19 determines whether the pressure detected by the second pressure sensor 8b is equal to or higher than the second threshold pressure Pth2. When the pressure detected by the second pressure sensor 8b is equal to or higher than the second threshold pressure Pth2, the process proceeds to step S9. When the pressure detected by the second pressure sensor 8b is less than the second threshold pressure Pth2, step S8 is executed again.
 ステップS9において、制御装置19により、ヒータ10への通電が終了される。ステップS9におけるヒータ10への通電終了により、ヒータ10による作動流体の加熱が終了される。これにより、ステップS7の第2の負圧防止制御が終了する。 In step S9, the controller 19 terminates energization of the heater 10. The heating of the working fluid by the heater 10 is ended by the end of the energization of the heater 10 in step S9. As a result, the second negative pressure prevention control of step S7 ends.
 ステップS9において、制御装置19は、ヒータ10への通電を終了させるとともに、ポンプ1を停止してもよい。 In step S9, the control device 19 may stop energizing the heater 10 and stop the pump 1.
 (実施の形態3)
 図6に、実施の形態3におけるランキンサイクル装置23の構成図を示す。
(Embodiment 3)
FIG. 6 shows a configuration diagram of the Rankine cycle device 23 in the third embodiment.
 ランキンサイクル装置23では、流体回路14は、ショートカット回路17を含む。 In the Rankine cycle device 23, the fluid circuit 14 includes a shortcut circuit 17.
 ランキンサイクル装置23は、弁11を含む。弁11は、ショートカット回路17に設けられている。以下では、弁11を、ショートカット弁11と称する。本実施の形態では、ショートカット弁11は、流量調整弁である。 Rankine cycle device 23 includes valve 11. The valve 11 is provided in the shortcut circuit 17. Hereinafter, the valve 11 will be referred to as a shortcut valve 11. In the present embodiment, the shortcut valve 11 is a flow rate adjusting valve.
 実施の形態3に、図5のフローチャートに基づいた制御を適用可能である。実施の形態3では、図5のステップS7が実行されるときに、制御装置19が、ショートカット弁11の開度を大きくする。これにより、ポンプ1、ショートカット弁11および凝縮器4をこの順に作動流体が循環する。この循環中に、作動流体は、ヒータ10も通る。作動流体は、ヒータ10で加熱される。これにより、作動流体の圧力を上昇させることができる。 The control based on the flowchart of FIG. 5 can be applied to the third embodiment. In the third embodiment, the control device 19 increases the opening degree of the shortcut valve 11 when step S7 of FIG. 5 is executed. As a result, the working fluid circulates through the pump 1, the shortcut valve 11 and the condenser 4 in this order. During this circulation, the working fluid also passes through the heater 10. The working fluid is heated by the heater 10. As a result, the pressure of the working fluid can be increased.
 ポンプ1、ショートカット弁11および凝縮器4をこの順に通る作動流体の循環経路は、ポンプ1、蒸発器2、バイパス弁5および凝縮器4をこの順に通る作動流体の循環経路に比べ、短いため、ポンプ1による作動流体の循環を速やかに実施できる。このような循環経路の短さは、作動流体の圧力をヒータ10で上昇させ易くし得る。 Since the circulation path of the working fluid passing through the pump 1, the shortcut valve 11 and the condenser 4 in this order is shorter than the circulation path of the working fluid passing through the pump 1, the evaporator 2, the bypass valve 5 and the condenser 4 in this order, The working fluid can be circulated quickly by the pump 1. Such a short circulation path may make it easier for the heater 10 to raise the pressure of the working fluid.
 図5のステップS7が実行されるときに、ショートカット弁11を全開にしてもいい。ステップS7の実行前においてショートカット弁11の開度がゼロでない場合、例えば該開度が50%以上である等には、ステップS7が実行されるときに、必ずしもショートカット弁11の開度を大きくしなくてもいい。場合によっては、ステップS7の前後で、ショートカット弁11の開度をゼロに維持してもよい。 The shortcut valve 11 may be fully opened when step S7 of FIG. 5 is executed. When the opening degree of the shortcut valve 11 is not zero before the execution of step S7, for example, when the opening degree is 50% or more, the opening degree of the shortcut valve 11 is not necessarily increased when step S7 is executed. You don't have to. In some cases, the opening degree of the shortcut valve 11 may be maintained at zero before and after step S7.
 (実施の形態4)
 以下、実施の形態4の制御について、図7を参照ながら説明する。実施の形態4の制御は、例えば、実施の形態2のランキンサイクル装置22を用いて実行可能である。
(Embodiment 4)
Hereinafter, the control of the fourth embodiment will be described with reference to FIG. 7. The control of the fourth embodiment can be executed using the Rankine cycle device 22 of the second embodiment, for example.
 図7に示すように、実施の形態4では、ステップS2において、待機時間が閾値待機時間Twth以上である場合、ステップS10に進む。 As shown in FIG. 7, in the fourth embodiment, if the waiting time is equal to or longer than the threshold waiting time Twth in step S2, the process proceeds to step S10.
 ステップS10において、制御装置19は、バイパス弁5の開度を大きくする。ステップS10において、制御装置19により、ヒータ10への通電が開始される。ステップS10におけるヒータ10への通電開始により、ヒータ10による作動流体の加熱が開始される。また、ステップS10において、制御装置19は、ポンプ1の駆動を開始する。ステップS10の後、ステップS4に進む。 In step S10, the control device 19 increases the opening degree of the bypass valve 5. In step S10, the controller 19 starts energizing the heater 10. When the heater 10 is energized in step S10, heating of the working fluid by the heater 10 is started. Further, in step S10, the control device 19 starts driving the pump 1. It progresses to step S4 after step S10.
 ステップS10の実施後には、作動流体は、ポンプ1、ヒータ10、蒸発器2、バイパス弁5および凝縮器4をこの順に循環する。ヒータ10において、作動流体が加熱される。蒸発器2においても、作動流体は加熱され得る。 After execution of step S10, the working fluid circulates through the pump 1, the heater 10, the evaporator 2, the bypass valve 5 and the condenser 4 in this order. The working fluid is heated in the heater 10. The working fluid can also be heated in the evaporator 2.
 ステップS10において、バイパス弁5を全開にしてもいい。ステップS10の実行前においてバイパス弁5の開度がゼロでない場合、例えば該開度が50%以上である場合等には、ステップS10において、バイパス弁5の開度を大きくしなくてもいい。場合によっては、ステップS10の前後において、バイパス弁5の開度をゼロに維持してもよい。 In step S10, the bypass valve 5 may be fully opened. If the opening degree of the bypass valve 5 is not zero before execution of step S10, for example, if the opening degree is 50% or more, it is not necessary to increase the opening degree of the bypass valve 5 in step S10. In some cases, the opening degree of the bypass valve 5 may be maintained at zero before and after step S10.
 場合によっては、ステップS10の前から、制御装置19によりヒータ10への通電を行ってもよい。例えば、待機時間が第1閾値時間となったときに制御装置19によりヒータ10への通電を開始し、待機時間が閾値待機時間Twthとなったときに制御装置19によりポンプ1の駆動を開始してもよい。ここで、第1閾値時間は、閾値待機時間Twthよりも短い。 In some cases, the control device 19 may energize the heater 10 before step S10. For example, when the standby time reaches the first threshold time, the controller 19 starts energizing the heater 10, and when the standby time reaches the threshold standby time Twt, the controller 19 starts driving the pump 1. May be. Here, the first threshold time is shorter than the threshold waiting time Twth.
 あるいは、ステップS10の前から、制御装置19によりポンプ1を駆動させてもよい。例えば、待機時間が第2閾値時間となったときに制御装置19によりポンプ1の駆動を開始し、待機時間が閾値待機時間Twthとなったときに制御装置19によりヒータ10への通電を開始してもよい。ここで、第2閾値時間は、閾値待機時間Twthよりも短い。 Alternatively, the pump 1 may be driven by the control device 19 before step S10. For example, when the standby time reaches the second threshold time, the controller 19 starts driving the pump 1, and when the standby time reaches the threshold standby time Twt, the controller 19 starts energizing the heater 10. May be. Here, the second threshold time is shorter than the threshold waiting time Twth.
 ステップS10において、ポンプ1の回転数は、例えば、100rpm以上5000rpm以下に設定される。一具体例では、ステップS10において、ポンプ1の回転数は、1000rpmに設定される。ただし、ポンプの仕様によってその運転回転数範囲は様々であるため、設定される回転数は上記の例に限定されるものではない。 In step S10, the rotation speed of the pump 1 is set to, for example, 100 rpm or more and 5000 rpm or less. In one specific example, in step S10, the rotation speed of the pump 1 is set to 1000 rpm. However, since the operating rotational speed range varies depending on the pump specifications, the rotational speed to be set is not limited to the above example.
 ステップS10の動作を、負圧を防止する制御と考えることが可能である。ステップS10の制御を、第3の負圧防止制御と称することができる。 The operation in step S10 can be considered as control for preventing negative pressure. The control in step S10 can be referred to as third negative pressure prevention control.
 実施の形態4では、ステップS4において、第2圧力センサ8bの検出圧力が第2閾値圧力Pth2以上である場合、ステップS11に進む。 In the fourth embodiment, if the pressure detected by the second pressure sensor 8b is equal to or higher than the second threshold pressure Pth2 in step S4, the process proceeds to step S11.
 ステップS11において、制御装置19により、ヒータ10への通電が終了される。ステップS11において、制御装置19は、ポンプ1を停止する。ステップS11により、ステップS10の負圧防止制御が終了する。 In step S11, the controller 19 terminates energization of the heater 10. In step S11, the control device 19 stops the pump 1. With step S11, the negative pressure prevention control of step S10 ends.
 熱源が工場設備であり、工場設備が長期間停止している場合には、熱源ガスの温度と外気温度との差が実質的にない場合がある。この場合、ポンプ1を駆動させても、蒸発器2では作動流体は実質的に加熱されない。このため、蒸発器2は、作動流体の圧力上昇に実質的に寄与しない。 If the heat source is factory equipment and the factory equipment has been stopped for a long time, there may be substantially no difference between the temperature of the heat source gas and the outside air temperature. In this case, even if the pump 1 is driven, the working fluid is not substantially heated in the evaporator 2. Therefore, the evaporator 2 does not substantially contribute to the pressure increase of the working fluid.
 この点、実施の形態4によれば、蒸発器2が作動流体の温度上昇および圧力上昇に寄与しない場合であっても、ヒータ10により、作動流体の温度および圧力を上昇させることができる。 In this respect, according to the fourth embodiment, even if the evaporator 2 does not contribute to the temperature rise and the pressure rise of the working fluid, the heater 10 can raise the temperature and the pressure of the working fluid.
 (実施の形態5)
 実施の形態4の制御を、実施の形態3のランキンサイクル23を用いて行うことも可能である。実施の形態4の制御を実施の形態3のランキンサイクル23を用いて行う形態を、実施の形態5と称する。
(Embodiment 5)
It is also possible to perform the control of the fourth embodiment by using the Rankine cycle 23 of the third embodiment. A mode of performing the control of the fourth embodiment by using the Rankine cycle 23 of the third embodiment is referred to as a fifth embodiment.
 実施の形態5において、図7のステップS10が実行されるときに、ショートカット弁11の開度を大きくしてもよく、全開にしてもいい。ステップS10の実行前においてショートカット弁11の開度がゼロでない場合、例えば該開度が50%以上である等には、ステップS10が実行されるときに、ショートカット弁11の開度を大きくしなくてもいい。場合によっては、ステップS10の前後で、ショートカット弁11の開度をゼロに維持してもよい。 In the fifth embodiment, when step S10 of FIG. 7 is executed, the opening degree of the shortcut valve 11 may be increased or may be fully opened. If the opening degree of the shortcut valve 11 is not zero before execution of step S10, for example, if the opening degree is 50% or more, the opening degree of the shortcut valve 11 should not be increased when step S10 is executed. You can In some cases, the opening degree of the shortcut valve 11 may be maintained at zero before and after step S10.
 実施の形態5において、図7のステップS10以後において、ショートカット弁11の開度が非ゼロでありかつバイパス弁5の開度がゼロである形態も採用され得る。このようすると、ステップS10の実施後には、作動流体は、ポンプ1、ヒータ10、ショートカット弁11および凝縮器4をこの順に循環する。ヒータ10において、作動流体が加熱される。この加熱により、作動流体の圧力が上昇する。 In the fifth embodiment, after step S10 of FIG. 7, a mode in which the opening degree of the shortcut valve 11 is non-zero and the opening degree of the bypass valve 5 is zero can also be adopted. In this way, after the execution of step S10, the working fluid circulates through the pump 1, the heater 10, the shortcut valve 11 and the condenser 4 in this order. The working fluid is heated in the heater 10. This heating increases the pressure of the working fluid.
 (実施の形態1から5に適用可能な技術)
 上述の例では、実施の形態1から5のステップS1において、第2圧力センサ8bの検出圧力が第1閾値圧力Pth1未満であるか否かを判断している。ただし、この判断を行う代わりに、第2温度センサ9bの検出温度が第1閾値温度未満であるか否かを判断してもよい。また、この判断を行う代わりに、第3温度センサ9cの検出温度が第2閾値温度未満であるか否かを判断してもよい。第2温度センサ9bの検出温度および第3温度センサ9cの検出温度は、作動流体の圧力が負圧になることを防止するための有効な指標となり得るためである。
(Technology applicable to Embodiments 1 to 5)
In the above example, in step S1 of the first to fifth embodiments, it is determined whether the pressure detected by the second pressure sensor 8b is less than the first threshold pressure Pth1. However, instead of making this determination, it may be determined whether the temperature detected by the second temperature sensor 9b is lower than the first threshold temperature. Instead of making this determination, it may be determined whether the temperature detected by the third temperature sensor 9c is lower than the second threshold temperature. This is because the temperature detected by the second temperature sensor 9b and the temperature detected by the third temperature sensor 9c can be effective indices for preventing the pressure of the working fluid from becoming negative.
 実施の形態1から5のステップS1で用いられている第2圧力センサ8bの検出圧力は、ランキンサイクルの低圧側の検出圧力である。ステップS1において、ランキンサイクルの高圧側の検出圧力を用いてもよい。具体的には、ステップS1において、第1圧力センサ8aの検出圧力が第3閾値圧力未満であるか否かを判断してもよい。高圧側の検出圧力も、作動流体の圧力が負圧になることを防止するための有効な指標となり得るためである。ポンプ1が停止しているときには低圧側の圧力と高圧側の圧力とは近い値になることもあり得る。 The pressure detected by the second pressure sensor 8b used in step S1 of the first to fifth embodiments is the pressure detected on the low pressure side of the Rankine cycle. In step S1, the detected pressure on the high pressure side of the Rankine cycle may be used. Specifically, in step S1, it may be determined whether the pressure detected by the first pressure sensor 8a is less than the third threshold pressure. This is because the detected pressure on the high pressure side can also be an effective index for preventing the pressure of the working fluid from becoming negative. When the pump 1 is stopped, the low-pressure side pressure and the high-pressure side pressure may be close to each other.
 また、ステップS1において、ランキンサイクルの高圧側の検出温度を用いてもよい。具体的には、ステップS1において、第1温度センサ9aの検出温度が第3閾値温度未満であるか否かを判断してもよい。高圧側の検出温度も、作動流体の圧力が負圧になることを防止するための有効な指標となり得るためである。ポンプ1が停止しているときには低圧側の温度と高圧側の温度とは近い値になることもあり得る。 Also, the detected temperature on the high pressure side of the Rankine cycle may be used in step S1. Specifically, in step S1, it may be determined whether or not the temperature detected by the first temperature sensor 9a is lower than the third threshold temperature. This is because the detected temperature on the high pressure side can also be an effective index for preventing the pressure of the working fluid from becoming a negative pressure. When the pump 1 is stopped, the low-pressure side temperature and the high-pressure side temperature may be close to each other.
 具体的には、一変形例に係るステップS1では、制御装置19は、ポンプ1が停止しておりかつ第2温度センサ9bの検出温度が第1閾値温度未満であるか否かを判断する。ポンプ1が停止しておりかつ第2温度センサ9bの検出温度が第1閾値温度未満である場合、ステップS2に進む。ポンプ1が駆動されている場合および/または第2温度センサ9bの検出温度が第1閾値温度以上である場合には、再度ステップS1が実行される。第1閾値温度は、大気圧における作動流体の沸点以上の温度、具体的には該沸点よりも高い温度であり得る。第1閾値温度は、発電運転時の第2温度センサ9bの検出温度以下の温度、具体的には該検出温度よりも低い温度であり得る。第1閾値温度は、例えば、大気圧における作動流体の沸点にマージンを足した値である。マージンは、例えば、0℃以上5℃以下である。 Specifically, in step S1 according to a modification, the control device 19 determines whether the pump 1 is stopped and the temperature detected by the second temperature sensor 9b is lower than the first threshold temperature. When the pump 1 is stopped and the temperature detected by the second temperature sensor 9b is lower than the first threshold temperature, the process proceeds to step S2. When the pump 1 is driven and/or when the temperature detected by the second temperature sensor 9b is equal to or higher than the first threshold temperature, step S1 is executed again. The first threshold temperature may be a temperature equal to or higher than the boiling point of the working fluid at atmospheric pressure, specifically, a temperature higher than the boiling point. The first threshold temperature may be a temperature equal to or lower than the detection temperature of the second temperature sensor 9b during the power generation operation, specifically, a temperature lower than the detection temperature. The first threshold temperature is, for example, a value obtained by adding a margin to the boiling point of the working fluid at atmospheric pressure. The margin is, for example, 0° C. or more and 5° C. or less.
 一変形例に係るステップS1では、制御装置19は、ポンプ1が停止しておりかつ第3温度センサ9cの検出温度が第2閾値温度未満であるか否かを判断する。ポンプ1が停止しておりかつ第3温度センサ9cの検出温度が第2閾値温度未満である場合、ステップS2に進む。ポンプ1が駆動されている場合および/または第3温度センサ9cの検出温度が第2閾値温度以上である場合には、再度ステップS1が実行される。第2閾値温度は、大気圧における作動流体の沸点以上の温度、具体的には該沸点よりも高い温度であり得る。第2閾値温度は、例えば、大気圧における作動流体の沸点にマージンを足した値である。マージンは、例えば、0℃以上5℃以下である。 In step S1 according to the modified example, the control device 19 determines whether the pump 1 is stopped and the temperature detected by the third temperature sensor 9c is lower than the second threshold temperature. When the pump 1 is stopped and the temperature detected by the third temperature sensor 9c is lower than the second threshold temperature, the process proceeds to step S2. When the pump 1 is driven and/or when the temperature detected by the third temperature sensor 9c is equal to or higher than the second threshold temperature, step S1 is executed again. The second threshold temperature may be a temperature equal to or higher than the boiling point of the working fluid at atmospheric pressure, specifically, a temperature higher than the boiling point. The second threshold temperature is, for example, a value obtained by adding a margin to the boiling point of the working fluid at atmospheric pressure. The margin is, for example, 0° C. or more and 5° C. or less.
 一変形例に係るステップS1では、制御装置19は、ポンプ1が停止しておりかつ第1圧力センサ8aの検出圧力が第3閾値圧力未満であるか否かを判断する。ポンプ1が停止しておりかつ第1圧力センサ8aの検出圧力が第3閾値圧力未満である場合、ステップS2に進む。ポンプ1が駆動されている場合および/または第1圧力センサ8aの検出圧力が第3閾値圧力以上である場合には、再度ステップS1が実行される。第3閾値圧力は、大気圧以上の圧力、具体的には大気圧よりも高い圧力であり得る。第3閾値圧力は、発電運転時の第1圧力センサ8aの検出圧力以下の圧力、具体的には該検出圧力よりも低い圧力であり得る。第3閾値圧力として、第1閾値圧力と同じ値を採用できる。 In step S1 according to the modification, the control device 19 determines whether the pump 1 is stopped and the pressure detected by the first pressure sensor 8a is less than the third threshold pressure. When the pump 1 is stopped and the pressure detected by the first pressure sensor 8a is less than the third threshold pressure, the process proceeds to step S2. When the pump 1 is driven and/or when the pressure detected by the first pressure sensor 8a is equal to or higher than the third threshold pressure, step S1 is executed again. The third threshold pressure may be a pressure equal to or higher than atmospheric pressure, specifically a pressure higher than atmospheric pressure. The third threshold pressure may be a pressure equal to or lower than the detection pressure of the first pressure sensor 8a during the power generation operation, specifically, a pressure lower than the detection pressure. The same value as the first threshold pressure can be adopted as the third threshold pressure.
 一変形例に係るステップS1では、制御装置19は、ポンプ1が停止しておりかつ第1温度センサ9aの検出温度が第3閾値温度未満であるか否かを判断する。ポンプ1が停止しておりかつ第1温度センサ9aの検出温度が第3閾値温度未満である場合、ステップS2に進む。ポンプ1が駆動されている場合および/または第1温度センサ9aの検出温度が第3閾値温度以上である場合には、再度ステップS1が実行される。第3閾値温度は、大気圧における作動流体の沸点以上の温度、具体的には該沸点よりも高い温度であり得る。第3閾値温度は、発電運転時の第1温度センサ9aの検出温度以下の温度、具体的には該検出温度よりも低い温度であり得る。第3閾値温度は、例えば、大気圧における作動流体の沸点にマージンを足した値である。マージンは、例えば、0℃以上5℃以下の範囲の値である。 In step S1 according to a modification, the control device 19 determines whether the pump 1 is stopped and the temperature detected by the first temperature sensor 9a is lower than the third threshold temperature. When the pump 1 is stopped and the temperature detected by the first temperature sensor 9a is lower than the third threshold temperature, the process proceeds to step S2. When the pump 1 is driven and/or when the temperature detected by the first temperature sensor 9a is equal to or higher than the third threshold temperature, step S1 is executed again. The third threshold temperature may be a temperature equal to or higher than the boiling point of the working fluid at atmospheric pressure, specifically, a temperature higher than the boiling point. The third threshold temperature may be a temperature equal to or lower than the detection temperature of the first temperature sensor 9a during the power generation operation, specifically, a temperature lower than the detection temperature. The third threshold temperature is, for example, a value obtained by adding a margin to the boiling point of the working fluid at atmospheric pressure. The margin is, for example, a value in the range of 0° C. or higher and 5° C. or lower.
 上述の例では、実施の形態1から5のステップS4において、第2圧力センサ8bの検出圧力が第2閾値圧力Pth2以上であるか否かを判断している。ただし、この判断を行う代わりに、第2温度センサ9bの検出温度が第4閾値温度以上であるか否かを判断してもよい。この判断を行う代わりに、第1温度センサ9aの検出温度が第5閾値温度以上であるか否かを判断してもよい。 In the above example, in step S4 of the first to fifth embodiments, it is determined whether the pressure detected by the second pressure sensor 8b is equal to or higher than the second threshold pressure Pth2. However, instead of making this determination, it may be determined whether the temperature detected by the second temperature sensor 9b is equal to or higher than the fourth threshold temperature. Instead of making this determination, it may be determined whether the temperature detected by the first temperature sensor 9a is equal to or higher than the fifth threshold temperature.
 具体的には、一変形例に係るステップS4では、制御装置19は、第2温度センサ9bの検出温度が第4閾値温度以上であるか否かを判断する。第2温度センサ9bの検出温度が第4閾値温度以上である場合、ステップS5またはステップS11に進む。第2温度センサ9bの検出温度が第4閾値温度未満である場合、再度ステップS4が実行されるまたはステップS6に進む。第4閾値温度は、大気圧における作動流体の沸点以上の温度、具体的には該沸点よりも高い温度であり得る。第4閾値温度は、発電運転時の第2温度センサ9bの検出温度以下の温度、具体的には該検出温度よりも低い温度であり得る。第4閾値温度は、第1閾値温度よりも高い温度であり得る。第4閾値温度は、例えば、大気圧における作動流体の沸点にマージンを足した値である。マージンは、例えば、0℃以上5℃以下の範囲の値である。 Specifically, in step S4 according to the modified example, the control device 19 determines whether the temperature detected by the second temperature sensor 9b is equal to or higher than the fourth threshold temperature. When the temperature detected by the second temperature sensor 9b is equal to or higher than the fourth threshold temperature, the process proceeds to step S5 or step S11. When the temperature detected by the second temperature sensor 9b is lower than the fourth threshold temperature, step S4 is executed again or the process proceeds to step S6. The fourth threshold temperature may be a temperature equal to or higher than the boiling point of the working fluid at atmospheric pressure, specifically, a temperature higher than the boiling point. The fourth threshold temperature may be a temperature equal to or lower than the detection temperature of the second temperature sensor 9b during the power generation operation, specifically, a temperature lower than the detection temperature. The fourth threshold temperature may be higher than the first threshold temperature. The fourth threshold temperature is, for example, a value obtained by adding a margin to the boiling point of the working fluid at atmospheric pressure. The margin is, for example, a value in the range of 0° C. or higher and 5° C. or lower.
 一変形例に係るステップS4では、制御装置19は、第1温度センサ9aの検出温度が第5閾値温度以上であるか否かを判断する。第1温度センサ9aの検出温度が第5閾値温度以上である場合、ステップS5またはステップS11に進む。第1温度センサ9aの検出温度が第5閾値温度未満である場合、再度ステップS4が実行されるまたはステップS6に進む。第5閾値温度は、大気圧における作動流体の沸点以上の温度、具体的には該沸点よりも高い温度であり得る。第5閾値温度は、発電運転時の第1温度センサ9aの検出温度以下の温度、具体的には該検出温度よりも低い温度であり得る。第5閾値温度は、第2閾値温度よりも高い温度であり得る。第5閾値温度は、例えば、大気圧における作動流体の沸点にマージンを足した値である。マージンは、例えば、0℃以上5℃以下の範囲の値である。 In step S4 according to the modification, the control device 19 determines whether the temperature detected by the first temperature sensor 9a is equal to or higher than the fifth threshold temperature. When the temperature detected by the first temperature sensor 9a is equal to or higher than the fifth threshold temperature, the process proceeds to step S5 or step S11. When the temperature detected by the first temperature sensor 9a is lower than the fifth threshold temperature, step S4 is executed again or the process proceeds to step S6. The fifth threshold temperature may be a temperature equal to or higher than the boiling point of the working fluid at atmospheric pressure, specifically, a temperature higher than the boiling point. The fifth threshold temperature may be a temperature equal to or lower than the detection temperature of the first temperature sensor 9a during the power generation operation, specifically, a temperature lower than the detection temperature. The fifth threshold temperature may be higher than the second threshold temperature. The fifth threshold temperature is, for example, a value obtained by adding a margin to the boiling point of the working fluid at atmospheric pressure. The margin is, for example, a value in the range of 0° C. or higher and 5° C. or lower.
 上述の例では、ステップS6において、制御装置19は、ポンプ運転時間が閾値時間Tth以上であるか否かを判断する。ポンプ運転時間に基づいた判断を、実施の形態1,4および5のステップS4に適用することも可能である。 In the example described above, in step S6, the control device 19 determines whether the pump operation time is equal to or longer than the threshold time Tth. It is also possible to apply the judgment based on the pump operating time to step S4 of the first, fourth and fifth embodiments.
 具体的には、実施の形態1の一変形例に係るステップS4では、制御装置19は、ポンプ運転時間が閾値時間Tth以上であるか否かを判断する。ポンプ運転時間が閾値時間Tth以上である場合、ステップS5に進む。ポンプ運転時間が閾値時間Tth未満である場合、再度ステップS4が実行される。 Specifically, in step S4 according to the modified example of the first embodiment, the control device 19 determines whether or not the pump operation time is equal to or longer than the threshold time Tth. If the pump operating time is equal to or longer than the threshold time Tth, the process proceeds to step S5. When the pump operating time is less than the threshold time Tth, step S4 is executed again.
 実施の形態4および5の一変形例に係るステップS4では、制御装置19は、ポンプ運転時間が閾値時間Tth以上であるか否かを判断する。ポンプ運転時間が閾値時間Tth以上である場合、ステップS11に進む。ポンプ運転時間が閾値時間Tth未満である場合、再度ステップS4が実行される。 In step S4 according to the modification of the fourth and fifth embodiments, the control device 19 determines whether or not the pump operation time is equal to or longer than the threshold time Tth. If the pump operating time is equal to or longer than the threshold time Tth, the process proceeds to step S11. When the pump operating time is less than the threshold time Tth, step S4 is executed again.
 上述の例では、実施の形態2および3のステップS8において、第2圧力センサ8bの検出圧力が第2閾値圧力Pth2以上であるか否かを判断している。ただし、この判断を行う代わりに、第2温度センサ9bの検出温度が第4閾値温度以上であるか否かを判断してもよい。この判断を行う代わりに、第1温度センサ9aの検出温度が第5閾値温度以上であるか否かを判断してもよい。 In the above example, in step S8 of the second and third embodiments, it is determined whether the pressure detected by the second pressure sensor 8b is equal to or higher than the second threshold pressure Pth2. However, instead of making this determination, it may be determined whether the temperature detected by the second temperature sensor 9b is equal to or higher than the fourth threshold temperature. Instead of making this determination, it may be determined whether the temperature detected by the first temperature sensor 9a is equal to or higher than the fifth threshold temperature.
 具体的には、一変形例に係るステップS8では、制御装置19は、第2温度センサ9bの検出温度が第4閾値温度以上であるか否かを判断する。第2温度センサ9bの検出温度が第4閾値温度以上である場合、ステップS9に進む。第2温度センサ9bの検出温度が第4閾値温度未満である場合、再度ステップS8が実行される。 Specifically, in step S8 according to the modified example, the control device 19 determines whether the temperature detected by the second temperature sensor 9b is equal to or higher than the fourth threshold temperature. When the temperature detected by the second temperature sensor 9b is equal to or higher than the fourth threshold temperature, the process proceeds to step S9. When the temperature detected by the second temperature sensor 9b is lower than the fourth threshold temperature, step S8 is executed again.
 一変形例に係るステップS8では、制御装置19は、第1温度センサ9aの検出温度が第5閾値温度以上であるか否かを判断する。第1温度センサ9aの検出温度が第5閾値温度以上である場合、ステップS9に進む。第1温度センサ9aの検出温度が第5閾値温度未満である場合、再度ステップS8が実行される。 In step S8 according to the modification, the control device 19 determines whether the temperature detected by the first temperature sensor 9a is equal to or higher than the fifth threshold temperature. When the temperature detected by the first temperature sensor 9a is equal to or higher than the fifth threshold temperature, the process proceeds to step S9. When the temperature detected by the first temperature sensor 9a is lower than the fifth threshold temperature, step S8 is executed again.
 上述の例では、実施の形態1から3のステップS1において、制御装置19は、ポンプ1が停止しておりかつ第2圧力センサ8bの検出圧力が第1閾値圧力Pth1未満であるか否かを判断する。ただし、ステップS1において、制御装置19は、ポンプ1が停止しており、第2圧力センサ8bの検出圧力が第1閾値圧力Pth1未満であり、かつ、第4温度センサ9dの検出温度が第3温度センサ9cの検出温度よりも高いか否かを判断してもよい。第4温度センサ9dの検出温度が第3温度センサ9cの検出温度よりも高いか否かを判断することによって、ステップS3の実行時に蒸発器2で作動流体を加熱可能か否かを確かめることができる。蒸発器2の温度(具体的には、蒸発器2を構成する構造部の温度)を検出する温度センサを設け、その温度センサの検出温度を第4温度センサ9dの検出温度に代えて用いてもよい。なお、同様の改変は、実施の形態4および5にも適用可能である。 In the above-described example, in step S1 of Embodiments 1 to 3, the control device 19 determines whether the pump 1 is stopped and the pressure detected by the second pressure sensor 8b is less than the first threshold pressure Pth1. to decide. However, in step S1, the control device 19 determines that the pump 1 is stopped, the pressure detected by the second pressure sensor 8b is less than the first threshold pressure Pth1, and the temperature detected by the fourth temperature sensor 9d is the third. You may judge whether it is higher than the detection temperature of the temperature sensor 9c. By determining whether or not the temperature detected by the fourth temperature sensor 9d is higher than the temperature detected by the third temperature sensor 9c, it is possible to confirm whether or not the working fluid can be heated by the evaporator 2 when step S3 is executed. it can. A temperature sensor for detecting the temperature of the evaporator 2 (specifically, the temperature of the structural portion forming the evaporator 2) is provided, and the temperature detected by the temperature sensor is used instead of the temperature detected by the fourth temperature sensor 9d. Good. The same modification can be applied to the fourth and fifth embodiments.
 具体的には、一変形例に係るステップS1では、制御装置19は、実施の形態1から3のステップS1の条件に加え、第4温度センサ9dの検出温度が第3温度センサ9cの検出温度よりも高いか否かを判断する。実施の形態1から3のステップS1の条件が成立しており、かつ、第4温度センサ9dの検出温度が第3温度センサ9cの検出温度よりも高い場合、ステップS2に進む。実施の形態1から3のステップS1の条件が成立していない、および/または、第4温度センサ9dの検出温度が第3温度センサ9cの検出温度以下である場合には、再度ステップS1が実行される。なお、同様の改変は、実施の形態4および5にも適用可能である。さらに、同様の改変は、上述した変形例にも適用可能である。 Specifically, in step S1 according to the modified example, in addition to the conditions of step S1 of the first to third embodiments, the control device 19 determines that the temperature detected by the fourth temperature sensor 9d is the temperature detected by the third temperature sensor 9c. Is higher than. When the conditions of step S1 of Embodiments 1 to 3 are satisfied and the temperature detected by the fourth temperature sensor 9d is higher than the temperature detected by the third temperature sensor 9c, the process proceeds to step S2. When the condition of step S1 of the first to third embodiments is not satisfied and/or the temperature detected by the fourth temperature sensor 9d is equal to or lower than the temperature detected by the third temperature sensor 9c, step S1 is executed again. To be done. The same modification can be applied to the fourth and fifth embodiments. Furthermore, the same modification can be applied to the above-described modified example.
 上述の例では、バイパス弁5およびショートカット弁11は、流量可変型の弁である。ただし、バイパス弁5およびショートカット弁11は、電磁弁のような開閉弁であってもよい。開閉弁は、開度が0%および100%の2値のいずれかに設定される弁を指す。 In the above example, the bypass valve 5 and the shortcut valve 11 are variable flow rate type valves. However, the bypass valve 5 and the shortcut valve 11 may be opening/closing valves such as solenoid valves. The on-off valve refers to a valve whose opening degree is set to either of 0% and 100%.
 バイパス弁5および/またはショートカット弁11として、電動ボールバルブを採用可能である。電動ボールバルブは、弁の部分と弁前後の配管とで流路断面積の変化が小さい。このため、電動ボールバルブによれば、作動流体を循環させる際の流路抵抗を小さくすることができる。 An electric ball valve can be adopted as the bypass valve 5 and/or the shortcut valve 11. The electric ball valve has a small change in the flow passage cross-sectional area between the valve portion and the piping before and after the valve. Therefore, according to the electric ball valve, the flow path resistance when circulating the working fluid can be reduced.
 ランキンサイクル装置の発電運転において、作動流体は、膨張機3を介して循環する。このことは、膨張機3および発電機18による発電を可能にする。 During the power generation operation of the Rankine cycle device, the working fluid circulates through the expander 3. This enables power generation by the expander 3 and the generator 18.
 一方、ランキンサイクル装置が発電を行っていないときにおいて、作動流体が膨張機3を介して循環することは必須ではない。一具体例では、図3および図5のステップS3ならびに図7のステップS10の後において、作動流体は、ポンプ1および蒸発器2に加えてバイパス回路16を介して循環する。これにより、作動流は、スムーズに流れ得る。ステップS3およびステップS10の後において、バイパス弁5の開度は100%であってもよく、100%未満であってもよい。 On the other hand, it is not essential for the working fluid to circulate through the expander 3 when the Rankine cycle device is not generating power. In one embodiment, after step S3 of FIGS. 3 and 5 and step S10 of FIG. 7, the working fluid circulates through bypass circuit 16 in addition to pump 1 and evaporator 2. This allows the working flow to flow smoothly. After steps S3 and S10, the opening degree of the bypass valve 5 may be 100% or less than 100%.
 ステップS3およびステップS10の後におけるバイパス弁5の開度が100%であることは、ポンプ1、蒸発器2およびバイパス回路16を介した作動流体の流れをスムーズにする観点から有利である。この場合、蒸発器2により作動流体が加熱され易い。 The opening degree of the bypass valve 5 after step S3 and step S10 being 100% is advantageous from the viewpoint of smoothing the flow of the working fluid through the pump 1, the evaporator 2 and the bypass circuit 16. In this case, the working fluid is easily heated by the evaporator 2.
 一方、ステップS3およびステップS10の後におけるバイパス弁5の開度が100%未満であることは、開度が100%である場合に比べ、凝縮器4に流入する作動流体の温度を低下させる観点から有利である。この場合、凝縮器4において作動流体が凝縮し易く、気液二相の作動流体がポンプ1に流入し難く、ポンプ1で不具合が生じ難い。 On the other hand, the fact that the opening degree of the bypass valve 5 after step S3 and step S10 is less than 100% means that the temperature of the working fluid flowing into the condenser 4 is lowered as compared with the case where the opening degree is 100%. Is advantageous. In this case, the working fluid is likely to be condensed in the condenser 4, the gas-liquid two-phase working fluid is unlikely to flow into the pump 1, and the pump 1 is unlikely to cause a problem.
 ステップS3およびステップS10の後において、膨張機3の回転数を制御することにより、膨張機3への作動流体の流入を抑制することも可能である。上述の例では、膨張機3の回転軸と発電機18の回転軸とが連結されている。このため、膨張機3の回転数の制御は、発電機18の回転数を制御することにより実現できる。発電機18の回転数の制御は、例えば、制御装置19により実現できる。一具体例では、図示しないPWM(Pulse Width Modulation)インバータが、発電機18に接続されている。そして、制御装置19は、PWMインバータを用いて発電機18の回転数をPWM制御する。なお、発電運転時には、PWM制御により発電機18の回転数することで、発電量を制御することも可能である。 After step S3 and step S10, it is possible to suppress the inflow of the working fluid into the expander 3 by controlling the rotation speed of the expander 3. In the above example, the rotary shaft of the expander 3 and the rotary shaft of the generator 18 are connected. Therefore, control of the rotation speed of the expander 3 can be realized by controlling the rotation speed of the generator 18. The control of the rotation speed of the generator 18 can be realized by the control device 19, for example. In one specific example, a PWM (Pulse Width Modulation) inverter (not shown) is connected to the generator 18. Then, the control device 19 PWM-controls the rotation speed of the generator 18 using the PWM inverter. During the power generation operation, it is also possible to control the amount of power generation by rotating the generator 18 by PWM control.
 上述の通り、循環回路15における蒸発器2よりも下流側かつ膨張機3よりも上流側の部分には、バイパス回路16が接続されている。循環回路15における上記接続部よりも下流側かつ膨張機3よりも上流側の部分に、弁を設けてもよい。このようにすれば、弁を閉じることによって、膨張機3への作動流体の流入を防止できる。例えば、ステップS3およびステップS10において、弁を閉じることができる。 As described above, the bypass circuit 16 is connected to the portion of the circulation circuit 15 downstream of the evaporator 2 and upstream of the expander 3. A valve may be provided in a portion of the circulation circuit 15 that is downstream of the connection and upstream of the expander 3. By doing so, the flow of the working fluid into the expander 3 can be prevented by closing the valve. For example, in steps S3 and S10, the valve can be closed.
 第1の負圧防止制御、第2の負圧防止制御および第3の負圧防止制御を行っているときに、凝縮器4のファン7を停止させてもよい。これにより、作動流体は外気温度の影響を受け難くなり、作動流体の圧力が上昇し易くなるあるいは低下し難くなる。 The fan 7 of the condenser 4 may be stopped while the first negative pressure prevention control, the second negative pressure prevention control, and the third negative pressure prevention control are being performed. As a result, the working fluid is less likely to be affected by the outside air temperature, and the pressure of the working fluid is more likely to increase or less likely to decrease.
 第1の負圧防止制御、第2の負圧防止制御および第3の負圧防止制御を行っているときに、ファン7を動作させてもよい。これにより、ポンプ1に気液二相の作動流体が流入し難くなる。例えば、凝縮器4に流入する作動流体の温度が高く、作動流体を凝縮させる能力を向上させるべき場合に、ファン7を動作させることができる。 The fan 7 may be operated while performing the first negative pressure prevention control, the second negative pressure prevention control, and the third negative pressure prevention control. This makes it difficult for the gas-liquid two-phase working fluid to flow into the pump 1. For example, the fan 7 can be operated when the temperature of the working fluid flowing into the condenser 4 is high and the ability to condense the working fluid should be improved.
 センサを用いてファン7を制御することも可能である。一例では、第2圧力センサ8bの検出値および第2温度センサ9bの検出値に基づいて、ファン7が制御される。一具体例では、第2圧力センサ8bの検出値および第2温度センサ9bの検出値に基づいて作動流体の過冷却度が計算され、その過冷却度に基づいてファン7が制御される。ファン7が制御されるとは、ファン7の回転数が制御される形態と、ファン7を駆動させるか停止させるかが制御される形態と、の両方を包含する表現である。 It is also possible to control the fan 7 using a sensor. In one example, the fan 7 is controlled based on the detection value of the second pressure sensor 8b and the detection value of the second temperature sensor 9b. In one specific example, the degree of supercooling of the working fluid is calculated based on the detection value of the second pressure sensor 8b and the detection value of the second temperature sensor 9b, and the fan 7 is controlled based on the degree of supercooling. Controlling the fan 7 is an expression that includes both a form in which the rotation speed of the fan 7 is controlled and a form in which whether the fan 7 is driven or stopped is controlled.
 (上述の説明に係る技術)
 以上の説明から理解されるように、上述の説明に係るランキンサイクル装置21から23は、センサの検出値が第1閾値よりも低いときに、第1制御を開始する。第1制御は、作動流体を、ポンプ1により、蒸発器2および/またはヒータ10を介して循環させる制御である。このようなランキンサイクル装置は、作動流体の圧力が負圧になることを防止するのに適している。このことは、ランキンサイクル装置の信頼性確保に寄与する。具体的には、第1制御は、作動流体を、ポンプ1により、蒸発器2および/または発熱状態にあるヒータ10を介して循環させる制御である。一具体例では、第1制御は、作動流体を、ポンプ1により、作動流体を加熱可能な状態にある蒸発器2および/または発熱状態にあるヒータ10を介して循環させる制御である。
(Technology related to the above description)
As can be understood from the above description, the Rankine cycle devices 21 to 23 according to the above description start the first control when the detection value of the sensor is lower than the first threshold value. The first control is control in which the working fluid is circulated by the pump 1 via the evaporator 2 and/or the heater 10. Such a Rankine cycle device is suitable for preventing the pressure of the working fluid from becoming a negative pressure. This contributes to ensuring the reliability of the Rankine cycle device. Specifically, the first control is control in which the working fluid is circulated by the pump 1 via the evaporator 2 and/or the heater 10 in a heat generation state. In one specific example, the first control is control in which the working fluid is circulated by the pump 1 via the evaporator 2 in a state in which the working fluid can be heated and/or the heater 10 in a heating state.
 ここで、第1制御を開始するとは、ポンプ1の駆動開始がヒータ10の発熱開始の前である形態と、ポンプ1の駆動開始がヒータ10の発熱開始と同時である形態と、ポンプ1の駆動開始がヒータ10の発熱開始の後である形態と、を包含する概念である。典型例では、第1制御の開始と、ポンプ1の駆動開始とが、同時である。 Here, starting the first control means that the driving of the pump 1 is started before the heat generation of the heater 10 is started, the driving of the pump 1 is started simultaneously with the heat generation of the heater 10, and the first control is started. It is a concept including a form in which the driving is started after the heat generation of the heater 10 is started. In a typical example, the start of the first control and the start of driving the pump 1 are simultaneous.
 また、「作動流体を、ポンプ1により、蒸発器2および/またはヒータ10を介して循環させる」という表現は、ヒータ10の存在が必須であることを意味しない。第1の実施形態から理解されるように、ヒータ10がなくても、第1制御は実行できる。 Also, the expression “circulating the working fluid by the pump 1 through the evaporator 2 and/or the heater 10” does not mean that the presence of the heater 10 is essential. As can be understood from the first embodiment, the first control can be executed without the heater 10.
 一具体例では、上述の説明に係るランキンサイクル装置21から23は、ポンプ1が停止しておりかつ第1条件が成立しているときに、ポンプ1の駆動を開始することによってポンプ1と蒸発器2とを介して作動流体を循環させる第1制御を開始する。ここで、第1条件は、センサの検出値が第1閾値よりも低いという条件である。 In one specific example, the Rankine cycle devices 21 to 23 according to the above description start the driving of the pump 1 when the pump 1 is stopped and the first condition is satisfied, so that the Rankine cycle devices 21 and 23 evaporate. The first control of circulating the working fluid via the device 2 is started. Here, the first condition is a condition that the detection value of the sensor is lower than the first threshold value.
 上述の説明に係る制御方法は、センサにより検出を行う工程を備える。また、制御方法は、センサの検出値が第1閾値よりも低いときに、加熱されている状態にある作動流体をポンプ1により循環させる第1循環を開始する工程を備える。 The control method according to the above description includes a step of detecting with a sensor. Further, the control method includes a step of starting a first circulation in which the working fluid in a heated state is circulated by the pump 1 when the detection value of the sensor is lower than the first threshold value.
 ここで、「加熱されている状態にある作動流体をポンプ1により循環させる第1循環を開始する」という表現について説明する。この表現は、ポンプ1の駆動開始が作動流体の加熱開始の前である形態と、ポンプ1の駆動開始が作動流体の加熱開始と同時である形態と、ポンプ1の駆動開始が作動流体の加熱開始の後である形態と、を包含する概念である。典型例では、第1循環の開始と、ポンプ1の駆動開始とが、同時である。 Here, the expression "starting the first circulation in which the working fluid in a heated state is circulated by the pump 1 is started" will be explained. In this expression, the driving start of the pump 1 is before the heating of the working fluid, the driving start of the pump 1 is the same as the heating of the working fluid, and the driving start of the pump 1 is the heating of the working fluid. It is a concept that includes a form after the start. In a typical example, the start of the first circulation and the start of driving the pump 1 are simultaneous.
 具体的には、制御方法は、作動流体の加熱を行う工程を備えるとも言える。 Specifically, it can be said that the control method includes a step of heating the working fluid.
 第1循環において、例えば、蒸発器2および/またはヒータ10によって、作動流体が加熱され得る。作動流体の加熱を行う工程は、例えば、蒸発器2および/またはヒータ10によって行われ得る。 In the first circulation, the working fluid may be heated by, for example, the evaporator 2 and/or the heater 10. The step of heating the working fluid may be performed by the evaporator 2 and/or the heater 10, for example.
 上記センサは、作動流体の圧力を検出するセンサであってもよい。この場合、第1条件は、作動流体の圧力が第1閾値よりも低いという条件である。この場合、第1閾値は、大気圧以上の圧力、具体的には大気圧よりも高い圧力であり得る。具体的には、この場合、上記センサとして第2圧力センサ8bを用い、第1閾値として上述の第1閾値圧力Pth1を用いることができる。また、この場合、上記センサとして第1圧力センサ8aを用い、第1閾値として上述の第3閾値圧力を用いることができる。 The above sensor may be a sensor that detects the pressure of the working fluid. In this case, the first condition is a condition that the pressure of the working fluid is lower than the first threshold value. In this case, the first threshold may be a pressure equal to or higher than atmospheric pressure, specifically a pressure higher than atmospheric pressure. Specifically, in this case, the second pressure sensor 8b can be used as the sensor, and the above-described first threshold pressure Pth1 can be used as the first threshold. In this case, the first pressure sensor 8a can be used as the sensor and the third threshold pressure can be used as the first threshold.
 上記センサは、作動流体の温度を検出するセンサであってもよい。この場合、第1条件は、作動流体の温度が第1閾値よりも低いという条件である。この場合、第1閾値は、大気圧における作動流体の沸点以上の温度、具体的には該沸点よりも高い温度であり得る。具体的には、この場合、上記センサとして第2温度センサ9bを用い、第1閾値として上述の第1閾値温度を用いることができる。また、この場合、上記センサとして第1温度センサ9aを用い、第1閾値として上述の第3閾値温度を用いることができる。 The above sensor may be a sensor that detects the temperature of the working fluid. In this case, the first condition is a condition that the temperature of the working fluid is lower than the first threshold value. In this case, the first threshold may be a temperature equal to or higher than the boiling point of the working fluid at atmospheric pressure, specifically, a temperature higher than the boiling point. Specifically, in this case, the second temperature sensor 9b can be used as the sensor, and the above-mentioned first threshold temperature can be used as the first threshold. Further, in this case, the first temperature sensor 9a can be used as the sensor and the above-mentioned third threshold temperature can be used as the first threshold.
 上記センサは、凝縮器4において作動流体と熱交換されるべき冷却媒体の温度を検出するセンサであってもよい。この場合、第1条件は、冷却媒体の温度が第1閾値よりも低いという条件である。この場合、第1閾値は、大気圧における作動流体の沸点以上の温度、具体的には該沸点よりも高い温度であり得る。具体的には、この場合、上記センサとして第3温度センサ9cを用い、第1閾値として上述の第2閾値温度を用いることができる。なお、「凝縮器4において作動流体と熱交換されるべき冷却媒体の温度」は、凝縮器4において作動流体と熱交換される前の冷却媒体の温度を指す。 The above sensor may be a sensor that detects the temperature of the cooling medium that is to be heat-exchanged with the working fluid in the condenser 4. In this case, the first condition is a condition that the temperature of the cooling medium is lower than the first threshold value. In this case, the first threshold may be a temperature equal to or higher than the boiling point of the working fluid at atmospheric pressure, specifically, a temperature higher than the boiling point. Specifically, in this case, the third temperature sensor 9c can be used as the sensor, and the above-mentioned second threshold temperature can be used as the first threshold. The “temperature of the cooling medium to be heat-exchanged with the working fluid in the condenser 4” refers to the temperature of the cooling medium before being heat-exchanged with the working fluid in the condenser 4.
 一具体例では、センサは、循環回路15における膨張機3よりも下流側かつポンプ1よりも上流側の部分(つまり、第2回路15b)における作動流体の圧力を検出する。この部分における作動流体の圧力は負圧になり易い。このため、センサがこの部分の作動流体の圧力を検出することは、作動流体の圧力が負圧になることを防止するのに適している。 In one specific example, the sensor detects the pressure of the working fluid in the portion of the circulation circuit 15 downstream of the expander 3 and upstream of the pump 1 (that is, the second circuit 15b). The pressure of the working fluid in this portion tends to be a negative pressure. Therefore, the detection of the pressure of the working fluid in this portion by the sensor is suitable for preventing the pressure of the working fluid from becoming a negative pressure.
 より具体的な例では、センサは、循環回路15における凝縮器4よりも下流側かつポンプ1よりも上流側の部分(つまり、第3回路15c)における作動流体の圧力を検出する。 In a more specific example, the sensor detects the pressure of the working fluid in the portion of the circulation circuit 15 downstream of the condenser 4 and upstream of the pump 1 (that is, the third circuit 15c).
 第1制御において、バイパス回路16を介して作動流体を循環させてもよい。このようにすれば、作動流体は、バイパス回路16によって、膨張機3をバイパスして循環できる。このようにすれば、作動流体はスムーズに循環できる。 In the first control, the working fluid may be circulated via the bypass circuit 16. In this way, the working fluid can be circulated by bypassing the expander 3 by the bypass circuit 16. In this way, the working fluid can circulate smoothly.
 一具体例では、第1制御において、ポンプ1と蒸発器2とバイパス回路16とを介して作動流体を循環させる。このようにすれば、第1制御において、作動流体は、ポンプ1と蒸発器2とを介してスムーズに循環できる。 In one specific example, in the first control, the working fluid is circulated via the pump 1, the evaporator 2, and the bypass circuit 16. With this configuration, in the first control, the working fluid can smoothly circulate via the pump 1 and the evaporator 2.
 同様に、第1循環において、作動流体は、バイパス回路16を経由してもよい。具体的には、第1循環において、作動流体は、ポンプ1と蒸発器2とバイパス回路16とを経由してもよい。 Similarly, in the first circulation, the working fluid may pass through the bypass circuit 16. Specifically, in the first circulation, the working fluid may pass through the pump 1, the evaporator 2, and the bypass circuit 16.
 特に限定されないが、第1制御において、バイパス回路16の弁5の開度を50%以上100%以下に設定できる。このように開度を設定すると、第1制御において、作動流体をポンプ1と蒸発器2とを介してスムーズに循環させ易い。第1制御において、バイパス回路16の弁5の開度を75%以上100%以下に設定してもよい。 Although not particularly limited, the opening degree of the valve 5 of the bypass circuit 16 can be set to 50% or more and 100% or less in the first control. When the opening is set in this manner, the working fluid can be easily circulated through the pump 1 and the evaporator 2 smoothly in the first control. In the first control, the opening degree of the valve 5 of the bypass circuit 16 may be set to 75% or more and 100% or less.
 同様に、第1循環を、バイパス回路16の弁5の開度が50%以上100%以下に設定された状態で行ってもよい。第1循環を、バイパス回路16の弁5の開度が75%以上100%以下に設定された状態で行ってもよい。 Similarly, the first circulation may be performed with the opening degree of the valve 5 of the bypass circuit 16 set to 50% or more and 100% or less. The first circulation may be performed with the opening degree of the valve 5 of the bypass circuit 16 set to 75% or more and 100% or less.
 一例では、第1制御において、作動流体を、ポンプ1により、蒸発器2を介して循環させる。センサの検出値が第2閾値未満でありかつ第1制御を開始してからの経過時間が閾値時間以上であるときに、ヒータ10の発熱を開始する。このようにすれば、第1制御では作動流体の圧力が負圧になるリスクを十分に抑制できない場合であっても、ヒータ10を用いて上記リスクを抑制できる。典型例では、第2閾値は、第1閾値よりも高い。 In one example, in the first control, the working fluid is circulated through the evaporator 2 by the pump 1. When the detected value of the sensor is less than the second threshold value and the elapsed time from the start of the first control is the threshold time or more, the heater 10 starts to generate heat. With this configuration, even if the first control cannot sufficiently suppress the risk that the pressure of the working fluid becomes negative, the heater 10 can be used to suppress the risk. In the typical example, the second threshold is higher than the first threshold.
 一具体例では、第2条件が成立しておらずかつポンプ運転時間が閾値時間以上であるときに、ヒータ10に発熱させつつポンプ1とヒータ10とを介して作動流体を循環させる第2制御を開始する。ここで、第2条件は、上記検出値が第2閾値以上であるという条件である。第2閾値は、第1閾値に比べて高い閾値である。ポンプ運転時間は、第1制御によりポンプの駆動を開始してからの経過時間である。このようにすれば、第1制御では作動流体の圧力が負圧になるリスクを十分に抑制できない場合であっても、ヒータ10を用いた第2制御により上記リスクを抑制できる。 In one specific example, when the second condition is not satisfied and the pump operation time is equal to or longer than the threshold time, the second control in which the working fluid is circulated through the pump 1 and the heater 10 while causing the heater 10 to generate heat. To start. Here, the second condition is a condition that the detected value is equal to or more than the second threshold value. The second threshold is a higher threshold than the first threshold. The pump operation time is an elapsed time after the driving of the pump is started by the first control. With this configuration, even when the risk of the working fluid pressure becoming a negative pressure cannot be sufficiently suppressed by the first control, the risk can be suppressed by the second control using the heater 10.
 同様に、一例では、第1循環において、蒸発器2によって作動流体を加熱する。制御方法は、センサの検出値が第2閾値未満でありかつ第1循環を開始してからの経過時間が閾値時間以上であるときに、作動流体のヒータ10による加熱を開始する工程を備える。一具体例では、制御方法は、第2条件が成立しておらずかつポンプ運転時間が閾値時間以上であるときに、ヒータ10に発熱させつつポンプ1とヒータ10とを介して作動流体を循環させる第2循環を開始する工程を備える。典型例では、第2閾値は、第1閾値よりも高い。 Similarly, in one example, the working fluid is heated by the evaporator 2 in the first circulation. The control method includes the step of starting the heating of the working fluid by the heater 10 when the detected value of the sensor is less than the second threshold value and the elapsed time from the start of the first circulation is the threshold time or more. In one specific example, when the second condition is not satisfied and the pump operating time is equal to or longer than the threshold time, the control method causes the heater 10 to generate heat and circulates the working fluid through the pump 1 and the heater 10. And a step of starting the second circulation. In the typical example, the second threshold is higher than the first threshold.
 ランキンサイクル装置は、検出値が第2閾値以上であるときに、ポンプ1の駆動を停止させるものであってもよい。このようにすれば、ポンプの不要な電力消費を回避できる。 The Rankine cycle device may stop the driving of the pump 1 when the detected value is equal to or higher than the second threshold value. In this way, unnecessary power consumption of the pump can be avoided.
 同様に、制御方法は、センサの検出値が第2閾値以上であるときに、ポンプ1の駆動を停止させる工程をさらに備えていてもよい。 Similarly, the control method may further include a step of stopping the driving of the pump 1 when the detection value of the sensor is equal to or higher than the second threshold value.
 上述の通り、上記センサは作動流体の圧力を検出するセンサであってもよい。この場合、第2条件は、作動流体の圧力が第2閾値以上であるという条件である。この場合、第2閾値は、大気圧以上の圧力、具体的には大気圧よりも高い圧力であり得る。具体的には、上記センサとして第2圧力センサ8bを用い、第2閾値として上述の第2閾値圧力Pth2を用いることができる。上記センサが作動流体の圧力を検出するセンサである場合、第1閾値を第1閾値圧力と称し、第2閾値を第2閾値圧力と称することができる。典型例では、第2閾値圧力は、第1閾値圧力よりも高い。 As described above, the sensor may be a sensor that detects the pressure of the working fluid. In this case, the second condition is a condition that the pressure of the working fluid is equal to or higher than the second threshold value. In this case, the second threshold may be a pressure equal to or higher than atmospheric pressure, specifically a pressure higher than atmospheric pressure. Specifically, the second pressure sensor 8b can be used as the sensor, and the second threshold pressure Pth2 can be used as the second threshold. When the sensor is a sensor that detects the pressure of the working fluid, the first threshold may be referred to as a first threshold pressure and the second threshold may be referred to as a second threshold pressure. In a typical example, the second threshold pressure is higher than the first threshold pressure.
 上述の通り、上記センサは、作動流体の温度を検出するセンサであってもよい。この場合、第2条件は、作動流体の温度が第2閾値以上であるという条件である。この場合、第2閾値は、大気圧における作動流体の沸点以上の温度、具体的には該沸点よりも高い温度であり得る。具体的には、この場合、上記センサとして第2温度センサ9bを用い、第2閾値として上述の第4閾値温度を用いることができる。また、この場合、上記センサとして第1温度センサ9aを用い、第2閾値として上述の第5閾値温度を用いることができる。 As described above, the sensor may be a sensor that detects the temperature of the working fluid. In this case, the second condition is a condition that the temperature of the working fluid is equal to or higher than the second threshold value. In this case, the second threshold may be a temperature equal to or higher than the boiling point of the working fluid at atmospheric pressure, specifically, a temperature higher than the boiling point. Specifically, in this case, the second temperature sensor 9b can be used as the sensor, and the above-mentioned fourth threshold temperature can be used as the second threshold. In this case, the first temperature sensor 9a can be used as the sensor and the fifth threshold temperature can be used as the second threshold.
 一具体例では、第2制御において、ポンプ1とヒータ10とバイパス回路16とを介して作動流体を循環させる。特に限定されないが、第2制御において、バイパス回路16の弁5の開度を、例えば50%以上100%以下に設定できる。第2制御において、バイパス回路16の弁5の開度を75%以上100%以下に設定してもよい。 In one specific example, in the second control, the working fluid is circulated via the pump 1, the heater 10, and the bypass circuit 16. Although not particularly limited, in the second control, the opening degree of the valve 5 of the bypass circuit 16 can be set to, for example, 50% or more and 100% or less. In the second control, the opening degree of the valve 5 of the bypass circuit 16 may be set to 75% or more and 100% or less.
 同様に、一具体例では、第2循環において、ポンプ1とヒータ10とバイパス回路16とを介して作動流体を循環させる。特に限定されないが、第2循環において、バイパス回路16の弁5の開度を、例えば50%以上100%以下に設定できる。第2循環において、バイパス回路16の弁5の開度を75%以上100%以下に設定してもよい。 Similarly, in one specific example, in the second circulation, the working fluid is circulated through the pump 1, the heater 10, and the bypass circuit 16. Although not particularly limited, the opening degree of the valve 5 of the bypass circuit 16 can be set to, for example, 50% or more and 100% or less in the second circulation. In the second circulation, the opening degree of the valve 5 of the bypass circuit 16 may be set to 75% or more and 100% or less.
 流体回路14は、上述のショートカット回路17を含んでいてもよい。第2制御において、ポンプ1とヒータ10とショートカット回路17とを介して作動流体を循環させてもよい。特に限定されないが、第2制御において、ショートカット回路17の弁11の開度を、例えば50%以上100%以下に設定できる。第2制御において、ショートカット回路17の弁11の開度を75%以上100%以下に設定してもよい。 The fluid circuit 14 may include the shortcut circuit 17 described above. In the second control, the working fluid may be circulated through the pump 1, the heater 10, and the shortcut circuit 17. Although not particularly limited, the opening degree of the valve 11 of the shortcut circuit 17 can be set to, for example, 50% or more and 100% or less in the second control. In the second control, the opening degree of the valve 11 of the shortcut circuit 17 may be set to 75% or more and 100% or less.
 同様に、第2循環において、ポンプ1とヒータ10とショートカット回路17とを介して作動流体を循環させてもよい。特に限定されないが、第2循環において、ショートカット回路17の弁11の開度を、例えば50%以上100%以下に設定できる。第2循環において、ショートカット回路17の弁11の開度を75%以上100%以下に設定してもよい。 Similarly, in the second circulation, the working fluid may be circulated via the pump 1, the heater 10 and the shortcut circuit 17. Although not particularly limited, in the second circulation, the opening degree of the valve 11 of the shortcut circuit 17 can be set to, for example, 50% or more and 100% or less. In the second circulation, the opening degree of the valve 11 of the shortcut circuit 17 may be set to 75% or more and 100% or less.
 一具体例では、ポンプ1、膨張機3および凝縮器4は1つの筐体に収容されている。筐体に収容されることで、ポンプ1、膨張機3および凝縮器4は、外気と熱交換し難くなり、外気により温度が低下し難くなる。このため、筐体は、作動流体が負圧になることを抑制する効果を奏し得る。 In one specific example, the pump 1, the expander 3, and the condenser 4 are housed in one housing. Since the pump 1, the expander 3, and the condenser 4 are housed in the housing, it is difficult for the pump 1, the expander 3, and the condenser 4 to exchange heat with the outside air, and the temperature is less likely to drop due to the outside air. Therefore, the housing can exert an effect of suppressing the working fluid from becoming negative pressure.
 本開示に係るランキンサイクル装置は、蒸発器が熱源ガスと直接接触する直接接触型ランキンサイクルに適用できる。また、本開示に係るランキンサイクル装置は、熱源ガスと蒸発器との間に水冷媒等のサイクルを有するバイナリ式ランキンサイクルにも適用できる。 The Rankine cycle apparatus according to the present disclosure can be applied to a direct contact Rankine cycle in which an evaporator is in direct contact with a heat source gas. Further, the Rankine cycle apparatus according to the present disclosure can be applied to a binary Rankine cycle having a cycle of a water refrigerant or the like between a heat source gas and an evaporator.
 1 ポンプ
 2 蒸発器
 3 膨張機
 4 凝縮器
 5 バイパス弁
 6 再熱器
 7 ファン
 8a 第1圧力センサ
 8b 第2圧力センサ
 9a 第1温度センサ
 9b 第2温度センサ
 9c 第3温度センサ
 9d 第4温度センサ
 10 ヒータ
 11 ショートカット弁
 14 流体回路
 15 循環回路
 16 バイパス回路
 17 ショートカット回路
 18 発電機
 19 制御装置
 21,22,23 ランキンサイクル装置
1 Pump 2 Evaporator 3 Expander 4 Condenser 5 Bypass valve 6 Reheater 7 Fan 8a 1st pressure sensor 8b 2nd pressure sensor 9a 1st temperature sensor 9b 2nd temperature sensor 9c 3rd temperature sensor 9d 4th temperature sensor 10 Heater 11 Shortcut valve 14 Fluid circuit 15 Circulation circuit 16 Bypass circuit 17 Shortcut circuit 18 Generator 19 Control device 21,22,23 Rankine cycle device

Claims (18)

  1.  センサと、ポンプと、蒸発器と、膨張機と、凝縮器と、を備え、
     作動流体が流れる流体回路であって、循環回路を含む流体回路が設けられ、
     前記循環回路において、前記ポンプと、前記蒸発器と、前記膨張機と、前記凝縮器と、がこの順に並び、
     前記センサは、(I)前記作動流体の圧力、(II)前記作動流体の温度、または、(III)前記凝縮器において前記作動流体と熱交換されるべき冷却媒体の温度、を検出し、
     前記センサの検出値が第1閾値よりも低いときに、第1制御を開始し、
     前記第1制御は、前記作動流体を、前記ポンプにより、前記蒸発器および/またはヒータを介して循環させる制御である、ランキンサイクル装置。
    A sensor, a pump, an evaporator, an expander, and a condenser,
    A fluid circuit in which a working fluid flows, the fluid circuit including a circulation circuit is provided,
    In the circulation circuit, the pump, the evaporator, the expander, and the condenser are arranged in this order,
    The sensor detects (I) the pressure of the working fluid, (II) the temperature of the working fluid, or (III) the temperature of a cooling medium to be heat exchanged with the working fluid in the condenser,
    When the detection value of the sensor is lower than the first threshold value, the first control is started,
    The Rankine cycle device, wherein the first control is a control in which the working fluid is circulated by the pump through the evaporator and/or the heater.
  2. (i)前記センサは前記作動流体の圧力を検出し、前記第1閾値は大気圧以上の圧力である、
    (ii)前記センサは前記作動流体の温度を検出し、前記第1閾値は大気圧における前記作動流体の沸点以上の温度である、または、
    (iii)前記センサは前記凝縮器において前記作動流体と熱交換されるべき冷却媒体の温度を検出し、前記第1閾値は大気圧における前記作動流体の沸点以上の温度である、
     請求項1に記載のランキンサイクル装置。
    (I) The sensor detects the pressure of the working fluid, and the first threshold is a pressure equal to or higher than atmospheric pressure.
    (Ii) the sensor detects the temperature of the working fluid, and the first threshold is a temperature equal to or higher than the boiling point of the working fluid at atmospheric pressure, or
    (Iii) the sensor detects a temperature of a cooling medium to be heat-exchanged with the working fluid in the condenser, and the first threshold value is a temperature equal to or higher than a boiling point of the working fluid at atmospheric pressure,
    The Rankine cycle apparatus according to claim 1.
  3.  前記センサは、前記循環回路における前記膨張機よりも下流側かつ前記ポンプよりも上流側の部分における前記作動流体の圧力を検出する、
     請求項1または2に記載のランキンサイクル装置。
    The sensor detects the pressure of the working fluid in a portion of the circulation circuit downstream of the expander and upstream of the pump,
    The Rankine cycle apparatus according to claim 1.
  4.  前記流体回路は、前記循環回路における前記蒸発器よりも下流側かつ前記膨張機よりも上流側の部分と、前記循環回路における前記膨張機よりも下流側かつ前記凝縮器よりも上流側の部分と、を接続するバイパス回路を含み、
     前記第1制御において、前記バイパス回路を介して前記作動流体を循環させる、
     請求項1から3のいずれか一項に記載のランキンサイクル装置。
    The fluid circuit includes a portion downstream of the evaporator and upstream of the expander in the circulation circuit, and a portion downstream of the expander and upstream of the condenser in the circulation circuit. Including a bypass circuit connecting
    In the first control, circulating the working fluid through the bypass circuit,
    The Rankine cycle apparatus according to any one of claims 1 to 3.
  5.  前記バイパス回路において、弁が設けられ、
     前記第1制御において、前記バイパス回路の前記弁の開度を50%以上100%以下に設定する、
     請求項4に記載のランキンサイクル装置。
    A valve is provided in the bypass circuit,
    In the first control, the opening degree of the valve of the bypass circuit is set to 50% or more and 100% or less.
    The Rankine cycle apparatus according to claim 4.
  6.  前記流体回路において、前記ヒータが設けられ、
     前記第1制御において、前記作動流体を、前記ポンプにより、前記蒸発器を介して循環させ、
     前記検出値が第2閾値未満でありかつ前記第1制御を開始してからの経過時間が閾値時間以上であるときに、前記ヒータの発熱を開始する、
     請求項1から5のいずれか一項に記載のランキンサイクル装置。
    In the fluid circuit, the heater is provided,
    In the first control, the working fluid is circulated through the evaporator by the pump,
    When the detected value is less than a second threshold value and the elapsed time from the start of the first control is a threshold time or more, heat generation of the heater is started,
    The Rankine cycle apparatus according to any one of claims 1 to 5.
  7.  前記検出値が第2閾値以上であるときに、前記ポンプの駆動を停止させる、
     請求項1から6のいずれか一項に記載のランキンサイクル装置。
    Stopping the drive of the pump when the detected value is equal to or greater than a second threshold value,
    The Rankine cycle device according to any one of claims 1 to 6.
  8.  前記作動流体の大気圧における沸点は、0℃以上50℃以下である、
     請求項1から7のいずれか一項に記載のランキンサイクル装置。
    The boiling point of the working fluid at atmospheric pressure is 0° C. or higher and 50° C. or lower,
    The Rankine cycle apparatus according to any one of claims 1 to 7.
  9.  前記膨張機の回転トルクにより発電する発電機を備える、
     請求項1から8のいずれか一項に記載のランキンサイクル装置。
    A generator for generating power by the rotating torque of the expander,
    The Rankine cycle device according to any one of claims 1 to 8.
  10.  ポンプと、蒸発器と、膨張機と、凝縮器と、をこの順に作動流体が循環するランキンサイクル装置の制御方法であって、
     センサにより、(I)前記作動流体の圧力、(II)前記作動流体の温度、または、(III)前記凝縮器において前記作動流体と熱交換されるべき冷却媒体の温度、を検出することと、
     前記センサの検出値が第1閾値よりも低いときに、加熱されている状態にある前記作動流体を前記ポンプにより循環させる第1循環を開始することと、を備えた、
     制御方法。
    A method for controlling a Rankine cycle device in which a working fluid circulates through a pump, an evaporator, an expander, and a condenser in this order,
    A sensor for detecting (I) the pressure of the working fluid, (II) the temperature of the working fluid, or (III) the temperature of a cooling medium to be heat-exchanged with the working fluid in the condenser,
    Starting a first circulation in which the working fluid in a heated state is circulated by the pump when the detection value of the sensor is lower than a first threshold value;
    Control method.
  11. (i)前記センサは前記作動流体の圧力を検出し、前記第1閾値は大気圧以上の圧力である、
    (ii)前記センサは前記作動流体の温度を検出し、前記第1閾値は大気圧における前記作動流体の沸点以上の温度である、または、
    (iii)前記センサは前記凝縮器において前記作動流体と熱交換されるべき冷却媒体の温度を検出し、前記第1閾値は大気圧における前記作動流体の沸点以上の温度である、
     請求項10に記載の制御方法。
    (I) The sensor detects the pressure of the working fluid, and the first threshold is a pressure equal to or higher than atmospheric pressure.
    (Ii) the sensor detects the temperature of the working fluid, and the first threshold is a temperature equal to or higher than the boiling point of the working fluid at atmospheric pressure, or
    (Iii) the sensor detects a temperature of a cooling medium to be heat-exchanged with the working fluid in the condenser, and the first threshold value is a temperature equal to or higher than a boiling point of the working fluid at atmospheric pressure,
    The control method according to claim 10.
  12.  前記ランキンサイクル装置において、前記ポンプと、前記蒸発器と、前記膨張機と、前記凝縮器と、がこの順に並ぶ循環回路が設けられ、
     前記センサは、前記循環回路における前記膨張機よりも下流側かつ前記ポンプよりも上流側の部分における前記作動流体の圧力を検出する、
     請求項10または11に記載の制御方法。
    In the Rankine cycle apparatus, a circulation circuit is provided in which the pump, the evaporator, the expander, and the condenser are arranged in this order,
    The sensor detects the pressure of the working fluid in a portion of the circulation circuit downstream of the expander and upstream of the pump,
    The control method according to claim 10.
  13.  前記ランキンサイクル装置において、
      前記ポンプと、前記蒸発器と、前記膨張機と、前記凝縮器と、がこの順に並ぶ循環回路と、
      前記循環回路における前記蒸発器よりも下流側かつ前記膨張機よりも上流側の部分と、前記循環回路における前記膨張機よりも下流側かつ前記凝縮器よりも上流側の部分と、を接続するバイパス回路と、が設けられ、
     前記第1循環において、前記作動流体は前記バイパス回路を経由する、
     請求項10から12のいずれか一項に記載の制御方法。
    In the Rankine cycle device,
    A circulation circuit in which the pump, the evaporator, the expander, and the condenser are arranged in this order,
    A bypass connecting a portion of the circulation circuit downstream of the evaporator and upstream of the expander, and a portion of the circulation circuit downstream of the expander and upstream of the condenser. A circuit is provided,
    In the first circulation, the working fluid passes through the bypass circuit,
    The control method according to any one of claims 10 to 12.
  14.  前記バイパス回路おいて、弁が設けられ、
     前記第1循環において、前記バイパス回路の前記弁の開度を50%以上100%以下に設定する、
     請求項13に記載の制御方法。
    A valve is provided in the bypass circuit,
    In the first circulation, the opening degree of the valve of the bypass circuit is set to 50% or more and 100% or less,
    The control method according to claim 13.
  15.  前記第1循環において、前記蒸発器および/またはヒータによって前記作動流体を加熱する、
     請求項10から14のいずれか一項に記載の制御方法。
    Heating the working fluid by the evaporator and/or heater in the first circulation;
    The control method according to any one of claims 10 to 14.
  16.  前記第1循環において、前記蒸発器によって前記作動流体を加熱し、
     前記制御方法は、前記検出値が第2閾値未満でありかつ前記第1循環を開始してからの経過時間が閾値時間以上であるときに、前記作動流体のヒータによる加熱を開始することをさらに備える、
     請求項10から15のいずれか一項に記載の制御方法。
    Heating the working fluid by the evaporator in the first circulation;
    The control method may further include starting heating of the working fluid by a heater when the detected value is less than a second threshold value and an elapsed time after starting the first circulation is a threshold time or more. Prepare,
    The control method according to any one of claims 10 to 15.
  17.  前記制御方法は、前記検出値が第2閾値以上であるときに、前記ポンプの駆動を停止させることをさらに備える、
     請求項10から16のいずれか一項に記載の制御方法。
    The control method further includes stopping driving of the pump when the detected value is equal to or greater than a second threshold value.
    The control method according to any one of claims 10 to 16.
  18.  前記作動流体の大気圧における沸点は、0℃以上50℃以下である、
     請求項10から17のいずれか一項に記載の制御方法。
    The boiling point of the working fluid at atmospheric pressure is 0° C. or higher and 50° C. or lower,
    The control method according to any one of claims 10 to 17.
PCT/JP2019/042901 2018-12-07 2019-10-31 Rankine cycle device and control method therefor WO2020116061A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980031455.0A CN112105801A (en) 2018-12-07 2019-10-31 Rankine cycle apparatus and control method thereof
US17/134,650 US20210115807A1 (en) 2018-12-07 2020-12-28 Rankine cycle apparatus and method for controlling rankine cycle apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-229620 2018-12-07
JP2018229620 2018-12-07
JP2019188055A JP2020094580A (en) 2018-12-07 2019-10-11 Rankine cycle device and control method of the same
JP2019-188055 2019-10-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/134,650 Continuation US20210115807A1 (en) 2018-12-07 2020-12-28 Rankine cycle apparatus and method for controlling rankine cycle apparatus

Publications (1)

Publication Number Publication Date
WO2020116061A1 true WO2020116061A1 (en) 2020-06-11

Family

ID=70974635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042901 WO2020116061A1 (en) 2018-12-07 2019-10-31 Rankine cycle device and control method therefor

Country Status (1)

Country Link
WO (1) WO2020116061A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015123365A1 (en) 2014-02-11 2015-08-20 Mitokinin Llc Compositions and methods using the same for treatment of neurodegenerative and mitochondrial disease

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814404U (en) * 1981-07-22 1983-01-29 株式会社東芝 rankine cycle device
JP2012202269A (en) * 2011-03-24 2012-10-22 Kobe Steel Ltd Binary generator and control method for the same
JP2012202374A (en) * 2011-03-28 2012-10-22 Kobe Steel Ltd Power generation device
JP2014238041A (en) * 2013-06-07 2014-12-18 株式会社神戸製鋼所 Waste heat recovery device and waste heat recovery device operation control method
JP6179736B2 (en) 2013-01-16 2017-08-16 パナソニックIpマネジメント株式会社 Rankine cycle equipment
JP2018035794A (en) * 2016-09-02 2018-03-08 株式会社Ihi回転機械エンジニアリング Binary power generation system
WO2018147027A1 (en) * 2017-02-08 2018-08-16 株式会社神戸製鋼所 Binary power generation system and stopping method for same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814404U (en) * 1981-07-22 1983-01-29 株式会社東芝 rankine cycle device
JP2012202269A (en) * 2011-03-24 2012-10-22 Kobe Steel Ltd Binary generator and control method for the same
JP2012202374A (en) * 2011-03-28 2012-10-22 Kobe Steel Ltd Power generation device
JP6179736B2 (en) 2013-01-16 2017-08-16 パナソニックIpマネジメント株式会社 Rankine cycle equipment
JP2014238041A (en) * 2013-06-07 2014-12-18 株式会社神戸製鋼所 Waste heat recovery device and waste heat recovery device operation control method
JP2018035794A (en) * 2016-09-02 2018-03-08 株式会社Ihi回転機械エンジニアリング Binary power generation system
WO2018147027A1 (en) * 2017-02-08 2018-08-16 株式会社神戸製鋼所 Binary power generation system and stopping method for same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015123365A1 (en) 2014-02-11 2015-08-20 Mitokinin Llc Compositions and methods using the same for treatment of neurodegenerative and mitochondrial disease

Similar Documents

Publication Publication Date Title
JP4302759B2 (en) Waste heat utilization equipment
KR101708108B1 (en) Waste heat recovery system and waste heat recovery method
CN108699999B (en) Exhaust heat recovery device and double-cycle power generation device
US9797272B2 (en) Thermal energy recovery device and control method
JP5460663B2 (en) Power generator
JP6060040B2 (en) Waste heat recovery device and operation control method of waste heat recovery device
US20150322821A1 (en) Thermal energy recovery device and start-up method of thermal energy recovery device
KR101790915B1 (en) Generator device
WO2020116061A1 (en) Rankine cycle device and control method therefor
JP2013113192A (en) Waste heat regeneration system
JP6705333B2 (en) Heat recovery system
JP2020094580A (en) Rankine cycle device and control method of the same
JP6342755B2 (en) Compression device
JP6170487B2 (en) Thermal energy recovery device
JP5653320B2 (en) Waste heat regeneration system
JP3670319B2 (en) Binary power generation system
JP2018127970A (en) Thermal energy recovery system
US10851678B2 (en) Thermal energy recovery device and startup operation method for the same
JP2020204283A (en) Rankine cycle device
JP2017203391A (en) Exhaust heat recovery system
JP2020183702A (en) Rankine cycle device
JP2022090556A (en) Binary power generator and its control method
JP2014190217A (en) Waste heat regeneration system
JP2020186691A (en) Heat recovery device and method for collecting working medium of heat recovery device
JP2020029779A (en) Binary power generator and binary power generation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019893730

Country of ref document: EP

Effective date: 20210707

122 Ep: pct application non-entry in european phase

Ref document number: 19893730

Country of ref document: EP

Kind code of ref document: A1